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Abstract
Action videos are multidimensional data and can be naturally represented as data ten-
sors. While tensor computing is widely used in computer vision, the geometry of
tensor space is often ignored. The aim of this paper is to demonstrate the impor-
tance of the intrinsic geometry of tensor space which yields a very discriminating
structure for action recognition. We characterize data tensors as points on a product
manifold and model it statistically using least squares regression. To this aim, we
factorize a data tensor relating to each order of the tensor using Higher Order Sin-
gular Value Decomposition (HOSVD) and then impose each factorized element on
a Grassmann manifold. Furthermore, we account for underlying geometry on man-
ifolds and formulate least squares regression as a composite function. This gives a
natural extension from Euclidean space to manifolds. Consequently, classification is
performed using geodesic distance on a product manifold where each factor mani-
fold is Grassmannian. Our method exploits appearance and motion without explicitly
modeling the shapes and dynamics. We assess the proposed method using three ges-
ture databases, namely the Cambridge hand-gesture, the UMD Keck body-gesture,
and the CHALEARN gesture challenge data sets. Experimental results reveal that not
only does the proposed method perform well on the standard benchmark data sets,
but also it generalizes well on the one-shot-learning gesture challenge. Furthermore,
it is based on a simple statistical model and the intrinsic geometry of tensor space.
Keywords: gesture recognition, action recognition, Grassmann manifolds, product
manifolds, one-shot-learning, kinect data

1. Introduction

Human gestures/actions are the natural way for expressing intentions and can be in-
stantly recognized by people. We use gestures to depict sign language to deaf people,
convey messages in noisy environments, and interface with computer games. Hav-
ing automated gesture-based communication would broaden the horizon of human-
computer interaction and enrich our daily lives. In recent years, many gesture recog-
nition algorithms have been proposed (Mitra and Acharya, 2007; Wang et al., 2009;
Bilinski and Bremond, 2011). However, reliable gesture recognition remains a chal-
lenging area due in part to the complexity of human movements. To champion the
recognition performance, models are often complicated, causing difficulty for gener-
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alization. Consequently, heavy-duty models may not have substantial gains in overall
gesture recognition problems.

In this paper, we propose a new representation to gesture recognition based upon
tensors and the geometry of product manifolds. Since human actions are expressed
as a sequence of video frames, an action video may be characterized as a third order
data tensor. The mathematical framework for working with high order tensors is mul-
tilinear algebra which is a useful tool for characterizing multiple factor interactions.
Tensor computing has been successfully applied to many computer vision applications
such as face recognition (Vasilescu and Terzopoulos, 2002), visual tracking (Li et al.,
2007), and action classification (Vasilescu, 2002; Kim and Cipolla, 2009). However,
the geometrical aspect of data tensors remains unexamined. The goal of this paper is to
demonstrate the importance of the intrinsic geometry of tensor space where it provides
a very discriminating structure for action recognition.

Notably, several recent efforts (Lui, 2012a) have been inspired by the characteristics
of space and the associated construction of classifiers based upon the intrinsic geometry
inherent in particular manifolds. Veeraraghavan et al. (2005) modeled human shapes
from a shape manifold and expressed the dynamics of human silhouettes using an au-
toregressive (AR) model on the tangent space. Turaga and Chellappa (2009) extended
this framework and represented the trajectories on a Grassmann manifold for activity
classification. The use of tangent bundles on special manifolds was investigated by
Lui (2012b) where a set of tangent spaces was exploited for action recognition. Age
estimation was also studied using Grassmann manifolds (Turaga et al., 2010). The
geodesic velocity from an average face to the given face was employed for age esti-
mation where the space of landmarks was interpreted as a Grassmann manifold. Lui
and Beveridge (2008) characterized tangent spaces of a registration manifold as ele-
ments on a Grassmann manifold for face recognition. The importance of the ordering
on Stiefel manifolds was demonstrated by Lui et al. (2009) and an illumination model
was applied to synthesize such elements for face recognition. These successes motivate
the exploration of the underlying geometry of tensor space.

The method proposed in this paper characterizes action videos as data tensors and
demonstrates their association with a product manifold. We focus attention on the in-
trinsic geometry of tensor space, and draw upon the fact that the geodesic on a prod-
uct manifold is equivalent to the Cartesian product of geodesics from multiple factor
manifolds. In other words, elements of a product manifold are the set of all elements
inherited from factor manifolds. Thus, in our approach, action videos are factorized
to three factor elements using Higher Order Singular Value Decomposition (HOSVD)
in which the factor elements give rise to three factor manifolds. We further extend the
product manifold representation to least squares regression. In doing so, we consider
the underlying geometry and formulate least squares regression as a composite func-
tion. As such, we ensure that both the domain values and the range values reside on
a manifold through the regression process. This yields a natural extension from Eu-
clidean space to manifolds. The least squares fitted elements from a training set can
then be exploited for gesture recognition where the similarity is expressed in terms of
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the geodesic distance on a product manifold associated with fitted elements from factor
manifolds.

We demonstrate the merits of our method on three gesture recognition problems
including hand gestures, body gestures, and gestures collected from the Microsoft
KinectTM camera for the one-shot-learning CHALEARN gesture challenge. Our ex-
perimental results reveal that our method is competitive to the state-of-the-art methods
and generalizes well to the one-shot-learning scheme, yet is based on a simple statistical
model. The key contributions of the proposed work are summarized as follows:

• A new way of relating tensors on a product manifold to action recognition.

• A novel formulation for least squares regression on manifolds.

• The use of appearance and motion without explicitly modeling shapes or dynam-
ics.

• A simple pixel-based representation (no silhouette or skeleton extraction).

• No extensive training and parameter tuning.

• No explicit assumption on action data.

• Competitive performance on gesture recognition.

• Applicable to other visual applications.

The rest of this paper is organized as follows: Related work is summarized in Sec-
tion 2. Tensor algebra, orthogonal groups, and Grassmann manifolds are reviewed in
Section 3. The formulation of the proposed product manifold is presented in Section 4
and is further elaborated with examples in Section 5. The statistical modeling on man-
ifolds is introduced in Section 6. Section 7 reports our experimental results. Section 8
discusses the effect of using raw pixels for action recognition. Finally, we conclude this
paper in Section 9.

2. Related Work

Many researchers have proposed a variety of techniques for action recognition in re-
cent years. We highlight some of this work here, including bag-of-features models,
autoregressive models, 3D Fourier transforms, tensor frameworks, and product spaces.

In the context of action recognition, bag-of-features models (Dollar et al., 2005;
Wang et al., 2009; Bilinski and Bremond, 2011) may be among the most popular meth-
ods wherein visual vocabularies are learned from feature descriptors and spatiotempo-
ral features are typically represented by a normalized histogram. While encouraging
results have been achieved, bag-of-features methods have heavy training loads prior to
classification. In particular, feature detection and codebook generation can consume
tremendous amounts of time if the number of training samples is large. Recently, Wang
et al. (2009) have evaluated a number of feature descriptors and bag-of-features models
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for action recognition. This study concluded that different sampling strategies and fea-
ture descriptors were needed to achieve the best results on alternative action data sets.
Similar conclusions were also found by Bilinski and Bremond (2011) where various
sizes of codebooks are needed for different data sets in order to obtain peak perfor-
mances.

Another school of thought for action classification is using an autoregressive (AR)
model. Some of the earliest works involved dynamic texture recognition (Saisan et al.,
2001) and human gait recognition (Bissacco et al., 2001). These works represented
actions using AR models. The authors found that the most effective way to compare
dynamics was by computing the Martin distance between AR models. Veeraraghavan
et al. (2005) modeled human silhouettes based on Kendall’s theory of shape (Kendall,
1984) where shapes were expressed on a shape manifold. This method modeled the
dynamics of human silhouettes using an AR model on the tangent space of the shape
manifold. The sequences of human shapes were compared by computing the distance
between the AR models. Turaga and Chellappa (2009) investigated statistical modeling
with AR models for human activity analysis. In their work, trajectories were considered
a sequence of subspaces represented by AR models on a Grassmann manifold. As such,
the dynamics were learned and kernel density functions with Procrustes representation
were applied to density estimation.

Three-dimensional Fourier transform has been demonstrated as a valuable tool in
action classification. Weinland et al. (2006) employed Fourier magnitudes and cylindri-
cal coordinates to represent motion templates. Consequently, the action matching was
invariant to translations and rotations around the z-axis. Although this method was view
invariant, the training videos needed to be acquired from multiple cameras. Rodriguez
et al. (2008) synthesized a filter respond using the Clifford Fourier transform for action
recognition. The feature representation was computed using spatiotemporal regularity
flow from the xy-parallel component. The advantage of using Clifford algebra is the
direct use of vector fields to Fourier transform.

Data tensors are the multidimensional generalizations to matrices. Vasilescu (2002)
modeled the joint angle trajectories on human motion as a set of factorized matrices
from a data tensor. Signatures corresponding to motion and identity were then extracted
using PCA for person identification. Kim and Cipolla (2009) extended canonical corre-
lation analysis to the tensor framework by developing a Tensor Canonical Correlation
Algorithm (TCCA). This method factorized data tensors to a set of matrices and learned
a set of projection matrices maximizing the canonical correlations. The inner product
was employed to compute the similarity between two data tensors. The use of SIFT
features with CCA was also considered for gesture recognition by Kim and Cipolla
(2007). Recently, nonnegative tensor factorization has been exploited for action recog-
nition by Krausz and Bauckhage (2010) where action videos were factorized using a
gradient descent method and represented as the sum of rank-1 tensors associated with a
weighting factor. As a result, the appearance was captured by the basis images and the
dynamics was encoded with the weighting factor.
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Product spaces have received attention in applications related to spatiotemporal in-
teractions. Datta et al. (2009) modeled the motion manifold as a collection of local
linear models. This method learned a selection of mappings to encode the motion man-
ifold from a product space. Lin et al. (2009) proposed a probabilistic framework for
action recognition using prototype trees. Shape and motion were explicitly learned and
characterized via hierarchical K-means clustering. The joint likelihood framework was
employed to model the joint shape-motion space. Li and Chellappa (2010) investigated
the product space of spatial and temporal submanifolds for action alignment. Sequen-
tial importance sampling was then used to find the optimal alignment. Despite these
efforts, the geometry of the product space has not been directly considered and the
geodesic nature on the product manifold remains unexamined.

3. Mathematical Background

In this section, we briefly review the background mathematics used in this paper. Partic-
ularly, we focus on the elements of tensor algebra, orthogonal groups, Stiefel manifolds,
and Grassmann manifolds.

3.1. Tensor Representation

Tensors provide a natural representation for high dimensional data. We consider a
video as a third order data tensor 2 RX⇥Y⇥T where X , Y , and T are the image width,
image height, and video length, respectively. High order data tensors can be regarded
as a multilinear mapping over a set of vector spaces. Generally, useful information
can be extracted using tensor decompositions. In particular, a Higher Order Singular
Value Decomposition (HOSVD) (De Lathauwer et al., 2000) is considered in this paper
because the data tensor can be factorized in a closed-form. A recent review paper on
tensor decompositions can be found in Kolda and Bader (2009). Before we describe
HOSVD, we illustrate a building block operation called matrix unfolding.

3.1.1. MATRIX UNFOLDING

Let A be an order N data tensor 2 RI1⇥I2⇥···⇥IN . The data tensor A can be converted
to a set of matrices via a matrix unfolding operation. Matrix unfolding maps a tensor
A to a set of matrices A

(1), A
(2), . . . , A

(N)

, where A
(k) 2 RIk⇥(I1⇥···⇥Ik�1⇥Ik+1···⇥IN) is a

mode-k matrix of A . An example of matrix unfolding of a third order, that is, N = 3,
tensor is given in Figure 1. As Figure 1 shows, we can slice a third order tensor in three
different ways along each axis and concatenate these slices into three different matrices
A
(1), A

(2), and A
(3) where the rows of an unfolded matrix are represented by a single

variation of the tensor and the columns are composed by two variations of the tensor.

3.1.2. HIGHER ORDER SINGULAR VALUE DECOMPOSITION

Just as a data matrix can be factorized using a Singular Value Decomposition (SVD),
a data tensor can also be factorized using Higher Order Singular Value Decomposition
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Figure 1: An example of matrix unfolding for a third order tensor. The illustration
is for a video action sequence with two spatial dimensions X and Y and a
temporal dimension T .

(HOSVD), also known as multilinear SVD. HOSVD operates on the unfolded matrices
A
(k), and each unfolded matrix may be factored using SVD as follows:

A
(k) =U (k)S(k)V (k)T

(1)

where S(k) is a diagonal matrix, U (k) is an orthogonal matrix spanning the column
space of A

(k) associated with nonzero singular values, and V (k) is an orthogonal matrix
spanning the row space of A

(k) associated with nonzero singular values. Then, an N
order tensor can be decomposed using HOSVD as follows:

A = S ⇥1 U (1)⇥2 U (2) . . .⇥n U (N)

where S 2 R(I1⇥I2⇥···⇥IN) is a core tensor, U (1), U (2), . . . , U (N) are orthogonal matrices
spanning the column space described in (1), and ⇥k denotes mode-k multiplication.
The core tensor signifies the interaction of mode matrices and is generally not diagonal
when the tensor order is greater than two.
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3.2. Orthogonal Groups

Matrix Lie groups arise in various kinds of non-Euclidean geometry (Belinfante and
Kolman, 1972). The General Linear Group1 G L (n) is a set of nonsingular n⇥ n ma-
trices defined as:

G L (n) = {Y 2 Rn⇥n : det(Y ) 6= 0}.

The G L (n) is closed under a group operation, that is, matrix multiplication. This is
because the product of two nonsingular matrices is a nonsingular matrix. Of practical
importance here is the fact that elements of G L (n) are full rank and thus their row and
column spaces span Rn. A further subgroup of G L (n) is the orthogonal group denoted
as:

O(n) = {Y 2 Rn⇥n : Y TY = I}.

It is known that the determinants of orthogonal matrices can be either +1 or �1 where
the matrices with the determinant of 1 are rotation matrices and the matrices with the
determinant of �1 are reflection matrices.

3.3. Stiefel Manifolds

The Stiefel manifold Vn,p is a set of n⇥ p orthonormal matrices defined as:

Vn,p = {Y 2 Rn⇥p : Y TY = I}.

The Stiefel manifold Vn,p can be considered a quotient space of O(n) so we can identify

an isotropy subgroup H of O(n) expressed as
⇢

Ip 0
0 Qn�p

�
: Qn�p 2 O(n� p)

�
where

the isotropy subgroup leaves the element unchanged. Thus, the Stiefel manifold can be
expressed as Vn,p = O(n) / O(n� p). From a group theory point of view, O(n) is a Lie
group and O(n� p) is its subgroup so that O(n) / O(n� p) represents the orbit space.
In other words, Vn,p is the quotient group of O(n) by O(n� p).

3.4. Grassmann Manifolds

When we impose a group action of O(n) onto the Stiefel manifold, this gives rise to
the equivalence relation between orthogonal matrices so that the elements of Stiefel
manifolds are rotation and reflection invariant. In other words, elements are considered
being equivalent if there exists a p⇥ p orthogonal matrix Qp which maps one point into
the other. This equivalence relation can be written as:

bYc= {Y Qp : Qp 2 O(n)} (2)

where bYc is an element on the Grassmann manifold. Therefore, the Grassmann mani-
fold Gn,p is a set of p-dimensional linear subspaces of Rn and its isotropy subgroup com-

poses all elements of
⇢

Qp 0
0 Qn�p

�
: Qp 2 O(p) , Qn�p 2 O(n� p)

�
. The quotient

1. In this paper, we are only interested in the field of real number R. Unitary groups may be considered
in other contexts.
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Figure 2: An example of a product manifold: A cylinder is a cross product of a circle
and an interval.

representation of Grassmann manifolds is expressed as Gn,p = O(n) / (O(p)⇥O(n� p))
= Vn,p / O(p). As such, the element of the Grassmann manifold represents the orbit of
a Stiefel manifold under the group action of orthogonal groups. More details on the
treatment of Grassmann manifolds can be found in Edelman et al. (1998) and Absil
et al. (2008).

4. Elements of Product Manifolds

This section discusses the elements of product manifolds in the context of gesture
recognition. We illustrate the essence of product manifolds and the factorization of
action videos. Further, we describe the realization of geodesic distance on the product
manifold and its use for action classification.

4.1. Product Manifolds

A product manifold can be recognized as a complex compound object in a high dimen-
sional space composed by a set of lower dimensional objects. For example, the product
of a line with elements y in R1 and a solid circle with elements x in R2 becomes a cylin-
der with elements (x, y) in R3 as shown in Figure 2. Formally, this product topology
can be expressed as:

I = {y 2 R : |y|< 1},
D2

= {x 2 R2 : |x|< 1},
D2⇥ I = {(x,y) 2 R2⇥R : |x|< 1 and |y|< 1}

where D2 and I are viewed as topological spaces.
The cylinder may be equally well interpreted as either a circle of intervals or an

interval of circles. In general, a product manifold may be viewed as the cross section of
lower dimensional objects. Formally, let M1, M2, . . . , Mq be a set of manifolds. The
set M1 ⇥ M2 ⇥ . . . ⇥ Mq is called the product of the manifolds where the manifold
topology is equivalent to the product topology. Hence, a product manifold is defined
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as:

M = M1⇥M2⇥ · · ·⇥Mq

= {(x1,x2, . . . ,xq) : x1 2M1,x2 2M2, . . . ,xq 2Mq}

where ⇥ denotes the Cartesian product, Mk represents a factor manifold (a topological
space), and xk is an element in Mk. Note that the dimension of a product manifold is
the sum of all factor manifolds (Lee, 2003).

The product manifold naturally expresses a compound topological space associated
with a number of factor manifolds. For action video classification, third order data
tensors are manifested as elements on three factor manifolds. As such, video data can
be abstracted as points and classified on a product manifold.

4.2. Factorization in Product Spaces

As discussed in Section 3, HOSVD operates on the unfolded matrices (modes) via
matrix unfolding in which the variation of each mode is captured by HOSVD. However,
the traditional definition of HOSVD does not lead to a well-defined product manifold
in the context of action recognition.

We observe that the column of every unfolded matrix A
(k) is composed by multiple

orders from the original data tensor A 2 RI1⇥I2⇥···⇥IN . This fact can also be observed in
Figure 1. Let m be the dimension of the columns, I1⇥ I2⇥ · · ·⇥ Ik�1⇥ Ik+1 · · ·⇥ IN , and
p be the dimension of the rows, Ik, for an unfolded matrix A

(k). We can then assume
that the dimension of the columns is greater than the dimension of the rows due to
the nature of matrix unfolding for action videos, that is, m > p. This implies that the
unfolded matrix A

(k) only spans p dimensions.
Alternatively, one can factorize the data tensor using the right orthogonal matrices

(Lui et al., 2010). From the context of action videos, the HOSVD can be expressed as:

A = Ŝ ⇥1 V (1)
horizontal-motion⇥2 V (2)

vertical-motion⇥3 V (3)
appearance

where Ŝ is a core tensor, V (k) are the orthogonal matrices spanning the row space with
the first p rows associated with non-zero singular values from the unfolded matrices,
respectively. Because we are performing action recognition on videos, the orthogonal
matrices, V (1)

horizontal-motion, V (2)
vertical-motion, and V (3)

appearance, correspond to horizontal motion,
vertical motion, and appearance. Figure 3 shows some examples from the action de-
composition.

From the factorization of HOSVD, each V (k) is a tall orthogonal matrix, thus it is
an element on a Stiefel manifold. When we impose a group action of the orthogonal
group, elements on the Stiefel manifold become rotation and reflection invariant. In
other words, they are elements on the Grassmann manifold described in (2). As such,
the action data are represented as the orbit of elements on the Stiefel manifold under
the rotation and reflection actions with respect to appearance and dynamics. Section 5
will discuss how we benefit from imposing such a group action on the Stiefel manifold.
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4.3. Geodesic Distance on Product Manifolds

The geodesic in a product manifold M is the product of geodesics in M1, M2, . . . , Mq
(Ma et al., 1998; Begelfor and Werman, 2006). Hence, for any differentiable curve g

parametrized by t, we have g(t) = (gi(t),g j(t)) where g is the geodesic on the product
manifold M , and gi and g j are the geodesics on the factor manifold Mi and M j re-
spectively. From this observation, the geodesic distance on a product manifold may be
expressed as a Cartesian product of canonical angles computed by factor manifolds.

Just as there are alternatives to induce a metric on a Grassmann manifold (Edel-
man et al., 1998) using canonical angles, the geodesic distance on a product manifold
could also be defined in different ways. One possible choice is the chordal distance that
approximates the geodesic via a projection embedding (Conway et al., 1996). Conse-
quently, we define the geodesic distance on a product manifold as:

dM (A ,B) = k sinQ k2 (3)

where A and B are the N order data tensors, Q = (q1, q2, . . . , qN), and qk 2 Gk is a
set of canonical angles (Björck and Golub, 1973) computed independently from each
factor (Grassmann) manifold.

This development of geodesic distance on the product manifold can be related back
to our cylinder example where a circle in R2 and a line in R1 form a cylinder in
R3 where R3 is the product space. Recall that a Grassmann manifold is a set of p-
dimensional linear subspaces. In analogous fashion, the product of a set of p1, p2, . . . ,
pN linear subspaces forms a set of product subspaces whose dimension is (p1 + p2 + . . .
+ pN). The product subspaces are the elements on a product manifold. This observation
is consistent with the Q in (3) where the number of canonical angles agrees with the
dimension of product subspaces on the product manifold.

Note that canonical angles qk are measured between V (k)
A and V (k)

B where each is
an orthogonal matrix spanning the row space associated with nonzero singular values
from a mode-k unfolded matrix. As such, an N order tensor in RI1⇥I2⇥···⇥IN would span
N row spaces in I1, I2, . . . , IN , respectively, and the dimension of a product manifold is
the sum of each order of a data tensor, that is, (ÂN

i=1 = I1 + I2 + . . . + IN).

5. The Product Manifold Representation

The tensor representation on a product manifold models the variations in both space
and time for action videos. Specifically, the product manifold captures the individual
characteristics of spatial and temporal evolution through three factor manifolds. As
such, one factor manifold is acquiring the change in time, resulting in the appearance
(XY) component, while the other two capture the variations in horizontal and vertical
directions, demonstrating the horizontal motion (YT) and vertical motion (XT). Putting
all these representations together, geodesic distance on the product manifold measures
the changes in both appearance and dynamics.

The aim of this section is to illustrate how the product manifold characterizes ap-
pearance and dynamics from action videos. To visualize the product manifold represen-

10
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Different Actions Same Actions
Action 1 Action 2 Action 1 Action 3

XY

YT

XT
Âi qi = (44.0,37.66,38.58) Âi qi = (38.15,32.56,33.58)

Figure 3: Examples of appearance and motion changes where the first row is the over-
lay appearances, the second and third rows are the overlay horizontal motion
and vertical motion, and the bottom row gives the sum of canonical angles
computed from each factorization of the pairs of canonical variates.

tation, let us consider the example given in Figure 3 where the first row expresses the
pairs of overlay appearance (XY) canonical variates, the second and third rows reveal
the pairs of overlay horizontal motion (YT) and vertical motion (XT) canonical vari-
ates, and the bottom row gives the sum of canonical angles computed from the pairs of
canonical variates. Note that the canonical variates are elements on Stiefel manifolds.
In the first column, two distinct actions are factorized to canonical variates. We can
see that all canonical variates exhibit very different characteristics in both appearance
and motions. On the contrary, the second column shows the same action performed by
different actors and the canonical variates are much more similar than the first column,
resulting in smaller canonical angles overall.

One of the advantages of the product manifold representation is that actions do not
need to be aligned in temporal space. To demonstrate this merit, we permute the frame
order from action 3 denoted as action 4 and match it to action 1. Figure 4 shows the
pairs of canonical variates between actions (1, 3) and actions (1, 4). We should first
note that the appearance (XY) of action 3 and action 4 span the same space despite
the visual differences resulting in the identical sum of canonical angles 38.15. This
is because elements on the Grassmann manifold are rotation and reflection invariant

11
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Same Actions Same Actions (Permuted)
Action 1 Action 3 Action 1 Action 4

XY

YT

XT
Âi qi = (38.15,32.56,33.58) Âi qi = (38.15,32.88,38.16)

Figure 4: Examples of appearance and motion changes where Action 4 is a permuted
version of Action 3. The canonical angles for the appearance indicates that
the action is not affected by the frame order.

Figure 5: The characterization of the Grassmann manifold where a point is mapped to
another point on the Stiefel manifold via an exchanged matrix. The group ac-
tion is (X ,Q) 7�! XQ where X 2 Vn,p and Q 2 O(p) so that elements on the
Grassmann manifold are closed under the orthogonal matrix multiplication.

from elements of the Stiefel manifold. This important concept is illustrated in Figure 5
where the exchange matrix O(p) maps the appearance of action 4 to the appearance of
action 3.

12
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Action Category Appearances (XY) Horizontal Motion (YT)

Walk vs. Walk

Run vs. Run

Walk vs. Run

Figure 6: Illustration of capturing the rate of actions. The first column shows the
change of appearance while the second column reveals the change of hor-
izontal motion where the slopes exhibit the rate of motion.

In the example given in Figure 4, the most prominent change is related to the motion
in vertical directions (XT) between action 3 and action 4. This arises from the fact that
the change of motion mostly occurs in the vertical direction when we permute the order
of the video frames from action 3. Consequently, the sum of canonical angles in XT
varies from 33.58 to 38.16 which is less similar to action 1. When we identify a waving
hand moving from top to bottom and from bottom to top, the vertical motion is the key
feature. Otherwise, a simple cyclical search can compensate such variation. As a result,
the product manifold representation is resilient to misregistration in the temporal space
for appearance while keeping the dynamics intact.

Another intriguing attribute of the product manifold representation is its ability to
capture the rate of motion, which is useful in identifying some particular actions. Fig-
ure 6 shows the pairs of canonical variates of two similar actions - walking and running.
First, we note that there is little information from the vertical motion since the move-
ments of walking and running occur horizontally. The appearance differences between
walking and running are not substantial, which is shown in the first column of Figure 6.
The key information between walking and running is embedded in the horizontal mo-
tion (YT). While the structure of horizontal motion between walking and running is
similar exhibiting a line-like pattern, they have very distinct slopes shown in the hori-
zontal motion column of Figure 6. These slopes characterize the rate of motion and are
the key factors in recognizing these types of actions. In particular, when walking and
running are compared depicted in the third row of Figure 6, the idiosyncratic aspect is
captured by the rate of horizontal motion. In general, it is possible to see the rate of
motion through both motion representations depending on the type of actions.

13



LUI

6. Statistical Modeling

Least squares regression is one of the fundamental techniques in statistical analysis. It
is simple and often outperforms complicated models when the number of training sam-
ples is small (Hastie et al., 2001). Since video data do not reside in Euclidean space,
we pay attention to the manifold structure. Here, we introduce a nonlinear regression
framework in non-Euclidean space for gesture recognition. We formulate least squares
regression as a composite function; as such, both domain and range values are con-
strained on a manifold through the regression process. The least squares fitted elements
from a training set can then be exploited for gesture recognition.

6.1. Linear Least Squares Regression

Before we discuss the geometric extension, we will first review the standard form of
least squares fitting. We consider a regression problem y = Ab where y 2 Rn is the
regression value, A([a1|a2| · · · |ak]) 2 Rn⇥k is the training set, and b 2 Rk is the fitting
parameter. The residual sum-of-squares can be written as:

R(b ) =k y�Ab k2 (4)

and the fitting parameter b can be obtained by minimizing the residual sum-of-squares
error from (4). Then, we have

b̂ = (AT A)�1AT y.

The regressed pattern from the training set has the following form

ŷ = Ab̂ = A(AT A)�1AT y. (5)

The key advantage of least squares fitting is its simplicity and it intuitively measures
the best fit of the data.

6.2. Least Squares Regression on Manifolds

Non-Euclidean geometry often arises in computer vision applications. We consider
the nonlinear nature of space and introduce a geometric framework for least squares
regression. First, we extend the linear least squares regression from (5) to a nonlinear
form by incorporating a kernel function shown in the following

A(A?A)�1
(A? y)

where ? is a nonlinear similarity operator. Obviously, ? is equal to xT y in the linear
case. In this paper, we employ the RBF kernel given as:

x? y = exp(�Âk qk

s

) (6)

where x and y are the elements on a factor manifold, qk is the canonical angle computed
from the factor manifold, and s is set to 2 in all our experiments. While other kernel
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functions can be considered, our goal is to demonstrate our geometric framework and
choose a commonly used RBF kernel operator.

Considering the similarity measure given in (6), the regression model becomes three
sub-regression estimators given by

y

(k)
(y) = A(k)

(A(k) ?A(k)
)

�1
(A(k) ? y(k)) (7)

where k denotes the mode of unfolding, A(k) is a set of orthogonal matrices factorized
from HOSVD, and y(k) is an orthogonal matrix from the unfolded matrix.

To gain a better insight on the regression model, we explore the geometrical inter-
pretation from (7). Given p training instances, the first element, A(k), is a set of factor-
ized training samples residing on a manifold. Furthermore, (A(k) ?A(k)

)

�1 produces a
p⇥ p matrix from the training set and (A(k) ? y(k)) would create a p⇥1 vector. There-
fore, the rest of the regression provides a weighting vector characterizing the training
data on a factor manifold as:

w = (A(k) ?A(k)
)

�1
(A(k) ? y(k))

where the weighting vector is in a vector space, that is, w 2 V .
Now, we have a set of factorized training samples, A(k), on a manifold and a weight-

ing vector, w, in a vector space. To incorporate these two elements with the least squares
fitting given in (7), we make a simple modification and reformulate the regression as
follows

Y(k)
(y) = A(k) • (A(k) ?A(k)

)

�1
(A(k) ? y(k)) (8)

where • is an operator mapping points from a vector space back to a factor manifold.
By introducing an additional operator, we ensure that both the domain values y(k) and
the range values Yk

(y) reside on a manifold. From a function composition point of
view, the proposed regression technique can be viewed as a composition map G �H
where H : M �! V and G : V �!M where M is a manifold and V is a vector
space.

One possible way to realize the composition map, G �H , is to employ the tangent
space and modify the Karcher mean (Karcher, 1977). The computation of Karcher
mean considers the intrinsic geometry and iteratively minimizes the distance between
the updated mean and all data samples via the tangent space. Since w is the weighting
vector, it naturally produces the weight between training samples. All we need is to
apply the weighting vector to weight the training samples on a factor manifold. This is
equivalent to computing the weighted Karcher mean, which is an element of a manifold.

So far, our geometric formulation on least squares regression is very general. To
make it specific for gesture recognition, we impose rotation and reflection invariance to
the factorized element V (k) such that they are elements on a Grassmann manifold and
the computation of the weighted Karcher mean can be realized. Here, we sketch the
pseudo-code in Algorithm 1. As Algorithm 1 illustrates, the first step is to initialize a
base point on a manifold. To do so, we compute the weighted average from the training
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Algorithm 1: Weighted Karcher Mean Computation
1 Initialize a base point µ on a manifold
2 while not converged do
3 Apply the logarithmic map to the training samples Yi to the base point µ

4 Compute the weighted average on the tangent space at the base point µ

5 Update the base point µ by applying the exponential map on the weighted average
6 end

samples in Euclidean space and project it back to the Grassmann manifold using QR
factorization. Then, we iteratively update the base point on the Grassmann manifold.
The update procedure involves the standard logarithmic map and the exponential map
on Grassmann manifolds (Edelman et al., 1998) described as follows

log
µ

(Yi) = U1Q1V T
1

where µ is the base point for the tangent space, Yi is a training instance factorized from
the Grassmann manifold, µ?µ

T
?Yi(µ

TYi)
�1

= U1S1V T
1 , Q1 = arctan(S1), and µ? is the

orthogonal complement to µ .

exp
µ

(D) = µV2 cos(S2)+U2 sin(S2)

where D is the weighted tangent vector at µ and D=U2S2V T
2 . From a geometric point of

view, the logarithmic operator maps a point on a manifold to a tangent space whereas
the exponential map projects a point in the tangent space back to the manifold. A
pictorial illustration is given in Figure 7. In addition, the Karcher mean calculation
exhibits fast convergence (Absil et al., 2004). Typically, convergence can be reached
within 10 iterations in our experiments. A sample run is depicted in Figure 8 where
expeditious reduction of residuals occurs in the first few iterations.

To perform gesture recognition, a set of training videos is collected. All videos are
normalized to a standard size. During the test phase, the category of a query video is
determined by

j⇤ = argmin
j

D(Y,Y j(Y ))

where Y is a query video, Y j is the regression instance for the class j given in (8), and D
is a geodesic distance measure. Because the query gesture Y and the regression instance
are realized as elements on a product manifold, we employ the chordal distance given
in (3) for gesture classification.

In summary, the least squares regression model applies HOSVD on a query gesture
Y and factorizes it to three sub-regression models (Y(1)

j , Y(2)
j , Y(3)

j ) on three Grassmann
manifolds where regressions are performed. The distance between the regression output
and query is then characterized on a product manifold; gesture recognition is achieved
using the chordal distance. We note that our least squares framework is applicable
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Figure 7: An illustration of logarithmic and exponential maps where Y and µ are points
on a manifold, D is the tangent vector, and T

µ

M is the tangent space at µ .

Figure 8: The residual values of tangent vectors.

to many matrix manifolds as long as the logarithmic and exponential maps are well-
defined. Furthermore, when the kernel operator is ?= xT y, logx(y) = y, and expx(D) =
x+D, the regression model in (8) becomes the canonical least squares regression in
Euclidean space.

When statistical models exhibit high variance, shrinkage techniques are often ap-
plied (Hastie et al., 2001). We see that a simple regularization parameter turns least
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Figure 9: Hand gesture samples. Flat-Leftward, Flat-Rightward, Flat-Contract,
Spread-Leftward, Spread-Rightward, Spread-Contract, V-Shape-Leftward,
V-Shape-Rightward, and V-Shape-Contract.

Figure 10: Body gesture samples. First row: Turn Left, Turn Right, Attention Left,
Attention Right, Attention Both, Stop Left, and Stop Right. Second row:
Stop Both, Flap, Start, Go Back, Close Distance, Speed Up, and Come
Near.

squares regression into ridge regression. This observation can also be applied to our
non-Euclidean least squares regression framework.

7. Experimental Results

This section summarizes our empirical results and demonstrates the proficiency of
our framework on gesture recognition. To facilitate comparison, we first evaluate our
method using two publicly available gesture data sets namely Cambridge hand-gesture
(Kim and Cipolla, 2009) and UMD Keck body-gesture (Lin et al., 2009). We further
extend our method to the one-shot-learning gesture challenge (CHALEARN, 2011).
Our experiments reveal that not only does our method perform well on the standard
benchmark data sets, but also it generalizes well on the one-shot-learning gesture chal-
lenge.

7.1. Cambridge Hand-Gesture Data Set

Our first experiment is conducted using the Cambridge hand-gesture data set which has
900 video sequences with nine different hand gestures (100 video sequences per gesture
class). The gesture data are collected from five different illumination sets labeled as
Set1, Set2, Set3, Set4, and Set5. Example gestures are shown in Figure 9.

We follow the experimental protocol employed by Kim and Cipolla (2009) where
Set5 is the target set, and Set1, Set2, Set3, and Set4 are the test sets. The target Set5
is further partitioned into a training set and validation set (90 video sequences in the
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Method Set1 Set2 Set3 Set4 Total
Graph Embedding (Yuan et al., 2010) - - - - 82%

TCCA (Kim and Cipolla, 2009) 81% 81% 78% 86% 82±3.5%
DCCA+SIFT (Kim and Cipolla, 2007) - - - - 85±2.8%

RLPP (Harandi et al., 2012) 86% 86% 85% 88% 86.3±1.3%
TB{Vn,p} (Lui, 2012b) 88% 84% 85% 87% 86±3.0%

PM 1-NN (Lui et al., 2010) 89% 86% 89% 87% 88±2.1%
Our Method 93% 89% 91% 94% 91.7±2.3%

Table 1: Recognition results on the Cambridge Hand-Gesture data set (Five trial runs).

Method Static Setting Dynamic Setting
HOG3D (Bilinski and Bremond, 2011) - 53.6%

Shape Manifold (Abdelkadera et al., 2011) 82% -
MMI-2+SIFT (Qiu et al., 2011) 95% -

CC K-Means (Jiang et al., 2012)) - 92.9%
Prototype-Tree (Lin et al., 2009) 95.2% 91.1%

TB{Vn,p} (Lui, 2012b) 92.1% 91.1%
PM 1-NN (Lui et al., 2010) 92.9% 92.3%

Our Method 94.4% 92.3%

Table 2: Recognition results on the UMD Keck Body-Gesture data set.

training set and 90 video sequences in the validation set). We employ five random
trials in selecting the training and validation videos in Set5. The recognition results are
summarized in Table 1 where the classification rates are the average accuracy obtained
from five trial runs followed by the standard deviation. As Table 1 shows, our method
performs very well across all illumination sets obtaining 91.7% average classification
rate.

7.2. UMD Keck Body-Gesture Data Set

The UMD Keck body-gesture data set consists of 14 naval body gestures acquired from
both static and dynamic backgrounds. In the static background, the subjects and the
camera remain stationary whereas the subjects and the camera are moving in the dy-
namic environment during the performance of the gesture. There are 126 videos col-
lected from the static scene and 168 videos taken from the dynamic environment. Ex-
ample gestures are given in Figure 10.

We follow the experimental protocol proposed by Lin et al. (2009) for both static
and dynamic settings. The region of interest is tracked by a simple correlation filter. In
the static background, the protocol is leave-one-subject-out (LOSO) cross-validation.
As for the dynamic environment, the gestures acquired from the static scene are used for
training while the gestures collected from the dynamic environment are the test videos.
The recognition results for both static and dynamic backgrounds are reported in Table 2.
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We can see that our method is competitive to the current state-of-the-art methods in
both protocols. One of the key advantages of our method is its direct use of raw pixels
while the prototype-tree (Lin et al., 2009), MMI-2+SIFT (Qiu et al., 2011), and CC K-
means (Jiang et al., 2012) methods operate on silhouette images which require image
segmentation prior to classification. This makes our representation more generic.

7.3. One-Shot-Learning Gesture Challenge

Microsoft KinectTM has recently revolutionized gesture recognition by providing both
RGB and depth images. To facilitate the adaptation to new gestures, CHALEARN
(Guyon et al., 2012) has organized a one-shot-learning challenge for gesture recogni-
tion.

The key aspect of one-shot-learning is to perform machine learning on a single
training example. As such, intra-class variability needs to be modeled from a single
example or learned from different domains. While traditional machine learning tech-
niques require a large amount of training data to model the statistical distribution, least
squares regression appears to be more robust when the size of training samples is lim-
ited (Hastie et al., 2001). We employ our least squares regression framework and model
the intra-class variability by synthesizing training examples from the original training
instance. Consequently, we apply the same regression framework on the product mani-
fold to the one-shot-learning gesture challenge.

One of the gesture variations is performing gesture positions. Our initial studies
for frame alignment did not yield positive results due in part to the incidental features
of the upper body. Since gesture positions are the key source of variations, we syn-
thesize training examples for translational instances on both RGB and depth images.
The synthesized examples are generated by shifting the entire action video horizontally
and vertically. Specifically, we synthesize two vertically (up/down) and four horizon-
tally (left/right) translated instances along with the original training example. As such,
we have seven training instances for RGB and depth images, respectively. We stress
that we do not apply any spatial segmentation or intensity normalization to video data;
alignment is the only variation that we synthesize for one-shot-learning. Our experi-
ments on the training batches indicate that there is about 2% gain by introducing the
translational variations.

We assess the effectiveness of the proposed framework on the development data set
for the one-shot-learning gesture challenge. The development data set consists of 20
batches of gestures. Each batch is made of 47 gesture videos and split into a training
set and a test set. The training set includes a small set of vocabulary spanning from 8
to 15 gestures. Every test video contains 1 to 5 gestures. Detailed descriptions of the
gesture data can be found in Guyon et al. (2012).

Since the number of gestures varies for test videos, we perform temporal segmen-
tation to localize each gesture segment. It is supposed that the actor will return to the
resting position before performing a new gesture. Thus, we employ the first frame as a
template and compute the correlation coefficient with subsequent frames. We can then
localize the gesture segments by identifying the peak locations from the correlations;
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Figure 11: An illustration of temporal segmentation where the dash lines indicate the
peak locations and the resting frames from the action sequence.

the number of gestures is the number of peaks + 1. An illustration of temporal segmen-
tation is given in Figure 11 where the peak locations provide a good indication for the
resting frames. Furthermore, we fix the spatial dimension to 32⇥ 32 and dynamically
determine the number of frames by selecting 90% of the PCA energy from each training
batch. Linear interpolation is then applied to normalize the video length.

The recognition performance is evaluated using the Levenshtein distance (Leven-
shtein, 1966), also known as edit distance. Table 3 shows the average errors over 20
batches. As Table 3 reveals, our method significantly outperforms the baseline algo-
rithm (CHALEARN, 2011) and achieves 28.73% average Levenshtein distance per ges-
ture on the development data set. Our method also ranks among the top algorithms in
the gesture challenge (Guyon et al., 2012). This illustrates that our method can be effec-
tively adopted for one-shot-learning from the traditional supervised learning paradigm.

While our method performs well on the one-shot-learning gesture challenge, it is
not a complete system yet. There are three particular batches that cause difficulties for
our algorithm. These batches are devel03, devel10, and devel19 where the example
frames are shown in Figure 12. These three batches share a common characteristic
that the gesture is only distinguishable by identifying the hand positions. Since we do
not have a hand detector, the gross motion dominates the whole action causing it to be
confused with other similar gestures.

Another source of errors is made by the temporal segmentation. While the ac-
tor is supposed to return to the resting position before performing a new gesture, this
rule has not always been observed. As a result, such variation introduces a mismatch
between the template and subsequent frames resulting errors in partitioning the video
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Baseline Our Method
Batch TeLev% TeLen% TeLev% TeLen%

devel01 53.33 12.22 13.33 4.44
devel02 68.89 16.67 35.56 14.44
devel03 77.17 5.43 71.74 20.65
devel04 52.22 30.00 10.00 2.22
devel05 43.48 10.87 9.78 7.61
devel06 66.67 17.78 37.78 14.44
devel07 81.32 19.78 18.68 3.30
devel08 58.43 12.36 8.99 5.62
devel09 38.46 9.89 13.19 1.10
devel10 75.82 21.98 50.55 1.10
devel11 67.39 18.48 35.87 2.17
devel12 52.81 5.62 22.47 4.49
devel13 50.00 17.05 9.09 2.27
devel14 73.91 22.83 28.26 3.26
devel15 50.00 8.70 21.74 0.00
devel16 57.47 17.24 31.03 6.90
devel17 66.30 32.61 30.43 4.35
devel18 70.00 28.89 40.00 11.11
devel19 71.43 15.38 49.45 3.30
devel20 70.33 36.26 35.16 12.09
Average 62.32 18.01 28.73 6.24

Table 3: Recognition results on the development data for the one-shot-learning chal-
lenge where TeLev is the sum of the Levenshtein distance divided by the true
number of gestures and TeLen is the average error made on the number of
gestures.

sequence. The large error in devel03 is caused by the need for hand positions and tem-
poral segmentation. Future work will focus on combining both appearance and motion
for temporal segmentation.

Nevertheless, the experimental results from the Cambridge hand-gesture and the
UMD Keck body-gesture data sets are encouraging. These findings illustrate that our
method is effective in both hand gestures and body gestures. Once we have a reliable
hand detector, we expect to further improve gesture recognition from a single training
example. Currently, the processing time on 20 batches (2,000 gestures) including both
training and testing is about 2 hours with a non-optimized MATLAB implementation
on a 2.5GHz Intel Core i5 iMac.

8. Discussion

The proposed method is geometrically motivated. It decomposes a video tensor to three
Stiefel manifolds via HOSVD where the orthogonal elements are imposed to Grassman-
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Figure 12: Gesture samples on the one-shot-learning gesture challenge (devel03, de-
vel10, and devel19).

nian spaces. As mentioned before, one of the key advantages of our method is its direct
use of raw pixels. This gives rise to a practical and important question. How robust can
the raw pixel representation be against background clutter?

To address this concern, we synthesize an illustrative example given in Figure 13.
The first, second, and third columns depict the appearance, horizontal motion, and
vertical motion of the gesture, respectively. A V-shape rightward gesture and a flat
leftward gesture are shown in the first row and second row. We superpose a cluttered
background on every frame of the flat leftward gesture exhibited in the third row. While
the appearances between the uniform flat gesture and the cluttered flat gesture emerge
differently, the deterioration on the dynamics is quite minimal. As a result, the gesture
performed with the background clutter can still be discriminated against other gestures.
Numerically, the sum of the canonical angles between the uniform (second row) and the
cluttered background (third row) gestures is (56.09, 7.99, 9.17) resulting in a geodesic
distance of 5.91 on the product manifold. In contrast, the sum of the canonical angles
between the V-shape (first row) and the flat (second row) gestures is (76.35, 23.66,
18.42) yielding a geodesic distance of 8.29. In addition, when the V-shape gesture (first
row) matches against the cluttered flat gesture (third row), the sum of the canonical
angles is (76.09, 23.75, 18.84) and the geodesic distance is 8.31. This finding reveals
that the geodesic distance between the uniform and cluttered background gestures are
quite similar against inter-class gestures, while the geodesic distance is significantly
smaller for the intra-class gestures. Hence, raw pixels can be directly exploited in our
representation.
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(a) V-shape rightward gesture.

(b) Flat leftward gesture.

(c) Superposed cluttered background on the flat leftward gesture.

Figure 13: The effect of background clutter. Appearance, horizontal motion, and verti-
cal motion are depicted in the first, second, and third columns, respectively.

As technology advances, we can now separate the foreground and background more
easily using a KinectTM camera. We hypothesize that better recognition results may be
obtained when the foreground gestures are extracted. On the other hand, our method
can still perform gracefully when a cluttered background is present.

9. Conclusions

This paper promotes the importance of the underlying geometry of data tensors. We
have presented a geometric framework for least squares regression and applied it to
gesture recognition. We view action videos as third order tensors and impose them on a
product manifold where each factor is Grassmannian. The realization of points on these
Grassmannians is achieved by applying HOSVD to a tensor representation of the action
video. A natural metric is inherited from the factor manifolds since the geodesic on the
product manifold is given by the product of the geodesic on the Grassmann manifolds.

The proposed approach provides a useful metric and a regression model based on
latent geometry for action recognition. To account for the underlying geometry, we
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formulate least squares regression as a composite function. This formulation provides a
natural extension from Euclidean space to manifolds. Experimental results demonstrate
that our method is effective and generalizes well to the one-shot-learning scheme.

For longer video sequences, micro-action detection is needed which may be mod-
eled effectively using HMM. Future work will focus on developing more sophisticated
models for gesture recognition and other regression techniques on matrix manifolds for
visual applications.
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Abstract
This paper discusses sign language recognition using linguistic sub-units. It presents
three types of sub-units for consideration; those learnt from appearance data as well as
those inferred from both 2D or 3D tracking data. These sub-units are then combined
using a sign level classifier; here, two options are presented. The first uses Markov
Models to encode the temporal changes between sub-units. The second makes use
of Sequential Pattern Boosting to apply discriminative feature selection at the same
time as encoding temporal information. This approach is more robust to noise and
performs well in signer independent tests, improving results from the 54% achieved
by the Markov Chains to 76%.
Keywords: sign language recognition, sequential pattern boosting, depth cameras,
sub-units, signer independence, data set

1. Introduction

This paper presents several approaches to sub-unit based Sign Language Recogni-
tion (SLR) culminating in a real time KinectTMdemonstration system. SLR is a non-
trivial task. Sign Languages (SLs) are made up of thousands of different signs; each dif-
fering from the other by minor changes in motion, handshape, location or Non-Manual
Featuress (NMFs). While Gesture Recognition (GR) solutions often build a classifier
per gesture, this approach soon becomes intractable when recognising large lexicons of
signs, for even the relatively straightforward task of citation-form, dictionary look-up.
Speech recognition was faced with the same problem; the emergent solution was to
recognise the subcomponents (phonemes), then combine them into words using Hid-
den Markov Models (HMMs). Sub-unit based SLR uses a similar two stage recognition
system, in the first stage, sign linguistic sub-units are identified. In the second stage,
these sub-units are combined together to create a sign level classifier.

Linguists also describe SLs in terms of component sub-units; by using these sub-
units, not only can larger sign lexicons be handled efficiently, allowing demonstration
on databases of nearly 1000 signs, but they are also more robust to the natural vari-
ations of signs, which occur on both an inter and an intra signer basis. This makes

c� 2012 H. Cooper, E.-J. Ong, N. Pugeault & R. Bowden.
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Figure 1: Overview of the 3 types of sub-units extracted and the 2 different sign level
classifiers used.

them suited to real-time signer independent recognition as described later. This paper
will focus on 4 main sub-unit categories based on HandShape, Location, Motion and
Hand-Arrangement. There are several methods for labelling these sub-units and this
work builds on both the Ha, Tab, Sig, Dez system from the BSL dictionary (British
Deaf Association, 1992) and The Hamburg Notation System (HamNoSys), which has
continued to develop over recent years to allow more detailed description of signs from
numerous SLs (Hanke and Schmaling, 2004).

This paper presents a comparison of sub-unit approaches, focussing on the advan-
tages and disadvantages of each. Also presented is a newly released Kinect data set,
containing multiple users performing signs in various environments. There are three
different types of sub-units considered; those based on appearance data alone, those
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which use 2D tracking data with appearance based handshapes and those which use
3D tracking data produced by a KinectTMsensor. Each of these three sub-unit types is
tested with a Markov model approach to combine sub-units into sign level classifiers.
A further experiment is performed to investigate the discriminative learning power of
Sequential Pattern (SP) Boosting for signer independent recognition. An overview is
shown in Figure 1.

2. Background

The concept of using sub-units for SLR is not novel. Kim and Waldron (1993) were
among the first adopters, they worked on a limited vocabulary of 13-16 signs, using data
gloves to get accurate input information. Using the work of Stokoe (1960) as a base,
and their previous work in telecommunications (Waldron and Simon, 1989), they noted
the need to break signs into their component sub-units for efficiency. They continued
this throughout the remainder of their work, where they used phonemic recognition
modules for hand shape, orientation, position and movement recognition (Waldron and
Kim, 1994). They made note of the dependency of position, orientation and motion on
one another and removed the motion aspect allowing the other sub-units to compensate
(on a small vocabulary, a dynamic representation of position is equivalent to motion)
(Waldron and Kim, 1995).

The early work of Vogler and Metaxas (1997) borrowed heavily from the studies of
sign language by Liddell and Johnson (1989), splitting signs into motion and pause sec-
tions. Their later work (Vogler and Metaxas, 1999), used parallel HMMs on both hand
shape and motion sub-units, similar to those proposed by the linguist Stokoe (1960).
Kadir et al. (2004) took this further by combining head, hand and torso positions, as
well as hand shape, to create a system based on hard coded sub-unit classifiers that
could be trained on as little as a single example.

Alternative methods have looked at data driven approaches to defining sub-units.
Yin et al. (2009) used an accelerometer glove to gather information about a sign, they
then applied discriminative feature extraction and ‘similar state tying’ algorithms, to
decide sub-unit level segmentation of the data. Whereas Kong and Ranganath (2008)
and Han et al. (2009) looked at automatic segmentation of sign motion into sub-units,
using discontinuities in the trajectory and acceleration to indicate where segments begin
and end. These were then clustered into a code book of possible exemplar trajectories
using either Dynamic Time Warping (DTW) distance measures Han et al. or Principal
Component Analysis (PCA) Kong and Ranganath.

Traditional sign recognition systems use tracking and data driven approaches (Han
et al., 2009; Yin et al., 2009). However, there is an increasing body of research that
suggests using linguistically derived features can offer superior performance. Cooper
and Bowden (2010) learnt linguistic sub-units from hand annotated data which they
combined with Markov models to create sign level classifiers, while Pitsikalis et al.
(2011) presented a method which incorporated phonetic transcriptions into sub-unit
based statistical models. They used HamNoSys annotations combined with the Pos-
tures, Detentions, Transitions, Steady Shifts (PDTS) phonetic model to break the signs
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and annotations into labelled sub-units. These were used to construct statistical sub-unit
models which they combined via HMMs.

The frequent requirement of tracked data means that the KinectTMdevice has of-
fered the sign recognition community a short-cut to real-time performance. In the
relatively short time since its release, several proof of concept demonstrations have
emerged. Ershaed et al. (2011) have focussed on Arabic sign language and have cre-
ated a system which recognises isolated signs. They present a system working for 4
signs and recognise some close up handshape information (Ershaed et al., 2011). At
ESIEA they have been using Fast Artificial Neural Networks to train a system which
recognises two French signs (Wassner, 2011). This small vocabulary is a proof of con-
cept but it is unlikely to be scalable to larger lexicons. It is for this reason that many sign
recognition approaches use variants of HMMs (Starner and Pentland, 1997; Vogler and
Metaxas, 1999; Kadir et al., 2004; Cooper and Bowden, 2007). One of the first videos
to be uploaded to the web came from Zafrulla et al. (2011) and was an extension of
their previous CopyCat game for deaf children (Zafrulla et al., 2010). The original
system uses coloured gloves and accelerometers to track the hands. By tracking with
a KinectTM, they use solely the upper part of the torso and normalise the skeleton ac-
cording to arm length (Zafrulla et al., 2011). They have an internal data set containing
6 signs; 2 subject signs, 2 prepositions and 2 object signs. The signs are used in 4
sentences (subject, preposition, object) and they have recorded 20 examples of each.
Their data set is currently single signer, making the system signer dependent, while
they list under further work that signer independence would be desirable. By using a
cross validated system they train HMMs (Via the Georgia Tech Gesture Toolkit Lyons
et al., 2007) to recognise the signs. They perform 3 types of tests, those with full gram-
mar constraints achieving 100%, those where the number of signs is known achieving
99.98% and those with no restrictions achieving 98.8%.

2.1. Linguistics

Sign language sub-units can be likened to speech phonemes, but while a spoken lan-
guage such as English has only 40-50 phonemes (Shoup, 1980), SLs have many more.
For example, The Dictionary of British Sign Language/English (British Deaf Associa-
tion, 1992) lists 57 ‘Dez’ (HandShape), 36 ‘Tab’ (Location), 8 ‘Ha’ (Hand-Arrangement),
28 ‘Sig’ (Motion) (plus 4 modifiers, for example, short and repeated) and there are two
sets of 6 ‘ori’ (Orientation), one for the fingers and one for the palm.

HamNoSys uses a more combinatorial approach to sub-units. For instance, it lists
12 basic handshapes which can be augmented using finger bending, thumb position and
openeness characteristics to create a single HandShape sub-unit. These handshapes
are then combined with palm and finger orientations to describe the final hand posture.
Motion sub-units can be simple linear directions, known as ‘Path Movements’ these can
also be modified by curves, wiggles or zigzags. Motion sub-units can also be modified
by locations, for example, move from A to B with a curved motion or move down
beside the nose.
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In addition, whereas spoken phonemes are broadly sequential, sign sub-units are
parallel, with some sequential elements added where required. This means that each of
the 57 British Sign Language (BSL) HandShape options can (theoretically) be in any
one of the 36 BSL Orientation combinations. In practice, due to the physical constraints
of the human body, only a subset of comfortable combinations occur, yet this subset is
still considerable.

An advantage of the parallel nature of sub-units, is that they can be recognised inde-
pendently using different classifiers, then combined at the word level. The reason this is
advantageous is that Location classifiers need to be spatially variant, since they describe
where a sign happens. Hand-Arrangement should be spatially invariant but not rotation-
ally variant, since they describe positional relationships between the hands. While Mo-
tion are a mixture of spatially, temporally, rotationally and scale variant sub-units since
they describe types of motion which can be as generic as ‘hands move apart’ or more
specific such as ‘hand moves left’. Therefore each type of sub-unit can be recognised
by classifiers incorporating the correct combination of invariances. This paper presents
three methods for extracting sub-units; learnt appearance based (Section 3), hard coded
2D tracking based (Section 4) and hard coded 3D tracking based (Section 5).

3. Learning Appearance Based Sub-units

The work in this section learns a subset of each type of sub-unit using AdaBoost from
hand labelled data. As has been previously discussed, not all types of sub-units can
be detected using the same type of classifier. For Location sub-units, there needs to
be correlation between where the motion is happening and where the person is; to this
end spatial grid features centred around the face of the signer are employed. For Motion
sub-units, the salient information is what type of motion is occurring, often regardless of
its position, orientation or size. This is approached by extracting moment features and
using Binary Patterns (BPs) and additive classifiers based on their changes over time.
Hand-Arrangement sub-units look at where the hands are in relation to each other,
so these are only relevant for bi-manual signs. This is done using the same moment
features as for Motion but this time over a single frame, as there is no temporal context
required. All of these sub-unit level classifiers are learnt using AdaBoost (Freund and
Schapire, 1995). The features used in this section require segmentation of the hands
and knowledge of where the face is. The Viola Jones face detector (Viola and Jones,
2001) is used to locate the face. Skin segmentation could be used to segment the hands,
but since sub-unit labels are required this work uses the data set from the work of Kadir
et al. (2004) for which there is an in-house set of sub-unit labels for a portion of the
data. This data set was created using a gloved signer and as such a colour segmentation
algorithm is used in place of skin segmentation.

3.1. Location Features

In order that the sign can be localised in relation to the signer, a grid is applied to the
image, dependent upon the position and scale of the face detection. Each cell in the grid
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(a) The grid applied over
the signer

(b) On Right Shoulder (c) Lower Face/Chin

Figure 2: Grid features for two stage classification. (a) shows an example of the grid
produced from the face dimensions while (b) and (c) show grid features cho-
sen by boosting for two of the 18 Location sub-units. The highlighted box
shows the face location and the first and second features chosen, are shown
in black and grey respectively.

is a quarter of the face size and the grid is 10 rectangles wide by 8 deep, as shown in
Figure 2(a). These values are based on the signing space of the signer. However, in this
case, the grid does not extend beyond the top of the signers head since the data set does
not contain any signs which use that area. The segmented frame is quantised into this
grid and a cell fires if over 50% of its pixels are made up of glove/skin. This is shown
in Equation 1 where Rwc is the weak classifier response and Lskin(x,y) is the likelihood
that a pixel contains skin. f is the face height and all the grid values are relative to this
dimension.

Rwc =

8
><

>:

1 if f 2

8 <
x2

Â
i=x1

y2

Â
j=y1

(Lskin(i, j)> 0),

0 otherwise.

Where x1,y1,x2,y2 are given by

8Gx,8Gy

8
>>>><

>>>>:

x1 = Gx f ,
x2 = (Gx +0.5) f ,
y1 = Gy f ,
y2 = (Gy +0.5) f ,

given Gx = {�2.5,�2,�1.5 . . .2},
Gy = {�4,�3.5,�3 . . .0}. (1)

For each of the Location sub-units, a classifier was built via AdaBoost to combine
cells which fire for each particular sub-unit, examples of these classifiers are shown in
Figures 2(b) and 2(c). Note how the first cell to be picked by the boosting (shown in
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black) is the one directly related to the area indicated by the sub-unit label. The second
cell chosen by boosting either adds to this location information, as in Figure 2(b), or
comments on the stationary, non-dominant hand, as in Figure 2(c).

Some of the sub-units types contain values which are not mutually exclusive, this
needs to be taken into account when labelling and using sub-unit data. The BSL dic-
tionary (British Deaf Association, 1992) lists several Location sub-units which overlap
with each other, such as face and mouth or nose. Using boosting to train classifiers
requires positive and negative examples. For best results, examples should not be con-
taminated, that is, the positive set should not contain negatives and the negative set
should not contain positives. Trying to distinguish between an area and its sub-areas
can prove futile, for example, the mouth is also on the face and therefore there are likely
to be false negatives in the training set when training face against mouth. The second
stage, sign-level classification does not require the sub-unit classifier responses to be
mutually exclusive. As such a hierarchy can be created of Location areas and their
sub-areas. This hierarchy is shown in Figure 3; a classifier is trained for each node of
the tree, using examples which belong to it, or its children, as positive data. Examples
which do not belong to it, its parent or its child nodes provide negative data.

This eliminates false negatives from the data set and avoids confusion. In Figure 3
the ringed nodes show the sub-units for which there exist examples. Examples are
labelled according to this hierarchy, for example, face, face_lower or face_lower_mouth
which makes finding children and parents easier by using simple string comparisons.

Figure 3: The three Location sub-unit trees used for classification. There are three
separate trees, based around areas of the body which do not overlap. Areas
on the leaves of the tree are sub-areas of their parent nodes. The ringed labels
indicate that there are exact examples of that type in the data set.
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3.2. Motion and Hand-Arrangement Moment Feature Vectors

For Hand-Arrangement and Motion, information regarding the arrangement and motion
of the hands is required. Moments offer a way of encoding the shapes in an image; if
vectors of moment values per frame are concatenated, then they can encode the change
in shape of an image over time.

There are several different types of moments which can be calculated, each of them
displaying different properties. Four types were chosen to form a feature vector, m:
spatial, mab, central, µab, normalised central, µ̄ab and the Hu set of invariant moments
(Hu, 1962) H1-H7. The order of a moment is defined as a+ b. This work uses all
moments, central moments and normalised central moments up to the 3rd order, 10 per
type, (00, 01, 10, 11, 20, 02, 12, 21, 30, 03). Finally, the Hu set of invariant moments
are considered, there are 7 of these moments and they are created by combining the
normalised central moments, see Hu (1962) for full details, they offer invariance to
scale, translation, rotation and skew. This gives a 37 dimensional feature vector, with a
wide range of different properties.

Rwc =

(
1 if Twc < Mi,t ,

0 otherwise.

(2)

Since spatial moments are not invariant to translation and scale, there needs to be a
common point of origin and similar scale across examples. To this end, the spatial
moments are treated in a similar way to the spatial features in Section 3.1, by centring
and scaling the image about the face of the signer before computation. For training
Hand-Arrangement, this vector is used to boost a set of thresholds for individual mo-
ments, mi on a given frame t, Equation 2. For Motion, temporal information needs to
be included. Therefore the video clips are described by a stack of these vectors, M, like
a series of 2D arrays, as shown in Figure 4(a) where the horizontal vectors of moments
are concatenated vertically, the lighter the colour, the higher the value of the moment
on that frame.

3.3. Motion Binary Patterns and Additive Classifiers

As has been previously discussed, the Motion classifiers are looking for changes in
the moments over time. By concatenating feature vectors temporally as shown in Fig-
ure 4(b), these spatio-temporal changes can be found. Component values can either
increase, decrease or remain the same, from one frame to the next. If an increase is
described as a 1 and a decrease or no change is described as a 0 then a BP can be
used to encode a series of increases/decreases. A temporal vector is said to match the
given BP if every ‘1’ accompanies an increase between concurrent frames and every
‘0’ a decrease/‘no change’. This is shown in Equation 3 where Mi,t is the value of the
component, Mi, at time t and bpt is the value of the BP at frame t.
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(a) BP example (b) Concatenated Moment Vector

Figure 4: Moment vectors and Binary Patterns for two stage classification. (a) A picto-
rial description of moment vectors (normalised along each moment type for
a selection of examples), the lighter the colour the larger the moment value.
(b) BP, working from top to bottom an increase in gradient is depicted by a
1 and a decrease or no change by a 0.

Rwc = ||max
8t

(BP(Mi,t))|�1|,

BP(Mi,t) = bpt �d(Mi,t ,Mi,t+1),

d(Mi,t ,Mi,t+1) =

(
0 if Mi,t Mi,t+1,

1 otherwise.
(3)

See Figure 5 for an example where feature vector A makes the weak classifier fire,
whereas feature vector B fails, due to the ringed gradients being incompatible.

Discarding all magnitude information would possibly remove salient information.
To retain this information, boosting is also given the option of using additive classifiers.
These look at the average magnitude of a component over time. The weak classifiers
are created by applying a threshold, Twc, to the summation of a given component, over
several frames. This threshold is optimised across the training data during the boosting
phase. For an additive classifier of size T , over component mi, the response of the
classifier, Rwc, can be described as in Equation 4.

Rwc =

8
><

>:
1 if Twc 

T

Â
t=0

Mi,t ,

0 otherwise.
(4)

Boosting is given all possible combinations of BPs, acting on each of the possible
components. The BPs are limited in size, being between 2 and 5 changes (3 - 6 frames)
long. The additive features are also applied to all the possible components, but the
lengths permitted are between 1 and 26 frames, the longest mean length of Motion sub-
units. Both sets of weak classifiers can be temporally offset from the beginning of an
example, by any distance up to the maximum distance of 26 frames.
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Figure 5: An example of a BP being used to classify two examples. A comparison
is made between the elements of the weak classifiers BP and the temporal
vector of the component being assessed. If every ‘1’ in the BP aligns with an
increase in the component and every ‘0’ aligns with a decrease or ‘no change’
then the component vector is said to match (e.g., case A). However if there
are inconsistencies as ringed in case B then the weak classifier will not fire.

(a) hands_move_apart (b) Hands_move_together

Figure 6: Boosted temporal moments BP and additive Motion classifiers. The moment
vectors are stacked one frame ahead of another. The boxes show where an
additive classifier has been chosen, a dark line shows a decreasing moment
value and a pale line an increasing value.

Examples of the classifiers learnt are shown in Figure 6, additive classifiers are
shown by boxes, increasing BPs are shown by pale lines and decreasing ones by dark
lines. When looking at a sub-unit such as ‘hands move apart’ (Figure 6(a)), the majority
of the BP classifiers show increasing moments, which is what would be expected, as the
eccentricity of the moments is likely to increase as the hands move apart. Conversely,
for ‘hands move together’ (Figure 6(b)), most of the BPs are decreasing.
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Since some Motion sub-units occur more quickly than others, the boosted classifiers
are not all constrained to being equal in temporal length. Instead, an optimal length
is chosen over the training set for each individual sub-unit. Several different length
classifiers are boosted starting at 6 frames long, increasing in steps of 2 and finishing
at 26 frames long. Training classification results are then found for each sub-unit and
the best length chosen to create a final set of classifiers, of various lengths suited to the
sub-units being classified.

4. 2D Tracking Based Sub-Units

Unfortunately, since the learnt, appearance based, sub-units require expertly annotated
data they are limited to data sets with this annotation. An alternative to appearance
based features is given by tracking. While tracking errors can propagate to create sub-
unit errors, the hand trajectories offer significant information which can aid recogni-
tion. With the advances of tracking systems and the real-time solution introduced by
the KinectTM, tracking is fast becoming an option for real-time, robust recognition of
sign language. This section works with hand and head trajectories, extracted from
videos by the work outlined by Roussos et al. (2010). The tracking information is used
to extract Motion and Location information. HandShape information is extracted via
Histograms of Gradients (HOGs) on hand image patches and learnt from labels using
random forests. The labels are taken from the linguistic representations of Sign Gesture
Mark-up Language (SiGML) (Elliott et al., 2001) or HamNoSys (Hanke and Schmal-
ing, 2004).1

4.1. Motion Features

In order to link the x,y co-ordinates obtained from the tracking to the abstract concepts
used by sign linguists, rules are employed to extract HamNoSys based information
from the trajectories. The approximate size of the head is used as a heuristic to discard
ambient motion (that less than 0.25 the head size) and the type of motion occurring is
derived directly from deterministic rules on the x and y co-ordinates of the hand posi-
tion. The types of motions encoded are shown in Figure 7, the single handed motions
are available for both hands and the dual handed motions are orientation independent
so as to match linguistic concepts.

4.2. Location Features

Similarly the x and y co-ordinates of the sign location need to be described relative to
the signer rather than in absolute pixel positions. This is achieved via quantisation of
the values into a codebook based on the signer’s head position and scale in the image.
For any given hand position (xh,yh) the quantised version (x0h,y

0
h) is achieved using the

1. Note that conversion between the two forms is possible. However while HamNoSys is usually pre-
sented as a font for linguistic use, SiGML is more suited to automatic processing.
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(a) Single handed (b) Bimanual: Syn-
chronous

(c) Bimanual: Together/Apart

Figure 7: Motions detected from tracking

quantisation rules shown in Equation 5, where (x f ,y f ) is the face position and (w f ,h f )

is the face size.

x0 = (xh� x f )/w f ,

y0 = (yh� y f )/h f . (5)

Due to the limited size of a natural signing space, this gives values in the range of
y0 2 {0..10} and x0 2 {0..8} which can be expressed as a binary feature vector of size
36, where the x and y positions of the hands are quantised independently.

4.3. HandShape Features

While just the motion and location of the signs can be used for recognition of many
examples, it has been shown that adding the handshape can give significant improve-
ment (Kadir et al., 2004). HOG descriptors have proven efficient for sign language hand
shape recognition (Buehler et al., 2009) and these are employed as the base feature unit.
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Figure 8: Example HOGs extracted from a frame

In each frame, the signer’s dominant hand is segmented using the x,y position and a skin
model. These image patches are rotated to their principal axis and scaled to a square,
256 pixels in size. Examples of these image patches are shown in Figure 8 beside the
frame from which they have been extracted. HOGs are calculated over these squares at
a cell size of 32 pixels square with 9 orientation bins and with 2x2 overlapping blocks,
these are also shown in Figure 8. This gives a feature vector of 1764 histogram bins
which describes the appearance of a hand.

4.4. HandShape Classifiers

This work focusses on just the 12 basic handshapes, building multi-modal classifiers to
account for the different orientations. A list of these handshapes is shown in Figure 9.

ceeall cee12 cee12open finger2 finger23 finger2345
(153) (200) (107) (4077) (686) (2708)

finger23- fist flat pinch12
pinch12open

pinchall

spread
(749)

(2445) (4612) (571) (845) (830)

Figure 9: The base handshapes (Number of occurrences in the data set)

Unfortunately, linguists annotating sign do so only at the sign level while most sub-
units occur for only part of a sign. Also, not only do handshapes change throughout the
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(a) (b) (c) (d) (e)

Figure 10: A variety of examples for the HamNoSys/SiGML class ‘finger2’.

sign, they are made more difficult to recognise due to motion blur. Using the motion of
the hands, the sign can be split into its component parts (as in Pitsikalis et al., 2011),
that are then aligned with the sign annotations. These annotations are in HamNoSys
and have been prepared by trained experts, they include the sign breakdown but not the
temporal alignment. The frames most likely to contain a static handshape (i.e., those
with limited or no motion) are extracted for training.

Note that, as shown in Figure 10, a single SiGML class (in this case ‘finger2’)
may contain examples which vary greatly in appearance, making visual classification
an extremely difficult task.

The extracted hand shapes are classified using a multi-class random forest. Random
forests were proposed by Amit and Geman (1997) and Breiman (2001). They have been
shown to yield good performance on a variety of classification and regression problems,
and can be trained efficiently in a parallel manner, allowing training on large feature
vectors and data sets. In this system, the forest is trained from automatically extracted
samples of all 12 handshapes in the data set, shown in Figure 9. Since signs may have
multiple handshapes or several instances of the same handshape, the total occurrences
are greater than the number of signs, however they are not equally distributed between
the handshape classes. The large disparities in the number of examples between classes
(see Figure 9) may bias the learning, therefore the training set is rebalanced before
learning by selecting 1,000 random samples for each class, forming a new balanced data
set. The forest used consists of N = 100 multi-class decision trees Ti, each of which is
trained on a random subset of the training data. Each tree node splits the feature space
in two by applying a threshold on one dimension of the feature vector. This dimension
(chosen from a random subset) and the threshold value are chosen to yield the largest
reduction in entropy in the class distribution. This recursive partitioning of the data set
continues until a node contains a subset of examples that belong to one single class, or if
the tree reaches a maximal depth (set to 10). Each leaf is then labelled according to the
mode of the contained samples. As a result, the forest yields a probability distribution
over all classes, where the likelihood for each class is the proportion of trees that voted
for this class. Formally, the confidence that feature vector x describes the handshape c
is given by:

p[c] =
1
N Â

i<N
dc(Ti(x)),
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handshape predictions
flat 0.35 0.19 0.09 0.03 0.08 0.06 0.03 0.06 0.06 0.01 0.03 0.01
fist 0.03 0.69 0.02 0.04 0.11 0.05 0.02 0.03 0.02
finger2345 0.16 0.19 0.36 0.02 0.03 0.05 0.06 0.02 0.03 0.06 0.01
finger2 0.02 0.33 0.07 0.31 0.11 0.05 0.02 0.03 0.02 0.04
pinchall 0.03 0.09 0.04 0.01 0.65 0.11 0.01 0.01 0.04
pinch12 0.02 0.20 0.01 0.02 0.13 0.56 0.01 0.01 0.01 0.02
finger23 0.05 0.17 0.04 0.02 0.05 0.04 0.54 0.01 0.07 0.01
pinch12op 0.03 0.12 0.07 0.01 0.15 0.04 0.01 0.56 0.01
cee12 0.01 0.05 0.01 0.03 0.04 0.01 0.82 0.01
cee12open 0.01 0.99
finger23sp 0.01 0.15 0.02 0.06 0.01 0.05 0.02 0.65
ceeall 0.01 0.08 0.03 0.08 0.01 0.02 0.01 0.01 0.77

Table 1: Confusion matrix of the handshape recognition, for all 12 classes.

where N is the number of trees in the forest, Ti(x) is the leaf of the ith tree Ti into
which x falls, and dc(a) is the Kronecker delta function (dc(a) = 1 iff. c = a, dc(a) = 0
otherwise).

The performance of this hand shape classification on the test set is recorded on
Table 1, where each row corresponds to a shape, and each column corresponds to a
predicted class (empty cells signify zero). Lower performance is achieved for classes
that are more frequent in the data set. The more frequently a handshape occurs in the
data set the more orientations it is likely to be used in. This in turn makes the appearance
of the class highly variable; see, for example, Figure 10 for the case of ‘finger2’—
the worst performing case. Also noted is the high confusion between ‘finger2’ and
‘fist’ most likely due to the similarity of these classes when the signer is pointing to
themselves.

The handshape classifiers are evaluated for the right hand only during frames when
it is not in motion. The sign recognition system is evaluated using two different en-
codings for the detected hand shapes. As will be described in Section 6, the next stage
classifier requires inputs in the form of binary feature vectors. Two types of 12 bit bi-
nary feature vector can be produced from the classifier results. The first method applies
a strict Winner Takes All (WTA) on the multi-class forest’s response: the class with the
highest probability is set to one, and the others to zero. For every non-motion frame,
the vector contains a true value in the highest scoring class. The second method applies
a fixed threshold (t = 0.25) on the confidences provided by the classifier for each of the
12 handshapes classes. Handshapes that have a confidence above threshold (p[c] > t)
are set to one, and the others to zero. This soft approach carries the double advantage
that a) the feature vector may encode the ambiguity between handshapes, which may
itself carry information, and b) may contain only zeros if confidences in all classes are
small.
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Locations Motions
Right or Left Hand Bi-manual

head left Dx > l in sync
neck right Dx <�l |d (L,R)|< l

torso up Dy > l and
L shoulder down Dy <�l FR

= FL

L elbow towards Dz > l together
L hand away Dz <�l D(d (L,R))<�l

L hip none DL < l apart
R shoulder DR < l D(d (L,R))> l

R hip

Table 2: Table listing the locations and hand motions included in the feature vectors.
The conditions for motion are shown with the label. Where x,y,z is the po-
sition of the hand, either left (L) or right (R), D indicates a change from one
frame to the next and d (L,R) is the Euclidean distance between the left and
right hands. l is the threshold value to reduce noise and increase generali-
sation, this is set to be a quarter the head height. FR and FL are the motion
feature vectors relating to the right and left hand respectively.

5. 3D Tracking Based Sub-Units

With the availability of the KinectTM, real-time tracking in 3D is now a realistic option.
Due to this, this final sub-unit section expands on the previous tracking sub-units to
work in 3D. The tracking is obtained using the OpenNI framework (Ope, 2010) with
the PrimeSense tracker (Pri, 2010). Two types of features are extracted, those encoding
the Motion and Location of the sign being performed.

5.1. Motion Features

Again, the focus is on linear motion directions, as with the sub-units described in Sec-
tion 4.1, but this time with the z axis included. Specifically, individual hand motions
in the x plane (left and right), the y plane (up and down) and the z plane (towards and
away from the signer). This is augmented by the bi-manual classifiers for ‘hands move
together’, ‘hands move apart’ and ‘hands move in sync’, again, these are all now as-
sessed in 3D. The approximate size of the head is used as a heuristic to discard ambient
motion (that less than 0.25 the head size) and the type of motion occurring is derived
directly from deterministic rules on the x,y,z co-ordinates of the hand position. The
resulting feature vector is a binary representation of the found linguistic values. The
list of 17 motion features extracted is shown in Table 2.
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5.2. Location Features

Whereas previously, with 2D tracking, a coarse grid is applied, in this section the skele-
ton returned by the PrimeSense tracker can now be leveraged. This allows signer related
locations to be described with higher confidence. As such, the location features are cal-
culated using the distance of the dominant hand from skeletal joints. A feature will fire
if the dominant hand is closer than Hhead/2 of the joint in question. A list of the 9 joints
considered is shown in Table 2 and displayed to scale in Figure 11. While displayed
in 2D, the regions surrounding the joints are actually 3D spheres. When the dominant
hand (in this image shown by the smaller red dot) moves into the region around a joint
then that feature will fire. In the example shown, it would be difficult for two features
to fire at once. When in motion, the left hand and elbow regions may overlap with other
body regions meaning that more than one feature fires at a time.

Figure 11: Body joints used to extract sign locations

6. Sign Level classification

Each of the different sub-unit classifier sets is now combined with a sign-level classi-
fier. The groups of binary feature vectors are each concatenated to create a single binary
feature vector F = ( fi)

D
i=1 per frame, where fi 2 {0,1} and D is the number of dimen-

sions in the feature vector. This feature vector is then used as the input to a sign level
classifier for recognition. By using a binary approach, better generalisation is obtained.
This requires far less training data than approaches which must generalise over both
a continuous input space as well as the variability between signs (e.g., HMMs). Two
sign level classification methods are investigated. Firstly, Markov models which use
the feature vector as a whole and secondly Sequential Patten Boosting which performs
discriminative feature selection.

6.1. Markov Models

HMMs are a proven technology for time series analysis and recognition. While they
have been employed for sign recognition, they have issues due to the large training
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requirements. Kadir et al. (2004) overcame these issues by instead using a simpler
Markov model when the feature space is discrete. The symbolic nature of linguistic
sub-units means that the discrete time series of events can be modelled without a hid-
den layer. To this end a Markov chain is constructed for each sign in a lexicon. An
ergodic model is used and a Look Up Table (LUT) employed to maintain as little of
the chain as is required. Code entries not contained within the LUT are assigned a
nominal probability. This is done to avoid otherwise correct chains being assigned zero
probabilities if noise corrupts the input signal. The result is a sparse state transition
matrix, P

w

(Ft |Ft�1), for each word w giving a classification bank of Markov chains.
During creation of this transition matrix, secondary transitions can be included, where
P

w

(Ft |Ft�2). This is similar to adding skip transitions to the left-right hidden layer of
a HMM which allows deletion errors in the incoming signal. While it could be argued
that the linguistic features constitute discrete emission probabilities; the lack of a dou-
bly stochastic process and the fact that the hidden states are determined directly from
the observation sequence, separates this from traditional HMMs which cannot be used
due to their high training requirements. During classification, the model bank is ap-
plied to incoming data in a similar fashion to HMMs. The objective is to calculate the
chain which best describes the incoming data, that is, has the highest probability that it
produced the observation F . Feature vectors are found in the LUT using an L1 distance
on the binary vectors. The probability of a model matching the observation sequence is
calculated as

P(w|s) = uw

l

’
t=1

P
w

(Ft |Ft�1),

where l is the length of the word in the test sequence and u

w

is the prior probability of
a chain starting in any one of its states. In this work, without grammar, 8w,u

w

= 1.

6.2. SP Boosting

One limitation of Markov models is that they encode exact series of transitions over all
features rather than relying only on discriminative features. This leads to reliance on
user dependant feature combinations which if not replicated in test data, will result in
poor recognition performance. Sequential Patterns (SPs), on the other hand, compare
the input data for relevant features and ignore the irrelevant features. A SP is a sequence
of discriminative itemsets (i.e., feature subsets) that occur in positive examples and not
negative examples (see Figure 12). We define an itemset T as the dimensions of the
feature vector F = ( fi)

D
i=1 that have the value of 1: T ⇢ {1, ...,D} is a set of integers

where 8t 2 T, ft = 1. Following this, we define a SP T of length |T| as: T = (Ti)
|T|
i=1,

where Ti is an itemset.
In order to use SPs for classification, we first define a method for detecting SPs

in an input sequence of feature vectors. To this end, firstly let T be a SP we wish to
detect. Suppose the given feature vector input sequence of |F| frames is F = (Ft)

|F |
t=1,
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where Ft is the binary feature vector defined in Section 6. We firstly convert F into
the SP I = (It)

|F|
t=1, where It is the itemset of feature vector Ft . We say that the SP

T is present in I if there exists a sequence (bi)
|T|
i=1, where bi < b j when i < j and

8i = {1, ..., |T|},Ti ⇢ I
bi . This relationship is denoted with the ⇢S operator, that is,

T⇢S I. Conversely, if the sequence (bi)
|T|
i=1 does not exist, we denote it as T 6⇢S I.

From this, we can then define a SP weak classifier as follows: Let T be a given SP
and I be an itemset sequence derived from some input binary vector sequence F . A SP
weak classifier, hT

(I), can be constructed as follows:

hT
(I) =

(
1, if T⇢S I,
�1, if T 6⇢S I.

A strong classifier can be constructed by linearly combining a number (S) of selected
SP weak classifiers in the form of:

H(I) =
S

Â
i=1

aihTi
i (I).

The weak classifiers hi are selected iteratively based on example weights formed during
training. In order to determine the optimal weak classifier at each Boosting iteration,
the common approach is to exhaustively consider the entire set of candidate weak clas-
sifiers and finally select the best weak classifier (i.e., that with the lowest weighted
error). However, finding SP weak classifiers corresponding to optimal SPs this way is
not possible due to the immense size of the SP search space. To this end, the method
of SP Boosting is employed (Ong and Bowden, 2011). This method poses the learn-
ing of discriminative SPs as a tree based search problem. The search is made efficient
by employing a set of pruning criteria to find the SPs that provide optimal discrimi-
nation between the positive and negative examples. The resulting tree-search method
is integrated into a boosting framework; resulting in the SP-Boosting algorithm that
combines a set of unique and optimal SPs for a given classification problem. For this
work, classifiers are built in a one-vs-one manner and the results aggregated for each
sign class.

7. Appearance Based Results

This section of work uses the same 164 sign data set as Kadir et al. (2004) and therefore
a direct comparison can be made between their hard coded tracking based system and
the learnt sub-unit approach using detection based sub-units. For this work, extra an-
notation was required as Kadir et al. (2004) used only sign boundaries. 7410 Location
examples, 322 Hand-Arrangement examples and 578 Motion were hand labelled for
training sub-unit classifiers. The data set consists of 1640 examples (ten of each sign).
Signs were chosen randomly rather than picking specific examples which are known to
be easy to separate. The sub-unit classifiers are built using only data from four of the
ten examples of each sign and the word level classifier is then trained on five examples
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(a) Feature vector

(b) SP

Figure 12: Pictorial description of SPs. (a) shows an example feature vector made up
of 2D motions of the hands. In this case the first element shows ‘right hand
moves up’, the second ‘right hand moves down’ etc. (b) shows a plausible
pattern that might be found for the sign ‘bridge’. In this sign the hands move
up to meet each other, they move apart and then curve down as if drawing a
hump-back bridge.

(including the four previously seen by the sub-unit classifiers) leaving five completely
unseen examples for testing purposes. The second stage classifier is trained on the pre-
viously used four training examples plus one other, giving five training examples per
sign. The results are acquired from the five unseen examples of each of the 164 signs.
This is done for all six possible combinations of training/test data. Results are shown in
Table 3 alongside the results from Kadir et al. (2004). The first three columns show the
results of combining each type of appearance sub-unit with the second stage sign clas-
sifier. Unsurprisingly, none of the individual types contains sufficient information to be
able to accurately separate the data. However, when combined, the appearance based
classifiers learnt from the data are comparable to the hard coded classifiers used on per-
fectly tracked data. The performance drops by only 6.6 Percentage Points (pp), from
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79.2% to 72.6% whilst giving the advantage of not needing the high quality tracking
system.

Figure 13, visually demonstrates the sub-unit level classifiers being used with the
second stage classifier. The output from the sub-unit classifiers are shown on the right
hand side in a vector format on a frame by frame basis. It shows the repetition of
features for the sign ‘Box’. As can be seen there is a pattern in the vector which repeats
each time the sign is made. It is this repetition which the second stage classifier is using
to detect signs.
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Minimum (%) 31.6 30.7 28.2 68.7 76.1
Maximum (%) 35.0 32.2 30.5 74.3 82.4
Std Dev 0.9 0.4 0.6 1.5 2.1
Mean (%) 33.2 31.7 29.4 72.6 79.2

Table 3: Classification performance of the appearance based two-stage detector. Us-
ing the appearance based sub-unit classifiers. Kadir et al. (2004) results are
included for comparison purposes.

8. 2D Tracking Results

The data set used for these experiments contains 984 Greek Sign Language (GSL) signs
with 5 examples of each performed by a single signer (for a total of 4920 samples). The
handshape classifiers are learnt on data from the first 4 examples of each sign. The sign
level classifiers are trained on the same 4 examples, the remaining sign of each type is
reserved for testing.

Table 4 shows sign level classification results. It is apparent from these results,
that out of the independent vectors, the location information is the strongest. This is
due to the strong combination of a detailed location feature vector and the temporal
information encoded by the Markov chain.

Shown also is the improvement afforded by using the handshape classifiers with
a threshold vs a WTA implementation. By allowing the classifiers to return multiple
possibilities more of the data about the handshape is captured. Conversely, when none
of the classifiers is confident, a ‘null’ response is permitted which reduces the amount
of noise. Using the non-mutually exclusive version of the handshapes in combination
with the motion and location, the percentage of signs correctly returned is 68.4%. By
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Figure 13: Repetition of the appearance based sub-unit classifier vector. The band
down the right hand side of the frame shows the sub-unit level classifier
firing patterns for the last 288 frames, the vector for the most recent frame
is at the bottom. The previous video during the 288 frames shows four
repetitions of the sign ‘Box’.

Motion 25.1%
Location 60.5%
HandShape 3.4%
All: WTA 52.7%
All: Thresh 68.4%
All + Skips (P(Ft |Ft�2)) 71.4%

Table 4: Sign level classification results using 2D tracked features and the Markov
Models. The first three rows show the results when using the features in-
dependently with the Markov chain (The handshapes used are non-mutually
exclusive). The next three rows give the results of using all the different fea-
ture vectors. Including the improvement gained by allowing the handshapes to
be non-mutually exclusive (thresh) versus the WTA option. The final method
is the combination of the superior handshapes with the location, motion and
the second order skips.

including the 2nd order transitions whilst building the Markov chain there is a 3 pp
boost to 71.4%.

This work was developed for use as a sign dictionary, within this context, when
queried by a video search, the classification would not return a single response. Instead,
like a search engine, it should return a ranked list of possible signs. Ideally the target
sign would be close to the top of this list. To this end we show results for 2 possibilities;
The percentage of signs which are correctly ranked as the first possible sign (Top 1) and
the percentage which are ranked in the top 4 possible signs.
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Markov Chains SPs
Top 1 Top 4 Top 1 Top 4

recall 71.4% 82.3% 74.1% 89.2%

Table 5: Comparison of recall results on the 2D tracking data using both Markov chains
and SPs

This approach is applied to the best sub-unit features above combined with either
the Markov Chains or the SP trees. The results of these tests are shown in Table 5.
When using the the same combination of sub-unit features as found to be optimal with
the Markov Chains, the SP trees are able to improve on the results by nearly 3 pp,
increasing the recognition rate from 71.4% to 74.1%. A further improvement is also
found when expanding the search results list, within the top 4 signs the recall rate
increases from 82.3% to 89.2%.

9. 3D Tracking Results

While the KinectTMwork is intended for use as a live system, quantitative results can
be obtained by the standard method of splitting pre-recorded data into training and test
sets. The split between test and training data can be done in several ways. This work
uses two versions, the first to show results on signer dependent data, as is often used,
the second shows performance on unseen signers, a signer independent test.

9.1. Data Sets

Two data sets were captured for training; The first is a data set of 20 GSL signs, ran-
domly chosen and containing both similar and dissimilar signs. This data includes six
people performing each sign an average of seven times. The signs were all captured
in the same environment with the KinectTMand the signer in approximately the same
place for each subject. The second data set is larger and more complex. It contains 40
Deutsche Gebärdensprache - German Sign Language (DGS) signs, chosen to provide a
phonetically balanced subset of HamNoSys phonemes. There are 15 participants each
performing all the signs 5 times. The data was captured using a mobile system giving
varying view points.

9.2. GSL Results

Two variations of tests were performed; firstly the signer dependent version, where one
example from each signer was reserved for testing and the remaining examples were
used for training. This variation was cross-validated multiple times by selecting differ-
ent combinations of train and test data. Of more interest for this application however,
is signer independent performance. For this reason the second experiment involves re-
serving data from a subject for testing, then training on the remaining signers. This

51



COOPER ONG PUGEAULT BOWDEN

Test Markov Models SP-Boosting
Top 1 Top 4 Top 1 Top 4

In
de

pe
nd

en
t

1 56% 80% 72% 91%
2 61% 79% 80% 98%
3 30% 45% 67% 89%
4 55% 86% 77% 95%
5 58% 75% 78% 98%
6 63% 83% 80% 98%
Mean 54% 75% 76% 95%
StdDev 12% 15% 5% 4%

Dependent 79% 92% 92% 99.90%Mean

Table 6: Results across the 20 sign GSL data set.

process is repeated across all signers in the data set. The results of both the Markov
models and the Sequential Patten Boosting applied to the basic 3D features are shown
in Table 6.

As is noted in Section 6.2, while the the Markov models perform well when they
have training data which is close to the test data, they are less able to generalise. This is
shown by the dependent results being high, average 92% within the top 4, compared to
the average independent result which is 17 pp lower at 75%. It is even more noticeable
when comparing the highest ranked sign only, which suffers from a drop of 25 pp,
going from 79% to 54%. When looking at the individual results of the independent test
it can be seen that there are obvious outliers in the data, specifically signer 3 (the only
female in the data set), where the recognition rates are markedly lower. This is reflected
in statistical analysis which gives high standard deviation across the signers in both the
top 1 and top 4 rankings when using the Markov Chains.

When the SP-Boosting is used, again the dependant case produces higher results,
gaining nearly 100% when considering the top 4 ranked signs. However, due to the
discriminative feature selection process employed; the user independent case does not
show such marked degradation, dropping just 4.9 pp within the top 4 signs, going from
99.9% to 95%. When considering the top ranked sign the reduction is more significant
at 16 pp, from 92% to 76%, but this is still a significant improvement on the more
traditional Markov model. It can also be seen that the variability in results across signers
is greatly reduced using SP-Boosting, whilst signer 3 is still the signer with the lowest
percentage of signs recognised, the standard deviation across all signs has dropped to
5% for the first ranked signs and is again lower for the top 4 ranked signs.

9.3. DGS Results

The DGS data set offers a more challenging task as there is a wider range of signers
and environments. Experiments were run in the same format using the same features as
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Subject Dependent Subject Independent
Top 1 Top 4 Top 1 Top 4

Min 56.7% 90.5% 39.9% 74.9%

Max 64.5% 94.6% 67.9% 92.4%

StdDev 1.9% 1.0% 8.5% 5.2%

Mean 59.8% 91.9% 49.4% 85.1%

Table 7: Subject Independent (SI) and Subject Dependent (SD) test results across 40
signs in the DGS data set.

for the GSL data set. Table 7 shows the results of both the dependent and independent
tests. As can be seen with the increased number of signs the percentage accuracy for
the first returned result is lower than that of the GSL tests at 59.8% for dependent and
49.4% for independent. However the recall rates within the top 4 ranked signs (now
only 10% of the data set) are still high at 91.9% for the dependent tests and 85.1% for
the independent ones. Again the relatively low standard deviation of 5.2% shows that
the SP-Boosting is picking the discriminative features which are able to generalise well
to unseen signers.

As can be seen in the confusion matrix (see Figure 14), while most signs are well
distinguished, there are some signs which routinely get confused with each other. A
good example of this is the three signs ‘already’, ‘Athens’ and ‘Greece’ which share
very similar hand motion and location but are distinguishable by handshape which is
not currently modelled on this data set.

10. Discussion

Three different approaches to sub-unit feature extraction have been compared in this
paper. The first based on appearance only, the latter two on tracking. The advantage
of the first approach is that it doesn’t depend on high quality tracking for good results.
However, it would be easily confused via cluttered backgrounds or short sleeves (often
a problem with sign language data sets). The other advantage of the appearance based
classification is that it includes information not available by trajectories alone, thus
encoding information about handshape within the moment based classifiers. While
this may aid classification on small data sets it makes it more difficult to de-couple
the handshape from the motion and location sub-units. This affects the generalisation
ability of the classifiers due to the differences between signers.

Where 2D tracking is available, the results are superior in general to the appearance
based results. This is shown in the work by Kadir et al. (2004), who achieve equivalent
results on the same data using tracking trajectories when compared to the appearance
based ones presented here. Unfortunately, it is not always possible to accurately track
video data and this is why it is still valid to examine appearance based approaches. The
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Figure 14: Aggregated confusion matrix of the first returned result for each subject
independent test on the DGS data set.

2D tracking Location sub-features presented here are based around a grid, while this is
effective in localising the motion it is not as desirable as the HamNoSys derived features
used in the improved 3D tracking features. The grid suffers from boundary noise as the
hands move between cells. This noise causes problems when the features are used in
the second stage of classification. With the 3D features this is less obvious due to them
being relative to the signer in 3D and therefore the locations are not arbitrarily used by
the signer in the same way as the grid is. For example if a signer puts their hands to
their shoulders, this will cause multiple cells of the grid to fire and it may not be the
same one each time. When using 3D, if the signer puts their hands to their shoulders
then the shoulder feature fires. This move from an arbitrary grid to consciously decided
body locations reduces boundary effect around significant areas in the signing space.

This in turn leads to the sign level classifiers. The Markov chains are very good at
recognising signer dependent, repetitive motion, in these cases they are almost on a par
with the SPs. However, they are much less capable of managing signer independent
classification as they are unable to distinguish between the signer accents and the signs
themselves and therefore over-fit the data. Instead the SPs look for the discrimina-
tive features between the examples, ignoring any signer specific features which might
confuse the Markov Chains.

11. Conclusions

This work has presented three approaches to sub-unit based sign recognition. Tests
were conducted using boosting to learn three types of sub-units based on appearance
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features, which are then combined with a second stage classifier to learn word level
signs. These appearance based features offer an alternative to costly tracking.

The second approach uses a 2D tracking based set of sub-units combined with some
appearance based handshape classifiers. The results show that a combination of these
robust, generalising features from tracking and learnt handshape classifiers overcomes
the high ambiguity and variability in the data set to achieve excellent recognition per-
formance: achieving a recognition rate of 73% on a large data set of 984 signs.

The third and final approach translates these tracking based sub-units into 3D, this
offers user independent, real-time recognition of isolated signs. Using this data a new
learning method is introduced, combining the sub-units with SP-Boosting as a discrim-
inative approach. Results are shown on two data sets with the recognition rate reaching
99.9% on a 20 sign multi-user data set and 85.1% on a more challenging and realis-
tic subject independent, 40 sign test set. This demonstrates that true signer indepen-
dence is possible when more discriminative learning methods are employed. In order
to strengthen comparisons within the SLR field the data sets created within this work
have been released for use within the community.

12. Future Work

The learnt sub-units show promise and, as shown by the work of Pitsikalis et al. (2011),
there are several avenues which can be explored. However, for all of these directions,
more linguistically annotated data is required across multiple signers to allow the clas-
sifiers to discriminate between the features which are signer specific and those which
are independent. In addition, handshapes are a large part of sign, while the work on the
multi-signer depth data set has given good results, handshapes should be included in
future work using depth cameras. Finally, the recent creation of a larger, multi-signer
data set has set the ground work in place for better quantitative analysis. Using this
data in the same manner as the DGS40 data set should allow bench-marking of Kinect
sign recognition approaches, both for signer dependent and independent recognition.
Appearance only techniques can also be verified using the Kinect data set where ap-
propriate as the RGB images are also available though they are not used in this paper.
Though it should be noted that this is an especially challenging data set for appearance
techniques due to the many varying backgrounds and subjects.
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Abstract
Gestures for interfaces should be short, pleasing, intuitive, and easily recognized by a
computer. However, it is a challenge for interface designers to create gestures easily
distinguishable from users’ normal movements. Our tool MAGIC Summoning ad-
dresses this problem. Given a specific platform and task, we gather a large database
of unlabeled sensor data captured in the environments in which the system will be
used (an “Everyday Gesture Library” or EGL). The EGL is quantized and indexed
via multi-dimensional Symbolic Aggregate approXimation (SAX) to enable quick
searching. MAGIC exploits the SAX representation of the EGL to suggest gestures
with a low likelihood of false triggering. Suggested gestures are ordered according to
brevity and simplicity, freeing the interface designer to focus on the user experience.
Once a gesture is selected, MAGIC can output synthetic examples of the gesture to
train a chosen classifier (for example, with a hidden Markov model). If the interface
designer suggests his own gesture and provides several examples, MAGIC estimates
how accurately that gesture can be recognized and estimates its false positive rate by
comparing it against the natural movements in the EGL. We demonstrate MAGIC’s
effectiveness in gesture selection and helpfulness in creating accurate gesture recog-
nizers.
Keywords: gesture recognition, gesture spotting, false positives, continuous recogni-
tion

1. Introduction

The success of the Nintendo Wii, Microsoft Kinect, and Google’s and Apple’s mobile
devices demonstrates the popularity of gesture-based interfaces. Gestural interfaces can
be expressive, quick to access, and intuitive (Guimbretière and Winograd, 2000; Pirho-
nen et al., 2002; Starner et al., 1998; Witt, 2007). Yet gesture-based interfaces may
trigger functionality incorrectly, confusing normal movement with a command. For ex-
ample, the Apple iPod’s “shake-to-shuffle” gesture, which is intended to signal when
the user wants to skip a song and randomly select another, tends to trigger falsely while
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the user is walking (see Figure 1a). Part of the difficulty is that the recognizer must con-
stantly monitor an accelerometer to determine if the gesture is being performed. Some
accelerometer or gyro-based interfaces constrain the problem by requiring the user to
segment the gesture by pressing a button. For example, in Nintendo’s Wii Bowling the
player presses the “B” trigger when beginning to swing his arm and releases the trig-
ger at the end of the swing to release the virtual bowling ball. Such a push-to-gesture
approach is similar to the push-to-talk method that speech recognition researchers use
to improve performance. Yet such mechanisms can slow interactions, confuse users,
and limit the utility of gesture interaction. For example, the fast, easy-to-access nature
of the shake-to-shuffle gesture would be impeded if the user needed to hold a button
to perform the gesture. Ideally, such free-space “motion gestures” (Ashbrook, 2009)
should be short, pleasing to perform, intuitive, and easily recognized by a computer
against a background of the user’s normal movements.

Touchpad gesture shortcuts, which upon execution can start an affiliated application
on a laptop or mobile phone (Ouyang and Li, 2012), are another example of command
gestures that must be differentiated from everyday motions. Fortunately, these gestures
are naturally isolated in time from each other since most touchpad hardware does not
even provide data to the operating system when no touches are being sensed. However,
an interface designer must still create gesture commands that are not easily confused
with normal click or drag and drop actions (see Figure 1b).

Many “direct manipulation” (Hutchins et al., 1985) gestures such as pointing ges-
tures and pinch-to-zoom gestures are used in modern interfaces. These gestures provide
the user continuous feedback while the gesture is occurring, which allows the user to
adjust to sensing errors or cancel the interaction quickly. However, representational
gestures that are intended to trigger a discrete action are less common. We posit that
their relative scarcity relates to the difficulty of discovering appropriate gestures for
the task. Our previous studies have shown that designing command gestures that do
not trigger accidentally during normal, everyday use is difficult for both human com-
puter interaction (HCI) and pattern recognition experts (Ashbrook and Starner, 2010).
In addition, the current process to determine the viability of a gesture is challenging
and expensive. Gestures are often found to be inappropriate only after the system has
entered user testing. If a gesture is found to trigger accidentally during testing, the
gesture set has to be changed appropriately, and the testing has to be repeated. Such
an iterative design cycle can waste a month or more with each test. Thus, we posit the
need for a tool to help designers quickly judge the suitability of a gesture from a pattern
recognition perspective while they focus on the user experience aspects of the gestural
interface.

Several gesture design tools have been described in the HCI literature (Dannenberg
and Amon, 1989; Long, 2001; Fails and Olsen, 2003; Maynes-Aminzade et al., 2007;
Dey et al., 2004), yet none address the issue of false positives. Similarly, most gesture
recognition toolkits in the pattern recognition and related literature focus on isolated
gestures (Wobbrock et al., 2007; Lyons et al., 2007) or the recognition of strings of
gestures, such as for sign language (Westeyn et al., 2003). Rarely do such tools focus
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Figure 1: Top: A “shake-to-shuffle” gesture (left) can be confused with normal up-and-
down movement while walking (right). Bottom: A touchpad shortcut gesture
(left) can be confused with normal cursor movement (right).

on gesture spotting (Yang et al., 2009) for which the critical metric is false positives per
hour.

Ashbrook and Starner (2010) introduced the “Multiple Action Gesture Interface
Creation” (MAGIC) Toolkit. A MAGIC user could specify gesture classes by provid-
ing examples of each gesture. MAGIC provided feedback on each example and each
gesture class by visualizing intra- and inter-class distances and estimating the prototype
recognizer’s accuracy by classifying all provided gesture examples in isolation. Unlike
the above tools, MAGIC could predict whether a query gesture would tend to trigger
falsely by comparing the gesture to a database of movements recorded in the everyday
lives of users. Primarily designed as an HCI Tool, the system used a nearest neighbor
method with a dynamic time warping (DTW) distance measure (Fu et al., 2008).

One shortcoming of this work was that the relative false positive rates predicted in
user studies were not compared to the actual false positive rates of a gesture recognizer
running in the field. Another shortcoming was the long time (up to 20 minutes) needed
to search for potential hits in a database of everyday user movements (an “Everyday
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Gesture Library” or EGL) even while using approximations like scaling with matching
(Fu et al., 2008). MAGIC was designed as an interactive tool, yet due to the delay in
feedback, gesture interaction designers waited until all gestures were designed before
testing them against the EGL. Often, when doing an EGL test in batch, the interface
designers discovered that many of their gestures were poor choices. Designers “learned
to fear the EGL.” Faster feedback would allow designers to compare candidate gestures
to the EGL as they perform each example, speeding the process and allowing more
exploration of the space of acceptable gestures. Another result from previous studies
is that users were frustrated by encountering too many false positives in the Everyday
Gesture Library (Ashbrook and Starner, 2010). In other words, many designed gestures
are rejected since the number of predicted false positives is too high.

Here, we focus on the pattern recognition tasks needed to create MAGIC Sum-
moning, a completely new, web-based MAGIC implementation designed to address the
needs discovered from using the original. Section 2 introduces the basic operation of
the tool. Section 3 describes an indexing method for the EGL using a multi-dimensional
implementation of indexable Symbolic Aggregate approXimation (iSAX) that speeds
EGL comparisons by an order of magnitude over the DTW implementation. While not
as accurate as DTW or other methods such as HMMs, our system’s speed allows inter-
face designers to receive feedback after every gesture example input instead of waiting
to test the gesture set in batch. We compare the iSAX approach to linear searches of the
EGL with HMMs and DTW to show that our approach, while returning fewer matches,
does predict the relative suitability of different gestures. Section 4.4 continues this
comparison to show that the predictions made by MAGIC match observations made
when the resulting gesture recognizers are tested in a real continuous gesture recogni-
tion setting. Sections 5 and 6 provide additional details. The first describes a method
of using the EGL to create a null (garbage) class that improves the performance of a
HMM classifier and a DTW classifier when compared to a typical thresholding method.
The second demonstrates the stability of our method by examining its sensitivity to its
parameters and provides a method capable of learning reasonable defaults for those
parameters in an unsupervised manner. These sections expand significantly upon pre-
vious work published in Face and Gesture (Kohlsdorf et al., 2011), while the remaining
sections represent unpublished concepts.

Section 7 may be of the most interest to many readers. This section describes how
MAGIC Summoning suggests novel gestures that are predicted to have a low proba-
bility of false positives. While the capability may be surprising at first, the technique
follows directly from the iSAX indexing scheme. In Section 7.2 we show that the sug-
gested gestures have low false positive rates during a user study in a real life setting. In
our tests, the space of gestures that are not represented in EGLs tends to be large. Thus,
there are many potential gestures from which to choose. Section 7.3 describes our at-
tempts at finding metrics that enable ordering of the suggested gestures with regard to
brevity, simplicity, and “quality.”
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2. MAGIC Summoning Web-based Toolkit

MAGIC Summoning is a web-based toolkit that helps users design motion-based ges-
tural commands (as opposed to static poses) that are expected not to trigger falsely in
everyday usage (Kohlsdorf, 2011; Kohlsdorf et al., 2011). All MAGIC experiments
described in this paper focus on creating user-independent recognizers. This choice
reflects our interest in creating useful gesture interfaces and is also due to practicality;
collecting large data sets for the EGL from a single user is time consuming and oner-
ous. To ground the discussion with a practical problem, we focus on the challenge of
designing gestures performed by moving an Android phone in one’s hand. We assume
a three-axis accelerometer, which is always included in modern Android phones. The
goal is to create gestures (and an appropriate classifier) that, when recognized, trigger
functions like “open mailbox” or “next song.” Without a push-to-gesture trigger, such
gestures are highly susceptible to false positives (Ashbrook, 2009), which emphasizes
the need for the MAGIC tool.

2.1. Creating Gesture Classes And Testing For Confusion Between Classes

MAGIC Summoning has two software components: a gesture recorder running on the
Android device and the MAGIC web application. The first step in gesture creation is
to start a new project in the web service. The interface designer specifies the set of
gestures through collecting training data for each of the gestures using the recorder.
In order to record a training example, the interaction designer opens the recorder on
his smart phone and performs the gesture. The recorder automatically estimates when
the gesture starts and when it ends using the method described by Ashbrook (2009).
Specifically, the recorder tracks the variance of the accelerometer data in a sliding win-
dow. If the variance is above a user-defined threshold, recording starts. If it falls below
the threshold, then recording ends.

After the example is recorded, the designer is asked to associate the example with
an appropriate gesture label, and the recorder uploads the example to the web. The
designer evaluates the gesture in the web application to determine how well it can be
distinguished from other gestures. All gestures and their examples are listed in MAGIC
Summoning’s sidebar (see Figure 2). Examples marked with a red cross are misclassi-
fied given the current model, and instances marked with a green circle indicate correct
classification. By default, MAGIC Summoning uses a one nearest neighbor classifier
with dynamic time warping (NN-DTW) to classify gestures, although other classifiers
such as a hidden Markov model (HMM) could be substituted. By clicking on an in-
stance, the designer can see the raw sensor data plotted for that example as well as
the predicted number of false positives in the EGL (the method used to calculated this
number is explained in Section 3).

Clicking on a gesture in the sidebar opens a view with statistics about it. One
statistic is the goodness of the gesture. The goodness is defined as the harmonic mean
of precision and recall (Ashbrook, 2009):
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Figure 2: Magic Summoning showing the gesture classes, their examples, and the num-
ber of EGL hits (lower numbers are better).

goodness = 2⇤ precision⇤ recall
precision+ recall

.

Similar to the original work by Ashbrook (2009), MAGIC Summoning provides
users with information about the inter-class distance and the intra-class distance of the
gesture. Both are visualized using a mean and standard deviation plot. In an intra-class
distance plot we calculate the means and standard deviations of the distances from all
examples in a class to all other examples in that class and visualize the result as a box
plot (see Figure 3). In an inter-class distance plot we calculate the means and standard
deviations from one class to all the others in the training set. The distance between two
classes is the mean distance of all examples of one class to all examples of another.
These statistics and visualizations help designers find inconsistencies in the examples
of a given gesture class as well as unintentional similarities between classes.

2.2. Android Phone Accelerometer Everyday Gesture Library

We collected a large EGL (> 1.5 million seconds or 19 days total) using six partici-
pants’ Android phones in Bremen, Germany. The age of the participants ranged from
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20 to 30 years. We implemented a background process that wrote the three-axis ac-
celerometer data to the phone’s flash memory. Unfortunately, the sampling frequency
varied as the models of Android phones we used return samples only when the change
in the accelerometer reading exceeds a factory-defined threshold. The phones used are
the Motorola Droid, the Samsung Galaxy, HTC Nexus One, the HTC Legend, and the
HTC Desire. Other EGLs loadable in MAGIC include movements sensed with a Mi-
crosoft Kinect and gestures made on trackpads. We focus mostly on our EGL created
with Android phones, but readers interested in experiments with other sensors can refer
to Kohlsdorf (2011) for more information.

2.3. Testing For False Positives With The EGL

The original Macintosh-based MAGIC tool displayed a timeline that showed which
candidate gesture matched the EGL and at which time. However, gesture designers did
not care when or why a given gesture showed a given false positive in the EGL; they
just wished to know how many “hits” occurred in the EGL so that they could accept
or reject the gesture (Ashbrook, 2009). Thus, we omitted the timeline for simplicity in
the web-based application. In the following section we will describe our accelerated
method for testing a gesture for potential false positives against the EGL. This method
enables rapid iteration on different gesture sets by the interaction designer.

If a user is displeased by the results after testing, he can delete gestures suspected of
high false positive rates or misclassification errors and design new gestures. When the
user is satisfied with the gesture set, MAGIC Summoning can train a classifier based on
hidden Markov models (HMMs) or the default NN-DTW method. The user can then
download the trained recognizer. Note that we do not suggest using the iSAX method
used to search the EGL as a gesture recognizer as we have tuned the method for speed,
not accuracy.

3. False Positive Prediction

When testing a gesture set against the EGL, the original MAGIC calculates the DTW
distance for every example of each candidate gesture, sliding a window through time
across the EGL and allowing the window to grow or shrink to better match the example
when a potential close match is discovered. If the resulting distance is above a certain
user-defined threshold it counts as a false positive “hit.” Ashbrook and Starner (2010)
assert that the sum of the hits predicts how well the gesture will perform in everyday
life (an assertion supported by our experiments described later).

In optimizing the speed of the EGL comparison, Ashbrook (2009) observed that
not all regions of the EGL need checking. Since we are interested in motion-based
gestures instead of static poses, parts of the EGL with low variance in their signal need
not be examined. Thus, we pre-process the EGL to find “interesting” regions where the
average variance over all dimensions in the sensor data in a region defined by a sliding
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Figure 3: Mean and standard deviation of the distance between each example in a class
and of the class as a whole in relation to other classes.

window over 10 samples exceeds a given threshold (see Figure 4).1 Eliminating regions
from the EGL that can not possibly match candidate gestures significantly speeds EGL
search. Note that a similar technique was described earlier to segment gestures when
the interface designer is creating examples of candidate gestures. All experiments in
this paper will use these techniques.

Searching the EGL parallelizes well, as each processor can be devoted to different
regions of the EGL. However, even on a high-end, eight-core Macintosh workstation,
searches were too slow for an interactive system. For a small, five-hour EGL with
three-axis accelerometer data sampled at 40Hz, each example required between 5-25
seconds to check. Thus, one gesture with 10 examples could require minutes to search
in the EGL. This slowness causes interface designers to create gestures in batch and
then check them against the EGL. Testing a set of eight gestures with all their examples
could take up to 20 minutes, leading to a relatively long and frustrating development
cycle for the designer (Ashbrook and Starner, 2010). In the following sections, we

1. Word spotting algorithms in speech recognition perform similar checks, rejecting regions of “silence”
before employing more computationally intensive comparisons.
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var
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Figure 4: When finding start and stop points of a gesture or finding interesting regions
in the EGL, we run a sliding window over the raw recorded time series and
calculate the sample variance in that window when a new sample is inserted.
If the variance is above a certain threshold, the gesture or interesting region
starts. It stops when the variance falls below that threshold.

describe a method to speed the EGL search using iSAX. We start with an overview of
our method and our assumptions. We then provide the specific methods we used to
adapt iSAX to our problem.

3.1. Overview Of EGL Search Method And Assumptions

In MAGIC Summoning, we first segment the EGL into interesting regions as defined
previously. Each region is divided into four even subregions to form a “word” of length
four. The region is then encoded into a string of symbols using the standard SAX
quantization method. The string is entered into an iSAX tree representing the EGL.
The iSAX tree is initialized with cardinality two but quickly grows as many regions
hash to the same leaf on the suffix tree and the leaf needs to be split (Shieh and Keogh,
2008). As each region is encoded into the iSAX tree, its location in the EGL is recorded
in the leaf. Once the EGL is completely encoded into an iSAX tree, we can perform
“approximate search” using a gesture example as a query (Shieh and Keogh, 2008).
The query is split into four regions and SAX-encoded in much the same way as the
interesting regions of the EGL. An approximate search to determine the number of
matches between the query and the EGL becomes a simple matter of matching the
query string to the appropriate branch of the iSAX suffix tree and returning the number
of strings contained in that branch.

One failing of this approach is that the interesting regions may be significantly
larger or smaller than the candidate gestures. Regions significantly smaller than the
command gestures are not of concern as they will never falsely match a command
gesture in practice. We can eliminate such regions out-of-hand from the comparison.
However, regions of movement that might match the query gesture may be hidden
within longer regions in the EGL.

A key insight, which will be used repeatedly, is that we need not recover every
region of the EGL that might cause a false match with the query. We are not intending
iSAX to be used as a gesture recognizer. Instead, our goal is to allow the designer to
compare the suitability of a gesture relative to other candidates quickly. As long as the
movement occurs repeatedly in the EGL at isolated times as well as in longer regions,
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the iSAX method will report a number of “hits,” which will be sufficient to warn the
interaction designer of a problem.

A second insight is that users of gesture interfaces often pause before and after they
perform a command gesture. Gesture recognizers exploit this behavior and use these
pauses to help identify the command gesture. Movements that look like command ges-
tures embedded in long regions of user motion are unlikely to be matched in practice by
these recognizers. However, short everyday user motions that are similar to a command
gesture are a particular worry for false positives. Thus, the iSAX encoding scheme of
the EGL above seems suitable for our needs. However, if the goal of the interaction de-
signer is to create gestures that can be chained together to issue a series of commands
quickly, these longer regions in the EGL will need to be encoded more formally using
constraints on how long a section can be encoded in each symbol. Such constraints
can be derived from the length of expected command gestures (usually between 1-4
seconds in our experience), and the length of SAX word defined by the system.

A final insight is that a more precise comparison against the EGL can be made at the
end of the gesture design process with the gesture recognizer that is output by MAGIC.
During gesture design, all we require of the EGL search method is that it is fast enough
to be interactive and that it provides an early warning when a given gesture may be
susceptible to false triggering. Given the above operational scenario, we tune our iSAX
implementation to provide fast feedback to the user. Details on the implementation
follow below.

3.2. SAX Encoding

SAX quantizes time series in both time and value and encodes them into a string of
symbols (Lin et al., 2007). For example, the time series in Figure 5 is divided into four
equal portions (for a “word” length of four) and converted into a string using a four
symbol vocabulary (a “cardinality” of four).

To be more precise, we first normalize the time series to have a zero mean and
standard deviation of one. Assuming the original time series T = t1, ..., t j, ....tn has
n samples, we want to first quantize the time series into a shorter time series T̄ =

t̄1, ..., t̄i, ...t̄w of word length w. The ith element of T̄ can be calculated by

t̄i =
w
n

n
w i

Â
k=(

n
w (i�1)+1)

tk.

Given the values in the compressed time series, we next convert them into sym-
bols using a small alphabet of size (cardinality) a. Imagine the y-axis divided into an
arbitrary number of regions bounded by a� 1 breakpoints. Each of these regions is
assigned to a symbol from the alphabet. Since we wish each symbol in the vocabulary
to be used approximately the same amount, we place a normal Gaussian curve centered
at 0 on the y-axis and place the breakpoints such that the area under the Gaussian for
each section is equal. By performing the SAX process on the EGL and each gesture
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Figure 5: SAX process used to convert a time series to a string. The raw data is seg-
mented into a user-specified word length, in this case four. Then each seg-
ment is replaced by a symbol associated with that region on the y-axis, based
on the average value. The resulting string is represented by the string of
symbols with superscripts indicating the number of symbols used to quan-
tize each region: b4a4a4a4.

example separately, we are able to compare the changes in the signals through time
without concern regarding their offsets from zero or relative amplitudes.

One convenience of the SAX representation is that there exists a distance calcu-
lation between two strings, defined as MINDIST by Lin et al. (2007), that is a lower
bound on the Euclidean distance between the original two time series. Thus, we can
search the EGL for possible false positives with some measure of confidence.

Another convenience of the representation is that the cardinality of each separate
region can be increased whenever more precision is needed. For example, suppose we
increase the cardinality of the first region in Figure 5 to eight (thus, the vocabulary
would include letters a-h). The string might then be d8a4a4a4, as the region of the y-
axis formerly covered by symbols a and b would now be covered by symbols a, b, c,
and d. We can compare strings with regions of different cardinality by observing that
we know that each time series is normalized before SAX encoding and that the regions
are defined by a normal Gaussian centered at zero with all regions having an equal
area under the Gaussian’s curve. Thus, we still know the minimal distance possible
between each region, and we can still use MINDIST to determine a lower bound on the
Euclidean distance between the original two time series. This capability will be useful
in our upcoming discussion on iSAX and its application to the EGL.
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3.3. Multi-Dimensional iSAX Indexing And EGL Search

iSAX is a tree-based method for time series indexing introduced in Shieh and Keogh
(2008). For encoding the EGL, our goal is create an iSAX tree that can be traversed
quickly when searching for a match to a SAX-encoded example of a gesture. Each leaf
of the tree contains the number of occurrences of that string in the EGL as well as the
position of each occurrence. To begin, assume we are searching an EGL represented
by the simple iSAX tree in Figure 6 with a query represented by a2a2b2b2 (for the sake
of argument, assume we decided to represent the example gesture crudely, with regions
of cardinality two). Immediately, we see that there is no branch of the tree with an a2

in the first position, and we return no matches in the EGL. Now assume that we are
searching the EGL for a query of b2b2b2b2. We find that there is a node of the EGL that
contains that string, and that node has children (that is, the node is an “internal node”).
Looking at the children in that branch, we see that we need to re-code the query gesture
to have cardinality three in the first region. Re-coding reveals that the query gesture is
better represented by the sequence c3b2b2b2, which matches one of the terminal leaves
in the tree. The number of sequences from the EGL stored in that leaf is returned as the
number of “hits” in the EGL.

Figure 6: iSAX tree with three leaves. On the first level all symbols’ cardinalities are
equal. The node b2b2b2b2 is an internal node. For the children under this
node, the cardinality of the first region is increased by one.

Next we describe how to encode a one-dimensional EGL into an iSAX tree. First,
we find all the “interesting” regions in the EGL using the variance method discussed
earlier. We divide the regions evenly into four sections and encode them using SAX
with cardinality two, allowing for sixteen possible strings. Note that each node in an
iSAX tree holds a hash table mapping child nodes to an iSAX word. Thus, when
inserting a region into the iSAX tree, we compare the region’s SAX string to the hash
table in the root node. If there is no match, we create a child node and enter it into the
hash table using its SAX string. If the SAX string is found, we examine the node to
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see if it is a terminal leaf. Each leaf points to a file (called a “bucket”) stored on disk
holding all of the regions that have mapped to it. The leaf also contains the position
of each of the regions in the EGL and a count of the number of regions contained in
the leaf. If the number of regions in the bucket exceeds a user specified size (called the
“bucket size”), it is deleted, and the cardinality of the iSAX word is increased at one
position (picked by round robin). At the deleted node’s position we insert a new internal
node. All the time series of the deleted node are inserted into the new node but with
a higher cardinality. Children of the internal node are created as needed, effectively
splitting the previous leaf into several new leaves. When we encounter a internal node
during the insertion of a region, we search the node’s hash table for children that match
and proceed normally, creating a new leaf node if no matching child exists.

Note that this method of creating the iSAX tree dynamically adjusts the size of the
vocabulary to better distinguish similar regions in the EGL. Given a bigger vocabulary,
the SAX word will fit more exactly to the region. In other words, this method of en-
coding devotes more bits to describing similar movements that are repeated often in
the EGL. Thus, when a query gesture is compared to the EGL iSAX tree, MAGIC will
quickly return with no or few hits (depending on the specified bucket size) if the query
is very distinct from the EGL. If the query is similar to motions in the EGL, the search
process will traverse deeper in the tree, examining finer and finer distinctions between
the query and the regions contained in the EGL.

The above discussion assumed that the data was one-dimensional. For multi-dimensional
data, such as is used in the experiments described below, we create n iSAX trees, one
for each dimension of the recorded data. We index all dimensions separately and join
those n trees under one new root node (see Figure 7).

Figure 7: A multi-dimensional iSAX tree. Under the root node there is a dimension
layer. Each node in this layer is the root node for a one-dimensional iSAX
tree. During search, we search all iSAX trees, one for each dimension.

We query the EGL iSAX tree (constructed from the EGL) in all n dimensions. The
result of that search is n files, one for each dimension. The number of hits can then
be calculated by counting the number of places where each hit from each dimension
overlap for all dimensions. Comparing the timestamps can be costly, so we introduced
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T e s t p r e p a r a t i o n :
0 ) C o l l e c t a l a r g e d a t a base o f u s e r movements i n advance .
1 ) F ind i n t e r e s t i n g r e g i o n s by a p p l y i n g v a r i a n c e t h r e s h o l d i n g .
2 ) B u i l d an n d i m e n s i o n a l iSAX t r e e .

G e s t u r e t e s t i n g :
0 ) F ind s t a r t and end p o i n t o f g e s t u r e .
1 ) S ea r ch t h e iSAX t r e e i n a l l n d i m e n s i o n s .
2 ) R e tu rn t h e number o f t ime s e r i e s i n t h e minimum f i l e .

Table 1: Testing gestures for potential false positives against a database of pre-recorded
device usage.

an approximation based on the observation that there can never be more overlapping
time series than the number in the dimension with the lowest number of matches. For
example, consider the result of a search in three dimensions (x, y, z) where the number
of hits in the EGL are x = 4, y = 20 and z = 6. There can never be more then four hits
total if we require that hits must overlap in all dimensions. The overall EGL testing
method is summarized in Table 1.

Upon reflection, the EGL search procedure described above raises several questions
and possibilities. What are reasonable values for the bucket size, word size, and cardi-
nalities used in encoding the EGL, and how sensitive is MAGIC to these parameters?
This question will be examined in detail in Section 6. A nice side effect of EGL search
is that we can use the matches found to train a class of gestures that a recognizer should
ignore (a “garbage” or NULL class). Section 5 will explore this option. Searching for
which SAX strings are not contained in the EGL tree can suggest which gestures are
not made during everyday movement. In Section 7, we exploit this attribute to recom-
mend gestures to the interaction designer. However, first we will provide evidence that
searching the EGL does indeed predict the number of false positives during the usage
of a gesture interface.

4. Experimental Verification

In the following section we describe two experiments that suggest that an iSAX search
of the EGL is a viable means to predict false positives. Our first goal is to show that
false positive prediction using iSAX is correlated with the previous method of searching
the EGL linearly using dynamic time warping (Ashbrook, 2009). We will also conduct
an experiment in which we will show that the EGL is able to predict the relative number
of false positives when using a gesture interface in everyday life. We describe the data
used for the experiments and our experimental method before presenting our findings.
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4.1. EGLs And Gestures Used In Evaluations

We use three different data sets to serve as EGL databases. The first is our Android
accelerometer data set as described earlier. Before indexing the recorded data, we ex-
tracted the interesting regions, applying a threshold of th = 0.001 (triggering at almost
any movement) and a window size of N = 10 (0.25 sec at 40Hz). The average dura-
tion of the interesting regions is 11,696ms. The second EGL is based on the Alkan
database2 of everyday movements collected with an iPhone (Hattori et al., 2011). The
third data set is another collection of everyday movements collected on Android phones
for a different project at Georgia Tech. These two latter EGLs were processed in the
same manner as the first.

We collected a reference data set of gestures for evaluation purposes. We acted as
interaction designers and designed four gestures by performing them while holding a
smart phone. For each gesture we collected 10 examples, resulting in 40 examples total.
The four gestures are: drawing a circle in the air, touching your shoulder, shaking the
phone up and down, and hacking (a motion similar to swinging an ax). The average
duration of the gestures is between one and two seconds.

4.2. Comparison Conditions: NN-DTW And HMMs

When comparing the dynamic time warping EGL search method to a search in iSAX
index space we will use the following procedure. The DTW method compares each
interesting region from the EGL to each gesture example (Ashbrook, 2009). We calcu-
late the dynamic time warping distance of a new gesture to all examples in the EGL and
apply a threshold chosen empirically. All regions for which the distance is below this
threshold for any example count as a false positive (in keeping with MAGIC’s ability
to output a one nearest neighbor classifier for live gesture recognition).

For yet another comparison, we use hidden Markov models to search the EGL for
false positives. For the experiments in this paper, we use a six-state HMM (ignoring
initial and end states) with one skip transition and one Gaussian output probability per
state per dimension (see Figure 8). We collect all the examples for our gesture set first
and then train a HMM for each of the gestures. We classify each region in the EGL and
apply a threshold based on maximum likelihood to determine if a region in the EGL is
close enough to the gesture to count as a false positive. We chose both the maximum
likelihood threshold as well as the distance threshold so that classifier accuracy stayed
high (93% for NN-DTW and 100% for HMM).

4.3. Comparison Of iSAX To NN-DTW And HMM In Searching EGLs

We wish to compare our iSAX EGL search method to the more conventional NN-
DTW and HMM techniques described above. When selecting between two candidate
gestures, the interaction designer wishes to choose the one with a lower number of pre-
dicted false positives. Thus, if a first gesture has few hits when NN-DTW or HMMs are

2. Alkan web site can be found at: http://alkan.jp/.
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Figure 8: The topology of the left-right, six-state HMM used in our experiments. The
first state is the start state, and the eighth state is the end state. Each internal
state transitions to itself and its successor. We include a skip transition to
help recognize shorter gestures.

used and a second gesture has many hits, that same trend should be shown with iSAX.
The absolute number of EGL hits does not matter, but there should be a strong correla-
tion between the relative number of hits returned by iSAX and the other two techniques
when run on the same set of gestures. We use the Pearson correlation coefficient as a
metric to compare the techniques.

Regardless of the search method used, we store the number of hits in a vector. Each
entry of that vector corresponds to the overall number of false positives for a given
gesture. For iSAX and NN-DTW, the overall number of false positives for a gesture
is calculated by searching the EGL for each example of that gesture and summing
the resulting numbers of hits. For HMM models, thresholding on the log likelihood
probability is used. For our set of four test gestures, testing returns three vectors (one
for each method) of four elements (one for each gesture). We calculate the Pearson
correlation coefficient between the iSAX vector and the NN-DTW vector and between
the iSAX vector and the HMM vector.

To reassure ourselves that this technique produces a meaningful metric, we per-
formed Monte Carlo simulation experiments. Indeed, the correlation of random vectors
with four elements show low r values.

First, we compare the search methods on the EGL from Bremen. We chose the
iSAX parameters empirically:

word length: 4
base cardinality: 2
bucket: 6000.
Figure 9 compares the number of hits per hour returned by each method. The hits

per hour metric reflects the number of matches found in the EGL divided by the original
time required to record the EGL. One can see that our iSAX search approximation
returns many fewer hits than NN-DTW or HMMs. However, the magnitude of the
iSAX values correlate strongly with the NN-DTW (r = 0.96) and HMM (r = 0.97)
results. Thus, a high number of hits returned by iSAX on the EGL (high compared
to other gestures tested with iSAX) is a good indicator for when a gesture should be
discarded. The remaining gestures are suitable candidates for user testing.
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We also measured the time needed to complete the search for each method on a
2.0GHz Intel Core Duo T2500 Macbook with 2GB of RAM. The NN-DTW and HMM
methods require more then 10 minutes to complete the search on all 40 gesture exam-
ples whereas iSAX search required 22 seconds, a 27X increase in speed. With such
speed, each of the gesture examples could have been checked as it was entered by the
interaction designer. In fact, the EGL search would require less than a second for each
gesture example, which is less than the amount of time required to check a new exam-
ple for confusion against all the other gesture examples with NN-DTW when creating
a eight gesture interface (Ashbrook, 2009). Thus, we have obtained our goal of main-
taining interactivity during gesture design.
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Figure 9: Left: The hits per hour in the EGL based on iSAX search. Right: A compar-
ison of the number of hits per hour returned by iSAX, NN-DTW, and HMMs
from the EGL.

We were curious as to how much EGL data is needed to predict poor command
gestures. We generated three random subsets of the EGL by picking 100, 200 and
500 interesting regions at random from the data set and comparing the correlation co-
efficient between iSAX and NN-DTW. The correlation between the results remained
surprisingly high, even with an EGL containing only 100 regions:

• n = 100: r = 0.89

• n = 200: r = 0.93

• n = 500: r = 0.93.
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As later experiments show, more data is better, but even a relatively small EGL can
help the interaction designer avoid choosing troublesome gestures. We also compared
iSAX versus NN-DTW in the Alkan and Georgia Tech EGLs, with similar results to
the original Bremen EGL:

• Alkan: r = 0.94

• Georgia Tech: r = 0.99.

Our results suggest that the results of an iSAX search on the EGL correlate highly
with those of the slower EGL search methods. Even though the absolute number of hits
found by the iSAX method are significantly fewer than the other methods, the relative
number of hits can be used to compare the desirability of one candidate gesture versus
another.

4.4. Comparison Of iSAX Predictions To HMM And NN-DTW Gesture
Recognizer Use In Practice

circle   shake shoulder hack circle   shake shoulder hack
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Figure 10: The EGL hits per hour found during deployment. Left: The EGL hits for
NN-DTW search per gesture. Right: The EGL hits for HMM search per
gesture. The EGL hits for a gesture are the average hits over all four users.
The bars correspond to one standard deviation.

Next, we examine whether our iSAX EGL search method is able to predict false
positives in everyday life. In fact, this experiment is the first to verify that any EGL
search is able to predict false positive rates of a gesture recognizer in practice.

We exported NN-DTW and HMM recognizers from MAGIC Summoning for the
four gestures trained during the process described in the previous experiment. We inte-
grated the HMM classifier into an interactive system. Next, we recruited four Android
phone users who had not contributed to the EGLs nor the training of the gestures.
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In order to understand how difficult it was to perform the gestures correctly, we
asked the users to perform each gesture 10 times without feedback. The HMM classi-
fier performed at 60% accuracy, which is not surprising given the gestures and testing
procedure. Next we allowed the users to train with the HMM recognizer to become
more familiar with how to perform the gestures so that they could be more easily rec-
ognized. This way of learning can be found in commercial systems like the Nintendo
Wii, which uses avatars to help users learn control gestures. Not surprisingly, the four
users’ average accuracy with the HMM recognizer improved to 95% after training.

After the users completed their training, we installed a software application on their
phones that notified the users when to perform one randomly selected gesture, once ev-
ery hour. Otherwise, the users performed their normal activities, and the application
records all the users’ movements. We searched the recorded data for the intended ges-
tures. The HMM classifier found 50%�70% of the intentional gestures whereas NN-
DTW search found all of them. However, the NN-DTW classifier had lower precision
than the HMMs. Given that we specifically allowed gestures that were known to be
poor (from EGL testing) and that the system did not provide feedback to the users, such
poor performance is to be expected (and desired from the point of the experiment).

Figure 10 shows the false positive rates for each gesture and recognizer. We ob-
served a high correlation (r = 0.84) between the relative false positive rates predicted
by the iSAX search on the original EGL and the actual, tested NN-DTW performance
on the users’ data. The correlation was even higher (r = 0.97) for the HMM classifier.
These results support our hypothesis that MAGIC Summoning can be used to predict
gestures at risk of having many false positives when deployed in gesture recognizers in
practice.

5. Improving Recognition Through A NULL Class Created From EGL
Search

In the experiments in the previous section, we needed to specify a threshold to avoid
false positives when distinguishing the four gestures from our four users’ everyday
motions. For NN-DTW, the threshold was a distance, while with HMMs it was a prob-
ability. Setting this threshold requires more pattern recognition experience than an
interaction designer may possess, and often gestures are not separable from everyday
movements with a simple threshold. Another option is to create a NULL (garbage)
class, which attempts to capture all the motion not matching the gestures of interest.
With this technique, the recognizer runs continually but does not return a result when
the sensor data matches the NULL class.

Here, we use EGL data to train a NULL class automatically so that a user-defined
threshold is not needed. Multi-dimensional iSAX search of the EGL returns time series
similar to a query gesture. Thus, it is a simple matter to collect the EGL hits from all
examples of all gestures in the gesture interface to train a NULL gesture (using either
technique).
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The following experiment is based on the data collected while our four users per-
formed the four requested gestures during their daily activities. We adjusted the thresh-
olds upward for the HMM and NN-DTW recognizers to avoid misclassifications in
the EGL while still detecting the gestures from the training set. We also trained NULL
classes for both recognizers. Figure 11 shows the results of all four recognizers running
on the user study data. Using the EGL NULL class method resulted in a statistically sig-
nificant improvement of both the NN-DTW (p<< 0.0001) and HMM (p< 0.05) recog-
nizers. Both avoided more false positives using the NULL class instead of a threshold.
Gesture recognition accuracy and correlation to the iSAX EGL hits remained consistent
with the experiment in the previous section. The results suggest that training a NULL
class based on EGL hits can be a successful way to improve performance and reduce
complexity for the interaction designer. Note that many variations of this technique are
possible and might further improve results. For example, a different NULL class could
be trained for each gesture.
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Figure 11: Left: The false positives per hour avoided using a NULL class for each
gesture based on EGL hits versus the simple threshold. Right: The false
positives per hour avoided for HMMs using the NULL class versus the sim-
ple threshold.

6. iSAX Parameter Sensitivity Experiments

In Section 4.4, iSAX was able to predict the relative performance of a gesture during
continuous recognition. However, the process required setting several parameters: word
length, bucket size, and initial cardinality. In addition, we compared the false positive
predictions to that of the NN-DTW method, which itself required a distance threshold
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(when a NULL class is not used). How sensitive is our method to these parameters?
We use the same four test gestures (circle, shake, shoulder, hack) and EGL as in our
user study to explore this issue.

Observe that the cardinality of the sequences is automatically adjusted during the
creation of the EGL iSAX tree, quickly changing from its initial minimal setting of
two. Effectively, this parameter is not set by the user, and we can remove it from the
following experiments on parameter sensitivity by holding it at a reasonable value. We
choose a base cardinality of four (card = 4), given that this level of complexity was
judged sufficient from observations in the original iSAX experiments (Shieh, 2010;
Shieh and Keogh, 2008) and in our own work (Kohlsdorf et al., 2011).

In the experiments below, we compare the iSAX results, while varying the bucket
size and word length, to the NN-DTW method using the correlation method described
above. We also tried comparing the iSAX method to NN-DTW with different reason-
able distance thresholds (3.3, 5, 10), but we found little change in the results. For
example, the bottom of Figure 12 shows graphs comparing iSAX word length to corre-
lation with NN-DTW at each of the distance thresholds. The graphs are very similar,
indicating that the comparison with NN-DTW is relatively stable with respect to the
distance threshold used. Thus, we turn our attention to word length and bucket size.

In the first part of the experiment we test the correlation of the EGL searches using
NN-DTW and iSAX trees constructed with different iSAX word lengths (4,5,6, ... ,13)
and bucket sizes (1000, 2000, ... , 10000). Figure 12 plots the results. Changes in
bucket size cause minor variations in correlation; however, word length has significant
effects.

Since the performance of our method seems mostly dependent on one parameter,
we propose an automatic parameter tuning method that does not require any data except
a pre-recorded EGL. The central concept is to choose random regions from the EGL
to serve as a gesture training set and to tune the iSAX parameters to that set using hill
climbing.

We require the user to specify the number of gestures in the data set (N), how many
examples we want to collect for each gesture (M), and a threshold on the dynamic
time warping distance over which two time series are distinct. We pick N regions of
motion (“interesting” regions) at random from the EGL to serve as “reference gestures.”
For those N reference gestures we extract M examples from the EGL where the DTW
distance to the reference gesture is smaller than a threshold. Then we compute the
false positives for this gesture set using the NN-DTW method. In order to find the
appropriate word length we use hill climbing in the iSAX parameter space. At each
step, we perform false positive prediction using iSAX and compare the results to the
NN-DTW results using the Pearson correlation coefficient as an objective function.

We ran an experiment to test this hill-climbing technique, allowing the procedure to
set the word length automatically and comparing the results to NN-DTW. We started the
word length at 4 and increased it to 13. If the observed correlation at a given word length
is followed by a smaller one when the next word length is tried, the algorithm stops and
returns the last word length. As one can see in Figure 12, after 3 iterations iSAX finds
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Figure 12: Top: correlation to NN-DTW vs. iSAX word length vs iSAX bucket size.
Bottom: iSAX word length vs. correlation to NN-DTW for distance thresh-
olds of 3.3, 5, and 10, respectively.

a local maximum. However, this sequential method is not optimal. For example, if the
word length which maximizes the correlation is 9 and the local maximum at the word
length 6 is smaller, we would stop too early. However, this problem can be solved by
including simulated annealing or stochastic gradient descent in the future.

In this chapter, we showed that the iSAX EGL search relies on several parameters
but that the parameters can be tuned automatically. Word length seems the primary
parameter that needs to be tuned.
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7. MAGIC Summoning: Suggesting Gestures With Low Probability Of
False Positives During Use

To this point, we have focused on efficient gesture testing. However, when using
MAGIC to design gestures in previous studies, our participants wished to have MAGIC
suggest potential gestures instead of creating their own. Often the gestures designed by
the participants showed high false positive rates when tested against the EGL, leading
to frustration. MAGIC users said they would rather select from a set of gestures that
were “known good” than experiment blindly with constraints they did not understand
(Ashbrook, 2009).

In the next section, we describe a method for suggesting gestures based on a pre-
recorded EGL. We then perform an experiment where we test suggested gestures for
false positives during normal device usage by naive subjects. Finally, we examine dif-
ferent possible metrics to order the suggestions for easier selection by the designer.
While we have mostly used accelerometers in our experiments to date, here we con-
centrate on capacitive trackpads, specifically those used on Apple’s laptops. Data from
inertial sensors are hard to visualize for an interaction designer without a inverse kine-
matic system to map the sensor readings into limb movement. While such systems are
now feasible with adequate accuracy, we wished to avoid the additional complexity for
these first experiments. Trackpads provide two dimensional data that are easy to visu-
alize for an interaction designer, and trackpads are commonly used in everyday office
work. In addition, industry has begun to include more complex command gestures in
their trackpad-based products (Li, 2010).

7.1. Synthesizing And Visualizing Gestures

We introduce a method for proposing gestures that do not collide with every day move-
ments using four steps, briefly outlined here. First, we collect an EGL that is represen-
tative of the usage of the device or sensor. Next, we build an iSAX tree based on the
EGL. We systematically enumerate the possible SAX strings and check for those which
are NOT contained in the tree. Finally, we visualize these gestures and present them
to the interaction designer. Once the designer selects a set of gestures for his interface,
MAGIC Summoning can train a recognizer for the gestures using synthesized data.

7.1.1. COLLECTING AN EGL

Collecting a representative EGL is often time-consuming and is best done by some-
one familiar both with the specific sensor involved and pattern recognition in general.
Fortunately, the process is only necessary once for the device of interest and then can
be used for different interface designers and tasks. Mostly, the EGL will be collected
across multiple people to ensure that the resulting gestures can be user independent.
Ideally, the EGL should be collected across every situation and physical context where
the device might be used (for example, sitting at a desk or driving) to make sure that in-
cidental motions are well represented. If the resulting gesture recognizer is intended to
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work across different devices (for example, across multiple version of Android phones),
the EGL should be collected from a representative sample of those devices.

7.1.2. REPRESENTING THE EGL AND GENERATING GESTURES

Next, we convert the EGL into a simplified iSAX tree structure. Unlike the work above,
here we only care that a given string occurred in the EGL instead of how many times
it occurred. Thus, we can use a simpler indexing method that will allow easier gesture
building later. We convert interesting regions from the EGL to SAX words and build the
set of all strings observed in the EGL. Since the sensor input is multivariate, we build
the SAX word in each dimension and concatenate the words. Thus, for n dimensions
and a word length of w, the indexing key grows to n ⇤w. Given the cardinalities in
the word, discovering gestures that are not represented in the EGL is a simple matter
of combinatorics. We generate all possible gestures and store the gesture as a viable
candidate if it is not contained in the EGL.

7.1.3. VISUALIZING CANDIDATE GESTURES AND TRAINING GESTURE
RECOGNIZERS

In order for the interface designer to select between the different candidate gestures, we
must visualize them. Specifically, we need to convert the candidate gesture from a SAX
string into a real valued time series. For each SAX symbol, we know that valid values
are somewhere between the upper and lower breakpoint of the area assigned to the sym-
bol. We choose a random point between these breakpoints for each symbol. We then
use spline interpolation or re-sampling to fit a curve through the resulting values from
each SAX symbol. We used an exponential moving average to smooth the resulting
curve. The overall process is shown in Figure 13. Note that by repeating this process
we can generate a synthetic set of time series that could have generated the SAX word.
This synthetic data is used to visualize acceptable versions of the trackpad gesture to
the interaction designer. We will also use this synthetic data to train a recognizer for
the gesture if it is selected (see below).

Figure 14 shows MAGIC Summoning’s user interface for gesture suggestion. In
the center of the window we display a synthesized gesture. The color of the lines in-
dicates the time course of the gesture as it is performed on the trackpad (from dark to
light). Many synthetic examples of a given SAX word are drawn to give the interaction
designer a sense of the possible shapes of the gesture. New suggestions are displayed
periodically, effectively creating a movie of potential gestures. In our first implemen-
tation, gesture suggestions were selected randomly, keeping a list of previously viewed
gestures so as to avoid repetition. If the interaction designer sees a desirable gesture, he
stops the presentation with a key press.

If other gestures have already been selected by the user, the similarity of the cur-
rently displayed gesture to the already selected gestures is shown in a bar plot in a
window at the bottom left. Based on these similarity scores, the user can retain the
gesture or continue searching other suggestions. In this case, we decided to use the $1

84



MAGIC SUMMONING

1) Compressed Gesture: 2) Randomize Points: 

3) Interpolate: 4) repeat 3) and 2)

Figure 13: Converting a SAX word to example gestures.

Figure 14: The MAGIC Summoning gesture suggestion interface.

Recognizer (Wobbrock et al., 2007) both for generating similarity scores and for ges-
ture recognition. To train the gesture recognizer, we simply used the synthetic examples
generated during the visualization process.

7.1.4. $1 RECOGNIZER

Since the $1 Recognizer is widely used in HCI research (Belatar and Coldefy, 2010;
Dang and André, 2010) but is not necessarily known to machine learning researchers,
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we give a quick overview here. The recognizer is optimized for single stroke gestures
and can be considered instance-based learning. Each instance or template is re-sampled
to be of equal length with all others and then rotated, scaled, and translated to a canoni-
cal form before being used. During recognition the query gesture is compared to all the
stored templates using an angular distance metric. In continuous recognition we can
apply a threshold on that distance, and the rest of the recognition process is similar to
the dynamic time warping approach described earlier. The authors report recognition
accuracies of 99%, which is comparable to DTW implementations on the same data
sets. The method is simple, fast to compute, and understandable by pattern recognition
novices. Thus, the algorithm is well-suited for experimentation by interface designers.
With MAGIC Summoning, interaction designers do not need to collect any training
data for the recognizer. The training data is produced synthetically from the EGL as
described above. Note that we can use the $1 Recognizer as a distance measure for
EGL search (albeit slowly compared to iSAX), which will be useful for comparison
experiments below.

7.2. Testing Suggested Gestures And Recognizers In Practice

We collected an EGL consisting of ten participants using their personal Mac laptops
for one week. Figure 15 visualizes the EGL. While indexing the EGL, we set the SAX
word length to four. For a two dimensional touchpad, the length doubles to eight.
Setting the cardinality to four leads to a total number of 65536 (48) possible strings.

Figure 15: Bottom: The touch pad EGL. Top: An excerpt from the EGL showing five
false positives during testing of a gesture, indicated as colored bubbles.
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We observed 1222 unique strings in the collected EGL. The space is surprisingly
sparse; there are 64314 strings not found in the EGL, suggesting that there are a large
number of gestures that could be made with a low probability of false positives.

We performed an experiment to evaluate if the proposed suggestion and selection
process described in the previous section can produce gestures that show a low false
positive rate in everyday life. In addition, we were concerned as to whether synthetic
data would be sufficient to train a high accuracy recognizer for this domain. We acted
as an interaction designer and selected six gestures using the visualization tool above
(see Figure 16). We preferred gestures that were simple and memorable. Figure 17
demonstrates 70 other gestures suggested by the system that were not used. We trained
a $1 Recognizer for each of the six gestures selected using synthetic data generated by
MAGIC.

Figure 16: The six gestures used in the study. Gestures are drawn from dark to light.

We designed a six user study with users who did not contribute to the EGL. As in
the false positive prediction experiments from the previous section, we asked users to
practice with the recognition system so that they could perform the gestures with con-
fidence. Users were able to improve their performance from ⇡ 46% to ⇡ 90% quickly.
Afterward, the users worked on their computers for four hours while all touchpad move-
ments were recorded. Every 10 minutes we sent a notification to the users asking them
to perform one of the six gestures, resulting in four examples of each gesture for each
participant. Thus, we collected 24 hours of data and 144 gesture examples.

The gesture recognizer was able to recognize 98% of the performed gestures. Even
though synthetic data was use to train the recognizer, these findings are similar to those
of Wobbrock et al. (2007), who reported a 99% accuracy in their experiments. The
false positive rates of the gestures are low except for one gesture (see Figure 18). Thus,
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Figure 17: 70 generated gestures with potential low false positive rates. Gestures or-
dered from left-to-right and from top-to-bottom with increasing entropy.

the experiment supports the hypothesis that MAGIC Summoning can suggest gestures
and aid the interaction designer in creating a gesture system that results in low false
positives. However, several questions remain. Can we order the suggestions so as
to present the “best” gestures first? Also, the experiment as described has no control
condition. What would have been the result if we had tried suggesting random gestures
from the 64,314 available?

7.3. Ordering Gesture Suggestions

In this section we will explore possible ways of ordering gestures such that users can
quickly find desirable gestures from the large number of possibilities. Our intuition is
that users prefer simple gestures since they can be accessed quickly and are easy to
memorize.

Our first approach is defining the complexity of a gesture as the entropy of its SAX
word (Mitchell, 1997):

H(word) =�
card

Â
i=0

p(symboli)⇤ log(symboli).

However, if we want to prefer simpler gestures, we should check to determine if
false positive rates in real usage are correlated with simplicity. Otherwise, proposing
simpler gestures first could be counterproductive. Intuitively, one would think that
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Figure 18: Results of the trackpad gesture user study in false positives per hour. All
but one of the gestures suggested by MAGIC Summoning show a low false
positive rate.

simpler gestures would trigger more often in everyday life. To investigate this question
we trained the $1 Recognizer with 100 randomly chosen gestures and searched the EGL
with it. For each gesture we calculated the entropy and compared the false positive rate
to the entropy and found no correlation (r2 ⇡ 0.04). Thus, there seems to be little
additional risk to suggesting lower entropy gestures first.

The above heuristic seems logical for ordering suggestions. Low entropy gestures
would seem to be simpler and easier to perform. To confirm this intuition we ran a
small user study. We generated 100 gestures and sorted them using the above score.
We examined the 20 best-ranked gestures and rejected ones that required significant
overlap of the strokes (see Figure 19) as the static visualization of the strokes could
confuse subjects. For each of the 10 remaining gestures we asked six users to perform
the gesture in the air, on the table or on their touchpad and asked them to assign a
score of performability between 1 and 10. All participants received the same gestures.
Interestingly, we were not able to find a correlation between the entropy of a gesture’s
SAX word and the users’ ratings (r2

= 0.09).
Given the above result, we desire gestures not in the EGL but that are known to be

performable. With a trackpad, all suggested gestures should be physically possible, but
in future work with inertial sensors the suggestions could become impossible without
constraining the system in some manner.

We decided to prefer gesture suggestions where the substrings of the SAX word
representing the candidate gesture are represented in the EGL, but the gesture string
itself was not present. We will assume one dimension for ease of illustration. If a
gesture ACBD is not in the EGL, but the subcomponents AC, CB, and BD or ACB
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Figure 19: MAGIC Summoning gestures with significant overlap of the strokes were
rejected to avoid user confusion.

and CBD were well represented in the EGL, we might conclude that ACBD is possible
for the user to perform. In other words, we will prefer gestures where the most n-
grams from the EGL are included in the suggested gesture’s string. Intuitively, though,
such a heuristic causes concern that such gestures might have a higher chance of false
triggering.

To investigate this possibility, we extracted bi-grams and tri-grams from the EGL,
created candidate gestures from them, and tried to find a correlation between the false
positives in the EGL and the number of n-grams in the gesture’s string. Note that this
method of composition creates gestures with a variety of properties: ones common in
the EGL, rare in the EGL, and not present in the EGL. A correlation would indicate an
increased risk with this method of ordering the suggestions, but we did not find one,
giving a modicum of assurance in the method:

Bi-grams r2
= 0.000676

Tri-grams r2
= 0.000256.

Beside low false positives, another criteria for a good gesture system is that there
should be a low chance of confusion between gestures. If the user is creating a con-
trol system with six gestures and has already selected five of them, we should prefer
suggestions that are distinct from the five gestures already chosen. We measure the dis-
tinguishably of a gesture using the Hamming distance (Hamming, 1950) of the gesture’s
SAX word. Thus, when ordering gestures, we sort using a score defined as

score(word) =
dist(word)

(1+ entropy(word))

where the distance of the word is the average Hamming distance to all other gestures
in the gesture set. This metric provides a high distance to the other gestures and a low
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entropy. Note that we use (1+ entropy(word)) to avoid unreasonably high or infinite
scores when the entropy value is near 0.

Given the results of the above experiments, we are now tuning MAGIC Summoning
to generate gestures composed from parts of the EGL and to suggest gestures that are
most dissimilar to each other. We intend to test this ordering system in our future work
with suggesting gestures for use with inertial sensors.

7.4. How Selective Are MAGIC Summoning’s Suggestions?

In the above user study, we selected six gestures by hand from MAGIC Summoning’s
suggestions and tested the $1 Recognizer that MAGIC output for both accuracy and
false triggering. However, there were many possible gestures that the system could
have output instead. In this last section we will investigate if suggesting gestures based
on our method is better generated ones by chance.

As we have seen previously, using iSAX results in fewer hits being identified in
an EGL than those found by typical gesture recognizers (HMM, NN-DTW, $1 Rec-
ognizer, etc.). The sole reason to use iSAX is that it quickly returns whether or not
a candidate gesture is worthwhile to investigate further. However, we do not need to
generate gesture suggestions in real time. In fact, as soon as an EGL is collected, the
same “overnight” process that generates the EGL’s iSAX tree representation for pre-
diction could track the gestures not represented in the EGL. Once these gestures are
known, the recognizer of choice could be trained with synthetic data of the gesture,
and the recognizer could be run on the EGL for a more precise estimate of the expected
hits. The number of false positives returned should allow a finer discrimination between
candidate gestures. In the following experiment, we use this new procedure to generate
suggested gestures and test ones with the lowest number of false positives on the test
data collected from subjects not represented in the EGL.

In this experiment, we generated 2000 random gestures from SAX strings not in the
EGL. For each of the gestures we synthesized 40 examples and trained a $1 recognizer
with them. We used this recognizer to test search the EGL in the classic way, that is
testing each interesting region using the trained recognizer. We used a typical threshold
(th = .85) for the $1 score. All results above that threshold count as a hit with the
EGL. Figure 20 orders the gestures by least to most number of hits per hour in the
EGL. Clearly the $1 Recognizer identifies many potential false positives, yet most of
the gestures still have low rates.

Figure 21, top, shows another view of this data. Note that over 35% of the 2000
gestures have 0 - 0.0001 false positives/hour. Compare this rate to that of Figure 21,
bottom. This graph was generated using all the SAX strings represented in the EGL.
Less than 12% of these gestures have such low false positive rates. Clearly, the SAX
representation does have considerable predictive power on which suggested gestures
are least likely to trigger falsely using the $1 Recognizer in the EGL. In fact, better
than one in three of the gestures suggested by choosing SAX strings not in the EGL
will be candidates for very low false positive rates with the synthetically trained $1
Recognizer.
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Figure 20: Number of false positives identified in the EGL using the $1 Recognizer for
each of 2000 gestures synthesized from SAX strings not represented in the
EGL. Gestures with more than 2 hits per hour are not graphed to preserve
scale.

The above observation suggests a relatively efficient method for creating gesture
candidates for the interaction designer. First, randomly choose a unrepresented SAX
string in the EGL. Train the desired recognizer using synthetic data. Run the recognizer
on the EGL. If the rate of false positives per hour is less than 0.0001, keep the gesture.
Otherwise, discard it. Generate as many gesture suggestions as is possible given time
constraints. (Approximately 25 minutes is required to generate 100 gesture suggestions
using a modern laptop, but such a process is highly parallelizable and can be run in
batch before the interaction designer approaches the system.) Order the suggestions as
described above and present them to the interaction designer for selection.

We conducted an experiment evaluating this algorithm. We split the collected EGL
for touchpad gestures into two subsets. Each subset contains randomly chosen, distinct
time series from the original EGL. The intersection between the subsets is empty. We
used the first subset to generate 100 randomly chosen, distinct gestures candidates that
show less then 0.0001 false positives per hour using the $1 Recognizer. We used these
recognizers to then search the data in the second subset. On average we found the ges-
tures to trigger 0.0022 times per hour, with a standard deviation of 0.003. These rates
correspond to an average time between false triggerings of 455 hours, or approximately
one month assuming usage 16 hours/day. Thus, this method of choosing gestures to
suggest to an interaction designer seems desirable as well as practical.

8. Future Work

To date, the task for most gesture recognition systems has been to optimize accuracy
given a set of gestures to be recognized. In this paper, we have reversed the problem,
seeking to discover which gestures might be most suitable for recognition.

However, improved suggestion ordering is an area for improvement. Performability
might be improved by modeling how gestures are produced (Cao and Zhai, 2007) and
prioritizing those gestures with least perceived effort. For domains where the coupling
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Figure 21: Histogram demonstrating the percentages of the number of false positives
per hour for gestures with SAX representations not in the EGL (top) and all
gestures with SAX representations in the EGL (bottom).

between sensor data and limb movement are not as apparent, such as accelerometer-
based motion gestures, inverse kinematic models and 3D avatars seem appropriate both
for prioritizing suggestions and for visualizing the gesture for the interaction designer.
For situations with many degrees of freedom, such as whole body movement as tracked
by the Microsoft Kinect c�, the space of potential gestures may be extremely large. Phys-
ical and behavioral constraints might be applied to reduce the search space for the inter-
action designer. While MAGIC and MAGIC Summoning have been applied to multiple
domains, we have only applied the gesture suggestion functions to trackpads. We are
eager to investigate MAGIC Summoning’s usefulness and usability in other domains.
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9. Conclusion

We have described two pattern recognition tasks that can be used to help interaction
designers create gesture interfaces: testing a user-defined gesture (and its classifier)
against a previously captured database of typical usage sensor data to determine its
tendency to trigger falsely and suggesting gestures automatically to the designer. We
have shown that iSAX can be used to provide near immediate feedback to the user as
to whether a gesture is inappropriate. While this method is approximate and recovers
only a fraction of the total false positives in the EGL, MAGIC Summoning’s results
correlate strongly with those of HMMs, DTW, and the $1 Recognizer and can thus be
used to provide guidance during training. We showed that MAGIC Summoning and
the EGL could be used to create a null class of close false matches that increase the
performance of the chosen classifier.

To suggest gestures to the interaction designer that may have low chance of trig-
gering falsely, we exploited the SAX representation used to index the EGL. MAGIC
Summoning generates all the strings not in the EGL, converts the SAX strings back
into a gesture visualization, and suggests appropriate gestures to the designer. MAGIC
Summoning also outputs classifiers for the gesture, trained on synthetic data generated
from the SAX string. Using the task of finding command gestures for Mac trackpads,
we showed that the gestures generated by MAGIC Summoning have generally low false
positive rates when deployed and that the classifiers output by the system were adequate
to the task of spotting the gesture.

Even if iSAX search of an EGL is not a perfect predictor for the false positives of
a gesture in every day usage, we find that the approximations are sufficient to speed in-
terface design significantly. MAGIC’s methods are not intended to replace user testing
with the final device. However, we believe that the tool will decrease the number of
iterations needed to build a fast and stable gesture recognition interface.
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Abstract
We present language-motivated approaches to detecting, localizing and classifying
activities and gestures in videos. In order to obtain statistical insight into the under-
lying patterns of motions in activities, we develop a dynamic, hierarchical Bayesian
model which connects low-level visual features in videos with poses, motion pat-
terns and classes of activities. This process is somewhat analogous to the method
of detecting topics or categories from documents based on the word content of the
documents, except that our documents are dynamic. The proposed generative model
harnesses both the temporal ordering power of dynamic Bayesian networks such as
hidden Markov models (HMMs) and the automatic clustering power of hierarchical
Bayesian models such as the latent Dirichlet allocation (LDA) model. We also in-
troduce a probabilistic framework for detecting and localizing pre-specified activities
(or gestures) in a video sequence, analogous to the use of filler models for keyword
detection in speech processing. We demonstrate the robustness of our classification
model and our spotting framework by recognizing activities in unconstrained real-life
video sequences and by spotting gestures via a one-shot-learning approach.
Keywords: dynamic hierarchical Bayesian networks, topic models, activity recogni-
tion, gesture spotting, generative models

1. Introduction

Vision-based activity recognition is currently a very active area of computer vision
research, where the goal is to automatically recognize different activities from a video.
In a simple case where a video contains only one activity, the goal is to classify that
activity, whereas, in a more general case, the objective is to detect the start and end
locations of different specific activities occurring in a video. The former, simpler case
is known as activity classification and latter as activity spotting. The ability to recognize
activities in videos, can be helpful in several applications, such as monitoring elderly
persons; surveillance systems in airports and other important public areas to detect
abnormal and suspicious activities; and content based video retrieval, amongst other
uses.

c� 2013 M.R. Malgireddy, I. Nwogu & V. Govindaraju.
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There are several challenges in recognizing human activities from videos and these
include videos taken with moving background such as trees and other objects; differ-
ent lighting conditions (day time, indoor, outdoor, night time); different view points;
occlusions; variations within each activity (different persons will have their own style
of performing an activity); large number of activities; and limited quantities of labeled
data amongst others.

Recent advances in applied machine learning, especially in natural language and
text processing, have led to a new modeling paradigm where high-level problems can be
modeled using combinations of lower-level segmental units. Such units can be learned
from large data sets and represent the universal set of alphabets to fully describe a vo-
cabulary. For example, in a high-level problem such as speech recognition, a phoneme
is defined as the smallest segmental unit employed to form an utterance (speech vec-
tor). Similarly, in language based documents processing, words in the document often
represent the smallest segmental unit while in image-based object identification, the
bag-of-words (or bag-of-features) technique learns the set of small units required to
segment and label the object parts in the image. These features can then be input to
generative models based on hierarchical clustering paradigms, such as topic modeling
methods, to represent different levels of abstractions.

Motivated by the successes of this modeling technique in solving general high-
level problems, we define an activity as a sequence of contiguous sub-actions, where
the sub-action is a discrete unit that can be identified in a action stream. For example, in
a natural setting, when a person waves goodbye, the sub-actions involved could be (i)
raising a hand from rest position to a vertical upright position; (ii) moving the arm from
right to left; and (iii) moving the arm from left to right. The entire activity or gesture1

therefore consists of the first sub-action occurring once and the second and third sub-
actions occurring multiple times. Extracting the complete vocabulary of sub-actions
in activities is a challenging problem since the exhaustive list of sub-actions involved
in a set of given activities is not necessarily known beforehand. We therefore propose
machine learning models and algorithms to (i) compose a compact, near-complete vo-
cabulary of sub-actions in a given set of activities; (ii) recognize the specific actions
given a set of known activities; and (iii) efficiently learn a generative model to be used
in recognizing or spotting a pre-specified action, given a set of activities.

We therefore hypothesize that the use of sub-actions in combination with the use
of a generative model for representing activities will improve recognition accuracy and
can also aid in activity spotting. We will perform experiments using various available
publicly available benchmark data sets to evaluate our hypothesis.

2. Background and Related Work

Although extensive research has gone into the study of the classification of human
activities in video, fewer attempts have been made to spot actions from an activity

1. When referring to activity spotting purposes, we use the term gestures instead of activities, only to be
consistent with the terminology of the ChaLearn Gesture Challenge.
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stream. A recent, more complete survey on activity recognition research is presented
by Aggarwal and Ryoo (2011). We divide the related work in activity recognition into
two main categories: activity classification and activity spotting.

2.1. Activity Classification

Approaches for activity classification can be grouped into three categories: (i) space-
time approaches: a video is represented as a collection of space-time feature points
and algorithms are designed to learn a model for each activity using these features;
(ii) sequential approaches: features are extracted from video frames sequentially and a
state-space model such as a hidden Markov model (HMM) is learned over the features;
(iii) hierarchical approaches: an activity is modeled hierarchically, as combination of
simpler low level activities. We will briefly describe each of these approaches along
with the relevant literature, in sections below.

2.1.1. SPACE-TIME APPROACHES

Space-time approaches represent a video as a collection of feature points and use these
points for classification. A typical space-time approach for activity recognition in-
volves the detection of interest points and the computation of various descriptors for
each interest point. The collection of these descriptors (bag-of-words) is therefore the
representation of a video. The descriptors of labeled training data are presented to a
classifier during training. Hence, when an unlabeled, unseen video is presented, similar
descriptors are extracted as mentioned above and presented to a classifier for labeling.
Commonly used classifiers in the space-time approach to activity classification include
support vector machines (SVM), K-nearest neighbor (KNN), etc.

Spatio-temporal interest points were initially introduced by Laptev and Lindeberg
(2003) and since then, other interest-point-based detectors such as those based on
spatio-temporal Hessian matrix (Willems et al., 2008) and Gabor filters (Bregonzio
et al., 2009; Dollár et al., 2005) have been proposed. Various other descriptors such as
those based on histogram-of-gradients (HoG) (Dalal and Triggs, 2005) or histogram-of-
flow (HoF) (Laptev et al., 2008), three-dimensional histogram-of-gradients (HoG3D)
(Kläser et al., 2008), three-dimensional scale-invariant feature transform (3D-SIFT)
(Scovanner et al., 2007) and local trinary patterns (Yeffet and Wolf, 2009), have also
been proposed to describe interest points. More recently, descriptors based on tracking
interest points have been explored (Messing et al., 2009; Matikainen et al., 2009). These
use standard Kanade-Lucas-Tomasi (KLT) feature trackers to track interest points over
time.

In a recent paper by Wang et al. (2009), the authors performed an evaluation of
local spatio-temporal features for action recognition and showed that dense sampling
of feature points significantly improved classification results when compared to sparse
interest points. Similar results were also shown for image classification (Nowak et al.,
2006).
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2.1.2. SEQUENTIAL APPROACHES

Sequential approaches represent an activity as an ordered sequence of features, here the
goal is to learn the order of specific activity using state-space models. HMMs and other
dynamic Bayesian networks (DBNs) are popular state-space models used in activity
recognition. If an activity is represented as a set of hidden states, each hidden state can
produce a feature at each time frame, known as the observation. HMMs were first ap-
plied to activity recognition in 1992 by Yamato et al. (1992). They extracted features at
each frame of a video by first binarizing the frame and dividing it into (M⇥N) meshes.
The feature for each mesh was defined as the ratio of black pixels to the total number
of pixels in the mesh and all the mesh features were concatenated to form a feature
vector for the frame. An HMM was then learned for each activity using the standard
Expectation-Maximization (EM) algorithm. The system was able to detect various ten-
nis strokes such as forehand stroke, smash, and serve from one camera viewpoint. The
major drawback of the conventional HMM was its inability to handle activities with
multiple persons. A variant of HMM called coupled HMM (CHMM) was introduced
by Oliver et al. (2000), which overcame this drawback by coupling HMMs, where each
HMM in the CHMM modeled one person’s activity. In their experiments they coupled
two HMMs to model human-human interactions, but again this was somewhat lim-
ited in its applications. An approach to extend both HMM and CHMMs by explicitly
modeling the duration of an activity using states was also proposed by Natarajan and
Nevatia (2007). Each state in a coupled hidden semi-Markov model (CHSMMs) had its
own duration and the sequence of these states defined the activity. Their experiments
showed that CHSMM modeled an activity better than the CHMM.

2.1.3. HIERARCHICAL APPROACHES

The main idea of hierarchical approaches is to perform recognition of higher-level activ-
ities by modeling them as a combination of other simpler activities. The major advan-
tage of these approaches over sequential approaches is their ability to recognize activi-
ties with complex structures. In hierarchical approaches, multiple layers of state-based
models such as HMMs and other DBNs are used to recognize higher level activities.
In most cases, there are usually two layers. The bottom layer takes features as inputs
and learns atomic actions called sub-actions. The results from this layer are fed into
the second layer and used for the actual activity recognition. A layered hidden Markov
model (LHMM) (Oliver et al., 2002) was used in an application for office awareness.
The lower layer HMMs classified the video and audio data with a time granularity of
less than 1 second while the higher layer learned typical office activities such as phone
conversation, face-to-face conversation, presentation, etc. Each layer of the HMM was
designed and trained separately with fully labeled data. Hierarchical HMMs (Nguyen
et al., 2005) were used to recognize human activities such as person having “short-
meal”, “snacks” and “normal meal”. They also used a 2-layer architecture where lower
layer HMM modeled simpler behaviors such as moving from one location in a room to
another and the higher layer HMM used the information from layer one as its features.
The higher layer was then used to recognize activities. A method based on modeling
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temporal relationships among a set of different temporal events (Gong and Xiang, 2003)
was developed and used for a scene-level interpretation to recognize cargo loading and
unloading events.

The main difference between the above mentioned methods and our proposed method,
is that these approaches assume that the higher-level activities and atomic activities
(sub-actions) are known a priori, hence, the parameters of the model can be learned
directly based on this notion. While this approach might be suitable for a small num-
ber of activities, it does not hold true for real-word scenarios where there is often a
large number of sub-actions along with many activities (such as is found in the HMDB
data set which is described in more detail in Section 6.2). For activity classification,
we propose to first compute sub-actions by clustering dynamic features obtained from
videos, and then learn a hierarchical generative model over these features, thus proba-
bilistically learning the relations between sub-actions, that are necessary to recognize
different activities including those in real-world scenarios.

2.2. Activity Spotting

Only a few methods have been proposed for activity spotting. Among them is the
work of Yuan et al. (2009), which represented a video as a 3D volume and activities-
of-interest as sub-volumes. The task of activity spotting was therefore reduced to one
of performing an optimal search for activities in the video. Another work in spotting
by Derpanis et al. (2010) introduced a local descriptor of video dynamics based on
visual spacetime oriented energy measures. Similar to the previous work, their input
was also a video which was searched for a specific action. The limitation of these
techniques is their inability to adapt to changes in view points, scale, appearance etc.
Rather than being defined on the motion patterns involved in an activity, these methods
performed template matching type techniques, which do not readily generalize to new
environments exhibiting a known activity. Both methods reported their results on the
KTH and CMU data sets (described in more detail in Section 6), where the environment
in which the activities were being performed did not readily change.

3. A Language-Motivated Hierarchical Model for Classification

Our proposed language-motivated hierarchical approach aims to perform recognition
of higher-level activities by modeling them as a combination of other simpler activities.
The major advantage of this approach over the typical sequential approaches and other
hierarchical approaches is its ability to recognize activities with complex structures. By
employing a hierarchical approach, multiple layers of state-based dynamic models can
be used to recognize higher level activities. The bottom layers take observed features as
inputs in order to recognize atomic actions (sub-actions). The results from these lower
layers are then fed to the upper layers and used to recognize the modular activity.
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Figure 1: Our general framework abstracts low-level visual features from videos and
connects them to poses, motion patterns and classes of activity. (a) A video
sequence is divided into short segments with a few frames only. In each
segment, the space time interest points are computed. At the interest points,
HoG and HoF are computed, concatenated and quantized to represent our
low-level visual words. We discover and model a distribution over visual
words which we refer to as poses (not shown in image). (b) Atomic motions
are discovered and modeled as distributions over poses. We refer to these
atomic motions as motion patterns or sub-actions. (c) Each video segment
is modeled as a distribution over motion patterns. The time component is in-
corporated by modeling the transitions between the video segments, so that
a complete video is modeled as a dynamic network of motion patterns. The
distributions and transitions of underlying motion patterns in a video deter-
mine the final activity label assigned to that video.

3.1. Hierarchical Activity Modeling using Multi-class Markov Chain Latent
Dirichlet Allocation (MCMCLDA)

We propose a supervised dynamic, hierarchical Bayesian model, the multi-class Markov
chain latent Dirichlet allocation (MCMCLDA), which captures the temporal informa-
tion of an activity by modeling it as sequence of motion patterns, based on the Markov
assumption. We develop this generative learning framework in order to obtain statis-
tical insight into the underlying motions patterns (sub-actions) involved in an activity.
An important aspect of this model is that motion patterns are shared across activities.
So although the model is generative in structure, it can act discriminatively as it specif-
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ically learns which motion patterns are present in each activity. The fact that motion
patterns are shared across activities was validated empirically (Messing et al., 2009)
on the University of Rochester activities data set. Our proposed generative model har-
nesses both the temporal ordering power of DBNs and the automatic clustering power
of hierarchical Bayesian models. The model correlates these motion patterns over time
in order to define the signatures for classes of activities. Figure 1 shows an overview
of the implementation network although we do not display poses, since they have no
direct meaningful physical manifestations.

A given video is broken into motion segments comprising of either a combination
of a fixed number of frames, or at the finest level, a single frame. Each motion segment
can be represented as bag of vectorized descriptors (visual words) so that the input to the
model (at time t) is the bag of visual words for motion segment t. Our model is similar
in sprit to Hospedales et al. (2009), where the authors mine behaviors in video data
from public scenes using an unsupervised framework. A major difference is that our
MCMCLDA is a supervised version of their model in which motion-patterns/behaviors
are shared across different classes, which makes it possible to handle a large number of
different classes. If we assume that there exists only one class, then the motion-patterns
are no longer shared, our model also becomes unsupervised and will thus be reduced to
that of Hospedales et al. (2009).

We view MCMCLDA as a generative process and include a notation section before
delving into the details of the LDA-type model:

m = any single video in the corpus,
zt = motion pattern at time t (a video is assumed to be made up of motion pat-
terns),
yt,i = the hidden variable representing a pose at motion pattern i, in time t (motion
patterns are assumed to be made up of poses),
xt,i = the slices of the input video which we refer to as visual words and are the
only observable variables,
fy = the visual word distribution for pose y,
qz = motion pattern specific pose distribution,
cm is the class label for the video m; (for one-shot learning, one activity is repre-
sented by one video (Nm = 1)),
y j = jth class-specific transition matrix for the transition from one motion pattern
to the next,
gc = the transition matrix distribution for a video,
a ,b = the hyperparameters of the priors.
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(a) (b)

Figure 2: Left: plates diagram for standard LDA; right: plates diagram for a dynamic
model which extends LDA to learning the states from sequence data.

The complete generative model is given by:

y

z
j ⇠ Dir(yz

j |g j),

q z ⇠ Dir(qz|a),

f y ⇠ Dir(fy|b ),
zt ⇠Mult(zt |yzt�1

j ),

yt,i ⇠Mult(yt,i|q zt ),

xt,i ⇠Mult(xt,i|f yt,i
),

where Mult(·) refers to a multinomial distribution.
Now, consider the Bayesian network of MCMCLDA shown in Figure 2. This can

be interpreted as follows: For each video m in the corpus, a motion pattern indicator
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zt is drawn from p(zt |zt�1,ycm
), denoted by Mult(yzt�1

cm ), where cm is the class label
for the video m. Then the corresponding pattern specific pose distribution q zt is used to
draw visual words for that segment. That is, for each visual word, a pose indicator yt,i is
sampled according to pattern specific pose distribution q zt , and then the corresponding
pose-specific word distribution f yt,i

is used to draw a visual word. The poses f y, motion
patterns q z and transition matrices y j are sampled once for the entire corpus.

The joint distribution of all known and hidden variables given the hyperparameters
for a video is:

p({xt ,yt ,zt}T
1 ,f ,y j,q |a,b ,g j) = p(f |b )p(q |a)p(y|g j)’

t
’

i
p(xt,i|yt,i)p(yt,i|zt)p(zt |zt�1).

3.2. Parameter Estimation and Inference of the MCMCLDA Model

As in the case with LDA, exact inference is intractable. We therefore use collapsed
Gibbs sampler for approximate inference and learning. The update equation for pose
from which the Gibbs sampler draws the hidden pose yt,i is obtained by integrating out
the parameters q ,f and noting that xt,i = x and zt = z :

p(yt,i = y|y¬(t,i),z,x) µ n¬(t,i)x,y +b

ÂNx
x=1 n¬(t,i)x,y +Nxb

(n¬(t,i)y,z +a), (1)

where n¬(t,i)x,y denote the number of times that visual word x is observed with pose y
excluding the token at (t, i) and n¬(t,i)y,z refers to the number of times that pose y is
associated with motion pattern z excluding the token at (t, i). Nx is size of codebook
and Ny is the number of poses.

The Gibbs sampler update for motion-pattern at time t is derived by taking into
account that at time t, there can be many different poses associated to a single motion-
pattern zt and also the possible transition from zt�1 to zt+1. The update equation for zt
can be expressed as :

p(zt = z|y,z¬t) µ p(yt |zt = z,z¬t ,y¬t)p(zt = z|zcm
¬t ,cm). (2)

The likelihood term p(yt |zt = z,z¬t ,y¬t) cannot be reduced to the simplified form as in
LDA as the difference between n¬t

y,z and ny,z is not one, since there will be multiple poses
associated to the motion-pattern zt . ny,z denotes the number of times pose y is associated
with motion-pattern z and n¬t

y,z refers to the number of times pose y is observed with
motion-pattern z excluding the poses (multiple) at time t. Taking the above condition
into account, the likelihood term can be obtained as below:

p(yt |zt = z,z¬t ,y¬t) =
’y G(ny,z +a)

’y G(n¬t
y,z +a)

G(Ây n¬t
y,z +Nya)

G(Ây ny,z +Nya)

.
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Prior term p(zt = z|zcm
¬t ,cm) is calculated as below depending on the values of zt�1,zt

and zt+1.

i f zt�1 6= z :

=

n(cm)
zt�1,z,¬t + gcm

Âz n(cm)
zt�1,z,¬t +Nzgcm

n(cm)
z,zt+1,¬t + gcm

Âzt+1 n(cm)
z,zt+1,¬t +Nzgcm

,

i f zt�1 = z = zt+1 :

=

n(cm)
zt�1,z,¬t +1+ gcm

Âz n(cm)
zt�1,z,¬t +1+Nzgcm

n(cm)
z,zt+1,¬t + gcm

Âzt+1 n(cm)
z,zt+1,¬t +Nzgcm

,

i f zt�1 = z 6= zt+1 :

=

n(cm)
zt�1,z,¬t + gcm

Âz n(cm)
zt�1,z,¬t +Nzgcm

n(cm)
z,zt+1,¬t + gcm

Âzt+1 n(cm)
z,zt+1,¬t +1+Nzgcm

.

Here n(cm)
zt�1,z,¬t denotes the count from all the videos with the label cm where motion-

pattern z is followed by motion-pattern zt�1 excluding the token at t. n(cm)
z,zt+1,¬t denotes

the count from all the videos with label cm where motion-pattern zt+1 is followed by
motion-pattern zt excluding the token at t. Nz is the number of motion-patterns. The
Gibbs sampling algorithm iterates between Equations 1 and 2 and finds the approximate
posterior distribution. To obtain the resulting model parameters {f ,q ,f} from the
Gibbs sampler, we use the expectation of their distribution (Heinrich, 2008), and collect
Ns such samples of the model parameters.

For inference, we need to find the best motion-pattern sequence for a new video.
The Gibbs sampler draws Ns samples of parameters during the learning phase. We
assume that these are sufficient statistics for the model and that no further adaptation
of parameters is necessary. We then adopt the Viterbi decoding algorithm to find the
best motion-pattern sequence. We approximate the integral over f ,q ,y using the point
estimates obtained during learning. To formulate the recursive equation for the Viterbi
algorithm, we can define the quantity

dt(i) = max
z1,...,zt�1

Z

f ,q ,ycm

p(z1:(t�1),zt = i,x1:t |f ,q ,ycm),

⇡ max
z1,...,zt�1

✓
1
Ns

Â
s

p(z1:(t�1),zt = i,x1:t |f s,q s,ys
cm
)

◆
,

that is dt(i) is the best score at time t, which accounts for first t motion-segments and
ends in motion-pattern i. By induction we have

dt+1( j)⇡max
i

dt(i)
1
Ns

Â
s

p(zt+1 = j|zt = i,ys
cm
)p(xt+1|zt+1 = j,q s,f s

). (3)

To find the best motion-pattern, we need to keep track of the arguments that maximized
Equation 3. For the classification task we calculate the likelihood p? for each class and
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Figure 3: Digital digits for simulations.

Figure 4: The top row shows seven poses discovered from clustering words. The mid-
dle and bottom rows show the fourteen motion patterns discovered and mod-
eled from the poses. A motion pattern captures one or more strokes in the
order they are written.

assign the label which has maximum value in:

p? = max
1 jNz

dT ( j).

4. Experiments and Results using MCMCLDA

In this section, we present our observations as well as the results of applying our pro-
posed language-motivated hierarchical model to sub-action analysis as well as to activ-
ity classification, using both simulated data as well as a publicly available benchmark
data set.

4.1. Study Performed on Simulated Digit Data

To flesh out the details of our proposed hierarchical classification model, we present a
study performed on simulated data. The ten simulated dynamic activity classes were
the writing of the ten digital digits, 0-9 as shown in Figure 3. The word vocabulary
was made up of all the pixels in a 13⇥ 5 grid and the topics or poses represented the
distribution over the words. An activity class therefore consisted of the steps needed
to simulate the writing of each digit and the purpose of the simulation was to visually
observe the clusters of motion patterns involved in the activities.
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4.1.1. ANALYSIS OF RESULTS

A total of seven clusters were discovered and modeled, as shown in Figure 4. These
represent the simulated strokes (or topics) involved in writing each digit. There were
fourteen motion patterns discovered, as shown in the two bottom rows of Figure 4.
These are the probabilistic clusters of the stroke motions. An activity or digit written
was therefore classified based on the sequences of distributions of these motion patterns
over time.

4.2. Study Performed on the Daily Activities Data Set

The Daily Activities data set contains high resolution (1280⇥ 760 at 30 fps) videos,
with 10 different complex daily life activities such as eating banana, answering phone,
drinking water, etc.. Each activity was performed by five subjects three times, yielding
a total of 150 videos. The duration of each video varied between 10 and 60 seconds.

We generated visual words for the MCMCLDA model in a manner similar to Laptev
(2005), where the Harris3D detector (Laptev and Lindeberg, 2003) was used to extract
space-time interest points at multiple scales. Each interest point was described by the
concatenation of HoF and HoG (Laptev, 2005) descriptors. After the extraction of these
descriptors for all the training videos, we used the k-means clustering algorithm to form
a codebook of descriptors (or visual words (VW)). Furthermore, we vector-quantized
each descriptor by calculating its membership with respect to the codebook. We used
the original implementation available online2 with the standard parameter settings to
extract interest points and descriptors.

Due to the limitations of the distributed implementation of space-time interest points
(Laptev et al., 2008), we reduced the video resolution to 320 x 180. In our experimental
setup, we used 100 videos for training and 50 videos for testing exactly as pre-specified
by the original publishers of this data set (Messing et al., 2009). Both the training and
testing sets had a uniform distribution of samples for each activity. We learned our
MCMCLDA model on the training videos, with a motion segment size of 15 frames.
We ran a Gibbs sampler for a total of 6000 iterations, ignoring the first 5000 sweeps
as burn-in, then took 10 samples at a lag of 100 sweeps. The hyperparameters were
fixed initially with values (a = 5,b = 0.01,g = 1) and after burn-in, these values were
empirically estimated using maximum-likelihood estimation (Heinrich, 2008) as (a =

0.34,b = 0.001 and g = {0.04,0.05,0.16,0.22,0.006,0.04,0.13,0.05,0.14,0.45}). We
set the number of motion-patterns, poses and codebook size experimentally as Nz =

100,Ny = 100 and Nx = 1000.
The confusion matrix computed from this experiment is given in Figure 5 and a

comparison with other activity recognition methods on the Daily Activities data set is
given in Table 1. Because the data set was already pre-divided, the other recognition
methods reported in Table 1 were trained and tested on the same sets of training and
testing videos.

2. Implementation can be found at http://www.irisa.fr/vista/Equipe/People/Laptev/
download.html#stip.
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Figure 5: Confusion matrix for analyzing the University of Rochester daily activities
data set. Overall accuracy is 80.0%. Zeros are omitted for clarity. The labels
and their corresponding meaning are: ap-answer phone; cB-chop banana;
dP-dial phone; dW-drink water; eB-eat banana; eS-eat snack; lP-lookup in
phonebook; pB-peel banana; uS-use silverware; wW-write on whiteboard.

Technique Focus Accuracy
Latent velocity trajectory motion feature enhancement 67%
features (Messing et al., 2009)3

Naive-Bayes pairwise motion feature enhancement 70%
trajectory features (Matikainen et al., 2010)
Salient region tracking motion feature enhancement 74%
features (Bilen et al., 2011)
Video temporal motion feature enhancement 80%
cropping technique
Our supervised dynamic dynamic hierarchical modeling 80%
hierarchical model
Direction of motion motion feature enhancement 81%
features (Benabbas et al., 2010)

Table 1: The accuracy numbers reported in literature from applying different activity
recognition techniques on the daily activities data set.

Qualitatively, Figure 7 pictorially illustrates some examples of different activities
having the same underlying shared motion patterns.

3. The authors also reported velocity trajectory feature augmented with prior spatial layout information,
resulting in an accuracy of 89%.
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Figure 6: Confusion matrix results from Benabbas et al. (2010) on the University of
Rochester daily activities data set.

4.2.1. ANALYSIS OF RESULTS

We present comparative results with other systems in Table 1. The results show that the
approach based on computing a distribution mixture over motion orientations at each
spatial location of the video sequence (Benabbas et al., 2010), slightly outperformed
our hierarchical model. Interestingly, in our test, one activity, the write on whiteboard
(wW) activity is quite confused with use silverware (uS) activity, significantly bringing
down the overall accuracy. The confusion matrix for Benabbas et al. (2010) is presented
in Figure 6 and it shows several of the classes being confused, no perfect recognition
scores and also one of the class recognition rates being below 50%. Being a generative
model, the MCMCLDA model performs comparably to other discriminative models in
a class labeling task.

Figure 7 pictorially illustrates some examples of different activities having the same
underlying shared motion patterns. For example, the activity of answering the phone
shares a common motion pattern (#85) with the activities of dialing the phone and
drinking water. Semantically, we observe that this shared motion is related to the lifting
sub-action.

5. A Language-Motivated Model for Gesture Recognition and Spotting

Few methods have been proposed for gesture spotting and among them include the work
of Yuan et al. (2009), who represented a video as a 3D volume and activities-of-interest
as sub-volumes. The task of gesture spotting was therefore reduced to performing an
optimal search for gestures in the video. Another work in spotting was presented by
Derpanis et al. (2010) who introduced a local descriptor of video dynamics based on
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Figure 7: Different activities showing shared underlying motion patterns. The shared
motion patterns are 85 and 90, amidst other underlying motion patterns
shown.

visual space-time oriented energy measures. Similar to the previous work, their input
was also a video in which a specific action was searched for. The limitation in these
techniques is their inability to adapt to changes in view points, scale, appearance, etc.
Rather than being defined on the motion patterns involved in an activity, these methods
performed a type of 3D template matching on sequential data; such methods do not
readily generalize to new environments exhibiting the known activity. We therefore
propose to develop a probabilistic framework for gesture spotting that can be learned
with very little training data and can readily generalize to different environments.

Justification: Although the proposed framework is a generative probabilistic model,
it performs comparably to the state-of-the-art activity techniques which are typically
discriminative in nature, as demonstrated in Tables 2 and 3. An additional benefit of
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Figure 8: Plates model for mcHMM showing the relationship between activities or ges-
tures, states and the two channels of observed visual words (VW).

the framework is its usefulness for gesture spotting based on learning from only one, or
few training examples.

Background: In speech recognition, unconstrained keyword spotting refers to the
identification of specific words uttered, when those words are not clearly separated
from other words, and no grammar is enforced on the sentence containing them. Our
proposed spotting framework uses the Viterbi decoding algorithm and is motivated by
the keyword-filler HMM for spotting keywords in continuous speech. The current state
of the art keyword filler HMM dates back to the seminal papers of Rohlicek et al. (1989)
as well as Rose and Paul (1990), where the basic idea is to create one HMM of the
keyword and a separate HMM of the filler or non keyword regions. These two models
are then combined to form a composite filler HMM that is used to annotate speech
parts using the Viterbi decoding scheme. Putative decisions arise when the Viterbi path
crosses the keyword portion of the model. The ratio between the likelihood of the
Viterbi path that passes through the keyword model and the likelihood of an alternate
path that passes solely through the filler portion can be used to score the occurrence
of keywords. In a similar manner, we compute the probabilistic signature for a gesture
class, and using the filler model structure, we test for the presence of that gesture within
a given video. For one-shot learning, the parameters of the single training video are
considered to be sufficiently representative of the class.

5.1. Gesture Recognition using a Multichannel Dynamic Bayesian Network

In a general sense, the spotting model can be interpreted as an HMM (whose random
variables involve hidden states and observed input nodes) but unlike the classic HMM,
this model has multiple input channels, where each channel is represented as a distri-
bution over the visual words corresponding to that channel. In contrast to the classic
HMM, our model can have multiple observations per state and channel, and we refer to
this as the multiple channel HMM (mcHMM). Figure 8 shows a graphical representa-
tion of the mcHMM.

114



LANGUAGE-MOTIVATED APPROACHES TO ACTION RECOGNITION

5.2. Parameter Estimation for the Gesture Recognition Model

To determine the probabilistic signature of an activity class, one mcHMM is trained
for each activity. The generative process for mcHMM involves first sampling a state
from an activity, based on the transition matrix for that activity; then a frame-feature
comprising of the distribution of visual words is sampled according to a multinomial
distribution for that state4 and this is repeated for each frame. Similar to a classic HMM,
the parameters for the mcHMM are therefore:

1. Initial state distribution p = {pi},
2. State transition probability distribution A = {ai j},
3. Observation densities for each state and descriptor B = {bd

i }.

The joint probability distribution of observations (O) and hidden state sequence
(Q) given the parameters of the multinomial representing a hidden state (l ) can be
expressed as:

P(O,Q|l ) = pq1bq1(O1)
T

’
t=2

aqt�1qt ·bqt (Ot),

where bqt (Ot) is modeled as follows:

bqt (Ot) = ’D
d=1 bd

q(Od
t ),

= ’D
d=1 Mult(Od

t |bd
q),

and D is the number of descriptors.
EM is implemented to find the maximum likelihood estimates. The update equa-

tions for the model parameters are:
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where R is number of videos and g1(i) is the expected number of times the activity
being modeled started with state i;

h

r
t (i, j) is the expected number of transitions from state i to state j and g

r
t (i) is the

expected number of transitions from state i;
nd,k

t is the number of times that visual word k occurred in descriptor d at time t and
nd,.

t is the total number of visual words that occurred in descriptor d at time t.

4. States are modeled as multinomials since our input observables are discrete values.
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Figure 9: Activity spotting by computing likelihoods via Viterbi decoding. The toy
example shown assumes there are at most two activities in any test video,
where the first activity is from the set of activities that start from s0 and end
at s00, followed by one from the set that start from s00 and end at e0. The image
also shows an example of a putative decision path from e0 to s0, after the
decoding is completed.

5.3. Gesture Spotting via Inference on the Model

The gesture spotting problem is thus reduced to an inference problem where, given a
new not-previously-seen test video, and the model parameters or probabilistic signa-
tures of known activity classes, the goal is to establish which activity class distributions
most likely generated the test video. This type of inference can be achieved using the
Viterbi algorithm.

We constructed our spotting network such that there could be a maximum of five
gestures in a video. This design choice was driven by our participation in the Chalearn
competition where there was a maximum of five gestures in every test video. Each of
these gesture classes was seen during training, hence, there were no random gestures
inserted into the test video. This relaxed our network, compared to the original filler
model in speech analysis, where there can exist classes that have not been previously
seen. Figure 9 shows an example of the stacked mcHMMs involved the gesture spotting
task. This toy example shown in the figure can spot gestures in a test video comprised
of at most two gestures. This network has a non-emitting start state S0. This state does
not have any observation density associated with it. From this state, we can enter any of
K gestures, which is shown by having edges from S0 to K mcHMMs. All the gestures
are then connected to non-emitting state S00 which represents the end of first gesture.
Similarly we can enter the second gesture from S00 and end at e0 or directly go from S00

to e0 which handles the case for a video having only one gesture. This can be easily
extended to the case where there are at most five gestures.
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The Viterbi decoding algorithm was implemented to traverse the stacked network
and putative decisions arose when the Viterbi path crosses the keyword portion of the
model. The ratio between the likelihood of the Viterbi path that passed through the
keyword model and the likelihood of an alternate path that passes through the non-
keyword portion was then used to score the occurrence of a keyword, where a keyword
here referred to a gesture class. An empirically chosen threshold value was thus used
to select the occurrence of a keyword in the video being decoded.

6. Experiments and Results using mcHMM

In this section, we present our approach on generating visual words and our observa-
tions as well as the results of applying proposed mcHMM model to activity classifica-
tion and gesture spotting, using publicly available benchmark data sets.

6.1. Generating Visual Words

An important step in generating visual words is the the need to extract interest points
from frames sampled from the videos at 30 fps. Interest points were obtained from the
KTH and HMDB data set by sampling dense points in every frame in the video and
then tracking these points for the next L frames. These are known as dense trajectories.
For each of these tracks, motion boundary histogram descriptors based on HoG and
HoF descriptors were extracted. These features are similar to the ones used in dense
trajectories (Wang et al., 2011), although rather than sampling interest points at every L
frames or when the current point is lost before being tracked for L frames, we sampled at
every frame. By so doing, we obtained a better representation for each frame, whereas
the original work used the features to represent the whole video and was not frame-
dependent.

Because the HMDB data set is comprised of real-life scenes which contain people
and activities occurring at multiple scales, the frame-size in the video was reduced by
a factor of two repeatedly, and motion boundary descriptors were extracted at multiple
scales. In the Chalearn data set, since the videos were comprised of RGB-depth frames,
we extracted interest points by (i) taking the difference between two consecutive depth
frames and/or (ii) calculating the centroid of the depth foreground in every frame and
computing the extrema points (from that centroid) in the depth foreground. The second
process ensured that extrema points such as the hands, elbows, top-of-the-head, etc.,
were always included in the superset of interest points. The top and bottom image pairs
in Figure 10 show examples of consecutive depth frames from the Chalearn data set,
with the interest points obtained via the two different methods, superimposed. Again,
HoG and HoF descriptors were extracted at each interest point so that similar descrip-
tors could be obtained in all the cases. We used a patch size of 32⇥ 32 and a bin size
of 8 for HoG and 9 for HoF implementation.

The feature descriptors were then clustered to obtain visual words. In general, from
the literature (Wang et al., 2011; Laptev et al., 2008), in order to limit complexity, re-
searchers randomly select a finite number of samples (roughly in the order of 100,000)
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Figure 10: Interest points for 2 consecutive video frames. Top: Depth-subtraction in-
terest points; bottom: extrema interest points (with centroid).

and cluster these to form visual words. This could prove reasonable when the number of
samples is a few orders of magnitude greater than 100,000. But in dealing with densely
sampled interest points at every frame, the amount of descriptors generated especially
at multiple scales become significantly large. We therefore divided the construction
of visual words for HMDB data set into a two step process where visual words were
first constructed for each activity class separately, and then the visual words obtained
for each class were used as the input samples to cluster the final visual words. For the
smaller data sets such as KTH and Chalearn Gesture Data Set, we randomly sampled
100,000 points and clustered them to form the visual words.

6.2. Study Performed on the HMDB and KTH Data Sets

In order to compare our framework to the other current state-of-the-art methods, we
performed activity classification on video sequences created from the KTH database
(Schüldt et al., 2004); KTH is a relatively simplistic data set comprised of 2391 video
clips used to train/test six human actions. Each action is performed several times by
25 subjects in various outdoor and indoor scenarios. We split the data into training set
of 16 subjects and test set of 9 subjects, which is exactly the same setup used by the
authors of the initial paper (Schüldt et al., 2004). Table 2 shows the comparison of
accuracies obtained.

Similarly, we performed activity classification tests on Human Motion Database
(HMDB) (Kuehne et al., 2011). HMDB is currently the most realistic database for
human activity recognition comprising of 6766 video clips and 51 activities extracted
from a wide range of sources like YouTube, Google videos, digitized movies and other
videos available on the Internet. We follow the original experimental setup using three
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Method Accuracy
(Laptev et al., 2008) 91.8%
(Yuan et al., 2009) 93.3%
(Wang et al., 2011) 94.2%

(Gilbert et al., 2011) 94.5%
(Kovashka and Grauman, 2010) 94.53%

proposed mcHMM 94.67

Table 2: Comparison of our proposed model and features for KTH data set.

Method Accuracy
Best results on 51 activities (original)
(Kuehne et al., 2011) 23.18%
Proposed mcHMM on 51 activities (original) 25.64%
Best results on 10 activities (original)
(Kuehne et al., 2011) 54.3%
Proposed mcHMM on 10 activities (original) 57.67%
Proposed mcHMM on 10 activities (stabilized) 66.67%

Table 3: Comparison of our proposed model and features for the HMDB data set.

train-test splits (Kuehne et al., 2011). Each split has 70 video for training and 30 videos
for testing for each class. All the videos in the data set are stabilized to remove the cam-
era motion and the authors of the initial paper (Kuehne et al., 2011) report results on
both original and stabilized videos for 51 activities. The authors also selected 10 com-
mon actions from HMDB data set that were similar to action categories in the UCF50
data set (University of Central Florida) and compared the recognition performance. Ta-
ble 3 summarizes the performance of proposed mcHMM method on 51 activities as
well as 10 activities for both original and stabilized videos.

6.2.1. ANALYSIS OF RESULTS

For both the case of simple actions as found in the KTH data set and the case of sig-
nificantly more complex actions as found in the HMDB data set, the mcHMM model
performs comparably with other methods, outperforming them in the activity recog-
nition task. Our evaluation against state-of-the-art data sets suggest that performance
is not significantly affected over a range of factors such as camera position and mo-
tion as well as occlusions. This suggests that the overall framework (combination of
dense descriptors and a state-based probabilistic model) is fairly robust with respect to
these low-level video degradations. At the time of this submission, although we outper-
formed the only currently reported accuracy results on the HMDB data set, as shown
by the ccuracy scores reported, the framework is still limited in its representative power
to capture the complexity of human actions.
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6.3. Study Performed on the ChaLearn Gesture Data Set

Lastly, we present our results of gesture spotting from the ChaLearn gesture data set
(ChaLearn). The ChaLearn data set consisted of video frames with RGB-Depth infor-
mation. Since the task-at-hand was gesture spotting via one-shot learning, only one
video per class was provided to train an activity (or gesture). The data set was divided
into three parts: development, validation and final. In the first phase of the competi-
tion, participants initially developed their techniques against the development data set.
Ground truth was not provided during the development phase. Once the participants
had a working model, they then ran their techniques against the validation data set and
uploaded their predicted results to the competition website, where they could receive
feedback (scores based on edit distances) on the correctness of the technique. In the last
phase of the competition, the final data set was released so that participants could test
against it and upload their predicted results. Similarly, edit scores were used to measure
the correctness of the results and the final rankings were published on the competition
website.

We reported results using two methods i) mcHMM ii) mcHMM with LDA (Blei
et al., 2003). For mcHMM method, we constructed visual words as described in Sec-
tion 6.1 and represented each frame as two histograms of visual words. This represen-
tation was input to the model to learn parameters of the mcHMM model. In the aug-
mented framework, mcHMM + LDA, the process of applying LDA to the input data
can be viewed as a type of dimensionality reduction step since the number of topics are
usually significantly smaller than the number of unique words. In our work, a frame is
analogous to a document and visual words are analogous to words in a text document.
Hence, in the combined method, we performed the additional step of using LDA to
represent each frame as a histogram of topics. These reduced-dimension features were
input to the mcHMM model. Gesture spotting was then performed by creating a spot-
ting network made up of connected mcHMM models, one for each gesture learned, as
explained in Section 5.3.

For the mcHMM model, we experimentally fixed the number of states to 10. The
number of visual words was computed as the number of classes multiplied by a factor
of 10, for example if the number of classes is 12, then then number of visual words
generated will be 120. The dimensionality of the input features to the mcHMM model
was the number of visual words representing one training sample. For the augmented
model the dimension of the features was reduced by a factor of 1.25, that is in the
previous example, the length of feature vector would be reduced from 120 to 96. All
the above parameters were experientially found using the development set. The same
values were then used for the validation and final sets.

6.3.1. ANALYSIS OF RESULTS

Table 4 shows the results of one-shot-learning on the ChaLearn data at the three dif-
ferent stages of the competition. We present results based on the two variants of
our framework—the mcHMM model framework and the augmented mcHMM + LDA
framework. Our results indicate that the framework augmented with LDA outperforms
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Method Data Set edit distance
proposed mcHMM Development 0.26336

proposed mcHMM + LDA Development 0.2409
baseline Validation 0.59978

proposed mcHMM Validation 0.26036
proposed mcHMM + LDA Validation 0.23328
Top Ranking Participant Validation 0.20287
Top Ranking Participant Final 0.09956

proposed mcHMM + LDA Final 0.18465

Table 4: Results for ChaLearn gesture data set.

the unaugmented one, two out of three times. During implementation, the computa-
tional performance for the augmented framework was also significantly better than the
unaugmented model due the reduced number of features needed for training and for
inference. It is also interesting to observe how the edit distances reduced from the
development phase through the final phase, dropping by up to six percentage points,
due to parameter tuning. We placed fourth place in the final results of round 1 of the
Chalearn 2012 gesture challenge using the augmented method.

7. Conclusion and Future Work

In the course of this paper, we have investigated the use of motion patterns (representing
sub-actions) exhibited during different complex human activities. Using a language-
motivated approach we developed a dynamic Bayesian model which combined the
temporal ordering power of dynamic Bayesian networks with the automatic clustering
power of hierarchical Bayesian models such as the LDA word-topic clustering model.
We also showed how to use the Gibbs samples for rapid Bayesian inference of video
segment clip category. Being a generative model, we can detect abnormal activities
based on low likelihood measures. This framework was validated by its comparable
performance on tests performed on the daily activities data set, a naturalistic data set
involving everyday activities in the home.

We also investigated the use of a multichannel HMM as a generative probabilistic
model for single activities and it performed comparably to the state-of-the-art activity
classification techniques which are typically discriminative in nature, on two extreme
data sets—the simplistic KTH, and the very complex and realistic HMDB data sets.
An additional benefit of this framework was its usefulness for gesture spotting based
on learning from only one, or few training examples. We showed how the use of the
generative dynamic Bayesian model naturally lent itself to the spotting task, during
inference. The efficacy of this model was shown by the results obtained from partici-
pating in ChaLearn Gesture Challenge where an implementation of the model finished
top-5 in the competition.
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In the future, we will consider using the visual words learned from a set of training
videos to automatically segment a test video. The use of auto-detected video segments
could prove useful both in activity classification and gesture spotting. It will also be
interesting to explore the use of different descriptors available in the literature, in order
to find those best-suited for representing naturalistic videos.
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Abstract
In cognitive science and neuroscience, there have been two leading models describ-
ing how humans perceive and classify facial expressions of emotion—the continuous
and the categorical model. The continuous model defines each facial expression of
emotion as a feature vector in a face space. This model explains, for example, how
expressions of emotion can be seen at different intensities. In contrast, the categorical
model consists of C classifiers, each tuned to a specific emotion category. This model
explains, among other findings, why the images in a morphing sequence between a
happy and a surprise face are perceived as either happy or surprise but not something
in between. While the continuous model has a more difficult time justifying this latter
finding, the categorical model is not as good when it comes to explaining how expres-
sions are recognized at different intensities or modes. Most importantly, both models
have problems explaining how one can recognize combinations of emotion categories
such as happily surprised versus angrily surprised versus surprise. To resolve these
issues, in the past several years, we have worked on a revised model that justifies the
results reported in the cognitive science and neuroscience literature. This model con-
sists of C distinct continuous spaces. Multiple (compound) emotion categories can
be recognized by linearly combining these C face spaces. The dimensions of these
spaces are shown to be mostly configural. According to this model, the major task
for the classification of facial expressions of emotion is precise, detailed detection of
facial landmarks rather than recognition. We provide an overview of the literature jus-
tifying the model, show how the resulting model can be employed to build algorithms
for the recognition of facial expression of emotion, and propose research directions in
machine learning and computer vision researchers to keep pushing the state of the art
in these areas. We also discuss how the model can aid in studies of human perception,
social interactions and disorders.
Keywords: vision, face perception, emotions, computational modeling, categorical
perception, face detection
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1. Introduction

The face is an object of major importance in our daily lives. Faces tell us the identity
of the person we are looking at and provide information on gender, attractiveness and
age, among many others. Of primary interest is the production and recognition of
facial expressions of emotion. Emotions play a fundamental role in human cognition
(Damasio, 1995) and are thus essential in studies of cognitive science, neuroscience
and social psychology. Facial expressions of emotion could also play a pivotal role
in human communication (Schmidt and Cohn, 2001). And, sign languages use facial
expressions to encode part of the grammar (Wilbur, 2011). It has also been speculated
that expressions of emotion were relevant in human evolution (Darwin, 1872). Models
of the perception of facial expressions of emotion are thus important for the advance of
many scientific disciplines.

A first reason machine learning and computer vision researchers are interested in
creating computational models of the perception of facial expressions of emotion is to
aid studies in the above sciences (Martinez, 2003). Furthermore, computational models
of facial expressions of emotion are important for the development of artificial intelli-
gence (Minsky, 1988) and are essential in human-computer interaction (HCI) systems
(Pentland, 2000).

Yet, as much as we understand how facial expressions of emotion are produced,
very little is known on how they are interpreted by the human visual system. Without
proper models, the scientific studies summarized above as well as the design of intelli-
gent agents and efficient HCI platforms will continue to elude us. A HCI system that
can easily recognize expressions of no interest to the human user is of limited interest.
A system that fails to recognize emotions readily identified by us is worse.

In the last several years, we have defined a computational model consistent with the
cognitive science and neuroscience literature. The present paper presents an overview
of this research and a perspective of future areas of interest. We also discuss how
machine learning and computer vision should proceed to successfully emulate this ca-
pacity in computers and how these models can aid in studies of visual perception, social
interactions and disorders such as schizophrenia and autism. In particular, we provide
the following discussion.

• A model of human perception of facial expressions of emotion: We provide an
overview of the cognitive science literature and define a computational model
consistent with it.

• Dimensions of the computational space: Recent research has shown that human
used mostly shape for the perception and recognition of facial expressions of
emotion. In particular, we show that configural features are of much use in this
process. A configural feature is defined as a non-rotation invariant modeling
of the distance between facial components; for example, the vertical distance
between eyebrows and mouth.
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• We argue that to overcome the current problems of face recognition algorithms
(including identity and expressions), the area should make a shift toward a more
shape-based modeling. Under this model, the major difficulty for the design of
computer vision and machine learning systems is that of precise detection of the
features, rather than classification. We provide a perspective on how to address
these problems.

The rest of the paper is organized as follows. Section 2 reviews relevant research
on the perception of facial expressions of emotion by humans. Section 3 defines a com-
putational model consistent with the results reported in the previous section. Section 4
illustrates the importance of configural and shape features for the recognition of emo-
tions in face images. Section 5 argues that the real problem in machine learning and
computer vision is a detection one and emphasizes the importance of research in this
domain before we can move forward with improved algorithms of face recognition. In
Section 6, we summarize some of the implications of the proposed model. We conclude
in Section 7.

2. Facial Expressions: From Production to Perception

The human face is an engineering marvel. Underneath our skin, a large number of
muscles allow us to produce many configurations. The face muscles can be summarized
as Action Unit (AU) (Ekman and Friesen, 1976) defining positions characteristic of
facial expressions of emotion. These face muscles are connected to the motor neurons
in the cerebral cortex through the corticobulbar track. The top muscles are connected
bilaterally, while the bottom ones are connected unilaterally to the opposite hemisphere.
With proper training, one can learn to move most of the face muscles independently.
Otherwise, facial expressions take on predetermined configurations.

There is debate on whether these predetermined configurations are innate or learned
(nature vs. nurture) and whether the expressions of some emotions is universal (Izard,
2009). By universal, we mean that people from different cultures produce similar mus-
cle movements when expressing some emotions. Facial expressions typically classified
as universal are joy, surprise, anger, sadness, disgust and fear (Darwin, 1872; Ekman
and Friesen, 1976). Universality of emotions is controversial, since it assumes facial
expressions of emotion are innate (rather than culturally bound). It also favors a cat-
egorical perception of facial expressions of emotion. That is, there is a finite set of
predefined classes such as the six listed above. This is known as the categorical model.

In the categorical model, we have a set of C classifiers. Each classifier is specifically
designed to recognize a single emotion label, such as surprise. Several psychophysical
experiments suggest the perception of emotions by humans is categorical (Ekman and
Rosenberg, 2005). Studies in neuroscience further suggest that distinct regions (or
pathways) in the brain are used to recognize different expressions of emotion (Calder
et al., 2001).

An alternative to the categorical model is the continuous model (Russell, 2003;
Rolls, 1990). Here, each emotion is represented as a feature vector in a multidimen-
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sional space given by some characteristics common to all emotions. One such model is
Russell’s 2-dimensional circumplex model (Russell, 1980), where the first basis mea-
sures pleasure-displeasure and the second arousal. This model can justify the percep-
tion of many expressions, whereas the categorical model needs to define a class (i.e.,
classifier) for every possible expression. It also allows for intensity in the perception
of the emotion label. Whereas the categorical model would need to add an additional
computation to achieve this goal (Martinez, 2003), in the continuous model the inten-
sity is intrinsically defined in its representation. Yet, morphs between expressions of
emotions are generally classified to the closest class rather than to an intermediate cat-
egory (Beale and Keil, 1995). Perhaps more interestingly, the continuous model better
explains the caricature effect (Rhodes et al., 1987; Calder et al., 1997), where the shape
features of someone’s face are exaggerated (e..g, making a long nose longer). This is
because the farther the feature vector representing that expression is from the mean (or
center of the face space), the easier it is to recognize it (Valentine, 1991).

In neuroscience, the multidimensional (or continuous) view of emotions was best
exploited under the limbic hypothesis (Calder et al., 2001). Under this model, there
should be a neural mechanism responsible for the recognition of all facial expressions
of emotion, which was assumed to take place in the limbic system. Recent results have
however uncovered dissociated networks for the recognition of most emotions. This is
not necessarily proof of a categorical model, but it strongly suggests that there are at
least distinct groups of emotions, each following distinct interpretations.

Furthermore, humans are only very good at recognizing a number of facial expres-
sions of emotion. The most readily recognized emotions are happiness and surprise.
It has been shown that joy and surprise can be robustly identified extremely accurately
at almost any resolution (Du and Martinez, 2011). Figure 1 shows a happy expression
at four different resolutions. The reader should not have any problem recognizing the
emotion in display even at the lowest of resolutions. However, humans are not as good
at recognizing anger and sadness and are even worse at fear and disgust.

A major question of interest is the following. Why are some facial configura-
tions more easily recognizable than others? One possibility is that expressions such
as joy and surprise involve larger face transformations than the others. This has re-
cently proven not to be the case (Du and Martinez, 2011). While surprise does have the
largest deformation, this is followed by disgust and fear (which are poorly recognized).
Learning why some expressions are so readily classified by our visual system should
facilitate the definition of the form and dimensions of the computational model of facial
expressions of emotion.

The search is on to resolve these two problems. First, we need to determine the form
of the computational space (e.g., a continuous model defined by a multidimensional
space). Second, we ought to define the dimensions of this model (e.g., the dimensions
of this multidimensional face space are given by configural features). In the following
sections we overview the research we have conducted in the last several years leading
to a solution to the above questions. We then discuss on the implications of this model.
In particular, we provide a perspective on how machine learning and computer vision
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Figure 1: Happy faces at four different resolutions. From left o right: 240 by 160, 120
by 80, 60 by 40, and 30 by 20 pixels. All images have been resized to a
common image size for visualization.

researcher should move forward if they are to define models based on the perception of
facial expressions of emotion by humans.

3. A Model of the Perception of Facial Expressions of Emotion

In cognitive science and neuroscience researchers have been mostly concerned with
models of the perception and classification of the six facial expressions of emotion
listed above. Similarly, computer vision and machine learning algorithms generally
employ a face space to represent these six emotions. Sample feature vectors or regions
of this feature space are used to represent each of these six emotion labels. This ap-
proach has a major drawback—it can only detect one emotion from a single image.
In machine learning, this is generally done by a winner-takes-all approach (Torre and
Cohn, 2011). This means that when a new category wants to be included, one generally
needs to provide labeled samples of it to the learning algorithm.

Yet, everyday experience demonstrates that we can perceive more than one emo-
tional category in a single image (Martinez, 2011), even if we have no prior experience
with it. For example, Figure 2 shows images of faces expressing different surprises—
happily surprised, angrily surprised, fearfully surprised, disgustedly surprised and the
typically studied surprise.

If we were to use a continuous model, we would need to have a very large number
of labels represented all over the space; including all possible types of surprises. This
would require a very large training set, since each possible combination of labels would
have to be learned. But this is the same problem a categorical model would face. In
such a case, dozens if not hundreds of sample images for each possible category would
be needed. Alternatively, Susskind et al. (2007) have shown that the appearance of a
continuous model may be obtained from a set of classifiers defining a small number of
categories.
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Figure 2: Faces expressing different surprise. From left to right: happily surprised,
sadly surprised, angrily surprised, fearfully surprised, disgustedly surprised,
and surprise.

If we define an independent computational (face) space for a small number of emo-
tion labels, we will only need sample faces of those few facial expressions of emotion.
This is indeed the approach we have taken. Details of this model are given next.

Key to this model is to note that we can define new categories as linear combina-
tions of a small set of categories. Figure 3 illustrates this approach. In this figure, we
show how we can obtain the above listed different surprises as a linear combination of
known categories. For instance, happily surprised can be defined as expressing 40%
joy plus 60% surprise, that is, expression = .4 happy + .6 surprise. A large number of
such expressions exist that are a combination of the six emotion categories listed above
and, hence, the above list of six categories is a potential set of basic emotion classes.
Also, there is some evidence form cognitive science to suggest that these are important
categories for humans (Izard, 2009) Of course, one needs not base the model on this set
of six emotions. This is an area that will undoubtedly attract lots of interest. A question
of particular interest is to determine not only which basic categories to include in the
model but how many. To this end both, cognitive studies with humans and computa-
tional extensions of the proposed model will be necessary, with the results of one area
aiding the research of the other.

The approach described in the preceding paragraph would correspond to a categori-
cal model. However, we now go one step further and define each of these face spaces as
continuous feature spaces, Figure 3. This allows for the perception of each emotion at
different intensities, for example, less happy to exhilarant (Neth and Martinez, 2010).
Less happy would correspond to a feature vector (in the left most face space in the fig-
ure) closer to the mean (or origin of the feature space). Feature vectors farther from the
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Figure 3: This figure shows how to construct linear combinations of known categories.
At the top of the figure, we have the known or learned categories (emotions).
The coefficients si determine the contribution of each of these categories to
the final perception of the emotion.

mean would be perceived as happier. The proposed model also explains the caricature
effect, because within each category the face space is continuous and exaggerating the
expression will move the feature vector representing the expression further from the
mean of that category.

Furthermore, the proposed model can define new terms, for example, “hatred"
which is defined as having a small percentage of disgust and a larger percentage of
anger; still linear. In essence, the intensity observed in this continuous representation
defines the weight of the contribution of each basic category toward the final decision
(classification). It also allows for the representation and recognition of a very large
number of emotion categories without the need to have a categorical space for each or
having to use many samples of each expression as in the continuous model.

The proposed model thus bridges the gap between the categorical and continuous
ones and resolves most of the debate facing each of the models individually. To com-
plete the definition of the model, we need to specify what defines each of the dimensions
of the continuous spaces representing each category. We turn to this problem in the next
section.

4. Dimensions of the Model

In the early years of computer vision, researchers derived several feature- and shape-
based algorithms for the recognition of objects and faces (Kanade, 1973; Marr, 1976;
Lowe, 1983). In these methods, geometric, shape features and edges were extracted
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from an image and used to build a model of the face. This model was then fitted to the
image. Good fits determined the class and position of the face.

Later, the so-called appearance-based approach, where faces are represented by
their pixel-intensity maps or the response of some filters (e.g., Gabors), was studied
(Sirovich and Kirby, 1987). In this alternative texture-based approach, a metric is de-
fined to detect and recognize faces in test images (Turk and Pentland, 1991). Advances
in pattern recognition and machine learning have made this the preferred approach in
the last two decades (Brunelli and Poggio, 1993).

Inspired by this success, many algorithms developed in computer vision for the
recognition of expressions of emotion have also used the appearance-based model
(Torre and Cohn, 2011). The appearance-based approach has also gained momentum in
the analysis of AUs from images of faces. The main advantage of the appearance-based
model is that one does not need to predefine a feature or shape model as in the earlier
approaches. Rather, the face model is inherently given by the training images.

The appearance-based approach does provide good results from near-frontal im-
ages of a reasonable quality, but it suffers from several major inherent problems. The
main drawback is its sensitivity to image manipulation. Image size (scale), illumination
changes and pose are all examples of this. Most of these problems are intrinsic to the
definition of the approach since this cannot generalize well to conditions not included
in the training set. One solution would be to enlarge the number of training images
(Martinez, 2002). However, learning from very large data sets (in the order of millions
of samples) is, for the most part, unsolved (Lawrence, 2005). Progress has been made
in learning complex, non-linear decision boundaries, but most algorithms are unable to
accommodate large amounts of data—either in space (memory) or time (computation).

This begs the question as to how the human visual system solves the problem. One
could argue that, throughout evolution, the homo genus (and potentially before it) has
been exposed to trillions of faces. This has facilitated the development of simple, yet ro-
bust algorithms. In computer vision and machine learning, we wish to define algorithms
that take a shorter time to learn a similarly useful image representation. One option is
to decipher the algorithm used by our visual system. Research in face recognition of
identity suggests that the algorithm used by the human brain is not appearance-based
(Wilbraham et al., 2008). Rather, it seems that, over time, the algorithm has identified
a set of robust features that facilitate rapid categorization (Young et al., 1987; Hosie
et al., 1988; Barlett and Searcy, 1993).

This is also the case in the recognition of facial expressions of emotion (Neth and
Martinez, 2010). Figure 4 shows four examples. These images all bear a neutral ex-
pression, that is, an expression associated to no emotion category. Yet, human subjects
perceive them as expressing sadness, anger, surprise and disgust. The most striking
part of this illusion is that these faces do not and cannot express any emotion, since all
relevant AUs are inactive. This effect is called over-generalization (Zebrowitz et al.,
2010), since human perception is generalizing the learned features defining these face
spaces over to images with a different label.
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Figure 4: The four face images and schematics shown above all correspond to neutral
expressions (i.e., the sender does not intend to convey any emotion to the
receiver). Yet, most human subjects interpret these faces as conveying anger,
sadness, surprise and disgust. Note that although these faces look very dif-
ferent from one another, three of them are actually morphs from the same
(original) image.

The images in Figure 4 do have something in common though—they all include
a configural transformation. What the human visual system has learned is that faces
do not usually look like those in the image. Rather the relationship (distances) be-
tween brows, nose, mouth and the contour of the face is quite standard. They follow
a Gaussian distribution with small variance (Neth and Martinez, 2010). The images
shown in this figure however bear uncanny distributions of the face components. In
the sad-looking example, the distance between the brows and mouth is larger than nor-
mal (Neth and Martinez, 2009) and the face is thinner than usual (Neth and Martinez,
2010). This places this sample face, most likely, outside the 99% confidence interval of
all Caucasian faces on these two measures. The angry-looking face has a much-shorter-
than-average brow to mouth distance and a wide face. While the surprise-looking face
has a large distance between eyes and brows and a thinner face. The disgust-looking
face has a shorter distance between brows, eyes, nose and mouth. These effects are also
clear in the schematic faces shown in the figure.

Yet, configural cues alone are not sufficient to create an impressive, lasting effect.
Other shape changes are needed. For example, the curvature of the mouth in joy or the
opening of the eyes—showing additional sclera—in surprise. Note how the surprise-
looking face in Figure 4 appears to also express disinterest or sleepiness. Wide-open
eyes would remove these perceptions. But this can only be achieved with a shape
change. Hence, our face spaces should include both, configural and shape features.
It is important to note that configural features can be obtained from an appropriate
representation of shape. Expressions such as fear and disgust seem to be mostly (if not
solely) based on shape features, making recognition less accurate and more susceptible
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(a)

(b)

Figure 5: (a) Shown here are the two most discriminant dimensions of the face shape
vectors. We also plot the images of anger and sadness of Ekman and Friesen
(1976). In dashed are simple linear boundaries separating angry and sad faces
according to the model. The first dimension (distance between brows and
mouth) successfully classifies 100% of the sample images. This continuous
model is further illustrated in (b). Note that, in the proposed computational
model, the face space defining sadness corresponds to the right-bottom quad-
rant, while that of anger is given by the left-top quadrant. The dashed arrows
in the figure reflect the fact that as we move away from the “mean" (or norm)
face, recognition of that emotion become easier.

to image manipulation. We have previously shown (Neth and Martinez, 2010) that
configural cues are amongst the most discriminant features in a classical (Procrustes)
shape representation, which can be made invariant to 3D rotations of the face (Hamsici
and Martinez, 2009a).
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Thus, each of the six categories of emotion (happy, sad, surprise, angry, fear and
disgust) is represented in a shape space given by classical statistical shape analysis.
First the face and the shape of the major facial components are automatically detected.
This includes delineating the brows, eyes, nose, mouth and jaw line. The shape is
then sample with d equally spaced landmark points. The mean (center of mass) of
all the points is computed. The 2d-dimensional shape feature vector is given by the x
and y coordinates of the d shape landmarks subtracted by the mean and divided by its
norm. This provides invariance to translation and scale. 3D rotation invariance can be
achieved with the inclusion of a kernel as defined in Hamsici and Martinez (2009a).
The dimensions of each emotion category can now be obtained with the use of an
appropriate discriminant analysis method. We use the algorithm defined by Hamsici
and Martinez (2008) because it minimizes the Bayes classification error.

As an example, the approach detailed in this section identifies the distance between
the brows and mouth and the width of the face as the two most important shape features
of anger and sadness. It is important to note that, if we reduce the computational spaces
of anger and sadness to 2-dimensions, they are almost indistinguishable. Thus, it is
possible that these two categories are in fact connected by a more general one. This
goes back to our question of the number of basic categories used by the human visual
system. The face space of anger and sadness is illustrated in Figure 5, where we have
also plotted the feature vectors of the face set of Ekman and Friesen (1976).

As in the above, we can use the shape space defined above to find the two most
discriminant dimensions separating each of the six categories listed earlier. The result-
ing face spaces are shown in Figure 6. In each space, a simple linear classifier in these
spaces can successfully classify each emotion very accurately. To test this, we trained a
linear support vector machine (Vapnik, 1998) and use the leave-one-out test on the data
set of images of Ekman and Friesen (1976). Happiness is correctly classified 99% of
the time. Surprise and disgust 95% of the time. Sadness 90% and anger 94%. While
fear is successfully classified at 92%. Of course, adding additional dimensions in the
feature space and using nonlinear classifiers can readily achieve perfect classification
(i.e., 100%). The important point from these results is to note that simple configural
features can linearly discriminate most of the samples in each emotion. These features
are very robust to image degradation and are thus ideal for recognition in challenging
environments (e.g., low resolution)—a message to keep in mind for the development of
machine learning and computer vision systems.

5. Precise Detection of Faces and Facial Features

As seen thus far, human perception is extremely tuned to small configural and shape
changes. If we are to develop computer vision and machine learning systems that can
emulate this capacity, the real problem to be addressed by the community is that of
precise detection of faces and facial features (Ding and Martinez, 2010). Classification
is less important, since this is embedded in the detection process; that is, we want to
precisely detect changes that are important to recognize emotions.
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Figure 6: Shown in the above are the six feature spaces defining each of the six ba-
sic emotion categories. A simple linear Support Vector Machine (SVM) can
achieve high classification accuracies; where we have used a one-versus-
all strategy to construct each classifier and tested it using the leave-one-out
strategy. Here, we only used two features (dimensions) for clarity of presen-
tation. Higher accuracies are obtained if we include additional dimensions
and training samples.
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Figure 7: Two example of imprecise detections of a face with a state of the art algo-
rithm.

Figure 8: The idea behind the features versus context approach is to learn to discrim-
inate between the feature we wish to detect (e.g., a face, an eye, etc.) and
poorly detected versions of it. This approach eliminates the classical over-
lapping of multiple detections around the object of interest at multiple scales.
At the same time, it increases the accuracy of the detection because we are
moving away from poor detections and toward precise ones.
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Figure 9: Precise detections of faces and facial features using the algorithm of (Ding
and Martinez, 2010).

Most computer vision algorithms defined to date provide, however, inaccurate de-
tections. One classical approach to detection is template matching. In this approach,
we first define a template (e.g., the face or the right eye or the left corner of the mouth
or any other feature we wish to detect). This template is learned from a set of sample
images; for example, estimating the distribution or manifold defining the appearance
(pixel map) of the object (Yang et al., 2002). Detection of the object is based on a win-
dow search. That is, the learned template is compared to all possible windows in the
image. If the template and the window are similar according to some metric, then the
bounding box defining this window marks the location and size (scale) of the face. The
major drawback of this approach is that it yields imprecise detections of the learned ob-
ject, because a window of an non-centered face is more similar to the learned template
than a window with background (say, a tree). An example of this result is shown in
Figure 7.

A solution to the above problem is to learn to discriminate between non-centered
windows of the objects and well centered ones (Ding and Martinez, 2010). In this alter-
native, a non-linear classifier (or some density estimator) is employed to discriminate
the region of the feature space defining well-centered windows of the objects and non-
centered ones. We call these non-centered windows the context of the object, in the
sense that these windows provide the information typically found around the object but
do not correspond to the actual face. This features versus context idea is illustrated in
Figure 8. This approach can be used to precisely detect faces, eyes, mouth, or any other
facial feature where there is a textural discrimination between it and its surroundings.
Figure 9 shows some sample results of accurate detection of faces and facial features
with this approach.

The same features versus context idea can be applied to other detection and model-
ing algorithms, such as Active Appearance Models (AAM) (Cootes et al., 2001). AAM
use a linear model—usually based on Principal Component Analysis (PCA)—to learn
the relationship between the shape of an object (e.g., a face) and its texture. One obvious
limitation is that the learned model is linear. A solution to this problem is to employ a
kernel map. Kernel PCA is one option. Once we have introduced a kernel we can move
one step further and use it to address additional issues of interest. A first capability we
may like to add to a AAM is the possibility to work with three-dimensions. The second
could be to omit the least-squares iterative nature of the Procrustes alignment required
in most statistical shape analysis methods such as AAM. An approach that success-
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Figure 10: Manifold learning is ideal for learning mappings between face (object) im-
ages and their shape description vectors.

fully addresses these problem uses a set of kernels called Rotation Invariant Kernels
(RIK) (Hamsici and Martinez, 2009a). RIK add yet another important advantage to
shape analysis: they provide rotation invariance. Thus, once the shape is been mapped
to the RIK space, objects (e.g., faces) are invariant to translation, scale and rotation.
These kernels are thus very attractive for the design of AAM algorithms (Hamsici and
Martinez, 2009b).

By now we know that humans are very sensitive to small changes. But we do not
yet know how sensitive (or accurate). Of course, it is impossible to be pixel accurate
when marking the boundaries of each facial feature, because edges blur over several
pixels. This can be readily observed by zooming in the corner of an eye. To estimate
the accuracy of human subjects, we performed the following experiment. First, we
designed a system that allows users to zoom in at any specified location to facilitate
delineation of each of the facial features manually. Second, we asked three people
(herein referred to as judges) to manually delineate each of the facial components of
close to 4,000 images of faces. Third, we compared the markings of each of the three
judges. The within-judge variability was (on average) 3.8 pixels, corresponding to a
percentage of error of 1.2% in terms of the size of the face. This gives us an estimate of
the accuracy of the manual detections. The average error of the algorithm of Ding and
Martinez (2010) is 7.3 pixels (or 2.3%), very accurate but still far short of what humans
can achieve. Thus, further research is needed to develop computer vision algorithms
that can extract even more accurate detection of faces and its components.

Another problem is what happens when the resolution of the image diminishes.
Humans are quite robust to these image manipulations (Du and Martinez, 2011). One
solution to this problem is to use manifold learning. In particular, we wish to define a
non-linear mapping f (.) between the image of a face and its shape. This is illustrated
in Figure 10. That is, given enough sample images and their shape feature vectors
described in the preceding section, we need to find the function which relates the two.
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Figure 11: Shape detection examples at different resolutions. Note how the shape esti-
mation is almost as good regardless of the resolution of the image.

This can be done, for example, using kernel regression methods (Rivera and Martinez,
2012). One of the advantages of this approach is that this function can be defined to
detect shape from very low resolution images or even under occlusions. Occlusions
can be “learned" by adding synthetic occlusions or missing data in the training samples
but leaving the shape feature vector undisturbed (Martinez, 2002). Example detections
using this approach are shown in Figure 11.

One can go one step further and recover the three-dimensional information when a
video sequence is available (Gotardo and Martinez, 2011a). Recent advances in non-
rigid structure from motion allow us to recover very accurate reconstructions of both the
shape and the motion even under occlusion. A recent approach resolves the nonlinearity
of the problem using kernel mappings (Gotardo and Martinez, 2011b).

Combining the two approaches to detection defined in this section should yield even
more accurate results in low-resolution images and under occlusions or other image
manipulations. We hope that more research will be devoted to this important topic in
face recognition.

The approaches defined in this section are a good start, but much research is needed
to make these systems comparable to human accuracies. We argue that research in
machine learning should address these problems rather than the typical classification
one. A first goal is to define algorithms that can detect face landmarks very accurately
even at low resolutions. Kernel methods and regression approaches are surely good
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solutions as illustrated above. But more targeted approaches are needed to define truly
successful computational models of the perception of facial expressions of emotion.

6. Discussion

In the real world, occlusions and unavoidable imprecise detections of the fiducial points,
among others, are known to affect recognition (Torre and Cohn, 2011; Martinez, 2003).
Additionally, some expressions are, by definition, ambiguous. Most importantly though
seems to be the fact that people are not very good at recognizing facial expressions of
emotion even under favorable condition (Du and Martinez, 2011). Humans are very
robust at detection joy and surprise from images of faces; regardless of the image con-
ditions or resolution. However, we are not as good at recognizing anger and sadness
and are worst at fear and disgust.

The above results suggest that there could be three groups of expressions of emo-
tion. The first group is intended for conveying emotions to observers. These expres-
sions have evolved a facial construct (i.e., facial muscle positions) that is distinctive
and readily detected by an observer at short or large distances. Example expressions in
this group are happiness and surprise. A computer vision system—especially a HCI—
should make sure these expressions are accurately and robustly recognized across image
degradation. Therefore, we believe that work needs to be dedicated to make systems
very robust when recognizing these emotions.

The second group of expressions (e.g., anger and sadness) is reasonably recognized
at close proximity only. A computer vision system should recognize these expressions
in good quality images, but can be expected to fail as the image degrades due to reso-
lution or other image manipulations. An interesting open question is to determine why
this is the case and what can be learned about human cognition from such a result.

The third and final group of emotions constitutes those at which humans are not
very good recognizers. This includes expressions such as fear and disgust. Early work
(especially in evolutionary psychology) had assumed that recognition of fear was primal
because it served as a necessary survival mechanism (LeDoux, 2000). Recent studies
have demonstrated much the contrary. Fear is generally poorly recognized by healthy
human subjects (Smith and Schyns, 2009; Du and Martinez, 2011). One hypothesis
is that expressions in this group have evolved for other than communication reasons.
For example, it has been proposed that fear opens sensory channels (i.e., breathing
in and wide open eye), while disgust closes them (i.e., breathing out and closed eyes)
(Susskind et al., 2008). Under this model, the receiver has learned to identify those face
configurations to some extent, but without the involvement of the sender—modifying
the expression to maximize transmission of information through a noisy environment—
the recognition of these emotions has remained poor. Note that people can be trained
to detect such changes quite reliably (Ekman and Rosenberg, 2005), but this is not the
case for the general population.

Another area that will require additional research is to exploit other types of facial
expressions. Facial expressions are regularly used by people in a variety of setting.
More research is needed to understand these. Moreover, it will be important to test the
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model in natural occurring environments. Collection and handling of this data poses
several challenges, but the research described in these pages serves as a good starting
point for such studies. In such cases, it may be necessary to go beyond a linear combi-
nation of basic categories. However, without empirical proof for the need of something
more complex than linear combinations of basic emotion categories, such extensions
are unlikely. The cognitive system has generally evolved the simplest possible algo-
rithms for the analysis or processing of data. Strong evidence of more complex models
would need to be collected to justify such extensions. One way to do this is by find-
ing examples that cannot be parsed by the current model, suggesting a more complex
structure is needed.

It is important to note that these results will have many applications in studies of
agnosias and disorders. Of particular interest are studies of depression or anxiety disor-
ders. Depression afflicts a large number of people in the developed countries. Models
that can help us better understand its cognitive processes, behaviors and patterns could
be of great importance for the design of coping mechanisms. Improvements may also
be possible if it were to better understand how facial expressions of emotion affect these
people. Other syndromes such as autism are also of great importance these days. More
children than ever are being diagnosed with the disorder (CDC, 2012; Prior, 2003). We
know that autistic children do not perceive facial expressions of emotion as others do
(Jemel et al., 2006) (but see Castelli, 2005). A modified computational model of the
perception of facial expressions of emotion in autism could help design better teaching
tools for this group and may bring us closer to understanding the syndrome.

There are indeed many great possibilities for machine learning researchers to help
move these studies forward. Extending or modifying the modeled summarized in the
present paper is one way. Developing machine learning algorithms to detect face land-
mark more accurately is another. Developing statistical tools that more accurately rep-
resent the underlying manifold or distribution of the data is yet another great way to
move the state of the art forward.

7. Conclusions

In the present work we have summarized the development of a model of the perception
of facial expressions of emotion by humans. A key idea in this model is to linearly
combine a set of face spaces defining some basic emotion categories. The model is
consistent with our current understanding of human perception and can be successfully
exploited to achieve great recognition results for computer vision and HCI applications.
We have shown how, to be consistent with the literature, the dimensions of these com-
putational spaces need to encode configural and shape features.

We conclude that to move the state of the art forward, face recognition research has
to focus on a topic that has received little attention in recent years—precise, detailed
detection of faces and facial features. Although we have focused our study on the
recognition of facial expressions of emotion, we believe that the results apply to most
face recognition tasks. We have listed a variety of ways in which the machine learning
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community can get involved in this research project and briefly discussed applications
in the study of human perception and the better understanding of disorders.
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Abstract
We present a probabilistic framework to automatically learn models of recurring signs
from multiple sign language video sequences containing the vocabulary of interest.
We extract the parts of the signs that are present in most occurrences of the sign in
context and are robust to the variations produced by adjacent signs. Each sentence
video is first transformed into a multidimensional time series representation, captur-
ing the motion and shape aspects of the sign. Skin color blobs are extracted from
frames of color video sequences, and a probabilistic relational distribution is formed
for each frame using the contour and edge pixels from the skin blobs. Each sentence
is represented as a trajectory in a low dimensional space called the space of relational
distributions. Given these time series trajectories, we extract signemes from multiple
sentences concurrently using iterated conditional modes (ICM). We show results by
learning single signs from a collection of sentences with one common pervading sign,
multiple signs from a collection of sentences with more than one common sign, and
single signs from a mixed collection of sentences. The extracted signemes demon-
strate that our approach is robust to some extent to the variations produced within
a sign due to different contexts. We also show results whereby these learned sign
models are used for spotting signs in test sequences.
Keywords: pattern extraction, sign language recognition, signeme extraction, sign
modeling, iterated conditional modes
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1. Introduction

Sign language research in the computer vision community has primarily focused on
improving recognition rates of signs either by improving the motion representation and
similarity measures (Yang et al., 2002; Al-Jarrah and Halawani, 2001; Athitsos et al.,
2004; Cui and Weng, 2000; Wang et al., 2007; Bauer and Hienz, 2000) or by adding
linguistic clues during the recognition process (Bowden et al., 2004; Derpanis et al.,
2004). Ong and Ranganath (2005) presented a review of the automated sign language
research and also highlighted one important issue in continuous sign language recog-
nition. While signing a sentence, there exists transitions of the hands between two
consecutive signs that do not belong to either sign. This is called movement epenthesis
(Liddell and Johnson, 1989). This needs to be dealt with first before dealing with any
other phonological issues in sign language (Ong and Ranganath, 2005). Most of the
existing work in sign language assumes that the training signs are already available and
often signs used in the training set are the isolated signs with the boundaries chopped
off, or manually selected frames from continuous sentences. The ability to recognize
isolated signs does not guarantee the recognition of signs in continuous sentences. Un-
like isolated signs, a sign in a continuous sentence is strongly affected by its context
in the sentence. Figure 1 shows two sentences ‘I BUY TICKET WHERE?’ and ‘YOU
CAN BUY THIS FOR HER’ with a common sign ‘BUY’ between them. The frames
representing the sign ‘BUY’ and the neighboring signs are marked. The unmarked
frames between the signs indicate the frames corresponding to movement epenthesis.
It can be observed that the same sign ‘BUY’ is preceded and succeeded by movement
epenthesis that depends on the end and start of the preceding and succeeding sign re-
spectively. The movement epenthesis also affects how the sign is signed. This effect
makes the automated extraction, modeling and recognition of signs from continuous
sentences more difficult when compared to just plain gestures, isolated signs, or finger
spelling.

In this paper, we address the problem of automatically extracting the part of a sign
that is most common in all occurrences of the sign, and hence expected to be robust
with respect to the variation of adjacent signs. These common parts can be used for
spotting or recognition of signs in continuous sign language sentences. They can also
be used by sign language experts for teaching or studying variations between instances
of signs in continuous sign language sentences, or in automated sign language tutoring
systems. Furthermore, they can be used even in the process of translating sign language
videos directly to spoken words.

In a related work inspired by the success of the use of phonemes in speech recogni-
tion, the authors sought to extract common parts in different instances of a sign and thus
arrive at a phoneme-analogue for signs (Bauer and Kraiss, 2002). But unlike speech,
sign language does not have a completely defined set of phonemes. Hence, we consider
extracting commonalities at the sentence and sub-sentence level.

A different but a closely related problem is the extraction of common subsequences,
also called motifs, from very long multiple gene sequences in biology (Bailey and
Elkan, 1995; Lawrence et al., 1993; Pevzner and Sze, 2000; Rigoutsos and Floratos,
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(a) Continuous Sentence ‘I BUY TICKET WHERE?’

(b) Continuous Sentence ‘YOU CAN BUY THIS FOR HER’

Figure 1: Movement epenthesis in sign language sentences. Frames corresponding to
the common sign ‘BUY’ are marked in red. Signs adjacent to BUY are
marked in magenta. Frames between marked frames represent movement
epenthesis that is, the transition between signs. Note that the sign itself is
also affected by having different signs preceding or following it.

1998). Lawrence et al. (1993) used a Gibbs sampling approach based on discrete
matches or mismatches of subsequences that were strings of symbols of gene sequences.
Bailey and Elkan (1995) used expectation maximization to find common subsequences
in univariate biopolymer sequences. In biology, researchers deal with univariate dis-
crete sequences, and hence their algorithms are not always directly applicable to other
multivariate continuous domains in time series like speech or sign language. Some re-
searchers tried to symbolize a continuous time series into discrete sequences and used
existing algorithms from bioinformatics. For example, Chiu et al. (2003) symbolized
the time series into a sequence of symbols using local approximations and used random
projections to extract common subsequences in noisy data. Tanaka et al. (2005) ex-
tended their work by performing principal component analysis on the multivariate time
series data and projected them onto a single dimension and symbolized the data into
discrete sequences. However, it is not always possible to get all the important informa-
tion in the first principal component alone. Further extending his work, Duchene et al.
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(2007) find recurrent patterns from multivariate discrete data using time series random
projections.

Due to the inherent continuous nature of many time series data like gesture and
speech, new methods were developed that do not require approximating the data to a
sequence of discrete symbols. Denton (2005) used a continuous random-walk noise
model to cluster similar substrings. Nayak et al. (2005) and Minnen et al. (2007) use
continuous multivariate sequences and dynamic time warping to find distances between
the substrings. Oates (2002); Nayak et al. (2005) and Nayak et al. (2009a) are among
the few works in finding recurrent patterns that address non-uniform sampling of time
series. The recurrent pattern extraction approach proposed in this paper is based on
multivariate continuous time series, uses dynamic time warping to find distances be-
tween substrings, and handles length variations of common patterns.

Following the success of Hidden Markov Models (HMMs) in speech recognition,
they were used by sign language researchers (Vogler and Metaxas, 1999; Starner and
Pentland, 1997; Bowden et al., 2004; Bauer and Hienz, 2000; Starner et al., 1998)
for representing and recognizing signs. However, HMMs require a large number of
training data and unlike speech, data from native signers is not as easily available as
speech data. Hence, non-HMM-based approaches have been used (Farhadi et al., 2007;
Nayak et al., 2009a; Yang et al., 2010; Buehler et al., 2009; Nayak et al., 2009b; Oszust
and Wysocki, 2010; Han et al., 2009). In this paper, we use a continuous trajectory
representation of signs in a multidimensional space and use dynamic time warping to
match subsequences. The relative configuration of the two hands and face in each frame
is represented by a relational distribution (Vega and Sarkar, 2003; Nayak et al., 2005),
which in itself is a probability density function. The motion dynamics of the signer
is captured as changes in the relational distributions. It also allows us to interpolate
motion, if required, for data sets with lower frame capture rates. It should also be
noted that, unlike many of the previous works in sign language that perform tracking
of the hands using 3D magnetic trackers or color gloves (Fang et al., 2004; Vogler and
Metaxas, 2001; Wang et al., 2002; Ma et al., 2000; Cooper and Bowden, 2009), our
representation does not require tracking and relies on skin segmentation.

We present a Bayesian framework to extract the common subsequences or signemes
from all the given sentences simultaneously. Figure 2 depicts the overview of our ap-
proach. With this framework, we can extract the first most common sign, the second
most common sign, the third most common sign and so on. We represent each sen-
tence as a trajectory in a multi-dimensional space that implicitly captures the shape and
motion in the video. Skin color blobs are extracted from frames of color video, and a
relational distribution is formed for each frame using the edge pixels in the skin blobs.
Each sentence is then represented as a trajectory in a low dimensional space called the
space of relational distributions, which is arrived at by performing principal component
analysis (PCA) on the relational distributions. There are other alternatives to PCA that
are possible and discussed in Nayak et al. (2009b). The other choices do not change
the nature of the signeme finding approach, they only affect the quality of the features.
The starting locations (a1, ...an) and widths (w1, ...wn) of the candidate signemes in all
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Figure 2: Overview of our approach. Each of the n sentences is represented as a
sequence in the Space of Relational Distributions, and common patterns
are extracted using iterated conditional modes (ICM). The parameter set
{a1,w1, ...an,wn} is initialized using uniform random sampling and the con-
ditional density corresponding to each sentence is updated in a sequential
manner.

the n sentences are together represented by a parameter vector. The starting locations
are initialized with random starting locations, based on uniform random sampling from
each sentence, and the initial width values are randomly selected from a given range
of values. The parameter vector is updated sequentially by sampling the starting point
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and width of the possible signeme in each sentence from a joint conditional distribution
that is based on the locations and widths of the target possible signeme in all other sen-
tences. The process is iterated till the parameter values converge to a stable solution.
Monte Carlo approaches like Gibbs sampling (Robert and Casella, 2004; Gilks et al.,
1998; Casella and George, 1992), which is a special case of the Metropolis-Hastings al-
gorithm (Chib and Greenberg, 1995) can be used for global optimization while updating
the parameter vector by performing importance sampling on the conditional probability
distribution. However, this has a high burn-in period.

In this paper, we adopt a greedy approach based on the use of iterated conditional
modes (ICM) (Besag, 1986). ICM converges much faster than a Gibbs sampler, but is
known to be largely dependent on the initialization. We overcome this limitation by
performing ICM a number of times equal to the average length of the n sentences, with
different initializations. The most frequently occurring solution from all the ICM runs
is considered as the final solution.

The work in this paper builds on the work of Nayak et al. (2009a) and is differ-
ent in multiple respects. We propose a system that is generalized to extract more than
one common sign from a collection of sentences (first most common sign, second most
common sign and so on), whereas in the previous work, only single signs were ex-
tracted. We also extract single signs from a mixed collection of sentences where there
are more than one common sign in context. In addition to this, we present a more
in-depth exposition of the underlying theory.

The contributions of this paper can be summarized as follows: (i) we present an
unsupervised approach to automatically extract parts of signs that are robust to the vari-
ation of adjacent signs simultaneously from multiple sign language sentences, (ii) our
approach does not consider all possible parameter combinations, instead samples each
of them in a sequential manner until convergence, which saves a lot of computation,
(iii) we show results on extracting signs from plain color videos of continuous sign lan-
guage sentences without using any color gloves or magnetic trackers, and (iv) we show
results whereby the learned signs are used for spotting signs in test sequences.

We organize the paper as follows. Section 2 presents a short review of relational
distributions. In Section 3, we present the definition of signeme and then formulate the
problem of finding signemes from a given set of sequences in a probabilistic framework.
We describe how we solve it using iterated conditional modes. It is then followed by
a description of our experiments and results in Section 4. Finally, Section 5 concludes
the paper and discusses possible future work.

2. Relational Distributions

We use relational distributions to capture the global and relative configuration of the
hands and the face in an image. Motion is then captured as the changes in the relational
distributions. They were originally introduced by Vega and Sarkar (2003) for human
gait recognition. They have also been used before for representing sign language sen-
tences without the use of color gloves or magnetic trackers (Nayak et al., 2005, 2009b).
We briefly review them here in this section.
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(a) (b) (c)

Figure 3: Variations in relational distributions with motion. (a) Motion sequence. (b)
Edge pixels from the skin color blobs. (c) Relational distributions con-
structed from the low level features (edge pixels) of the images in the motion
sequence. The horizontal axis of the relational distribution represents the
horizontal distance between the edge pixels and its vertical axis represents
the vertical distance between edge pixels.

How do we capture the global configuration of the object? We start with low-level
primitives that are most likely to come from the articulated object. The exact nature of
the low-level primitives can vary. Some common choices include edges, salient points,
Gabor filter outputs and so on. We use edges in this work. We start from some level
of segmentation of the object from the scene. These processes are fairly standard and
have been used widely in gesture and sign recognition. They may involve color-based
segmentation, skin-color segmentation, or background subtraction. In this work, we
perform skin-color segmentation using histogram-based Bayesian classification (Phung
et al., 2005). We use the contours of the skin blobs and Canny edges within the blobs
as our low-level image primitives. The global configuration is captured by considering
the relationships between these primitives.

We use the distance between two primitives in the vertical and horizontal direc-
tions (dx,dy) as relational attributes. Let vector u = {dx,dy} represent the vector of
relational attributes. The joint probability function P(u) then describes the distribu-
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tion of primitives within an image and captures the shape of the pattern in the image.
This probability is called a relational distribution. It captures the global configuration
of the low-level primitives. Figure 3(c) illustrates how motion is captured using re-
lational distributions. It shows the top view of the distributions. The region near to
center represents points closer to each other, for example, the edge points within the
face or within the hand, while farther from center represents the farther away points,
for example, the relationship between edge points of a hand and the face. Notice the
change in the relational distribution as the signer moves one of her hands. To be able
to discriminate symmetrically opposite motion, we maintain the signs (or directions) of
the horizontal and vertical distances between the edge pixels in each ordered pair. This
leads to representing the probability distribution in a four quadrant system. Given that
these relational distributions exhibit complicated shapes that are difficult to be modeled
readily using a combination of simple shaped distributions such as Gaussian mixtures,
we adopt non-parametric histogram-based representation. For better discrimination of
the probabilities, we do not add counts to the center of the histogram which represents
the distance of the edge pixels from itself or very close adjacent pixels. Each bin then
counts the pairs of edge pixels between which the horizontal and vertical distances each
lie in some fixed range that depends on the location of the bin in the histogram.

In our experiments, we found that an empirically-determined fixed histogram size of
51⇥51 was sufficient. The above range is then defined using linear mapping between
the image size and the histogram size, for example, image size along the horizontal
direction corresponds to half the histogram size in the horizontal direction. One could
use histogram bin size optimization techniques for optimizing the histograms, but we
do not address them in this paper. We then reduce the dimensionality of the relational
distributions by performing PCA on the set of relational distributions from all the input
sentences and retain the number of dimensions required to keep a certain percentage
of energy, typically 95%. The new subspace arrived at is called the space of relational
distributions (SoRD). Each video sequence is thus represented as a sequence of points
in the SoRD space.

Note that the choice of the relational distribution is not a central requirement for
the signeme learning process discussed in this paper. We use relational distributions to
enable us to work with pure video data, without the use of markers or colored gloves. If
magnetic markers or colored gloves are available then one could use their attributes to
construct a different feature space and consider trajectories in them. One advantage of
our representation is that the face and head locations are implicitly taken into account
in addition to the hands. In short, the first step of the process is to construct a time
series representation in an appropriate feature space.

3. Problem Formulation

Sign language sentences are series of signs. Figure 4 illustrates the traces of the first
vs. second dimension in the feature space, of three sentences S1, S2 and S3 with only
one common sign, R, among them. The signeme represents the portion of the sign that
is most similar across the sentences.
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Figure 4: Concept of signemes. First vs. second dimensions of sentences S1 with signs
R11,R,R12 in order, S2 with signs R21,R,R22 and S3 with signs R31,R,R32. The
common sign is R. The portion of R that is most similar across sentences is the
signeme representative of R.

{S1, · · · ,Sn} Set of n sentences with at least one common sign present in all the sentences. The index within
a sentence could represent time or arc length in configuration shape space

Li Length of sentence Si
sw j

a j Subsequence of sentence S j starting from index a j to a j +w j�1. We may sometimes use sw
j,a to

make explicit the j-th index if it is not represented along with any other superscript or subscript
of this term.

A, B Possible choices of width for signemes of a sign include all integers from A to B. The values of
A and B are decided based on the dynamics involved in the sign.

q Set of parameters {a1,w1, · · · ,an,wn} defining a set of substrings of the given sentences
q

(ai) Set of all parameters excluding the parameter ai. We have similar interpretations for q

(wi) or
q

(i).
d(x,y) Distance between the subsequences x and y based on a mapping found using dynamic time

warping (DTW). This distance has to be calculated carefully so that it is not biased towards
finding short subsequences only.

Table 1: Notations

Table 1 defines the notations that will be used in this paper. We formulate the
signeme extraction problem as finding the most recurring patterns among a set of n
sentences {S1, · · · ,Sn}, that have at least one common sign present in all the sentences.

The commonality concept underlying the definition of a signeme can be cast in
terms of distances. Let swi

ai
represent a substring from the sequence Si consisting of

the points with indices ai, · · ·ai +wi� 1, and d(x,y) denote the distance between two
substrings x and y based on dynamic time warping. We define the set of signemes
to be the set of substrings denoted by {sw1

a1
, · · · ,swn

an
} that is most similar among all

possible substrings from the given set of sentences. In the generalized case where C
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most common signs are sought, the set of signemes are defined as {sw11
a11

,sw11
a12

, · · · ,swnC
anC

}.
In theory, C can extend to the number of words in the shortest sentence.

Let q = {a1,w1, · · ·an,wn} denote the parameter set representing a set of substrings,
at least one from each of the n sentences, and qm denote the parameter set represent-
ing the target set of signemes in the n sentences. We find qm using the probabilistic
framework of Equation 1.

qm = argmax
q

p(q) (1)

Note that p(q) is a probability over the space of all possible substrings. We define this
probability to be a function of the inter-substring distances in Equation 2:

p(q) =
g(q)

Â
q

g(q)
. (2)

The term g(q) is defined in Equation 3 as follows:

g(q) = exp

 
�b

n

Â
i=1

n

Â
j=1

d(swi
ai
,sw j

a j )

!
(3)

with b being a positive constant.
Note that g(q) varies inversely with the summation of the pair-wise distances of all

the subsequences given by q . Also note that p(q) is hard to compute or even sample
from because it is computationally expensive to compute the denominator in Equation
2, as it involves the summation over all possible parameter combinations. b acts as a
scale parameter, which controls the slopes of the peaks in the probability space. It can
also be looked upon as the smoothing parameter. If probability sampling algorithms
like Gibbs sampling (Casella and George, 1992) are used in later steps, then the rate of
convergence would be determined by this parameter.

Let qi represent the parameters from the ith sentence, that is, {ai,wi} and q

(i) rep-
resent the rest of the parameters, {a1,w1 · · · ai�1,wi�1,ai+1,wi+1 · · · an,wn}. To make
sampling easier, we construct a conditional density function of the parameters from
each sentence, that is, qi, given the values of the rest of the parameters, that is, q

(i). In
other words, we construct a probability density function of the possible starting points
and widths in each sentence, given the estimated starting points and widths of the com-
mon pattern in all other sentences, that is, f (qi|q

(i)). Of course, this conditional density
function has to be derived from the joint density function specified in Eq. 2. This is
outlined in Equation 4 as follows:

f (qi|q
(i)) =

p(q)
p(q

(i))
=

p(q)
Â

qi p(q)
=

g(q)
Â

qi g(q)
. (4)

Since the normalization to arrive at this conditional density function involves sum-
mation over one parameter, it is now easier to compute and sample from. The specific
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form for this conditional density function using the dynamic time warping (DTW) dis-
tances as described in Equation 5 is

f (qi|q
(i)) =

exp
�
�b Ân

k=1 d(swi
ai
,swk

ak
))

�

Â
qi exp(�b Ân

k=1 d(swi
ai ,s

wk
ak )))

. (5)

Note that the distance terms that do not involve ai and wi, that is, do not involve
the i-th sentence appear both in the numerator and the denominator and so cancel out.
For notational convenience, this is sometimes represented using conditional g functions
described below in Equation 6 as:

f (qi|q
(i)) =

g(qi|q
(i))

Â
qi g(qi|q

(i))
, (6)

where g(qi|q
(i)) = exp

�
�b Ân

k=1 d(swi
ai
,swk

ak
))

�
.

3.1. Distance Measure

The distance function d in the above equations needs to be chosen carefully such that
it is not biased towards the shorter subsequences. Here, we briefly describe how we
compute the distance between two substrings using dynamic time warping. Let l1 and
l2 represent the length of the two substrings and e(i, j) represent the Euclidean distance
between the ith data point from the first substring and the jth data point from the second
substring. Let D represent the score matrix of size (l1 +1)⇥ (l2 +1). The 0th row and
0th column of D are initialized to infinity, except D(0,0), which is initialized to 0. The
rest of the score matrix, D, is completed using the following recursion of Equation 7:

D(i, j) = e(i, j)+min{D(i�1, j),D(i�1, j�1),D(i, j�1)}, (7)

where 1 i l1 and 1 j l2. The optimal warp path is then traced back from D(l1, l2)
to D(0,0). The distance measure between the two substrings is then given by D(l1, l2)
normalized by the length of the optimal warping path.

3.2. Parameter Estimation

In order to extract the common signs from a given set of sign language sentences, we
need to compute qi for each of the sentences sequentially. Gibbs sampling (Casella and
George, 1992) is a Markov Chain Monte Carlo approach (Gilks et al., 1998) that allows
us to sample the conditional probability density f (qi|q

(i)) for all the sequences sequen-
tially and then iterate the whole process until convergence. Gibbs sampling results in a
global optimum, but its convergence is very slow. The burn-in period is typically thou-
sands of iterations. Therefore, we perform the optimization using iterated conditional
modes (ICM), first proposed by Besag (1986). ICM has much faster convergence, but
it is also known to be heavily dependent on the initialization. We address this limitation
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by running the optimization multiple times with different initializations and choosing
the most frequently occurring solution as the final solution.

Algorithm 1: ITERATED CONDITIONAL MODES({a0
1,w

0
1, · · · ,a0

n,w0
n})

comment: Choose {a1,w1, · · · ,an,wn} that maximizes distribution p(a1,w1, · · · ,an,wn)

comment: Initialization:

q0  {a0
1,w

0
1, · · · ,a0

n,w0
n}

repeat8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

for i 0 to n

do

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

comment: Jointly sample ai,wi. Li is the length of sequence Si

for wi  A to B

do
⇢

for ai  0 to Li�wi +1
do g(ai,wi|q

(ai,wi)) exp
�
�b Ân

k=1 d(swi
ai
,swk

ak
)

�

comment: Normalize

for wi  A to B

do

(
for ai  0 to Li�wi +1

do f (ai,wi|q
(ai,wi)) 

g(ai,wi|q
(ai ,wi))

Âai ,wi g(ai,wi|q
(ai ,wi))

ai,wi  ARG MAX ( f (ai,wi|q
(ai,wi)))

until CHANGE IN PARAMETERS({a1,w1, · · · ,an,wn}) == 0

Algorithm 1 outlines the process of ICM to extract the common patterns or signemes
from a set of sentences with a given initial parameter vector. We aim to select the set
of parameters that maximizes the probability p(q) or p(a1,w1, · · · ,an,wn). We do that
by estimating each of the parameters a1,w1, · · ·an,wn in a sequential manner. Since we
expect the starting location and width of a subsequence representing the common sign
to be strongly correlated, we estimate ai and wi jointly. First we compute g(qi|q

(i)) that
is, g(ai,wi|q

(ai,wi)) from which we compute the conditional density functions f (qi|q
(i))

that is, f (ai,wi|q
(ai,wi)). Note that it involves a summation over ai and wi only, which

involves much less computation than that required for computing p(q) which involves
a summation over a1,w1, · · ·an,wn. The values for ai and wi are updated with those
that maximize the conditional density f (qi|q

(i)). The process is carried out sequen-
tially for i = 1 to n, and then repeated iteratively till the values of the parameter vector
{a1,w1,a2,w2, · · ·an,wn} do not change any more.

Figure 5 depicts the sampling process for a single iteration, r. Note the conditional
and sequential nature of sampling from various sentences within the single iteration.
In Figure 6, we show an example of how the conditional probability f (qai,wi |q(ai,wi))

changes for the first seven sentences from a given set of fourteen video sentences con-
taining a common sign ‘DEPART’. The vertical axis in the probabilities represents the
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Figure 5: Sequential update of the parameter values using ICM. (a), (b) and (c) re-
spectively show the parameter updates in the first sentence, the ith and the
nth sentences. In the rth iteration, the parameters of the common sign in ith

sentence is computed based on the parameter values of the previous (i� 1)
sentences obtained in the same iteration, and those of the (i+1)th to nth sen-
tences obtained in the previous, that is, the (r�1)th iteration.

starting locations and the horizontal axis represents the possible widths. The brighter
regions represent a higher probability value. Note that the probabilities are spread out
in the first iteration for each sentence and it slowly converges to a fixed starting loca-
tion for each of them. They remain more spread out across the horizontal (width) axis
because we vary the width only in a small range of A to B for each sign, that is decided
based on the amount of motion present in the sign.
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Figure 6: Convergence of the conditional probability density f (qi|q
(i)) for sentences

S1...S6 from a given set of sentences S1...S14. The brighter regions represent
a higher probability value. The vertical axis in the probabilities represents
the starting locations and the horizontal axis represents the possible widths.
Note that the probabilities are spread out in the first iteration and it slowly
converges to a particular starting location. They are still spread across the
horizontal (width) axis because we vary the width only in a small range that
is decided based on the amount of motion present in the sign.

Figure 7 plots the typical convergence of the parameter values in a single ICM
run. It plots the norm of difference between consecutive parameter vectors versus the
parameter vector update count, which is incremented each time a parameter is sampled
or selected from the probability distribution f (qi|q

(i)). It shows that ICM converges
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Figure 7: Convergence of values of the parameter set. The above plot shows the norm
of the difference between two consecutive parameter vectors representing the
set of starting points and widths of the common subsequence in the given set
of sequences. It shows the typical convergence with a given initialization
vector. ICM is repeated with multiple initializations and the most frequently
occurring solution is considered as the final solution.

in less than 56/14 = 4 iterations. This, in turn, also indicates the local nature of the
optimization achieved with ICM. The initialization is very important in this case. In the
next subsection, we describe how we address this problem.

3.3. Sampling Starting Points For ICM

In order to address the local convergence nature of ICM, we adopt a uniform random
sampling-based approach. We start by randomly assigning values to the parameter
vector q . The width w0

i is obtained by sampling a width value based on uniform random
distribution from the set of all possible widths in a given range [A,B]. The value for a0

i
is obtained by sampling a starting point based on uniform random distribution from the
set of all possible starting points in the ith sequence, that is, from the set {1 · · ·(Li�
w0

i +1)}.
Different initial parameter vectors are obtained by independently sampling the sen-

tences multiple times. ICM is run using each initial parameter vector generated and the
most common solution is considered as the final solution. The uniform sampling of the
frames in the sentences for selecting the starting locations ensures the whole parame-
ter space is covered uniformly. The number of times we sample the initial parameter
vector and run the ICM algorithm decides how densely we cover the whole parameter
space. We run it the number of times equal to the average number of frames in each
sentence from the given set of sentences for extracting the sign. One could choose to
run a multiple of the average number of times as well, but we found the average number
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to be sufficient to show the stability of the solution in our experiments. Algorithm 2
presents the process as a pseudocode.

Algorithm 2: EXTRACT SIGNEMES(L1, · · ·Ln,A,B)

comment: Generate multiple initialization vectors and call ICM with each of them.

N = MEAN(L1,L2, · · · ,Ln)

for j 1 to N

do

8
>><

>>:

for i 1 to n

do
⇢

w0
i = UNIFORM(A · · ·B)

a0
i = UNIFORM(1 · · ·Li�w0

i +1)
{a j

1,w
j
1, · · · ,a

j
n,w

j
n}= ITERATED CONDITIONAL MODES(a0

1,w
0
1,

· · · ,a0
n,w0

n)

for i 1 to n

do

8
><

>:

comment: Assign most frequently occurring value as the final value.

wi = MODE(w j
i )

ai = MODE(a j
i )

For extracting the sign ‘DEPART’ from 14 sentences, we had 89 frames per sen-
tence on an average. Hence we ran 89 different ICM runs for extracting the common
subsequence representing ‘DEPART’. Figure 8 shows the plots of histograms of start
and end location of the sign in each of the 14 sentences from the 89 runs. It should be
noted that in most of the sentences, more than 50% of the total number of runs result in
the same solution.

4. Experiments And Results

In this section, we present visual and quantitative results of our approach for extracting
signemes from video sequences representing sentences from American Sign Language.
We first describe the data set used then present the results of the automatic common
pattern extraction.

4.1. Data Set

Our data set consists of 155 American Sign Language (ASL) video sequences organized
into 12 groups (collections) based on the vocabulary (word that pervades the sentences
of the group). For instance, the ‘DEPART’ group is comprised of all the sentences con-
taining the word ‘DEPART’, the ‘PASSPORT’ group is comprised of all the sentences
containing the word ‘PASSPORT’ and so on. The breakdown of these ‘pure’ groups
and the number of sentences (sequences) in each are as follows.

• DEPART - 14 sentences
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Figure 8: Histograms showing the start and end locations of signs extracted from 14
different sentences using multiple ICM runs. The initial parameter vector for
each ICM run was chosen independently using uniform random sampling.
As it can be seen the start and end points found by most of the runs converge
to the same solution (denoted by single high bars in most of sentences). The
legend shown in the plot for the first sentence, S1, holds for other sentences
as well.

• BAGGAGE - 14 sentences

• CANT - 14 sentences

• BUY - 11 sentences

• SECURITY - 16 sentences

• HAVE - 6 sentences

• MOVE - 11 sentences
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• TIME - 14 sentences

• FUTURE - 12 sentences

• TABLE - 13 sentences

• PASSPORT - 14 sentences

• TICKET - 16 sentences

This data set was used to extract 12 common subsequences when we searched for the
first most common sign, and 24 common subsequences when we searched for the sec-
ond most common sign. We also organized the video sequences into 10 groups by
combining two ‘pure’ groups of sentences as described above. This was used to inves-
tigate the power of our framework for selecting the common sequences in a ‘mixed’
collection. The breakdown of these ‘mixed’ groups and the number of sentences in
each are as follows:

• DEPART (14 sentences) + BAGGAGE (14 sentences)

• CANT (14 sentences) + BUY (11 sentences)

• TIME (14 sentences) + TABLE (13 sentences)

• PASSPORT (14 sentences) + TICKET (16 sentences)

• SECURITY (16 sentences) + FUTURE (12 sentences)

• MOVE (11 sentences) + HAVE (6 sentences)

• BUY (11 sentences) + TABLE (13 sentences)

• DEPART (14 sentences) + FUTURE (12 sentences)

• BAGGAGE (14 sentences) + TICKET (16 sentences)

• SECURITY (16 sentences) + PASSPORT (14 sentences)

All of the signs were performed by the same signer with plain clothing and background.
The video sequences were captured at 25 frames per second with a frame resolution of
490 ⇥ 370.

4.2. Common Pattern Extraction Results

In this section, we present the results of our method for extracting common patterns
from sign language sentences. We first present results for extracting the single most
common sign and multiple common signs from the ‘pure’ sentence groups, followed
by results for the most common patterns from the ‘mixed’ groups.
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4.2.1. EXTRACTING THE MOST COMMON PATTERN

We perform extraction of the most common patterns from the ‘pure’ sentence groups.
We possess a priori knowledge of the most common word due to the organization of
the sentence groups. However, our goal is to extract the most common sequences au-
tomatically. As an example, Figure 9 depicts the result of extraction of the sign ‘DE-
PART’ from 14 video sequences. It plots the SoRD first dimension coefficients of the
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Figure 9: The first dimension of the video sequences containing a common sign ‘DE-
PART’. The sequences are indicated by the dotted curves and the solid lines
on each of them indicate the common pattern or signeme. The odd columns
represent the ground truth and the even columns show the results.

frames vs. the frame number for each sentence. The highlighted portions represent

167



NAYAK DUNCAN SARKAR LOEDING

the signeme. The odd columns show the ground truth and the even columns show the
corresponding results. As can be seen, the extracted patterns and the corresponding
ground truth patterns are quite similar, except for a few frames at the beginning and end
of the some of the patterns. Note that since we deal with continuous video sequences,
a difference of one or two frames between the ground truth and the extracted pattern is
not considered a problem.
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(a) Video Start Point Estimation
(b) Video End Point Estimation

Figure 10: Extraction of the most common patterns or signemes from the ‘pure’ sen-
tence groups. The closer the points are to the diagonal, the closer the result
is to the ground truth.

Figure 10(a) shows the scatter plot of the ground truth start positions vs. the es-
timated start positions of the pattern extracted from each of the 155 sentences in the
video data set. Figure 10(b) shows the corresponding scatter plot for the end position
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of the patterns in the sentences. As can be seen most of the points in the scatter plots
lie along the diagonal. This indicates that very few of the extracted patterns are wrong.
Incorrect results correspond to the points positioned far from the diagonal. Figures 11

(a) BUY

(b) CANT

(c) DEPART

(d) FUTURE

(e) MOVE

Figure 11: Signemes extracted from sentences

and 12 show one instance of the signeme extracted from group of sentences.

4.2.2. EXTRACTING MULTIPLE COMMON SIGNS

In this section we present some visual results for the extraction of the two most common
signs from the ‘pure’ groups of sentences. We focused on extracting only two signs be-
cause the shortest ASL sentence contained two signs. Figure 13 shows the results for the
two most common signs extracted from the sentence ‘BAGGAGE THERE NOT MINE
THERE’. The extracted subsequences correspond to the ASL words ‘BAGGAGE’ and
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(f) PASSPORT

(g) SECURITY

(h) TICKET

(i) TIME

(j) TABLE

Figure 12: Signemes extracted from sentences

‘MINE’. Consequently, the word ‘BAGGAGE’ appears in all the 14 sentences of the
group, whereas the word ‘MINE’ (or ‘MY’) shows up in 11 sentences coinciding with
what was expected. Similarly, Figure 14 shows the results for the two most common
signs extracted from the sentence ‘MY PASSPORT THERE STILL GOOD THERE’.
The extracted subsequences correspond to the ASL words ‘MY’ and ‘PASSPORT’. The
word ‘MY’ appears in all the 11 sentences of the group, whereas the word ‘PASSPORT’
appears in all 14 sentences. These results are encouraging.

4.2.3. EXTRACTING THE MOST COMMON PATTERNS FROM MIXED SENTENCES

We perform extraction of the most common patterns from the collection of ‘mixed’ sen-
tences as outlined in Section 4.1. Figure 15(a) shows the scatter plot of the ground truth
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(a) Frames corresponding to the word ‘BAGGAGE’

(b) Frames corresponding to the word ‘MINE’

Figure 13: Extraction of the two most common patterns or signemes from the sentence
‘BAGGAGE THERE NOT MINE THERE’.

(a) Frames corresponding to the word ‘MY’

(b) Frames corresponding to the word ‘PASSPORT’

Figure 14: Extraction of the two most common patterns or signemes from the sentence
‘MY PASSPORT THERE STILL GOOD THERE’.

start positions vs. the estimated start positions of the pattern extracted from each of
the sentences. Similarly, Figure 15(b) shows the corresponding scatter plot for the end
position of the patterns in the sentences. As can be seen, the points are more scattered
as compared to the results shown in Figure 10 where the sentences used were known to
contain common words. However, this result is still encouraging. A large proportion
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Figure 15: Extraction of the most common patterns or signemes from the ‘mixed’ sen-
tence groups. The closer the points are to the diagonal, the closer the result
is to the ground truth.

of the extracted patterns are incorrect, but there are many relatively near the diagonal.
This result demonstrates the robustness of our algorithm for finding similarities in the
presence of great dissimilarity. We believe that the incorrect patterns extracted are due
to the differences in the frame width ranges for the mixed sentence sets. For example,
sentences containing the word ‘MOVE’ were combined with sentences containing the
word ‘HAVE’. The frame width range for the sign ‘HAVE’ is between 4 and 6 frames
with 4 being the minimum width and 6 being the maximum width. On the other hand,
the frame width range for the sign ‘MOVE’ is between 19 and 27 frames. Combining
these width ranges could be done using an average of the two or by selecting the mini-
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mum and maximum values between the two. However, these methods produced similar
results. The correct combination of these range widths is a priority for future work.

4.3. Sign Localization

We used the extracted signemes to localize or spot signs in test sentences. The same
process that is used for training sign models is used for sign localization. However,
rather than randomly assigning initial parameter values, we use the parameters learned.
We tested with 12 test sentences from the ‘pure’ group specified in Section 4.1 and
their lengths varied from 4 to 12 signs. These test sentences were not used during
training. The set of points representing the signeme were matched with the segments
of the SoRD points from the test sentences to find the segment with the minimum
matching score, which would represent the sign in the test sentence. The SoRD points
of the signeme retrieved from the test sentence are mapped to their nearest frames
and compared with the ground truth frame series representing the sign in the sentence.
Localization performance is characterized as follows. Let a1 and b1 denote the start and

Test Group Precision Recall
Buy 1.0 0.70

Depart 1.0 0.64
Future 0.71 0.756
Move 1.0 0.60

Passport 1.0 0.47
Security 0.57 0.67
Ticket 1.0 0.58
Time 0.63 1.0

Table 2: Localization Performance

end frame numbers of the underlying ground truth sign in the test sentence, and a2 and
b2 denote the start and end frame numbers of the subsequence retrieved as the signeme
for the test sentence. We calculate the precision and recall values of each test sentence
as m

a2�a1+1 and m
b2�a2+1 respectively where m is the number of overlapping frames.

Table 2 displays the results acquired. The ‘Baggage’, ‘Cant’, ‘Have’, and ‘Table’ test
sequences were failure cases where there was no overlap between the extracted model
frames and the localization frames (see Figure 16). Notice that the localization results
heavily depend on the extracted signeme models. For a visual representation of this
information, we define the Start Offset, DS, and End Offset, DE, as DS = a1� a2 and
DE = b1� b2. The plot of the Start Offset vs. the End Offset is shown in Figure 16.
Ideally, both the offsets should be zero. The points for different signs are scattered in
the four quadrants depending on the nature of the overlap between the ground truth sign
and the retrieved signeme. Each point in the plot corresponds to a separate test sign.
Its distance from the origin indicates the localizing quality of the signeme in its test
sentence. The closer it is to the origin, the better the quality.
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Figure 16: Start Offset vs. End Offset of Localized Signs

5. Conclusion And Future Work

We presented a novel algorithm to extract signemes, that is, the common pattern repre-
senting a sign, from multiple long video sequences of American Sign Language (ASL).
A signeme is a part of the sign that is robust to the variations of the adjacent signs and
the associated movement epenthesis. We first represent each sequence as a series of
points in a low dimensional space of relational distributions, and then use a probabilis-
tic framework to locate the signemes in each sequence concurrently. We use iterative
conditional modes (ICM) to sample the parameters, that is, the starting location and
width of the signemes in each sentence in a sequential manner. We show results on
ASL video sequences that do not involve using any magnetic trackers or gloves for
extracting the most common signs. The extracted signemes demonstrate that our ap-
proach is robust to some extent to the variations produced within a sign due to different
contexts.

The approach in this paper can be used to speed up training set generation for
ASL algorithms by drastically reducing the manual aspect of the process. Rather than
manually demarcating signs in continuous sentences, which for our work took an expert
approximately 5 minutes, we would just need instances of sentences containing the
sign whose model is sought and based on our experiments this can be generated in
approximately 2 minutes. Another contribution of this work is an empirically derived
robust representation of the sign that is stable with respect to the variations due to
neighboring signs and sentence context. These stable representations could be useful
for detection of signs and gestures in extended gesture sequences.

There are some ways we can advance the work in this paper. One issue is the
precision of the features used for representing the video sequences. Relational dis-
tributions when used as fixed size histograms perform well for discriminating global
motion. However, optimizing the bin size of the histograms to the required precision
might improve the accuracy. Additionally, we plan to extend our work to address the
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challenge of handling the large variations encountered when automatically recognizing
signemes across different signers. Also, the algorithm is dependent to a large extent
on the distance measure and conventional dynamic time warping cannot deal with the
amplitude variations in the signs, which are very common across signers. We plan to
work on a variation of dynamic time warping that is robust to amplitude differences
between various instances of signs.
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Abstract
We propose the novel approach of dynamic affine-invariant shape-appearance model
(Aff-SAM) and employ it for handshape classification and sign recognition in sign
language (SL) videos. Aff-SAM offers a compact and descriptive representation of
hand configurations as well as regularized model-fitting, assisting hand tracking and
extracting handshape features. We construct SA images representing the hand’s shape
and appearance without landmark points. We model the variation of the images by
linear combinations of eigenimages followed by affine transformations, accounting
for 3D hand pose changes and improving model’s compactness. We also incorporate
static and dynamic handshape priors, offering robustness in occlusions, which occur
often in signing. The approach includes an affine signer adaptation component at
the visual level, without requiring training from scratch a new singer-specific model.
We rather employ a short development data set to adapt the models for a new signer.
Experiments on the Boston-University-400 continuous SL corpus demonstrate im-
provements on handshape classification when compared to other feature extraction
approaches. Supplementary evaluations of sign recognition experiments, are con-
ducted on a multi-signer, 100-sign data set, from the Greek sign language lemmas
corpus. These explore the fusion with movement cues as well as signer adaptation of
Aff-SAM to multiple signers providing promising results.
Keywords: affine-invariant shape-appearance model, landmarks-free shape represen-
tation, static and dynamic priors, feature extraction, handshape classification

1. Introduction

Sign languages (SL), that is, languages that convey information via visual patterns,
commonly serve as an alternative or complementary mode of human communication.
The visual patterns of SL are formed mainly by handshapes and manual motion, as well

c� 2013 A. Roussos, S. Theodorakis, V. Pitsikalis & P. Maragos.
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as by non-manual patterns. The hand localization and tracking in a sign video as well as
the derivation of features that reliably describe the configuration of the signer’s hand are
crucial for successful handshape classification. All the above are essential components
for automatic sign language recognition systems or for gesture based human-computer
interaction. Nevertheless, these tasks still pose several challenges, which are mainly
due to the fast movement and the great variation of the hand’s 3D shape and pose.

In this article, we propose a novel modeling of the shape and dynamics of the hands
during signing that leads to efficient handshape features, employed to train statisti-
cal handshape models and finally for handshape classification and sign recognition.
Based on 2D images acquired by a monocular camera, we employ a video process-
ing approach that outputs reliable and accurate masks for the signer’s hands and head.
We construct Shape-Appearance (SA) images of the hand by combining 1) the hand’s
shape, as determined by its 2D hand mask, with 2) the hand’s appearance, as deter-
mined by a normalized mapping of the colors inside the hand mask. The proposed
modeling does not employ any landmark points and bypasses the point correspondence
problem. In order to design a model of the variation of the SA images, which we call
Affine Shape-Appearance Model (Aff-SAM), we modify the classic linear combination
of eigenimages by incorporating 2D affine transformations. These effectively account
for various changes in the 3D hand pose and improve the model’s compactness. After
developing a procedure for the training of the Aff-SAM, we design a robust hand track-
ing system by adopting regularized model fitting that exploits prior information about
the handshape and its dynamics. Furthermore, we propose to use as handshape features
the Aff-SAM’s eigenimage weights estimated by the fitting process.

The extracted features are fed into statistical classifiers based on Gaussian mixture
models (GMM), via a supervised training scheme. The overall framework is evaluated
and compared to other methods in extensive handshape classification experiments. The
SL data are from the Boston University BU400 corpus (Neidle and Vogler, 2012). The
experiments are based on manual annotation of handshapes that contain 3D pose pa-
rameters and the American Sign Language (ASL) handshape configuration. Next, we
define classes that account for varying dependency of the handshapes w.r.t. the orien-
tation parameters. The experimental evaluation addresses first, in a qualitative analysis
the feature spaces via a cluster quality index. Second, we evaluate via supervised train-
ing a variety of classification tasks accounting for dependency w.r.t. orientation/pose
parameters, with/without occlusions. In all cases we also provide comparisons with
other baseline approaches or more competitive ones. The experiments demonstrate im-
proved feature quality indices as well as classification accuracies when compared with
other approaches. Improvements in classification accuracy for the non-occlusion cases
are on average of 35% over baseline methods and 3% over more competitive ones. Im-
provements by taking into account the occlusion cases are on average of 9.7% over the
more competitive methods.

In addition to the above, we explore the impact of Aff-SAM features in a sign recog-
nition task based on statistical data-driven subunits and hidden Markov models. These
experiments are applied on data from the Greek Sign Language (GSL) lemmas corpus
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(DictaSign, 2012), for two different signers, providing a test-bed for the fusion with
movement-position cues, and as evaluation of the affine-adapted SA model to a new
signer, for which there has been no Aff-SAM training. These experiments show that
the proposed approach can be practically applied to multiple signers without requiring
training from scratch for the Aff-SAM models.

2. Background and Related Work

The first step of a hand gesture analysis system is the localization of the hands. This
is usually implemented using several types of visual features, as skin color, edge in-
formation, shape and motion. Color cues are applicable because of the characteristic
colors of the human skin. Many methods, including the one presented here, use skin
color segmentation for hand detection (Argyros and Lourakis, 2004; Yang et al., 2002;
Sherrah and Gong, 2000). Some degree of robustness to illumination changes can be
achieved by selecting color spaces, as the HSV, YCbCr or the CIE-Lab, that separate the
chromaticity from the luminance components (Terrillon et al., 2000; Kakumanu et al.,
2007). In our approach, we adopt the CIE-Lab color space, due to its property of being
perceptually uniform. Cui and Weng (2000) and Huang and Jeng (2001) employ mo-
tion cues assuming the hand is the only moving object on a stationary background, and
that the signer is relatively still.

The next visual processing step is the hand tracking. This is usually based on blobs
(Starner et al., 1998; Tanibata et al., 2002; Argyros and Lourakis, 2004), hand appear-
ance (Huang and Jeng, 2001), or hand boundary (Chen et al., 2003; Cui and Weng,
2000). The frequent occlusions during signing make this problem quite challenging. In
order to achieve robustness against occlusions and fast movements, Zieren et al. (2002),
Sherrah and Gong (2000) and Buehler et al. (2009) apply probabilistic or heuristic rea-
soning for simultaneous assignment of labels to the possible hand/face regions. Our
strategy for detecting and labeling the body-parts shares similarities with the above.
Nevertheless, we have developed a more elaborate preprocessing of the skin mask,
which is based on the mathematical morphology and helps us separate the masks of
different body parts even in cases of overlaps.

Furthermore, a crucial issue to address in a SL recognition system is hand feature
extraction, which is the focus of this paper. A commonly extracted positional feature is
the 2D or 3D center-of-gravity of the hand blob (Starner et al., 1998; Bauer and Kraiss,
2001; Tanibata et al., 2002; Cui and Weng, 2000), as well as motion features (e.g., Yang
et al., 2002; Chen et al., 2003). Several works use geometric measures related to the
hand, such as shape moments (Hu, 1962; Starner et al., 1998) or sizes and distances
between fingers, palm, and back of the hand (Bauer and Kraiss, 2001), though the latter
employs color gloves. In other cases, the contour that surrounds the hand is used to
extract translation, scale, and/or in-plane rotation invariant features, such as Fourier
descriptors (Chen et al., 2003; Conseil et al., 2007).

Segmented hand images are usually normalized for size, in-plane orientation, and/or
illumination and afterwards principal component analysis (PCA) is often applied for
dimensionality reduction and descriptive representation of handshape (Sweeney and
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Downton, 1996; Birk et al., 1997; Cui and Weng, 2000; Wu and Huang, 2000; Deng
and Tsui, 2002; Dreuw et al., 2008; Du and Piater, 2010). Our model uses a similar
framework but differs from these methods mainly in the following aspects. First, we
employ a more general class of transforms to align the hand images, namely affine
transforms that extend both similarity transforms, used, for example, by Birk et al.
(1997) and translation-scale transforms as in the works of Cui and Weng (2000), Wu
and Huang (2000) and Du and Piater (2010). In this way, we can effectively approx-
imate a wider range of changes in the 3D hand pose. Second, the estimation of the
optimum transforms is done simultaneously with the estimation of the PCA weights,
instead of using a pipeline to make these two sets of estimations. Finally, unlike all the
above methods, we incorporate combined static and dynamic priors, which make these
estimations robust and allow us to adapt an existing model on a new signer.

Closely related to PCA approaches, active shape and active appearance models
(Cootes and Taylor, 2004; Matthews and Baker, 2004) are employed for handshape
feature extraction and recognition (Ahmad et al., 1997; Huang and Jeng, 2001; Bow-
den and Sarhadi, 2002; Fillbrandt et al., 2003). Our proposed shape-appearance model
follows the same paradigm with these methods but differs: the modeled images are
Shape-Appearance images and the image warps are not controlled by the shape land-
marks but more simply by the 6 parameters of the affine transformation. In this way, it
avoids shape representation through landmarks and the cumbersome manual annotation
related to that.

Other more general purpose approaches have also been seen in the literature. A
method earlier employed for action-type features is the histogram of oriented gradients
(HOG): these descriptors are used for the handshapes of a signer (Buehler et al., 2009;
Liwicki and Everingham, 2009; Ong et al., 2012). Farhadi et al. (2007) employ the
scale invariant feature transform (SIFT) descriptors. Finally, Thangali et al. (2011)
take advantage of linguistic constraints and exploit them via a Bayesian network to
improve handshape recognition accuracy. Apart from the methods that process 2D
hand images, there are methods built on a 3D hand model, in order to estimate the finger
joint angles and the 3D hand pose (Athitsos and Sclaroff, 2002; Fillbrandt et al., 2003;
Stenger et al., 2006; Ding and Martinez, 2009; Agris et al., 2008). These methods have
the advantage that they can potentially achieve view-independent tracking and feature
extraction; however, their model fitting process might be computationally slow.

Finally, regarding our related work, Roussos et al. (2010b) have included a short
description of an initial tracking system similar to the one we adopt here. A prelimi-
nary version of the Aff-SAM method was presented by Roussos et al. (2010a). This is
substantially extended here in many aspects, the main of which are the following: 1) We
incorporate dynamic and static handshape priors offering robustness in cases of occlu-
sions, 2) We develop an affine signer adaptation component, exploring the adaptation
of Aff-SAM to multiple signers, 3) Extensive handshape classification experiments are
presented, 4) Sign recognition experiments are conducted on a multi-signer database.
In the sign recognition experiments of Section 8, we employ the handshape subunits
construction presented by Roussos et al. (2010b). Finally, Theodorakis et al. (2012)
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Figure 1: Output of the initial hands and head tracking in two videos of two different
signers, from different databases. Example frames with extracted skin region
masks and assigned body-part labels H (head), L (left hand), R (right hand).

and Theodorakis et al. (2011) present preliminary results on movement-handshape in-
tegration for continuous sign recognition.

3. Visual Front-End Preprocessing

The initial step of the visual processing is not the main focus of our method, neverthe-
less we describe it for completeness and reproducibility. The output of this subsystem
at every frame is a set of skin region masks together with one or multiple labels as-
signed to every region, Figure 1. These labels correspond to the body-parts of interest
for sign language recognition: head (H), left hand (L) and right hand (R). The case that
a mask has multiple labels reflects an overlap of the 2D regions of the corresponding
body-parts, that is, there is an occlusion of some body-parts. Referring for example to
the right hand, there are the following cases: 1) The system outputs a mask that con-
tains the right hand only, therefore there is no occlusion related to that hand, and 2) The
output mask includes the right hand as well as other body-part region(s), therefore there
is an occlusion. As presented in Section 4, the framework of SA refines this tracking
while extracting handshape features.

3.1. Probabilistic Skin Color Modeling

We are based on the color cue for body-parts detection. We consider a Gaussian model
of the signer’s skin color in the perceptually uniform color space CIE-Lab, after keeping
the two chromaticity components a⇤, b⇤, to obtain robustness to illumination (Cai and
Goshtasby, 1999). We assume that the (a⇤,b⇤) values of skin pixels follow a bivariate
Gaussian distribution ps(a⇤,b⇤), which is fitted using a training set of color samples
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Figure 2: Skin color modeling. Training samples in the a⇤-b⇤ space and fitted pdf
ps(a⇤,b⇤). The ellipse bounds the colors that are classified to skin, according
to the thresholding of ps(a⇤(x),b⇤(x)). The straight line corresponds to the
first PCA eigendirection on the skin samples and determines the projection
that defines the mapping g(I) used in the Shape-Appearance images forma-
tion.

(Figure 2). These samples are automatically extracted from pixels of the signer’s face,
detected using a face detector (Viola and Jones, 2003).

3.2. Morphological Processing of Skin Masks

In each frame, a first estimation of the skin mask S0 is derived by thresholding at ev-
ery pixel x the value ps(a⇤(x),b⇤(x)) of the learned skin color distribution, see Fig-
ures 2, 3(b). The corresponding threshold is determined so that a percentage of the
training skin color samples are classified to skin. This percentage is set to 99% to
cope with training samples outliers. The skin mask S0 may contain spurious regions
or holes inside the head area due to parts with different color, as for instance eyes,
mouth. For this, we regularize S0 with tools from mathematical morphology (Soille,
2004; Maragos, 2005): First, we use the concept of holes H (S) of a binary image
S, that is, the set of background components, not connected to the border of the im-
age. In order to fill also some background regions that are not holes in the strict sense
but are connected to the image border passing from a small “canal”, we designed a
filter that we call generalized hole filling. This filter yields a refined skin mask estima-
tion S1 = S0 [H (S0)[ {H (S0 •B)�B} where B is a structuring element with size
5⇥5 pixels, and � and • denotes Minkowski dilation, closing respectively. The con-
nected components (CCs) of relevant skin regions can be at most three (corresponding
to the head and the two hands) and cannot have an area smaller than a threshold Amin,
which corresponds to the smallest possible area of a hand region for the current signer
and video acquisition conditions. Therefore, we apply an area opening with a varying
threshold value: we find all CCs of S1, compute their areas and finally discard all the
components whose area is not on the top 3 or is less than Amin. This yields the final skin
mask S2, see Figure 3(c).

184



DYNAMIC AFFINE-INVARIANT SHAPE-APPEARANCE HANDSHAPE FEATURES

(a) Input (b) S0 (c) S2 (d) S2 Bc (e) Segmented S2

Figure 3: Results of skin mask extraction and morphological segmentation. (a) Input.
(b) Initial skin mask estimation S0. (c) Final skin mask S2 (morphological
refinement). (d) Erosion S2 Bc of S2 and separation of overlapped regions.
(e) Segmentation of S2 based on competitive reconstruction opening.

3.3. Morphological Segmentation of the Skin Masks

In the frames where S2 contains three CCs, these yield an adequate segmentation. On
the contrary, when S2 contains less than three CCs, the skin regions of interest occlude
each other. In such cases though, the occlusions are not always essential: different
skin regions in S2 may be connected via a thin connection, Figure 3(c). Therefore we
further segment the skin masks of some frames by separating occluded skin regions
with thin connections: If S2 contains Ncc < 3 connected components, we find the CCs
of S2 Bc, Figure 3(d), for a structuring element Bc of small radius, for example, 3
pixels and discard those CCs whose area is smaller than Amin. A number of remaining
CCs not greater than Ncc implies the absence of any thin connection, thus does not
provide any occlusion separation. Otherwise, we use each one of these CCs as the seed
of a different segment and expand it to cover S2. For this we propose a competitive
reconstruction opening, see Figure 3(e), described by the following iterative algorithm:
In every iteration 1) each evolving segment expands using its conditional dilation by the
3⇥ 3 cross, relative to S2, 2) pixels belonging to more than one segment are excluded
from all segments. This means that segments are expanded inside S2 but their expansion
stops wherever they meet other segments. The above two steps are repeated until all
segments remain unchanged.

3.4. Body-part Label Assignment

This algorithm yields 1) an assignment of one or multiple body-part labels, head, left
and right hand, to all the segments and 2) an estimation of ellipses at segments with
multiple labels (occluded). Note that these ellipses yield a rough estimate of the shapes
of the occluded regions and contribute to the correct assignment of labels after each oc-
clusion. A detailed presentation of this algorithm falls beyond the scope of this article.
A brief description follows. Non-occlusions: For the hands’ labels, given their values
in the previous frames, we employ a prediction of the centroid position of each hand
region taking into account three preceding frames and using a constant acceleration
model. Then, we assign the labels based on minimum distances between the predicted
positions and the segments’ centroids. We also fit one ellipse on each segment since
an ellipse can coarsely approximate the hand or head contour. Occlusions: Using the
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parameters of the body-part ellipses already computed from the three preceding frames,
we employ similarly forward prediction for all ellipses parameters, assuming constant
acceleration. We face non-disambiguated cases by obtaining an auxiliary centroid es-
timation of each body-part via template matching of the corresponding image region
between consecutive frames. Then, we repeat the estimations backwards in time. For-
ward and backward predictions, are fused yielding a final estimation of the ellipses’
parameters for the signer’s head and hands. Figure 1 depicts the output of the initial
tracking in sequences of frames with non-occlusion and occlusion cases. We observe
that the system yields accurate skin extraction and labels assignment.

4. Affine Shape-Appearance Modeling

In this section, we describe the proposed framework of dynamic affine-invariant shape-
appearance model which offers a descriptive representation of the hand configurations
as well as a simultaneous hand tracking and feature extraction process.

4.1. Representation by Shape-Appearance images

We aim to model all possible configurations of the dominant hand during signing, using
directly the 2D hand images. These images exhibit a high diversity due to the variations
on the configuration and 3D hand pose. Further, the set of the visible points of the hand
is significantly varying. Therefore, it is more effective to represent the 2D handshape
without using any landmarks. We thus represent the handshape by implicitly using its
binary mask M, while incorporating also the appearance of the hand, that is, the color
values inside this mask. These values depend on the hand texture and shading, and offer
crucial 3D information.

If I(x) is a cropped part of the current color frame around the hand mask M, then
the hand is represented by the following Shape-Appearance (SA) image (see Figure 4):

f (x) =

(
g(I(x)), if x 2M
�cb, otherwise

,

where g : R3 ! R maps the color values of the skin pixels to a color parameter that
is appropriate for the hand appearance representation. This mapping is more descrip-
tive for hand representation than a common color-to-gray transform. In addition, g is
normalized so that the mapped values g(I) of skin colors I have zero mean and unit
variance. cb > 1 is a background constant that controls the balance between shape and
appearance. As cb gets larger, the appearance variation gets relatively less weighted
and more emphasis is given to the shape part. In the experiments, we have used cb = 3
(that is three times the standard deviation of the foreground values g(I)).

The mapping g(I) is constructed as follows. First we transform each color value I
to the CIE-Lab color space, then keep only the chromaticity components a⇤,b⇤. Finally,
we output the normalized weight of the first principal eigendirection of the PCA on the
skin samples, that is the major axis of the Gaussian ps(a⇤,b⇤), see Section 3.1 and Fig-
ure 2(c). The output g(I) is the most descriptive value for the skin pixels’ chromaticity.
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(a) I(x)

(b) f (x)

Figure 4: Construction of Shape-Appearance images. (a) Cropped hand images I(x).
(b) Corresponding Shape-Appearance images f (x). For the foreground of
f (x) we use the most descriptive feature of the skin chromaticity. The back-
ground has been replaced by a constant value that is out of the range of the
foreground values.

Furthermore, if considered together with the training of ps(a⇤,b⇤), the mapping g(I) is
invariant to global similarity transforms of the values (a⇤,b⇤). Therefore, the SA images
are invariant not only to changes of the luminance component L but also to a wide set of
global transforms of the chromaticity pair (a⇤,b⇤). As it will be described in Section 5,
this facilitates the signer adaptation.

4.2. Modeling the Variation of Hand Shape-Appearance Images

Following Matthews and Baker (2004), the SA images of the hand, f (x), are modeled
by a linear combination of predefined variation images followed by an affine transfor-
mation:

f (Wp(x))⇡ A0(x)+
Nc

Â
i=1

liAi(x), x 2WM . (1)

A0(x) is the mean image, Ai(x) are Nc eigenimages that model the linear variation.
These images can be considered as affine-transformation-free images. In addition, l =

(l1 · · ·lNc) are the weights of the linear combination and Wp is an affine transformation
with parameters p = (p1 · · · p6) that is defined as follows:

Wp(x,y) =
✓

1+ p1 p3 p5
p2 1+ p4 p6

◆0

@
x
y
1

1

A .

The affine transformation models similarity transforms of the image as well as a
significant range of changes in the 3D hand pose. It has a non-linear impact on the SA
images and reduces the variation that is to be explained by the linear combination part,
as compared to other appearance-based approaches that use linear models directly in
the domain of the original images, (e.g., Cui and Weng, 2000). The linear combination
of (1) models the changes in the configuration of the hand and the changes in the 3D
orientation that cannot be modeled by the affine transform.
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Figure 5: Semi-automatic affine alignment of a training set of Shape-Appearance im-
ages. (Top row) 6 out of 500 SA images of the training set. (Bottom row)
Corresponding transformed images, after affine alignment of the training set.
A video that demonstrates this affine alignment is available online (see text).

We will hereafter refer to the proposed model as Shape-Appearance Model (SAM).
A specific model of hand SA images is defined from the base image A0(x) and the
eigenimages Ai(x), which are statistically learned from training data. The vectors p and
l are the model parameters that fit the model to the hand SA image of every frame.
These parameters are considered as features of hand pose and shape respectively.

4.3. Training of the SAM Linear Combination

In order to train the hand SA images model, we employ a representative set of hand-
shape images from frames where the modeled hand is fully visible and non-occluded.
Currently, this set is constructed by a random selection of approximately 500 such im-
ages. To exclude the variation that can be explained by the affine transformations of the
model, we apply a semi-automatic affine alignment of the training SA images. For this,
we use the framework of procrustes analysis (Cootes and Taylor, 2004; Dryden and
Mardia, 1998), which is an iterative process that is repeatedly applying 1-1 alignments
between pairs of training samples. In our case, the 1-1 alignments are affine alignments,
implemented by applying the inverse-compositional (IC) algorithm (Gross et al., 2005)
on pairs of SA images.

The IC algorithm result depends on the initialization of the affine warp, since the
algorithm converges to a local optimum. Therefore, in each 1-1 alignment we test two
different initializations: Using the binary masks M of foreground pixels of the two SA
images, these initializations correspond to the two similarity transforms that make the
two masks have the same centroid, area and orientation.1 Among the two alignment
results, the plausible one is kept, according to manual feedback from a user.

It must be stressed that the manual annotation of plausible alignment results is
needed only during the training of the SA model, not during the fitting of the model.
Also, compared to methods that use landmarks to model the shape (e.g., Cootes and
Taylor, 2004; Matthews and Baker, 2004; Ahmad et al., 1997; Bowden and Sarhadi,

1. The existence of two such transforms is due to the modulo-p ambiguity of the orientation.
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2002), the amount of manual annotation during training is substantially decreased:
The user here is not required to annotate points but just make a binary decision by
choosing the plausible result of 1-1 alignments. Other related methods for aligning
sets of images are described by Learned-Miller (2005) and Peng et al. (2010). How-
ever, the adopted Procrustes analysis framework facilitates the incorporation of the
manual annotation in the alignment procedure. Figure 5 shows some results from
the affine alignment of the training set. For more details, please refer to the follow-
ing URL that contains a video demonstration of the training set alignment: http:
//cvsp.cs.ntua.gr/research/sign/aff_SAM. We observe that the alignment pro-
duces satisfactory results, despite the large variability of the images of the training set.
Note that the resolution of the aligned images is 127⇥133 pixels.

Then, the images Ai of the linear combination of the SA model are statistically
learned using principal component analysis (PCA) on the aligned training SA images.
The number Nc of eigenimages kept is a basic parameter of the SA model. Using a
larger Nc, the model can better discriminate different hand configurations. On the other
hand, if Nc gets too large, the model may not generalize well, in the sense that it will
be consumed on explaining variation due to noise or indifferent information. In the
setup of our experiments, we have practically concluded that the value Nc = 35 is quite
effective. With this choice, the eigenimages kept explain 78% of the total variance of
the aligned images.

Figure 6 demonstrates results of the application of PCA. Even though the modes of
principal variation do not correspond to real handshapes, there is some intuition behind
the influence of each eigenimage at the modeled hand SA image. For example, the first
eigenimage A1 has mainly to do with the foreground appearance: as its weight gets
larger, the foreground intensities get darker and vice-versa. As another example, we
see that by increasing the weight of the second eigenimage A2, the thumb is extended.
Note also that when we decrease the weight of A4 all fingers extend and start detaching
from each other.

4.4. Regularized SAM Fitting with Static and Dynamic Priors

After having built the shape-appearance model, we fit it in the frames of an input sign
language video, in order to track the hand and extract handshape features. Precisely, we
aim to find in every frame n the parameters l = l [n] and p= p[n] that generate a model-
based synthesized image that is sufficiently “close” to the current input SA image f (x).
In parallel, to achieve robustness against occlusions, we exploit prior information about
the handshape and its dynamics. Therefore, we minimize the following energy:

E(l , p) = Erec(l , p)+wSES(l , p)+wDED(l , p) , (2)

where Erec is a reconstruction error term. The terms ES(l , p) and ED(l , p) correspond
to static and dynamic priors on the SAM parameters l and p. The values wS,wD are
positive weights that control the balance between the 3 terms.
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Figure 6: Result of the PCA-based learning of the linear variation images of Equa-
tion (1): Mean image A0(x) and principal modes of variation that demon-
strate the first 5 eigenimages. The top (bottom) row corresponds to deviating
from A0 in the direction of the corresponding eigenimage, with a weight of
3si (-3si), where si is the standard deviation of the corresponding compo-
nent.

The reconstruction error term Erec is a mean square difference defined by:

Erec(l , p) =
1

NM
Â
x

⇢
A0(x)+

Nc

Â
i=1

liAi(x)� f (Wp(x))
�2

,

where the above summation is done over all the NM pixels x of the domain of the images
Ai(x).

The static priors term ES(l , p) ensures that the solution stays relatively close to the
parameters mean values l 0,p0 :

ES(l , p) =
1

Nc
kl �l 0k2

S
l

+

1
Np
kp� p0k

2
Sp

,

where Nc and Np are the dimensions of l and p respectively (since we model affine
transforms, Np=6). These numbers act as normalization constants, since they corre-
spond to the expected values of the quadratic terms that they divide. Also, S

l

and Sp
are the covariance matrices of l and p respectively,2 which are estimated during the
training of the priors (Section 4.4.2). We denote by kykA, with A being a N⇥N sym-
metric positive-definite matrix and y 2 RN , the following Mahalanobis distance from y
to 0:

kykA ,
p

yT A�1y .

Using such a distance, the term ES(l , p) penalizes the deviation from the mean values
but in a weighted way, according to the appropriate covariance matrices.

The dynamic priors term ED(l , p) makes the solution stay close to the parameters
estimations l

e
= l

e
[n], pe

= pe
[n] based on already fitted values on adjacent frames

2. We have assumed that the parameters l and p are statistically independent.
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(for how these estimations are derived, see Section 4.4.1):

ED(l , p) =
1

Nc
kl �l

ek2
S

e

l

+

1
Np
kp� pek2

S
e p

, (3)

where S
e

l

and S
e p are the covariance matrices of the estimation errors of l and p re-

spectively, see Section 4.4.2 for the training of these quantities too. The numbers Nc
and Np act again as normalization constants. Similarly to ES(l , p), the term ED(l , p)
penalizes the deviation from the predicted values in a weighted way, by taking into ac-
count the corresponding covariance matrices. Since the parameters l are the weights of
the eigenimages Ai(x) derived from PCA, we assume that their mean l 0 = 0 and their
covariance matrix S

l

is diagonal, which means that each component of l is indepen-
dent from all the rest.

It is worth mentioning that the energy-balancing weights wS,wD are not constant
through time, but depend on whether the modeled hand in the current frame is occluded
or not (this information is provided by the initial tracking preprocessing step of Sec-
tion 3). In the occlusion cases, we are less confident than in the non-occlusion cases
about the input SA image f (x), which is involved in the term Erec(l , p). Therefore, in
these cases we obtain more robustness by increasing the weights wS,wD. In parallel, we
decrease the relative weight of the dynamic priors term wD

wS+wD
, in order to prevent error

accumulation that could be propagated in long occlusions via the predictions l

e, pe.
After parameters tuning, we have concluded that the following choices are effective for
the setting of our experiments: 1) wS=0.07, wD=0.07 for the non-occluded cases and 2)
wS=0.98, wD=0.42 for the occluded cases.

An input video is split into much smaller temporal segments, so that the SAM fitting
is sequential inside every segment as well independent from the fittings in all the rest
segments: All the video segments of consecutive non-occluded and occluded frames
are found and the middle frame of each segment is specified. For each non-occluded
segment, we start from its middle frame and we get 1) a segment with forward direc-
tion by ending to the middle frame of the next occluded segment and 2) a segment
with backward direction by ending after the middle frame of the previous occluded
segment. With this splitting, we increase the confidence of the beginning of each se-
quential fitting, since in a non-occluded frame the fitting can be accurate even without
dynamic priors. In the same time, we also get the most out of the dynamic priors, which
are mainly useful in the occluded frames. Finally, this splitting strategy allows a high
degree of parallelization.

4.4.1. DYNAMICAL MODELS FOR PARAMETER PREDICTION

In order to extract the parameter estimations l

e, pe that are used in the dynamic prior
term ED (3), we use linear prediction models (Rabiner and Schafer, 2007). At each
frame n, a varying number K = K(n) of already fitted frames is used for the parameter
prediction. If the frame is far enough from the beginning of the current sequential
fitting, K takes its maximum value, Kmax. This maximum length of a prediction window
is a parameter of our system (in our experiments, we used Kmax = 8 frames). If on the
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other hand, the frame is close to the beginning of the corresponding segment, then K
varies from 0 to Kmax, depending on the number of frames of the segment that have
been already fitted.

If K = 0, we are at the starting frame of the sequential fitting, therefore no prediction
from other available frames can be made. In this case, which is degenerate for the linear
prediction, we consider that the estimations are derived from the prior means l

e
= l 0,

pe
= p0 and also that S

e

l

= S
e

, S
e p = Sp, which results to ED(l , p) = ES(l , p). In all

the rest cases, we apply the framework that is described next.
Given the prediction window value K, the parameters l are predicted using the

following autoregressive model:

l

e
[n] =

K

Â
n=1

A
n

l [n⌥n ] ,

where the � sign (+ sign) corresponds to the case of forward (backward) predic-
tion. Also, A

n

are Nc⇥Nc weight matrices that are learned during training (see Sec-
tion 4.4.2). Note that for every prediction direction and for every K, we use a different
set of weight matrices A

n

that is derived from a separate training. This is done to op-
timize the prediction accuracy for the specific case of every prediction window. Since
the components of l are assumed independent to each other, it is reasonable to con-
sider that all weight matrices A

n

are diagonal, which means that each component has
an independent prediction model.

As far as the parameters p are concerned, they do not have zero mean and we cannot
consider them as independent since, in contrast to l , they are not derived from a PCA.
Therefore, in order to apply the same framework as above, we consider the following
re-parametrization:

ep =UT
p (p� p0), p = p0 +Upep ,

where the matrix Up contains column-wise the eigenvectors of Sp. The new parameters
ep have zero mean and diagonal covariance matrix. Similarly to l , the normalized
parameters ep are predicted using the following model:

epe
[n] =

K

Â
n=1

B
n

ep[n⌥n ] ,

where B
n

are the corresponding weight matrices which again are all considered diago-
nal.

4.4.2. AUTOMATIC TRAINING OF THE STATIC AND DYNAMIC PRIORS

In order to apply the regularized SAM fitting, we first learn the priors on the parameters
l and p and their dynamics. This is done by training subsequences of frames where the
modeled hand is not occluded. This training does not require any manual annotation.
We first apply a random selection of such subsequences from videos of the same signer.
Currently, the randomly selected subsequences used in the experiments are 120 con-
taining totally 2882 non-occluded frames and coming from 3 videos. In all the training
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subsequences, we fit the SAM in each frame independently by minimizing the energy
in Equation (2) with wS=wD=0 (that is without prior terms). In this way, we extract
fitted parameters l , p for all the training frames. These are used to train the static and
dynamic priors.

4.4.3. STATIC PRIORS

In this case, for both cases of l and p, the extracted parameters from all the frames are
used as samples of the same multivariate distribution, without any consideration of their
successiveness in the training subsequences. In this way, we form the training sets T

l

and Tp that correspond to l and p respectively. Concerning the parameter vector l , we
have assumed that its mean l 0 = 0 and its covariance matrix S

l

is diagonal. Therefore,
only the diagonal elements of S

l

, that is the variances s

2
li

of the components of l , are
to be specified. This could be done using the result of the PCA (Section 4.2), but we
employ the training parameters of T

l

that come from the direct SAM fitting, since they
are derived from a process that is closer to the regularized SAM fitting. Therefore, we
estimate each s

2
li

from the empirical variance of the corresponding component li in the
training set T

l

. Concerning the parameters p, we estimate p0 and Sp from the empirical
mean and covariance matrix of the training set Tp.

4.4.4. DYNAMIC PRIORS

As already mentioned, for each prediction direction (forward, backward) and for each
length K of the prediction window, we consider a different prediction model. The (K+

1)-plets3 of samples for each one of these models are derived by sliding the appropriate
window in the training sequences. In order to have as good accuracy as possible, we
do not make any zero (or other) padding in unknown parameter values. Therefore, the
samples are picked only when the window fits entirely inside the training sequence.
Similarly to linear predictive analysis (Rabiner and Schafer, 2007) and other tracking
methods that use dynamics (e.g., Blake and Isard, 1998) we learn the weight matrices
A

n

, B
n

by minimizing the mean square estimation error over all the prediction-testing
frames. Since we have assumed that A

n

and B
n

are diagonal, this optimization is
done independently for each component of l and ep, which is treated as 1D signal.
The predictive weights for each component are thus derived from the solution of an
ordinary least squares problem. The optimum values of the mean squared errors yield
the diagonal elements of the prediction errors’ covariance matrices S

e

l

and S
eep , which

are diagonal.

4.4.5. IMPLEMENTATION AND RESULTS OF SAM FITTING

The energy E(l , p) (2) of the proposed regularized SAM fitting is a special case of the
general objective function that is minimized by the simultaneous inverse compositional
with a prior (SICP) algorithm of Baker et al. (2004). Therefore, in order to minimize
E(l , p), we specialize this algorithm for the specific types of our prior terms. Details

3. The (K +1)-plets follow from the fact that we need K neighbouring samples + the current sample.

193



ROUSSOS THEODORAKIS PITSIKALIS MARAGOS

Figure 7: Regularized Shape-Appearance Model fitting in a sign language video. In
every input frame, we superimpose the model-based reconstruction of the
hand in the frame domain, A0(W�1

p (x))+ÂliAi(W�1
p (x)). In the upper-right

corner, we display the reconstruction in the model domain, A0(x)+ÂliAi(x),
which determines the optimum weights l . A demo video is available online
(see text).

are given in the Appendix A. At each frame n of a video segment, the fitting algorithm
is initialized as follows. If the current frame is not the starting frame of the sequential
fitting (that is K(n) 6= 0), then the parameters l , p are initialized from the predictions
l

e, pe. Otherwise, if K(n) = 0, we test as initializations the two similarity transforms
that, when applied to the SAM mean image A0, make its mask have the same centroid,
area and orientation as the mask of the current frame’s SA image. We twice apply the
SICP algorithm using these two initializations, and finally choose the initialization that
yields the smallest regularized energy E(l , p).

Figure 7 demonstrates indicative results of the regularized fitting of the dominant
hand’s SAM in a sign language video. For more details, please refer to the following
URL that contains a video of these results: http://cvsp.cs.ntua.gr/research/
sign/aff_SAM. We observe that in non-occlusion cases, this regularized method is
effective and accurately tracks the handshape. Further, in occlusion cases, even after a
lot of occluded frames, the result is especially robust. Nevertheless, the accuracy of the
extracted handshape is smaller in cases of occlusions, compared to the non-occlusion
cases, since the prior terms keep the result closer to the SAM mean image A0. In
addition, extensive handshape classification experiments were performed in order to
evaluate the extracted handshape features employing the proposed Aff-SAM method
(see Section 7).

5. Signer Adaptation

We develop a method for adapting a trained Aff-SAM model to a new signer. This adap-
tation is facilitated by the characteristics of the Aff-SAM framework. Let us consider
an Aff-SAM model trained to a signer, using the procedure described in Section 4.3.
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Signer A Signer B

Figure 8: Skin color modeling for the two signers of the GSL lemmas corpus, where
we test the signer adaptation. Training samples in the a⇤-b⇤ chromaticity
space and fitted pdf’s ps(a⇤,b⇤). In each case, the straight line defines the
normalized mapping g(I) used in the Shape-Appearance images formation.

We aim to reliably adapt and fit the existing Aff-SAM model on videos from a new
signer.

5.1. Skin Color and Normalization

The employed skin color modeling adapts on the characteristics of the skin color of a
new signer. Figure 8 illustrates the skin color modeling for the two signers of the GSL
lemmas corpus, where we test the adaptation. For each new signer, the color model
is built from skin samples of a face tracker (Section 3.1, Section 4.1). Even though
there is an intersection, the domain of colors classified as skin is different between the
two. In addition, the mapping g(I) of skin color values, used to create the SA images,
is normalized according to the skin color distribution of each signer. The differences
in the lines of projection reveal that the normalized mapping g(I) is different in these
two cases. This skin color adaptation makes the body-parts label extraction of the
visual front-end preprocessing to behave robustly over different signers. In addition,
the extracted SA images have the same range of values and are directly comparable
across signers.

5.2. Hand Shape and Affine Transforms

Affine transforms can reliably compensate for the anatomical differences of the hands
of different signers. Figure 9 demonstrates some examples. In each case, the right hands
of the signers are in a similar configuration and viewpoint. We observe that there exist
pairs of affine transformations that successfully align the handshapes of both signers
to the common model domain. For instance, the affine transforms have the ability to
stretch or shrink the hand images over the major hand axis. They thus automatically
compensate for the fact that the second signer has thinner hands and longer fingers. In
general, the class of affine transforms can effectively approximate the transformation
needed to align the 2D hand shapes of different signers.
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Figure 9: Alignment of the hands of two different signers, using affine transformations.
First row: Input frames with superimposed rectangles that visualize the affine
transformations. Second row: Cropped images around the hand. Third row:
Alignment of the cropped images in a common model domain, using the
affine transformations.

5.3. New Signer Fitting

To process a new signer the visual front-end is applied as in Section 3. Then, we
only need to re-train the static and dynamic priors on the new signer. For this, we
randomly select frames where the hand is not occluded. Then, for the purposes of this
training, the existing SAM is fitted on them by minimizing the energy in Equation (2)
with wS=wD=0, namely the reconstruction error term without prior terms. Since the
SAM is trained on another signer, this fitting is not always successful, at this step.
At that point, the user annotates the frames where this fitting has succeeded. This
feedback is binary and is only needed during training and for a relatively small number
of frames. For example, in the case of the GSL lemmas corpus, we sampled frames from
approximately 1.2% of all corpus videos of this signer. In 15% of the sampled frames,
this fitting with no priors was annotated as successful. Using the samples from these
frames, we learn the static and dynamic priors of l and p, as described in Section 4.4.2
for the new signer. The regularized SAM fitting is implemented as in Section 4.4.5.

Figure 10 demonstrates results of the SAM fitting, in the case of signer adaptation.
The SAM eigenimages are learned using solely Signer A. The SAM is then fitted on the
signer B, as above. For comparison, we also visualize the result of the SAM fitting to
the signer A, for the same sign. Demo videos for these fittings also are included in the
following URL: http://cvsp.cs.ntua.gr/research/sign/aff_SAM. We observe
that, despite the anatomical differences of the two signers, the performance of the SAM
fitting is satisfactory after the adaptation. In both signers, the fitting yields accurate
shape estimation in non-occlusion cases.
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Source signer (A)

New signer (B)

Figure 10: Regularized Shape-Appearance Model fitting on 2 signers. The SA model
was trained on Signer A and adapted for Signer B. Demo videos are avail-
able online (see text).

6. Data Set and Handshape Annotation for Handshape Classification

The SL Corpus BU400 (Neidle and Vogler, 2012) is a continuous American sign lan-
guage database. The background is uniform and the images have a resolution of 648x484
pixels, recorded at 60 frames per second. In the classification experiments we employ
the front camera video, data from a single signer, and the story ‘Accident’. We next
describe the annotation parameters required to produce the ground-truth labels. These
concern the pose and handshape configurations and are essential for the supervised
classification experiments.

6.1. Handshape Parameters and Annotation

The parameters that need to be specified for the annotation of the data are the (pose-
independent) handshape configuration and the 3D hand pose, that is the orientation of
the hand in the 3D space. For the annotation of the handshape configurations we fol-
lowed the SignStream annotation conventions (Neidle, 2007). For the 3D hand pose we
parametrized the 3D hand orientations inspired by the HamNoSys description (Hanke,
2004). The adopted annotation parameters are as follows: 1) Handshape identity (HSId)
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(a) Front (F) (b) Side (S) (c) Bird’s (B) (d) Palm (P)

Figure 11: 3D Hand Orientation parameters: (a-c) Extended Finger Direction Param-
eters: (a) Signer’s front view (F), (b) Side view (S), (c) Birds’ view (B);
(d) Palm orientation (P). Note that we have modified the corresponding fig-
ures of Hanke (2004) with numerical parameters.

which defines the handshape configuration, that is, (‘A’, ‘B’, ‘1’, ‘C’ etc.), see Table 1
for examples. 2) 3D Hand Orientation (hand pose) consisting of the following parame-
ters (see Figure 11): i) Extended Finger Direction parameters that define the orientation
of the hand axis. These correspond to the hand orientation relatively to the three planes
that are defined relatively to: the Signer’s Front view (referred to as F), the Bird’s view
(B) and the Side view (S). ii) Palm Orientation parameter (referred to as P) for a given
extended finger direction. This parameter is defined w.r.t. the bird’s view, as shown in
Figure 11(d).

6.2. Data Selection and Classes

We select and annotate a set of occluded and non-occluded handshapes so that 1) they
cover substantial handshape and pose variation as they are observed in the data and
2) they are quite frequent. More specifically we have employed three different data sets
(DS): 1) DS-1: 1430 non-occluded handshape instances with 18 different HSIds. 2) DS-
1-extend: 3000 non-occluded handshape instances with 24 different HSIds. 3) DS-2:
4962 occluded and non-occluded handshape instances with 42 different HSIds. Table 1
presents an indicative list of annotated handshape configurations and 3D hand orienta-
tion parameters.

7. Handshape Classification Experiments

In this section we present the experimental framework consisting of the statistical sys-
tem for handshape classification. This is based 1) on the handshape features extracted
as described in Section 4; 2) on the annotations as described in Section 6.1 as well as
3) on the data selection and classes (Section 6.2). Next, we describe the experimen-
tal protocol containing the main experimental variations of the data sets, of the class
dependency, and of the feature extraction method.
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HSId 1 1 4 4 5C 5 5 5 A A BLBLBL BL

3D
ha

nd
po

se F 8 1 7 6 1 7 8 1 8 8 8 7 8 8
S 0 0 0 3 1 0 2 2 0 2 0 0 0 0
B 0 0 0 6 4 0 1 1 0 6 0 0 0 0
P 1 8 3 1 3 3 1 5 3 2 2 3 3 4

# insts. 14 24 10 12 27 38 14 19 14 31 10 15 23 30

exmpls.

HSId BLCUL F F U ULV Y b1 c5 c5 cS cS fO2

3D
ha

nd
po

se F 8 7 7 1 7 7 8 8 7 8 8 7 8 8
S 2 0 0 2 0 0 0 0 0 0 0 0 2 0
B 6 0 0 1 0 0 0 0 0 0 6 6 6 0
P 4 3 3 3 2 3 2 2 3 3 1 3 3 1

# insts. 20 13 23 13 10 60 16 16 10 17 18 10 34 12

exmpls.

Table 1: Samples of annotated handshape identities (HSId) and corresponding 3D hand
orientation (pose) parameters for the D-HFSBP class dependency and the cor-
responding experiment; in this case each model is fully dependent on all of
the orientation parameters. ‘# insts.’ corresponds to the number of instances
in the dataset. In each case, we show an example handshape image that is
randomly selected among the corresponding handshape instances of the same
class.

7.1. Experimental Protocol and Other Approaches

The experiments are conducted by employing cross-validation by selecting five differ-
ent random partitions of the dataset into train-test sets. We employ 60% of the data for
training and 40% for testing. This partitioning samples data, among all realizations per
handshape class in order to equalize class occurrence. The number of realizations per
handshape class are on average 50, with a minimum and maximum number of realiza-
tions in the range of 10 to 300 depending on the experiment and the handshape class
definition. We assign to each experiment’s training set one GMM per handshape class;
each has one mixture and diagonal covariance matrix. The GMMs are uniformly ini-
tialized and are afterwards trained employing Baum-Welch re-estimation (Young et al.,
1999). Note that we are not employing other classifiers since we are interested in the
evaluation of the handshape features and not the classifier. Moreover this framework
fits with common hidden Markov model (HMM)-based SL recognition frameworks
(Vogler and Metaxas, 1999), as in Section 8.
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Class Annotation Parameters
Dependency label HSId(H) Front(F) Side(S) Bird’s(B) Palm(P)

D-HFSBP D D D D D
D-HSBP D * D D D
D-HBP D * * D D
D-HP D * * * D
D-H D * * * *

Table 2: Class dependency on orientation parameters. One row for each model depen-
dency w.r.t. the annotation parameters. The dependency or non-dependency
state to a particular parameter for the handshape trained models is noted as
‘D’ or ‘*’ respectively. For instance the D-HBP model is dependent on the
HSId and Bird’s view and Palm orientation parameters.

7.1.1. EXPERIMENTAL PARAMETERS

The experiments are characterized by the dataset employed, the class dependency and
the feature extraction method as follows:

Data Set (DS): We have experimented employing three different data sets DS-1,
DS-1-extend and DS-2 (Section 6.2 for details).

Class dependency (CD): The class dependency defines the orientation parameters
in which our trained models are dependent to (Table 2). Take for instance the orienta-
tion parameter ‘Front’ (F). There are two choices, either 1) construct handshape models
independent to this parameter or 2) construct different handshape models for each value
of the parameter. In other words, at one extent CD restricts the models generalization
by making each handshape model specific to the annotation parameters, thus highly
discriminable, see for instance in Table 2 the experiment corresponding to D-HFSBP.
At the other extent CD extends the handshape models generalization w.r.t. to the anno-
tation parameters, by letting the handshape models account for pose variability (that is
depend only on the HSId; same HSId’s with different pose parameters are tied), see for
instance experiment corresponding to the case D-H (Table 2). The CD field takes the
values shown in Table 2.

7.1.2. FEATURE EXTRACTION METHOD

Apart from the proposed Aff-SAM method, the methods employed for handshape fea-
ture extraction are the following:

Direct Similarity Shape-Appearance Modeling (DS-SAM): Main differences of this
method with Aff-SAM are as follows: 1) we replace the affine transformations that are
incorporated in the SA model (1) by simpler similarity transforms and 2) we replace the
regularized model fitting by direct estimation (without optimization) of the similarity
transform parameters using the centroid, area and major axis orientation of the hand
region followed by projection into the PCA subspace to find the eigenimage weights.
Note that in the occlusion cases, this simplified fitting is done directly on the SA image
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of the region that contains the modeled hand as well as the other occluded body-part(s)
(that is the other hand and/or the head), without using any static or dynamic priors as
those of Section 4.4. This approach is similar to Birk et al. (1997) and is adapted to fit
our framework.

Direct Translation Scale Shape-Appearance Modeling (DTS-SAM): The main dif-
ferences of this method with Aff-SAM are the following: 1) we replace the affine
transformations that are incorporated in the Shape-Appearance model (1) by simpler
translation-scale transforms and 2) we replace the regularized model fitting by direct
estimation of the translation and scale parameters using the square that tightly surrounds
the hand mask, followed again by projection into the PCA subspace to find the eigen-
image weights. In this simplified version too, the hand occlusion cases are treated by
simply fitting the model to the Shape-Appearance image that contains the occlusion,
without static or dynamic priors. This approach is similar to Cui and Weng (2000), Wu
and Huang (2000) and Du and Piater (2010) and is adapted so as to fit our proposed
framework.

Other tested methods from the literature contain the Fourier Descriptors (FD):
These are derived from the Fourier coefficients of the contour that surrounds the hand,
after appropriate normalizations for scale and rotation invariance (Chen et al., 2003;
Conseil et al., 2007). For dimensionality reduction, we keep the descriptors that cor-
respond to the first NFD frequencies. We tested different values for the parameter NFD
and finally kept NFD = 50 that yield the best performance. Moments (M): These con-
sist of the seven Hu moment invariants of the hand region (Hu, 1962). These depend
only on the central moment of the binary shape of the hand region and are invariant to
similarity transforms of the hand region. Region Based (RB): These consist of the area,
eccentricity, compactness and minor and major axis lengths of the hand region (Agris
et al., 2008). Compared to the proposed Aff-SAM features we consider the rest five sets
of features belonging to either baseline features or more advanced features. First, the
baseline features contain the FD, M and RB approaches. Second, the more advanced
features contain the DS-SAM and DTS-SAM methods which we have implemented as
simplified versions of the proposed Aff-SAM. As it will be revealed by the evaluations,
the more advanced features are more competitive than the baseline features and the
comparisons with them are more challenging.

7.2. Feature Space Evaluation Results

Herein we evaluate the feature space of the Aff-SAM method. In order to approximately
visualize it, we employ the weights l1,l2 of the two principal eigenimages of Aff-
SAM. Figure 12(a) provides a visualization of the trained models per class, for the
experiment corresponding to D-HFSBP class dependency (that is each class is fully
dependent on orientation parameters). It presents a single indicative cropped handshape
image per class to add intuition on the presentation: these images correspond to the
points in the feature space that are closest to the specific classes’ centroids. We observe
that similar handshape models share close positions in the space. The presented feature
space is indicative and it seems clear when compared to feature spaces of other methods.
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(a)

Figure 12: Feature space for the Aff-SAM features and the D-HFSBP experiment case
(see text). The trained models are visualized via projections on the l1�l2
plane that is formed from the weights of the two principal Aff-SAM eigen-
images. Cropped handshape images are placed at the models’ centroids.

To support this we compare the feature spaces with the Davies-Boulding index (DBi),
which quantifies their quality. In brief, the DBi is the average over all n clusters, of the
ratio of intra-cluster distances si versus the inter-cluster distance di, j of i, j clusters, as a
measure of their separation: DBi = 1

n Ân
i=1 maxi 6= j(

si+s j
di, j

) (Davies and Bouldin, 1979).
Figure 13 presents the results. The reported indices are for varying CD field, that is
the orientation parameters on which the handshape models are dependent or not (as
discussed in Section 7.1) and are referred in Table 2. We observe that the DBi’s for the
Aff-SAM features are lower that is the classes are more compact and more separable,
compared to the other cases. The closest DBi’s are these of DS-SAM. In addition, the
proposed features show stable performance over experiments w.r.t. class-dependency,
indicating robustness to some amount of pose variation.
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Figure 13: Davies-Bouldin index (DBi) in logarithmic scale (y-axis) for multiple fea-
ture spaces and varying models class dependency to the orientation param-
eters. Lower values of DBi indicate better compactness and separability of
classes.

Data Set # HSIds CD Occ. Feat. Method Avg.Acc.% Std.

DS-1 18 Table. 2
Aff-SAM 93.7 1.5

7 DS-SAM 93.4 1.6
DTS-SAM 89.2 1.9

DS-1-extend 24 ‘D-H’
Aff-SAM 77.2 1.6

7 DS-SAM 74 2.3
DTS-SAM 67 1.4

DS-2 42 Table. 2
Aff-SAM 74.9 0.9

X DS-SAM 66.1 1.1
DTS-SAM 62.7 1.4

Table 3: Experiments overview with selected average overall results over different
main feature extraction methods and experimental cases of DS and CD ex-
periments, with occlusion or not (see Section 7.1). CD: class dependency.
Occ.: indicates whether the dataset includes occlusion cases. # HSIds: the
number of HSId employed, Avg.Acc.: average classification accuracy, Std.:
standard deviation of the classification accuracy.

7.3. Results of Classification Experiments

We next show average classification accuracy results after 5-fold cross-validation for
each experiment. together with the standard deviation of the accuracies. The experi-
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Figure 14: Classification experiments for non-occlusion cases, dataset DS-1. Classi-
fication Accuracy for varying experiments (x-axis) that is the dependency
of each class w.r.t. the annotation parameters [H,F,B,S,P] and the feature
employed (legend). For the numbers of classes per experiment see Table 4.

ments consist of 1) Class dependency and Feature variation for non-occlusion cases and
2) Class dependency and Feature variation for both occlusion and non-occlusion cases.
Table 3 presents averages as well as comparisons with other features for the three main
experimental data sets discussed. The averages are over all cross-validation cases, and
over the multiple experiments w.r.t. class dependency, where applicable. For instance,
in the first block for the case ‘DS-1’, that is non-occluded data from the dataset DS-1,
the average is taken over all cases of class dependency experiments as described in Ta-
ble 2. For the ‘DS-1-extend’ case, the average is taken over the D-H class dependency
experiment, since we want to increase the variability within each class.

7.3.1. FEATURE COMPARISONS FOR NON-OCCLUDED CASES

Next, follow comparisons by employing the referred feature extraction approaches, for
two cases of data sets, while accounting for non-occluded cases.

7.3.2. DATA SET DS-1

In Figure 14 we compare the employed methods, while varying the models’ depen-
dency w.r.t. the annotation parameters (x axis). We employ the DS-1 data set, con-
sisting of 18 handshape types from non-occlusion cases. The number of classes are
shown in Table 4. In Figure 14 we depict the performance over the different meth-
ods and models’ dependency. At the one extent (that is ‘D-HFBSP’) we trained one
GMM model for each different combination of the handshape configuration parameters
(H,F,B,S,P). Thus, the trained models were dependent on the 3D handshape pose and
so are the classes for the classification (34 different classes). In the other extent (‘D-H’)
we trained one GMM model for each HSId thus the trained models were independent to
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Class dependency D-HFSBP D-HSBP D-HBP D-HP D-HParameters
# Classes 34 33 33 31 18

Table 4: Number of classes for each type of class dependency (classification experi-
ments for Non-Occlusion cases).

the 3D handshape pose and so are the classes for the classification (18 different classes).
Furthermore we observe that the proposed method outperforms the baseline methods
(FD, RB, M) and DTS-SAM. However the classification performance of Aff-SAM and
DS-SAM methods is quite close in some cases. This is due to the easy classification task
(small number of HSIds and 3D pose variability and non-occlusion cases). The classifi-
cation performance of the proposed method is slightly affected from the decrease of the
dependency on the annotation parameters. This strengthens our previous observation
that the proposed method can handle small pose variations. For a results’ overview see
Table 3 (DS-1 block). The averages are across all pose-dependency cases.

7.3.3. DATA SET DS-1-EXTEND

This is an extension of DS-1 and consists of 24 different HSIds with much more 3D
handshape pose variability. We trained models independent to the 3D handshape pose.
Thus, these experiments refer to the D-H case. Table 3 (DS-1-extend block) shows av-
erage results for the three competitive methods. We observe that Aff-SAM outperforms
both DS-SAM and DTS-SAM achieving average improvements of 3.2% and 10.2%
respectively. This indicates the advancement of the Aff-SAM over the other two com-
petitive methods (DS-SAM and DTS-SAM) in more difficult tasks. It also shows that,
by incorporating more data with extended variability w.r.t. pose parameters, there is an
increase in the average improvements.

Class dependency D-HFSBP D-HSBP D-HBP D-HP D-HParameters
# Classes 100 88 83 72 42

Table 5: Number of classes for each type of class dependency (classification experi-
ments for Occlusion and Non-Occlusion cases).

7.3.4. FEATURE COMPARISONS FOR OCCLUDED AND NON-OCCLUDED CASES

In Figure 15 we vary the models’ dependency w.r.t. the annotation parameters similar
to Section 7.3.1. However, DS-2 data set consists of 42 handshape HSIds for both oc-
clusion and non-occlusion cases. For the number of classes per experiment see Table 5.
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Figure 15: Classification experiments for both occluded and non-occluded cases. Clas-
sification Accuracy by varying the dependency of each class w.r.t. to the an-
notation parameters [H,F,B,S,P] (x-axis) and the feature employed (legend).
For the numbers of classes per experiment see Table 5.

Aff-SAM outperforms both DS-SAM and DST-SAM obtaining on average 10% per-
formance increase in all cases (Figure 15). This indicates that Aff-SAM handles hand-
shape classification obtaining decent results even during occlusions. The performance
for the other baseline methods is not shown since they cannot handle occlusions and
the results are lower. The comparisons with the two more competitive methods show
the differential gain due to the claimed contributions of the Aff-SAM. By making our
models independent to 3D pose orientation, that is,-H, the classification performance
decreases. This makes sense since by taking into consideration the occlusion cases the
variability of the handshapes’ 3D pose increases; as a consequence the classification
task is more difficult. Moreover, the classification during occlusions may already in-
clude errors at the visual modeling level concerning the estimated occluded handshape.
In this experiment, the range of 3D pose variations is larger than the amount handled
by the affine transforms of the Aff-SAM.

8. Sign Recognition

Next, we evaluate the Aff-SAM approach, on automatic sign recognition experiments,
while fusing with movement/position cues, as well as concerning its application on
multiple signers. The experiments are applied on data from the GSL lexicon corpus
(DictaSign, 2012). By employing the presented framework for tracking and feature
extraction (Section 3) we extract the Aff-SAM features (Section 4). These are then em-
ployed to construct data-driven subunits as in Roussos et al. (2010b) and Theodorakis
et al. (2012), which are further statistically trained. The lexicon corpus contains data
from two different signers, A and B. Given the Aff-SAM based models from signer A
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Figure 16: Sign recognition in GSL lemmas corpus employing 100 signs for each
signer A and B, and multiple cues: Hanshape (HS), Movement-Position
(MP) cue and MP+HS fusion between both via Parallel HMMs.

these are then adapted and fitted to another signer (B) as in Section 5 for which no Aff-
SAM models have been trained. The features resulting as a product of the visual level
adaptation, are employed next in the recognition experiment. For signer A, the features
are extracted from the signer’s own model. Note that, there are other aspects concern-
ing signer adaptation during SL recognition, as for instance the manner of signing or
the different pronunciations, which are not within the focus of this article.

GSL Lemmas: We employ 100 signs from the GSL lemmas corpus. These are
articulated in isolation with five repetitions each, from two native signers (male and
female). The videos have a uniform background and a resolution of 1440x1080 pixels,
recorded at 25 fps.

8.1. Sub-unit Modeling and Sign Recognition

The SL recognition framework consists of the following: 1) First by employing the
movement-position cue we construct dynamic/static SUs based on dynamic and static
discrimination (Pitsikalis et al., 2010; Theodorakis et al., 2012). 2) Second we employ
the handshape features and the sub-unit construction via clustering of the handshape
features (Roussos et al., 2010b). 3) We then create one lexicon for each information
cue, that is, movement-position and handshape. For the movement-position lexicon
we recompose the constructed dynamic/static SUs, whereas for the Handshape lexicon
we recompose the handshape subunits (HSU) to form each sign realization. 4) Next,
for the training of the SUs we employ a GMM for the static and handshape subunits
and an 5-state HMM for the dynamic subunits. Concerning the training, we employ
four realizations for each sign for training and one for testing. 5) Finally, we fuse the
movement-position and handshape cues via one possible late integration scheme, that
is Parallel HMMs (PaHMMs) (Vogler and Metaxas, 1999).
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8.2. Sign Recognition Results

In Figure 16 we present the sign recognition performance on the GSL lemmas corpus
employing 100 signs from two signers, A and B, while varying the cues employed:
movement-position (MP), handshape (HS) recognition performance and the fusion of
both MP+HS cues via PaHMMs. For both signers A and B, handshape-based recogni-
tion outperforms the one of movement-position cue. This is expected, and indicates that
handshape cue is crucial for sign recognition. Nevertheless, the main result we focus
is the following: The sign recognition performance in Signer-B is similar to Signer-A,
where the Aff-SAM model has been trained. Thus by applying the affine adaptation
procedure and employing only a small development set, as presented in Section 5 we
can extract reliable handshape features for multiple signers. As a result, when both cues
are employed, and for both signers, the recognition performance increases, leading to a
15% and 7.5% absolute improvement w.r.t. the single cues respectively.

9. Conclusions

In this paper, we propose a new framework that incorporates dynamic affine-invariant
Shape - Appearance modeling and feature extraction for handshape classification. The
proposed framework leads to the extraction of effective features for hand configura-
tions. The main contributions of this work are the following: 1) We employ Shape-
Appearance hand images for the representation of the hand configurations. These im-
ages are modeled with a linear combination of eigenimages followed by an affine trans-
formation, which effectively accounts for some 3D hand pose variations. 2) In order to
achieve robustness w.r.t. occlusions, we employ a regularized fitting of the SAM that
exploits prior information on the handshape and its dynamics. This process outputs an
accurate tracking of the hand as well as descriptive handshape features. 3) We intro-
duce an affine-adaptation for different signers than the signer that was used to train the
model. 4) All the above features are integrated in a statistical handshape classification
GMM and a sign recognition HMM-based system.

The overall visual feature extraction and classification framework is evaluated on
classification experiments as well as on sign recognition experiments. These explore
multiple tasks of gradual difficulty in relation to the orientation parameters, as well as
both occlusion and non-occlusion cases. We compare with existing baseline features
as well as with more competitive features, which are implemented as simplifications of
the proposed SAM method. We investigate the quality of the feature spaces and evalu-
ate the compactness-separation of the different features in which the proposed features
show superiority. The Aff-SAM features yield improvements in classification accuracy
too. For the non-occlusion cases, these are on average 35% over the baseline meth-
ods (FD, RB, M) and 3% over the most competitive SAM methods (DS-SAM, DST-
SAM). Furthermore, when we also consider the occlusion cases, the improvements in
classification accuracy are on average 9.7% over the most competitive SAM methods
(DS-SAM, DST-SAM). Although DS-SAM yields similar performance in some cases,
it under-performs in the more difficult and extended data set classification tasks. On the
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task of sign recognition for a 100-sign lexicon of GSL lemmas, the approach is eval-
uated via handshape subunits and also fused with movement-position cues, leading to
promising results. Moreover, it is shown to have similar results, even if we do not train
an explicit signer dependent Aff-SA model, given the introduction of the affine-signer
adaptation component. In this way, the approach can be easily applicable to multiple
signers.

To conclude with, given that handshape is among the main sign language phonetic
parameters, we address issues that are indispensable for automatic sign language recog-
nition. Even though the framework is applied on SL data, its application is extendable
on other gesture-like data. The quantitative evaluation and the intuitive results presented
show the perspective of the proposed framework for further research.
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Appendix A. Details about the Regularized Fitting Algorithm

We provide here details about the algorithm of the regularized fitting of the shape-
appearance model. The total energy E(l , p) that is to be minimized can be written as
(after a multiplication with NM that does not affect the optimum parameters):

J(l , p) =Â
x

⇢
A0(x)+

Nc

Â
i=1

liAi(x)� f (Wp(x))
�2

+

NM

Nc

⇣
wS kl �l 0k2

S
l

+wD kl �l

ek2
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e

l

⌘
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Np
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wS kp� p0k
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e p

⌘
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(4)

If s

li , s p̃i are the standard deviations of the components of the parameters l , ep
respectively and s

e

l ,i , s

eep,i are the standard deviations of the components of the param-
eters’ prediction errors e

l

, eep, then the corresponding covariance matrices S
l

, Sep, S
e

l

,
S

eep , which are diagonal, can be written as:
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l
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, . . . ,s2

e
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eep = diag(s2
eep,1

, . . . ,s2
eep,Np

).

The squared norms of the prior terms in Equation (4) are thus given by:

kl �l 0k2
S

l

=
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s

li
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,
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Therefore, if we set:

m1 =
p

wSNM/Nc , m2 =
p

wDNM/Nc ,

m3 =

q
wSNM/Np , m4 =

q
wDNM/Np ,

the energy in Equation (4) takes the form:

J(l , p) = Â
x

⇢
A0(x)+

Nc

Â
i=1

liAi(x)� f (Wp(x))
�2

+

NG

Â
i=1

G2
i (l , p) , (5)

with Gi(l , p) being NG = 2Nc +2Np prior functions defined by:

Gi(l , p) =

8
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>>>>>>:

m1
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. (6)

Each component p̃ j, j = 1, . . . ,Np, of the re-parametrization of p can be written as:

p̃ j = vT
p̃ j
(p� p0) , (7)

where vp̃ j is the j-th column of Up, that is the eigenvector of the covariance matrix Sp
that corresponds to the j-th principal component p̃ j.

In fact, the energy J(l , p), Equation (5), for general prior functions Gi(l , p), has
exactly the same form as the energy that is minimized by the algorithm of Baker et al.
(2004). Next, we describe this algorithm and then we specialize it in the specific case
of our framework.

A.1. Simultaneous Inverse Compositional Algorithm with a Prior

We briefly present here the algorithm simultaneous inverse compositional with a prior
(SICP) (Baker et al., 2004). This is a Gauss-Newton algorithm that finds a local mini-
mum of the energy J(l , p) (5) for general cases of prior functions Gi(l , p) and warps
Wp(x) that are controlled by some parameters p.
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The algorithm starts from some initial estimates of l and p. Afterwards, in every
iteration, the previous estimates of l and p are updated to l

0 and p0 as follows. It is
considered that a vector Dl is added to l :

l

0
= l +Dl (8)

and a warp with parameters Dp is applied to the synthesized image A0(x)+ÂliAi(x).
As an approximation, the latter is taken as equivalent to updating the warp parameters
from p to p0 by composing Wp(x) with the inverse of WDp(x) :

Wp0 =Wp �W�1
Dp . (9)

From the above relation, given that p is constant, p0 can be expressed as a RNp !
RNp function of Dp, p0= p0(Dp) , with p0(Dp= 0)= p. Further, p0(Dp) is approximated
with a first order Taylor expansion around Dp = 0:

p0(Dp) = p+
∂ p0

∂Dp
Dp . (10)

where ∂ p0
∂Dp is the Jacobian of the function p0(Dp), which generally depends on Dp.

Based on the aforementioned type of updates of l and p as well as the consid-
ered approximations, the values Dl and Dp are specified by minimizing the following
energy:

F(Dl ,Dp) =Â
x

⇢
A0
�
WDp(x)

�
+

Nc

Â
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,

simultaneously with respect to Dl and Dp. By applying first order Taylor approxima-
tions on the two terms of the above energy F(l , p), one gets:

F(Dl ,Dp)⇡Â
x

⇢
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Dp

◆�2

+
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Â
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(11)

where Esim(x) is the image of reconstruction error evaluated at the model domain:

Esim(x) = A0(x)+
Nc

Â
i=1

liAi(x)� f
�
Wp(x)

�

and SDsim(x) is a vector-valued “steepest descent” image with Nc +Np channels, each
one of them corresponding to a specific component of the parameter vectors l and p:

SDsim(x) =


A1(x), ...,ANc(x),
✓

—A0(x)+
Nc

Â
i=1

li—Ai(x)
◆

∂Wp(x)
∂ p

�
, (12)

211



ROUSSOS THEODORAKIS PITSIKALIS MARAGOS

where the gradients —Ai(x) =
h

∂Ai
∂x1

, ∂Ai
∂x2

i
are considered as row vector functions. Also

SDGi , for each i = 1, ..,NG, is a row vector with dimension Nc +Np that corresponds to
the steepest descent direction of the prior term Gi(l , p):

SDGi =

✓
∂Gi

∂l

,
∂Gi

∂ p
∂ p0

∂Dp

◆
. (13)

The approximated energy F(l , p) (11) is quadratic with respect to both Dl and Dp,
therefore the minimization can be done analytically and leads to the following solution:

✓
Dl

Dp

◆
=�H�1


Â
x

SDT
sim(x)Esim(x)+

NG

Â
i=1

SDT
Gi

Gi(l , p)
�
, (14)

where H is the matrix (which approximates the Hessian of F):

H = Â
x

SDT
sim(x)SDsim(x)+

NG

Â
i=1

SDT
Gi

SDGi .

In conclusion, in every iteration of the SICP algorithm, the Equation (14) is applied
and the parameters l and p are updated using Equations (8) and (10). This process

terminates when a norm of the update vector
✓

Dl

Dp

◆
falls below a relatively small

threshold and then it is considered that the process has converged.

A.1.1. COMBINATION WITH LEVENBERG-MARQUARDT ALGORITHM

In the algorithm described above, there is no guarantee that the original energy (5), that
is the objective function before any approximation, decreases in every iteration; it might
increase if the involved approximations are not accurate. Therefore, following Baker
and Matthews (2002), we use a modification of this algorithm by combining it with
the Levenberg-Marquardt algorithm: In Equation (14) that specifies the updates, we
replace the Hessian approximation H by H + d diag(H), where d is a positive weight
and diag(H) is the diagonal matrix that contains the diagonal elements of H. This cor-
responds to an interpolation between the updates given by the Gauss-Newton algorithm
and weighted gradient descent. As d increases, the algorithm has a behavior closer
to gradient descent, which means that from the one hand is slower but from the other
hand yields updates that are more reliable, in the sense that the energy will eventually
decrease for sufficiently large d .

In every iteration, we specify the appropriate weight d as follows. Starting from
setting d to 1/10 of its value in the previous iteration (or from d = 0.01 if this is the
first iteration), we compute the updates Dl and Dp using the Hessian approximation
H+d diag(H) and then evaluate the original energy (5). If the energy has decreased we
keep the updates and finish the iteration. If the energy has increased, we set d ! 10d

and try again. We repeat that step until the energy decreases.
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A.2. Specialization in the Current Framework

In this section, we derive the SICP algorithm for the special case that concerns our
method. This case arises when 1) the general warps Wp(x) are specialized to affine
transforms and 2) the general prior functions Gi(l , p) are given by Equation (6).

A.2.1. THE CASE OF AFFINE TRANSFORMS

In our framework, the general warps Wp(x) of the SICP algorithm are specialized to
affine transforms with parameters p = (p1 · · · p6) that are defined by:

Wp(x,y) =
✓

1+ p1 p3 p5
p2 1+ p4 p6

◆0

@
x
y
1

1

A .

In this special case, which is analyzed also in Baker et al. (2004), the Jacobian ∂Wp(x)
∂ p

that is used in Equation (12) is given by:

∂Wp(x)
∂ p

=

✓
x1 0 x2 0 1 0
0 x1 0 x2 0 1

◆
.

The restriction to affine transforms implies also a special form for the Jacobian ∂ p0
∂Dp

that is used in Equation (13). More precisely, as described in Baker et al. (2004), a
first order Taylor approximation is first applied to the inverse warp W�1

Dp and yields
W�1

Dp ⇡W�Dp. Afterwards, based on Equation (9) and the fact that the parameters of a
composition Wr =Wp �Wq of two affine transforms are given by:

r =

0

BBBBBB@

p1 +q1 + p1q1 + p3q2
p2 +q2 + p2q1 + p4q2
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p5 +q5 + p1q5 + p3q6
p6 +q6 + p2q5 + p4q6

1

CCCCCCA
,

the function p0(Dp) (10) is approximated as:

p0(Dp) =

0

BBBBBB@
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.
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Therefore, its Jacobian is given by:

∂ p0

∂Dp
=�

0

BBBBBB@

1+ p1 p3 0 0 0 0
p2 1+ p4 0 0 0 0
0 0 1+ p1 p3 0 0
0 0 p2 1+ p4 0 0
0 0 0 0 1+ p1 p3
0 0 0 0 p2 1+ p4

1

CCCCCCA
.

A.2.2. SPECIFIC TYPE OF PRIOR FUNCTIONS

Apart from the restriction to affine transforms, in the proposed framework of the regu-
larized shape-appearance model fitting, we have derived the specific formulas of Equa-
tion (6) for the prior functions Gi(l , p) of the energy J(l , p) in Equation (5). Therefore,
in our case, their partial derivatives, which are involved in the above described SICP
algorithm (see Equation (13)), are specialized as follows:
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∂ p
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>>:
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,

where ei, 1iNc, is the i-th column of the Nc⇥Nc identity matrix.
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Abstract
We consider the problem of parsing human poses and recognizing their actions in
static images with part-based models. Most previous work in part-based models only
considers rigid parts (e.g., torso, head, half limbs) guided by human anatomy. We
argue that this representation of parts is not necessarily appropriate. In this paper, we
introduce hierarchical poselets—a new representation for modeling the pose config-
uration of human bodies. Hierarchical poselets can be rigid parts, but they can also
be parts that cover large portions of human bodies (e.g., torso + left arm). In the ex-
treme case, they can be the whole bodies. The hierarchical poselets are organized in
a hierarchical way via a structured model. Human parsing can be achieved by infer-
ring the optimal labeling of this hierarchical model. The pose information captured
by this hierarchical model can also be used as a intermediate representation for other
high-level tasks. We demonstrate it in action recognition from static images.
Keywords: human parsing, action recognition, part-based models, hierarchical pose-
lets, max-margin structured learning

1. Introduction

Modeling human bodies (or articulated objects in general) in images is a long-lasting
problem in computer vision. Compared with rigid objects (e.g., faces and cars) which
can be reasonably modeled using several prototypical templates, human bodies are
much more difficult to model due to the wide variety of possible pose configurations.

A promising solution for dealing with the pose variations is to use part-based mod-
els. Part-based representations, such as cardboard people (Ju et al., 1996) or pictorial
structure (Felzenszwalb and Huttenlocher, 2005), provide an elegant framework for
modeling articulated objects, such as human bodies. A part-based model represents
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the human body as a constellation of a set of rigid parts (e.g., torso, head, half limbs)
constrained in some fashion. The typical constraints used are tree-structured kinematic
constraints between adjacent body parts, for example, torso-upper half-limb connec-
tion, or upper-lower half-limb connection. Part-based models consist of two important
components: (1) part appearances specifying what each body part should look like
in the image; (2) configuration priors specifying how parts should be arranged rela-
tive to each other. Part-based models have been used extensively in various computer
vision applications involving humans, such as human parsing (Felzenszwalb and Hut-
tenlocher, 2005; Ramanan, 2006), kinematic tracking (Ramanan et al., 2005), action
recognition (Yang et al., 2010) and human-object interaction (Yao and Fei-Fei, 2010).

Considerable progress has been made to improve part-based models. For example,
there has been a line of work on using better appearance models in part-based models.
A representative example is the work by Ramanan (2006), who learns color histograms
of parts from an initial edge-based model. Ferrari et al. (2008) and Eichner and Ferrari
(2009) further improve the part appearance models by reducing the search space using
various tricks, for example, the relative locations of part locations with respect to a
person detection and the relationship between different part appearances (e.g., upper-
arm and torso tend to have the same color), Andriluka et al. (2009) build better edge-
based appearance models using the HOG descriptors (Dalal and Triggs, 2005). Sapp
et al. (2010b) develop efficient inference algorithm to allow the use of more expensive
features. There is also work (Johnson and Everingham, 2009; Mori et al., 2004; Mori,
2005; Srinivasan and Shi, 2007) on using segmentation as a pre-processing step to
provide better spatial support for computing part appearances.

Another line of work is on improving configuration priors in part-based models.
Most of them focus on developing representations and fast inference algorithms that
by-pass the limitations of kinematic tree-structured spatial priors in standard pictorial
structure models. Examples include common-factor models (Lan and Huttenlocher,
2005), loopy graphs (Jiang and Martin, 2008; Ren et al., 2005; Tian and Sclaroff, 2010;
Tran and Forsyth, 2010), mixtures of trees (Wang and Mori, 2008). There is also work
on building spatial priors that adapt to testing examples (Sapp et al., 2010a).

Most of the previous work on part-based models use rigid parts that are anatomi-
cally meaningful, for example, torso, head, half limbs. Those rigid parts are usually
represented as rectangles (e.g., Andriluka et al. 2009; Felzenszwalb and Huttenlocher
2005; Ramanan 2006; Ren et al. 2005; Sigal and Black 2006; Wang and Mori 2008)
or parallel lines (e.g., Ren et al. 2005). However, as pointed out by some recent work
(Bourdev and Malik, 2009; Bourdev et al., 2010), rigid parts are not necessarily the
best representation since rectangles and parallel lines are inherently difficult to detect
in natural images.

In this paper, we introduce a presentation of parts inspired by the early work of
Marr (1982). The work in Marr (1982) recursively represents objects as generalized
cylinders in a coarse-to-fine hierarchical fashion. In this paper, we extend Marr’s idea
for two problems in the general area of “looking at people”. The first problem is human
parsing, also known as human pose estimation. The goal is to find the location of
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each body part (torso, head, limbs) of a person in a static image. We use a part-based
approach for human parsing. The novelty of our work is that our notion of “parts”
can range from basic rigid parts (e.g., torso, head, half-limb), to large pieces of bodies
covering more than one rigid part (e.g., torso + left arm). In the extreme case, we
have “parts” corresponding to the whole body. We propose a new representation called
“hierarchical poselets” to capture this hierarchy of parts. We infer the human pose using
this hierarchical representation.

The hierarchical poselet also provides rich information about body poses that can be
used in other applications. To demonstrate this, we apply it to recognize human action
in static images. In this application, we use hierarchical poselets to capture various pose
information of the human body, this information is further used as some intermediate
representation to infer the action of the person.

A preliminary version of this work appeared in Wang et al. (2011). We organize
the rest of the paper as follows. Section 2 reviews previous work in human parsing
and action recognition. Section 3 introduces hierarchical poselet, a new representation
for modeling human body configurations. Section 4 describes how to use hierarchical
poselets for human parsing. Section 5 develops variants of hierarchical poselets for
recognizing human action in static images. We present experimental results on human
parsing and action recognition in Section 6 and conclude in Section 7.

2. Previous Work

Finding and understanding people from images is a very active area in computer vision.
In this section, we briefly review previous work in human parsing and action recognition
that is most related to our work.

Human parsing: Early work related to finding people from images is in the setting
of detecting and tracking people with kinematic models in both 2D and 3D. Forsyth
et al. (2006) provide an extensive survey of this line of work.

Recent work has examined the problem in static images. Some of these approaches
are exemplar-based. For example, Toyama and Blake (2001) track people using 2D
exemplars. Mori and Malik (2002) and Sullivan and Carlsson (2002) estimate human
poses by matching pre-stored 2D templates with marked ground-truth 2D joint loca-
tions. Shakhnarovich et al. (2003) use local sensitive hashing to allow efficient match-
ing when the number of exemplars is large.

Part-based models are becoming increasingly popular in human parsing. Early
work includes the cardboard people (Ju et al., 1996) and the pictorial structure (Felzen-
szwalb and Huttenlocher, 2005). Tree-structured models are commonly used due to
its efficiency. But there are also methods that try to alleviate the limitation of tree-
structured models, include common-factor models (Lan and Huttenlocher, 2005), loopy
graphs (Jiang and Martin, 2008; Ren et al., 2005; Tian and Sclaroff, 2010; Tran and
Forsyth, 2010), mixtures of trees (Wang and Mori, 2008).

Many part-based models use discriminative learning to train the model parameters.
Examples include the conditional random fields (Ramanan and Sminchisescu, 2006;
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Ramanan, 2006), max-margin learning (Kumar et al., 2009; Wang et al., 2011; Yang
and Ramanan, 2011) and boosting (Andriluka et al., 2009; Sapp et al., 2010b; Singh
et al., 2010). Previous approaches have also explored various features, including image
segments (superpixels) (Johnson and Everingham, 2009; Mori et al., 2004; Mori, 2005;
Sapp et al., 2010a,b; Srinivasan and Shi, 2007), color features (Ramanan, 2006; Ferrari
et al., 2008), gradient features (Andriluka et al., 2009; Johnson and Everingham, 2010;
Wang et al., 2011; Yang and Ramanan, 2011).

Human action recognition: Most of the previous work on human action recognition
focuses on videos. Some work (Efros et al., 2003) uses global template for action
recognition. A lot of recent work (Dollár et al., 2005; Laptev et al., 2008; Niebles et al.,
2006) uses bag-of-words models. There is also work (Ke et al., 2007; Niebles and
Fei-Fei, 2007) using part-based models.

Compared with videos, human action recognition from static images is a relatively
less-studied area. Wang et al. (2006) provide one of the earliest examples of action
recognition in static images. Recently, template models (Ikizler-Cinbis et al., 2009),
bag-of-words models (Delaitre et al., 2010), part-based models (Delaitre et al., 2010;
Yang et al., 2010) have all been proposed for static-image action recognition. There is
also a line of work on using contexts for action recognition in static images, including
human-object context (Desai et al., 2010; Gupta et al., 2009; Yao and Fei-Fei, 2010)
and group context (Lan et al., 2010; Maji et al., 2011).

3. Hierarchical Poselets

Our pose representation is based on the concept of “poselet” introduced in Bourdev
and Malik (2009). In a nutshell, poselets refer to pieces of human poses that are tightly
clustered in both appearance and configuration spaces. Poselets have been shown to be
effective at person detection (Bourdev and Malik, 2009; Bourdev et al., 2010).

In this paper, we propose a new representation called hierarchical poselets. Hierar-
chical poselets extend the original poselets in several important directions to make them
more appropriate for human parsing. We start by highlighting the important properties
of our representation.

Beyond rigid “parts”: Most of the previous work in part-based human modeling
are based on the notion that the human body can be modeled as a set of rigid parts
connected in some way. Almost all of them use a natural definition of parts (e.g., torso,
head, upper/lower limbs) corresponding to body segments, and model those parts as
rectangles, parallel lines, or other primitive shapes.

As pointed out by Bourdev and Malik (2009), this natural definition of “parts” fails
to acknowledge the fact that rigid parts are not necessarily the most salient features for
visual recognition. For example, rectangles and parallel lines can be found as limbs,
but they can also be easily confused with windows, buildings, and other objects in
the background. So it is inherently difficult to build reliable detectors for those parts.
On the other hand, certain visual patterns covering large portions of human bodies,
for example, “a torso with the left arm raising up” or “legs in lateral pose”, are much
more visually distinctive and easier to identify. This phenomenon was observed even
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Figure 1: An illustration of the hierarchical pose representation. The black edges indi-
cate the connectivity among different parts.

prior to the work of poselet and was exploited to detect stylized human poses and build
appearance models for kinematic tracking (Ramanan et al., 2005).

Multiscale hierarchy of “parts”: Another important property of our representation
is that we define “parts” at different levels of hierarchy to cover pieces of human poses
at various granularity, ranging from the configuration of the whole body, to small rigid
parts. In particular, we define 20 parts to represent the human pose and organize them
in a hierarchy shown in Figure 1. To avoid terminological confusion, we will use “part”
to denote one of the 20 parts in Figure 1 and use “primitive part” to denote rigid body
parts (i.e., torso, head, half limbs) from now on.

In this paper, we choose the 20 parts and the hierarchical structure in Figure 1
manually. Of course, it is possible to define parts corresponding to other combinations
of body segments, for example, left part of the whole body. It may also be possible
to learn the connectivity of parts automatically from data, for example, using structure
learning methods similar to the Chow-Liu algorithm (Chow and Liu, 1968). We would
like to leave these issues as future work.

We use a procedure similar to Yang et al. (2010) to select poselets for each part.
First, we cluster the joints on each part into several clusters based on their relative
x and y coordinates with respect to some reference joint of that part. For example,
for the part “torso”, we choose the middle-top joint as the reference and compute the
relative coordinates of all the other joints on the torso with respect to this reference joint.
The concatenation of all those coordinates will be the vector used for clustering. We
run K-means clustering on the vectors collected from all training images and remove
clusters that are too small. Similarly, we obtain the clusters for all the other parts. In
the end, we obtain 5 to 20 clusters for each part. Based on the clustering, we crop the
corresponding patches from the images and form a set of poselets for that part. Figure 2
shows examples of two different poselets for the part “legs”.

Our focus is the new representation, so we use standard HOG descriptors (Dalal
and Triggs, 2005) to keep the feature engineering to the minimum. For each poselet,
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Figure 2: Examples of two poselets for the part “legs”. Each row corresponds to a
poselet. We show several patches from the poselet cluster. The last column
shows the HOG template of the poselet.

we construct HOG features from patches in the corresponding cluster and from random
negative patches. Inspired by the success of multiscale HOG features (Felzenszwalb
et al., 2010), we use different cell sizes when computing HOG features for different
parts. For example, we use cells of 12⇥ 12 pixel regions for poselets of the whole
body, and cells of 2⇥ 2 for poselets of the upper/lower arm. This is motivated by the
fact that large body parts (e.g., whole body) are typically well-represented by coarse
shape information, while small body parts (e.g., half limb) are better represented by
more detailed information. We then train a linear SVM classifier for detecting the
presence of each poselet. The learned SVM weights can be thought as a template for
the poselet. Examples of several HOG templates for the “legs” poselets are shown
as the last columns of Figure 2. Examples of poselets and their corresponding HOG
templates for other body parts are shown in Figure 3.

A poselet of a primitive part contains two endpoints. For example, for a poselet of
upper-left leg, one endpoint corresponds to the joint between torso and upper-left leg,
the other one corresponds to the joint between upper/lower left leg. We record the mean
location (with respect to the center of the poselet image patch) of each endpoint. This
information will be used in human parsing when we need to infer the endpoints of a
primitive part for a test image.

4. Human Parsing

In this section, we describe how to use hierarchical poselets in human parsing. We first
develop an undirected graphical model to represent the configuration of the human pose
(Section 4.1). We then develop the inference algorithm for finding the best pose con-
figuration in the model (Section 4.2) and the algorithm for learning model parameters
(Section 4.3) from training data.
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large partswhole body rigid parts

Figure 3: Visualization of some poselets learned from different body parts on the UIUC
people data set, including whole body, large parts (top to bottom: torso+left
arm, legs, torso+head, left arm), and rigid parts (top to bottom: upper/lower
left arm, torso, upper/lower left leg, head). For each poselet, we show two
image patches from the corresponding cluster and the learned SVM HOG
template.

4.1. Model Formulation

We denote the complete configuration of a human pose as L = {li}K
i=1, where K is the

total number of parts (i.e., K = 20 in our case). The configuration of each part li is
parametrized by li = (xi,yi,zi). Here (xi,yi) defines the image location, and zi is the
index of the corresponding poselet for this part, that is, zi 2 {1,2, ...,Pi}, where Pi is
the number of poselets for the i-th part. In this paper, we assume the scale of the person
is fixed and do not search over multiple scales. It is straightforward to augment li with
other information, for example, scale and foreshortening.

The complete pose L can be represented by a graph G = {V ,E }, where a vertex
i 2 V denotes a part and an edge (i, j) 2 E captures the constraint between parts i and
j. The structure of G is shown in Figure 1. We define the score of labeling an image I
with the pose L as:

F(L, I) = Â
i2V

f(li; I)+ Â
(i, j)2E

y(li, l j) (1)

The details of the potential functions in Equation 1 are as follows.

225



WANG TRAN LIAO FORSYTH

Spatial prior y(li, l j): This potential function captures the compatibility of config-
urations of part i and part j. It is parametrized as:

y(li, l j) = a

>
i; j;zi;z j

bin(xi� x j,yi� y j)

=

Pi

Â
a=1

P j

Â
b=1

1a(zi)1b(z j)a
>
i; j;a;bbin(xi� x j,yi� y j)

Similar to Ramanan (2006), the function bin(·) is a vectorized count of spatial his-
togram bins. We use 1a(·) to denote the function that takes 1 if its argument equals a,
and 0 otherwise. Here ai; j;zi;z j is a model parameter that favors certain relative spatial
bins when poselets zi and z j are chosen for parts i and j, respectively. Overall, this
potential function models the (relative) spatial arrangement and poselet assignment of
a pair (i, j) of parts.

Local appearance f(li; I): This potential function captures the compatibility of
placing the poselet zi at the location (xi,yi) of an image I. It is parametrized as:

f(li; I) = b

>
i;zi

f (I(li)) =
Pi

Â
a=1

b

>
i;a f (I(li)) ·1a(zi)

where bi;zi is a vector of model parameters corresponding to the poselet zi and f (I(li))
is a feature vector corresponding to the image patch defined by li. We define f (I(li)) as
a length Pi +1 vector as:

f (I(li)) = [ f1(I(li)), f2(I(li)), ..., fPi(I(li)),1]

Each element fr(I(li)) is the score of placing poselet zr at image location (xi,yi). The
constant 1 appended at the end of vector allows us to learn the model with a bias term.
In other words, the score of placing the poselet zi at image location (xi,yi) is a linear
combination (with bias term) of the responses all the poselet templates at (xi,yi) for part
i. We have found that this feature vector works better than the one used in Yang et al.
(2010), which defines f (I(li)) as a scalar of a single poselet template response. This is
because the poselet templates learned for a particular part are usually not independent
of each other. So it helps to combine their responses as the local appearance model.

We summarize and highlight the important properties of our model and contextual-
ize our research by comparing with related work.

Discriminative “parts”: Our model is based on a new concept of “parts” which
goes beyond the traditional rigid parts. Rigid parts are inherently difficult to detect.
We instead consider parts covering a wide range of portions of human bodies. We use
poselets to capture distinctive appearance patterns of various parts. These poselets have
better discriminative powers than traditional rigid part detectors. For example, look
at the examples in Figure 2 and Figure 3, the poselets capture various characteristic
patterns for large parts, such as the “A”-shape for the legs in the first row of Figure 2.

Coarse-to-fine granularity: Different parts in our model are represented by features
at varying levels of details (i.e., cell sizes in HOG descriptors). Conceptually, this multi-
level granularity can be seen as providing an efficient coarse-to-fine search strategy.
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However, it is very different from the coarse-to-fine cascade pruning in Sapp et al.
(2010b). The method in Sapp et al. (2010b) prunes the search space of small parts (e.g.,
right lower arm) at the coarse level using simple features and apply more sophisticated
features in the pruned search space. However, we would like to argue that at the coarse
level, one should not even consider small parts, since they are inherently difficult to
detect or prune at this level. Instead, we should focus on large body parts since they are
easy to find at the coarse level. The configurations of large pieces of human bodies will
guide the search of smaller parts. For example, an upright torso with arms raising up
(coarse-level information) is a very good indicator of where the arms (fine-level details)
might be.

Structured hierarchical model: A final important property of our model is that we
combine information across different parts in a structured hierarchical way. The orig-
inal work on poselets (Bourdev and Malik, 2009; Bourdev et al., 2010) uses a simple
Hough voting scheme for person detection, that is, each poselet votes for the center of
the person, and the votes are combined together. This Hough voting might be appropri-
ate for person detection, but it is not enough for human parsing which involves highly
complex and structured outputs. Instead, we develop a structured model that organize
information about different parts in a hierarchical fashion. Another work that uses hier-
archical models for human parsing is the AND-OR graph in Zhu et al. (2008). But there
are two important differences. First, the appearance models used in Zhu et al. (2008)
are only defined on sub-parts of body segments. Their hierarchical model is only used
to put all the small pieces together. As mentioned earlier, appearance models based
on body segments are inherently unreliable. In contrast, we use appearance models
associated with parts of varying sizes. Second, the OR-nodes in Zhu et al. (2008) are
conceptually similar to poselets in our case. But the OR-nodes in Zhu et al. (2008) are
defined manually, while our poselets are learned.

Our work on human parsing can be seen as bridging the gap between two popu-
lar schools of approaches for human parsing: part-based methods, and exemplar-based
methods. Part-based methods, as explained above, model the human body as a col-
lection of rigid parts. They use local part appearances to search for those parts in an
image, and use configuration priors to put these pieces together in some plausible way.
But since the configuration priors in these methods are typically defined as pairwise
constraints between parts, these methods usually lack any notion that captures what a
person should look like as a whole. In contrast, exemplar-based methods (Mori and Ma-
lik, 2002; Shakhnarovich et al., 2003; Sullivan and Carlsson, 2002) search for images
with similar whole body configurations, and transfer the poses of those well-matched
training images to a new image. The limitation of exemplar-based approaches is that
they require good matching of the entire body. They cannot handle test images of which
the legs are similar to some training images, while the arms are similar to other training
images. Our work combines the benefits of both schools. On one hand, we capture the
large-scale information of human pose via large parts. On the other hand, we have the
flexibility to compose new poses from different parts.
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4.2. Inference

Given an image I, the inference problem is to find the optimal pose labeling L⇤ that
maximize the score F(L, I), that is, L⇤ = argmaxL F(L, I). We use the max-product
version of belief propagation to solve this problem. We pick the vertex corresponding
to part “whole body” as the root and pass messages upwards towards this root. The
message from part i to its parent j is computed as:

mi(l j) = max
li

(u(l j)+y(li, l j)) (2)

u(l j) = f(l j)+ Â
k2kids j

mk(l j)

Afterwards, we pass messages downward from the root to other vertices in a similar
fashion. This message passing scheme is repeated several times until it converges. If
we temporarily ignore the poselet indices zi and z j and think of li = (xi,yi), we can
represent the messages as 2D images and pass messages using techniques similar to
those in Ramanan (2006). The image u(l j) is obtained by summing together response
images from its child parts mk(l j) and its local response image f(l j). f(l j) can be
computed in linear time by convolving the HOG feature map with the template of z j.
The maximization in Equation 2 can also be calculated in time linear to the size of u(l j).
In practice, we compute messages on each fixed (zi,z j) and enumerate all the possible
assignments of (zi,z j) to obtain the final message. Note that since the graph structure is
not a tree, this message passing scheme does not guarantee to find the globally optimal
solution. But empirically, we have found this approximate inference scheme to be
sufficient for our application.

The inference gives us the image locations and poselet indices of all the 20 parts
(both primitive and non-primitive). To obtain the final parsing result, we need to com-
pute the locations of the two endpoints for each primitive part. These can be obtained
from the mean endpoint locations recorded for each primitive part poselet (see Sec. 3).

Figure 4 shows a graphical illustration of applying our model on a test image. For
each part in the hierarchy, we show two sample patches and the SVM HOG template
corresponding to the poselet chosen for that part.

4.3. Learning

In order to describe the learning algorithm, we first write Equation 1 as a linear function
of a single parameter vector w which is a concatenation of all the model parameters,
that is:

F(L, I) = w>F(I,L), where
w = [ai; j;a;b;bi;a], 8i, j,a,b
F(I,L) = [1a(zi)1b(z j)bin(xi� x j,yi� y j); f (I(li))1a(zi)], 8i, j,a,b

The inference scheme in Section 4.2 solves L⇤ = argmaxL w>F(I,L). Given a set
of training images in the form of {In,Ln}N

n=1, we learn the model parameters w using a
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Figure 4: A graphical illustration of applying our model on a test image. For each
part (please refer to Figure 1), we show the inferred poselet by visualizing
two sample patches from the corresponding poselet cluster and the SVM
HOG template.

form of structural SVM (Tsochantaridis et al., 2005) as follows:

min
w,x

1
2
||w||2 +CÂ

n
x

n, s.t. 8n, 8L (3)

w>F(In,Ln
)�w>F(In,L)� D(L,Ln

)�x

n (4)

Consider a training image In, the constraint in Equation 4 enforces the score of the true
label Ln to be larger than the score of any other hypothesis label L by some margin.
The loss function D(L,Ln

) measures how incorrect L is compared with Ln. Similar to
regular SVMs, xn are slack variables used to handle soft margins. This formulation is
often called margin-rescaling in the SVM-struct literature (Tsochantaridis et al., 2005).

We use a loss function that decomposes into a sum of local losses defined on each
part D(L,Ln

) = ÂK
i=1 Di(Li,Ln

i ). If the i-th part is a primitive part, we define the local
loss Di(Li,Ln

i ) as:

Di(Li,Ln
i ) = l ·1(zi 6= zn

i )+d((xi,yi),(xn
i ,y

n
i )) (5)

where 1(·) is an indicator function that takes 1 if its argument is true, and 0 otherwise.
The intuition of Equation 5 is as follows. If the hypothesized poselet zi is the same as
the ground-truth poselet zn

i for the i-th part, the first term of Equation 5 will be zero.
Otherwise it will incur a loss l (we choose l = 10 in our experiments). The sec-
ond term in Equation 5, d((xi,yi),(xn

i ,y
n
i )), measures the distance (we use l1 distance)

between two image locations (xi,yi) and (xn
i ,y

n
i ). If the hypothesized image location

(xi,yi) is the same as the ground-truth image location (xn
i ,y

n
i ) for the i-th part, no loss

is added. Otherwise a loss proportional to the l1 distance of these two locations will be
incurred.
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If the i-th part is not a primitive part, we simply set D(Li,Ln
i ) to be zero. This choice

is based on the following observation. In our framework, non-primitive parts only serve
as some intermediate representations that help us to search for and disambiguate small
primitive parts. The final human parsing results are still obtained from configurations li
of primitive parts. Even if a particular hypothesized L gets one of its non-primitive part
labeling wrong, it should not be penalized as long as the labelings of primitive parts are
correct.

The optimization problem in Equations (3,4) is convex and can be solved using the
cutting plane method implemented in the SVM-struct package (Joachims et al., 2008).
However we opt to use a simpler stochastic subgradient descent method to allow greater
flexibility in terms of implementation.

First, it is easy to show that Equations (3,4) can be equivalently written as:

min
w

1
2
||w||2 +CÂ

n
Rn

(L),where Rn
(L) =

max
L

⇣
D(L,Ln

)+w>F(In,L)�w>F(In,Ln
)

⌘

In order to do gradient descent, we need to calculate the subgradient ∂wRn
(L) at a

particular w. Let us define:

L?
= argmax

L

⇣
D(L,Ln

)+w>F(In,L)
⌘

(6)

Equation 6 is called loss-augmented inference (Joachims et al., 2008). It can be shown
that the subgradient ∂wRn

(L) can be computed as ∂wR(L) = F(In,L?
)�F(In,Ln

).
Since the loss function D(L,Ln

) can be decomposed into a sum over local losses on
each individual part, the loss-augmented inference in Equation 6 can be solved in a
similar way to the inference problem in Section 4.2. The only difference is that the local
appearance model f(li; I) needs to be augmented with the local loss function D(Li,Ln

i ).
Interested readers are referred to Joachims et al. (2008) for more details.

5. Action Recognition

The hierarchical poselet is a representation general enough to be used in many applica-
tions. In this section, we demonstrate it in human action recognition from static images.

Look at the images depicted in Figure 5. We can easily perceive the actions of
people in those images, even though only static images are given. So far most work
in human action recognition has been focusing on recognition from videos. While
videos certainly provide useful cues (e.g., motion) for action recognition, the examples
in Figure 5 clearly show that the information conveyed by static images is also an
important component of action recognition. In this paper, we consider the problem of
inferring human actions from static images. In particular, we are interested in exploiting
the human pose as a source of information for action recognition.

Several approaches have been proposed to address the problem of static image ac-
tion recognition in the literature. The first is a standard pattern classification approach,
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dancing playing golf running sitting walking

athletics badminton baseball gymnastics parkour soccer tennis volleyball

Figure 5: Human actions in static images. We show some sample images and their an-
notations on the two data sets used in our experiments (see Section 6). Each
image is annotated with the action category and joints on the human body. It
is clear from these examples that static images convey a lot of information
about human actions.

that is, learning a classifier based on certain image feature representations. For exam-
ple, Ikizler-Cinbis et al. (2009) learn SVM classifiers based on HOG descriptors. The
limitation with this approach is that it completely ignores the pose of a person. An-
other limitation is that SVM classifiers implicitly assume that images from the same
action category can be represented by a canonical prototype (which are captured by the
weights of the SVM classifier). However, the examples in Figure 5 clearly show that
humans can have very varied appearances when performing the same action, which are
hard to characterize with a canonical prototype.

Another approach to static image action recognition is to explicitly recover the hu-
man pose, then use the pose as a feature representation for action recognition. For
example, Ferrari et al. (2009) estimate the 2D human pose in TV shots. The estimated
2D poses can be used to extract features which in turn can be used to retrieve TV shots
containing people with similar poses to a query. As point out in Yang et al. (2010), the
problem with this approach is that 2D human pose estimation is still a very challeng-
ing problem. The output of the state-of-the-art pose estimation system is typically not
reliable enough to be directly used for action recognition.

The work in Yang et al. (2010) is the closest to ours. It uses a representation based
on human pose for action recognition. But instead of explicitly recovering the precise
pose configuration, it represents the human pose as a set of latent variables in the model.
Their method does not require the predicted human pose to be exactly correct. Instead,
it learns which components of the pose are useful for differentiating various actions.

The pose representation in Yang et al. (2010) is limited to four parts: upper body,
left/right arm, and legs. Learning and inference in their model amounts to infer the best
configurations of these four parts for a particular action. A limitation of this represen-

231



WANG TRAN LIAO FORSYTH

tation is that it does not contain pose information about larger (e.g., whole body) or
smaller (e.g., half-limbs) parts. We believe that pose information useful for discerning
actions can vary depending on different action categories. Some actions (e.g., running)
have distinctive pose characteristics in terms of both the upper and lower bodies, while
other actions (e.g., pointing) are characterized by only one arm. The challenge is how
to represent the pose information at various levels of details for action recognition.

In this section, we use hierarchical poselets to capture richer pose information for
action recognition. While a richer pose representation may offer more pose information
(less bias), it must also be harder to estimate accurately (more variance). In this paper,
we demonstrate that our rich pose representation (even with higher variance) is useful
for action recognition.

5.1. Action-Specific Hierarchical Poselets

Since our goal is action recognition, we choose to use an action-specific variant of the
hierarchical poselets. This is similar to the action-specific poselets used in Yang et al.
(2010). The difference is that the action-specific poselets in Yang et al. (2010) are
only defined in terms of four parts—left/right arms, upper-body, and legs. These four
parts are organized in a star-like graphical model. In contrast, our pose representation
captures a much wider range of information across various pieces of the human body.
So ours is a much richer representation than Yang et al. (2010).

The training images are labeled with ground-truth action categories and joints on
the human body (Figure 5). We use the following procedure to select poselets for a
specific part (e.g., legs) of a particular action category (e.g., running). We first collect
training images of that action category (running). Then we cluster the joints on the part
(legs) into several clusters based on their relative (x,y) coordinates with respect to some
reference joint. Each cluster will correspond to a “running legs” poselet. We repeat this
process for the part in other action categories. In the end, we obtain about 15 to 30
clusters for each part. Figures 6 and 7 show examples of poselets for “playing golf”
and “running” actions, respectively.

Similarly, we train a classifier based on HOG features (Dalal and Triggs, 2005) to
detect the presence of each poselet. Image patches in the corresponding poselet cluster
are used as positive examples and random patches as negative examples for training the
classifier. Similar to the model in Sec. 4, we use different cell sizes when constructing
HOG features for different parts. Large cell sizes are used for poselets of large body
parts (e.g., whole body and torso), while small cell sizes are used for small body parts
(e.g., half limbs). Figure 6 and Figure 7 show some examples of the learned SVM
weights for some poselets.

5.2. Our Model

Let I be an image containing a person, Y 2 Y be its action label where Y is the action
label alphabet, L be the pose configuration of the person. The complete pose configura-
tion is denoted as L = {li}K

i=1 (K = 20 in our case), where li = (xi,yi,zi) represents the
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Figure 6: Examples of poselets for “playing golf”. For each poselet, we visualize sev-
eral patches from the corresponding cluster and the SVM HOG template.
Notice the multi-scale nature of the poselets. These poselets cover various
portions of the human bodies, including the whole body (1st row), both legs
(2nd row), one arm (3nd row), respectively.

Figure 7: Examples of poselets for “running”. For each poselet, we visualize several
patches from the corresponding cluster and the SVM HOG template. Similar
to Figure 6, these poselets cover various portions of the human bodies
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2D image location and the index of the corresponding poselet cluster for the i-th part.
The complete pose L can be represented by a graph G = {V ,E } shown in Figure 1. A
vertex i2 V denotes the i-th part and an edge (i, j)2 E represents the spatial constraint
between the i-th and the j-th parts. We define the following scoring function to measure
the compatibility of the triple (I,L,Y ):

F(I,L,Y ) = wY (I)+ Â
i2V

fY (I, li)+ Â
i, j2E

yY (li, l j) (7)

Here we use the subscript to explicitly emphasize that these functions are specific for
a particular action label Y . The details of the potential functions in Equation 7 are as
follows.

Root appearance wY (I): This potential function models the compatibility of the
action label Y and the global appearance of an image I. It is parametrized as:

wY (I) = a

>
Y · f (I) (8)

Here f (I) is a feature vector extracted from the whole image I without considering the
pose. In this paper, we use the HOG descriptor (Dalal and Triggs, 2005) of I as the
feature vector f (I). The parameters aY can be interpreted as a HOG template for the
action category Y . Note that if we only consider this potential function, the parameters
{aY}Y2Y can be obtained from the weights of a multi-class linear SVM trained with
HOG descriptors f (I) alone without considering the pose information.

Part appearance fY (I, li): This potential function models the compatibility of the
configuration li of the i-th part and the local image patch defined by li = (xi,yi,zi), under
the assumption that the action label is Y . Since our goal is action recognition, we also
enforce that the poselet zi should comes from the action Y . In other words, if we define
Z Y

i as the set of poselet indices for the i-th part corresponding to the action category
Y , this potential function is parametrized as:

fY (I, li) =

(
b

>
i,Y · f (I, li) if zi 2Z Y

i

�• otherwise.
(9)

Here f (I, li) is the score of placing the SVM HOG template zi at location (xi,yi) in the
image I.

Pairwise part constraint y(li, l j): This potential function models the compatibility
of the configurations between the i-th and the j-th parts, under the assumption that
the action label is Y . We parametrize this potential function using a vectorized counts
of spatial histogram bins, similar to Ramanan (2006); Yang et al. (2010). Again, we
enforce poselets zi and z j to come from action Y as follows:

yY (li, l j) =

(
g

>
i,Y ·bin(li� l j) if zi 2Z Y

i ,z j 2Z Y
j

�• otherwise
(10)

Here bin(·) is a vector all zeros with a single one for the occupied bin.
Note that if the potential functions and model parameters in Equations(7,8,9,10) do

not depend on the action label Y , the part appearance f(·) and pairwise part constraint
y(·) exactly recover the human parsing model in Section 4.
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5.3. Learning and Inference

We define the score of labeling an image I with the action label Y as follows:

H(I,Y ) = max
L

F(I,L,Y ) (11)

Given the model parameters Q = {a,b ,g}, Equation 11 is a standard MAP inference
problem in undirected graphical models. We can approximately solve it using message
passing scheme similar to that in Section 4.2. The predicted action label Y ⇤ is chosen
as Y ⇤ = argmaxY H(I,Y ).

We adopt the latent SVM (Felzenszwalb et al., 2010) framework for learning the
model parameters. First, it is easy to see that Equation 7 can be written as a linear
function of model parameters as F(I,L,Y ) = Q>F(I,L,Y ), where Q is the concatena-
tion of all the model parameters (i.e., a , b and g) and F(I,L,Y ) is the concatenation
of the corresponding feature vectors. Given a set of training examples in the form of
{In,Ln,Y n}N

n=1, the model parameters are learned by solving the following optimization
problem:

min
Q,x

1
2
||Q||2 +CÂ

n
x

n, s.t. 8n, 8Y (12)

H(In,Y n
)�H(In,Y )� D(Y,Y n

)�x

n (13)

It is easy to show that Equations (12,13) can be equivalently written as:

min
Q

1
2
||Q||2 +CÂ

n
Rn, where (14)

Rn
= max

Y,L

⇣
D(Y,Y n

)+Q> ·F(In,Y )
⌘
�max

L
Q> ·F(In,L,Y n

)

The problem in Equation 14 is not convex, but we can use simple stochastic sub-
gradient descent to find a local optimum. Let us define:

(Y ⇤,L⇤) = argmax
Y,L

(D(Y,Y n
)+Q> ·F(In,L,Y ))

L0 = argmax
L

(Q> ·F(In,L,Y n
))

Then the gradient of Equation 14 can be computed as:

Q+CÂ
n

⇣
F(In,L⇤,Y ⇤)�F(In,L0,Y n

)

⌘

To initialize the parameter learning, we first learn a pose estimation model using the
labeled (In,Ln

) collected from training examples with class label Y . The parameters of
these pose estimation models are used to initialize bY and gY . The parameters aY are
initialized from a linear SVM model based on HOG descriptors without considering
the poses.
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head + upper arm head + lower arm

Buffy UIUC peoplesport images Buffy UIUC peoplesport images

Figure 8: Scatter plots of heads (red) and upper/lower arms (blue and green) with re-
spect to fixed upper body position on three data sets.

6. Experiments

In this section, we present our experimental results on human parsing (Section 6.1) and
action recognition (Section 6.2).

6.1. Experiments on Human Parsing

There are several data sets popular in the human parsing community, for example, Buffy
data set (Ferrari et al., 2008), PASCAL stickmen data set (Eichner and Ferrari, 2009).
But these data sets are not suitable for us for several reasons. First of all, they only con-
tain upper-bodies, but we are interested in full-body parsing. Second, as pointed out in
Tran and Forsyth (2010), there are very few pose variations in those data sets. In fact,
previous work has exploited this property of these data sets by pruning search spaces
using upper-body detection and segmentation (Ferrari et al., 2008), or by building ap-
pearance model using location priors (Eichner and Ferrari, 2009). Third, the contrast
of image frames of the Buffy data set is relatively low. This issue suggests that better
performance can be achieved by engineering detectors to overcome the contrast diffi-
culties. Please refer to the discussion in Tran and Forsyth (2010) for more details. In
our work, we choose to use two data sets1 containing very aggressive pose variations.
The first one is the UIUC people data set introduced in Tran and Forsyth (2010). The
second one is a new sport image data set we have collected from the Internet which has
been used in Wang et al. (2011). Figure 8 shows scatter plots of different body parts of
our data sets compared with the Buffy data set (Ferrari et al., 2008) using a visualiza-
tion style similar to Tran and Forsyth (2010) . It is clear that the two data sets used in
this paper have much more variations.

6.1.1. UIUC PEOPLE DATA SET

The UIUC people data set (Tran and Forsyth, 2010) contains 593 images (346 for train-
ing, 247 for testing). Most of them are images of people playing badminton. Some are
images of people playing Frisbee, walking, jogging or standing. Sample images and
their parsing results are shown in the first three rows of Figure 9. We compare with two

1. Both data sets can be downloaded from http://vision.cs.uiuc.edu/humanparse.
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Ours PS IIP Ours PS IIP Ours PS IIP

Figure 9: Examples of human body parsing on the UIUC people data set. We compare
our method with the pictorial structure (PS) (Andriluka et al., 2009) and the
iterative image parsing (IIP) (Ramanan, 2006). Notice the large pose vari-
ations, cluttered background, self-occlusions, and many other challenging
aspects of the data set.

other state-of-the-art approaches that do full-body parsing (with published codes): the
improved pictorial structure by Andriluka et al. (2009), and the iterative parsing method
by Ramanan (2006). The results are also shown in Figure 9.

To quantitatively evaluate different methods, we measure the percentage of cor-
rectly localized body parts. Following the convention proposed in Ferrari et al. (2008),
a body part is considered correctly localized if the endpoints of its segment lies within
50% of the ground-truth segment length from their true locations. The comparative re-
sults are shown in Table 1(a). Our method outperforms other approaches in localizing
most of body parts. We also show the result (3rd row, Table 1(a)) of using only the
basic-level poselets corresponding to the rigid parts. It is clear that our full model using
hierarchical poselets outperforms using rigid parts alone.

Detection and parsing: An interesting aspect of our approach is that it produces
not only the configurations of primitive parts, but also the configurations of other larger
body parts. These pieces of information can potentially be used for applications (e.g.,
gesture-based HCI) that do not require precise localizations of body segments. In Fig-
ure 10, we visualize the configurations of four larger parts on some examples. Inter-
estingly, the configuration of the whole body directly gives us a person detector. So
our model can be seen as a principled way of unifying human pose estimation, person
detection, and many other areas related to understanding humans. In the first row of
Table 2, we show the results of person detection on the UIUC people data set by run-
ning our human parsing model, then picking the bounding box corresponding to the
part “whole body” as the detection. We compare with the state-of-the-art person de-
tectors in Felzenszwalb et al. (2010) and Andriluka et al. (2009). Since most images
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Method Torso Upper leg Lower leg Upper arm Forearm Head
Ramanan (2006) 44.1 11.7 7.3 25.5 25.1 11.3 10.9 25.9 25 30.8

Andriluka et al. (2009) 70.9 37.3 35.6 23.1 22.7 22.3 30.0 9.7 10.5 59.1
Our method (basic-level) 79.4 53.8 53.4 47.8 39.7 17.8 21.1 11.7 16.6 65.2
Our method (full model) 86.6 58.3 54.3 53.8 46.6 28.3 33.2 23.1 17.4 68.8

(a) UIUC people data set
Method Torso Upper leg Lower leg Upper arm Forearm Head

Ramanan (2006) 28.7 7.4 7.2 17.6 20.8 8.3 6.6 20.2 21 12.9
Andriluka et al. (2009) 71.5 44.2 43.1 30.7 31 28 29.6 17.3 15.3 63.3

Our method (basic-level) 73.3 45.0 47.6 40.4 39.9 19.4 27.0 13.3 9.9 47.5
Our method (full model) 75.3 50.1 48.2 42.5 36.5 23.3 27.1 12.2 10.2 47.5

(b) Sport image data set

Table 1: Human parsing results by our method and two comparison methods (Ra-
manan, 2006; Andriluka et al., 2009) on two data sets. The percentage of
correctly localized parts is shown for each primitive part. If two numbers are
shown in one cell, they indicate the left/right body parts. As a comparison, we
also show the results of using only rigid parts (basic-level).

Figure 10: Examples of other information produced by our model. On each image, we
show bounding boxes corresponding to the whole body, left arm, right arm
and legs. The size of each bounding box is estimated from its corresponding
poselet cluster.

Our method Felzenszwalb et al. (2010) Andriluka et al. (2009)
UIUC people 66.8 48.58 50.61
Sport image 63.94 45.61 59.94

Table 2: Comparison of accuracies of person detection on both data sets. In our
method, the configuration of the poselets corresponding to the whole body
can be directly used for person detection.

contain one person, we only consider the detection with the best score on an image for
all the methods. We use the metric defined in the PASCAL VOC challenge to measure
the performance. A detection is considered correct if the intersection over union with
respect to the ground truth bounding box is at least 50%. It is interesting to see that
our method outperforms other approaches, even though it is not designed for person
detection.
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Ours PS IIP Ours PS IIP Ours PS IIP

Figure 11: Examples of human body parsing on the sport image data set. We compare
our method with the pictorial structure (PS) (Andriluka et al., 2009) and the
iterative image parsing (IIP) (Ramanan, 2006).

6.1.2. SPORT IMAGE DATA SET

The UIUC people data set is attractive because it has very aggressive pose and spatial
variations. But one limitation of that data set is that it mainly contains images of people
playing badminton. One might ask what happens if the images are more diverse. To
answer this question, we have collected a new sport image data set from more than
20 sport categories, including acrobatics, American football, croquet, cycling, hockey,
figure skating, soccer, golf and horseback riding. There are in total 1299 images. We
randomly choose 649 of them for training and the rest for testing. The last three rows
of Figure 9 show examples of human parsing results, together with results of Andriluka
et al. (2009) and Ramanan (2006) on this data set. The quantitative comparison is
shown in Table 1(b). We can see that our approach outperforms the other two on the
majority of body parts.

Similarly, we perform person detection using the poselet corresponding to the whole
body. The results are shown in the second row of Table 2. Again, our method outper-
forms other approaches.

6.1.3. KINEMATIC TRACKING

To further illustrate our method, we apply the model learned from the UIUC people data
set for kinematic tracking by independently parsing the human figure in each frame. In
Figure 12, we show our results compared with applying the method in Ramanan (2006).
It is clear from the results that kinematic tracking is still a very challenging problem.
Both methods make mistakes. Interestingly, when our method makes mistakes (e.g.,
figures with blue arrows), the output still looks like a valid body configuration. But
when the method in Ramanan (2006) makes mistakes (e.g., figures with red arrows),
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Figure 12: Examples of kinematic tracking on the baseball and figure skating data sets.
The 1st and 3rd rows are our results. The 2rd and 4th rows are results of
Ramanan (2006). Notice how mistakes of our method (blue arrows) still
look like valid human poses, while those of Ramanan (2006) (red arrows)
can be wild.

the errors can be very wild. We believe this can be explained by the very different
representations used in these two methods. In Ramanan (2006), a human body is rep-
resented by the set of primitive parts. Kinematic constraints are used to enforce the
connectivity of those parts. But these kinematic constraints have no idea what a person
looks like as a whole. In the incorrect results of Ramanan (2006), all the primitive parts
are perfectly connected. The problem is their connectivity does not form a reasonable
human pose as a whole.

In contrast, our model uses representations that capture a spectrum of both large
and small body parts. Even in situations where the small primitive parts are hard to
detect, our method can still reason about the plausible pose configuration by pulling
information from large pieces of the human bodies.

6.2. Experiments on Action Recognition

We test our approach on two publicly available data sets: the still images data set (Ik-
izler et al., 2008) and the Leeds sport data set (Johnson and Everingham, 2010). Both
data sets contain images of people with ground-truth pose annotations and action labels.
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method overall avg per-class
Our approach 65.15 70.77

Yang et al. (2010)⇤ 63.49 68.37
SVM mixtures 62.8 64.05
Linear SVM 60.32 61.5

Table 3: Performance on the still image data set. We report both overall and average
per-class accuracies. ⇤The results are based on our own implementation.

6.2.1. STILL IMAGE DATA SET

We first demonstrate our model on the still image data set collected in Ikizler et al.
(2008). This data set contains more than 2000 static images from five action categories:
dancing, playing golf, running, sitting, and walking. Sample images are shown in the
first two rows of Figure 5. Yang et al. (2010) have annotated the pose with 14 joints
on the human body on all the images in the data set. Following Yang et al. (2010),
we choose 1/3 of the images from each category to form the training data, and the
remaining ones as the test data.2

We compare our approach with two baseline method. The first baseline is a multi-
class SVM based on HOG features. For the second baseline, we use mixtures of SVM
models similar to that in Felzenszwalb et al. (2010). We set the number of mixtures for
each class to be the number of whole-body poselets. From Table 3, we can see that our
approach outperforms the baseline by a large margin. Our performance is also better
than the reported results in Yang et al. (2010). However, the accuracy numbers are not
directly comparable since the training/testing data sets and features are not completely
identical. In order to do a fair comparison, we re-implemented the method in Yang et al.
(2010) by only keeping the parts used in Yang et al. (2010). Our full model performs
better.

In Figure 13, we visualize several inferred poselets on some examples whose ac-
tion categories are correctly classified. Each poselet is visualized by showing several
patches from the corresponding poselet cluster.

6.2.2. LEEDS SPORT DATA SET

The Leeds sport data set (Johnson and Everingham, 2010) contains 2000 images from
eight different sports: athletics, badminton, baseball, gymnastics, parkour, soccer, ten-
nis, volleyball. Each image in the data set is labeled with 14 joints on the human body.
Sample images and the labeled joints are shown in the last four rows of Figure 5. This
data set is very challenging due to very aggressive pose variations.

We choose half of the images for training, and the other half for testing. The perfor-
mance is shown in Table 4. Again, we compare with the HOG-based SVM and SVM

2. A small number of images/annotations we obtained from the authors of Yang et al. (2010) are some-
how corrupted due to some file-system failure. We have removed those images from the data set.
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dancing playing golf running

sitting walking

Figure 13: Visualization of some inferred poselets on the still image data set. These
test images have been correctly recognized by our model. For a test image,
we show three poselets that have high responses. Each poselet is visualized
by showing several patches from its cluster.

athletics badminton baseball

soccer tennis volleyball

Figure 14: Visualization of some inferred poselets on the Leeds sport data set. These
test images have been correctly recognized by our model. For a test image,
we show three poselets that have high responses. Each poselet is visualized
by showing several patches from its cluster.
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method overall avg per-class
Our approach 54.6 54.6
SVM mixtures 52.7 49.13
Linear SVM 52.7 52.93

Table 4: Performance on the Leeds sport data set. We report both overall and average
per-class accuracies.

American football!dancing croquet!playing golf field hockey!running

Figure 15: Visualization of inferred poses on unseen actions. Here the actions of the
test images (American football, croquet and field hockey) are not available
during training. Our model recognizes these examples as dancing, playing
golf, running, respectively. Some of the results (e.g., croquet! golfing)
make intuitive sense. Others (e.g., football!dancing) might not be intuitive
at first. But if we examine the poselets carefully, we can see that various
pieces of the football player are very similar to those found in the dancing
action.

mixtures as the baselines. We can see that our method still outperforms the baseline.
Similarly, we visualize the inferred poselets on some examples in Figure 14.

6.2.3. UNSEEN ACTIONS

An interesting aspect of our model is that it outputs not only the predicted action label,
but also some rich intermediate representation (i.e., action-specific hierarchical pose-
lets) about the human pose. This information can potentially be exploited in various
contexts. As an example, we apply the model learned from the still image data set to
describe images from sports categories not available during training. In Figure 15, we
show examples of applying the model learned from the still image data set to images
with unseen action categories. The action categories (American football, croquet and
field hockey) for the examples in Figure 15 are disjoint from the action categories of the
still image data set. In this situation, our model obviously cannot correctly predict the
action labels (since they are not available during training). Instead, it classifies those
images using the action labels it has learned. For example, it classifies “American foot-
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ball” as “dancing”, “croquet” as “playing golf”, “field hockey” as “running”. More
importantly, our model outputs poselets for various parts which support its prediction.
From these information, we can say a lot about “American football” even though the
predicted action label is wrong. For example, we can say it is closer to “dancing” than
“playing golf” because the pose of the football player in the image is similar to certain
type of dancing legs, and certain type of dancing arms.

7. Conclusion and Future Work

We have presented hierarchical poselets, a new representation for modeling human
poses. Different poselets in our representation capture human poses at various levels
of granularity. Some poselets correspond to the rigid parts typically used in previous
work. Others can correspond to large pieces of the human bodies. Poselets correspond-
ing to different parts are organized in a structured hierarchical model. The advantage of
this representation is that it infers the human pose by pulling information across various
levels of details, ranging from the coarse shape of the whole body, to the fine-detailed
information of small rigid parts. We have demonstrate the applications of this repre-
sentation in human parsing and human action recognition from static images. Recently,
similar ideas (Sun and Savarese, 2011) have been applied in other applications, such as
object detection.

As future work, we would like to explore how to automatically construct the parts
and the hierarchy using data-driven methods. This will be important in order to extend
hierarchical poselets to other objects (e.g., birds) that do not have obvious kinematic
structures. We also like to apply the hierarchical poselet representation to other vision
tasks, such as segmentation.
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