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The Causality Workbench Virtual Lab 
Isabelle Guyon1, Constantin Aliferis, Greg Cooper, André Elisseeff, 

Olivier Guyon, Jean-Philippe Pellet, Peter Spirtes, Alexander Statnikov 
 

I. Summary 
We implemented a virtual laboratory allowing researchers to perform experiments on 
artificial systems to infer their causal structure. This is part of the “Causality Workbench” 
effort. The design of the platform is such that: 

- Researchers can submit new artificial systems with which other can 
experiment. 

- Experimenters can place queries and get answers. 
- The activity is logged. 
- Registered users have their own virtual lab space. 

We have released a first version http://www.causality.inf.ethz.ch/workbench.php. 
 

II. Background 
The problem of attributing causes to effects is pervasive in science, medicine, economy 
and almost every aspects of our everyday life involving human reasoning and decision- 
making. Advancing the methodology for reliably determining causal relationships will 
therefore have an important impact, both economical and fundamental. Determining 
causal relationships allows us to predict the consequences of actions or manipulations. 
For instance, the effect of taking a drug on health status, or the effect of reducing taxes on 
the economy. This is fundamentally different from making predictions from observations. 
Observations imply no experimentation, no interventions on the system under study, 
whereas actions introduce a disruption in the natural functioning of the system. The 
canonical way of determining whether events are causally related is to conduct controlled 
experiments in which the system of interest is “manipulated” to verify hypothetical causal 
relationships. However, experimentation is often costly, infeasible or unethical. This has 
prompted a lot of recent research on learning causal relationships from available 
observational data. These methods can unravel causal relationships to a certain extent, 
but must generally be complemented by experimentation. 
To this day, the methods, which have emerged in various application domains, have not 
been systematically compared because of the lack of standard benchmarks. To stimulate 
research in causal discovery, we created an interactive platform available via a web 
interface, which will allow researchers to share problems and test methods. Because 
experimentation is a key component of causal discovery, the platform simulates a 
laboratory environment in which researchers can experiment via the interface giving 
access to artificial data generating systems, emulating real systems. 
In the virtual laboratory, users can place queries to an unknown system, including request 
to observe some variables while setting other variables to given values (manipulations), 
to discover its causal structure. Users have personal accounts and lab space. A given user 
may choose among a number of data generative systems to reverse engineer. For each 
new experiment, the user receives: (1) a certain amount of virtual cash to be spent to 
                                                 
1 Corresponding author: Isabelle Guyon – Isabelle@clopinet.com 
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obtain data from the system by placing queries, (2) information about which variables are 
observable or actionable (actionable means potentially subject to “action” or 
“manipulation”), and (3) information about the cost of queries. The system may have 
hidden variables. The cost of a query varies depending on the number of variables 
manipulated and/or observed and the number of instances requested. The virtual 
laboratory keeps track of the queries and virtual cash spent during virtual experiments. 
When a user runs out of virtual cash, the experiment terminates and he/she must return 
the answer to the problem. Depending on the nature of the problem, the answer may 
consist in (i) point-wise predictions of variables (while others are being manipulated), (ii) 
predictions of distributions, (iii) information on the causal structure of the system, or (iv) 
a policy to obtain a desired outcome. In this first version, we focus on point-wise 
predictions of variable values. 

 
III. Architecture 

The system architecture is schematically represented in Figure 1. It is a hub-and-spokes 
architecture. A central server (the Causality Workbench server) provides a web interface 
to the users and in equipped with a database.2 The server communicates with one or 
several other servers on which causal systems (models) to be studied are simulated. In 
this first version, we have only one remote server hosting models. This server launches 
Matlab® upon request of the Causality Workbench server to run the models. 
 

 
 
 
 
 
 
 

 
 

Figure 1: Overview of the Virtual Lab architecture. 

                                                 
2 All implementations are done with PHP and MySQL. 
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IV. Overview of the platform 
The Virtual Lab (Figure 1) has a web-based user interface available from 
http://www.causality.inf.ethz.ch/workbench.php. It is part of the Causality Workbench, 
which includes other resources (challenges, repository of data/models/software, 
teleconference seminars, etc.)  The Virtual Lab section includes 6 pages. The Index, 
Leaderboard, and Info pages are publicly available. The Mylab and Upload pages are 
only available to registered users. 
 

 
Figure 1: The Virtual Lab Info page. 

 
The users can familiarize themselves with the models, which are listed on the Index page 
(Figure 2). The table lists the model properties and the initial budget (amount of virtual 
cash available for experimentation) as well as the cost per experimental unit. The models 
are cross-indexed with the model repository automatically when a new model is 
registered (Figure 3). At present, model registration is via its inclusion in the GLOP 
package. 
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Figure 2: The Virtual Lab Index page. The models listed are linked to the repository. 

 

 
Figure 3: Repository. The registered models are included in the repository. 

 
Following the instructions described in the Info page, Registered users may upload 
queries and results from the Upload page and retrieve data and performance scores from 
the Mylab page (Figure 4). When final prediction results on test data are uploaded, the 
experiment terminates and the final score is published on the Leaderboard page. 
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Figure 4: Mylab. Each user has his/her personal lab space holding his/her experiments.  
 

 
Figure 5: GLOP. The GLOP Matlab package is available for download in the software 

repository. 



 6

V. The GLOP package 
Our first release of the Virtual Lab uses a single remote server running Matlab to 
implement artificial causal systems. We developed an object-oriented interface to easily 
incorporate new generative models. It is based on two simple abstractions: 

- query object and 
- model object. 

The query object holds the query information delivered by users or the data delivered by 
the generative models. It has a fixed structure. The model object is a template from which 
data generative models can be derived. We call GLOP (Generative Lab Object Package) 
the resulting package of objects. GLOP may be downloaded from 
http://www.causality.inf.ethz.ch/repository.php?id=23 (Figure 5). 
 
%==============================================================  
% QUERY object 
%============================================================== 
% q = query; 
% q = query(filename); 
% q = query(filename, fn2); 
% 
% Stores query information and results. 
% The argument "filename" is the root name of the query file. 
% If fn2 is specified, make a copy to the second file 
% 
% One expects a subset of the files: 
% <filename>.type: Type of the query, types={'TRAIN', 'TEST', 'OBS', 
% 'SURVEY', 'EXP', 'PREDICT'}; TEST and PREDICT can be followed by the test 
% set number; OBS can be followed by the number of samples requested. 
% <filename>.premanipvar, <filename>.manipvar, <filename>.postmanipvar:  
% One line with a list of variables.  
% <filename>.premanipval, <filename>.manipval, <filename>.postmanipval:  
% Multiline matrix, each line corresponding to one instance. 
% Each column corresponds to a variable.  
% The query object stores this information in corresponding fields. 
% Missing values are coded as NaN. 
% Methods: 
% load --       called by the constructor to load the this. 
% save --       save the query to file 
% struct --     show the structure 
% xml_display -- show structure as XML 
% In addition, many fields can be set/get with a method having the same 
% name; see methods(query) 
 
% Isabelle Guyon -- isabelle@clopinet.com -- May-Oct 2009 
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classdef query 
    properties (SetAccess = private) 
        % Identification 
        participant_ID=[]; 
        model_name=[]; 
        experiment_name=[]; 
        date_submitted=[]; 
        type='OBS'; 
        README=''; 
        % Inputs 
        sample=[]; 
        manipvar=[]; 
        manipval=[]; 
        postmanipvar=[]; 
        % Auxiliary fields and output fields 
        postmanipval=[]; % The values for the queried "queryvar" 
variables 
        premanipvar=[]; % The list of variables in the premanipval 
array 
        premanipval=[]; % The values used to initialize the system 
before manipulating it 
                   % This is used if paricular subjects are chosen on 
which 
                   % to perform a given manipulation rather than 
drawing 
                   % them at random according to the natural 
distribution. 
                   % This is also used to return training or test data. 
        predict=[];  % Same as postmanipval 
        varnum=0; % Total number of variables (not including the 
target) 
                 % ie the maximum variable index value 
        samplenum=[]; % Number of samples asked for 
        manipnum=[]; % Effective number of time a variable is 
manipulated in the query 
        obsernum=[]; % Effective number of time a variable has been 
observed (value requested) in the query, including targets 
        targetnum=[]; % Number of times a target variable is observed 
        % Private 
        types={'TRAIN', 'TEST', 'OBS', 'SURVEY', 'EXP', 'PREDICT'}; 
    end 
    properties  
        % All the costs are computed by the model 
        samplecost=0; % samplenum * cost_per_sample 
        manipcost=0; % manipnum * cost_per_manip 
        obsercost=0; % obsernum * cost_per_observation 
        targetcost=0;  % targetnum * cost_per_target (this is on top of 
the regular cost for observing a variable: the target may be more 
expensive 
        totalcost=0; % Overall cost  
        % Prediction score and estimated error bar 
        score=[]; 
        ebar=[]; 
        % Flag(s) 
        is_overbudget=0; % Budget exceeded 
    end 
end 
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%====================================================================== 
% MODEL template for a data generative model           
%====================================================================== 
% M=model(hyper)  
% hyper -- Hyperparameters (public properties). Use the Spider syntax. 
%   train_num (Size of the training set)  
%   test_num (Size of the test set) 
%   cost_per_sample 
%   cost_per_target_observation  
%   cost_per_var_observation 
%   cost_per_var_manipulation 
% By default, all values are set to zero. 
% If a configuration file model_config.txt exists, the hyperparameters 
are 
% loaded from that file. Any hyperparameter specified as argument 
% overwrites the default or configuration values. 
% 
% Examples: 
%   default(model) % list the default values of the HP 
%   M=model; 
%   M=model('train_num=3000'); 
%   M=model({'train_num=3000', 'cost_per_sample=234'}); 
%   M.task_n_pricing or task_n_pricing(M) 
%   B=initial_budget(M); 
%   var_profile(M)  % shows the variable properties 
%   [Q, M]=process_query(M, query); 
  
% Isabelle Guyon -- isabelle@clopinet.com -- October 2009 
  
classdef model 
    % <<------------- hyperparameters ----------------->>  
    properties  
        train_num=0; % load_config/evel_hyper: Size of the training set  
        test_num=0;  % load_config/evel_hyper: Size of the test set(s) 
  
        cost_per_sample=0;              % load_config/evel_hyper  
        cost_per_target_observation=0;  % load_config/evel_hyper 
        cost_per_var_observation=0;     % load_config/evel_hyper 
        cost_per_var_manipulation=0;    % load_config/evel_hyper 
    end 
    % <<------------- model ----------------->>  
    properties (SetAccess = protected) 
        time_dept=[];       % init: Time dependency (0/1) 
        target=[];          % init: Indices of the target variables 
        observable=[];      % init: Indices of the observable variables 
        actionable=[];      % init: Indices of the actionable variables 
        unobservable=[];    % init: Indices of the unobservable 
variables     
        train_cost=0;       % compute_budget: Price of the default 
labeled training set 
        test_cost=0;        % compute_budget: Price of the default test 
set 
        initial_budget=0;   % compute_budget: Initial budget 
    end 
end 
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VI. Getting started guide 
You may either use the Virtual Lab interface available from 
http://www.causality.inf.ethz.ch/workbench.php 
Or download the Matlab package GLOP from 
http://www.causality.inf.ethz.ch/repository.php?id=23.  
Working directly with GLOP will allow you to quickly perform trial experiments on 
example models. The Virtual Lab interface may then be used to get familiar with the 
query protocol. The Virtual Lab will be used in benchmarks and challenges to evaluate 
methods on new unknown models. 
 
Getting started with GLOP 
Installation 
Unzip glop.zip 
Open Matlab and go to the GLOP directory and type use_glop at the prompt. 
 
Finding your way around 
To know the list of models, type  
> whoisglop 
To know the default values of a model hyperparameters: 
> default(model) 
To know the methods: 
> methods(model) 
To know the properties: 
> properties(model) 
 

Examples 
> q=query('OBS 20'); 
or 
> q=query('TRAIN'); 
or 
> q=query('TEST'); 
and 
> a=alarm({'cost_per_sample=1', 'cost_per_var_observation=1', 
'cost_per_var_manipulation=2'}); 
or 
> a=sprinkler; 
etc. 
> initial_budget(a) 
> task_n_pricing(a) 
> [q, a]=process_query(a, q); 

 
Getting started with the Virtual Lab 
You may follow these simple steps: 

- Investigate the models by clicking on the links in the Virtual Lab Index page. 
Choose a model you want to work on. 

- Use the format described on the Info page to format your query. 
- Register by entering your personal information in the Login page (or just login if 

you are already registered). 
- Upload your query packaged as a zip archive using the Upload page form. 
- Retrieve the answer (your data) from the My Lab page. 
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How to design experiments? 
Here is a brief outline of the steps taken in experimenting and causal modeling:  

1. Problem specification: Define your problem and your goals . In the Virtual Lab, 
problems are already formalized.  

2. Feature set definition: Identify potentially relevant factors . In the virtual lab 
the feature set is already given: those are the system variables. In some cases, the 
task designer may hide a number of variables to test the robustness of algorithms 
against hidden confounders, which are unknown common causes to several 
variables in your system.  

3. Manipulation protocol: Figure out how to perform actions on the system and 
manipulate variables of interest. This step is often very complex in real 
experiments because we do not always have easy means of influencing variables 
individually as an external agent. Not all variables are actionable or even 
observable. Some may be unethical to manipulate. In the Virtual Lab, things are 
simple: we tell you which variables are actionable. All you have to do to carry out 
experiments is to initialize or clamp desired variables.  

4. Experimental design: Given a budget (here you have "virtual cash"), spend it in 
data collection, observations, and manipulations to achieve the goals you have set 
to yourselves.  

5. Modeling: Carry out the experiments and build models with the data collected. 
Eventually iterate this process until a satisfactory model is obtained. In the Virtual 
Lab, all you have to do is to submit queries via the Upload Page using the format 
described below. Your virtual cash account will be automatically debited and you 
will be able to download the results of your experiments your private Mylab page.  

6. Deployment: Deploy your model to predict the consequences of actions in new 
situations. In the Virtual Lab, we provide you with test data, which was drawn 
from a post-manipulation distribution. The manipulations are performed by the 
task designers. depending on the task, the designers may or may not inform you of 
what exact manipulation(s) was performed in test data. When you are done with 
modeling and before your run out of virtual cash, you must ask for the test data. 
WARNING: The test data will cost you virtual cash, so make sure you keep 
enough virtual cash. We do not withhold from your cash account a fixed amount 
to pay for the test data because, if you cleverly design your experiments and your 
model, you might get it at a discount price by querying only a subset of the 
variables. Once you ask for test data, you must return your prediction results 
on test data, no query for more data are allowed.  

We will organize competitions in the future. In a competition setup, it will not be possible 
to work several times on the same task. However, for the time being, you are free to 
experiment multiple times on the same problem and even to run concurrent experiments 
with different strategies. 
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VII. Data formats and protocol 
The submission of data requests and prediction results is via the Upload page of the 
Causality Workbench. A submitted query should be a zip file bundling files described 
below. Use  
  zip query.zip * 
or  
  tar cvf query.tar *; gzip query.tar 
to create valid archives. We provide several examples of queries for the LUCAS model:  

1. Observations. Request 25 examples of all the variables. No manipulation is 
performed. observational data only.  

2. Experiment 1.. Request 10 values of the target variable. Most covariate values are 
provided, except a few missing values.  

3. Experiment 2.. Not all variables are manipulated. The pre-manipulation values are 
given by the selection of training samples.  

4. Test data. We ask for the test set 2. Here we ask for postmanip variables, but we 
will not get them because the test data does not include any postmanipulation 
observations.  

5. Default training set. Training data can be purchased unlabeled, this is cheaper. 
Then the labels may be queried separately.  

6. Survey data. Query asking for a subset of the labels of the default training set.  
7. Prediction results. Predictions of the target post-manipulation values on test set 2.  

If you want to get baseline results without experimenting, it is always possible with the 
initial budget to buy the default training set and the entire test set. Just submit two 
(separate) queries with a single query file, each containing a single word:  

1. To get training data, write the word TRAIN on the first line.  
2. To get test data, write the word TEST on the first line.  

File formats for data queries and prediction results 
 

Filename 
Non-

experimental 
data 

Experimental 
data 

Survey 
data 

Prediction 
results Description File Format 

[submission].query 

Compulsory 
(TRAIN, 

TEST [n] or 
OBS [num]) 

Compulsory
(EXP) 

Optional
(SURVEY)

Optional
(PREDICT 

[n]) 
Type of query. 

A single key word on the 
first line, optionally 
followed by a number on 
the same line: 
  TRAIN: get the default 
training set. 
  TEST [n]; replace [n] by 
1, 2, 3 to get the nth test 
set TEST=TEST 1. 
  OBS [num]: get 
observational data; replace 
[num] by the number of 
samples requested. 
  EXP: get experimental 
data (the number of 
samples is determined by 
the number of lines in 
[submission].sample and 
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[submission].manipval). 
  SURVEY: get training 
labels. 
  PREDICT [n]: replace 
[n] by 1, 2, 3 to indicate 
that predictions 
correspond to the nth test 
set. PREDICT=PREDICT 
1. 

[submission].sample NA Optional Compulsory NA 

Sample ID in the 
default training set. 
The corresponding 
samples are used to set 
premanipulation 
values. 

A list of sample numbers, 
one per line (the 
numbering is 1-based and 
corresponds to lines in the 
training data). 

[submission].premanipvar Optional Optional Optional NA 

List of the pre-
manipulation variables 
(observed before or 
without 
experimentation). By 
default (no file given): 
(1) for non-
experimental and 
experimental data: all 
the observable 
variables, except the 
target; (2) for survey 
data: the target. 

[submission].manipvar  NA Compulsory NA NA 
List of the variables to 
be manipulated 
(clamped).  

[submission].postmanipvar NA Compulsory NA Optional 

List of the post-
manipulation variables 
 (observed after 
experimentation). By 
default: the target 
variable. 

A space-delimited  list of 
variable numbers on the 
first line of the file. All 
variables are numbered 
from 1 to the maximum 
number of visible 
variables, except the target 
variable (if any), which is 
numbered 0.  

[submission].premanipval  NA NA NA NA 

Not applicable: use 
[submission].sample to 
initialize values of the 
pre-manipulation 
variables. 

[submission].manipval NA Compulsory NA NA 

Clamped values for the 
manipulated variables, 
listed in 
[submission].manipvar. 

[submission].postmanipval 
or 
[submission].predict 

NA NA NA Compulsory
Predictions values for 
all the samples of 
TESTn. 

Each line corresponds to 
an instance (sample) and 
should contain space 
delimited variable values 
for all the variables of that 
instance. Use NaN if the 
value is missing or 
omitted. 
The number of lines in 
[submission].manipval 
should match the number 
of samples in 
[submission].sample (if 
provided). 
You may omit 
[submission].query and 
provide 
[submission].predict 
instead of 
[submission].postmanipval 
if there is a single test set 
and no experiments are 
involved. 

File formats for data received and prediction scores 
Data archives with the training or test data you requested are available from your private 
Mylab a short time after you placed your query. Prediction score are also displayed on the 
Leaderboard page.  
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Filename 
Non-

experimental 
training data 

Survey 
data 

Experimental 
training data Test data Evaluation 

score Description File Format 

[submission].query 
Optional  

(TRAIN or 
OBS) 

Optional
SURVEY

Optional 
EXP 

Optional
TEST 

Optional
PREDICT Type of query. 

One keyword 
and optionally a 
number on the 
first line 
(copied from 
the query 
submitted). 

[answer].premanipvar Optional NA Present if 
requested Present NA 

List of the pre-
manipulation variables. By 
default, all the observable 
variables except the target. 

[answer].manipvar  NA NA Present Optional NA List of the variables to be 
manipulated (clamped).   

 [answer].postmanipvar NA NA Optional Optional NA 

List of the post-
manipulation variables. By 
default: the target variable 
0. 

A space-
delimited  list 
of variable 
numbers on the 
first line of the 
file. All 
variables are 
numbered from 
1 to the 
maximum 
number of 
visible 
variables, 
except the 
default target 
variable (if 
any), which is 
numbered 0. If 
the file is 
missing or 
empty, an 
empty list is 
assumed.  

[answer].premanipval 
or 
[answer].data 

Present NA Present if 
requested Present NA Pre-manipulation values.  

[answer].label 

NA (to get 
the target 
variable 

values, use 
the index 0) 

Present 

NA (to get the 
target variable 

values, use 
the index 0) 

NA NA 

Target values for default 
trainign examples. 
Equivalent to 
[answer].premanipval 
when [answer].premanipvar 
(with the single value 0) is 
omitted. 

[answer].manipval NA NA Present Optional NA 

Clamped values for the 
manipulated variables, 
listed in [answer].manipvar. 
Those  correspond to 
manipulations performed 
by the organizers so they 
are free of charge. 

[answer].postmanipval NA NA Present 
Hidden to 

the 
participants

NA 
Post-manipulation values. 
In answer to 
[submission].postmanipvar 

Each line 
corresponds to 
an instance 
(sample) and 
contains space 
delimited 
variable values 
for all the 
variables of that 
instance (or a 
single target 
value for 
[answer].label 
files). 
[answer].data 
files contain 
unlabeled 
default training 
data for 
problems 
without 
experimentation 

[answer].is_overbudget Optional Optional Optional Optional Optional 

File indicating that the 
budget was overspent and 
the query was not 
processed. 

The value1. 

[answer].score NA NA NA NA Present Prediction score. A numeric 
value. 

[answer].ebar NA NA NA NA Present Error bar. A numeric 
value. 

[answer].varnum Present Present Present Present NA 
The total number of 
observable variables 
(excluding the target). 

A numeric 
value. 
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[answer].samplenum Present Present Present Present NA Number of samples 
requested. 

A numeric 
value. 

[answer].obsernum Present Present Present Present NA 
Number of variable values 
observed (including the 
target). 

A numeric 
value. 

[answer].manipnum Present Present Present Present NA Number of values 
manipulated. 

A numeric 
value. 

[answer].targetnum Present Present Present Present NA Number of target values 
observed. 

A numeric 
value. 

[answer].samplecost Present Present Present Present NA 

Cost for the samples 
requested (labeled samples 
may cost more than 
unlabeled samples). 

A numeric 
value. 

[answer].obsercost Present Present Present Present NA Cost for the observations 
made. 

A numeric 
value. 

[answer].manipcost Present Present Present Present NA Cost for the manipulations 
made. 

A numeric 
value. 

[answer].targetcost Present Present Present Present NA Additional cost for target 
observations. 

A numeric 
value. 

[answer].totalcost Present Present Present Present NA Total cost. A numeric 
value. 

 
In addition, summary information is provided to the central server via an XML format. 
Both “models” and “queries” have data structures, which can be summarized in XML. 
We give below typical examples. 
 
1) Following request from the Causality Workbench server to the remove server 
named “GLOP” to list its models, the remote server returns the following 
information, which is then formatted as a table in the “Index” page of the Virtual 
Lab: 
 
<virtual_lab name="GLOP" job_id="job985873"> 
 <version> alpha version - Oct 27 2009 </version> 
 <models num="8"> 
  <model name="alarm"> 
   <train_num value="2000" /> 
   <test_num value="10000" /> 
   <cost_per_sample value="9" /> 
   <cost_per_target_observation value="0" /> 
   <cost_per_var_observation value="2" /> 
   <cost_per_var_manipulation value="4" /> 
   <time_dept value="0" /> 
   <num_target value="0" /> 
   <num_observable value="37" /> 
   <num_actionable value="37" /> 
   <num_unobservable value="0" /> 
   <train_cost value="166000" /> 
   <test_cost value="830000" /> 
   <initial_budget value="996000" /> 
   <current_budget value="996000" /> 
  </model> 
 
  <model name="calus"> 
   ... 
  </model> 
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  [etc. more models here] 
 

<model name="sprinkler"> 
   ... 
  </model> 
 </models> 
</virtual_lab> 
 

2) Following the same request, the remote server creates individual profile files for 
the models, for information to the participants (those are linked from the model 
table in the “Index” page): 
 
<model name="lucas"> 
  <train_num value="2000" />  
  <test_num value="10000" />  
  <cost_per_sample value="10" />  
  <cost_per_target_observation value="40" />  
  <cost_per_var_observation value="1" />  
  <cost_per_var_manipulation value="10" />  
  <time_dept value="0" />  
  <num_target value="1" />  
  <num_observable value="12" />  
  <num_actionable value="9" />  
  <num_unobservable value="0" />  
  <train_cost value="124000" />  
  <test_cost value="210000" />  
  <initial_budget value="334000" />  
  <task>LUCAS: This is a Bayesian network simulator for a toy 

problem inspired by the problem of identifying risk 
factors of lung cancer. See 
http://www.causality.inf.ethz.ch/data/LUCAS.html , etc 

   </task>  
   <variables num="12"> 

<![CDATA[  
Index Name Access Type Min Max 
0 Lung cancer observable binary -1 1 
1 Smoking actionable binary 0 1 
2 Yellow Fingers actionable binary 0 1 
3 Anxiety actionable binary 0 1 
4 Peer Pressure actionable binary 0 1 
5 Genetics observable binary 0 1 
6 Attention Disorder actionable binary 0 1 
7 Born an Even Day observable binary 0 1 
8 Car Accident actionable binary 0 1 
9 Fatigue actionable binary 0 1 
10 Allergy actionable binary 0 1 
11 Coughing actionable binary 0 1 

  ]]>  
  <variable index="0" name="Lung cancer" 

access="observable" type="binary" min="-1" max="1" />  
  <variable index="1" name="Smoking" access="actionable" 

type="binary" min="0" max="1" />  
  <variable index="2" name="Yellow Fingers" 

access="actionable" type="binary" min="0" max="1" />  
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  <variable index="3" name="Anxiety" access="actionable" 
type="binary" min="0" max="1" />  

  <variable index="4" name="Peer Pressure" 
access="actionable" type="binary" min="0" max="1" />  

  <variable index="5" name="Genetics" access="observable" 
type="binary" min="0" max="1" />  

  <variable index="6" name="Attention Disorder" 
access="actionable" type="binary" min="0" max="1" />  

  <variable index="7" name="Born an Even Day" 
access="observable" type="binary" min="0" max="1" />  

  <variable index="8" name="Car Accident" 
access="actionable" type="binary" min="0" max="1" />  

  <variable index="9" name="Fatigue" access="actionable" 
type="binary" min="0" max="1" />  

  <variable index="10" name="Allergy" access="actionable" 
type="binary" min="0" max="1" />  

  <variable index="11" name="Coughing" access="actionable" 
type="binary" min="0" max="1" />  

  </variables> 
  </model> 
 
3) Following a data request from the Causality Workbench to answer a query (a zip 
file), the remote server packages the answer as a zip file and also returns the 
following information, which will serve to update the experiment table in the “My 
Lab” page of the Virtual Lab: 
 
<virtual_lab name="GLOP" job_id="job756414"> 
 <experiment pid="isabelle" model="calus" name="experiment1" 
date="2009-10-24-180909"> 
  <model name="calus"> 
   <train_num value="5000" /> 
   <test_num value="5000" /> 
   <cost_per_sample value="3" /> 
   <cost_per_target_observation value="0" /> 
   <cost_per_var_observation value="2" /> 
   <cost_per_var_manipulation value="5" /> 
   <time_dept value="0" /> 
   <num_target value="0" /> 
   <num_observable value="12" /> 
   <num_actionable value="8" /> 
   <num_unobservable value="0" /> 
   <train_cost value="135000" /> 
   <test_cost value="135000" /> 

<initial_budget value="270000" /> 
<current_budget value="149325" /> 

  </model> 
  <query type="OBS 25"> 
   <premanipvar dim1="1" dim2="12" /> 
   <premanipval dim1="25" dim2="12" /> 
   <varnum value="0" /> 
   <samplenum value="25" /> 
   <manipnum value="0" /> 
   <obsernum value="300" /> 
   <targetnum value="25" /> 
   <samplecost value="75" /> 
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   <manipcost value="0" /> 
   <obsercost value="600" /> 
   <targetcost value="0" /> 
   <totalcost value="675" /> 
   <is_overbudget value="0" /> 
  </query> 
 </experiment> 
</virtual_lab> 
 

3) Following a scoring request of prediction results from the Causality Workbench 
(a PREDICT query formatted as a zip file also), the remote server packages the 
answer as a zip file and also returns the following information, which will serve to 
update the “Learderboard” page: 
 
<virtual_lab name="GLOP" job_id="job987618"> 
 <experiment pid="isabelle" model="sprinkler" name="experiment2" 
date="2009-10-26-234155"> 
  <model name="sprinkler"> 
   <train_num value="2000" /> 
   <test_num value="10000" /> 
   <cost_per_sample value="8" /> 
   <cost_per_target_observation value="0" /> 
   <cost_per_var_observation value="1" /> 
   <cost_per_var_manipulation value="2" /> 
   <time_dept value="0" /> 
   <num_target value="0" /> 
   <num_observable value="4" /> 
   <num_actionable value="2" /> 
   <num_unobservable value="0" /> 
   <train_cost value="24000" /> 
   <test_cost value="120000" /> 
   <initial_budget value="144000" /> 
   <current_budget value="24000" /> 
  </model> 
  <query type="PREDICT"> 
   <varnum value="0" /> 
   <samplenum value="0" /> 
   <manipnum value="0" /> 
   <obsernum value="0" /> 
   <targetnum value="0" /> 
   <samplecost value="0" /> 
   <manipcost value="0" /> 
   <obsercost value="0" /> 
   <targetcost value="0" /> 
   <totalcost value="0" /> 
   <score value="0.492329" /> 
   <is_overbudget value="0" /> 
  </query> 
 </experiment> 
</virtual_lab> 
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