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The core problem

Given N observations of two variables X , Y

i xi yi
1 3.4 2.5
2 7.2 5.2
3 2.3 1.3
...

...
...

N 4.5 2.1

determine whether:

X Y

“X causes Y ”

or X Y

“Y causes X ”

E Ẽ
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Part I

The basics
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Basic assumptions

X

E

Y
Suppose:

X , E cause Y ;

X , Y are observed;

E is unobserved (latent)

1 Determinism: a function f exists such that:

Y = f (X ,E )

(f is called the causal mechanism);
2 No common causes of X and E are present:

X ⊥⊥E ,

(X and E are statistically independent).
3 Independence of distribution of causes and mechanism:

p(X ,E )⊥⊥ f
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Previous work: restricting the model class

Several recent approaches restrict the class of possible causal mechanisms:

LINGAM f is linear f (X ,E ) = αX + βE
AN Additive Noise f (X ,E ) = F (X ) + E
PNL Post-Non-Linear model f (X ,E ) = G (F (X ) + E )
HS Hetero-Schedastic noise f (X ,E ) = F (X ) + E · G (X )

Causal discovery is possible because of the following identifiability results:

Theorem (al.)

Let M∈ {LINGAM,AN,PNL}: generically, if a model X → Y in M
exists for p(X ,Y ), no model Y → X ∈M exists for p(X ,Y ).

The idea is to fit a restricted model in both directions (X → Y and
Y → X ) and infer the causal direction to be the one that yields the best
fit with the data.
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Previous work: comparing model complexities

A different (recently proposed) approach is based on information theory. It
does not restrict the class of possible causal mechanisms.

Theorem (Janzing, Schölkopf)

If I
(
p(X ) : p(Y |X )

) +
= 0, then

K
(
p(X )

)
+ K

(
p(Y |X )

) +
≤ K

(
p(Y )

)
+ K

(
p(X |Y )

)
,

where K (·) is the Kolmogorov complexity and I (· : ·) is the analogue of
mutual information based on Kolmogorov complexity.

Unfortunately, Kolmogorov complexity is uncomputable, so this result is
not directly useful in practice.
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This work: non-parametric causal discovery

The goal of this work is to avoid the restrictions on the model class for the
causal mechanism.

However, in this way we loose identifiability:

Theorem

Given random variables X ,Y ,E and a function f such that

Y = f (X ,E ), X ⊥⊥E ,

we can always construct a function f̃ and a random variable Ẽ such that

X = f̃ (Y , Ẽ ), Y ⊥⊥ Ẽ .

The crucial idea is now to compare the model complexities and infer the
least complex model to be the true causal direction. However, we use
other complexity measures than Kolmogorov complexity, so that we can
actually compute them.
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X = f̃ (Y , Ẽ ), Y ⊥⊥ Ẽ .
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Bayesian model selection and causal inference

Bayesian model selection

Prefer the model with the highest evidence:

p(D |M) =

∫
p(D | θ,M)p(θ |M) dθ,

which is a trade-off between the likelihood (goodness-of-fit) and the prior
(model complexity). (D = data,M = model, θ = model parameters)

Basic idea

Causal discovery (for our “core problem”) can be done simply by
comparing the evidences for two models (X → Y and Y → X ).
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How we model X → Y

p(x, y) = p(x)p(y | x)

=

∫ ( N∏
i=1

p(xi |θX )

)
p(θX ) dθX

·
∫ ( N∏

i=1

δ
(
yi − f (xi , ei )

)
p(ei |θE )

)
p(f |θf ) de df p(θE )dθE p(θf )dθf

x1 e1 x2 e2 x3 e3 · · · xN eN

θX θE

y1 y2 y3 · · · yN

θf

f
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Part II

The nasty technical details
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Choosing the priors

Let x, y ∈ RN denote the N values for X , Y , and e ∈ RN the N latent
variables.

In order to completely specify the generative model X → Y , we need to
choose various priors:

the prior distribution on the inputs x (parameterized by θX )

the prior distribution on the latents e (parameterized by θE )

the prior distribution on the function f (parameterized by θf )

Note: even in the discrete, finite case (if X , Y , E can only take a finite
number of values), it is not obvious whether the choice of the priors
becomes less important as N →∞: the number of observations (2N) is of
the same order as the number of unknowns (N + K for some constant K ).
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Choosing the priors

Let x, y ∈ RN denote the N values for X , Y , and e ∈ RN the N latent
variables.

In order to completely specify the generative model X → Y , we need to
choose various priors:

the prior distribution on the inputs x (parameterized by θX )

the prior distribution on the latents e (parameterized by θE )

the prior distribution on the function f (parameterized by θf )

Note: even in the discrete, finite case (if X , Y , E can only take a finite
number of values), it is not obvious whether the choice of the priors
becomes less important as N →∞: the number of observations (2N) is of
the same order as the number of unknowns (N + K for some constant K ).
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Choosing the priors: the input distribution p(X |θX )

For p(X |θX ), we currently use a Gaussian Mixture Model

p(X |θX ) =
k∑

i=1

αiN (µi , σ
2
i )

with hyperparameters θX = (k , α1, . . . , αk , µ1, . . . , µk , σ1, . . . , σk), with
an improper Dirichlet prior (with parameters (−1,−1, . . . ,−1)) on the
component weights α and a flat prior on the component parameters µ, σ.

Instead of integrating over θX , we maximize over θX , using a particular
penalty for k , the number of mixture components, which is derived using
the MML principle. We use an algorithm proposed by Figueiredo and
Jain.1

1Figueiredo & Jain, Unsupervised learning of finite mixture models, TPAMI
2002
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Choosing the priors: the noise distribution p(E |θE )

For p(E |θE ), we simply use a standard-normal distribution:

p(E |θE ) = N (0, 1),

so there are no hyperparameters.

This may look like a severe restriction on the model, but is not as bad as it
seems: in general, there exists a function g such that

E = g(E ),E ∼ N (0, 1).

Then Y = f (X ,E ) corresponds with Y = f (X ,E ), where f := f
(
·, g(·)

)
.

However, this assumption does introduce a dependency between p(E ) and
f , which apparently violates our basic assumption p(X ,E )⊥⊥ f .
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Choosing the priors: the noise distribution p(E |θE )

For p(E |θE ), we simply use a standard-normal distribution:

p(E |θE ) = N (0, 1),

so there are no hyperparameters.

This may look like a severe restriction on the model, but is not as bad as it
seems: in general, there exists a function g such that

E = g(E ),E ∼ N (0, 1).

Then Y = f (X ,E ) corresponds with Y = f (X ,E ), where f := f
(
·, g(·)

)
.

However, this assumption does introduce a dependency between p(E ) and
f , which apparently violates our basic assumption p(X ,E )⊥⊥ f .
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Choosing the priors: the function prior p(f |θf )

For p(f |θf ), we currently take a Gaussian Process with zero mean
function and squared-exponential covariance function:

k
(
(x , e), (x ′, e ′)

)
= λ2Y exp

(
−(x − x ′)2

2λ2X

)
exp

(
−(e − e ′)2

2λ2E

)
where θf = (λX , λY , λE ) are length-scale parameters.

We currently preprocess the data x, y such that they have mean 0 and
variance 1. For the prior on the length-scale parameters, we use a broad
Gamma distribution: λ ∼ Γ(30, 0.5). The only reason for doing this is a
numerical one: if the length scales become too large, the kernel matrix
Kij = k

(
(xi , ei ), (xj , ej)

)
will become difficult to handle numerically.

Instead of integrating over θf , we maximize over θf .
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Back to our integral

By maximizing over the hyperparameters instead of integrating over them,
we have reduced the computational problem to solving:

p(x, y |X → Y ) ≈ max
θX

(
N∏
i=1

p(xi |θX )

)
p(θX )

·max
θf

p(θf )

∫ ( N∏
i=1

δ
(
yi − f (xi , ei )

)
p(ei )

)
p(f |θf ) de df

The first maximization problem is solved numerically by using a modified
EM algorithm written by Figueiredo and Jain, and gives

max
θX

(
N∏
i=1

p(xi |θX )

)
p(θX ) = exp

(
− LMML(x)

)
From now on, we focus on the second part.
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Integrating over the latent variables e

We first integrate out the latent variables e, using the Dirac delta function
calculus:∫ ( N∏

i=1

δ
(
yi − f (xi , ei )

)
p(ei )

)
p(f |θf ) de df =

∫
p(e0(f ))

J
(
e0(f )

) p(f |θf ) df

where

J
(
e0(f )

)
= det

∣∣∣∣∂f

∂e

(
x, e0(f )

)∣∣∣∣ =
N∏
i=1

∣∣∣∣∂f

∂e

(
xi , (e0(f ))i

)∣∣∣∣
is the absolute value of the determinant of the Jacobian and e0(f ) is the
unique vector satisfying f (xi ,

(
e0(f )

)
i
) = yi .

Here we assumed that for each x , the function fx : e 7→ f (x , e) is
invertible. Although this is not a restriction on the model class, this
assumption is not compatible with our Gaussian Process prior on f .
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“Integrating over f ”

We then evaluate the remaining integral:∫
p(e0(f ))p(f |θf )

J
(
e0(f )

) df =

∫
N
(
y | 0,K

)
N
(
e0(f ) | 0, I)J−1

(
e0(f )

)
de0(f )

where K = k
(
x, e0(f )

)
.

We then approximate this integral by maximizing over e0(f ) (henceforth
simply denoted e):

· · · ≈ max
e

(
N
(
y | 0,K

)
N
(
e | 0, I)J−1

(
e
))

and using the mean predicted partial derivatives of the GP f :

∂f

∂e
(xi , ei ) =

∂k

∂e

(
(xi , ei ), (x, e)

)
K−1y

for approximating the Jacobian.
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p(e0(f ))p(f |θf )

J
(
e0(f )

) df =

∫
N
(
y | 0,K

)
N
(
e0(f ) | 0, I)J−1

(
e0(f )

)
de0(f )

where K = k
(
x, e0(f )

)
.

We then approximate this integral by maximizing over e0(f ) (henceforth
simply denoted e):

· · · ≈ max
e

(
N
(
y | 0,K

)
N
(
e | 0, I)J−1

(
e
))

and using the mean predicted partial derivatives of the GP f :

∂f

∂e
(xi , ei ) =

∂k

∂e

(
(xi , ei ), (x, e)

)
K−1y

for approximating the Jacobian.
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Integrating or optimizing latent variables?

Summarizing, we first integrated out the latent variables and then
optimized over control points of the GP.

Alternatively, one might start with integrating out the GP exactly, and
then optimize over the latent variables, similarly to what is usually done in
GPLVMs (Gaussian Process Latent Variable Models).

However, we believe that for the purpose of causal discovery, the latter
approach would not work well. The reason is that when optimizing over e,
the result is often quite dependent on x, which violates our basic
assumption that X ⊥⊥E . Indeed, our approach seems more related to
(nonlinear) ICA then to PCA (which is related to GPLVMs).
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The final objective function

Thus our final optimization problem is:

min
λ,e

(
− log p(λ)− logN

(
y | 0,K

)
− logN

(
e | 0, I) +

N∑
i=1

log

∣∣∣∣∂f

∂e

(
xi , ei

)∣∣∣∣
)

where
K = k

(
x, e
)

and
∂f

∂e
(xi , ei ) =

∂k

∂e

(
(xi , ei ), (x, e)

)
K−1y

Problems

There are still two major issues here:

1 if ∂f
∂e becomes 0 for some (xi , ei ), the objective function becomes −∞;

2 the kernel matrix K is extremely ill-conditioned.
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Regularization and initialization

To deal with the first problem, we regularize our objective function as
follows:

1 We approximate |log| x ≈ log
√

x2 + ε with ε� 1 (using ε = 10−3).

2 We implemented a log barrier that heavily penalized negative values
of ∂f

∂e (x̂i , ei ). This was done to avoid sign flips of these terms that
would violate the invertability assumption.

3 We added a tiny amount of additive N (0, σ2)-noise to each yi -value,
which is equivalent to replacing K by K + σ2I (using σ = 10−5).

Further, we initialize e with additive noise models. The main reason is
that in an additive noise model, the ∂f

∂e (xi , ei ) are all positive and constant.
This initialization effectively leads to a solution that satisfies the
invertability assumption that we made.
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See also our NIPS paper Probabilistic latent variable models for
distinguishing between cause and effect,
J. M. Mooij, O. Stegle, D. Janzing, K. Zhang, B. Schölkopf,
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See also our code package (also distributed as part of the Causality
Challenge):
http://webdav.tuebingen.mpg.de/causality/

nips2010-gpi-code.tar.gz
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