
 1

The Causality Workbench Virtual Lab
Isabelle Guyon1, Constantin Aliferis, Greg Cooper, André Elisseeff,

Olivier Guyon, Jean-Philippe Pellet, Peter Spirtes, Alexander Statnikov

I. Summary
We implemented a virtual laboratory allowing researchers to perform experiments on
artificial systems to infer their causal structure. This is part of the “Causality Workbench”
effort. The design of the platform is such that:

- Researchers can submit new artificial systems with which other can
experiment.

- Experimenters can place queries and get answers.
- The activity is logged.
- Registered users have their own virtual lab space.

We have released a first version http://www.causality.inf.ethz.ch/workbench.php.

II. Background
The problem of attributing causes to effects is pervasive in science, medicine, economy
and almost every aspects of our everyday life involving human reasoning and decision-
making. Advancing the methodology for reliably determining causal relationships will
therefore have an important impact, both economical and fundamental. Determining
causal relationships allows us to predict the consequences of actions or manipulations.
For instance, the effect of taking a drug on health status, or the effect of reducing taxes on
the economy. This is fundamentally different from making predictions from observations.
Observations imply no experimentation, no interventions on the system under study,
whereas actions introduce a disruption in the natural functioning of the system. The
canonical way of determining whether events are causally related is to conduct controlled
experiments in which the system of interest is “manipulated” to verify hypothetical causal
relationships. However, experimentation is often costly, infeasible or unethical. This has
prompted a lot of recent research on learning causal relationships from available
observational data. These methods can unravel causal relationships to a certain extent,
but must generally be complemented by experimentation.
To this day, the methods, which have emerged in various application domains, have not
been systematically compared because of the lack of standard benchmarks. To stimulate
research in causal discovery, we created an interactive platform available via a web
interface, which will allow researchers to share problems and test methods. Because
experimentation is a key component of causal discovery, the platform simulates a
laboratory environment in which researchers can experiment via the interface giving
access to artificial data generating systems, emulating real systems.
In the virtual laboratory, users can place queries to an unknown system, including request
to observe some variables while setting other variables to given values (manipulations),
to discover its causal structure. Users have personal accounts and lab space. A given user
may choose among a number of data generative systems to reverse engineer. For each
new experiment, the user receives: (1) a certain amount of virtual cash to be spent to

1 Corresponding author: Isabelle Guyon – Isabelle@clopinet.com

 2

obtain data from the system by placing queries, (2) information about which variables are
observable or actionable (actionable means potentially subject to “action” or
“manipulation”), and (3) information about the cost of queries. The system may have
hidden variables. The cost of a query varies depending on the number of variables
manipulated and/or observed and the number of instances requested. The virtual
laboratory keeps track of the queries and virtual cash spent during virtual experiments.
When a user runs out of virtual cash, the experiment terminates and he/she must return
the answer to the problem. Depending on the nature of the problem, the answer may
consist in (i) point-wise predictions of variables (while others are being manipulated), (ii)
predictions of distributions, (iii) information on the causal structure of the system, or (iv)
a policy to obtain a desired outcome. In this first version, we focus on point-wise
predictions of variable values.

III. Architecture

The system architecture is schematically represented in Figure 1. It is a hub-and-spokes
architecture. A central server (the Causality Workbench server) provides a web interface
to the users and in equipped with a database.2 The server communicates with one or
several other servers on which causal systems (models) to be studied are simulated. In
this first version, we have only one remote server hosting models. This server launches
Matlab® upon request of the Causality Workbench server to run the models.

Figure 1: Overview of the Virtual Lab architecture.

2 All implementations are done with PHP and MySQL.

Send queries as text files

Our database

Return answer as text files

Query: Fill form
or upload file.

Store query

Remote server
hosting artificial
system or model

Result: Get as
file or display.

Store result

 3

IV. Overview of the platform
The Virtual Lab (Figure 1) has a web-based user interface available from
http://www.causality.inf.ethz.ch/workbench.php. It is part of the Causality Workbench,
which includes other resources (challenges, repository of data/models/software,
teleconference seminars, etc.) The Virtual Lab section includes 6 pages. The Index,
Leaderboard, and Info pages are publicly available. The Mylab and Upload pages are
only available to registered users.

Figure 1: The Virtual Lab Info page.

The users can familiarize themselves with the models, which are listed on the Index page
(Figure 2). The table lists the model properties and the initial budget (amount of virtual
cash available for experimentation) as well as the cost per experimental unit. The models
are cross-indexed with the model repository automatically when a new model is
registered (Figure 3). At present, model registration is via its inclusion in the GLOP
package.

 4

Figure 2: The Virtual Lab Index page. The models listed are linked to the repository.

Figure 3: Repository. The registered models are included in the repository.

Following the instructions described in the Info page, Registered users may upload
queries and results from the Upload page and retrieve data and performance scores from
the Mylab page (Figure 4). When final prediction results on test data are uploaded, the
experiment terminates and the final score is published on the Leaderboard page.

 5

Figure 4: Mylab. Each user has his/her personal lab space holding his/her experiments.

Figure 5: GLOP. The GLOP Matlab package is available for download in the software

repository.

 6

V. The GLOP package
Our first release of the Virtual Lab uses a single remote server running Matlab to
implement artificial causal systems. We developed an object-oriented interface to easily
incorporate new generative models. It is based on two simple abstractions:

- query object and
- model object.

The query object holds the query information delivered by users or the data delivered by
the generative models. It has a fixed structure. The model object is a template from which
data generative models can be derived. We call GLOP (Generative Lab Object Package)
the resulting package of objects. GLOP may be downloaded from
http://www.causality.inf.ethz.ch/repository.php?id=23 (Figure 5).

%==
% QUERY object
%==
% q = query;
% q = query(filename);
% q = query(filename, fn2);
%
% Stores query information and results.
% The argument "filename" is the root name of the query file.
% If fn2 is specified, make a copy to the second file
%
% One expects a subset of the files:
% <filename>.type: Type of the query, types={'TRAIN', 'TEST', 'OBS',
% 'SURVEY', 'EXP', 'PREDICT'}; TEST and PREDICT can be followed by the test
% set number; OBS can be followed by the number of samples requested.
% <filename>.premanipvar, <filename>.manipvar, <filename>.postmanipvar:
% One line with a list of variables.
% <filename>.premanipval, <filename>.manipval, <filename>.postmanipval:
% Multiline matrix, each line corresponding to one instance.
% Each column corresponds to a variable.
% The query object stores this information in corresponding fields.
% Missing values are coded as NaN.
% Methods:
% load -- called by the constructor to load the this.
% save -- save the query to file
% struct -- show the structure
% xml_display -- show structure as XML
% In addition, many fields can be set/get with a method having the same
% name; see methods(query)

% Isabelle Guyon -- isabelle@clopinet.com -- May-Oct 2009

 7

classdef query
 properties (SetAccess = private)
 % Identification
 participant_ID=[];
 model_name=[];
 experiment_name=[];
 date_submitted=[];
 type='OBS';
 README='';
 % Inputs
 sample=[];
 manipvar=[];
 manipval=[];
 postmanipvar=[];
 % Auxiliary fields and output fields
 postmanipval=[]; % The values for the queried "queryvar"
variables
 premanipvar=[]; % The list of variables in the premanipval
array
 premanipval=[]; % The values used to initialize the system
before manipulating it
 % This is used if paricular subjects are chosen on
which
 % to perform a given manipulation rather than
drawing
 % them at random according to the natural
distribution.
 % This is also used to return training or test data.
 predict=[]; % Same as postmanipval
 varnum=0; % Total number of variables (not including the
target)
 % ie the maximum variable index value
 samplenum=[]; % Number of samples asked for
 manipnum=[]; % Effective number of time a variable is
manipulated in the query
 obsernum=[]; % Effective number of time a variable has been
observed (value requested) in the query, including targets
 targetnum=[]; % Number of times a target variable is observed
 % Private
 types={'TRAIN', 'TEST', 'OBS', 'SURVEY', 'EXP', 'PREDICT'};
 end
 properties
 % All the costs are computed by the model
 samplecost=0; % samplenum * cost_per_sample
 manipcost=0; % manipnum * cost_per_manip
 obsercost=0; % obsernum * cost_per_observation
 targetcost=0; % targetnum * cost_per_target (this is on top of
the regular cost for observing a variable: the target may be more
expensive
 totalcost=0; % Overall cost
 % Prediction score and estimated error bar
 score=[];
 ebar=[];
 % Flag(s)
 is_overbudget=0; % Budget exceeded
 end
end

 8

%==
% MODEL template for a data generative model
%==
% M=model(hyper)
% hyper -- Hyperparameters (public properties). Use the Spider syntax.
% train_num (Size of the training set)
% test_num (Size of the test set)
% cost_per_sample
% cost_per_target_observation
% cost_per_var_observation
% cost_per_var_manipulation
% By default, all values are set to zero.
% If a configuration file model_config.txt exists, the hyperparameters
are
% loaded from that file. Any hyperparameter specified as argument
% overwrites the default or configuration values.
%
% Examples:
% default(model) % list the default values of the HP
% M=model;
% M=model('train_num=3000');
% M=model({'train_num=3000', 'cost_per_sample=234'});
% M.task_n_pricing or task_n_pricing(M)
% B=initial_budget(M);
% var_profile(M) % shows the variable properties
% [Q, M]=process_query(M, query);

% Isabelle Guyon -- isabelle@clopinet.com -- October 2009

classdef model
 % <<------------- hyperparameters ----------------->>
 properties
 train_num=0; % load_config/evel_hyper: Size of the training set
 test_num=0; % load_config/evel_hyper: Size of the test set(s)

 cost_per_sample=0; % load_config/evel_hyper
 cost_per_target_observation=0; % load_config/evel_hyper
 cost_per_var_observation=0; % load_config/evel_hyper
 cost_per_var_manipulation=0; % load_config/evel_hyper
 end
 % <<------------- model ----------------->>
 properties (SetAccess = protected)
 time_dept=[]; % init: Time dependency (0/1)
 target=[]; % init: Indices of the target variables
 observable=[]; % init: Indices of the observable variables
 actionable=[]; % init: Indices of the actionable variables
 unobservable=[]; % init: Indices of the unobservable
variables
 train_cost=0; % compute_budget: Price of the default
labeled training set
 test_cost=0; % compute_budget: Price of the default test
set
 initial_budget=0; % compute_budget: Initial budget
 end
end

 9

VI. Getting started guide
You may either use the Virtual Lab interface available from
http://www.causality.inf.ethz.ch/workbench.php
Or download the Matlab package GLOP from
http://www.causality.inf.ethz.ch/repository.php?id=23.
Working directly with GLOP will allow you to quickly perform trial experiments on
example models. The Virtual Lab interface may then be used to get familiar with the
query protocol. The Virtual Lab will be used in benchmarks and challenges to evaluate
methods on new unknown models.

Getting started with GLOP
Installation
Unzip glop.zip
Open Matlab and go to the GLOP directory and type use_glop at the prompt.

Finding your way around
To know the list of models, type
> whoisglop
To know the default values of a model hyperparameters:
> default(model)
To know the methods:
> methods(model)
To know the properties:
> properties(model)

Examples
> q=query('OBS 20');
or
> q=query('TRAIN');
or
> q=query('TEST');
and
> a=alarm({'cost_per_sample=1', 'cost_per_var_observation=1',
'cost_per_var_manipulation=2'});
or
> a=sprinkler;
etc.
> initial_budget(a)
> task_n_pricing(a)
> [q, a]=process_query(a, q);

Getting started with the Virtual Lab
You may follow these simple steps:

- Investigate the models by clicking on the links in the Virtual Lab Index page.
Choose a model you want to work on.

- Use the format described on the Info page to format your query.
- Register by entering your personal information in the Login page (or just login if

you are already registered).
- Upload your query packaged as a zip archive using the Upload page form.
- Retrieve the answer (your data) from the My Lab page.

 10

How to design experiments?
Here is a brief outline of the steps taken in experimenting and causal modeling:

1. Problem specification: Define your problem and your goals . In the Virtual Lab,
problems are already formalized.

2. Feature set definition: Identify potentially relevant factors . In the virtual lab
the feature set is already given: those are the system variables. In some cases, the
task designer may hide a number of variables to test the robustness of algorithms
against hidden confounders, which are unknown common causes to several
variables in your system.

3. Manipulation protocol: Figure out how to perform actions on the system and
manipulate variables of interest. This step is often very complex in real
experiments because we do not always have easy means of influencing variables
individually as an external agent. Not all variables are actionable or even
observable. Some may be unethical to manipulate. In the Virtual Lab, things are
simple: we tell you which variables are actionable. All you have to do to carry out
experiments is to initialize or clamp desired variables.

4. Experimental design: Given a budget (here you have "virtual cash"), spend it in
data collection, observations, and manipulations to achieve the goals you have set
to yourselves.

5. Modeling: Carry out the experiments and build models with the data collected.
Eventually iterate this process until a satisfactory model is obtained. In the Virtual
Lab, all you have to do is to submit queries via the Upload Page using the format
described below. Your virtual cash account will be automatically debited and you
will be able to download the results of your experiments your private Mylab page.

6. Deployment: Deploy your model to predict the consequences of actions in new
situations. In the Virtual Lab, we provide you with test data, which was drawn
from a post-manipulation distribution. The manipulations are performed by the
task designers. depending on the task, the designers may or may not inform you of
what exact manipulation(s) was performed in test data. When you are done with
modeling and before your run out of virtual cash, you must ask for the test data.
WARNING: The test data will cost you virtual cash, so make sure you keep
enough virtual cash. We do not withhold from your cash account a fixed amount
to pay for the test data because, if you cleverly design your experiments and your
model, you might get it at a discount price by querying only a subset of the
variables. Once you ask for test data, you must return your prediction results
on test data, no query for more data are allowed.

We will organize competitions in the future. In a competition setup, it will not be possible
to work several times on the same task. However, for the time being, you are free to
experiment multiple times on the same problem and even to run concurrent experiments
with different strategies.

 11

VII. Data formats and protocol
The submission of data requests and prediction results is via the Upload page of the
Causality Workbench. A submitted query should be a zip file bundling files described
below. Use
 zip query.zip *
or
 tar cvf query.tar *; gzip query.tar
to create valid archives. We provide several examples of queries for the LUCAS model:

1. Observations. Request 25 examples of all the variables. No manipulation is
performed. observational data only.

2. Experiment 1.. Request 10 values of the target variable. Most covariate values are
provided, except a few missing values.

3. Experiment 2.. Not all variables are manipulated. The pre-manipulation values are
given by the selection of training samples.

4. Test data. We ask for the test set 2. Here we ask for postmanip variables, but we
will not get them because the test data does not include any postmanipulation
observations.

5. Default training set. Training data can be purchased unlabeled, this is cheaper.
Then the labels may be queried separately.

6. Survey data. Query asking for a subset of the labels of the default training set.
7. Prediction results. Predictions of the target post-manipulation values on test set 2.

If you want to get baseline results without experimenting, it is always possible with the
initial budget to buy the default training set and the entire test set. Just submit two
(separate) queries with a single query file, each containing a single word:

1. To get training data, write the word TRAIN on the first line.
2. To get test data, write the word TEST on the first line.

File formats for data queries and prediction results

Filename
Non-

experimental
data

Experimental
data

Survey
data

Prediction
results Description File Format

[submission].query

Compulsory
(TRAIN,

TEST [n] or
OBS [num])

Compulsory
(EXP)

Optional
(SURVEY)

Optional
(PREDICT

[n])
Type of query.

A single key word on the
first line, optionally
followed by a number on
the same line:
 TRAIN: get the default
training set.
 TEST [n]; replace [n] by
1, 2, 3 to get the nth test
set TEST=TEST 1.
 OBS [num]: get
observational data; replace
[num] by the number of
samples requested.
 EXP: get experimental
data (the number of
samples is determined by
the number of lines in
[submission].sample and

 12

[submission].manipval).
 SURVEY: get training
labels.
 PREDICT [n]: replace
[n] by 1, 2, 3 to indicate
that predictions
correspond to the nth test
set. PREDICT=PREDICT
1.

[submission].sample NA Optional Compulsory NA

Sample ID in the
default training set.
The corresponding
samples are used to set
premanipulation
values.

A list of sample numbers,
one per line (the
numbering is 1-based and
corresponds to lines in the
training data).

[submission].premanipvar Optional Optional Optional NA

List of the pre-
manipulation variables
(observed before or
without
experimentation). By
default (no file given):
(1) for non-
experimental and
experimental data: all
the observable
variables, except the
target; (2) for survey
data: the target.

[submission].manipvar NA Compulsory NA NA
List of the variables to
be manipulated
(clamped).

[submission].postmanipvar NA Compulsory NA Optional

List of the post-
manipulation variables
 (observed after
experimentation). By
default: the target
variable.

A space-delimited list of
variable numbers on the
first line of the file. All
variables are numbered
from 1 to the maximum
number of visible
variables, except the target
variable (if any), which is
numbered 0.

[submission].premanipval NA NA NA NA

Not applicable: use
[submission].sample to
initialize values of the
pre-manipulation
variables.

[submission].manipval NA Compulsory NA NA

Clamped values for the
manipulated variables,
listed in
[submission].manipvar.

[submission].postmanipval
or
[submission].predict

NA NA NA Compulsory
Predictions values for
all the samples of
TESTn.

Each line corresponds to
an instance (sample) and
should contain space
delimited variable values
for all the variables of that
instance. Use NaN if the
value is missing or
omitted.
The number of lines in
[submission].manipval
should match the number
of samples in
[submission].sample (if
provided).
You may omit
[submission].query and
provide
[submission].predict
instead of
[submission].postmanipval
if there is a single test set
and no experiments are
involved.

File formats for data received and prediction scores
Data archives with the training or test data you requested are available from your private
Mylab a short time after you placed your query. Prediction score are also displayed on the
Leaderboard page.

 13

Filename
Non-

experimental
training data

Survey
data

Experimental
training data Test data Evaluation

score Description File Format

[submission].query
Optional

(TRAIN or
OBS)

Optional
SURVEY

Optional
EXP

Optional
TEST

Optional
PREDICT Type of query.

One keyword
and optionally a
number on the
first line
(copied from
the query
submitted).

[answer].premanipvar Optional NA Present if
requested Present NA

List of the pre-
manipulation variables. By
default, all the observable
variables except the target.

[answer].manipvar NA NA Present Optional NA List of the variables to be
manipulated (clamped).

 [answer].postmanipvar NA NA Optional Optional NA

List of the post-
manipulation variables. By
default: the target variable
0.

A space-
delimited list
of variable
numbers on the
first line of the
file. All
variables are
numbered from
1 to the
maximum
number of
visible
variables,
except the
default target
variable (if
any), which is
numbered 0. If
the file is
missing or
empty, an
empty list is
assumed.

[answer].premanipval
or
[answer].data

Present NA Present if
requested Present NA Pre-manipulation values.

[answer].label

NA (to get
the target
variable

values, use
the index 0)

Present

NA (to get the
target variable

values, use
the index 0)

NA NA

Target values for default
trainign examples.
Equivalent to
[answer].premanipval
when [answer].premanipvar
(with the single value 0) is
omitted.

[answer].manipval NA NA Present Optional NA

Clamped values for the
manipulated variables,
listed in [answer].manipvar.
Those correspond to
manipulations performed
by the organizers so they
are free of charge.

[answer].postmanipval NA NA Present
Hidden to

the
participants

NA
Post-manipulation values.
In answer to
[submission].postmanipvar

Each line
corresponds to
an instance
(sample) and
contains space
delimited
variable values
for all the
variables of that
instance (or a
single target
value for
[answer].label
files).
[answer].data
files contain
unlabeled
default training
data for
problems
without
experimentation

[answer].is_overbudget Optional Optional Optional Optional Optional

File indicating that the
budget was overspent and
the query was not
processed.

The value1.

[answer].score NA NA NA NA Present Prediction score. A numeric
value.

[answer].ebar NA NA NA NA Present Error bar. A numeric
value.

[answer].varnum Present Present Present Present NA
The total number of
observable variables
(excluding the target).

A numeric
value.

 14

[answer].samplenum Present Present Present Present NA Number of samples
requested.

A numeric
value.

[answer].obsernum Present Present Present Present NA
Number of variable values
observed (including the
target).

A numeric
value.

[answer].manipnum Present Present Present Present NA Number of values
manipulated.

A numeric
value.

[answer].targetnum Present Present Present Present NA Number of target values
observed.

A numeric
value.

[answer].samplecost Present Present Present Present NA

Cost for the samples
requested (labeled samples
may cost more than
unlabeled samples).

A numeric
value.

[answer].obsercost Present Present Present Present NA Cost for the observations
made.

A numeric
value.

[answer].manipcost Present Present Present Present NA Cost for the manipulations
made.

A numeric
value.

[answer].targetcost Present Present Present Present NA Additional cost for target
observations.

A numeric
value.

[answer].totalcost Present Present Present Present NA Total cost. A numeric
value.

In addition, summary information is provided to the central server via an XML format.
Both “models” and “queries” have data structures, which can be summarized in XML.
We give below typical examples.

1) Following request from the Causality Workbench server to the remove server
named “GLOP” to list its models, the remote server returns the following
information, which is then formatted as a table in the “Index” page of the Virtual
Lab:

<virtual_lab name="GLOP" job_id="job985873">
 <version> alpha version - Oct 27 2009 </version>
 <models num="8">
 <model name="alarm">
 <train_num value="2000" />
 <test_num value="10000" />
 <cost_per_sample value="9" />
 <cost_per_target_observation value="0" />
 <cost_per_var_observation value="2" />
 <cost_per_var_manipulation value="4" />
 <time_dept value="0" />
 <num_target value="0" />
 <num_observable value="37" />
 <num_actionable value="37" />
 <num_unobservable value="0" />
 <train_cost value="166000" />
 <test_cost value="830000" />
 <initial_budget value="996000" />
 <current_budget value="996000" />
 </model>

 <model name="calus">
 ...
 </model>

 15

 [etc. more models here]

<model name="sprinkler">
 ...
 </model>
 </models>
</virtual_lab>

2) Following the same request, the remote server creates individual profile files for
the models, for information to the participants (those are linked from the model
table in the “Index” page):

<model name="lucas">
 <train_num value="2000" />
 <test_num value="10000" />
 <cost_per_sample value="10" />
 <cost_per_target_observation value="40" />
 <cost_per_var_observation value="1" />
 <cost_per_var_manipulation value="10" />
 <time_dept value="0" />
 <num_target value="1" />
 <num_observable value="12" />
 <num_actionable value="9" />
 <num_unobservable value="0" />
 <train_cost value="124000" />
 <test_cost value="210000" />
 <initial_budget value="334000" />
 <task>LUCAS: This is a Bayesian network simulator for a toy

problem inspired by the problem of identifying risk
factors of lung cancer. See
http://www.causality.inf.ethz.ch/data/LUCAS.html , etc

 </task>
 <variables num="12">

<![CDATA[
Index Name Access Type Min Max
0 Lung cancer observable binary -1 1
1 Smoking actionable binary 0 1
2 Yellow Fingers actionable binary 0 1
3 Anxiety actionable binary 0 1
4 Peer Pressure actionable binary 0 1
5 Genetics observable binary 0 1
6 Attention Disorder actionable binary 0 1
7 Born an Even Day observable binary 0 1
8 Car Accident actionable binary 0 1
9 Fatigue actionable binary 0 1
10 Allergy actionable binary 0 1
11 Coughing actionable binary 0 1

]]>
 <variable index="0" name="Lung cancer"

access="observable" type="binary" min="-1" max="1" />
 <variable index="1" name="Smoking" access="actionable"

type="binary" min="0" max="1" />
 <variable index="2" name="Yellow Fingers"

access="actionable" type="binary" min="0" max="1" />

 16

 <variable index="3" name="Anxiety" access="actionable"
type="binary" min="0" max="1" />

 <variable index="4" name="Peer Pressure"
access="actionable" type="binary" min="0" max="1" />

 <variable index="5" name="Genetics" access="observable"
type="binary" min="0" max="1" />

 <variable index="6" name="Attention Disorder"
access="actionable" type="binary" min="0" max="1" />

 <variable index="7" name="Born an Even Day"
access="observable" type="binary" min="0" max="1" />

 <variable index="8" name="Car Accident"
access="actionable" type="binary" min="0" max="1" />

 <variable index="9" name="Fatigue" access="actionable"
type="binary" min="0" max="1" />

 <variable index="10" name="Allergy" access="actionable"
type="binary" min="0" max="1" />

 <variable index="11" name="Coughing" access="actionable"
type="binary" min="0" max="1" />

 </variables>
 </model>

3) Following a data request from the Causality Workbench to answer a query (a zip
file), the remote server packages the answer as a zip file and also returns the
following information, which will serve to update the experiment table in the “My
Lab” page of the Virtual Lab:

<virtual_lab name="GLOP" job_id="job756414">
 <experiment pid="isabelle" model="calus" name="experiment1"
date="2009-10-24-180909">
 <model name="calus">
 <train_num value="5000" />
 <test_num value="5000" />
 <cost_per_sample value="3" />
 <cost_per_target_observation value="0" />
 <cost_per_var_observation value="2" />
 <cost_per_var_manipulation value="5" />
 <time_dept value="0" />
 <num_target value="0" />
 <num_observable value="12" />
 <num_actionable value="8" />
 <num_unobservable value="0" />
 <train_cost value="135000" />
 <test_cost value="135000" />

<initial_budget value="270000" />
<current_budget value="149325" />

 </model>
 <query type="OBS 25">
 <premanipvar dim1="1" dim2="12" />
 <premanipval dim1="25" dim2="12" />
 <varnum value="0" />
 <samplenum value="25" />
 <manipnum value="0" />
 <obsernum value="300" />
 <targetnum value="25" />
 <samplecost value="75" />

 17

 <manipcost value="0" />
 <obsercost value="600" />
 <targetcost value="0" />
 <totalcost value="675" />
 <is_overbudget value="0" />
 </query>
 </experiment>
</virtual_lab>

3) Following a scoring request of prediction results from the Causality Workbench
(a PREDICT query formatted as a zip file also), the remote server packages the
answer as a zip file and also returns the following information, which will serve to
update the “Learderboard” page:

<virtual_lab name="GLOP" job_id="job987618">
 <experiment pid="isabelle" model="sprinkler" name="experiment2"
date="2009-10-26-234155">
 <model name="sprinkler">
 <train_num value="2000" />
 <test_num value="10000" />
 <cost_per_sample value="8" />
 <cost_per_target_observation value="0" />
 <cost_per_var_observation value="1" />
 <cost_per_var_manipulation value="2" />
 <time_dept value="0" />
 <num_target value="0" />
 <num_observable value="4" />
 <num_actionable value="2" />
 <num_unobservable value="0" />
 <train_cost value="24000" />
 <test_cost value="120000" />
 <initial_budget value="144000" />
 <current_budget value="24000" />
 </model>
 <query type="PREDICT">
 <varnum value="0" />
 <samplenum value="0" />
 <manipnum value="0" />
 <obsernum value="0" />
 <targetnum value="0" />
 <samplecost value="0" />
 <manipcost value="0" />
 <obsercost value="0" />
 <targetcost value="0" />
 <totalcost value="0" />
 <score value="0.492329" />
 <is_overbudget value="0" />
 </query>
 </experiment>
</virtual_lab>

Acknowledgements: This project is supported by the U.S. National Science Foundation
under Grant N0. ECCS-0725746. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

