
Feature	  Extraction 
Foundations and Applications 

Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti Zadeh  (Eds.)  

Springer 2006 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author’s manuscript 





Foreword

Everyone loves a good competition. As I write this, two billion fans are eagerly
anticipating the 2006 World Cup. Meanwhile, a fan base that is somewhat
smaller (but presumably includes you, dear reader) is equally eager to read
all about the results of the NIPS 2003 Feature Selection Challenge, contained
herein. Fans of Radford Neal and Jianguo Zhang (or of Bayesian neural net-
works and Dirichlet di↵usion trees) are gloating“I told you so”and looking for
proof that their win was not a fluke. But the matter is by no means settled,
and fans of SVMs are shouting ”wait ’til next year!” You know this book is
a bit more edgy than your standard academic treatise as soon as you see the
dedication: “To our friends and foes.”

Competition breeds improvement. Fifty years ago, the champion in 100m
butterfly swimming was 22 percent slower than today’s champion; the women’s
marathon champion from just 30 years ago was 26 percent slower. Who knows
how much better our machine learning algorithms would be today if Turing
in 1950 had proposed an e↵ective competition rather than his elusive Test?

But what makes an e↵ective competition? The field of Speech Recognition
has had NIST-run competitions since 1988; error rates have been reduced by a
factor of three or more, but the field has not yet had the impact expected of it.
Information Retrieval has had its TREC competition since 1992; progress has
been steady and refugees from the competition have played important roles
in the hundred-billion-dollar search industry. Robotics has had the DARPA
Grand Challenge for only two years, but in that time we have seen the results
go from complete failure to resounding success (although it may have helped
that the second year’s course was somewhat easier than the first’s).

I think there are four criteria that define e↵ective technical competitions:

1. The task must be approachable. Non-experts should be able to enter, to
see some results, and learn from their better-performing peers.

2. The scoring must be incremental. A pass-fail competition where everyone
always fails (such as the Turing Test) makes for a boring game and dis-
courages further competition. On this score the Loebner Prize, despite its
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faults, is a better competition than the original Turing Test. In one sense,
everyone failed the DARPA Grand Challenge in the first year (because
no entrant finished the race), but in another sense there were incremental
scores: the distance each robot travelled, and the average speed achieved.

3. The results should be open. Participants and spectators alike should be
able to learn the best practices of all participants. This means that each
participant should describe their approaches in a written document, and
that the data, auxiliary programs, and results should be publicly available.

4. The task should be relevant to real-world tasks. One of the problems
with early competitions in speech recognition was that the emphasis on
reducing word error rates did not necessarily lead to a strong speech dialog
system—you could get almost all the words right and still have a bad
dialog, and conversely you could miss many of the words and still recover.
More recent competitions have done a better job of concentrating on tasks
that really matter.

The Feature Selection Challenge meets the first three criteria easily. Sev-
enty five teams entered, so they must have found it approachable. The scoring
did a good job of separating the top performers while keeping everyone on the
scale. And the results are all available online, in this book, and in the accom-
panying CD. All the data and Matlab code is provided, so the Challenge is
easily reproducible. The level of explication provided by the entrants in the
chapters of this book is higher than in other similar competitions. The fourth
criterion, real-world relevance, is perhaps the hardest to achieve. Only time
will tell whether the Feature Selection Challenge meets this one. In the mean
time, this book sets a high standard as the public record of an interesting and
e↵ective competition.

Peter Norvig Palo Alto, California
January 2006



Preface

Feature extraction addresses the problem of finding the most compact and
informative set of features, to improve the e�ciency or data storage and pro-
cessing. Defining feature vectors remains the most common and convenient
means of data representation for classification and regression problems. Data
can then be stored in simple tables (lines representing “entries”, “data points,
“samples”, or “patterns”, and columns representing “features”). Each feature
results from a quantitative or qualitative measurement, it is an “attribute” or
a “variable”. Modern feature extraction methodology is driven by the size of
the data tables, which is ever increasing as data storage becomes more and
more e�cient.

After many years of parallel e↵orts, researchers in Soft-Computing, Statis-
tics, Machine Learning, and Knowledge Discovery, who are interested in pre-
dictive modeling are uniting their e↵ort to advance the problem of feature ex-
traction. The recent advances made in both sensor technologies and machine
learning techniques make it possible to design recognition systems, which are
capable of performing tasks that could not be performed in the past. Fea-
ture extraction lies at the center of these advances with applications in the
pharmaco-medical industry, oil industry, industrial inspection and diagnosis
systems, speech recognition, biotechnology, Internet, targeted marketing and
many of other emerging applications.

The present book is organized around the results of a benchmark that
took place in 2003. Dozens of research groups competed on five large feature
selection problems from various application domains: medical diagnosis, text
processing, drug discovery, and handwriting recognition. The results of this
e↵ort pave the way to a new generation of methods capable of analyzing data
tables with million of lines and/or columns.

Part II of the book summarizes the results of the competition and gath-
ers the papers describing the methods used by the top ranking participants.
Following the competition, a NIPS workshop took place in December 2003
to discuss the outcomes of the competition and new avenues in feature ex-
traction. The contributions providing new perspectives are found in Part III
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of the book. Part I provides all the necessary foundations to understand the
recent advances made in Parts II and III. The book is complemented by ap-
pendices and by a web site. The appendices include fact sheets summarizing
the methods used in the competition, tables of results of the competition, and
a summary of basic concepts of statistics.

This book is directed to students, researchers, and engineers. It presents
recent advances in the field and complements an earlier book (Liu and Mo-
toda, 1998), which provides a thorough bibliography and presents methods
of historical interest, but explores only small datasets and ends before the
new era of kernel methods. Readers interested in the historical aspects of the
problem are also directed to (Devijver and Kittler, 1982). A completely novice
reader will find all the necessary elements to understand the material of the
book presented in the tutorial chapters of Part I. The book can be used as
teaching material for a graduate class in statistics and machine learning, Part
I supporting the lectures, Part II and III providing readings, and the CD
providing data for computer projects.

Isabelle Guyon Zürich, Switzerland
Steve Gunn Southampton, UK
Masoud Nikravesh and Lofti A. Zadeh Berkeley, California

November 2005
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An Introduction to Feature Extraction

Isabelle Guyon1 and André Elissee↵2

1 ClopiNet, 955 Creston Rd., Berkeley, CA 94708, USA. isabelle@clopinet.com
2 IBM Research GmbH, Zürich Research Laboratory, Säumerstrasse 4, CH-8803

Rüschlikon, Switzerland. ael@zurich.ibm.com

This chapter introduces the reader to the various aspects of feature extraction
covered in this book. Section 1 reviews definitions and notations and proposes
a unified view of the feature extraction problem. Section 2 is an overview of
the methods and results presented in the book, emphasizing novel contribu-
tions. Section 3 provides the reader with an entry point in the field of feature
extraction by showing small revealing examples and describing simple but ef-
fective algorithms. Finally, Section 4 introduces a more theoretical formalism
and points to directions of research and open problems.

1 Feature Extraction Basics

In this section, we present key notions that will be necessary to understand
the first part of the book and we synthesize di↵erent notions that will be seen
separately later on.

1.1 Predictive modeling

This book is concerned with problems of predictive modeling or supervised
machine learning. The latter refers to a branch of computer Science interested
in reproducing human learning capabilities with computer programs. The term
machine learning was first coined by Samuel in the 50’s and was meant to
encompass many intelligent activities that could be transferred from human
to machine. The term“machine” should be understood in an abstract way: not
as a physically instantiated machine but as an automated system that may, for
instance, be implemented in software. Since the 50’s machine learning research
has mostly focused on finding relationships in data and analyzing the processes
for extracting such relations, rather than building truly “intelligent systems”.

Machine learning problems occur when a task is defined by a series of
cases or examples rather than by predefined rules. Such problems are found in
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a wide variety of application domains, ranging from engineering applications
in robotics and pattern recognition (speech, handwriting, face recognition), to
Internet applications (text categorization) and medical applications (diagno-
sis, prognosis, drug discovery). Given a number of “training” examples (also
called data points, samples, patterns or observations) associated with desired
outcomes, the machine learning process consists of finding the relationship
between the patterns and the outcomes using solely the training examples.
This shares a lot with human learning where students are given examples of
what is correct and what is not and have to infer which rule underlies the
decision. To make it concrete, consider the following example: the data points
or examples are clinical observations of patient and the outcome is the health
status: healthy or su↵ering from cancer.3 The goal is to predict the unknown
outcome for new “test” examples, e.g. the health status of new patients. The
performance on test data is called “generalization”. To perform this task, one
must build a predictive model or predictor, which is typically a function with
adjustable parameters called a “learning machine”. The training examples are
used to select an optimum set of parameters.

We will see along the chapters of this book that enhancing learning ma-
chine generalization often motivates feature selection. For that reason, classi-
cal learning machines (e.g. Fisher’s linear discriminant and nearest neighbors)
and state-of-the-art learning machines (e.g. neural networks, tree classifiers,
Support Vector Machines (SVM)) are reviewed in Chapter 1. More advanced
techniques like ensemble methods are reviewed in Chapter 5. Less conventional
neuro-fuzzy approaches are introduced in Chapter 8. Chapter 2 provides guid-
ance on how to assess the performance of learning machines.

But, before any modeling takes place, a data representation must be cho-
sen. This is the object of the following section.

1.2 Feature construction

In this book, data are represented by a fixed number of features which can
be binary, categorical or continuous. Feature is synonymous of input variable
or attribute.4 Finding a good data representation is very domain specific and
related to available measurements. In our medical diagnosis example, the fea-
tures may be symptoms, that is, a set of variables categorizing the health
status of a patient (e.g. fever, glucose level, etc.).

Human expertise, which is often required to convert “raw” data into a set
of useful features, can be complemented by automatic feature construction
methods. In some approaches, feature construction is integrated in the mod-
eling process. For examples the “hidden units” of artificial neural networks

3The outcome, also called target value, may be binary for a 2-class classification
problem, categorical for a multi-class problem, ordinal or continuous for regression.

4It is sometimes necessary to make the distinction between “raw” input variables
and“features” that are variables constructed for the original input variables. We will
make it clear when this distinction is necessary.
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compute internal representations analogous to constructed features. In other
approaches, feature construction is a preprocessing. To describe preprocessing
steps, let us introduce some notations. Let x be a pattern vector of dimen-
sion n, x = [x1, x2, ...xn]. The components xi of this vector are the original
features. We call x0 a vector of transformed features of dimension n0. Prepro-
cessing transformations may include:

• Standardization: Features can have di↵erent scales although they refer to
comparable objects. Consider for instance, a pattern x = [x1, x2] where x1

is a width measured in meters and x2 is a height measured in centimeters.
Both can be compared, added or subtracted but it would be unreasonable
to do it before appropriate normalization. The following classical centering
and scaling of the data is often used: x0i = (xi�µi)/�i, where µi and �i are
the mean and the standard deviation of feature xi over training examples.

• Normalization: Consider for example the case where x is an image and
the xi’s are the number of pixels with color i, it makes sense to normalize
x by dividing it by the total number of counts in order to encode the
distribution and remove the dependence on the size of the image. This
translates into the formula: x0 = x/kxk.

• Signal enhancement. The signal-to-noise ratio may be improved by apply-
ing signal or image-processing filters. These operations include baseline or
background removal, de-noising, smoothing, or sharpening. The Fourier
transform and wavelet transforms are popular methods. We refer to intro-
ductory books in digital signal processing (Lyons, 2004), wavelets (Walker,
1999), image processing (R. C. Gonzalez, 1992), and morphological image
analysis (Soille, 2004).

• Extraction of local features: For sequential, spatial or other structured data,
specific techniques like convolutional methods using hand-crafted kernels
or syntactic and structural methods are used. These techniques encode
problem specific knowledge into the features. They are beyond the scope
of this book but it is worth mentioning that they can bring significant
improvement.

• Linear and non-linear space embedding methods: When the dimensionality
of the data is very high, some techniques might be used to project or em-
bed the data into a lower dimensional space while retaining as much infor-
mation as possible. Classical examples are Principal Component Analysis
(PCA) and Multidimensional Scaling (MDS) (Kruskal and Wish, 1978).
The coordinates of the data points in the lower dimension space might be
used as features or simply as a means of data visualization.

• Non-linear expansions: Although dimensionality reduction is often sum-
moned when speaking about complex data, it is sometimes better to in-
crease the dimensionality. This happens when the problem is very complex
and first order interactions are not enough to derive good results. This con-
sists for instance in computing products of the original features xi to create
monomials xk1xk2 ...xkp .
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• Feature discretization. Some algorithms do no handle well continuous data.
It makes sense then to discretize continuous values into a finite discrete
set. This step not only facilitates the use of certain algorithms, it may
simplify the data description and improve data understanding (Liu and
Motoda, 1998).

Some methods do not alter the space dimensionality (e.g. signal enhance-
ment, normalization, standardization), while others enlarge it (non-linear ex-
pansions, feature discretization), reduce it (space embedding methods) or can
act in either direction (extraction of local features).

Feature construction is one of the key steps in the data analysis process,
largely conditioning the success of any subsequent statistics or machine learn-
ing endeavor. In particular, one should beware of not losing information at
the feature construction stage. It may be a good idea to add the raw features
to the preprocessed data or at least to compare the performances obtained
with either representation. We argue that it is always better to err on the
side of being too inclusive rather than risking to discard useful information.
The medical diagnosis example that we have used before illustrates this point.
Many factors might influence the health status of a patient. To the usual clini-
cal variables (temperature, blood pressure, glucose level, weight, height, etc.),
one might want to add diet information (low fat, low carbonate, etc.), family
history, or even weather conditions. Adding all those features seems reason-
able but it comes at a price: it increases the dimensionality of the patterns
and thereby immerses the relevant information into a sea of possibly irrele-
vant, noisy or redundant features. How do we know when a feature is relevant
or informative? This is what “feature selection” is about and is the focus of
much of this book.

1.3 Feature selection

We are decomposing the problem of feature extraction in two steps: feature
construction, briefly reviewed in the previous section, and feature selection,
to which we are now directing our attention. Although feature selection is
primarily performed to select relevant and informative features, it can have
other motivations, including:

1. general data reduction, to limit storage requirements and increase algo-
rithm speed;

2. feature set reduction, to save resources in the next round of data collection
or during utilization;

3. performance improvement, to gain in predictive accuracy;
4. data understanding, to gain knowledge about the process that generated

the data or simply visualize the data

Several chapters in Part I are devoted to feature selection techniques.
Chapter 3 reviews filter methods. Filters are often identified to feature rank-
ing methods. Such methods provide a complete order of the features using
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a relevance index. Methods for computing ranking indices include correlation
coe�cients, which assess the degree of dependence of individual variables with
the outcome (or target). A variety of other statistics are used, including clas-
sical test statistics (T-test, F-test, Chi-squared, etc.) More generally, methods
that select features without optimizing the performance of a predictor are
referred to as “filters”. Chapter 6 presents information theoretic filters.

Chapter 4 and Chapter 5 are devoted to wrappers and embedded methods.
Such methods involve the predictor as part of the selection process. Wrappers
utilize a learning machine as a “black box” to score subsets of features accord-
ing to their predictive power. Embedded methods perform feature selection
in the process of training and are usually specific to given learning machines.
Wrappers and embedded methods may yield very di↵erent feature subsets
under small perturbations of the dataset. To minimize this e↵ect, Chapter 7
explains how to improve feature set stability by using ensemble methods.

A critical aspect of feature selection is to properly assess the quality of the
features selected. Methods from classical statistics and machine learning are
reviewed in Chapter 2. In particular, this chapter reviews hypothesis testing,
cross-validation, and some aspects of experimental design (how many training
examples are needed to solve the feature selection problem.)

A last, it should be noted that it is possible to perform feature construction
and feature selection simultaneously, as part of a global optimization problem.
Chapter 6 introduces the reader to methods along this line.

1.4 Methodology

The chapters of Part I group topics in a thematic way rather than in a method-
ological way. In this section, we present a unified view of feature selection that
transcends the old cleavage filter/wrapper and is inspired by the views of (Liu
and Motoda, 1998).
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(c) Embedded methods

Fig. 1. The three principal approaches of feature selection. The shades show the
components used by the three approaches: filters, wrappers and embedded methods.

There are four aspects of feature extraction:

• feature construction;
• feature subset generation (or search strategy);
• evaluation criterion definition (e.g. relevance index or predictive power);
• evaluation criterion estimation (or assessment method).

The last three aspects are relevant to feature selection and are schemati-
cally summarized in Figure 1.

Filters and wrappers di↵er mostly by the evaluation criterion. It is usually
understood that filters use criteria not involving any learning machine, e.g.
a relevance index based on correlation coe�cients or test statistics, whereas
wrappers use the performance of a learning machine trained using a given
feature subset.

Both filter and wrapper methods can make use of search strategies to ex-
plore the space of all possible feature combinations that is usually too large to
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be explored exhaustively (see Chapter 4.) Yet filters are sometimes assimilated
to feature ranking methods for which feature subset generation is trivial since
only single features are evaluated (see Chapter 3). Hybrid methods exist, in
which a filter is used to generate a ranked list of features. On the basis of the
order thus defined, nested subsets of features are generated and computed by
a learning machine, i.e. following a wrapper approach. Another class of embed-
ded methods (Chapter 5) incorporate feature subset generation and evaluation
in the training algorithm.

The last item on the list, criterion estimation, is covered in Chapter 2.
The di�culty to overcome is that a defined criterion (a relevance index or the
performance of a learning machine) must be estimated from a limited amount
of training data. Two strategies are possible: “in-sample” or “out-of-sample”.
The first one (in-sample) is the“classical statistics”approach. It refers to using
all the training data to compute an empirical estimate. That estimate is then
tested with a statistical test to assess its significance, or a performance bound
is used to give a guaranteed estimate. The second one (out-of-sample) is the
“machine learning” approach. It refers to splitting the training data into a
training set used to estimate the parameters of a predictive model (learning
machine) and a validation set used to estimate the learning machine predictive
performance. Averaging the results of multiple splitting (or“cross-validation”)
is commonly used to decrease the variance of the estimator.

2 What is New in Feature Extraction?

As of 1997, when a special issue on relevance including several papers on vari-
able and feature selection was published (Blum and Langley, 1997, Kohavi
and John, 1997), few domains explored used more than 40 features. The sit-
uation has changed considerably in the past few years. We organized in 2001
a first NIPS workshop, the proceedings of which include papers exploring do-
mains with hundreds to tens of thousands of variables or features (Guyon
and Elissee↵, 2003). Following this workshop, we organized a feature selection
competition, the results of which were presented at a NIPS workshop in 2003.
The present book is the outcome of the latter.

Part II of the book describes the methods used by the best ranking par-
ticipants. Chapter II summarizes the results of the competition. Five datasets
were used that were chosen to span a variety of domains (biomarker discovery,
drug discovery, handwriting recognition, and text classification) and di�cul-
ties (the input variables are continuous or binary, sparse or dense; one dataset
has unbalanced classes.) One dataset was artificially constructed to illustrate
a particular di�culty: selecting a feature set when no feature is informative
individually. We chose datasets that had su�ciently many examples to cre-
ate a large enough test set and obtain statistically significant results (Guyon,
2003). We introduced a number of random features called probes to make the
task more di�cult and identify the algorithms capable of filtering them out.
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The challenge winning methods are described in Chapter 10. The authors
use a combination of Bayesian neural networks (Neal, 1996) and Dirichlet dif-
fusion trees (Neal, 2001). Two aspects of their approach were the same for
all data sets: (1) reducing the number of features used for classification to no
more than a few hundred, either by selecting a subset of features using simple
univariate significance tests, or by Principal Component Analysis; (2) applying
a classification method based on Bayesian learning, using an Automatic Rel-
evance Determination (ARD) prior that allows the model to determine which
of the features are most relevant (MacKay, 1994, Neal, 1996). Bayesian neural
network learning with computation by Markov chain Monte Carlo (MCMC)
is a well developed technology (Neal, 1996). Dirichlet di↵usion trees are a new
Bayesian approach to density modeling and hierarchical clustering.

A wide variety of other methods presented in Part II performed nearly as
well. For feature selection, filter methods proved quite e↵ective. Four of the
top entrants explore successfully the use of Random Forests (RF)5 as a filter
(Chapter 11, Chapter 15, and Chapter 12). Simple correlation coe�cients also
performed quite well (Chapter 13, Chapter 14, Chapter 20, and Chapter 23),
as well as information theoretic ranking criteria (Chapter 22 and Chapter 24).
Some of the recently introduced embedded methods using a Support Vector
Machine (SVM) or a related kernel method were applied with success (Chap-
ter 12, Chapter 13, Chapter 16, Chapter 18, Chapter 19, and Chapter 21).
Among the most innovative methods, Chapter 17 and Chapter 29 present a
margin-based feature selection method inspired by the Relief algorithm (Kira
and Rendell, 1992).

As far as classifier choices are concerned, the second best entrants (Chap-
ter 11) use the simple regularized least square kernel method as classifier.
Many of the other top entrants use regularized kernel methods with various
loss functions, including kernel partial least squares (KPLS) (Chapter 21),
vanilla Support Vector machines (SVM) (Chapter 12, Chapter 20, Chap-
ter 22, Chapter 23 and Chapter 24), transductive SVM (Chapter 13), Bayesian
SVM (Chapter 18), Potential SVM (Chapter 19), and 1-norm SVM (Chap-
ter 16). Two other entrants used neural networks like the winners (Chap-
ter 14 and Chapter 26). Other methods includes Random Forests (RF) (Chap-
ter 15), Näıve Bayes (Chapter 24 and Chapter 25) and simple nearest neigh-
bors (Chapter 17).

Part III of the book devotes several chapters to novel approaches to feature
construction. Chapter 27 provides a unifying framework to many methods
of linear and non-linear space embedding methods. Chapter 28 proposes a
method for constructing orthogonal features for an arbitrary loss. Chapter 31
gives an example of syntactic feature construction: protein sequence motifs.

5Random Forests are ensembles of tree classifiers.
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3 Getting started

Amidst the forest of methods, the reader who is getting started in the field may
be lost. In this section, we introduce basic concepts and briefly describe simple
but e↵ective methods. We illustrate with small two-dimensional classification
problems (Figure 2) some special cases.

One approach to feature selection is to rank features according to their
individual relevance (Section 3.1.) Such feature ranking methods are consid-
ered fast and e↵ective, particularly when the number of features is large and
the number of available training examples comparatively small (e.g. 10,000
features and 100 examples.) In those cases, methods that attempt to search
extensively the space of feature subsets for an optimally predictive can be
much slower and prone to “overfitting” (perfect predictions may be achieved
on training data, but the predictive power on test data will probably be low.)

However, as we shall see in some other examples (Section 3.2 and 3.3),
there are limitations to individual feature ranking, because of the underlying
feature independence assumptions made by “univariate” methods:

• features that are not individually relevant may become relevant in the
context of others;

• features that are individually relevant may not all be useful because of
possible redundancies.

So-called “multivariate” methods take into account feature dependencies.
Multivariate methods potentially achieve better results because they do not
make simplifying assumptions of variable/feature independence.

3.1 Individual relevance ranking

Figure 2-a shows a situation in which one feature (x1) is relevant individually
and the other (x2) does not help providing a better class separation. For such
situations individual feature ranking works well: the feature that provides a
good class separation by itself will rank high and will therefore be chosen.

The Pearson correlation coe�cient is a classical relevance index used
for individual feature ranking. We denote by xj the m dimensional vector
containing all the values of the jth feature for all the training examples, and
by y the m dimensional vector containing all the target values. The Pearson
correlation coe�cient is defined as:

C(j) =
|Pm

i=1(xi,j � x̄j)(yi � ȳ)|
p

Pm
i=1(xi,j � x̄j)2

Pm
i=1(yi � ȳ)2

, (1)

where the bar notation stands for an average over the index i. This coe�-
cient is also the absolute value of the cosine between vectors xi and y, after
they have been centered (their mean subtracted). The Pearson correlation
coe�cient may be used for regression and binary classification problems. For
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Fig. 2. Small classification examples. One class is represented by circles and the
other by stars. The horizontal axis represents one feature and the vertical axis the
other. In the last example we have a third feature. We represent each class by circles
or stars. We show the projections of the classes on the axes as superimposed circles
and stars.
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multi-class problems, one can use instead the closely related Fisher coe�cient.
The Pearson correlation coe�cient is also closely related to the T-test statis-
tic, and the Näıve Bayes ranking index. See Chapter 3 for details and for other
examples of ranking criteria.

Rotations in feature space often simplify feature selection. Figure 2-a is
obtained from Figure 2-d by a 45 degree rotation. One notices that to achieve
the same separation, two features are needed in Figure 2-d, while only one
is needed in Figure 2-a. Rotation is a simple linear transformation. Several
preprocessing methods such as principal component analysis (PCA) perform
such linear transformations, which permit reducing the space dimensionality
and exhibit better features.

The notion of relevance is related to the objective being pursued. A
feature that is irrelevant for classification may be relevant for predicting the
class conditional probabilities. Such is the case of feature x2 in Figure 2-a. The
examples of the two classes are drawn from overlapping Gaussian distributions
whose class centers are aligned with axis x1. Thus, P (y|x) is not independent
of x2, but the error rate of the optimum Bayes classifier is the same whether
feature x2 is kept or discarded. This points to the fact that density estimation
is a harder problem than classification and usually requires more features.

3.2 Relevant features that are individually irrelevant

In what follows, we justify the use of multivariate methods, which make use of
the predictive power of features considered jointly rather than independently.

A helpful feature may be irrelevant by itself. One justification of
multivariate methods is that features that are individually irrelevant may
become relevant when used in combination. Figure 2-b gives an example of
a linear separation in which an individually irrelevant feature helps getting a
better separation when used with another feature.6 This case occurs in real
world examples: feature x1 might represent a measurement in an image that is
randomly o↵set by a local background change; feature x2 might be measuring
such local o↵set, which by itself is not informative. Hence, feature x2 might
be completely uncorrelated to the target and yet improve the separability of
feature x1, if subtracted from it.

Two individually irrelevant features may become relevant when used
in combination. The case of Figure 2-c, known as the “chessboard problem”,
illustrates this situation.7 In the feature selection challenge (see Part II), we
proposed a problem that generalizes this case in a higher dimension space: The
Madelon dataset is built from clusters placed on the vertices of a hypercube
in five dimensions and labeled at random.

The Relief method is a classical example of multivariate filter. Most
multivariate methods rank subsets of features rather than individual features.

6It is worth noting that the x2 projection is the same in Figures 2-a and 2-b.
7This is a small 2x2 chessboard. This problem is analogous to the famous XOR

problem, itself a particular case of the parity problem.
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Still, there exist multivariate relevance criteria to rank individual features
according to their relevance in the context of others. To illustrate this concept,
we give as example a ranking index for classification problems derived from
the Relief algorithm (Kira and Rendell, 1992):

C(j) =
Pm

i=1

PK
k=1 |xi,j � xMk(i),j |

Pm
i=1

PK
k=1 |xi,j � xHk(i),j |

, (2)

Notations will be explained shortly. The Relief algorithm uses an approach
based on the K-nearest-neighbor algorithm. To evaluate the index, we first
identify in the original feature space, for each example xi, the K closest ex-
amples of the same class {xHk(i)}, k = 1...K (nearest hits) and the K closest
examples of a di↵erent class {xMk(i)} (nearest misses.)8 Then, in projection
on feature j, the sum of the distances between the examples and their nearest
misses is compared to the sum of distances to their nearest hits. In Equa-
tion 2, we use the ratio of these two quantities to create an index independent
of feature scale variations. The Relief method works for multi-class problems.

3.3 Redundant features

Another justification of multivariate methods is that they take into account
feature redundancy and yield more compact subsets of features. Detecting
redundancy cannot be done by analyzing only the feature projections, as uni-
variate methods do. This point is illustrated in the following examples.

Noise reduction can be achieved with features having identical pro-
jected distributions. In Figure 2-d, the two features look similar if we com-
pare their projected distributions. Yet they are not completely redundant:
the two-dimensional distribution shows a better class separation than the one
achievable with either feature. In this example the data points of the two
classes are generated from Gaussian distributions with equal variance �2. In
projection on either feature, the distance d between the two classes is iden-
tical. The signal to noise ratio of each individual feature is therefore d/�. In
projection on the first diagonal, the distance between the two classes is d

p
2,

hence the signal-to-noise ratio is improved by
p

2. Adding n features having
such class conditional independence would result in an improvement of the
signal-to-noise ratio by

p
n.

Correlation does NOT imply redundancy. Figures 2-e and Figure 2-
f show even more striking examples in which the feature projections are the
same as in Figure 2-d. It is usually thought that feature correlation (or anti-
correlation) means feature redundancy. In Figure 2-f, the features are corre-
lated and indeed redundant: the class separation is not significantly improved
by using two features rather than one. But in Figure 2-e, despite that two

8All features are used to compute the closest examples.



Introduction 13

features have similar projections and are anti-correlated, they are not redun-
dant at all: a perfect separation is achieved using the two features while each
individual feature provides a poor separation.

3.4 Forward and backward procedures

Having recognized the necessity of selecting features in the context of other
features and eliminating redundancy, we are left with a wide variety of algo-
rithms to choose from. Among wrapper and embedded methods (Chapter 4
and Chapter 5), greedy methods (forward selection or backward elimination)
are the most popular. In a forward selection method one starts with an empty
set and progressively add features yielding to the improvement of a perfor-
mance index. In a backward elimination procedure one starts with all the
features and progressively eliminate the least useful ones. Both procedures
are reasonably fast and robust against overfitting. Both procedures provide
nested feature subsets. However, as we shall see, they may lead to di↵erent
subsets and, depending on the application and the objectives, one approach
may be preferred over the other one. We illustrate each type of procedure with
examples of algorithms.

Forward or backward? In Figures 2-g and h, we show an example in
three dimensions illustrating di↵erences of the forward and backward selec-
tion processes. In this example, a forward selection method would choose
first x3 and then one of the two other features, yielding to one of the order-
ings x3, x1, x2 or x3, x2, x1. A backward selection method would eliminate x3

first and then one of the two other features, yielding to one of the orderings
x1, x2, x3 or x2, x1, x3. Indeed, on Figure 2-h, we see that the front projection
in features x1 and x2 gives a figure similar to Figure 2-e. The last feature
x3 separates well by itself, better than x1 or x2 taken individually. But, com-
bined with either x1 or x2, it does not provide as good a separation as the pair
{x1, x2}. Hence, the forward selection ordering yields a better choice if we end
up selecting a single feature (the top ranking x3), but the backward selection
method will give better results if we end up selecting two features (the top
ranking x1 and x2). Backward elimination procedures may yield better per-
formances but at the expense of possibly larger feature sets. However if the
feature set is reduced too much, the performance may degrade abruptly. In
our previous example, choosing the top ranking feature by backward selection
would be much worse than choosing x3 as given by the forward approach.

Forward selection algorithm examples are now provided. The Gram-
Schmidt orthogonalization procedure is a simple example of forward selection
method (see Chapter 2 for details and references.) The first selected feature
has largest cosine with the target. For centered features, this is equivalent
to selecting first the feature most correlated to the target (Equation 1.) The
subsequent features are selected iteratively as follows:

• the remaining features and the target are projected on the null space of
the features already selected;
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• the feature having largest cosine with the target in that projection is added
to the selected features.

The procedure selects the features that incrementally decrease most the least-
square error of a linear predictor. One can stop the procedure using a statistical
test or by cross-validation (Chapter 2.) This procedure has the advantage
to be described in few lines of codes and it performs well in practice. We
give a Matlab implementation of the algorithm in Appendix A. It is worth
noting the similarity with the Partial Least Square (PLS) method (see e.g.
(Hastie et al., 2000)): both methods involve iteratively the computation of
the correlation of the (projected) input features with the target, followed by
a new projection on the null space of the features selected; the di↵erence is
that, in Gram-Schmidt, original input features are selected while in PLS the
features selected are constructed as a weighted sum of the original features,
the weights being given by the correlation to the target.

Another more advanced example of forward selection method is “Random
Forests” or RF. Ensembles of decision trees (like Random Forests (Breiman,
2001)) select features in the process of building a classification or regres-
sion tree. A free RF software package is available from http://www.stat.
berkeley.edu/users/breiman/RandomForests/ and a Matlab interface from
http://sunsite.univie.ac.at/statlib/matlab/RandomForest.zip.

Backward elimination algorithm examples are now provided. The re-
cursive feature elimination Support Vector Machine (RFE-SVM) is a simple
example of backward elimination method (see Chapter 5 for details and ref-
erences.) For the linear SVM having decision function f(x) = w · x + b, the
method boils down to simply iteratively removing the feature xi with the
smallest weight in absolute value |wi| and retraining the model.9 At the ex-
pense of some sub-optimality, the method can be sped up by removing several
features at a time at each iteration. The method can also be extended to the
non-linear SVM (Chapter 5.) SVMs are described in Chapter 1 and numer-
ous free software packages are available (see http://www.kernel-machines.
org/) which makes this approach rather simple in terms of implementation.

RFE is a weight pruning method according to the smallest change in objec-
tive function. It follows the same paradigm than the Optimal Brain Damage
procedure (OBD), which is used to prune weights in neural networks and can
be used for feature selection. OBD also bears resemblance with the Automatic
Relevance Determination (ARD) Bayesian method used by the winners of the
competition (see Chapter 7 and Chapter 10 for details.)

3.5 Recapitulation

Table 1 summarizes the methods mentioned in this section. We recommend
to try the methods in order of increasing statistical complexity:

9RFE usually works best on standardized features, see Section 1.2.

http://www.stat.berkeley.edu/users/breiman/RandomForests/
http://www.stat.berkeley.edu/users/breiman/RandomForests/
http://sunsite.univie.ac.at/statlib/matlab/RandomForest.zip
http://www.kernel-machines.org/
http://www.kernel-machines.org/
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Feature
selection

Matching
classifier

Computational
complexity

Comments

Pearson
(Eq. 1)

Näıve bayes nm Feature ranking filter. Linear univari-
ate. Makes independence assumptions
between features. Low computational
and statistical complexity.

Relief
(Eq. 2)

Nearest
neighbors

nm2 Feature ranking filter. Non-linear
multivariate. Statistical complexity
monitored by the number of neigh-
bors.

Gram-
Schmidt
(Sec. 3.4)

linear RLSQ fnm Forward selection, stopped at f fea-
tures. Linear multivariate. The statis-
tical complexity of RLSQ monitored
by the regularization parameter or
“ridge”.

RFE-SVM
(Sec. 3.4)

SVM max(n, m)m2 Backward elimination. Multivariate,
linear or non-linear. Statistical com-
plexity monitored by kernel choice
and “soft-margin” constraints.

OBD/ARD Neural Nets min(n, m)nmh Backward elimination. Non-linear
multivariate. Statistical complex-
ity monitored by the number h of
hidden units and the regularization
parameter or“weight decay”.

RF RF t
p

n m log m Ensemble of t tree classifiers, each
preforming forward selection. Non-
linear multivariate.

Table 1. Frequently used feature selection methods. We use the abbreviations:
RLSQ=regularized least square; RFE=recursive feature elimination; SVM=support
vector machine; OBD=optimum brain damage; ARD=automatic relevance determi-
nation; RF=random forest. We call m the number of training examples and n the
number of features. The computational complexity main vary a lot depending on
the implementation and should be taken with caution.
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1. Univariate methods making independence assumptions between vari-
ables. Feature selection: Ranking with the Pearson correlation coe�cient.
Classifier: Näıve Bayes.

2. Linear multivariate methods. Feature selection: Gram-Schmidt for-
ward selection or RFE with linear SVM. Predictors: Linear SVM or linear
regularized least-square model (RLSQ.)

3. Non-linear multivariate methods. Feature selection: Relief, RFE,
OBD or ARD combined with non-linear models. Predictors: Nearest neigh-
bors, non-linear SVM or RLSQ, neural network, RF.

Computational complexity is also sometimes of consideration. We have
added to Table 1 some orders of magnitude of the computational complexity
of the feature selection process. This does not include the assessment part
determining the optimum number of features to be selected. Justifications of
our estimates are provided in Appendix B.

4 Advanced topics and open problems

This book presents the status of a rapidly evolving field. The applications are
driving this e↵ort: bioinformatics, cheminformatics, text processing, speech
processing, and machine vision provide machine learning problems in very
high dimensional spaces, but often comparably few examples (hundreds). It
may be surprising that there is still a profusion of feature selection methods
and that no consensus seems to be emerging. The first reason is that there
are several statements of the feature selection problem. Other reasons include
that some methods are specialized to particular cases (e.g. binary inputs or
outputs), some methods are computationally ine�cient so they can be used
only for small numbers of features, some methods are prone to “overfitting”
so they can be used only for large numbers of training examples.

The fact that simple methods often work well is encouraging for practi-
tioners. However, this should not hide the complexity of the problems and the
challenges ahead of us to improve on the present techniques and consolidate
the theory. Inventing a new algorithm is a good way to be acquainted with
the problems. But there exist already so many algorithms that it is di�cult to
improve significantly over the state of the art without proceeding in a princi-
pled way. This section proposes some formal mathematical statements of the
problems on which new theories can be built.

Let us first introduce some notations. A pattern is a feature vector x =
[x1, x2, ...xn], which is an instance of a random vector X = [X1, X2, ...Xn].
For each assignment of values, we have a probability P (X = x). We assume
that the values are discrete for notational simplicity. The target is a random
variable Y taking values y. The dependency between X and Y is governed by
the distribution P (X = x, Y = y) = P (Y = y|X = x)P (X = x). When we
write P (X, Y ) = P (Y |X)P (X), we mean that the equality hold true for all
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the values taken by the random variables. Let V be some subset of X. Let
X�i be the subset of X excluding xi and V �i be some subset of X�i.

4.1 Relevant features

We start with the notion of relevant feature. We first define irrelevance as a
consequence of random variable independence and then define relevance by
contrast. First we assume the knowledge of the data distributions, which in
reality are unknown. We then discuss what can be done in the finite sample
case.

Definition 1 (Surely irrelevant feature). A feature Xi is surely irrelevant
i↵ for all subset of features V �i including X�i,

P (Xi, Y |V �i) = P (Xi|V �i)P (Y |V �i).

Since we care little about cases that occur with zero or small probability
it seems natural to measure irrelevance in probability e.g. with the Kullback-
Leibler divergence between P (Xi, Y |V �i) and P (Xi|V �i)P (Y |V �i):

MI(Xi, Y |V �i) =
X

{Xi,Y }
P (Xi, Y |V �i) log

P (Xi, Y |V �i)
P (Xi|V �i)P (Y |V �i)

The sum runs over all possible values of the random variables Xi and Y .
We note that the expression obtained is the conditional mutual information.
It is therefore a function of n � 1 variables.10 In order to derive a score that
summarizes how relevant feature Xi is, we average over all the values of V �i:

EMI(Xi, Y ) =
X

V

�i

P (V �i)MI(Xi, Y |V �i)

We define then:

Definition 2 (Approximately irrelevant feature). A feature Xi is ap-
proximately irrelevant, with level of approximation ✏ > 0 or ✏-relevant, i↵, for
all subset of features V �i including X�i,

EMI(Xi, Y )  ✏.

When ✏ = 0, the feature will be called almost surely irrelevant.

With that statement, conditional mutual information comes as a natural
relevance ranking index and we may define relevance by contrast to irrel-
evance. The practical use of our definitions to perform feature selection is

10Recall that n is the total number of features.
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computationally expensive since it requires considering all subset of features
V �i and summing over all the values of V �i. However if we assume that fea-
tures Xi and Xj for all i 6= j, are independent, the average conditional mutual
information is the same as the mutual information between Xi and Y :

EMI(Xi, Y ) = MI(Xi, Y )

This motivates the following definition:

Definition 3 (Individually irrelevant feature). A feature Xi is individu-
ally irrelevant i↵ for some relevance threshold epsilon � 0

MI(Xi, Y )  ✏.

The derivation of this definition justifies of the use of mutual information
as a feature ranking index (see Chapter 6.)

The finite sample case is now discussed. In practical cases, we do not
have access to the probability distributions P (X) and P (Y |X), but we have
training examples drawn from these distributions. We define a new notion
of probable approximate irrelevance. At the same time, we replace in our
definition the criteria EMI(Xi, Y ) or MI(Xi, Y ) by a generic non-negative
index C(i) whose expected value is zero for irrelevant features. We write our
index as C(i,m) to emphasize that it is an empirical index computed from m
training examples.

Definition 4 (Probably approximately irrelevant feature). A feature i
is probably approximately irrelevant with respect to an index C estimated with
m examples, with level of approximation ✏ � 0 and risk � � 0 i↵

P(C(i, m) > ✏(�,m))  �.

Clearly, for relevant features, we do not know the probability distribution
of C(i, m) across di↵erent drawings of the training set of size m, so it does
not seem that we have progressed very much. However, we may be able to
make some assumptions about the distribution of C for irrelevant features.
Following the paradigm of hypothesis testing, we call the distribution of C
for irrelevant features the “null” distribution. For a given candidate feature i,
the null hypothesis is that this feature is irrelevant. We will reject this null
hypothesis if C(i,m) departs significantly from zero. Using the “null” distri-
bution and a chosen risk �, we can compute the significance threshold ✏(�,m).
This method of assessing the statistical significance of feature relevance is fur-
ther developed in Chapter 2.

Discussion. Many definitions of relevance have been provided in the literature.
Kohavi and John (Kohavi and John, 1997) make a distinction between strongly and
weakly relevant features. We recall below those definitions:



Introduction 19

A feature X
i

is strongly relevant i↵ there exists some values x
i

, y and v
i

with P (X
i

= x
i

, X�i = v
i

) > 0 such that: P (Y = y|X
i

= x
i

, X�i =
v

i

) 6= P (Y = y|X�i = v
i

). A feature X
i

is weakly relevant i↵ it is not
strongly relevant and if there exists a subset of features V �i for which
there exists for values x

i

, y and v
i

with P (X
i

= x
i

, V
i

= v
i

) > 0 such that:
P (Y = y|X

i

= x
i

, V
i

= v
i

) 6= P (Y = y|V
i

= v
i

).

Our asymptotic definitions of relevance are similarly based on conditioning. Kohavi

and John’s introduction of strong and weak relevance seems to have been guided by

the need to account for redundancy: the strongly relevant feature that is needed on its

own and cannot be removed, and the weakly relevant feature that is redundant with

other relevant features and can therefore be omitted if similar features are retained.

Our approach separates the notion of redundancy from that of relevance: A feature

is relevant if it contains some information about the target. Since our definition of

relevance is less specific, we introduce in Section 4.2 the notion of su�cient feature

subset, a concept to extract a minimum subset of relevant feature and therefore to

rule out redundancy when required.

4.2 Su�cient feature subset

In the previous section, we have provided formal definitions for the notion
of feature relevance. As outlined in section 3.3, relevant features may be re-
dundant. Hence, a ranking of features in order of relevance does not allow us
to extract a minimum subset of features that are su�cient to make optimal
predictions. In this section, we propose some formal definitions of feature sub-
set su�ciency. We introduce the additional notation V̄ for the subset that
complements a set of feature V in X: X = [V , V̄ ].

Definition 5 (Surely su�cient feature subset). A subset V of features is
surely su�cient i↵, for all assignments of values to its complementary subset
V̄ ,

P (Y |V ) = P (Y |X).

As in the case of the definition of feature relevance, since we care little
about cases that occur with zero or small probability, it seems natural to
measure su�ciency in probability. We define a new quantity:

DMI(V ) =
X

{v,v̄,y}
P (X = [v, v̄], Y = y) log

P (Y = y|X = [v, v̄])
P (Y = y|V = v)

.

This quantity, introduced in (Koller and Sahami, 1996), is the expected value
over P (X) of the Kullback-Leibler divergence between P (Y |X) and P (Y |V ).
It can be verified that:

DMI(V ) = MI(X, Y )�MI(V , Y ).
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Definition 6 (Approximately su�cient feature subset). A subset V of
features is approximately su�cient, with level of approximation ✏ � 0, or ✏-
su�cient, i↵,

DMI(V )  ✏.

If ✏ = 0 the subset V will be called almost surely su�cient.

Definition 7 (Minimal approximately su�cient feature subset). A
subset V of features is minimal approximately su�cient , with level of approx-
imation ✏ � 0 i↵ it is ✏-su�cient and there does not exist other ✏-su�cient
subsets of smaller size.

From our definition, it follows that a minimal approximately su�cient
feature subset is a solution (probably not unique) to the optimization problem:

min
V

kV k0 such that DMI(V )  ✏,

where kV k0 denotes the number of features selected. Such optimization prob-
lem can be transform via the use of a Lagrange multiplier � > 0 into:

min
V

kV k0 + � DMI(V ).

Noting that MI(X, Y ) is constant, this is equivalent to:

min
V

kV k0 � � MI(V , Y ).

We recover the feature selection problem stated in Chapter 6: find the smallest
possible feature subset that maximizes the mutual information between the
feature subset and the target.

We remark that the quantity kV k0 is discrete and therefore di�cult to op-
timize. It has been suggested (Tishby et al., 1999) to replace it by MI(X,V ).
As noted in section 3.1, the prediction of posterior probabilities is a harder
problem than classification or regression. Hence, we might want to replace the
problem of maximizing mutual information by that of minimizing a given risk
functional, e.g. the classification error rate. The formulation of the“zero-norm”
feature selection method follows this line of thoughts (see Chapter 5.)

4.3 Variance of feature subset selection

If the data have redundant features, di↵erent subsets of features can be equally
e�cient. For some applications, one might want to purposely generate alter-
native subsets that can be presented to a subsequent stage of processing.
Still one might find this variance undesirable because (i) variance is often the
symptom of a “bad” model that does not generalize well; (ii) results are not
reproducible; and (iii) one subset fails to capture the “whole picture”.

One method to “stabilize” variable selection developed in Chapter 7 is to
use ensemble methods. The feature selection process may be repeated e.g.
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with sub-samples of the training data. The union of the subsets of features
selected may be taken as the final “stable” subset. An index of relevance of
individual features can be created considering how frequently they appear in
the selected subsets.

This approach has shown great promises but the following limitation is
worth mentioning: when one feature that is highly relevant by itself is com-
plemented by many alternative features having weak individual relevance, the
highly relevant feature will easily emerge from the procedure while the weak
features will be di�cult to di↵erentiate from irrelevant features. This may be
detrimental to performances.

4.4 Suggested problems

Before closing this chapter, we would like to describe some research directions
that we believe deserve attention.

More theoretically grounded algorithms. A lot of popular algorithms
are not principled and it is di�cult to understand what problem they seek to
solve and how optimally they solve it. It is important to start with a clean
mathematical statement of the problem addressed (see Sections ?? and 4.2
for preliminary guidelines.) It should be made clear how optimally the chosen
approach addresses the problem stated. Finally, the eventual approximations
made by the algorithm to solve the optimization problem stated should be
explained. An interesting topic of research would be to “retrofit” successful
heuristic algorithms in a theoretical framework.

Better estimation of the computational burden. Computational
considerations are fairly well understood. But, even though the ever increasing
speed of computers lessens the importance of algorithmic e�ciency, it remains
essential to estimate the computational burden of algorithms for feature se-
lection problems. The computational time is essentially driven by the search
strategy and the evaluation criterion. Several feature selection methods re-
quire examining a very large number of subsets of features, and possibly, all
subsets of features, i.e. 2n subsets. Greedy methods are usually more parsimo-
nious and visit only of the order of n or n2 subsets. The evaluation criterion
may also be expensive as it may involve training a classifier or comparing
every pairs of examples or features. Additionally, the evaluation criterion may
involve one or several nested cross-validation loops. Finally, ensemble methods
o↵er performance increases at the expense of additional computations.

Better performance assessment of feature selection. The other im-
portant question to be addressed is of statistical nature: some methods require
more training examples than others to select relevant features and/or obtain
good predictive performances. The danger of “overfitting” is to find features
that “explain well” the training data, but have no real relevance or no predic-
tive power. Making theoretical predictions on the number of examples needed
to “solve” the feature selection problem is essential both to select an appro-
priate feature selection method and to plan for future data acquisition. Initial
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results to tackle this problem are found e.g. in (Almuallim and Dietterich,
1991) and (Ng, 1998).

The sagacious reader will have noticed that we did not treat the finite
sample case in Section 4.2 for “su�cient feature subsets”. There is still a lack
of adequate formalism. We argue that in the finite sample case, feature subsets
that are NOT su�cient may yield better performance than su�cient subsets
(even if they are minimal and contain no irrelevant feature) because further
reducing the space dimensionality may help reducing the risk of overfitting.
In line with the “wrapper”methodology (Kohavi and John, 1997), it might be
necessary to introduce a notion of “e�cient feature subset”: a subset providing
best expected value of the risk when the learning machine is trained with
a finite number m of examples. One central issue is to devise performance
bounds characterizing e�cient feature subsets.

Other challenges. Although we have made an e↵ort in this introduction
and in the book to cover a large number of topics related to feature extraction,
we have not exhausted all of them. We briefly list some other topics of interest.

• Unsupervised variable selection. Several authors have attempted to per-
form feature selection for clustering applications (see, e.g., Xing and Karp,
2001, Ben-Hur and Guyon, 2003, and references therein). For supervised
learning tasks, one may want to pre-filter a set of most significant vari-
ables with respect to a criterion which does not make use of y to lessen
the problem of overfitting.

• Selection of examples. The dual problems of feature selection/construction
are those of example selection/construction. Mislabeled examples may in-
duce the choice of wrong variables, so it may be preferable to perform
jointly the selection of variables and examples.

• Reverse engineering the system. Our introduction focuses on the problem
of constructing and selecting features useful to build a good predictor. Un-
raveling the causal dependencies between variables and reverse engineering
the system that produced the data is a far more challenging task (see, e.g.,
Pearl, 2000) that goes beyond the scope of this book.

5 Conclusion

We have presented in this introductions many aspects of the problem of feature
extraction. This book covers a wide variety of topics and provides access to
stimulating problems, particularly via the feature selection challenge, which
is the object of Part II of the book. Simple but e↵ective solutions have been
presented as a starting point. The reader is now invited to study the other
chapters to discover more advanced solutions. We have indicated a number of
open problems to challenge the reader to contribute to this rapidly evolving
field.
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A Forward selection with Gram-Schmidt
orthogonalization

function idx = gram_schmidt(X, Y, featnum)
%idx = gram_schmidt(X, Y, featnum)
% Feature selection by Gram Schmidt orthogonalization.
% X -- Data matrix (m, n), m patterns, n features.
% Y -- Target vector (m,1).
% featnum -- Number of features selected.
% idx -- Ordered indices of the features (best first.)

[m, N]=size(X);
if nargin<3 | isempty(featnum), featnum=min(m,N); end
idx=zeros(1,featnum); w=zeros(1,featnum);
rss=zeros(1,featnum); % Residual sum of squares
colid=1:N; % Original feature numbering
n=N;
% Main loop over features
for k=1:featnum

fprintf(’\nTraining on feature set size: %d\n’, N-n+1);
% Normalize
XN=sqrt(sum(X.^2)); % Norms of the feature vectors
XN(XN==0)=eps;
X_norma = X./repmat(XN, m,1); % Normalized feature matrix
% Project onto Y
y_proj = sum(repmat(Y, 1, n).*X_norma);
ay_proj=abs(y_proj);
% Find the direction of maximum projection
[maxval, maxidx] = max(ay_proj); % Dir. of max. proj.
idx(k)=colid(maxidx); % Index of that feature
% Update the model
w(k)=y_proj(maxidx)/XN(maxidx); % Weight of that feature
Y_proj = w(k)*X(:,maxidx); % Proj. Y on dir. X(:,maxidx)
Y_residual = Y - Y_proj; % New residual
rss(k) = sum(Y_residual.^2); % Residual error model
% Compute the residual X vectors
X_proj = sum(repmat(X_norma(:,maxidx),1,n).*X);
X_residual = X-repmat(X_proj, m, 1).* ...

repmat(X_norma(:,maxidx), 1, n);
% Change the matrix to iterate
Y=Y_residual;
X=X_residual(:, [1:maxidx-1,maxidx+1:n]);
colid=colid([1:maxidx-1,maxidx+1:n]);
n=n-1;
fprintf(’Training mse: %5.2f\n’, rss(k)/m);
fprintf(’Features selected:\nidx=[’);
fprintf(’%d ’,idx(1:k));
fprintf(’]\n’);

end
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B Justification of the computational complexity
estimates

Pearson. For the Pearson method, for each feature, the number of opera-
tions needed is proportional to the number m or examples and the coe�cient
needs to be evaluated for all n features. Sorting will cost only of the order
of n log(n) operations in non-pathological cases, so the computations will be
dominated by the computation of the coe�cient, i.e. of the order of mn oper-
ations. Determining the optimum number of features may require running a
cross-validation experiment, which we do not take into account.

Relief. For Relief, we first need to determine for each example its “nearest
hit” and “nearest miss”, which require of the order of m2 comparisons using a
distance measure requiring of the order of n operations. The computation of
the ranking index itself is less expensive (a number of calculations proportional
to nmK). Hence, we quote a computational complexity of the order of nm2.

Gram-Schmidt. For linear least square classifiers, the computations are
dominated by solving a system of m equations of n variables, which costs of
the order of min(n, m)nm. But for the Gram-Schmidt procedure, we can stop
at an upper bound of the desired number of features f , which is never to
exceed min(n, m), so, we get a computational complexity of fnm.

Recursive Feature Elimination-SVM. For the SVM, some implemen-
tations are faster than others, but a complexity of the order of max(n, m)m2

can be assumed, since it costs of the order of nm2 to compute the kernel ma-
trix and of the order of m3 to invert it. For RFE, the SVM will be retrained
several times with a decreasing number of features. The number of iterations
is n if we remove the features one by one and log2(n) if we reduce the number
of features by a factor of 2 at every iteration. Assuming that we take this last
strategy, by summing the series, we see that we only approximately double
the amount of computations. Hence, the overall computational complexity of
RFE-SVM is of the order of max(n, m)m2.

Neural net with OBD. For a neural network, assuming that the num-
ber of hidden units h is very small compared to n, a forward propagation and
a backward propagation cost of the order of mn times h. We assume that
of the order of min(n, m) iterations are needed for convergence. The pruning
process (Optimum Brain Damage or OBD) requires the same additional com-
putational burden as for RFE. Hence, the overall computational complexity
of OBD is of the order of min(n, m)nmh.

Random Forest (RF). For RF, the initial sort for each variable for a
single tree takes of the order of m log m computations. Additionally, for a“bal-
anced”(middle splits) tree of depth log m, it takes approximately m log m split
evaluations (if splits are near the end of the predictor range, the complexity
could increase to m2.) The default number of variables considered at every
split by RF is

p
n. Hence, for t trees the overall computational complexity is

of the order of t
p

nm log m.
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Learning Machines
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1.1 Introduction

Learning from data may be a very complex task. To satisfactorily solve a vari-
ety of problems, many di↵erent types of algorithms may need to be combined.
Feature extraction algorithms are valuable tools, which prepare data for other
learning methods. To estimate their usefulness one must examine the whole
complex processes they are parts of.

The goal of the chapter is to present a short survey of di↵erent approaches
to learning from data with a special emphasis on solving classification (and
approximation) problems, where feature extraction plays a particularly impor-
tant role. We address this review to readers who know the basics of the field
and would like to get quickly acquainted with techniques they are less famil-
iar with. For novice readers we recommend textbooks by Duda et al. (2001),
Mitchell (1997), Bishop (1995), Haykin (1994), Cherkassky and Mulier (1998),
Schalko↵ (1992), de Sá (2001), Hastie et al. (2001), Ripley (1996), Schölkopf
and Smola (2001), Friedman et al. (2001).

Our tutorial starts with the mathematical statement of the learning prob-
lem. Then, it presents two general induction principles: risk minimization and
Bayesian learning, that are widely applied in this review and the next chap-
ters. Classification algorithms are then discussed in more details, including:
Näıve Bayes, Linear Discriminant Analysis, kernel methods, Neural Networks,
similarity based approaches and Decision Trees.

1.2 The learning problem

The term learning machines encompasses many kinds of computational in-
telligence systems capable of gathering knowledge by means of data analysis.
The algorithms are sometimes divided into di↵erent groups (not necessarily
disjoint) such as machine learning, soft computing or more uniform types:
neural networks, decision trees, evolutionary algorithms etc. Learning from
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data may be treated as searching for the most adequate model (hypothesis)
describing a given data. A learning machine is an algorithm which determines
a learning model, which can be seen as a function:

f : X ! Y. (1.1)

The function transforms objects from the data domain X to the set Y of possi-
ble target values. The data domain and the set of target values are determined
by the definition of the problem for which the f is constructed.

The learning model f usually depends on some adaptive parameters some-
times also called free parameters. In this context, learning can be seen as a
process in which a learning algorithm searches for parameters of the model f ,
which solve a given task.

The learning algorithm learns from a sequence D of data, defined in the
space X or in X ⇥ Y:

D = {x1,x2, . . . ,xm} = X (1.2)
D = {hx1, y1i, hx2, y2i, . . . , hxm, ymi} = hX, Y i (1.3)

Usually X has a form of a sequence of multidimensional vectors. An alternative
statement of the problem defines X as a sequence of object names and provides
a matrix of values describing similarity between the objects.

The definition (1.2) states an unsupervised learning problem (learning
without teacher), where learning algorithms may be base only on values xi

(called inputs) from the data domain. Unsupervised learning is used for ex-
ample in clustering, self-organization, auto-association and some visualization
algorithms.

In the case of definition (1.3) learning algorithms use pairs hxi, yii where
yi is the desired output value for xi. Such learning is called supervised (with
teacher). When Y is a set of several symbols (the number |Y| of elements of
Y is usually significantly smaller than the number of vectors in the training
data set), the learning problem is called a classification task and Y is called
the set of class labels. If |Y| = 2, then we deal with binary classification and if
|Y| > 2 — with multi–class problems. For convenience it is often assumed that
Y = {�1,+1}, Y = {0, 1} or Y = {1, . . . , c}. Other examples of supervised
learning are approximation (or regression) and time series prediction. In such
cases Y = R or Y = R⇥ . . .⇥ R.

Risk minimization

Many learning algorithms perform a minimization of risk!expected (or more
precisely: a measure approximating the expected risk), defined by:

R[f ] =
Z

X⇥Y
l(f(x), y) dP (x, y), (1.4)
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where l(·) is a loss function, and P is the data distribution. Note that in the
case of unsupervised learning the above equation does not depend on y and
Y.

The loss function may be defined in one of several ways. In the case of
classification it may be

lc(f(x), y) =

(

0 f(x) = y,

1 f(x) 6= y.
(1.5)

For binary classification with Y = {�1,+1} the soft margin loss proposed by
Bennett and Mangasarian (1992) may be used:

lb(f(x), y) = max{0, 1� yf(x)}. (1.6)

The most popular loss function designed for regression (however it is also
commonly used for classification tasks) is the squared loss:

ls(f(x), y) = (f(x)� y)2. (1.7)

Another popular loss function dedicated to regression is called ✏-insensitive
loss:

l✏(f(x), y) = max{0, |f(x)� y|� ✏}. (1.8)

It may be seen as an extension of the soft margin loss.
In the case of Y = {0, 1} and f(x) 2 (0, 1), a possible choice is the cross-

entropy (Kullback and Leibler, 1951) loss function

lce(f(x), y) = �y log f(x)� (1� y) log(1� f(x)). (1.9)

In practice, the distribution P (x, y), crucial for the integration of (1.4), is
usually unknown. Thus, the expected risk is replaced by risk!empirical

Remp[f ] =
1
m

m
X

i=1

l(f(xi), yi), (1.10)

which is the average of errors over the set of data pairs hxi, yii. The empirical
risk used with the squared loss function is the well known mean squared error
(MSE) function:

RMSE [f ] =
1
m

m
X

i=1

ls(f(xi), yi) =
1
m

m
X

i=1

(f(xi)� yi)2. (1.11)

The sum squared error (SSE) is equal to m ·RMSE [f ]. Hence, minimization of
MSE is equivalent to minimization of SSE (up to the constant m). In practice,
yet another formula is used ((1.11) with m replaced by 2 in the denominator),
because of a convenient form of its derivative.
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Minimization of the empirical risk measured on a training data sample
does not guarantee good generalization which is the ability to accurately es-
timate the target values for unseen data1. Even if the empirical risk Remp[f ]
is small, f may provide poor generalization i.e. for a representative sample
D0 = {hx01, y01i, hx02, y02i, . . . , hx0m0 , y0m0i} of test patterns the empirical risk

Rtest[f ] =
1
m0

m0
X

i=1

l(f(x0i), y
0
i) (1.12)

may be much higher. The Rtest[f ] is commonly called test error.
Poor generalization of a model accompanied by high accuracy on the train-

ing data is called overfitting and is often caused by too large complexity of
the model (too many adaptive parameters). One of possible ways to protect
the model against overfitting is to add a regularization term. Regularization
was originally proposed for ill-posed problems by Tikhonov (1963), Tikhonov
and Arsenin (1977):

Rreg[f ] = Remp[f ] + �⌦(f). (1.13)

⌦(f) is a regularizer designated to control the complexity of f . More details
on regularization are presented in section 1.3.7.

Bayesian learning

The Bayes theorem defines the relationship between the posterior probability2

P (f |D) and prior probability P (f) of given hypothesis f :

P (f |D) =
P (D|f)P (f)

P (D)
. (1.14)

It may be used in learning algorithms in a number of ways.
Some Bayesian learning approaches estimate parameters of posterior prob-

abilities P (z|D) using the marginalization3 scheme:

P (z|D) =
Z

H
P (z, h|D) dh =

Z

H
P (z|h)P (h|D) dh. (1.15)

The P (h|D) plays the role of model weighting factors. From the Bayes rule
we have:

P (h|D) =
P (D|h)P (h)

R

P (D|h)P (h) dh
. (1.16)

1Unseen means not used in the learning process.
2In the case of discrete distribution P denotes the probability, otherwise it is the

density function.
3Marginalization is an integration over all possible values of unknown parameters

of given density distribution function.



1 Learning Machines 33

Computing the integral (1.15) is rather hard and is usually solved by some
approximations (Duda et al., 2001, Bishop, 1995, Neal, 1996).

Another group of algorithms aims in finding the hypothesis which maxi-
mizes the a posteriori probability (MAP):

fMAP = argmax
f2H

P (f |D) = argmax
f2H

P (D|f)P (f). (1.17)

The main di↵erence between the previous approach (1.15) and MAP is that
instead of considering the entire distribution P (h|D) of functions a single
solution is used.

Assuming equal a priori probabilities for all the hypotheses f 2 H leads
to the definition of the maximum likelihood (ML) hypothesis:

fML = argmax
f2H

P (D|f). (1.18)

With additional assumptions that the training examples are identically and
independently distributed and correspond to a target function g with some
normally distributed noise ✏ ⇠ N(0,�) (i.e. y = g(x)+✏), the maximization of
P (D|f) is equivalent to maximization of

Qm
i=1 P (yi|xi, f) and to minimization

of the negation of its logarithm which is exactly the minimization of MSE.
The following equivalent formulation of (1.17):

fMAP = argmin
f2H

[� log2 P (D|f)� log2 P (f)] , (1.19)

lends itself to using the information theory language. In this framework, the
optimal model is the one which minimizes the sum of the description length of
the hypothesis f (assuming the optimal hypotheses coding) and the descrip-
tion length of the data D under the assumption that f holds (also assuming
the optimal coding4). If the symbol of LC(X) is used to denote the length of
the description of X using coding C, then for a hypotheses coding CH and
data coding Cf (assuming the hypothesis f) the Minimum Description Length
(MDL) principle (Rissanen, 1978) can be formulated as:

fMDL = argmin
f2H

⇥

LCf (D) + LCH (f)
⇤

. (1.20)

It confirms the expectations that shorter descriptions (simpler models) should
be preferred over sophisticated ones. The function being minimized in (1.19)
and (1.20) can be seen as a risk function (LCf (D) = � log2 P (D|f)) with a
regularizer (LCH (f) = � log2 P (f)).

The MAP, ML and MDL approaches deal with the problem of selection of
the optimal hypothesis describing a given data set. Another problem is how to

4Shannon and Weaver (1949) proved that the optimal code assigns log2(P (i))
bits to encode message i.
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assign proper class labels to given data objects. The optimal choice is defined
by the Bayes Optimal Classifier :

BOC(x) = argmax
y2Y

P (y|x). (1.21)

Given a set of possible hypotheses H and a training data set D the most
probable class of a new data vector x can be determined in a manner similar
to (1.15) as:

BOC(x|D,H) = argmax
y2Y

X

f2H

P (y|f,x)P (f |D). (1.22)

Anyways, the BOC formula is useless in most real applications. To calculate
the probabilities for each of the classes one needs to know the probabilistic
structure of the problem and to examine all the candidate hypotheses, which
is usually impossible (even in quite simple cases).

The error rate of BOC is called Bayes error and it is the smallest possible
error.

More detailed theoretical description of the problem can be found for ex-
ample in (Mitchell, 1997).

Deeper analysis of the MSE risk function (most commonly used in re-
gression and classification tasks) reveals that for given data point hx, yi the
expected value of the risk over all the training data sets of a given size, can be
decomposed into bias and variance terms (Bishop, 1995, Duda et al., 2001):

ED(f(x)� y)2 = (ED(f(x)� y))2
| {z }

bias2

+ED(f(x)� EDf(x))2
| {z }

variance

. (1.23)

The bias component represents the discrepancy between the target value and
the average model response (over di↵erent training data sets) while the other
component corresponds to the variance of the models trained on di↵erent sam-
ples. The decomposition reveals the so-called bias–variance trade-o↵ : flexible
(complex) models are usually associated with a low bias, but at the price of a
large variance. Conversely simple models (like linear models) may result in a
lower variance but may introduce unreasonable bias. There is no simple solu-
tion of this dilema and good model must balance between bias and variance
to keep the generalization as high as possible.

It is important to remember that regardless of the type of the error func-
tion being used, obtaining high level of generalization requires building as
simple models as possible. Model complexity should be increased only when
simpler models do not o↵er satisfactory results. This rule is consistent with the
medieval rule called Ockham’s razor and other ideas such as MDL principle
or regularization.
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1.3 Learning algorithms

There is no commonly used taxonomy of the algorithms that learn from data.
Di↵erent point of views stress di↵erent aspects of learning and group the
methods in di↵erent ways. Learning algorithms have di↵erent theoretical back-
ground and model the knowledge with miscellaneous data structures. Their
model building strategies may be founded on the achievements of statistics or
di↵erent kinds of optimization methods. The optimal (or suboptimal) models
can be determined with search strategies (from simple, blind search meth-
ods, through heuristically augmented search and evolutionary computation,
to global optimization techniques such as simulated annealing), gradient de-
scent methods, mathematical programming (linear and quadratic program-
ming find especially numerous applications) or other tools including fuzzy
logic (see chapter Chapter 8) and rough sets theory (Pawlak, 1982).

To increase the adaptation capability of computational intelligence sys-
tems, ensembles of many models are used (see Chapter 7 and Kuncheva
(2004)). Such ensembles may be homogeneous (multiple models of the same
kind) or heterogeneous (taking advantage of di↵erent methodologies in a single
learning process) Jankowski and Gr ,abczewski.

Classifier decision borders

Classification models divide the feature space into disjoint regions assigned to
class labels. Di↵erent classifiers provide di↵erent kinds of borders between the
regions (decision borders).

Figure 1.1 illustrates two examples of two-dimensional classification prob-
lems. Four di↵erent solutions for each of the data sets are depicted.

For both tasks, the top-left plot presents an example of linear decision
borders. Many learning algorithms yield models which discriminate with lin-
ear functions only, e.g. linear discrimination methods (see section 1.3.2) and
simple neural networks (see section 1.3.4).

The top-right plots show decision borders perpendicular to the axes of
the feature space – most common solutions of decision tree algorithms (see
section 1.3.6).

In the bottom-left plots the classes are embraced with quadratic curves.
Such shapes can be obtained for example with simple neural networks with
radial basis functions (see section 1.3.4) and other nonlinear methods.

The bottom-right plots present decision borders of maximum classifica-
tion accuracy. Many learning algorithms are capable of finding models with
so complicated borders, but usually it does not provide a desirable solution
because of overfitting the training data – the accuracy reaches maximum for
the sample used for training, but not for the whole of the data.

Some adaptive models can separate more than two classes in a single learn-
ing process. Other algorithms must be run several times and their results must
be appropriately combined to construct a final classifier. The combination is
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(b) Two of four dimensions of the well known iris data (Fisher, 1936)

Fig. 1.1. Example solutions to two classification tasks: top-left – with linear decision
borders, top-right – specific for decision trees, bottom-left – with centered decision
areas and bottom-right – of maximum accuracy.
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not always straightforward because of possible conflicts between the combined
models.

Generalization and model selection

To determine the generalization ability of a model one would need to measure
the average risk for the set of all possible data objects. In real life applications
it is not feasible, so we estimate the risk using a test set (equation (1.12)).
When doing this we should be aware of the danger of testing models on a
single test set (for example resulting from a rigid partition of the set of all
available data to the training and test parts). Model selection based on testing
trained models on a single test set does not get rid of the danger of overfitting.
A more accurate estimation of the empirical risk can be obtained with K-fold
cross-validation (CV). In this technique we split the set of available data into
n parts and perform n training and test processes (each time the test set is one
of the parts and the training set consists of the rest of the data). The average
test risk can be a good estimate of real generalization ability of the tested
algorithm, especially when the whole cross-validation is performed several
times (each time with di↵erent data split) and n is appropriately chosen5.
To get a good estimate of generalization ability of a learning machine, it is
important to analyze not only the average test error, but also its variance,
which can be seen as a measure of stability (for more see Chapter 2).

The Ockham’s razor and other issues discussed in section 1.2 suggest that
accurate models which are simple should provide stability and good general-
ization. So, if we have several models of similar accuracy, we should prefer
stable models and the simplest ones (linear over nonlinear, those with the
smallest number of parameters etc.). Even if more complex models are more
accurate it is often worth to resigning from high learning accuracy and se-
lecting less accurate but more stable or simpler models. The bottom-right
images of figure 1.1 present highly accurate models for the training data, but
providing poor generalization.

Another technique to obtain models of good generalization is regularization
(see section 1.3.7). Preserving large classification margins may also be seen as
a kind of regularization and has been successfully used in SVM methodology
(see section 1.3.3). Models with optimized margins may reach high level of
generalization despite the complexity of their decision borders.

In the case of high-dimensional feature spaces the information about the
function being modelled is often contained within a small-dimensional sub-
space and the rest of the features play a role of a noise, making learning
di�cult. Hence, the methods of feature selection can be very helpful in the
pursuit of high accuracy and good generalization.

5Setting n to the number of data objects yields a special case of cross-validation
called leave-one-out which, although sometimes used, is not a good estimate (see
e.g. (Kohavi, 1995)).
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1.3.1 Näıve Bayes Classifiers

Feasible Bayes classifiers, in contrary to the abstract Bayes Optimal Classifier,
must pay the price of losing the optimality guarantee. One of the well known
simplifications of the method is näıve Bayes. Its reduced complexity is the
result of the assumption that the random variables corresponding to particular
features of the data space are independent. It makes the definition of the
maximum a posteriori class as simple as:

NBC(x) = argmax
y2Y

P (y|x) = argmax
y2Y

P (x|y)P (y)
P (x)

= argmax
y2Y

P (y)
Y

i

P (xi|y). (1.24)

The formula can be easily used if we know the probabilities of observing each
class and of observing a particular feature value among the populations of
vectors representing the classes. In real world applications the probabilities
can only be estimated on the basis of a given training data set.

In the case of discrete features the probabilities P (xi|y) can be evaluated
as the relevant frequencies of observing xi values among the vectors of class y.
This is the most common application of Näıve Bayes Classifiers. The frequen-
cies are good estimators when the training data set is large enough to reflect
real distributions. Otherwise some corrections to the frequencies calculations
(e.g. Laplace correction or m-estimate) are strongly recommended (Provost
and Domingos, 2000, Kohavi et al., 1997, Cestnik, 1990, Zadrozny and Elkan,
2001). The corrections are also fruitfully used in decision tree algorithms.

The features with continuous values can be first discretized to use the same
method of probability estimation. An alternative is to assume some precise
distribution of the a priori class probabilities. Most commonly the normal
distribution is assumed:

P (xi|y) / N(µy
i ,�y

i ), (1.25)

where N is the normal density function while µy
i and �y

i are respectively: the
mean value and the standard deviation of the i-th feature values observed
among the training data vectors belonging to class y.

In practice the assumption of independence of di↵erent features and of the
normality of the distributions may be far from true – in such cases also the
Näıve Bayes Classifier may be far from optimal.

Some other approaches to the problem of estimation of the conditional
probabilities have also been proposed. One of the examples (John and Langley,
1995) gets rid of the assumption of normal distributions by using a kernel
density estimation technique.

1.3.2 Linear discriminant methods

Linear discriminant methods determine linear functions, which divide the do-
main space into two regions (see the top-left plot in figure 1(a)). Learning
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processes adjust the parameters of linear models to obtain an optimal corre-
spondence between the half-spaces of the feature space and the data categories
(classes). Linear discriminant functions are defined by linear combinations of
the argument vector components:

f(x) = wT x + b, (1.26)

where w is a weight vector and �b defines the threshold.
If a vector x satisfies f(x) > 0, then the model assigns the label of the

positive category to it, otherwise the label of the negative class is assigned.
The instances for which f(x) = 0 define the hyperplane, which splits the whole
space into the two regions.

For a given training data set such separating hyperplane may not exist. In
such a case we say that the problem is linearly inseparable.

In a multicategory case it is not possible to separate di↵erent classes with
a single linear discriminant function. One of the solutions to this is to form a
linear discriminant function for each class to separate the samples of the i-th
class from the rest of the training data. Another solution is to compose one
linear model for each pair of classes. Both ways may result in such a partition
of the space that for some regions there is no simple way to determine the
winner class, because the half-spaces corresponding to di↵erent classes overlap.
A good combination of linear discriminants is the linear machine which, given
a linear discriminant function for each class y 2 Y:

fy(x) = wT
y x + by, (1.27)

provides a reasonable scheme of label assignment eligible for each point of the
space (except for the decision borders):

k = arg max
y2Y

fy(x). (1.28)

The linear discriminant function can be determined in di↵erent ways. The
idea of Fisher’s linear discriminant (Fisher, 1936) lies in maximization of

m�1 �m+1 = wT (m�1 �m+1), (1.29)

where m±1 are the means calculated for the two classes:

m±1 =
1

|{j : yj = ±1}|
X

{j:yj=±1}
xj . (1.30)

Maximization of (1.29) can be seen as the maximization of the distance
between the projected averages (m±1). Such criterion could strongly depend
on the directions of the largest spread of the data. This is why the final Fisher
criterion is

J(w) =
(m�1 �m+1)2

s2
�1 + s2

+1

, (1.31)
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where s2
±1 is the within-class variance. It results that the w should be

w / S�1
w (m�1 �m+1) (1.32)

where

Sw =
X

{j:yj=�1}
(xj �m�1)(xj �m�1)T +

X

{j:yj=+1}
(xj �m+1)(xj �m+1)T

(1.33)
Equation (1.32) defines the direction of the discriminant:

f(x) = wT (x� x̄) (1.34)

where x̄ is the average of all the training samples.

Most linear discriminant learning methods are based on the gradient de-
scent procedure. Its general scheme is presented in the following algorithm.
To simplify the notation we define w = [b, w1, . . . , wn]T and x̄ = [1 x]T .

Gradient descent procedure

k :=0; i n i t w0 ; do
wk+1 := wk � ⌘(k)rJ(wk) ;
k:=k+1;

while not stop�c r i t e r i o n (k , ✓ , rJ(wk) ,
⌘(k)) return w ;

A typical definition of the stop-criterion is |⌘(k)rJ(wk) < ✓|, where ✓ is
a user-defined parameter. The ⌘(k) controls the speed of learning. Sometimes
⌘(k) is a constant scalar below 1 and sometimes a decreasing function, such as
⌘(k) = ⌘(0)/k. In the second order forms ⌘(k) can be equal to ||rJ(wk)||2

rJ(wk)T HrJ(wk)

(H is the Hessian of J(wk)). If ⌘(k) is defined as H�1, then the Newton descent
algorithm is obtained.

Another source of flexibility of the gradient descent algorithm is the defi-
nition of J(wk). Moreover, the algorithm may work in batch or on-line mode.
In the batch mode the rJ(wk) is calculated using the whole training data
set, and in the online mode rJ(wk) is defined for a single (current) vector.
The Least Mean Square (LMS) algorithm defines the J(wk) as:

J(wk) =
X

i

(wT
k x̄i � yi)2, (1.35)

and modifies the weights (in the online version) as follows:

wk+1 = wk + ⌘(k)(yp �wT
k x̄p)x̄p. (1.36)

The p index is chosen randomly or is equal to (k mod m) + 1.
Another definition of J(wk) is the perceptron criterion:
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J(wk) =
X

p2Pk

�ypwT x̄p (1.37)

where Pk is the set of indexes of misclassified vectors. Then the weight changes
are:

wk+1 = wk + ⌘(k)
X

p2Pk

ypx̄p. (1.38)

Relaxation procedures use squared versions of the perceptron criterion:

J(wk) =
X

p2Pk

(wT
k x̄p)2 or J(wk) =

X

p2P0k

(wT
k x̄p � �)2

||x̄||2 (1.39)

where P 0k = {i : wT
k x̄i  �} and � is a constant defining a margin. A similar

idea of margins plays a prominent role in Support Vector Machine algorithms
which, used with linear kernels, are an e�cient linear discrimination method-
ology capable of optimizing the margins (see below for more).

An exhaustive description of several linear discriminant methods can be
found in (Duda et al., 2001, Guyon and Stork, 2000).

1.3.3 Support Vector Machines

Support Vector Machines (SVMs) were introduced by Boser et al. (1992).
Initially SVMs were constructed to solve binary classification and regression
problems. Today, there are several more areas where the SVM framework has
been successfully applied (Schölkopf and Smola, 2001), for example: novelty
detection (data set consistency) (Schölkopf et al., 2001, Schölkopf and Smola,
2001), clustering (Ben-Hur et al., 2001), feature selection (Fung and Man-
gasarian, 2004, Guyon et al., 2002, Weston et al., 2001, Schölkopf and Smola,
2001), feature extraction (kernel PCA) (Schölkopf and Smola, 2001), kernel
Fisher discriminant (Schölkopf and Smola, 2001).

In application to classification problems SVMs can produce models with
di↵erent kinds of decision borders – it depends on the parameters used (es-
pecially on the kernel type). The borders can be linear (like in top-left plots
of figure 1.1) or highly nonlinear (may resemble the bottom-right images of
figure 1.1). Here the complexity of the borders not necessarily announces poor
generalization, because the margin optimization (described below) takes care
for proper placement of the border.

SVMs minimize the empirical risk function (1.10) with soft margin loss
function (1.6) for classification problems or with ✏-insensitive loss function
(1.8) for regression problems. For connections of risk function and regulariza-
tion with SVMs compare section 1.3.7 and especially table 1.1.
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Optimal hyperplane

The construction of the optimal hyperplane is the fundamental idea of SVM.
The optimal hyperplane separates di↵erent classes with maximal margin (the
distance between the hyperplane and the closest training data point). Such
goal can be defined as maximization of the minimum distance between vectors
and the hyperplane:

max
w,b

min{||x� xi|| : wT x + b = 0, i = 1, . . . ,m}. (1.40)

The w and b can be rescaled in such a way that the point closest to the
hyperplane wT x+b = 0, lies on a hyperplane wT x+b = ±1. Hence, for every
xi we get: yi[wT xi +b] � 1, so the width of the margin is equal to 2/||w||. The
goal (1.40) can be restated as the optimization problem of objective function
⌧(w):

min
w,b

⌧(w) =
1
2
||w||2 (1.41)

with the following constraints:

yi[wT xi + b] � 1 i = 1, . . . ,m. (1.42)

To solve it a Lagrangian is constructed:

L(w, b,↵) =
1
2
||w||2 �

m
X

i=1

↵i(yi[xT
i w + b]� 1), (1.43)

where ↵i > 0 are Lagrange multipliers. Its minimization leads to:

m
X

i=1

↵iyi = 0, w =
m
X

i=1

↵iyixi. (1.44)

According to the Karush-Kuhn-Thucker (KKT) conditions (Schölkopf and
Smola, 2001):

↵i(yi[xT
i w + b]� 1) = 0, i = 1, . . . ,m. (1.45)

The non-zero ↵i correspond to yi[xT
i w + b] = 1. It means that the vectors

which lie on the margin play the crucial role in the solution of the optimization
problem. Such vectors are called support vectors.

After some substitutions the optimization problem can be transformed to
the dual optimization problem:

max
↵

W (↵) =
m
X

i=1

↵i � 1
2

m
X

i,j=1

↵i↵jyiyjxT
i xj (1.46)

with constraints:
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↵i � 0 i = 1, . . . ,m,
m
X

i=1

↵iyi = 0. (1.47)

Using the solution of this problem the decision function can be written as:

f(x) = sgn

 

m
X

i=1

↵iyixT xi + b

!

. (1.48)

The kernel trick

The dot product xT x0 in (1.46) and (1.48) can be replaced by a kernel function
k(x,x0) = �(x)T�(x0) (Boser et al., 1992). It extends the linear discriminant
SVM to a nonlinear machine. The new decision function is:

f(x) = sgn

 

m
X

i=1

↵iyik(x,xi) + b

!

. (1.49)

The dot product is the simplest kernel and may be generalized to the
polynomial kernel

kp(x,x0) = [�(xT x0) + ✓]q, (1.50)

where q is an integer and ✓ = 0 or ✓ = 1. Probably the most powerful is the
Gaussian kernel

kG(x,x0) = exp[��||x� x0||2]. (1.51)

The SVM decision function (1.49) with Gaussian kernel is equivalent to RBF
networks (1.70). Another popular kernel is the hyperbolic tangent

kt(x,x0) = tanh(�[xT x0] + ✓). (1.52)

Soft margin hyperplane

The construction of optimal hyperplane is impossible if the data set (trans-
formed by kernels if kernels are used) is not linearly separable. To solve this
problem Cortes and Vapnik (1995) introduced the soft margin hyperplane
technique using slack variables ⇠i (⇠i � 0):

yi[wT xi + b] � 1� ⇠i i = 1, . . . ,m. (1.53)

This leads to a new optimization problem:

min
w,b,⇠

1
2
||w||2 + C

m
X

i=1

⇠i (1.54)

with constraints (1.53). It defines a Support Vector Classifier (SVC) with the
C parameter (C-SVC) controlling the balance between training accuracy and
the margin width (C must be greater than 0).



44 Norbert Jankowski and Krzysztof Gr ,abczewski

The dual optimization problem for C-SVC is defined as

max
↵

W (↵) =
m
X

i=1

↵i � 1
2

m
X

i,j=1

↵i↵jyiyjxT
i xj (1.55)

with constraints:

0  ↵i  C i = 1, . . . ,m,
m
X

i=1

↵iyi = 0. (1.56)

⌫-SVC

Schölkopf and Smola proposed the ⌫-SVM (Schölkopf and Smola, 2001) jus-
tifying that the C parameter of C-SVC is not intuitive. They defined a new
primary optimization problem as:

min
w,b,⇠,⇢

⌧(w, ⇠, ⇢) =
1
2
||w||2 � ⌫⇢+

1
m

m
X

i=1

⇠i (1.57)

with constraints:

yi[xT
i w + b] � ⇢� ⇠i, ⇠i � 0, ⇢ � 0 (1.58)

If the ⇢ after the optimization procedure is greater than 0 then ⌫ has
an interesting interpretation: it is the upper bound of the fraction of vectors
within the margin and the lower bound of the fraction of vectors which are
support vectors.

The ⌫-SVM has also been stated for regression tasks (Schölkopf et al.,
2000).

Regression with SVM (✏-SVR)

The starting point to define the SVM for regression (SVR) is the ✏�insensitive
error function which is defined by (1.8).

The goal of regression can be defined as minimization of

1
2
||w||2 + C

m
X

i=1

|yi � f(xi)|✏. (1.59)

The primary optimization problem formulation is based on two types of
slack variables ⇠ and ⇠⇤: the former for f(xi) � yi > ✏ and the latter for
yi � f(xi) > ✏. It can be stated as:

min
w,⇠,⇠⇤,b

⌧(w, ⇠, ⇠⇤) =
1
2
||w||2 + C

m
X

i=1

(⇠i + ⇠⇤i ) (1.60)

with constraints:

f(xi)� yi  ✏+ ⇠i, yi � f(xi)  ✏+ ⇠⇤i , ⇠i, ⇠
⇤
i � 0, i = 1, . . . ,m.

(1.61)
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Quadratic programming problems

Each of the above algorithms solves its dual optimization problem by means
of quadratic programming (QP). The first implementations of QP were sig-
nificantly less e↵ective than the recent ones. The dual optimization problems
defined for SVC (1.46), C-SVC (1.55), ⌫-SVM, ✏-SVR can be generalized to:

min
↵

1
2
↵T Q↵ + pT ↵, (1.62)

where p depend directly on dual optimization problem (for example in the
case of optimization problem defined by (1.46) p is a vector of 1’s).

The crucial point of the most e↵ective implementations is the decomposi-
tion of the QP problem (Osuna et al., 1997, Joachims, 1998, Platt, 1998).

max
↵B

W (↵B) = (p�QBR↵R)T ↵B � 1
2
↵T

BQBB↵B , (1.63)

where [Qij = yiyjk(xi,xj))]. The idea is that the vector ↵ is divided into: the
working part ↵B and the fixed one ↵R. At particular stage only the working
part is being optimized while the fixed part does not change. During the
optimization procedure the subset B is changed from time to time. The most
interesting examples of decomposition algorithms are SVMlight (Joachims,
1998) and SMO (Platt, 1998) with modifications described in (Shevade et al.,
2000). These two algorithms di↵er in the working set selection technique and
in the stop criterion.

1.3.4 Artificial Neural Networks

Artificial neural networks (ANN) represent a very broad class of di↵erent
algorithms designed for classification, regression, (auto-)associations, signal
processing, time series prediction, clustering etc. A number of good books
on neural networks may be recommended (Bishop, 1995, Haykin, 1994, Koho-
nen, 1995, Ripley, 1996, Zurada, 1992). Here only a few most popular concepts
related to artificial neural networks, used in classification and regression prob-
lems, are presented.

First neural networks were proposed by McCulloch and Pitts (1943). Neu-
ral networks are built from neurons which are grouped in layers. Neurons may
be connected in a number of ways. For an example see figure 1.3. A single neu-
ron can be seen as an operational element which realizes a transfer function
based on incoming signals x. Transfer function is a superposition of output
function o(·) and activation function I(x) – compare figure 1.2. If all the
transfer functions realized by neurons are linear, then also the neural network
realizes a linear transformation. There is a variety of transfer functions, and
their type strongly determines the properties of the network they compose
(see the review by Duch and Jankowski (1999)). Two best known activation
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functions are the inner product (wtx) and the Euclidean distance (||x� t||).
The best known output functions are the threshold function (McCulloch and
Pitts, 1943):

⇥(I; ✓) =

(

�1 I � ✓ < 0,

1 I � ✓ � 0,
(1.64)

the logistic function6: �(I) = 1/[1 + e�I ], and the Gaussian function (1.51).
Perceptrons (or linear threshold unit) are defined as the threshold output

function with the inner product activation and were studied by Rosenblatt
(1962):

F (x;w) = ⇥(xT w; ✓). (1.65)

The perceptron learning goes according to the following update rule:

w = w + ⌘[yi � F (xi;w)]xi. (1.66)

The most common and successful neural network is the multi-layer per-
ceptron (MLP). It is an extension of the concept of perceptron. MLP is a
feedforward network with at least one hidden layer. The ith output of MLP
(with l hidden layers) is defined by:

oi(x;w) = õ

0

@

X

j

wl+1
ij �l

j

1

A , (1.67)

6Logistic function is a special case of sigmoidal function.
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where õ may be a linear or a nonlinear function, wk
ij denotes the weight con-

necting jth neuron in kth layer with ith neuron in layer k+1 (we assume that
the output is the layer number l + 1) and �k

i is the total output of ith neuron
in kth layer:

�0
j = xj , �k

i = �

0

@

X

j

wk
ij�

k�1
j )

1

A k = 1, . . . , l, (1.68)

where �(·) is a sigma–shaped function, typically the logistic function or the
hyperbolic tangent function.

The MLP network may be trained with the back-propagation algorithm
(Rumelhart et al., 1986, Werbose, 1974). The weights (connections between
neurons) are adapted according to the gradient-based delta-rule:

wji  wji +�wji, �wji = �⌘ @E

@wji
(1.69)

where E is the mean squared error (1.11).
Neural networks with single hidden layer, using sigmoidal functions are

universal approximators (Cybenko, 1989, Hornik et al., 1989), i.e. they can
approximate any continuous function on a compact domain with arbitrary
precision given su�cient number of neurons7.

Decision borders of neural network classifiers using linear transfer functions
only, are linear (like in top-left plots of figure 1.1). Nonlinear transfer functions
introduces nonlinearity to decision borders which can get di↵erent shapes (for
example similar to the bottom-left or bottom-right plot of figure 1.1).

The back-propagation algorithm has been accelerated and optimized in
a number of ways. For example Quickprop (Fahlman, 1989), conjugate gra-
dient (Fletcher and Reeves, 1964) or Newton method (see section 1.3.2) or
Levenberg-Marquardt (Levenberg, 1944, Marquardt, 1963). Other types of
algorithms are also in use. The cascade correlation (CC) is one of the best
learning algorithms for the MLP networks. In CC the network is growing.
For each new neuron the correlation between its output and the error of the
network is maximized (Bishop, 1995).

Striving for as simple models as possible, we can eliminate the useless
weights with miscellaneous pruning techniques, such as the Optimal Brain
Damage (LeCun et al., 1990) and Optimal Brain Surgeon (Hassibi and Stork,
1993) or with weight decay regularization (Hinton, 1987).

Another popular group of neural networks is the family of Radial Ba-
sis Function (RBF) networks (Poggio and Girosi, 1990) applicable to both
classification and regression problems. They are also universal approximators

7These mathematical results do not mean that sigmoidal functions always pro-
vide the optimal choice or that a good neural approximation is easy to find.
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(Hartman et al., 1990, Park and Sandberg, 1991). These networks substan-
tially di↵er from the MLPs: the neurons are based on radial functions instead
of sigmoidal functions, and quite di↵erent learning algorithms are used. RBF
networks can be defined by:

fRBF (x;w) =
K
X

i

wiGi(x) + b. (1.70)

Here G(·) represents a radial function. The simplest type is the radial coordi-
nate neuron (||x� t||, t is the center of the neuron), and the most often used
one is the gaussian neuron which is nothing else but Gaussian kernel defined
by (1.51). RBF network function (1.70) is, up to the sgn function, the same
as the SVM model (1.49) with Gaussian kernel (1.51).

Typically the learning process of the RBF network is divided into two
stages. The first one (usually unsupervised) determines the initial positions of
radial neurons as centers of clusters obtained by a clustering algorithm (for
example k-means clustering (Duda and Hart, 1973)) or as a random subset of
the learning data. The second phase tunes the weights and (frequently) the
centers and biases (� in (1.51)) using a gradient descent algorithm (Poggio and
Girosi, 1990, Bishop, 1995), orthogonal least squares (Chen et al., 1989) or EM
algorithm (Bishop et al., 1996). Often, some regularization terms (compare
section 1.3.7) are added to the MSE error function (Poggio and Girosi, 1990,
Bishop, 1995) to avoid the overfitting of the network.

Some RBF networks are able to automatically adjust their architectures
(the number of neurons and weights in hidden layer) during the learning
process, for example RAN (Platt, 1991) or IncNet (Jankowski and Kadirka-
manathan, 1997).

There are many di↵erent transfer functions (Duch and Jankowski, 1999)
which can be used in MLP or RBF networks. Trying di↵erent functions (es-
pecially combined into a single heterogeneous network (Jankowski and Duch,
2001)) can significantly increase the generalization capability and at the same
time reduce the network complexity.

1.3.5 Instance based learning

The instance based or similarity based methods are a large branch of the
machine learning algorithms that were developed by the pattern recognition
community. A primary example of such models is the k nearest neighbors
(kNN) algorithm (Cover and Hart, 1967), which classifies data vectors on the
basis of their similarity to some memorized instances. More precisely, for a
given data vector it assigns the class label that appears most frequently among
its k nearest neighbors. This may be seen as an approximation of the Bayes
Optimal Classifier (1.21), where the probabilities are estimated on the basis
of the analysis of the vicinity of the classified example.
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An analysis of the unconditional probability of error of nearest neighbors
models (Duda et al., 2001) brings its upper bound of twice the error rate of
the Bayes Optimal Classifier. A tighter bound is given by PO(2 � c

c�1PO),
where PO is the Bayes rate and c is the number of classes.

Methods restricting their analysis to a neighborhood of given object are
called local. The locality causes that the shape of the decision border can
be very complicated and has no simple and general characteristic. In the
case of single neighbor classifier (1NN), the decision borders are the Voronoi
tesselation of the feature space (see e.g. (Duda et al., 2001)).

There are many di↵erent possibilities of kNN algorithm implementation
and application. For example, di↵erent distance measures can be used (pos-
sibly yielding quite di↵erent results and di↵erent decision borders), and the
choice is not simple. There are some methods aiming at the optimal choice of
the similarity measure (Wilson and Martinez, 1997). Heterogenous measures
are recommended when the classified objects are described by both ordered
and unordered features.

Also the choice of neighbors is not an unambiguous task. One can select
k nearest neighbors or neighbors within a given radius. Neighbors influence
on the decision may be weighted according to the distance (1/(1 + dist) or
max[1� dist, 0]), flexible k depending on the region may be used, best k may
be estimated by means of cross-validation, etc. (for a systematic presentation
of di↵erent aspects of such methods see (Duch, 2000)).

A group of algorithms is dedicated to prototype selection (instances among
which search for neighbors is done). Comparisons and reviews of these meth-
ods can be found in (Wilson and Martinez, 2000, Grochowski and Jankowski,
2004). Algorithms that work well for prototype selection include DROP, Ex-
plore, LVQ, DEL, ICF and ENN.

1.3.6 Decision trees

Decision trees are hierarchical models, very popular in classification tasks.
Figure 1.4 presents two simple examples of such trees displayed in upside-
down manner – the root is placed at the top and branches grow down. The
tree nodes are described by logical conditions using single features. This is the
most common technique in decision trees implementations and results in de-
cision borders perpendicular to the axes of the feature space (see figure 1.1).
Another shapes of borders are possible when, for instance, linear combina-
tions of features or distances from some reference points are used in logical
expressions assigned to the nodes, however perpendicular borders are often
preferred, because of their comprehensibility.

In some fields experts’ knowledge can be directly used to specify decision
rules, but more often all that is given, is a set of classified data vectors, so the
best way to find decision rules is to use computational intelligence tools.

Tree growing algorithms start with a given training data set as the root
node and recursively split the nodes into several disjoint parts to separate
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Fig. 1.4. Decision trees and rules corresponding to decision borders presented in
the top-right plots of figures 1(a) and 1(b).

vectors assigned to di↵erent classes. Each split is described by a general logical
rule, which in fact divides the whole feature space (not just the training set)
into separate regions. Hence, decision trees can usually be presented in a form
of logical rules (see figure 1.4). Such comprehensible models are advantageous
in many fields (for instance in medical diagnosis) and provide information
about particular feature relevance. The recursiveness of the processes makes
feature selection a local task – useful features can be picked up even if they are
valuable only in a subregion of the input space, while from the point of view
of the whole space they seem to contain less information than other features.

Building optimal trees is a very complex problem, especially because the
optimization of a particular split is not the same as the maximization of
classification accuracy for the whole model (de Sá (2001) shows that it is true
even when dealing with a family of quite simple trees).

A number of di↵erent decision tree construction methods has already been
published. Some of them are: Classification and Regression Trees (CART)
(Breiman et al., 1984), ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), Separability
of Split Value (SSV) Trees (Gr ,abczewski and Duch, 1999), Fast Algorithm for
Classification Trees (FACT) (Loh and Vanichsetakul, 1988), Quick, Unbiased,
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E�cient, Statistical Tree (QUEST) (Loh and Shih, 1997), Cal5 (Müller and
Wysotzki, 1994).

The methods are based on di↵erent ideas and use di↵erent model struc-
tures. Some of them use dichotomic splits (CART, SSV), others allow for
more complex branching. Some algorithms assume a particular data distribu-
tion and use parametric statistical tests (FACT, QUEST, Cal5), others make
no such assumptions.

Nevertheless, all trees can be described with the same terminology includ-
ing nodes, subnodes, subtrees, leaves, branches, branch length, tree depth,
class labels assigned to nodes, data vectors falling into a node, and others.
The definitions are quite natural, so we do not provide them here.

In general, a decision tree algorithm is defined by its three components:
the method of splitting nodes into subnodes, the strategy of tree construction,
which in most cases is just a search process8, and the way of taking care of
generalization (stopping criteria or pruning techniques).

Splitting criteria

Splitting nodes according to continuous and discrete inputs must be performed
di↵erently. This is why some methods (like ID3) can deal only with discrete
features. Continuous attributes need to be converted to discrete before such
algorithms can be applied. Good classification results can be obtained only in
the company of good (external) discretization methods.

On the other side: methods like FACT and QUEST are designed to deal
only with continuous inputs – here discrete features are converted to continu-
ous by translating them into binary vectors of dimension equal to the number
of possible discrete values and then, projected into a single dimension. The
original Cal5 algorithm was also designed for continuous data, however it can
be quite easily adapted to deal with discrete features.

The candidate splits of continuous features are usually binary (of the form
{(�1, a], (a,1)}), however there exist some methods which split such input
into several intervals (e.g. FACT and Cal5).

Most decision tree algorithms split the nodes with respect to the values of
a single feature. Selecting the feature most eligible for the split is often closely
bound up with the selection of the splitting points (CART, C4.5, SSV). An
alternative strategy is applied in FACT, where the split feature is defined as
the one that maximizes the value of F statistic known from the analysis of
variance (ANOVA) method. The QUEST algorithm also calculates F statistic
for continuous features, but for discrete ones it uses �2 statistic (to prevent

8Simple search techniques like hill climbing are most frequently used. The ex-
perience shows that increasing the computational e↵orts of the search method (e.g.
using beam search) does not improve the generalization abilities of constructed trees
(Quinlan and Cameron-Jones, 1995) – no reliable explanation of this fact is known,
but it looks like more thorough search leads to solutions more specific to the training
set.
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from favoring the discrete attributes over continuous ones). Also Cal5 selects
the split feature with a separate algorithms: either the amount of information
about the classes is measured with entropy based formula (in this case the
discretization must be performed first) or a coe�cient is calculated for each
feature to estimate their class separation abilities on the basis of mean squared
distances within classes and between class centroids.

The most common split selection criterion is called purity gain or impurity
reduction. For a split s and tree node N it is defined as:

�I(s,N) = I(N)�
X

i

piI(Ns
i ), (1.71)

where I is a node impurity9 measure, Ns
i is the i-th subnode of N resulting

from split s, and pi is the estimated probability of falling into Ns
i provided

that the data vector falls into N (usually the quotient of the numbers of
training vectors in the relevant nodes). This criterion is used in CART with
the impurity measure called Gini index :

IG(N) = 1�
X

y2Y
[P (y|N)]2. (1.72)

Another impurity measure comes from the information theory and uses en-
tropy:

IE(N) = �
X

y2Y
P (y|N) log2 P (y|N). (1.73)

Applied with (1.71) it gives the information gain criterion. It is the idea of ID3,
also available in CART. C4.5 uses a modification of this criterion (information
gain divided by split information) known as the impurity gain ratio:

�I 0(s,N) =
�IE

SI(s,N)
, SI(s,N) = �

X

i

pi log2 pi. (1.74)

The idea of SSV criterion is to perform binary splits which separate as
many pairs of training vectors belonging to di↵erent classes as possible, while
separating the lowest possible number of pairs of vectors representing the same
class:

SSV (s,N) = 2·
X

y2Y
|Ns

1\Ny|·|Ns
2 \Ny|�

X

y2Y
min(|Ns

1\Ny|, |Ns
2\Ny|), (1.75)

where Ny is the set of training vectors of class y falling into node N . Because of
the second part of the formula, the SSV criterion does not fit to the impurity
reduction scheme (1.71).

9A node is regarded as pure if all the samples belonging to it, represent the same
class.
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FACT implements a completely di↵erent idea of nodes splitting – a linear
discrimination analysis splits each node to the number of parts equal to the
number of classes represented within the node. QUEST uses quadratic dis-
criminant analysis and performs binary splits – the two-means clustering of
the class centers is used to group classes into two superclasses.

The authors of CART also group the classes in order to make dichotomic
splits. They call the technique twoing and group vectors striving for super-
classes of possibly similar counts.

Although SSV Trees are also binary, there is no need for twoing, because
the SSV criterion definition guarantees good behavior also for multiclass data.

Cal5 also applies statistical methods for splitting continuous features into
intervals. A single process is responsible for both discretization and deciding
whether to further split the subnodes or not. The data vectors are sorted by
the values of particular feature, and the intervals are created from �1 to 1
testing statistical hypotheses to decide the positions of interval borders. After
discretization the adjacent intervals can be merged: leaf-intervals are merged
if they share the majority class, and non-leaves if they consist of vectors from
the same set of classes (after discarding infrequent class labels by means of a
statistical test).

Generalization

Building decision trees which maximally fit the training data usually ends up
in overfitted, large trees with leaves classifying only a few cases, and thus does
not provide general knowledge about the problem. To keep the trees simpler
and more general the methods may use stopping criteria. A simple idea is to
keep the numbers of vectors in the nodes above a specified threshold. Another
way is to extend the separability criterion with a penalty term conforming
to the Minimum Description Length principle. In both cases it is di�cult to
define criteria which yield results close to optimal. A more reasonable way is
to use statistical tests to verify the significance of the improvement introduced
by a split (such technique is a part of C4.5).

Stopping tree growth can save much time, but makes optimum solutions
less probable. Usually, better generalization is obtained when building overfit-
ted trees and pruning them. There are many di↵erent pruning methods. They
may concern tree depth, number of vectors in a node etc. Their parameters
can be chosen on the basis of a cross-validation test performed within the
training data (like in CART, QUEST or SSV Tree).

Missing values

The training data set can be incomplete (some feature values for some data
vectors may be inaccessible). Putting arbitrary values in the place of the
missing ones should be taken into consideration only if no other methods can
be used. Much caution about it is advised.
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CART introduced the idea of surrogate splits, which is to collect some
spare splits, maximally similar to the main one but using di↵erent features.
The surrogate splits are used when the classified data vector does not provide
the value necessary to check the main split condition.

When C4.5 is trained on incomplete data, the gains are scaled with a factor
equal to the frequency of observing the feature values among the vectors falling
into the node – each training sample has a weight associated with it, and the
weights a↵ect the pi values of (1.74).

The SSV criterion simply does not include the vectors with missing values
in calculations. Such vectors are regarded to fall into both subnodes. When
an incomplete vector is to be classified by SSV Tree, all the branches of non-
zero probability are checked and their leaves are treated as a single leaf to
determine the dominating class.

Other decision tree ideas

There are many other decision tree algorithms, not mentioned here. Some of
them are just slight modifications of the basic ones (e.g. NewID is an improved
ID3), and some are quite original.

TDDT (Top-Down Decision Trees) is the algorithm available in the
MLC++ library (Kohavi et al., 1996). It is similar to C4.5 and introduces
some changes to protect against generating small nodes which are created by
the information gain based strategies when discrete features have multiple
values.

There are also some decision tree approaches, where node membership is
decided by more than one feature. Dipol criteria (similar to SSV) have been
used (Bobrowski and Krêtowski, 2000) to construct decision trees where split-
ting conditions use linear combinations of features. Linear Machine Decision
Trees (LMDT) (Utgo↵ and Brodley, 1991) use linear machines at tree nodes.
They try some variable elimination, but in general such methods are not eligi-
ble for feature selection – instead they construct new features as combinations
of the original ones.

Oblique Classifier (OC1) (Murthy et al., 1994) combines heuristic and non-
deterministic methods to determine interesting linear combination of features.
It searches for trees by hill climbing.

Option decision trees (Buntine, 1993) allow several alternative splits of the
same node. The final classification is determined with relevant calculations and
an analysis of probabilities.

On the basis of the SSV criterion heterogeneous decision trees have been
proposed (Duch and Gr ,abczewski, 2002). Their split conditions may concern
distances from some reference vectors.

1.3.7 Regularization and complexity control

Regularization and model complexity control are very important, because they
help us obtain most accurate and stable models for given data D.
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There are many possible definitions of the regularizer ⌦(f) augmenting
the empirical risk (1.13). One of them is the weight decay proposed by Hinton
(1987), also called ridge regression, defined as square L2-norm of parameters:

⌦wd[f ] = ||w||22. (1.76)

We assume that the model f is parameterized by w (f = f(x;w)) or its
superset. The regularizer used with the empirical risk yields:

Rwd[f ] = Remp + �||w||22, (1.77)

but it may be used also with other risk functions. For example in the SV
framework it is used in conjunction with loss function defined for classification
(1.6), regression (1.8) or empirical quantile function (Schölkopf et al., 2001),
to control the spread of the margin (see (1.41), (1.54) and (1.59)).

Regularization via the ⌦wd[f ] term is equivalent to assuming a Gaussian
prior distribution on the parameters of f in fMAP (1.19). On the assumption
of Gaussian priors for parameters wi with zero mean (P (wi) / exp[�w2

i /�2
a])

and independence assumption on parameters w we have

� log2 P (f) / � ln
Y

i

exp[�w2
i /�2

a] / ||w||2. (1.78)

⌦wd is also used with penalized logistic regression (PLR), where the loss is
defined as log(1+exp[�yf(x)]). On the other side, PLR may also be used with
||w||1 regularizer, which in regularized adaboost is used with loss exp[�yf(x)]
and in lasso regression with squared loss.

A variant of ridge regression is the local ridge regression:

⌦lrr[f ] =
X

i

�iw
2
i , (1.79)

intended for local smoothing of the model f (compare (Orr, 1996)). Com-
monly, the regularization parameters are determined with a cross-validation.

Weigend et al. (1990, 1991) proposed a weight elimination algorithm which
can be seen as another regularization penalty:

⌦we(f) =
X

i

w2
i /w2

0

1 + w2
i /w2

0

, (1.80)

where w0 is a constant. This regularizer is not so restrictive as ⌦wd and allows
for some amount of parameters of large magnitude. For the weight elimination
the � from (1.13) may become a part of learning (Weigend et al., 1990, 1991).

A regularization of the form

⌦mlp2ln[f ] =
X

i

w2
i (wi � 1)2(wi + 1)2 (1.81)
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was used to build and learn a special type of MLP networks (MLP2LN). Such
regularizer forces the weights to become close to 0, +1 or �1, which is very
advantageous from the point of view of logical rule extraction (Duch et al.,
1998).

A very interesting property of regularization was shown by Bishop (1995).
He proved that learning with Tikhonov regularization (Tikhonov, 1963, Tikhonov
and Arsenin, 1977) is equivalent to learning with noise.

Table 1.1 displays some well known algorithms in the context of loss func-
tions and regularizers.

Algorithm Loss Regularizer

Weight decay/ridge regression (y � f(x))2 ||w||22
Original SV classifier max{0, 1� yf(x)} ||w||22
SV for regression max{0, |y � f(x)|� ✏} ||w||22
Penalized logistic regression log(1 + exp[�yf(x)]) ||w||22, ||w||1
Regularized adaboost exp[�yf(x)] ||w||1
Lasso regression (y � f(x))2 ||w||1
Local ridge regression (y � f(x))2

i

�
i

w2
i

Weight elimination (y � f(x))2
i

(w2
i

/w2
0)/(1 + w2

i

/w2
0)

MLP2LN (y � f(x))2
i

w2
i

(w
i

� 1)2(w
i

+ 1)2

Linear discrimination miscellaneous ||w||22
Learning with noise (y � f(x))2 noise

Table 1.1. Combinations of loss functions and regularizers.

Regularization may be used as embedded feature selection or a neuron
pruning technique. Beside the regularization several other techniques were
developed to control the complexity of learning machines. One of them uses the
cross-validation technique (compare page 37) for learning : the submodels are
learned and the influence of selected parameter(s) is measured and validated
on the test part of the data. This type of complexity control is used for example
in decision trees (see section 1.3.6) or (as mentioned above) for estimation of
the adequate strength of regularization. A similar goal may be reached with
Monte Carlo scheme used in place of the cross-validation randomization.

Controlling complexity of artificial neural networks may be done by adjust-
ing the structure of neural network (the number of neurons and the weights
of connections between neurons) to the complexity of considered problem.
ANN’s which can change their structure during learning are called ontogenic.
For more information on ontogenic neural networks see (Fiesler, 1994, Platt,
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1991, Jankowski and Kadirkamanathan, 1997, Adamczak et al., 1997, Le-
Cun et al., 1990, Hassibi and Stork, 1993, Finno↵ et al., 1993, Orr, 1996,
Mézard and Nadal, 1989, Frean, 1990, Campbell and Perez, 1995, Fahlman
and Lebiere, 1990).

1.3.8 Complex systems

Learning machines generate very di↵erent models, demonstrating large vari-
ability (Breiman, 1998). Di↵erent models combined into a single, larger model
facilitate data analysis from di↵erent points of view. A non-deterministic
learning process may produce di↵erent models even when trained several times
on the same data. A deterministic machine can also give di↵erent results when
trained on di↵erent data samples (e.g. generated in a cross-validation man-
ner or with di↵erent bootstrap methods). Quite di↵erent models should be
expected when completely di↵erent learning techniques are applied. A num-
ber of di↵erent models can be used as a committee (or ensemble) – an av-
eraged decision of several experts is likely to be more accurate and more
stable. Averaging of results can be done in several ways, compare the strate-
gies of known ensembles such as bagging (Breiman, 1998), adaboost (Freund
and Schapire, 1996, 1997, Schapire et al., 1998), arcing (Breiman, 1996), re-
gionboost (Maclin, 1998), stacking (Wolpert, 1992), mixture of local experts
(Jacobs et al., 1991), hierarchical mixture of experts (Jordan and Jacobs, 1994)
and heterogenous committees (Jankowski and Gr ,abczewski, Jankowski et al.,
2003). Cross-validation can be used to test the generalization abilities of mod-
els and to build committees at the same time. Sometimes (especially when the
validation results are unstable) it is more reasonable to combine the validated
models than to use their parameters to train a new model on the whole train-
ing data set. Chapter 7 presents more information on ensemble models.

Each expert has an area of competence, and the same applies to computa-
tional intelligence models. It is worth to analyze the competence of committee
members and to reflect it in committee decisions (Jankowski and Gr ,abczewski,
Duch et al., 2002).

Some learning algorithms should be applied only to appropriately prepared
data (standardized, with preselected features or vectors, discretized etc.). In
such cases, the data preparation stage of learning should always be regarded
as a part of the system.

Recently a growing interest in meta-learning techniques may be observed,
aimed at finding the most successful learning algorithms and their parame-
ters for given data. The methods include simple search procedures and more
advanced learning techniques for the meta level.

1.4 Some remarks on learning algorithms

No algorithm is perfect or best suited for all the applications. Selection of the
most accurate algorithm for a given problem is a very di�cult and complex
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task. Exploring the space of possible models e�ciently in the pursuit of opti-
mal results requires a lot of knowledge about the advantages and dangers of
applying di↵erent sorts of methods to particular domains.

First of all, the computational complexity of learning methods (with regard
to the number of features, the number of vectors, data complexity and possibly
other quantities) decides on their applicability to the task.

Learning processes should always be accompanied by validation tests. The
subject is discussed in more detail in Chapter 2. Here, we will just point out
one of the dangers of incorrect validation: when supervised feature selection
(or other supervised data transformation) techniques are used as the first
stage of classification (or regression) they must be treated as inseparable part
of a complex model. Validation of classification models on pre-transformed
data is usually much faster, but yields unreliable (and over-optimistic) results.
Especially when the number of features describing data vectors is large (similar
to the number of training vectors or bigger), it is easy to select a small number
of features for which simple models demonstrate very good results of cross-
validation tests, but their generalization abilities are illusory – this may be
revealed when the feature selection is performed inside each fold of the cross-
validation as a part of a complex system.

Another very important problem of learning methods is data incomplete-
ness. Much care must be devoted to data analysis when missing data are
replaced by some arbitrary values, some averages or even with techniques
like multiple imputation, because the substitutions may strongly a↵ect the
results. The safest way to analyze incomplete data is to use methods which
can appropriately exhibit the influence of the missing values on the model
representation.
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2.1 Introduction

This chapter aims at providing the reader with the tools required for a sta-
tistically significant assessment of feature relevance and of the outcome of
feature selection. The methods presented in this chapter can be integrated in
feature selection wrappers and can serve to select the number of features for
filters or feature ranking methods. They can also serve for hyper-parameter
selection or model selection. Finally, they can be helpful for assessing the con-
fidence on predictions made by learning machines on fresh data. The concept
of model complexity is ubiquitous in this chapter. Before they start reading
the chapter, readers with little or old knowledge of basic statistics should first
delve into Appendix A; for others, the latter may serve as a quick reference
guide for useful definitions and properties. The first section of the present
chapter is devoted to the basic statistical tools for feature selection; it puts
the task of feature selection into the appropriate statistical perspective, and
describes important tools such as hypothesis tests - which are of general use -
and random probes, which are more specifically dedicated to feature selection.
The use of hypothesis tests is exemplified, and caveats about the reliability
of the results of multiple tests are given, leading to the Bonferroni correction
and to the definition of the false discovery rate. The use of random probes
is also exemplified, in conjunction with forward selection. The second section
of the chapter is devoted to validation and cross-validation; those are general
tools for assessing the ability of models to generalize; in the present chapter,
we show how they can be used specifically in the context of feature selection;
attention is drawn to the limitations of those methods.
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2.2 A Statistical view of feature Selection: Hypothesis
tests and random probes

The present section first describes feature selection from a general statistical
viewpoint. The rationale and principle of the random probe generation method
will be discussed, together with the use of standard hypothesis tests.

2.2.1 A statistical view of feature selection

The problem of feature selection can be viewed in the following, abstract
way: assume that a relevance index r(x,y) has been defined, which provides
a quantitative assessment of the relevance of a candidate variable x for mod-
eling a quantity y; the latter may be either real (for regression problems) or
categorical (for classification problems). A vector x of measured values of x
and a vector y of measured values of y are available; their components are
modeled as realizations of i.i.d. random variables X and Y . Hence r(x,y) can
be viewed as a realization of a random variable R(X, Y ). Figure 2.1 shows the
probability distributions of R for relevant features and for irrelevant features
(both those distributions are unknown, of course.) In that framework, feature
selection consists in setting a threshold r0 and making the decision that all
candidate features with relevance smaller than r0 should be discarded. The
probability of keeping a feature although it is irrelevant (false positive) and
the probability of discarding a feature although it is relevant (false negative)
are displayed on Figure 2.1.

Although it is conceptually simple, the above view of the problem is ab-
stract since:

• the relevance index is to be defined, and
• both probability distribution functions are unknown.

The definition of relevance indices is extensively addressed in several chapters
of this book (for a review, see Chapter 3.) A few illustrative examples are
given in the present chapter, including univariate feature ranking criteria,
and forward or backward selection criteria. As for the probability distributions,
little is known of the probability distribution of relevant variables, but we shall
see that by making some mild assumptions about the probability distributions
of irrelevant variables, one can draw conclusions about variable relevance. In
particular we introduce in the next section the random probe method, which
provides means of estimating the fraction of falsely significant features.

2.2.2 Random probes as realizations of irrelevant variables

In (Stoppiglia, 1997) and (Oukhellou et al., 1998), it was suggested to generate
“random probes”, i.e. features that are not related to y, and compare the
relevance of the probe features to that of the candidate features. Probe features
can be generated in di↵erent ways, e.g.:
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discarding a feature although it is relevant (false negative) are displayed on Figure 1. If the selection 
threshold is set at the value r* for which the probability distribution function of the relevance of 
relevant features is equal to that of irrelevant features, the probability of false positives is equal to the 
probability of false negatives, and the total probability of wrong selection is minimum; therefore, if the 
cost of a false positive is equal to the cost of a false negative, the threshold should be set equal to r*. 

 
Fig. 1. Probability distribution functions of the relevance index for relevant and for irrelevant features, and 
probabilities of false negatives and false positives if it is decided that all features with relevance index smaller 
than r0 are discarded and all features with relevance index larger than r0 are kept. If r0 = r*, the probability of 
wrong selection is minimum. Both distributions are unknown in a real problem. 

 
Although it is conceptually simple, the above view of the problem is abstract since both probability 

distribution functions are unknown, and the relevance index is to be defined. Several approaches to the 
latter problem are described in the present book, one of them being given as an illustration in the 
present chapter. Moreover, the random probe method, described in the next section, provides a means 
of estimating the probability distribution function of the relevance of irrelevant features. 

Random probes as realizations of irrelevant variables 

In (Stoppiglia 1997) and (Oukhellou 1998), it was suggested to generate “random probes”, i.e. features 
that are not related to yp, and compare the relevance of the probe features to that of the candidate 
features. Probe features can be generated in different ways, e.g.: 
x generating random variables with a known probability distribution that is similar to the distribution 

of the candidate features (e.g. standard normal probes), 
x randomly shuffling the components of the candidate feature vectors (Bi 2003). 
 

The probability distribution function of the relevance index can either be estimated by generating a 
large number of probes, or be computed analytically, as described below under the heading “random 
probes and the forward selection of feature subsets”. 

Therefore, the combination of 
x the computation of a relevance index of the candidate features, 

Fig. 2.1. Probability distribution functions of the relevance index for relevant and
for irrelevant features, and probabilities of false negatives and false positives if it
is decided that all features with relevance index smaller than r0 are discarded and
all features with relevance index larger than r0 are kept. Both distributions are
unknown in a real problem.

• generating random variables with a known probability distribution that is
similar to the distribution of the candidate features (e.g. standard normal
probes),

• randomly shu✏ing the components of the candidate feature vectors in the
training data matrix (Bi et al., 2003).3

The probability distribution function of the relevance index of irrelevant
features can either be estimated by generating a large number of probes,
or be computed analytically (see examples in Section 2.2.3.) Therefore, the
combination of

• the computation of a relevance index of the candidate features,
• the generation of random probes,

allows the model designer to e↵ectively choose a threshold on the relevance
index that guarantees an upper bound on the false positive rate (the rate of
falsely significant features.) To that end, consider that the decision of keeping
or discarding a feature is made on the basis of its relevance index being larger
or smaller than a threshold r0. The probability of a false positive (or false

3Permutation tests (Cox and Hinkley, 1974) use the complementary view of
shu✏ing the target values rather than the features.
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positive rate FPR) is the ratio of the number of false positives nfp to the total
number of irrelevant features nirr. If the distribution of the probe features is
similar to the distribution of irrelevant features, and if the number of generated
probes np is large, the probability of a false positive is the ratio of the number
of selected probes nsp to the total number of probes:

FPR =
nfp

nirr
=

nsp

np
. (2.1)

The estimation of the probability of false negatives is less straightforward;
an approach to that problem will be discussed in Section 2.2.6.

2.2.3 Hypothesis testing

Variable selection and model selection involve making decisions (e.g. discard-
ing a feature of a model.) Those decisions must be made on the basis of the
limited amount of available data. Statistical tests are the appropriate tech-
nique in such situations because they allow making decisions in a principled
way. Readers who are not familiar with the terminology and the mechanics
of statistical tests are invited to read Appendix A before proceeding with the
rest of this section.

In application to variable selection, we shall be interested in testing
whether a variable is irrelevant or a subset of variables is irrelevant. Rele-
vance indices will become test statistics. The false positive rate will become
the p-value of the test.

To test the relevance of individual variables with so-called“univariate tests”
(Section 2.2.4), we shall make mild assumptions about the distribution of
irrelevant variables (e.g. that their relevance index is Gaussian distributed
with zero mean.) The “probe” method will allow us to address cases in which
analytic calculations of the probability distribution of the test statistic cannot
be carried out. To test the relevance of a subset of variables (Section 2.2.5), we
shall make the assumptions about the “null model”, namely that a predictor
built with the entire set of available variables can perfectly approximate the
target function. We shall test whether a model built with a restricted number
of variables can also perfectly approximate the target.

2.2.4 Univariate tests of variable irrelevance

Many filter methods rank variables in order of relevance using an index R,
which assesses the dependence on the target of each variable individually. The
index R can be used as a test statistic (or conversely, some well known test
statistics can be used as a basis for feature ranking.) The null hypothesis
to be tested is H0:“The variable is irrelevant”. To formalize this hypothesis,
something must be known about the distribution of R for irrelevant variables.
At the very least, one must know the mean value r0 of the index for irrelevant
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variables. We can then test H0:“The expected value of R for a given feature
is equal to r0”. Relevant variables may have a value of the expected value of
R larger than r0, in which case, the alternative hypothesis will be H1:“The
expected value of R for a given feature is larger then r0” (i.e. the variable is
relevant.) Knowing more about the distribution of R for irrelevant features
will allow us to derive more powerful tests.

T-test criterion for binary classification problems

As a first example, assume that we have a classification problem with two
classes A and B. Assume further that the distribution of examples of both
classes is Gaussian. As a univariate ranking index, we will use a test statistic to
compare the means µA and µB of the two Gaussian distributions in projection
on a given variable. The paired T -statistic performs that task; a realization t
of the statistic T is given by:

t =
µA � µB

s
q

1
mA

+ 1
mB

, with s =
(mA � 1)s2

A + (mB � 1)s2
B

mA + mB � 2
,

where mA and mB are the number of examples of each distribution, and sA

and sB the estimation of the standard deviations of the distributions obtained
from the available examples. Under the null hypothesis that the means are
equal, T has a Student distribution with mA + mB � 2 degrees of freedom.

Clearly, a variable for which the means of the two Gaussians are further
apart is more informative. Since the polarity of the classes is interchangeable,
it does not matter which mean is larger than the other. The absolute value of
the T -statistic may be used directly as a ranking index: the larger its value,
the more informative the feature. But the two-tailed p-value of t, which varies
monotonically with abs(t), may be also used as a ranking index. The smaller
the p-value of the feature, the larger the discrepancy between the means, hence
the more informative the feature. One can then set a threshold on the p-value
above which features are considered statistically significant.

Note that when a large number of features are being tested simultaneously,
corrections to the p-value must be applied (see Section 2.2.6.)

Wilcoxon test and AUC criterion for binary classification problems

If the assumption that the distribution of the features is Gaussian does not
hold, then a non-parametric test, the Wilcoxon-Mann-Whitney rank sum test,
can be conducted. The null hypothesis is that the two classes have the same
probability distribution in projection on a candidate feature, but that distri-
bution is not specified. The alternative hypothesis is that there is a location
shift in the distributions of the two classes.

To compute the Wilcoxon statistic WA, proceed as follows. With the values
of the candidate feature for the two classes, a single set with mA+mB elements
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is built; those values are ranked in ascending order: the smallest observation of
the candidate feature is assigned rank 1, the next is assigned rank 2, etc. If two
values have the same rank (the case of a “tie”), a fractional rank is assigned
to both: if k examples have the same value of rank i, they are assigned rank
i + k�1

2 . Denote by WA the sum of the ranks of the features that pertain to
class A. If the null hypothesis that the cumulative distribution functions of
the feature for class A and class B are identical is true, the expectation value
of WA is equal to EWA = mA(mA + mB + 1)/2 and its variance to varWA =
mAmB(mA +mB +1)/12. Therefore, if wA departs from EWA by more than a
threshold w↵/2, the null hypothesis must be rejected. The distribution of WA

is tabulated and is available in all statistics software packages. Furthermore,
it has been shown that WA is approximately normal if mA is larger than
7; therefore, if that condition is obeyed, ↵ can be chosen from the normal
distribution. Similarly as for the T -test, the p-values of the test can be used
for feature ranking.

The Wilcoxon statistic is closely related to the Mann-Whitney UA-statistic.
The latter is the sum, over the examples of both classes, of the number of times
the score of an element of class A exceeds that of an element of class B. Mann
and Whitney have shown that WA = UA + mA(mA + 1)/2. This implies that
tests based on UA are equivalent to tests based on WA. It is worth noting
that UA/(mAmB) is nothing but the AUC criterion: the area under the ROC
curve, using the value of a single feature as class prediction score (Cortes and
Mohri, 2004). The AUC criterion values are between 0 and 1. For irrelevant
features, the expected value of the AUC is 0.5. Hence, abs(AUC � 0.5) and
the two-tailed p-values of the Mann-Whitney statistic can interchangeably be
used as a ranking index. Setting a threshold on the p-values allows us to retain
those features that are statistically significant.

Other univariate tests

Many other univariate tests are applicable to variable ranking (see Chapters 3
and 10. We briefly go over a few examples.

To test whether the values of a feature are likely to have been drawn
from a “null” distribution representing the distribution of a random feature,
one may use a permutation test: the null distribution is estimated by per-
muting the target values at random. For a binary classification problem, the
(posterior) distribution of the variable is represented by all the values of a
contingency table: a1=number of +1 values for target +1, a2=number of +1
values for target -1, a3=number of -1 values for target +1, a4=number of -1
values for target -1. The test consists in comparing a1, a2, a3, and a4 with
their “expected” values e1, e2, e3, and e4 in the “null” distribution. The values
e1, e2, e3, and e4 are estimated by computing the values of a1, a2, a3, and a4

for random permutations of the target values and averaging the results. It can
be shown that

P

i(ai � ei)2/ei asymptotically obeys a �2 distribution, hence
p-values can be computed from the tables of that distribution. In the case of
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categorical variables and continuous variables, histograms are being compared
but the principle remains the same.

There is a test of significance for the Pearson correlation coe�cient R,
which has been applied to classification problems in the feature selection
challenge (see Part II) and which is also applicable to regression problems.
The p-value is computed by transforming the correlation to create a T statis-
tic having m � 2 degrees of freedom, where m is the number of examples.
The confidence bounds are based on an asymptotic normal distribution of
0.5 ln((1 + R)/(1�R)), with an approximate variance equal to 1/(N � 3).

For problems in which the input is categorical and the output continuous
or vice versa (e.g. for a multiclass classification problem), an ANOVA test
may be used. The null hypothesis is the equality of the mean of the variable
in the various categories. The test statistic is the ratio of the between-category
variance and the pooled within-category variance, which is an F statistic (dis-
tributed according to the Fisher distribution.)

For problems in which both inputs and outputs are binary, an odds-ratio
test may be performed. A realization of the test statistic is given by ✓ =
(p11p22/p12p21), where pij is the fraction of co-occurrences of variable and
target values of categories “1” and “2”. The independence between variable
and target implies ✓ = 1. If the null hypothesis of independence is true, the
asymptotic distribution of ln ✓ is the Normal law with zero mean and variance
1/p11 + 1/p22 + 1/p12 + 1/p21.

Non-monotonic transformations can be tested with a runs test (see Chap-
ter 10.)

Many feature ranking criteria are not based on test statistics with a known
tabulated distribution. For such cases, we must resort to using the false posi-
tive rate given in Equation 2.1 as a p-value on which we can set a threshold
to perform a test of hypothesis.

2.2.5 Hypothesis testing for feature subset selection

In the previous section, we investigated univariate tests in application to fea-
ture ranking. In this section, we address problems of feature subset selection
via methods of backward elimination or forward selection. We describe exam-
ples of linear regression problems.

Fisher’s test for backward variable elimination

In its general form, a linear model can be written as:

gn(x,w) =
n
X

i=1

wixi,
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where n is the number of variables (hence of parameters) of the model, x is
the n-vector of the variables of the model.4 We denote by gn the m-vector of
the model in observation space (of dimension m, where m is the number of
observations in the training set.) We assume that Q candidate variables are
available. The model with Q variables is termed the complete model.

It is further assumed that the quantity to be modeled is generated by y =
PQ

i=1 wixi +⌦, where ⌦ is a Gaussian random variable with zero mean and
variance �2. In other words, it is assumed that the complete model contains
the regression. We denote by y the m-vector of the observations of the quantity
to be modeled.

If one (or more) variable is irrelevant, the corresponding parameter of the
model should be equal to zero. Therefore, the hypothesis that is tested is the
fact that one or more parameters are equal to zero. Assume that it is desired
to test the validity of the complete model against that of a sub-model with q
parameters equal to zero. Following the definitions stated in Appendix A, the
considered hypotheses are: H0: the q parameters are equal to zero, H1: the q
parameters are not equal to zero.

Consider the random variable

R =
m�Q� 1

q

kY �GQ�qk2 � kY �GQk2
kY �GQk2

where Y , GQ and GQ�q are Gaussian random vectors, of which y, gQ and
gQ�q are known realizations. Then it can be shown (Seber, 1977) that, if the
null hypothesis is true, R has a Fisher distribution with q and (m � Q � 1)
degrees of freedom. Note that ky�gQ�qk2 is the sum of the squared modeling
errors made by the model with Q� q parameters, while ky� gQk2 is the sum
of the squared modeling errors made by the model with Q parameters.

If the number of observations were infinite, R would be equal to zero
since the training procedure would set the q parameters to zero, so that
the models with Q and Q � q parameters would be identical after train-
ing. Therefore, the null hypothesis will be rejected if the realization r =
m�Q�1

q
ky�gQ�qk2�ky�gQk2

ky�gQk2 is too large. A risk ↵ is chosen, the corresponding
value r↵ is found, r (and its p-value p(r)) is computed, and the null hypothesis
is rejected if r > r↵(p(r) < ↵): in that case, it is concluded that the group of
q features should not be discarded.

Thus, Fisher’s test compares a sub-model to the complete model. Other
tests, such as the Likelihood Ratio Test (Goodwin and Payne, 1977) and the
Logarithm Determinant Ratio Test (Leontaritis and Billings, 1987) compare
models that are not thus related. It is proved in (Söderström, 1977) that those
tests are asymptotically equivalent to Fisher’s test.

In principle, the complete model (with Q parameters) may be compared,
using Fisher’s test, to all 2Q sub-models. In practice, this is usually not com-

4The method obviously also works for models linear in their parameters to select
features derived from x rather than input variables.



2 Assessment Methods 73

putationally feasible and prone to overfitting (see Section 2.2.6.) It has been
suggested in (Rivals and Personnaz, 2003) to use Fisher’s test to progressively
eliminate features in a backward elimination procedure.

A random probe test for orthogonal forward regression ranking

As an illustration, the present section describes the use of random probes in
the case of forward selection. Forward selection of variables consists in adding
variables one by one, assess their relevance by a suitable method and stop
including variables when a predefined criterion is met. That is in contrast to
backward elimination, whereby all candidate variables are considered at the
beginning, and “useless” variables are eliminated.

The random probe method provides a conceptually simple illustration of
the framework described by Figure 2.1. Two ingredients are necessary: a rele-
vance index, and a “fake” set of features (the probes), generated as described
in Section 2.2.2, which mimic irrelevant variables for the purpose of selection.

The method described below takes advantage of the fact that orthogonal
forward regression (Chen et al., 1989) builds linear models by a sequence of
simple computations that use the variables in order of decreasing relevance.
For each new model, the relevance of the new variable is computed, and, based
on the cumulative distribution function of the relevance of the probe features,
the probability of that new variable being a false positive is either estimated or
computed. The process is terminated when the probability of the new variable
being a false positive becomes larger than a predefined threshold; the selected
variables are subsequently used as features of a nonlinear model if necessary.

In the present illustration, the relevance index of a variable is its rank
in a ranked list by order or increasing relevance: the higher the rank, the
larger the relevance. Ranking of candidate variables for a linear model can be
performed in a computationally e�cient way by orthogonal forward regression:
in observation space, each candidate feature is described by a vector whose
components are the values of that input over the training set, and the quantity
to be modeled is similarly described by an m-vector. Then the relevance of
each candidate feature can be assessed as the angle 'i between the vector
representing that feature and the vector representing the output:

• if that angle is zero, i.e. if the output is proportional to input i, the latter
fully explains the output;

• if that angle is ⇡/2, i.e. if the output is fully uncorrelated to input i, the
latter has no influence on the output.

In practice, the quantity cos2 'i is computed as: cos2 'i = (y

T
xi)2

kyk2kxik2 , where
y denotes the vector describing the quantity to be modeled in observation
space, and xi the vector describing the i-th candidate feature. In order to rank
the inputs in order of decreasing relevance, the following orthogonalization
procedure can be used:
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• select the candidate feature j that is most correlated to the quantity to be
modeled: xj = arg maxi cos2 'i ;

• project the output vector and all other candidate features onto the null
space of the selected feature; compute the parameter pertaining to that
feature;

• iterate in that subspace.

The orthogonalization step can advantageously be performed by the Gram-
Schmidt or modified Gram-Schmidt procedure (Björck, 1967). The procedure
terminates when all candidate features are ranked, or when a prescribed stop-
ping condition is met. At that point, a model of the data is available.5

Random probes can be used to construct a stopping criterion in the follow-
ing way. Di↵erent realizations of the “random probe” (considered as a random
variable) are appended to the set of candidate features and ranked among
them as previously described.6 However, they should not be included in the
selected feature set to build the model: they should be discarded once selected;
a probe counter is simply incremented when a probe is encountered in the for-
ward selection process. The rank of the random probe is a random variable
and can serve as a relevance index. Since the random probe realizations are
ranked among the candidate features, an estimate of the cumulative distribu-
tion function (cdf) of the rank can be computed as follows: for a total number
of probes np, the probability that the probe rank is smaller than or equal to a
given rank r0 is estimated as the fraction nsp/np of the number of realizations
of the random probe nsp that have a rank smaller than or equal to r0. Alter-
natively, one can compute analytically the cumulative distribution function of
the rank of the probe if the probe is drawn from a normal distribution. The
details of that computation are provided in (Stoppiglia et al., 2003).

In either case, one must choose a risk ↵ of retaining a candidate variable
although it is less relevant than the probe, i.e. the probability ↵ of the rank of
a probe being smaller than the rank of a selected feature. Ranking is stopped
when that threshold on the probe cdf is reached, i.e. when nsp/np � ↵.

Figure 2.2 displays the cumulative distribution function of the rank of the
random probe, as estimated from 100 realizations of the random probe, and
computed analytically, for a problem with 10 candidate features. The graph
shows that, if a 10% risk is chosen (↵ = 0.1), the first five features should be
selected.

In that example, by construction, the number of irrelevant features is
known to be nirr = 5. Following Equation 2.1 the false positive rate is

5The procedure works also for models linear in their parameters (the original
variables being replaced by derived features.) Thus, if the linear model is not sat-
isfactory, a new model may be built, e.g. with a polynomial expansion (see the
“Introduction” chapter.)

6For simplicity, we sometimes call“probes”the realizations of the“probe”random
variable.
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Figure 4 displays the cumulative distribution function of the rank of the random probe, as estimated 
from 100 realizations of the random probe, and computed analytically, for a problem with 10 
candidate features. The graph shows that, if a 10 % risk is chosen (D = 0.1), the first five features 
should be selected. 

 

 
Fig. 4. Estimated and computed cumulative distribution function of the rank of a random probe for a problem 
with ten candidate features. 

 

In that example, the number of irrelevant features is known to be equal to 5, so that the number of 
false positives can be estimated as 0.5, and the false discovery rate is estimated as 0.5/5 = 0.1 if a 10% 
risk is chosen. 

It can be shown (Stoppiglia 1997, Stoppiglia 2003) that the random probe procedure in conjunction 
with ranking by OFR is a generalization of Fisher’s test, with two differences: it does not rely on the 
assumption that the complete model contains the regression, and it does not make any assumption 
about the feature distribution. Academic and industrial examples of the use of the above method can 
be found e.g. in (Stoppiglia 2003), together with examples of how to use hypothesis tests to assess the 
significance of the comparisons between performances of different models. 

Note that, since the method uses forward selection, it can handle problems where the number of 
candidate features (non-probes) is larger than the number of examples. It fails if and only if the 
number of features considered relevant by the model designer is larger than the number of relevant 
variables. In many problems, the number of candidate features is very large, but the number of 
relevant features is a small fraction thereof. However, when such is not the case, that limitation can be 
circumvented as described in the next section. 

Dealing with high dimensionality 

For problems of very large dimensionality, random probes can be used in conjunction with sparse 
support vector machines (Bi et al. 2003). The method consists in appending random probes to the list 
of candidate variables, and first constructing sparse linear SVM models, with regularization parameter 
and tube size optimized by a gradient-free pattern search method. The models are subsequently bagged 
in order to reduce weight variability. At that point, the average of the weights of the random variables 
in the bagged model is used as a selection threshold: variables whose weights are smaller than the 
threshold are discarded. Finally, as in the above method, the selected features are used as inputs of 
nonlinear models. Therefore, the main differences with the above method are (i) the use of sparse 
SVM’s as initial linear models, instead of OFR, (ii) the way random probes are used for setting the 
rejection threshold. 

Fig. 2.2. Estimated and computed cumulative distribution function of the rank of
a random probe for a problem with ten candidate features.

FPR = nfp/nirr = nsp/np, so that the number of false positives can be
estimated as 0.5 if a 10% risk is chosen.

It can be shown (Stoppiglia, 1997, Stoppiglia et al., 2003) that the random
probe procedure in conjunction with ranking by OFR is a generalization of
Fisher’s test, with two di↵erences: it does not rely on the assumption that the
complete model contains the regression, and it does not make any assumption
about the feature distribution. Academic and industrial examples of the use
of the above method can be found e.g. in (Stoppiglia et al., 2003), together
with examples of how to use hypothesis tests to assess the significance of the
comparisons between performances of di↵erent models.

Note that, since the method uses forward selection, it can handle problems
where the number of candidate features (non-probes) is larger than the number
of examples. It fails if and only if the number of features considered relevant
by the model designer is larger than the number of relevant variables.

2.2.6 Multiple tests and false discovery rate

The danger of multiple testing

In the framework of feature selection, we have described statistical tests in
which the null hypothesis is {H0: a candidate feature (or a group of features)
is irrelevant} against the alternative hypothesis {H1: a candidate feature (or
a group of features) is relevant}. Our selection criterion is based on the test
statistic, used as a ranking index. A Type-I error results in keeping a feature
(or group of features) although it is not significant: the p-value is therefore
the probability of a “false positive” feature, that is what we also called the
false positive rate FPR = nfp/nirr. p-values can be either computed from
the cdf of the ranking index for irrelevant features (if that one is known) or
estimated as the fraction of selected random probes nsp/np as the ranking
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index is varied. If a threshold ↵ of 0.05 on the FPR is chosen, with risk less
than 5% of being wrong the feature (or a group of features) being tested
should be kept.

Assume now that nsc candidate features have been selected among nc

candidate features, using a threshold on our ranking index. If that threshold
corresponds to a p-value of 0.05, should we conclude that less than 5% of the
features that should be discarded will actually be kept?

In fact we should not: the fraction of irrelevant features selected is probably
much larger than that because we have implicitly performed multiple tests; we
have been testing nc features simultaneously, not just one feature. Generally,
for feature ranking methods and for feature subset ranking methods (forward
selection and backward elimination), nc tests are being performed. For exhaus-
tive search, all possible combinations of candidate features are considered, so
2nc statistical tests are e↵ectively performed!

If a large number of statistical tests is necessary for making a decision,
the following problem arises. Testing the null hypothesis with a threshold of
↵ = 0.05 results in 95% correct decisions. But, if two independent tests are
performed, making a correct decision on both tests arises only with proba-
bility 0.952 ⇡ 0.9; if three independent tests are performed, that probability
drops to 0.953 ⇡ 0.86. The probability of Type-I errors thus increases ge-
ometrically and becomes much larger than ↵. The simplest way to circum-
vent the problem is the Bonferroni correction, which consists in multiplying
the p-value by the number nt of tests, using the first order approximation
(1 � pval)nt ' 1 � nt pval. Alternatively, one can divide the threshold ↵
used for each test by nt to obtain a corrected threshold ↵/nt for the multiple
test. Unfortunately, that correction turns out to overestimate the p-value, so
that performing the Bonferroni correction leads to be overly selective, whereas
performing no correction at all leads to selecting too many features.

False discovery rate

Benjamini and Hochberg (1995) defined the False Discovery Rate (FDR) as
the ratio of the number of falsely rejected hypotheses to the total number of
rejected hypotheses. It can be shown that the FDR provides a method that is
intermediate between the Bonferroni correction and no correction (Genovese
and Wasserman, 2002). In the context of feature selection, it is the ratio of
false positives nfp to the total number of selected features nsc:

FDR =
nfp

nsc
. (2.2)

The FDR is a very useful quantity: even if the probability of false positive
FPR = nfp/nirr (p-value of the test) has been bounded by a small value of
↵, the number nfp of false positives may become quite large if the number
nirr of irrelevant features is large, so that the sole rate of false positives may
lead to poor selection. Noting that the number of irrelevant features nirr
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is smaller or equal to the total number of candidate features nc, FPR �
nfp/nc. Combining with Equation 2.2 we can relate the FDR and FPR by
the inequality:

FDR  FPR
nc

nsc
. (2.3)

It may be useful to set an upper bound ↵ to the FDR. To that e↵ect, the
procedure consists in ranking the nt p-values resulting from nt tests (nt = nc in
the case of feature ranking) in increasing order: p1 < p2 < · · · < pi < · · · < pnt .
The quantity li = i↵/nt is computed, and the threshold of acceptance of the
null hypothesis is defined as � = maxi(pi < li) (that is � = nsc↵/nc in
the case of feature ranking): in all tests generating p-values ranking lower
than �, the null hypothesis is rejected. The Bonferroni correction leads to
rejecting the null hypothesis for tests generating p-values smaller than ↵/nt,
which is smaller than �. Therefore, the Bonferroni correction rejects the null
hypothesis less frequently, hence discards a larger number of features, than
the FDR procedure. Conversely, if no correction is made, the threshold of
acceptance is ↵, which is larger than �: in that case, the null hypothesis is
discarded more frequently, so that a larger number of features are accepted,
thereby resulting in a larger number of false positives. From inequality (2.3)
it can easily be verified that the FDR resulting from the procedure is smaller
than ↵. Several extensions of that principle have been investigated. In the
context of genome studies, Storey and Tibshirani (2003) define the q-value
of a feature in analogy to its p-value, and provide a methodology for upper
bounding the false discovery rate.

Estimation of the FDR with random probes

As explained in Section 2.2.2, the generation of random probes provides a way
of estimating the probability of false positives (the FPR.) The false discovery
rate can also be estimated by generating random probes. From inequality (2.3),
and according to Equation 2.1, for a large number of random probes the
following inequality holds:

FDR  nsp

np

nc

nsc
. (2.4)

We remind that in our notations nsp is the number of selected probes, np

the total number of probes, nsc the number of selected candidates, and nc the
total number of candidates.

If the number of relevant features is a small fraction of the number of
candidate features, as is often the case in genome studies for instance, then
that upper bound is a good estimate of the false discovery rate. An alterna-
tive estimate of the false discovery rate can be derived if the number of false
positives is on the same order as the number of false negatives: in that case,
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the number of irrelevant features can be approximated as nirr ⇡ nc�nsc. Fol-
lowing again Equation 2.1, the number of false positive can be approximated
as nfp ⇡ (nc � nsc)nsp/np. It follows from Equation 2.2 that:

FDR ⇡ nsp

np

nc � nsc

nsc
. (2.5)

If all candidate features are selected, the number of false negatives is zero;
under the above assumption, the number of false positives is also zero, so that
the estimated FDR is zero.

2.3 A machine learning view of feature selection

In traditional approaches to modeling, the main issue is the estimation of the
parameters of a model that is assumed to be “true”, i.e. it is assumed that
the family of functions within which the model is sought contains the target
function itself. In practice, an analysis of the phenomenon of interest leads to
a mathematical relation (a function, or a di↵erential equation) that contains
parameters; the latter have a physical meaning, and must be estimated from
measurement data. The validity of the estimated parameter values must be
assessed, e.g. confidence intervals for the parameters must be computed, but
the validity of the mathematical function whose parameters are estimated is
not questioned at the level of the statistical analysis itself.

By contrast, in machine learning approaches, the family of functions within
which the model is sought has no specific a priori justification, so that the
model is generally not true. Models may di↵er in various respects:

• sets of variables or features,
• model complexity: number of support vectors for SVM’s, number of hidden

neurons for neural nets, number of monomials for polynomial models, etc.,
• initial parameter values or stopping criteria.

The choice of the model itself is part of the statistical analysis: it is the
purpose of the model selection step of the modeling process. As a consequence,
the parameters of the model have no specific meaning, so that the accuracy
of the estimation of the parameters is not an issue per se. The real issue
is the generalization ability of the model, i.e. its ability to provide accurate
estimates of the quantity of interest on fresh data (data that has not been
used for estimating the parameters.)

In the present section, we first recall the general principles of sound model
selection. Then various useful variants of cross-validation are described.

2.3.1 General principles of validation and cross-validation

In this section we introduce the vocabulary, notations and basic concepts of
learning, generalization, overfitting, validation, and cross-validation.
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In its simplest setting, model selection generally involves two data sets: a
training set that is used for parameter estimation, and a validation set that
is used for model selection (Stone, 1974). Model selection can usually not be
performed by comparing performances on training data: adjusting a model
very accurately to the training examples is always possible if the number of
adjustable parameters is large enough and comparatively few training data
points are available. If the learning problem is thus underdetermined and/or
if the data are noisy, fitting the training data very accurately may result in
a model with poor predictive performance on new data points (poor gener-
alization.) That e↵ect is known as overfitting. The validation set provides a
means of comparing the generalization ability of various models and detect-
ing overfitting: if the performance on the validation set is significantly poorer
than the performance on the training set, the model exhibits overfitting. If
many models are compared with the validation set, the performance of the
best selected model on the validation set is an optimistic estimate of the pre-
diction performance on new data; in a sense, learning is then performed on
the validation set. A third set called test set, distinct from the training and
validation set, is then needed to assess the final performance of the model.

In the following, we assume that the observed quantities can be modeled
as realization of a random variable Y such that Y = f(x) + ⌦, where ⌦ is
the “noise”, a random variable whose expected value is zero. A parameterized
model g(x,✓), with vector of parameters ✓, is sought, such that g(x,✓) is as
close as possible to the unknown function f(x). In that context overfitting
means fitting both the deterministic part of the data - which is the function
of interest - and the noise present in the data. Fitting the noise means that
the model is very sensitive to the specific realization of the noise present in
the data, hence will generalize poorly.

In the risk minimization framework (see Chapter 1), the generalization
error is called the expected risk:

R[g] =
Z

l(y, g(x,✓)) dP (x, y). (2.6)

where l(·) is a loss function, and P is the data distribution. The goal is to
minimize the expected risk.

In process or signal modeling, the squared loss (y� g(x,✓))2 is commonly
used; for classification problems the 0/1 loss inflicts a penalty of 1 for classi-
fication errors and 0 otherwise. When the data distribution in unknown but
m data samples are given, one can compute the empirical risk:

Remp[g] =
1
m

m
X

k=1

l(yk, g(xk,✓)). (2.7)

The performance on the training set is thus the empirical risk measured
on the mT training examples; the performance on the validation set is the
empirical risk measured on the mV validation examples.
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For the squared loss, the performance on the training set is usually
called the training mean square error TMSE = (1/mT )

PmT

k=1 r2
k, with rk =

yk � g(xk,✓). Here, rk is the modeling error on example k of the train-
ing set. Similarly, the performance on the validation set may be expressed
by the validation mean square error VMSE = (1/mV )

PmV

k=1 r2
k. Assuming

mV and mT � 1, the ideal model, g(x,✓) = f(x), would yield values of
the TMSE and VMSE that are equal to the estimated variance of the noise
(1/(m � 1))

Pm
k=1

�

yk � f
�

xk
��2. The “best” model will be the model that

comes closest to that ideal situation, given the available data, the chosen fea-
tures, and the model g.

For small datasets, a single split of that data into a training set and a vali-
dation set may provide a very inaccurate estimate of the generalization error.
A preferred strategy consists in splitting the data into D subsets, training on
D�1 subsets, validating on the last subset, and repeating that D times with D
di↵erent splits between training and validation data. That technique is known
as “D-fold cross validation”. Each example of the data set is present once, and
only once, in the validation subset. The cross-validation performance is the
average of the results on all the splits. For instance, the cross-validation mean
square error is given by CVMSE = (1/m)

Pm
k=1

�

rV
k

�2, where m is the total
number of examples and rV

k is the modeling error on example k when the
latter is in the validation subset. Variants of that scheme will be considered
in the next section.

Learning theory has addressed the problem of bounding the error made
by approximating the expected risk with an empirical risk (see e.g. (Vapnik,
1998).) The bounds are of the type:

R[g]  Remp[g] + ✏ (2.8)

The right hand side of the inequality is called “guaranteed risk”. Such bounds
may be used for various purposes:

• To avoid splitting the training data between a training set and a validation
set: models are trained using all the available training data; the training
examples are used to compute Remp[g]; models are then selected by com-
paring the guaranteed risks. Alternatively, training and model selection
may be performed in a single optimization process, which minimizes the
guaranteed risk directly. Here the ratio of the complexity of the model and
the number of training examples often appears in ✏.

• To avoid reserving an additional test set to compute to final prediction
performance: the validation error is used for Remp[g] and the bound pro-
vides a worst-case guaranteed generalization performance. Here, the ratio
of the log of the number of models and the number of validation examples
appears in ✏.
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2.3.2 Cross-validation and its variants

The general D-fold cross-validation technique was described in the previous
section. In the present section, we describe useful variants of that technique.

Leave-one-out

Leave-one-out is a special case of cross-validation, whereby the number of
data splits is equal to the number of examples: in other words, each example
is withdrawn in turn from the training set, and, for each left-out example

• training is performed on all examples except the left-out example,
• the modeling error on the left-out example is computed.

After m repetitions of that procedure (where m is the number of avail-
able examples), the “leave-one-out score” is computed as the average of the
modeling error on the left-out examples. For instance, for the squared loss, we
obtain

LOOMSE =
1
m

m
X

k=1

⇣

r(�k)
k

⌘2
, (2.9)

where r(�k)
k is the modeling error on example k when the latter is withdrawn

from the training set. It can be shown (Vapnik, 1982) that the leave-one-out
score is an unbiased estimator (as defined in Appendix A) of the generalization
error, for a training set of (m� 1) examples. However, it has a large variance
and is computationally expensive since the number of trainings is equal to the
number of available examples. This last drawback is alleviated by the virtual
leave-one-out technique, as discussed in the next section.

Virtual leave-one-out

The virtual leave-one-out technique relies on the assumption that, in general,
the withdrawal of a single example from the training set will yield a model that
is not substantially di↵erent from the model that is obtained by training on the
whole set of available data. Therefore, the output of the model trained without
example k can be written as a first-order Taylor expansion with respect to the
parameters: g

�

x,✓(�k)
� ⇡ g (x,✓) + Z

�

✓(�k) � ✓
�

where

• g (x,✓) is the m-vector of the predictions of model g when its input vector
is x and its parameter vector, after training on the whole data set, is ✓,

• g
�

x,✓(�k)
�

is the m-vector of the predictions of the model trained when
example k is withdrawn from the training set, with parameter vector ✓(�k),

• Z is the jacobian matrix of the model, i.e. the matrix whose columns are
the values of the gradient of the model output with respect to each pa-
rameter of the model; hence, Z is an (m, q) matrix, where q is the number
of parameters, and where xj denotes the vector of variables pertaining to
example j.
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Then the approximate model is linear with respect to its parameters, so
that results from linear modeling hold approximately, insofar as the Taylor
expansion is accurate enough (Seber and Wild, 1989).

For the squared loss, the PRESS (Predicted Residual Sum of Squares)
statistic can be used for assessing the leave-one-out error:

r(�k)
k ' rk

1� hkk

where r(�k)
k is the modeling error on example k when the latter is left out

of the training set, rk is the modeling error on example k when the latter
belongs to the training set, and hkk is the k-th diagonal element of matrix
H = Z(ZT Z)ZT . The quantity hkk is the leverage of example k. The above
relation is exact for linear-in-their-parameters models (Allen, 1974) such as
kernel machines, and approximate otherwise (Monari and Dreyfus, 2002, Ous-
sar et al., 2004). Therefore, the leave-one-out score can be expressed as the
virtual leave-one-out score

V LOOMSE =
1
m

m
X

k=1

✓

rk

1� hkk

◆2

, (2.10)

which is exact for linear-in-their-parameters machines, and approximate oth-
erwise; it is obtained at a computational cost that is m times as small as the
cost of computing LOOMSE from Equation 2.9.

Ideally, the leave-one-out score should be of the order of the variance of the
noise present in the measurements (assuming homoscedasticity, i.e. that the
variance of the noise is identical for all measurements.) Therefore, for sound
model selection, some estimate of the noise should be available, for instance
by performing repeated measurements.

For classification, an approximate leave-one-out score for SVM classifiers
has been derived (Opper and Winther, 2000), under the assumptions that,
upon withdrawal of an example from the training set, (i) non-support vec-
tors will remain non-support vectors, (ii) margin support vectors will remain
margin support vectors, (iii) misclassified patterns will remain misclassified.

When several candidate models, with di↵erent features and/or di↵erent
structures, have virtual leave-one-out scores that are on the same order of
magnitude, the significance of the di↵erences between the estimated perfor-
mances of the models must be assessed by statistical tests (see for instance
Anders and Korn (1999)).

2.3.3 Performance error bars and tests of significance

Given the widespread use of the generalization error estimates provided by
cross-validation and its variants, it would be desirable to have an estimator
of the variance of those estimates. Unfortunately, in general, no unbiased
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estimator of the variance of cross-validation exists (Bengio and Grandvalet,
2003).

Conversely, estimators can be found for simple validation methods where
data points are used only once. For instance, for classification problems, if we
call E the error rate computed with a single validation set (or test set) of m
examples, the standard error of E is:

stderr(E) =

r

E(1� E)
m

This error bar can be used to determine the size of a test set needed to
obtain good error rate estimates (see e.g. (Guyon et al., 1998).) If one desires
that the error bar does not exceed 0.1E, assuming that E ⌧ 1, the number
of test examples should be larger than 100/E. This rule-of-thumb was used
to determine the size of the test sets of the challenge (see Part II.)

Determining an optimum size for the validation set is a more challenging
task. One must then monitor the tradeo↵ between biasing the model unfa-
vorably by withholding too many training examples and adding variance to
the performance estimate by reserving too few validation examples. Further-
more, the complexity of the models and the number of models to be compared
should be taken into account. To our knowledge, this is still an open problem.

Finally, it is often desirable to assess the significance of the di↵erence be-
tween the performance of two models. For the challenge (Part II), the organiz-
ers have used the McNemar test, which is applicable to classification problems.
To perform the test, one must keep track of the errors made by the two clas-
sifiers to be compared and compute for each pair of classifiers the number of
errors that one makes and the other does not, n1 and n2. If the null hypothe-
sis is true (both classifiers have identical error rate), z = (n2 � n1)/

p
n1 + n2

obeys approximately the standard Normal law. We compute p-values accord-
ing to: pval = 0.5 (1� erf(z/

p
2)). This allows us to make a decision: signif-

icantly better (pval < 0.05), not significantly di↵erent (0.05  pval  0.95),
significantly worse (pval > 0.95). For details, see (Guyon et al., 1998).

2.3.4 Bagging

When data are sparse, “bagging” (short for “bootstrap aggregating”) can be
used with advantage, for modeling and performance assessment. The idea
underlying bagging (Breiman, 1996) is that averaging predictions over an en-
semble of predictors will usually improve the generalization accuracy. That
ensemble of predictors is trained from an ensemble of training sets that are
obtained by bootstrap from the initial training data (Efron and Tibshirani,
1993): subsets are drawn randomly with replacement, so that an example may
be altogether absent from some training sets, and present several times in
others. Then di↵erent predictors are trained from those data sets; for process
modeling, their predictions are averaged, while, for classification, majority
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voting is performed. Bagging and other ensemble methods are reviewed in
more details in Chapter 7.

The generalization performance of bagged predictors can be assessed on
out-of-bag samples: for each example i, the loss l(yi, gj(�i)(xi)) of each pre-
dictor gj(�i) whose training set does not contain example i is computed, and
the generalization performance estimate is (1/Nj(�i))

P

j(�i) l(yi, gj(�i)(xi)),
where Nj(�i) is the number of training sets that do not contain example i
(Wolpert and Macready, 1999).

In the same spirit, a given number M of D-fold cross-validation splits can
be generated. In each cross-validation split, a given example appears D � 1
times in the training sets and one time in the validation sets. Overall, each
example appears M times in the validation sets and M(D � 1) times in the
training sets; a total of MD models are trained. For each example, the av-
erage prediction (or classification) error made, on that example, by the D
models that were not trained with that example, is computed. The procedure
is repeated for each example, and the average error is computed.

2.3.5 Model selection for feature selection

In this section, we describe some aspects of model selection that are more
specific to feature selection. We remind the reader that techniques of fea-
ture selection involving the performance of a learning machines are known as
“wrappers” (see the Introduction chapter and Chapter 4.)

Cross-validation for feature selection

Since cross-validation provides an estimate of the generalization ability of
models, it is frequently used for feature selection. Actually, the prediction
ability of models depends both on the features used and on the complexity
of the model. Therefore, several cross-validation loops may be nested when
feature selection and machine selection are performed simultaneously.

In Section 2.2.1, it was shown that the number of features can be selected
from statistical principles such as upper bounding the number of false pos-
itives, or the false discovery rate, irrespective of the machine used. Then,
cross-validation can be used for model selection (e.g. find the best kernel, the
best number of hidden neurons, the best regularization hyperparameter, . . . ),
with the features selected at the previous step.

A natural, but possibly dangerous, alternative would consist in ranking all
features with the whole data set, by any appropriate ranking algorithm, and
performing feature selection by cross-validation or leave-one-out:

• Rank candidate features using all training data and construct nested fea-
ture subsets.

• For each candidate feature subset,
– perform D-fold cross-validation or leave-one-out.
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• Select the feature subset that provides the best error estimate.

However, we must caution against this method, which is prone to overfit-
ting because the validation data is used in the feature selection process (Am-
broise and McLachlan, 2002).

It is more appropriate to include the feature selection in the cross-validation
loop, determine the best number of features n0, and then select n0 features
using the whole training set to produce the final model. In the end, that model
must be tested on an independent test set. We summarize the procedure:

• Split data into training and validation sets.

• For each training subset:

– rank all features and construct nested feature subsets.

– For each feature subset:

· train a model and compute its validation error.

• Average the validation errors of the subsets of same size.

• Find the number n0 of features that provides the smallest average valida-
tion error.

• Rank the features on all training data and select the top n0 features and
train the final model.

• Test the final model with an independent test set.

For model selection, an inner cross-validation (or leave-one-out, or virtual
leave-one-out) loop may be inserted in the “For each feature subset” loop; al-
ternatively, model selection by cross-validation, leave-one-out or virtual leave-
one-out, can be performed before and/or after feature selection

Guaranteed risk for feature selection

Performance bounds of the type of Equation 2.8 are useful in several respect
for feature selection.

The chapter on embedded methods (Chapter 5) reviews several feature
selection algorithms derived from performance bounds. Kernel methods such
as support vector machines (SVMs) lend themselves particularly well to this
methodology. In principle, reserving a validation set for feature selection may
be avoided altogether, since the approach consists in minimizing a“guaranteed
risk”, which incorporates a penalization for the model complexity that should
also penalize large feature set sizes. In practice, the number of features is
sometimes determined by cross-validation.
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Performance bounds also give us insight into the relative statistical com-
plexity of feature selection strategies. In Section 2.2.6, we have already been
warned that extensively searching the space of all possible feature subsets
comes at a price: the statistical significance of the features selected will su↵er.
Similarly, when feature selection is performed in the context of machine learn-
ing using the performance of a model on a validation set, comparing many
feature subsets comes at a price: the confidence interval on the generaliza-
tion error will su↵er. For instance, for classification problems, if N models
(here corresponding to N feature subsets) are being compared with a valida-
tion set of size mV , the error bar on the prediction increases monotonically
with

p

lnN/mV (see (Vapnik, 1982), Theorem 6.1.) Therefore, if all possible
combinations of nc candidate features are considered, N = 2nc ; to keep the
confidence interval from growing, the number of validation examples needed
will have to scale with the number of candidate features. However, for feature
ranking and nested feature subset strategies, only N = nc feature subsets are
considered; a number of validation examples scaling with lnnc will only be
needed. Other algorithms enjoying a “logarithmic sample complexity” have
been described (Langley, 1994, Ng, 1998).

Bagging for feature selection

Ensemble methods such as bagging can be used for feature ranking: features
can be ranked for each model of the bag, and a “bagged feature ranking” is
performed based on the frequency of occurrence of each feature at or above a
given rank in the individual rankings. Several feature aggregation procedures
are described in (Jong et al., 2004) and in Chapter 7.

2.4 Conclusion

The statistical assessment of the validity of selected features is an important
part in the methodology of model design. In the present chapter, we have
provided basic elements of such a methodology, relying on classical statistical
tests, as well as on more recently developed methods. Some of the methods
described here are of general use, but their application to feature selection has
specific requirements that should be kept in mind. In view of the di�culty of
the problem, there is room for much research e↵ort in that area.
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3.1 Introduction to filter methods for feature selection

Feature ranking and feature selection algorithms may roughly be divided into
three types. The first type encompasses algorithms that are built into adaptive
systems for data analysis (predictors), for example feature selection that is a
part of embedded methods (such as neural training algorithms). Algorithms
of the second type are wrapped around predictors providing them subsets of
features and receiving their feedback (usually accuracy). These wrapper ap-
proaches are aimed at improving results of the specific predictors they work
with. The third type includes feature selection algorithms that are indepen-
dent of any predictors, filtering out features that have little chance to be useful
in analysis of data. These filter methods are based on performance evaluation
metric calculated directly from the data, without direct feedback from pre-
dictors that will finally be used on data with reduced number of features.
Such algorithms are usually computationally less expensive than those from
the first or the second group. This chapter is devoted to filter methods.

The feature filter is a function returning a relevance index J(S|D) that
estimates, given the data D, how relevant a given feature subset S is for the
task Y (usually classification or approximation of the data). Since the data and
the task are usually fixed and only the subsets S vary the relevance index may
be written as J(S). In text classification these indices are frequently called
“feature selection metrics”(Forman, 2003), although they may not have formal
properties required to call them a distance metric. Instead of a simple function
(such as a correlation or information content) some algorithmic procedure may
be used to estimate the relevance index (such as building of a decision tree or
finding nearest neighbors of vectors). This means that also a wrapper or an
embedded algorithm may be used to provide relevance estimation to a filter
used with another predictor.

Relevance indices may be computed for individual features Xi, i = 1 . . . N ,
providing indices that establish a ranking order J(Xi1)  J(Xi2) · · · 
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J(XiN ). Those features which have the lowest ranks are filtered out. For inde-
pendent features this may be su�cient, but if features are correlated many of
important features may be redundant. Moreover, the best pair of features do
not have to include a single best one (Toussaint, 1971, Cover, 1974). Ranking
does not guarantee that the largest subset of important features will be found.
Methods that search for the best subset of features may use filters, wrappers
or embedded feature selection algorithms. Search methods are independent of
the evaluation of feature subsets by filters, and are a topic of Chapter 5. The
focus here is on filters for ranking, with only a few remarks on calculation of
relevance indices for subsets of features presented in Sec. 3.8.

The value of the relevance index should be positively correlated with ac-
curacy of any reasonable predictor trained for a given task Y on the data D
using the feature subset S. This may not always be true for all models, and
on theoretical grounds it may be di�cult to argue which filter methods are
appropriate for a given data analysis model. There is little empirical experi-
ence in matching filters with classification or approximation models. Perhaps
di↵erent types of filters could be matched with di↵erent types of predictors
but so far no theoretical arguments or strong empirical evidence has been
given to support such claim.

Although in the case of filter methods there is no direct dependence of the
relevance index on the predictors obviously the thresholds for feature rejection
may be set either for relevance indices, or by evaluation of the feature contri-
butions by the final system. Features are ranked by the filter, but how many
are finally taken may be determined using the predictor in a“wrapper setting”.
This “filtrapper” approach is computationally less expensive than the original
wrapper approach because the evaluation of the predictor’s performance (for
example by a cross-validation test) is done only for a few pre-selected feature
sets. There are also theoretical arguments showing that this technique is less
prone to overfitting than pure wrapper methods (Ng, 1998). In some data min-
ing applications (for example, analysis of large text corpora with noun phrases
as features) even relatively inexpensive filter methods, with costs linear in the
number of features, may be prohibitively slow.

Filters, as all other feature selection methods, may be divided into local
and global types. Global evaluation of features takes into account all data
in a context-free way. Context dependence may include di↵erent relevance for
di↵erent tasks (classes), and di↵erent relevance in di↵erent areas of the feature
space. Local classification methods, for example nearest neighbor methods
based on similarity, may benefit more from local feature selection, or from
filters that are constructed on demand using only data from the neighborhood
of a given vector. Obviously taking too few data samples may lead to large
errors in estimations of any feature relevance index and the optimal tradeo↵
between introduction of context and the reliability of feature evaluation may
be di�cult to achieve. In any case the use of filter methods for feature selection
depends on the actual predictors used for data analysis.
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In the next section general issues related to the filter methods are dis-
cussed. Section 3.3 is focused on the correlation based filtering, Sec. 3.4 on
relevance indices based on distances between distributions and Sec. 3.5 on the
information theory. In Section 3.6 the use of decision trees for ranking as well
as feature selection is discussed. Reliability of calculation of di↵erent indices
and bias in respect to the number of classes and feature values is very impor-
tant and is treated in Section 3.7. This is followed by some remarks in Sec.
3.8 on filters for evaluation of feature redundancy. The last section contains
some conclusions.

3.2 General issues related to filters

What does it mean that the feature is relevant to the given task? Artificial
Intelligence journal devoted in 1996 a special issue to the notion of relevance
(Vol. 97, no. 1–2). The common-sense notion of relevance has been rigorously
defined in an axiomatic way (see the review in (Bell and Wang, 2000)). Al-
though such definitions may be useful for the design of filter algorithms a more
practical approach is followed here. Kohavi and John (1996) give a simple and
intuitive definition of relevance that is su�cient for the purpose of feature se-
lection: a feature X is relevant in the process of distinguishing class Y = y
from others if and only if for some values X = x for which P(X = x) > 0 the
conditional probability P(Y = y|X = x) is di↵erent than the unconditional
probability P(Y = y). Moreover, a good feature should not be redundant,
i.e. it should not be correlated with other features already selected. These
ideas may be traced back to the test theory (Ghiselli, 1964) developed for
psychological measurements.

The main problem is how to calculate the strength of correlations between
features and classes (or more generally, between features and target, or out-
put, values), and between features themselves. The Bayesian point of view is
introduced below for the classification problems, and many other approaches
to estimation of relevance indices are described in subsequent sections. Some
of these approaches may be used directly for regression problems, others may
require quantization of continuous outputs into a set of pseudo-classes.

Consider the simplest situation: a binary feature X with values x = {0, 1}
for a two class y = {+,�} problem. For feature X the joint probability P(y, x)
that carries full information about the relevance of this feature is a 2 by 2 ma-
trix. Summing this matrix over classes (“marginalizing”, as statisticians say)
the values of P(x) probabilities are obtained, and summing over all feature
values x gives a priori class probabilities P(y). Because class probabilities
are fixed for a given dataset and they sum to P(y = +) + P(y = �) = 1
only two elements of the joint probability matrix are independent, for ex-
ample P(y = �, x = 0) and P(y = +, x = 1). For convenience notation
P(yi, xj) = P(y = i, x = j) is used below.
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The expected accuracy of the majority classifier (MC) AMC = maxy P(y)
is independent of the feature X because MC completely ignores informa-
tion about feature values. The Bayesian Classifier (BC) makes optimal de-
cisions based on the maximum a posteriori probability: if x = x0 then for
P(y�, x0) > P(y+, x0) class y� should always be selected, giving a larger frac-
tion P(y�, x0) of correct predictions, and smaller fraction P(y+, x0) of errors.
This is equivalent to the Maximum-a-Posteriori (MAP) rule: given X = x
select class that has greater posterior probability P(y|x) = P(y, x)/P(x). The
Bayes error is given by the average accuracy of the MAP Bayesian Classifier
(BC). For a single feature, the Bayes error is given by:

ABC(X) =
X

j=0,1

max
i
P(yi, xj) =

X

j=0,1

max
i
P(xj |yi)P(yi). (3.1)

Precise calculation of “real” joint probabilities P(yi, xj) or the conditional
probabilities P(xj |yi) using observed frequencies require an infinite amount
of the training data, therefore such Bayesian formulas are strictly true only in
the asymptotic sense. The training set should be a large, random sample that
represents the distribution of data in the whole feature space.

Because AMC(X)  ABC(X)  1, a Bayesian relevance index scaled for
convenience to the [0, 1] interval may be taken as:

JBC(X) = (ABC(X)�AMC(X))/(1�AMC(X)) 2 [0, 1]. (3.2)

The JBC(X) may also be called “a purity index”, because it indicates how
pure are the discretization bins for di↵erent feature values (intervals). This
index is also called “the misclassifications impurity” index, and is sometimes
used to evaluate nodes in decision trees (Duda et al., 2001).

Two features with the same relevance index JBC(X) = JBC(X 0) may be
ranked as equal, although their joint probability distributions P(yi, xj) may
significantly di↵er. Suppose that P(y�) > P(y+) for some feature X, there-
fore AMC(X) = P(y�). For all distributions with P(y�, x0) > P(y+, x0) and
P(y+, x1) > P(y�, x1) the accuracy of the Bayesian classifier is ABC(X) =
P(y�, x0)+P(y+, x1), and the error is P(y+, x0)+P(y�, x1) = 1�ABC(X). As
long as these equalities and inequalities between joint probabilities hold (and
P(yi, xj) � 0) two of the probabilities may change, for example P(y+, x1) and
P(y+, x0), without influencing ABC(X) and JBC(X) values. Thus the Bayesian
relevance index is not su�cient to uniquely rank features even in the simplest,
binary case. In fact most relevance indices cannot do that without additional
conditions (see also Sec. 3.7).

This reasoning may be extended to multi-valued features (or continuous
features after discretization (Liu et al., 2002)), and multi-class problems, lead-
ing to probability distributions that give identical JBC values. The expected
accuracy of a Bayesian classification rule is only one of several aspects that
could be taken into account in assessment of such indices. In the statistical
and pattern recognition literature various measures of inaccuracy (error rates,
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discriminability), imprecision (validity, reliability), inseparability and resem-
blance (resolution, refinement) are used (see (Hand, 1997, Duch et al., 2004)
for extended discussion). Knowing the joint P(y, x) probabilities and using the
MAP Bayesian Classifier rule confusion matrices Fij = N(yi, yj)/m = Mij/m
may easily be constructed for each feature, representing the joint probability
of predicting sample from class yi when the true class was yj :

F (true,predicted) =
1
m

"

M++ M+�
M�+ M��

#

=
1
m

"

TP FN
FP TN

#

(3.3)

where M++ is the number of hits or true positives (TP); M�� is the number of
hits in the y� class, or true negatives (TN); M�+ is the number of false alarms,
or false positives (FP) (for example, healthy people predicted as sick), and
M+� is the number of misses, or false negatives (FN) (sick people predicted
as healthy), and the number of samples m is the sum of all Mij .

Confusion matrices have only two independent entries because each row
has to sum to F+j + F�j = P(yj), the a priori class probability (estimated
as the fraction of all samples that belong to the class yj). Class accuracies,
or conditional probabilities that given a sample from class y it will be really
classified as class y are usually taken as the two independent variables. In
medical informatics S+ = F++/P(y+) = F(y+|y+) is called sensitivity or
true positive rate (in information retrieval the name recall or detection rate is
used), and S� = F��/P(y�) = F(y�|y�) is called specificity. These diagonal
elements of the conditional confusion matrix F(yi|yi) reflect the type of errors
that the predictor makes. For example, sensitivity shows how well sick people
(class y = +) are correctly recognized by classification rule based on some
feature (results of a medical test), and specificity shows how well healthy
people (class y = �) are recognized as healthy by the same test. Generalization
to the K-class case is obvious. Standard classifier accuracy is obtained as a
trace of the F(yi, yj) matrix, or Acc =

P

i F(yi|yi)P(yi). The arithmetic
average of class accuracies F(yi|yi) is called a balanced accuracy

Acc2 =
1
K

K
X

i=1

F(yi|yi). (3.4)

The Balanced Error Rate BER=1 � Acc2 is a particularly useful evaluation
measure for unbalanced datasets. For feature ranking, using accuracy-based
relevance indices, such as the ABC, JBC indices, is equivalent to comparing
F(y+, y+)�F(y+, y�) (the probability of true positives minus false positives),
while using balanced accuracy is equivalent to F(y+|y+) � F(y+|y�) (true
positives ratio minus false positives ratio), because terms that are constant
for a given data will cancel during comparison. This di↵erence may be rescaled,
for example by using (Forman, 2003):

BNS = G�1 (F(y+|y+))�G�1 (F(y+|y�)) (3.5)



94 W lodzis law Duch

where G�1(·) is the z-score, or the standard inverse cumulative probability
function of a normal distribution. This index, called bi-normal separation
index, worked particularly well in information retrieval (IR) (Forman, 2003).
Another simple criterion used in this field is called the Odds Ratio:

Odds =
F(y+|y+)F(y�|y�)
F(y+|y�)F(y�|y+)

=
F(y+|y+)(1� F(y�|y+)
(1� F(y+|y+))F(y�|y+)

(3.6)

where zero probabilities are replaced by small positive numbers.
Ranking of features may be based on some combination of sensitivity and

specificity. The cost of not recognizing a sick person (low sensitivity) may be
much higher than the cost of temporary hospitalization (low specificity). Costs
of misclassification may also be introduced by giving a factor to specify that
F+� type of errors (false positive) are ↵ times less important than F�+ type of
errors (false negative). Thus instead of just summing the number of errors the
total misclassification cost is E(↵) = ↵F�+ +F+�. For binary feature values
the BC decision rule has no parameters, and costs E(↵) are fixed for a given
dataset. However, if the P(y, x) probabilities are calculated by discretization of
some continuous variable z so that the binary value x = ⇥(z�✓) is calculated
using a step function ⇥, the values of sensitivity F(y+|y+; ✓) and specificity
F(y�|y�; ✓) depend on the threshold ✓, and the total misclassification cost
E(↵, ✓) can be optimized with respect to ✓.

A popular way to optimize such thresholds (called also “operating points”
of classifiers) is to use the receiver operator characteristic (ROC) curves
(Hand, 1997, Swets, 1988). These curves show points R(✓) = (F(y+|y�; ✓),
F(y+|y+; ✓)) that represent a tradeo↵ between the false alarm rate F(y+|y�; ✓)
and sensitivity F(y+|y+; ✓) (true positives rate). The Area Under the ROC
curve (called AUC) is frequently used as a single parameter characterizing
the quality of the classifier (Hanley and McNeil, 1982), and may be used as
a relevance index for BC or other classification rules. For a single threshold
(binary features) only one point R = (F(y+|y�),F(y+|y+)) is defined, and
the ROC curve has a line segment connecting it with points (0, 0) and (1, 1).
In this case AUC= 1

2 (F(y+|y+) + F(y�|y�)) is simply equal to the balanced
accuracy Acc2, ranking as identical all features that have the same di↵erence
between true positive and false positive ratios. In general this will not be
the case and comparison of AUCs may give a unique ranking of features. In
some applications (for example, in information retrieval) classifiers may have
to work at di↵erent operating points, depending on the resources that may
change with time. Optimization of ROC curves from the point of view of fea-
ture selection leads to filtering methods that may be appropriate for di↵erent
operating conditions (Coetzee et al., 2001).

A number of relevance indices based on modified Bayesian rules may be
constructed, facilitating feature selection not only from the accuracy, but also
from the cost or confidence point of view. The confusion matrix F(y1, y2) for
the two-class problems may be used to derive various combinations of accuracy
and error terms, such as the harmonic mean of recall and precision called the
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F1-measure,
JF (X) = 2F++/(1 + F++ � F��), (3.7)

well-justified in information retrieval (van Rijsbergen, 1979). Selection of the
AUC or balanced accuracy instead of the standard accuracy corresponds to
a selection of the relative cost factor ↵ = P(y�)/P(y+) (Duch et al., 2004).
An index combining the accuracy and the error term J(�) = F�� + F++ �
�(F�+ + F+�) = A � �E does not favor one type of errors over another,
but it may be used to optimize confidence and rejection rates of logical rules
(Duch and Itert, 2002). For � = 0 this leads to the ABC Bayesian accuracy
index, but for large � a classification rule that maximizes J(�) may reduce
errors increasing confidence in the rule at the expense of leaving some samples
unclassified. Non-zero rejection rates are introduced if only significant di↵er-
ences between the P(y, x) values for di↵erent classes are kept, for example the
feature is may be rejected if |P(y+, x)� P(y�, x)| < ✓ for all values of x.

From the Bayesian perspective one cannot improve the result of the max-
imum a posteriori rule, so why is the JBC(X) index rarely (if ever) used, and
why are other relevance indices used instead? There are numerous theoretical
results (Devroye et al., 1996, Antos et al., 1999) showing that for any method
of probability density estimations from finite samples convergence may be very
slow and no Bayes error estimate can be trusted. The reliability of P(y, x) es-
timates rapidly decreases with a growing number of distinct feature values
(or continuous values), growing number of classes, and decreasing number of
training samples per class or per feature value. Two features with the same
JBC(X) index may have rather di↵erent distributions, but the one with lower
entropy may be preferred. Therefore methods that compare distributions of
feature and class values may have some advantages (Torkkola, 2003). An em-
pirical study of simple relevance indices for text classification shows (Forman,
2003) that accuracy is rather a poor choice, with balanced accuracy (equiv-
alent to comparison of AUCs for the two-class problems) giving much higher
recall at similar precision. This is not surprising remembering that in the ap-
plications to text classification the number of classes is high and the data are
usually very unbalanced (P(y+) is very small).

Distribution similarity may be estimated using various distance measures,
information theory, correlation (dependency) coe�cients and consistency mea-
sures, discussed in the sections below. Some theoretical results relating var-
ious measures to the expected errors of the Bayesian Classifier have been
derived (Vilmansen, 1973, Vajda, 1979) but theoretical approaches have met
only with limited success and empirical comparisons are still missing. Fea-
tures with continuous values should be discretized to estimate probabilities
needed to compute the relevance indices (Liu and Setiono, 1997, Liu et al.,
2002). Alternatively, the data may be fitted to a combination of some con-
tinuous one-dimensional kernel functions (Gaussian functions are frequently
used), and integration may be used instead of summation.
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The relevance indices J(X) introduced above are global or context-free,
evaluating the average usefulness of a single feature X. This may be su�cient
in many applications, but for some data distributions and for complex domains
features may be highly relevant in one area of the feature space and not
relevant at all in some other area. Some feature selection algorithms (such
as Relief described below) use local information to calculate global, averaged
indices. Decision trees and other classification algorithms that use the “divide
and conquer” approach hierarchically partitioning the whole feature space,
need di↵erent subsets of features at di↵erent stages. Restricting calculations
to the neighborhood O(x) of some input vector x, local or context-dependent,
relevance indices J(X, O(x)) are computed.

In multiclass problems or in regression problems features that are impor-
tant for specific target values (“local” in the output space) should be rec-
ognized. For example, if the data is strongly unbalanced, features that are
important for discrimination of the classes with small number of samples may
be missed. In this case the simplest solution is to apply filters to multiple
two-class problems. In case of regression problems filters may be applied to
samples that give target values in a specific range.

3.3 Correlation-based filters

Correlation coe�cients are perhaps the simplest approach to feature rele-
vance measurements. In contrast with information theoretic and decision tree
approaches they avoid problems with probability density estimation and dis-
cretization of continuous features and therefore are treated first.

In statistics “contingency tables”defined for pairs of nominal features X, Y
are frequently analyzed to determine correlations between variables. They
contain the numbers of times Mij = N(yi, xj) objects with feature values Y =
yj , X = xi appear in a database. In feature selection m training samples may
be divided into subsets of Mij samples that belong to class yi, i = 1 . . .K and
have a specific feature value xj ; summing over rows of the Mij matrix marginal
distribution Mi· of samples over classes is obtained, and summing over columns
distribution M·j of samples over distinct feature values xj is obtained. The
strength of association between variables X, Y is usually measured using �2

statistics:

�2 =
X

ij

(Mij �mij)2/mij , where mij = Mi·M·j/m, (3.8)

Here mij represent the expected number of observations assuming X, Y
independence. Terms with mij = 0 should obviously be avoided (using suf-
ficient data to have non-zero counts for the number of samples in each class
and each feature value), or replaced by a small number. If feature and target
values were completely independent mij = Mij would be expected, thus large
di↵erences show strong dependence. To estimate the significance of the �2
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test an incomplete gamma function Q(�2|⌫) is used (Press et al., 1988). The
number of degrees of freedom ⌫ is set to K � 1. This approach is justified
from the statistical point of view only if the number of classes or the number
of feature values are large. In contrast to the Bayesian indices the �2 results
depend not only on the joint probabilities P(xi, yj) = N(xi, yj)/m, but also
on the number of samples m, implicitly including the intuition that estimation
of probabilities from small samples is not accurate and thus the significance
of small correlations is rather low. �2 statistics have been used in several dis-
cretization methods combined with feature selection (Liu and Setiono, 1997,
Liu et al., 2002).

The linear correlation coe�cient of Pearson is very popular in statistics
(Press et al., 1988). For feature X with values x and classes Y with values y
treated as random variables it is defined as:

%(X, Y ) =
E(XY )� E(X)E(Y )

p

�2(X)�2(Y )
=

P

i(xi � x̄i)(yi � ȳi)
q

P

i(xi � x̄i)2
P

j(yi � ȳi)2
. (3.9)

%(X, Y ) is equal to ±1 if X and Y are linearly dependent and zero if they
are completely uncorrelated. Some features may be correlated positively, and
some negatively. Linear coe�cient works well as long as the relation between
feature values and target values is monotonic. Separation of the means of the
class distributions leads to an even simpler criterion, called sometimes the
“signal-to-noise ratio”:

µ(X, Y ) =
µ(y+)� µ(y�)

(�(y+) + �(y�))
, (3.10)

where µ(y+) is the mean value for class y+ vectors and �(y+) is the variance for
this class. For continuous targets a threshold y < ✓ divides vectors into y+ and
y� groups. The square of this coe�cient is similar to the ratio of between-class
to within-class variances, known as the Fisher criterion (Duda et al., 2001).
The two-sample T-test uses slightly di↵erent denominator (Snedecorand and
Cochran, 1989):

T (X, Y ) =
µ(y+)� µ(y�)

p

�(y+)2/m+ + �(y�)2/m�
, (3.11)

where m± is the number of samples in class y±. For ranking absolute val-
ues |%(X, Y )|, |µ(X, Y )| and |T (X, Y )| are taken. Fukunaga (Fukunaga, 1990)
contains an excellent analysis of such criteria.

How significant are di↵erences in %(X, Y ) and other index values? The
simplest test estimating the probability that the two variables are correlated
is:

P(X ⇠ Y ) = erf
⇣

|%(X, Y )|
p

m/2
⌘

, (3.12)

where erf is the error function. Thus for m = 1000 samples linear correlations
coe�cients as small as 0.02 lead to probabilities of correlation around 0.5.
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This estimation may be improved if the joint probability of X, Y variables is
binormal. The feature list ordered by decreasing values (descending order) of
the P(X ⇠ Y ) may serve as feature ranking. A similar approach is also taken
with �2, but the problem in both cases is that for larger values of �2 or corre-
lation coe�cient, probability P(X ⇠ Y ) is so close to 1 that ranking becomes
impossible due to the finite numerical accuracy of computations. Therefore an
initial threshold for P(X ⇠ Y ) may be used in ranking only to determine how
many features are worth keeping, although more reliable estimations may be
done using cross-validation or wrapper approaches. An alternative is to use
a permutation test, computationally expensive but improving accuracy for
small number of samples (Cox and Hinkley, 1974) (see also Neal and Zhang
Chapter 10).

If a group of k features has already been selected, correlation coe�cients
may be used to estimate correlation between this group and the class, includ-
ing inter-correlations between the features. Relevance of a group of features
grows with the correlation between features and classes, and decreases with
growing inter-correlation. These ideas have been discussed in theory of psycho-
logical measurements (Ghiselli, 1964) and in the literature on decision making
and aggregating opinions (Hogarth, 1977). Denoting the average correlation
coe�cient between these features and the output variables as rky = %̄(Xk, Y )
and the average between di↵erent features as rkk = %̄(Xk,Xk) the group
correlation coe�cient measuring the relevance of the feature subset may be
defined as:

J(Xk, Y ) =
krky

p

k + (k � 1)rkk

. (3.13)

This formula is obtained from Pearson’s correlation coe�cient with all vari-
ables standardized. It has been used in the Correlation-based Feature Selection
(CFS) algorithm (Hall, 1999) adding (forward selection) or deleting (backward
selection) one feature at a time.

Non-parametric, or Spearman’s rank correlation coe�cients may be useful
for ordinal data types. Other statistical tests of independence that could be
used to define relevance indices, such as the Kolmogorov-Smirnov test based
on cumulative distributions and G-statistics (Press et al., 1988).

A family of algorithms called Relief (Robnik-Sikonja and Kononenko, 2003)
are based on the feature weighting, estimating how well the value of a given
feature helps to distinguish between instances that are near to each other.
For a randomly selected sample x two nearest neighbors, xs from the same
class, and xd from a di↵erent class, are found. The feature weight, or the Re-
lief relevance index JR(X) for the feature X, is increased by a small amount
proportional to the di↵erence |X(x)�X(xd)| because relevance should grow
for features that separate vectors from di↵erent classes, and is decreased by
a small amount proportional to |X(x)�X(xs)| because relevance should de-
crease for feature values that are di↵erent from features of nearby vectors from
the same class. Thus JR(X) JR(X)+⌘(|X(x)�X(xd)|� |X(x)�X(xs)|),
where ⌘ is of the order of 1/m. After a large number of iterations this index
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captures local correlations between feature values and their ability to help in
discrimination of vectors from di↵erent classes. Variants include ratio of the
average over all examples of the distance to the nearest miss and the aver-
age distance to the nearest hit, that self-normalizes the results (Guyon et al.,
2003):

JR(X) =
Ex(|X(x)�X(xd)|)
Ex(|X(x)�X(xs)|) . (3.14)

The ReliefF algorithm has been designed for multiclass problems and is
based on the k nearest neighbors from the same class, and the same number of
vectors from di↵erent classes. It is more robust in the presence of noise in the
data, and includes an interesting approach to the estimation of the missing
values. Relief algorithms represent quite original approach to feature selection,
that is not based on evaluation of one-dimensional probability distributions
(Robnik-Sikonja and Kononenko, 2003). Finding nearest neighbors assures
that the feature weights are context sensitive, but are still global indices (see
also (Hong, 1997) for another algorithm of the same type). Removing context
sensitivity (which is equivalent to assuming feature independence) makes it
possible to provide a rather complex formula for ReliefX:

JRX(Y, X) =
GSx

(1� Sy)Sy
; where

Sx =
K
X

i=1

P(xi)2; Sy =
MY
X

j=1

P(yj)2 (3.15)

G =
X

j

P(yj)(1� P(yj))�
K
X

i=1

0

@

P(xi)2

Sx

X

j

P(yj |xi)(1� P(yj |xi))

1

A .

The last term is a modified Gini index (Sec. 3.6). Hall (Hall, 1999) has
used a symmetrized version of JRX(Y, X) index (exchanging x and y and
averaging) for evaluation of correlation between pairs of features. Relief has
also been combined with a useful technique based on the successive Gram-
Schmidt orthogonalization of features to the subset of features already created
(Guyon et al., 2003). Connection to the Modified Value Di↵erence Metric
(MVDM) is mentioned in the next section.

3.4 Relevance indices based on distances between
distributions

There are many ways to measure dependence between the features and classes
based on evaluating di↵erences between probability distributions. A simple
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measure – a di↵erence between the joint and the product distributions – has
been proposed by Kolmogorov:

DK(Y, X) =
X

i

K
X

j=1

|P(yj , xi)� P(xi)P(yj)|. (3.16)

This is very similar to the �2 statistics except that the results do not depend
on the number of samples. After replacing summation by integration this
formula may be easily applied to continuous features, if probability densities
are known or some kernel functions have been fitted to the data. It may reach
zero for completely irrelevant features, and it is bounded from above:

0  DK(Y, X)  1�
X

i

P(xi)2, (3.17)

if the correlation between classes and feature values is perfect. Therefore this
index is easily rescaled to the [0, 1] interval. For two classes with the same a
priori probabilities Kolmogorov measure reduces to:

DK(Y, X) =
1
2

X

i

|P(xi|y = 0)� P(xi|y = 1)|. (3.18)

The expectation value of squared a posteriori probabilities is known as
the average Euclidean norm of the conditional distribution, called also the
Bayesian measure (Vajda, 1979):

JBM(Y, X) =
X

i

P(xi)
K
X

j=1

P(yj |xi)2, (3.19)

It measures concentration of the conditional probability distribution for dif-
ferent xi values in the same way as the Gini index (Eq. 3.39) used in decision
trees (Sec. 3.6).

The Kullback-Leibler divergence:

DKL((P(X)||(P(Y )) =
X

i

PY (yi) log
PY (yi)
PX(xi)

� 0, (3.20)

is used very frequently, although it is not a distance (it is not symmetric).
The KL divergence may be applied to relevance estimation in the same way
as the �2 statistics:

DKL(P(X, Y )||P(X)P(Y )) =
X

i

K
X

j=1

P(yj , xi) log
P(yj , xi)
P(xi)P(yj)

. (3.21)

This quantity is also known as“mutual information”MI(Y, X). The Kullback-
Liebler measure is additive for statistically independent features. It is sensitive
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to the small di↵erences in distribution tails, which may lead to problems,
especially in multiclass applications where the relevance index is taken as the
average value of KL divergences between all pairs of classes.

The Je↵reys-Matusita distance (JM-distance) provides a more robust cri-
terion:

DJM(Y, X) =
X

i

K
X

j=1



q

P(yj , xi)�
q

P(xi)P(yj)
�2

. (3.22)

For Gaussian distributions DJM is related to the Bhattacharya distance. Be-
cause DJM  2(1 � exp(�DKL/8)) an exponential transformation JKL =
1 � exp(�DKL/8) is sometimes defined, reaching zero for irrelevant features
and growing to 1 for a very large divergences, or highly relevant features.
There is some evidence that these distances are quite e↵ective in remote sens-
ing applications (Bruzzone et al., 1995).

The Vajda entropy is defined as (Vajda, 1979):

JV(Y, X) =
X

i

P(xi)
K
X

j=1

P(yj |xi)(1� P(yj |xi)), (3.23)

and is simply equal to the JV(Y, X) = 1 � JBM(Y, X). The error rate of the
Bayesian Classifier is bounded by the Vajda entropy, ABC(X)  JV(Y,X).
Although many other ways to compare distributions may be devised they
may serve as better relevance indicators only if tighter error bounds could be
established.

In the memory-based reasoning the distance between two vectors X, X 0

with discrete elements (nominal or discretized), in a K class problem, is com-
puted using conditional probabilities (Wilson and Martinez, 1997):

V DM(X, X 0;Y )2 =
X

i

K
X

j=1

|P(yj |xi)� P(yj |x0i)|2 (3.24)

This formula may be used to evaluate feature similarity when redundant
features are searched for.

3.5 Relevance measures based on information theory

Information theory indices are most frequently used for feature evaluation.
Information (negative of entropy) contained in the class distribution is:

H(Y ) = �
K
X

i=1

P(yi) log2 P(yi), (3.25)

where P(yi) = mi/m is the fraction of samples x from class yi, i = 1..K.
The same formula is used to calculate information contained in the discrete
distribution of feature X values:
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H(X) = �
X

i

P(xi) log2 P(xi). (3.26)

Continuous features are discretized (binned) to compute information associ-
ated with a single feature or some kernel functions are fitted to approximate
the density of X values and integration performed instead of summation. In-
formation contained in the joint distribution of classes and features, summed
over all classes, gives an estimation of the importance of the feature. Informa-
tion contained in the joint distribution is:

H(Y, X) = �
X

i

K
X

j=1

P(yj , xi) log2 P(yj , xi), (3.27)

or for continuous features:

H(Y,X) = �
K
X

j=1

Z

P(yj , x) log2 P(yj , x)dx, (3.28)

where P(yj , xi), j = 1 . . .K is the joint probability (density for continuous
features) of finding the feature value X = xi for vectors x that belong to
some class yj and P(xi) is the probability (density) of finding vectors with
feature value X = xi. Low values of H(Y, X) indicate that vectors from a
single class dominate in some intervals, making the feature more valuable for
prediction.

Information is additive for the independent random variables. The di↵er-
ence MI(Y, X) = H(Y ) + H(X) �H(Y, X) may therefore be taken as “mu-
tual information” or “information gain”. Mutual information is equal to the
expected value of the ratio of the joint to the product probability distribution,
that is to the Kullback-Leibler divergence:

MI(Y, X) = �
X

i,j

P(yj , xi) log2
P(yj , xi)
P(yj)P(xi)

= DKL(P(yj , xi)|P(yj)P(xi)).

(3.29)
A feature is more important if the mutual information MI(Y,X) between
the target and the feature distributions is larger. Decision trees use closely
related quantity called “information gain” IG(Y, X). In the context of fea-
ture selection this gain is simply the di↵erence IG(Y, X) = H(Y )�H(Y |X)
between information contained in the class distribution H(Y ), and infor-
mation after the distribution of feature values is taken into account, that
is the conditional information H(Y |X). This is equal to MI(Y, X) because
H(Y |X) = H(Y,X)�H(X). A standard formula for the information gain is
easily obtained from the definition of conditional information:
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IG(Y, X) = H(Y )�H(Y |X) = H(Y ) +
X

ij

P(yj , xi) log2 P(yj |xi)(3.30)

= H(Y )�
X

ij

P(xi) [�P(yj |xi) log2 P(yj |xi)] ,

where the last term is the total information in class distributions for subsets
induced by the feature values xi, weighted by the fractions P(xi) of the number
of samples that have the feature value X = xi. Splits induced by tests in nodes
of decision trees are usually not based directly on all attribute values and thus
information gain in general is di↵erent from mutual information, but for the
feature selection purposes these two quantities are identical.

It is not di�cult to prove that the Bayes error ABC is bounded from above
by half of the value of the conditional information and from below by the Fano
inequality,

H(Y |X)� 1
log2 K

 ABC  1
2
H(Y |X), (3.31)

although the left side is usually negative and thus not useful. Minimizing
H(Y |X) = H(Y ) �MI(Y, X), or maximizing mutual information, leads to
an approximation of Bayes errors and optimal predictions. Error bounds are
also known for the Renyi entropy that is somehow easier to estimate in on-line
learning than the Shannon entropy (Erdogmus and Principe, 2004).

Various modifications of the information gain have been considered in the
literature on decision trees (cf. (Quinlan, 1993)), aimed at avoiding bias to-
wards the multivalued features. These modifications include:

IGR(Y, X) = MI(Y,X)/H(X), (3.32)
DH(Y, X) = 2H(Y, X)�H(Y )�H(X), (3.33)
DM (Y, X) = 1�MI(Y,X)/H(Y, X), (3.34)

JSU(Y, X) = 1� DH(Y,X)
H(Y ) + H(X)

= 2
MI(Y, X)

H(Y ) + H(X)
2 [0, 1]. (3.35)

where IGR is the information gain ratio, DH is the entropy distance, DM

is the Mantaras distance (de Mantaras, 1991) and JSU is the symmetrical
uncertainty coe�cient. The JSU coe�cient seems to be particularly useful
due to its simplicity and low bias for multi-valued features (Hall, 1999).

The J-measure:

JJ(X) =
X

i

P(xi)
X

j

P(yj |xi) log
P(yj |xi)
P(yj)

, (3.36)

has been initially introduced to measure information content of logical rules
(Smyth and Goodman, 1992), but it is applicable also to the feature selection
(Kononenko, 1995).
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Michie (1990) has defined an index called “average weight of evidence”,
based on plausibility, an alternative to entropy in information:

JWE(X) =
K
X

j=1

X

i

P(xi)
�

�

�

�

log
P(yj |xi)(1� P(yj))
(1� P(yj |xi))P(yj)

�

�

�

�

. (3.37)

Minimum Description Length (MDL) is a general idea based on the Oc-
ckam’s razor principle and Kolmogorov’s algorithmic complexity (Li and
Vitányi, 1993). The joint complexity of the theory inferred from the data and
the length of the data encoded using this theory should be minimal. MDL
has been applied to the construction of decision trees and the selection of fea-
tures (Kononenko, 1995). As in the description of �2 test, m training samples
are divided into subsets of Mij samples that belong to class yj , j = 1 . . .K
and have a specific feature value xi, i = 1 . . .Mx. The number of bits needed
for optimal encoding of the information about the class distribution for m
training samples is estimated (this number is fixed for a given dataset), and
the same estimation is repeated for each partitioning created by a feature
value (or interval) x. Combinatorics applied to the information coding leads
to the MDL formula expressed using binomial and multinomial coe�cients
m!/m1! . . .mK ! in the following way (Kononenko, 1995, Hall, 1999):

MDL(Y, X) = log2
m!

M1·! . . .MK·!
+ log2

✓

m + K � 1
K � 1

◆

(3.38)

�
Mx
X

j=1

log2

✓

M·j + K � 1
K � 1

◆

�
Mx
X

j=1

log2
M·j !

M1j ! . . .MKj !
,

where Mi· and M·j are marginal distributions calculated from the Mij matrix.
The final relevance index JMDL(Y, X) 2 [0, 1] is obtained by dividing this
value by the first two terms representing the length of the class distribution
description. A symmetrized version of MDL relevance index is used in (Hall,
1999), calculated by exchanging features and classes and averaging over the
two values.

3.6 Decision trees for filtering

Decision trees select relevant features using top-down, hierarchical partition-
ing schemes. In the deeper branches of a tree only a small portion of all data
is used and only local information is preserved. In feature selection global
relevance is of greater importance. One way to achieve it is to create a single-
level tree (for algorithms that allow for multiple splits), or a tree based on a
single feature (for algorithms that use binary splits only) and evaluate their
accuracy. An additional benefit of using decision trees for continuous features
is that they provide optimized split points, dividing feature values into rela-
tively pure bins. Calculation of probabilities P(xj) and P(yi|xj) needed for
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the estimation of mutual information and other relevance indices becomes
more accurate than with the näıve discretization based on the bins of equal
width or bins with equal number of samples. Mutual information calculated
after discretization based on a decision tree may be a few times larger than
using naive discretization (Duch et al., 2003).

The 1R decision tree algorithm (Holte, 1993) is most appropriate for fea-
ture filtering because it creates only single level trees. Features are analyzed
searching for a subset of values or a range of values for which vectors from a
single class dominate. The algorithm has one parameter (called the “bucket
size”), an acceptable level of impurity for each range of the feature values,
allowing for reduction of the number of created intervals. Performance may
be estimated using the JBC(Y, X) index, and the optimal bucket size may be
evaluated using cross-validation or bootstrap sampling that can help to avoid
the bias for large number of intervals but will also increase computational
costs.

The C4.5 tree (Quinlan, 1993) uses information gain to determine the
splits and to select the most important features, therefore it always ranks
as the most important features that are close to the root node. The CHAID
decision tree algorithm (Kass, 1980) measures association between classes and
feature values using �2 values, as in Eq. 3.8. Although the information gain
and the �2 have already been mentioned as relevance indices the advantage
of using decision trees is that automatic discretization of continuous features
is performed.

The Gini impurity index used in the CART decision trees (Breiman et al.,
1984) sums the squares of the class probability distribution for a tree node,
JGini(Y ) = 1�Pi P(yi)2. Given a feature X a split into subsets with discrete
feature values xj (or values in some interval) may be generated and Gini
indices in such subsets calculated. The gain is proportional to the average of
the sum of squares of all conditional probabilities:

JGini(Y,X) =
X

j

P(xj)
X

i

P(yi|xj)2 2 [0, 1], (3.39)

giving a measure of the probability concentration useful for feature ranking.
This index is similar to the entropy of class distributions and identical with
the Bayesian measure Eq. 3.19.

The Separability Split Value (SSV) criterion is used to determine splits
in decision tree (Gra̧bczewski and Duch, 2000) and to discretize continuous
features (Duch et al., 2004, 2001), creating a small number of intervals (or
subsets) with high information content. It may also be used as feature rel-
evance index. The best “split value” should separate the maximum number
of pairs of vectors from di↵erent classes. Among all split values that satisfy
this condition, the one that separates the smallest number of pairs of vectors
belonging to the same class is selected. The split value for a continuous feature
X is a real number s, while for a discrete feature it is a subset of all possible
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values of the feature. In all cases, the left side (LS) and the right side (RS)
of a split value s is defined by a test f(X, s) for a given dataset D:

LS(s, f,D) = {x 2 D : f(x, s) = T}}
RS(s, f,D) = D � LS(s, f,D),

(3.40)

where the typical test f(x, s) is true if the selected feature xi < s or (for
discrete feature) xi 2 {s}. The separability of a split value s is defined for a
given test f as:

SSV(s, f) = 2
K
X

i=1

|LS(s, f,Di)| · |RS(s, f,D �Di)| (3.41)

�
X

i

min (|LS(s, f,Di)|, |RS(s, f,Di)|) ,

where Dk is the subset of D vectors that belong to the class k. If several
features separate the same number of pairs of training vectors the second
term ranks higher the one that separates a lower number of pairs from the
same class. This index has smilar properties to Gini and is easily calculated
for both continuous and discrete features. For 10 or less feature values all
subsets are checked to determine the simplest groupings, for a larger number
of unique values the feature is treated as ordered and the best split intervals
are searched for. In the feature selection applications of the SSV, splits are
calculated and applied recursively to the data subsets Dk, creating a single-
feature tree. When pure nodes are obtained the algorithm stops and prunes the
tree. The Bayesian Classifier rule is applied in each interval or for each subset
created by this algorithm to calculate the JSSV(Y,X) relevance index. More
complex tree-based approaches to determine feature relevance use pruning
techniques (Duch et al., 2004).

3.7 Reliability and bias of relevance indices

How good are di↵erent relevance indices? Empirical comparisons of the influ-
ence of various indices are di�cult because results depend on the data and the
classifier. What works well for document categorization (Forman, 2003) (large
number of classes, features and samples), may not be the best for bioinformat-
ics data (small number of classes, large number of features and a few samples),
or analysis of images. One way to characterize relevance indices is to see which
features they rank as identical. If a monotonic function could transform one
relevance index into another the two indices would always rank features in
the same way. Indeed such relations may be established between some indices
(see Sec. 3.4), allowing for clustering of indices into highly similar or even
equivalent groups, but perhaps many more relations may be established.
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The ranking order predicted by the mutual information and other infor-
mation theoretic measures, and by the accuracy of the optimal Bayesian Clas-
sifier using information contained in a single feature, is not identical. It is easy
to find examples of binary-valued features where BC and MI predictions are
reversed. Consider three binary features with the following class distributions:

P(Y,X) =

 

0.50 0.00
0.25 0.25

!

, P(Y, X 0) =

 

0.45 0.05
0.20 0.30

!

, P(Y, X 00) =

 

0.41 0.09
0.10 0.40

!

.

The JBC relevance indices for the three distributions are 0.50, 0.50, 0.62, the
MI values are 0.31, 0.21, 0.30, and the JGini indices are 0.97, 0.98, and 0.99.
Therefore the ranking in descending order according of the Bayesian relevance
is X 00, X = X 0, mutual information gives X, X 00, X 0, and the Gini index pre-
dicts X, X 0, X 00.

The di↵erences between relevance indices are apparent if the contour plots
showing lines of constant values of these three indices are created for proba-

bility distributions P(y, x) =

 

a 0.5� a

b 0.5� b

!

. These contour plots are shown in

Fig. 3.1 in the (a, b) coordinates. The JBC(Y, X) index is linear, the MI(Y, X)
has logarithmic nonlinearity and the Gini index has stronger quadratic non-
linearity. For many distributions each index must give identical values. Unique
ranking is obtained asking for “the second opinion”, that is using pairs of in-
dices if the first one gives identical values. In the example given above the
Bayesian relevance index could not distinguish between X and X 0, but using
mutual information for such cases will give a unique ranking X 00, X,X 0.
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Fig. 3.1. Contours of constant values for BC relevance index (left), MI index (mid-
dle) and Gini index (right), in a, b coordinates.

Calculation of indices based on information theory for discrete features is
straightforward, but for the continuous features the accuracy of entropy cal-
culations based on simple discretization algorithms or histogram smoothing
may be low. The literature on entropy estimation is quite extensive, especially
in physics journals, where the concept of entropy has very wide applications
(cf. (Holste et al., 1998)). The variance of the histogram-based mutual infor-
mation estimators has been analyzed in (Moddemeijer, 1999). A simple and
e↵ective way to calculate mutual information is based on Parzen windows
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(Kwak and Choi, 2002a). Calculation of mutual information between pairs of
features and the class distribution is more di�cult, but interesting approx-
imations based on the conditional mutual information have been proposed
recently to calculate it (Kwak and Choi, 2002b).

Filters based on ranking using many relevance indices may give similar
results. The main di↵erences between relevance indices of the same type is
in their bias in relation to the number of distinct feature values, and in their
variance in respect to the accuracy of their estimation for small number of sam-
ples. The issue of bias in estimating multi-valued features has initially been
discussed in the decision tree literature (Quinlan, 1993). Gain-ratio and Man-
taras distance have been introduced precisely to avoid favoring attributes with
larger number of values (or intervals). Biases of 11 relevance indices, including
information-based indices, Gini, J-measure, weight of evidence, MDL, and Re-
lief, have been experimentally examined for informative and non-informative
features (Kononenko, 1995). For the two-class problems biases for a large num-
ber of feature values are relatively small, but for many classes they become
significant. For mutual information, Gini and J-measure approximately lin-
ear increase (as a function of the number of feature values) is observed, with
steepness proportional to the number of classes. In this comparison indices
based on the Relief (Sec. 3.3) and MDL (Sec. 3.5) came as the least biased.
Symmetrical uncertainty coe�cient JSU has a similar low bias (Hall, 1999).
Biases in evaluation of feature correlations have been examined by Hall (Hall,
1999).

Significant di↵erences are observed in the accuracy and stability of cal-
culation of di↵erent indices when discretization is performed. Fig. 3.2 shows
convergence plots of 4 indices created for overlapping Gaussian distributions
(variance=1, means shifted by 3 units), as a function of the number of bins of
a constant width that partition the whole range of the feature values. Analyt-
ical values of probabilities in each bin were used to simulate infinite amount of
data, renormalized to sum to 1. For small (4-16) number of bins errors as high
as 8% are observed in the accuracy of JBC Bayesian relevance index. Con-
vergence of this index is quite slow and oscillatory. Mutual information (Eq.
3.21) converges faster, and the information gain ratio (Eq. 3.32) shows similar
behavior as the Gini index (Eq. 3.39) and the symmetrical uncertainty coe�-
cient JSU (Eq. 3.35) that converge quickly, reaching correct values already for
8 bins (Fig. 3.2). Good convergence and low bias make this coe�cient a very
good candidate for the best relevance index.

3.8 Filters for feature selection

Relevance indices discussed in the previous sections treat each feature as in-
dependent (with the exception of Relief family of algorithms Sec. 3.3 and the
group correlation coe�cient Eq. 3.13), allowing for feature ranking. Those fea-
tures that have relevance index below some threshold are filtered out as not
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Fig. 3.2. Di↵erences between the Gini, JSU, MI, and JBC indices and their exact
value (vertical axis), as a function of the number of discretization bins (horizontal
axis).

useful. Some feature selection algorithms may try to include interdependence
between features. Given a subset of features X and a new candidate feature
X with relevance index J(X) an index J({X, X}) for the whole extended set
is needed. In theory a rigorous Bayesian approach may be used to evaluate
the gain in accuracy of the Bayesian classifier after adding a single feature.
For k features the rule is:

ABC(X) =
X

x1,x2,..xk

max
i
P(yi, x1, x2, . . . xk) (3.42)

where the sum is replaced by integral for continuous features.
This formula converges slowly even in one dimension (Fig. 3.2), so the main

problem is how to reliably estimate the joint probabilities P(yj , x1, x2 . . . xk).
The density of training data / P(x)k goes rapidly to zero with the growing
dimensionality k of the feature space. Already for 10 binary features and less
than 100 data samples less than 10% of 210 bins are non-empty. Although vari-
ous histogram smoothing algorithms may regularize probabilities, and hashing
techniques may help avoiding high computational costs (Duch et al., 2003), a
reliable estimation of ABC(X) is possible only if the underlying distributions
are fully known. This may be useful as a “golden standard” to calculate error
bounds, as it is done for one-dimensional distributions, but it is not a practical
method.
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Calculating relevance indices for subsets selected from a large number of
features it is not possible to include full interactions between all the features.
Note however that most wrappers may evaluate full feature interactions, de-
pending on the classification algorithm used. Approximations based on sum-
ming pair-wise interactions o↵er a computationally less expensive alternative.
The CFS algorithm described in Sec. 3.3 is based on Eq. 3.13, calculating
average correlation coe�cients between features and classes and between dif-
ferent features. Instead of a ratio for some relevance indices that may measure
correlation or dependency between features one may use a linear combination
of the two terms: J(Y,X;S) = J(Y,X) � �

P

s2S J(X, Xs), where the user-
defined constant � is introduced to balance the importance of the relevance
J(Y,X) and the redundancy estimated by the sum of feature-feature rele-
vancies. Such algorithm has been used with mutual information as relevance
measure by Battiti (1994). In this way redundancy of features is (at least par-
tially) taken into account and search for good subsets of features may proceed
at the filter level. A variant of this method may use a maximum of the pair
relevance J(X, Xs) instead of the sum over all features s 2 S; in this case �
is not needed and fewer features will be recognized as redundant.

The idea of inconsistency or conflict – a situation in which two or more
vectors with the same subset of feature values are associated with di↵erent
classes – leads to a search for subsets of features that are consistent (Dash and
Liu, 2003, Almuallim and Dietterich, 1991). This is very similar to the indis-
cernability relations and the search for reducts in rough set theory (Swiniarski
and Skowron, 2003). The inconsistency count is equal to the number of sam-
ples with identical features, minus the number of such samples from the class
to which the largest number of samples belong (thus if there is only one class
the index is zero). Summing over all inconsistency counts and dividing by the
number of samples m the inconsistency rate for a given subset is obtained.
This rate is an interesting measure of feature subset quality, for example it is
monotonic (in contrast to most other relevance indices), decreasing with the
increasing feature subsets. Features may be ranked according to their incon-
sistency rates, but the main application of this index is in feature selection.

3.9 Summary and comparison

There are various restrictions on applications of the relevance indices discussed
in the previous sections. For example, some correlation coe�cients (such as the
�2 or Pearson’s linear correlation) require numerical features and cannot be
applied to features with nominal values. Most indices require probabilities that
are not so easy to estimate for continuous features, especially when the number
of samples is small. This is usually achieved using discretization methods (Liu
et al., 2002). Relevance indices based on decision trees may automatically
provide such discretization, other methods have to rely on external algorithms.
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In Table 3.1, information about the most popular filters is collected, in-
cluding the formulas, the types of inputs X (binary, multivalued integer or
symbolic, or continuous values), and outputs Y (binary for 2-class, multival-
ued integer for multiclass problems and continuous for regression).

The first method, Bayesian accuracy ABC, is based on observed probabil-
ities P(yj , xi) and provides a “golden standard” for other methods. Relations
between the Bayesian accuracy and mutual information are known 3.31, and
such relations may be inferred for other information-based indices, but in
general theoretical results of this sort are di�cult to find and many indices
are simply based on heuristics. New methods are almost never tested against
Bayesian accuracy for simple binary features and binary classes. Di↵erences
in ranking of features between major relevance indices presented in Sec. 3.7
are probably amplified in more general situations, but this issue has not been
systematically investigated so far.

Other methods that belong to the first group of methods in Tab. 3.1 are
somehow special. They are based on evaluation of confusion matrix elements
and thus are only indirectly dependent on probabilities P(yj , xi). Confusion
matrix may be obtained by any classifier, but using Bayesian approach for clas-
sification balanced accuracy, area-under-curve (AUC), F-measure, Bi-normal
separation and odds ratio are still the best possible approaches, assuming
specific costs of di↵erent type of errors.

Many variants of a simple statistical index based on separation of the
class means exist. Although these indices are commonly applied to problems
with binary targets extension to multiple target values is straightforward. In
practice pair-wise evaluation (single target value against the rest) may work
better, finding features that are important for discrimination of small classes.
Feature values for statistical relevance indices must be numerical, but target
values may be symbolic. Pearson’s linear correlation coe�cient can be applied
only for numerical feature and target values, and its averaged (or maximum)
version is used for evaluation of correlations with a subset of features. Decision-
tree based indices are applicable also to symbolic values and may be computed
quite rapidly. Some trees may capture the importance of a feature for a local
subset of data handled by the tree nodes that lie several levels below the root.
The Relief family of methods are especially attractive because they may be
applied in all situations, have low bias, include interaction among features and
may capture local dependencies that other methods miss.

Continuous target values are especially di�cult to handle directly, but
distance-based measures of similarity between distributions may handle them
without problems. Kolmogorov distance and other relevance indices from this
group may be expressed either by a sum of discrete probabilities or an inte-
gral over probability density functions. Bayesian measure, identical with the
Gini index for discrete distributions, generalizes it to continuous features and
continuous targets. The only exception in this group is the Value Di↵erence
Metric that has been specifically designed for symbolic data.
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Indices based on information theory may also be used for continuous fea-
tures and targets if probability densities are defined. Information gain ratio
and symmetrical uncertainty coe�cient are especially worth recommending,
sharing low bias with the MDL approach (Sec. 3.5), and converging in a stable
and quick way to their correct values.

3.10 Discussion and conclusions

Filters provide the cheapest approach to the evaluation of feature relevance.
For a very large number of features they are indispensable, and only after fil-
tering out most of the features other, more expansive feature selection methods
become feasible.

Many approaches to filters discussed in the preceding sections show that
there is no simple answer to the question: which relevance index is the best
to construct a good filter? If there is su�cient data and joint probabilities
may be estimated in a reliable way there is no reason why Bayesian relevance
JBC should not be used. After all other relevance indices, and in particular
indices based on the theory of information, are only approximations to the
Bayesian relevance. Unfortunately this index seems to be the most di�cult to
estimate reliably (see Fig. 3.2), leaving room for other approaches. In some
applications including costs of di↵erent types of misclassifications (Sec. 3.2) is
a better choice of relevance index, leading to the balanced accuracy (Eq. 3.4),
F-measure or optimization of ROC curves. Evaluation of all such quantities
will su↵er from the same problem as evaluation of the Bayesian relevance
JBC, and therefore other, approximate but more reliable methods should be
studied.

Di↵erent approaches to relevance evaluation lead to a large number of
indices for ranking and selection. Certainly more papers with new versions
of relevance indices for information filters will be published, but would they
be more useful? As noted in the book on CART (Breiman et al., 1984) the
splitting criteria do not seem to have much influence on the quality of decision
trees, so in the CART tree an old index known as Bayesian measure JBM (Eq.
3.19) or Vajda Entropy (Eq. 3.23) has been employed, under the new name
“Gini”. Perhaps the actual choice of feature relevance indices also has little
influence on performance of filters. For many applications a simple approach,
for example using a correlation coe�cient, may be su�cient.

Not all options have been explored so far and many open questions re-
main. Similarities, and perhaps equivalence up to monotonic transformation
of relevance indices, should be established. The reliability of estimation of rel-
evance indices – with the exception of entropy estimations – is not known.
Biases towards multi-valued features of several indices have been identified
but their influence on ranking is not yet clear. Little e↵ort has been devoted
so far towards cost-sensitive feature selection. In this respect the accuracy of
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Bayesian classification rules and other performance metrics related to logical
rules are worth investigating.

Not much attention has been paid towards specific class-oriented and lo-
cal, context-dependent filters. Some problems (especially in bioinformatics)
require the simultaneous identification of several features that may individu-
ally have quite poor relevance. The paradigmatic benchmark problems of this
sort are the parity problems, starting from the XOR. Only context-dependent
local feature selection methods (like Relief, or filter methods applied to vectors
in a localized feature space region) seem to be able to deal with such cases. Al-
though our knowledge of filter-based feature selection has significantly grown
in recent years still much remains to be done in this field.
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4.1 Introduction

In order to make a search for good variable subsets, one has to know which
subsets are good and which are not. In other words, an evaluation mechanism
for an individual variable subset needs to be defined first.

The evaluation mechanism can be based on any of the more or less simple
filter-type criteria discussed in Chapter 3. However, if the evaluation scheme
utilizes the particular predictor architecture for which the variables are being
selected and that will ultimately be used, then we have a wrapper approach.
A common choice for performing the evaluation in a wrapper method is cross-
validation (Chapter 2). While the emphasis is on wrappers, the algorithms
presented in this chapter can be used also if the actual predictor is not involved
in the evaluation.

Once an evaluation method for the variable subsets has been defined, one
can start the search for the best subset. A search strategy defines the order in
which the variable subsets are evaluated. In this chapter, some of the strate-
gies that have been proposed are discussed. The intent is to describe a few
well-known algorithms at such a level that implementation should be rather
straightforward, and to mention just a few others to widen the scope a little
bit. In other words, the purpose is not to give a comprehensive list of all the
existing search strategies.

The chapter is organized as follows: The search strategies are covered in
Sects. 4.2 to 4.5. Then, Sect. 4.6 discusses the di↵erent levels of testing required
when using the strategies. Finally, Sect. 4.7 concludes the chapter by tackling
the obvious question: which strategy is the best?

4.2 Optimal Results

Traditionally, researchers have been worried about being unable to find an
optimal subset, one for which the error estimation procedure, using the data
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available, yields a value no larger than for any other subset. In the following,
a strategy that is able to find such a subset is called an optimal strategy.

4.2.1 Exhaustive Search

A simple way to find the best subset is to evaluate every possible subset.
This approach is called exhaustive search: with n candidate variables, there
are 2n � 1 subsets to go through. Unfortunately, even a moderate number of
variables easily makes it impossible to evaluate all the subsets in a practical
amount of time.

If it is known beforehand that exactly d variables out of n should be chosen,
then one only needs to go through the subsets of size d. This results in

�n
d

�

subsets, which is still too much for most values of d.

4.2.2 Branch and Bound

As an exhaustive search is normally not possible, it would be nice to search
only a part of the subset space and still find the best subset. Unfortunately,
this cannot be guaranteed in general (Cover and van Campenhout, 1977).
However, if a certain subset size d is desired and the evaluation function is
known to be monotonic,1 then an optimal strategy potentially running a lot
faster than exhaustive search does exist. The algorithm is called branch and
bound, and it was proposed for variable selection by Narendra and Fukunaga
(1977).

The strategy is based on the fact that once a subset S consisting of more
than d variables has been evaluated, we know, thanks to the monotonicity
property, that no subset of it can be better. Thus, unless S excels the currently
best known subset S0 of target size d, the subsets of S need not be evaluated
at all, because there is no way the evaluation result for any of them could
exceed the score of S0.

The algorithm still has an exponential worst case complexity, which may
render the approach infeasible when a large number of candidate variables
is available. A remedy compromising the optimality guaranty was suggested
already by Narendra and Fukunaga. However, the number of subsets to eval-
uate can be decreased also without such a compromise (Yu and Yuan, 1993,
Somol et al., 2004).

Branch and bound is not very useful in the wrapper model, because
the evaluation function is typically not monotonic. While methods like the
RBABM (Kudo and Sklansky, 2000) are able to relax the requirement slightly,
the problem is that typical predictor architectures evaluated for example using
cross-validation provide no guaranties at all regarding the monotonicity.

1The evaluation function is monotonic if the addition of a variable never makes
a subset worse.
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4.3 Sequential Selection

Because of the di�culties with optimal strategies, researchers have already for
a long time tried to come up with search strategies that find reasonably good
variable subsets without going through all of them. During the last years, the
strategies have become increasingly complex. This and the next two sections
describe some of these “suboptimal” approaches.

4.3.1 Sequential Pruning

Sequential pruning of variables, introduced by Marill and Green (1963), seems
to have been the first search method suggested for variable subset selection.
Here, the method will be referred to as sequential backward selection (SBS).
SBS starts with the variable set that consists of all the candidate variables.
During one step of the algorithm, each variable still left in the set is considered
to be pruned. The results of the exclusion of each variable are compared to
each other using the evaluation function J(·). The step is finished by actually
pruning the variable whose removal yields the best results. Steps are taken
and variables are pruned until a prespecified number of variables is left, or
until the results get too poor.

SBS is summarized in Fig. 4.1. In the notation used, S and S0 are arrays
of Boolean values representing variable subsets. The binary value Sj indicates
whether the jth variable is selected in S. For the sake of clarity, it is assumed
here that the evaluation function J(·) carries the dataset and any evaluator
parameters with it. The interpretation for the return values of J(·) is such
that the smaller the value, the better the subset.

The algorithm shown in Fig. 4.1 goes on until there are no variables left in
S. To stop the search earlier, the while statement with the guarding expres-
sion k > 1 could be modified. However, just breaking the execution at any
point of time is the same thing and hence the algorithms and especially the
control flow expressions will not be further complicated by additional param-
eters. This applies to most of the algorithms presented in this chapter.

4.3.2 Sequential Growing

Sequential growing of the variable set is similar to SBS but starts with an
empty set and proceeds by adding variables (Whitney, 1971). In what follows,
the method will be called sequential forward selection (SFS). During one step,
each candidate variable that is not yet part of the current set is included into
the current set, and the resulting set is evaluated. At the end of the step,
the variable whose inclusion resulted in the best evaluation is inserted in the
current set. The algorithm proceeds until a prespecified number of variables
is selected, or until no improvement of the results is observed anymore. SFS
is summarized in Fig. 4.2.
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function SBS(n, J) Returns a set of variable subsets of di↵erent sizes (B)

begin J(·) is the function used to evaluate di↵erent subsets
S := (

n

1, . . . , 1); Start with the full set of all n variables

k := n;

B := ;; Initialize the set of best variable sets found

while k > 1 Repeat for as long as there are branches to compare

R := ;; Initialize the set of evaluations of di↵erent branches

for each j | S
j

= 1 Repeat for each possible branch

S0 := S; Copy the variable set

S0
j

:= 0; Prune the jth variable

R(j) := J(S0); Evaluate the branch

end;

k := k � 1;

j := argmin R(·); Find the best branch

S
j

:= 0; Take the best branch

B(k) := S; Store the newly found subset

end;

return B;

end;

Fig. 4.1. Sequential backward selection algorithm

With typical evaluator functions, SFS executes faster than SBS. This is
due to the fact that in the beginning of the search, when both algorithms have
lots of possible branches to evaluate at each step (up to n), SFS evaluates very
small variable sets, which is often faster than evaluating the almost full sets
which SBS has to do. It is true that in the end of the search SFS has to
evaluate almost full sets while SBS deals with small subsets, but in the end of
the search there are so few options left to be considered that the subset sizes
in the beginning of the search simply count more.

On the other hand, SFS evaluates the variables in the context of only those
variables that are already included in the set. Thus, it may not be able to
detect a variable that is beneficial not by itself but only with the information
carried by some other variables. While examples of such data can easily be
constructed (Guyon and Elissee↵, 2003), empirical evidence does not clearly
suggest the superiority of one or the other (Aha and Bankert, 1996, Jain and
Zongker, 1997, Kudo and Sklansky, 2000).
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function SFS(n, J) Returns a set of variable subsets of di↵erent sizes (B)

begin
S := (

n

0, . . . , 0); Start with an empty set

k := 0;

B := ;; Initialize the set of best variable sets found

while k < n� 1 Repeat for as long as there are branches to compare

R := ;; Initialize the set of evaluations of di↵erent branches

for each j | S
j

= 0 Repeat for each possible branch

S0 := S; Copy the variable set

S0
j

:= 1; Add the jth variable

R(j) := J(S0); Evaluate the branch

end;

k := k + 1;

j := argmin R(·); Find the best branch

S
j

:= 1; Take the best branch

B(k) := S; Store the newly found subset

end;

return B;

end;

Fig. 4.2. Sequential forward selection algorithm

4.4 Extensions to Sequential Selection

Over the years, researchers have proposed a plethora of modifications to the
basic sequential search strategies. In this section, a few examples of them are
discussed.

4.4.1 Generalized Sequential Selection

Simple SFS and SBS can be easily generalized (Kittler, 1978). In GSFS(g)
(GSBS(g)), the inclusion (exclusion) of a set of g variables at a time is evalu-
ated. When there are n�k candidate variables left to be included (excluded),
this results into

�n�k
g

�

evaluations in one step of the algorithm. This is typi-
cally much more than the plain n� k evaluations in SFS, even if g is only 2.
On the other hand, the algorithms do not take as many steps as SFS and SBS,
because they select more variables at a time, thus getting to a prespecified
number of variables using a smaller number of steps. However, the combina-
torial explosion in the complexity of one step outweighs the reduction in the
number of steps.
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The increased computational cost of GSFS(g) may in some applications
be justified by the fact that it is able to perform well in situations where
there are up to g variables of which none is any good by itself, but all of
them together provide enough information for good predictions. It is easy to
give pathological examples where this is the case and the simple algorithms
selecting one variable at a time fail (Jain and Zongker, 1997, Guyon and
Elissee↵, 2003). However, this does not mean that real-world datasets would
often exhibit such phenomena.

4.4.2 Backtracking During Search

The search methods described so far start with the initial variable set and then
progress straightforwardly towards the final set. In particular, if a variable is
added in SFS or GSFS (or removed in SBS or GSBS), it will never be removed
(added) later. This results in what has often been called the nesting e↵ect in
variable selection literature: bad decisions made in the beginning of the search
cannot be corrected later, as the successive variable sets are always nested so
that one set is a proper subset of the other.

The nesting e↵ect has been fought by allowing backtracking during the
search. In “plus `-take away r” selection (Stearns, 1976), referred here to as
PTA(`, r), each step of the algorithm is divided into two substeps. In the first
substep, SFS is run to include ` new variables. The second substep consists of
running SBS to exclude r variables from those that have already been selected.
If ` > r, the PTA(`, r) algorithm starts with an empty variable set and the
first substep. For ` < r, the initial variable set should include all the candidate
variables, and the algorithm is supposed to be started from the second substep.
A forward version of PTA(`, r) is given in Fig. 4.3. It is assumed that when
a subset is currently stored in the set of the best subsets B, its evaluation
score is readily available and needs not be recalculated. Further, it needs to
be defined that if B(k) is undefined, then R(j) < J(B(k)) evaluates to true.

A straightforward generalization of the PTA(`, r) algorithm just described
would be to run GSFS(`) and GSBS(r) instead of SFS and SBS, and this is
how Kudo and Sklansky (2000) describe the GPTA(`, r) algorithm. However,
Kittler (1978) actually took the generalization a little bit further by running
GSFS(`i) for several integer values of `i between 0 and `, as well as GSBS(ri)
for several integers ri between 0 and r. Thus, the steps are split into smaller
steps, which reduces computational complexity. If all `i and ri are equal to
one, then the algorithm is reduced to the nongeneralized PTA(`, r) algorithm.

4.4.3 Beam Search

The strategies discussed so far are greedy in the sense that they are only
interested in the best subset that can be found amongst the candidates cur-
rently being evaluated. However, sometimes there might be several promising
branches, and it may feel like a bad idea to restrict oneself to choosing only
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one of them. It could be desirable to be able to later return to branches other
than the one that happens to be chosen first.

In beam search (Siedlecki and Sklansky, 1988, Aha and Bankert, 1996),
a list of the most interesting branches (i.e., subsets) that have not yet been
explored is maintained. If the length of the list is restricted to one, then the
algorithm is reduced to basic sequential selection. If, however, more subsets
can be maintained on the list, then the algorithm can, after finishing the search
in one branch, jump back and examine the other branches too.

A forward version of the beam search algorithm is illustrated in Fig. 4.4.
Here, the queue function insert is supposed to maintain the order of the
queue: the best subset stored is always the first one on the list. It is also
assumed that the evaluation scores for the subsets stored in the queue, in
addition to those found in the current set of best subsets, are readily available
and thus require no recomputation.

4.4.4 Floating Search

The concept of floating search methods was introduced by Pudil et al. (1994).
In sequential forward floating selection (SFFS) and sequential backward float-
ing selection (SBFS), the backtracking like that in PTA(`, r) is not limited to
` or r variables, but can go on for as long as better results than those found
previously can be obtained.

SFFS (SBFS) consists of two di↵erent and alternating phases. The first
phase is just one step of SFS (SBS). The second phase consists of performing
SBS (SFS), whose steps are taken for as long as the obtained variable set is
the best one of its size found so far. When this is no longer the case, the first
phase takes place again.

In the original version of the algorithm, there was a minor bug, which was
pointed out and corrected by Somol et al. (1999). After backtracking for a
while, the algorithm goes to the first phase. Now it might be that performing
the first phase gives a subset that is worse than a previously found subset
of the same size. The flaw here is that the original algorithm follows this
less promising search branch, although a better one has already been found.
This can be remedied by abruptly changing the current variable set to be the
best one of the same size that has been found so far. The corrected SFFS
algorithm is given in Fig. 4.5 — however, the original version can be obtained
by removing the underlined parts.

Somol et al. also present more sophisticated versions of SFFS and SBFS.
They call the approach adaptive floating search (AFS), where the algorithm is
allowed to switch to the generalized versions GSFS(g) and GSBS(g) when it
is close to the desired number of selected variables. According to their results,
the sets selected are moderately better when compared to those chosen by
the non-adaptive floating search methods, at the expense of a rather heavily
increased computational load.
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While the floating search has been found to give results superior to the non-
backtracking algorithms (Pudil et al., 1994, Jain and Zongker, 1997, Kudo and
Sklansky, 2000 — however, see also Reunanen, 2003), one potential problem
in the use of even the non-adaptive version is that there is no way to know in
advance for how long the algorithm is going to run. If the dataset is such that
no backtracking is done, then the time complexity is comparable to those of
SFS and SBS, but the result is no better. If there is lots of backtracking, then
more time is taken, but there is a good chance that the result will be better as
well. On the other hand, the algorithm can be stopped at any time: because it
maintains the set of best variable sets, good results are usually obtained even
if the algorithm has not finished yet.

4.4.5 Oscillating Search

Another recent method by Somol and Pudil (2000) is that of oscillating search
(OS). An oscillating search is initialized by running for example SFS or SFFS
to yield a good guess for the best variable subset of the desired size d. The
actual OS steps consist of what Somol and Pudil call “down-swings” and “up-
swings”. During a down-swing, the algorithm searches for subsets that are
smaller than d. Likewise, an up-swing step searches for bigger subsets. Thus,
the sizes of the sets that are evaluated oscillate around the desired size d. The
amplitude of the oscillation is reset to one if an improvement in the results
is seen during the swings, and increased otherwise. The motivation behind
the oscillation is that previous sequential algorithms spend lots of computing
power evaluating sets whose sizes may be far from what is desired. In OS,
more time is spent in those parts of the search space where the user really
wants to pick the result from.

4.4.6 Compound Operators

With sequential pruning and many irrelevant variables, the search will spend
a lot of time discovering the irrelevance of these variables over and over again.
Because only one of them can be discarded at a time, and at the next step
the exclusion of each variable needs to be considered again, there will be lots
of processing. If it were possible to utilize the information that the variables
seem to be irrelevant, then one would be able to immediately drop most of
such variables.

In the context of backward selection, the compound operator approach
(Kohavi and Sommerfield, 1995, Kohavi and John, 1997) works as follows:
At a given step, each variable in the current subset is considered for pruning.
Without the compound operators, the candidate whose removal gives the best
results is excluded, and a new step can be started. In the compound operator
method, the removal of that best candidate is combined to the removal of
the second best candidate, which yields the first compound operator. More of
them can be generated by adding the removal of the next best candidates as
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well. This can continue as long as the application of these operators does not
degrade the results. In Fig. 4.6, the use of compound operators is described
in an algorithmic form.

4.5 Stochastic Search

The search algorithms described so far contain no random component in ad-
dition to that potentially incurred by the evaluation of a variable set. Given
a particular initialization, they should always return the same subsets, pro-
vided that the evaluation function evaluates the same variable set repeatedly
in the same way. This sounds like a nice property for a search algorithm, but
unfortunately the variable set that is returned can be very sensitive to the
particular dataset, and it can substantially change even if only one sample
is excluded. Hence, the determinism of these algorithms may not be such an
important property in many applications.

Several researchers have used stochastic optimization algorithms for vari-
able selection. This section starts by describing two important approaches that
are to some extent similar, yet fundamentally di↵erent: simulated annealing,
and genetic algorithms. They were first suggested for variable selection by
Siedlecki and Sklansky (1988). Finally, the section is concluded by Sect. 4.5.3,
which shortly describes a recent randomized method more tailor-made for
variable selection.

4.5.1 Simulated Annealing

Simulated annealing (SA) is a search method that is based on how physical
matter cools down and freezes, ending up in a crystal structure that minimizes
the energy of the body. Kirkpatrick et al. (1983) pointed out the analogy
between this minimization process of the nature and the general search for
the minimum of an abstract system, such as a function.

In SA, the search starts with an initial, potentially random, variable subset
in a high “temperature”. At each step, a small random change is introduced
to the subset. If the change results in a better subset, it is accepted. If the
result is worse than the previous solution, the change is accepted with a prob-
ability that depends on the temperature: in a high temperature, an adverse
change is more likely to be accepted than in a low temperature. As steps are
completed, the temperature is declined every now and then — more often
when no improvements can be found. Thus, the search will not get stuck in a
local optimum in the beginning of the search process when the temperature is
high. Still, it is able to find the exact local optimum in the end of the search,
because of the low temperature that does not allow deteriorating changes to
be made anymore.

A simple example of simulated annealing is given in Fig. 4.7. It could
be extended by allowing larger than one-bit changes, by changing how the
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temperature decreases, by changing how the temperature and a change in the
cost function a↵ect the acceptance probability, or by having bookkeeping for
the best subset of each size that is found, instead of just the current set S.

4.5.2 Genetic Algorithms

Genetic algorithms (GAs) constitute another family of stochastic optimization
algorithms (for a comprehensive introduction, see, e.g., Michalewicz, 1992).
While SA is inspired by physics, the motivation for GAs comes from biologi-
cal evolution, where the best individuals have a higher probability of survival.
An algorithmic di↵erence between SA and GAs is that while SA only keeps
one variable subset in memory, GAs maintain a set of them. In the GA ter-
minology, the solution vectors are usually called chromosomes and a set of
chromosomes is called a population. The biological vocabulary is further ex-
ploited by defining genetic operations like mutation or crossover. In mutation,
a random bit or several bits of the chromosome are flipped to yield a new chro-
mosome. In crossover, an o↵spring of two chromosomes is obtained by cutting
both at some random position and swapping the tails. A new population is
typically formed by retaining some of the chromosomes in the old population
and composing new chromosomes by applying genetic operations on the old
chromosomes. The better a chromosome is, the higher is its probability of
being selected to the new population, or as a parent in a genetic operation.

Siedlecki and Sklansky (1989) reported the first results when compared
to “classical” methods like many of those reviewed in Sects. 4.3 and 4.4. In
their comparison article, Kudo and Sklansky (2000) explicitly recommend that
GAs should be used for large-scale problems with more than fifty candidate
variables. They also describe a practical implementation of GAs for variable
selection.

4.5.3 Rapid Randomized Pruning

While SA and GAs are known as general-purpose strategies for hard optimiza-
tion problems, randomized methods tailored more specifically for variable se-
lection have also been suggested. The idea of rapidly removing variables that
seem to be irrelevant was discussed in the context of compound operators
in Sect. 4.4.6. A recent approach by Stracuzzi and Utgo↵ (2004) is based on
a similar idea, but seeks further performance benefits by adding a random
component into the process.

Concentrating on problems where the proportion of relevant variables is
small, Stracuzzi and Utgo↵ compute the probability that an important vari-
able is included in a randomly selected subset of size k that is considered for
immediate pruning. The value of k is chosen to enable at once the removal
of several variables that all still have a high probability of being irrelevant. If
the error estimate goes up as a consequence of this exclusion, then we suppose
that one or more of the pruned variables was indeed relevant. Thus, we cancel
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the removal, and pick a new random subset. This can go on until too many
consecutive trials fail, which we take as a sign of all the remaining candidates
being actually relevant with respect to the prediction task.

4.6 On the Di↵erent Levels of Testing

In a variable selection process, essentially two major types of accuracy testing
are involved: the tests performed to guide the search, and those carried out
to obtain estimates for the final performance of the selected subsets. Tests of
the former kind will be called validation in what follows, whereas the latter
case shall be called just testing. The failure to make the distinction between
these two may lead to making invalid conclusions based on the results of the
tests.

4.6.1 Do Not Use the Guiding Validation Results After the Search

The direction of the search is in all the discussed algorithms determined by
the scores output by the evaluation function J(·). The assumption underlying
the whole construction is that these scores are correlated with the ultimate ac-
curacy that the final predictor will be able to attain, using the corresponding
subsets. With filter-type criteria, this correlation may sometimes be question-
able, as the specific predictor architecture is not at all used for the evaluation.

On the other hand, even the accuracy on a separate data set as in cross-
validation has a non-zero variance. When a myriad of such validation results
are compared to each other, the best score is no longer a useful estimate for
the accuracy of the winner model. Jensen and Cohen (2000) have given a
highly illustrative example of this perhaps counter-intuitive fact. In variable
selection, using the best validation score as an estimate for the true expected
accuracy is bound to give results that are often just wrong (Reunanen, 2004).
Overfitting was discussed in Chap. 2 — this is the same, but on a higher level:
even the validation scores overfit, when validation is done extensively enough.

To obtain useful estimates of the expected final performance, one therefore
needs to have, in addition to the validation done during the search, also some
testing afterwards. This will lead to holding some of the data completely out
during the search and using it to test the subset(s) selected when the search
has completed, or even to an outer loop of cross-validation if execution time
is of no essence.

4.6.2 Guidance for the Search Without Validation

On the other hand, it is also possible to omit the validation completely dur-
ing the selection process, and to use some more straightforward and quicker-
to-compute estimate for guiding the search. Rapid guidance is enabled, for
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instance, by the filter-type criteria such as those discussed in Chapter 3. How-
ever, it is also possible to take the ultimate predictor architecture into account:
for instance, Ng (1998) has proposed using the training error of the predictor
as the guide for the search.

Once several subsets — typically of di↵erent sizes — are thus selected,
they can all be tested utilizing the held-out test data, allowing one to choose
the best-performing subset. Of course, then the test score of the winner should
not be used as an unbiased estimate of its accuracy anymore, because that
very score was used to select the subset in the first place.

4.7 The Best Strategy?

A practitioner does not necessarily have to know all the algorithms reviewed
in this chapter. Rather, he or she would just like to know which algorithm
is the best, and to use that method only. To serve this purpose, empirical
comparisons between the di↵erent algorithms have been published (Jain and
Zongker, 1997, Kudo and Sklansky, 2000). They show clear results that the
floating search methods (SFFS and SBFS, Sect. 4.4.4) are able to outperform
the straightforward sequential methods (SFS and SBS, Sect. 4.3) in almost
any problem. Moreover, Kudo and Sklansky recommend the use of genetic
algorithms (Sect. 4.5.2) for any large-scale selection problem with more than
50 variables.

However, it seems that some of such comparisons, for instance the one by
Kudo and Sklansky (2000), have used as the final scores to be compared the
same estimates (for example due to cross-validation) that were used to guide
the search. Unfortunately, such scores should not be used to assess the final
performance, as was pointed out in Sect. 4.6. A search algorithm evaluating
a large number of subsets will usually find sets that seem to be better than
those found by a method that terminates quickly. Alas, it may turn out that
these seemingly better subsets are not at all better when making predictions
for new, previously unseen samples (Reunanen, 2003).

The discrepancy between the evaluation score and the ultimate perfor-
mance makes a desperate search for the “optimal” subset (Sect. 4.2) some-
what questionable (Reunanen, 2004), if not even a little old-fashioned. In the
future, approaches like those described in Sects. 4.4.6 and 4.5.3 that seek to
evaluate a minimal number of subsets may be the ones to look for, especially
when the number of candidate variables to try is very high.

Unfortunately, not many recommendations with a valid experimental foun-
dation for the selection of the subset search algorithm seem to exist currently.
The practitioner is urged to try a couple of strategies with di↵erent complex-
ities; the selection of the methods to try can be based on the size and nature
of the datasets at hand. The important thing is that the algorithms are com-
pared properly, which includes testing with data that is not used during the
search process.
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P. Pudil, J. Novovičová, and J. Kittler. Floating search methods in feature selection.
Pattern Recognition Letters, 15(11):1119–1125, 1994.

J. Reunanen. Overfitting in making comparisons between variable selection methods.
Journal of Machine Learning Research, 3:1371–1382, 2003.

J. Reunanen. A pitfall in determining the optimal feature subset size. In Proc. of
the 4th Int. Workshop on Pattern Recognition in Information Systems (PRIS
2004), pages 176–185, Porto, Portugal, 2004.

W. Siedlecki and J. Sklansky. On automatic feature selection. International Journal
of Pattern Recognition and Artificial Intelligence, 2(2):197–220, 1988.

W. Siedlecki and J. Sklansky. A note on genetic algorithms for large-scale feature
selection. Pattern Recognition Letters, 10(5):335–347, 1989.



132 Juha Reunanen

P. Somol and P. Pudil. Oscillating search algorithms for feature selection. In
Proc. of the 15th Int. Conf. on Pattern Recognition (ICPR’2000), pages 406–
409, Barcelona, Spain, 2000.

P. Somol, P. Pudil, and J. Kittler. Fast branch & bound algorithms for optimal fea-
ture selection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(7):900–921, 2004.
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function PTA(n, J, `, r) Returns a set of variable subsets of di↵erent sizes (B)

begin
S := (

n

0, . . . , 0); Start with an empty set

k := 0;

B := ;; Initialize the set of best variable sets found

while k < n� ` Repeat for as long as there are branches to compare

t := k + `; Add ` variables

while k < t

R := ;; Initialize the set of evaluations of di↵erent branches

for each j | S
j

= 0 Repeat for each possible branch

S0 := S;

S0
j

:= 1; Add the jth variable

R(j) := J(S0); Evaluate the branch

end;

k := k + 1;

j := argmin R(·); Find the best branch

S
j

:= 1; Take the best branch

if R(j) < J(B(k)) Is the new subset the best one of its size so far?

B(k) := S; If so, store it

end;

end;

t := k � r; Remove r variables

while k > t

R := ;; Initialize the set of evaluations of di↵erent branches

for each j | S
j

= 1 Repeat for each possible branch

S0 := S;

S0
j

:= 0; Prune the jth variable

R(j) := J(S0); Evaluate the branch

end;

k := k � 1;

j := argmin R(·); Find the best branch

S
j

:= 0; Take the best branch

if R(j) < J(B(k)) Is the new subset the best one of its size so far?

B(k) := S; If so, store it

end;

end;

end;

return B;

end;

Fig. 4.3. A forward plus `–take away r search algorithm (` > r)
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function FBS(n, J, q) Returns a set of variable subsets of di↵erent sizes (B)

begin
Q(1) := (

n

0, . . . , 0); Start with just the empty set in the queue

B := ;; Initialize the set of best variable sets found

while Q 6= ; Repeat until the queue is empty

S := Q(1); Pick the best set in the queue

remove(Q, 1); Remove the set from the queue

for each j | S
j

= 0 Repeat for each possible branch

S0 := S;

S0
j

:= 1; Add the jth variable

R := J(S0); Evaluate the new subset

k :=
j

S0
j

; Get the number of variables selected

if R < J(B(k)) Is the new subset the best one of its size so far?

B(k) := S0; If so, store it

end;

# := length(Q); Get the number of subsets in the queue

if # < q Is the queue full?

insert(Q, S0, R); No: add the new subset to the queue

elseif R < J(Q(#)) Is S0 better than the worst subset in the queue?

remove(Q, #); Yes: Remove the worst subset (the last item),

insert(Q, S0, R); and add the new subset

end;

end;

end;

return B;

end;

Fig. 4.4. Forward beam search
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function SFFS(n, J) Returns a set of variable subsets of di↵erent sizes (B)

begin
S := (

n

0, . . . , 0); Start with an empty set

k := 0;

B := ;; Initialize the set of best variable sets found

while k < n Repeat until the set of all variables is reached

R := ;; Initialize the set of evaluations of di↵erent branches

for each j | S
j

= 0 Repeat for each possible branch

S0 := S;

S0
j

:= 1; Add the jth variable

R(j) := J(S0); Evaluate the branch

end;

k := k + 1;

j := argmin R(·); Find the best branch

if R(j) � J(B(k)) Was this branch the best of its size found so far?

S := B(k); If no, abruptly switch to the best one

else

S
j

:= 1; If yes, take the branch

B(k) := S; Store the newly found subset

t := 1; This is reset when backtracking is to be stopped

while k > 2 ^ t = 1 Backtrack until no better subsets are found

R := ;; Initialize the set of evaluations of di↵erent branches

for each j | S
j

= 1 Repeat for each possible branch

S0 := S;

S0
j

:= 0; Prune the jth variable

R(j) := J(S0); Evaluate the branch

end;

j := argmin R(·); Find the best branch

if R(j) < J(B(k � 1)) Was a better subset of size k � 1 found?

k := k � 1; If yes, backtrack

S
j

:= 0;

B(k) := S; Store the newly found subset

else

t := 0; If no, stop backtracking

end;

end;

end;

end;

return B;

end;

Fig. 4.5. Sequential forward floating selection algorithm; the fix by Somol et al.
(1999) is pointed out by underlining the lines to be added
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function SBS-C(n, J) Returns a set of variable subsets of di↵erent sizes (B)

begin
S := (

n

1, . . . , 1); Start with the full set of all n variables

k := n;

B := ;; Initialize the set of best variable sets found

while k > 1 Repeat for as long as there are branches to compare

R := ;; Initialize the set of evaluations of di↵erent branches

for each j | S
j

= 1 Repeat for each possible branch

S0 := S; Copy the variable set

S0
j

:= 0; Prune the jth variable

R(j) := J(S0); Evaluate the branch

end;

c := 0; Initialize the compound operator index

while c <1 Continue until no improvement, or no variables left

j := argmin R(·); Find the best remaining operator

R(j) :=1; Make the operator unavailable for further use

S0 := S;

S0
j

:= 0; Apply the operator

if c > 0 Was this the basic, non-compound operation?

if J(S0) > J(S) If not, then check the benefits

c :=1; If the results degraded, then stop

end;

end;

if c <1 Should the operator be applied?

k := k � 1; If yes, then apply

S := S0;

B(k) := S; Store the new subset

c := c + 1; Update the compound operator index

if k < 2 Check that there are still variables left

c :=1; If not, then stop

end;

end;

end;

end;

return B;

end;

Fig. 4.6. Sequential backward selection using compound operators
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function SA(n, J, T0, T1, m, v) Returns the best variable subset found (S)

begin

k := rand-int(1, n); Get a random subset size k 2 [1, n] to start with

S := rand-subset(k); Generate a random variable subset of size k

T := T0; Initialize the temperature

while T � T1 Repeat until cold enough

i := 0; Initialize the counter for non-beneficial evaluations

while i < m Stay in the current temperature for a while

S0 := S; Make a copy of the current subset

j := rand-int(1, n); Get a random variable index j 2 [1, n]

S0
j

:= 1� S0
j

; Flip the jth bit

�J := J(S0)� J(S); Compute the change in cost function

if �J < 0 Was the change beneficial?

S := S0; If yes, move there

else If not, . . .

r := rand-real(0, 1); Get a random real value r 2 [0, 1]

if r < exp(��J/T ) Depending on the temperature and the randomness,

S := S0; consider changing to the new set anyway

end;

i := i + 1; No improvement: increase the counter

end;

end;

T := T ⇥ v; Decrease the temperature: v 2]0, 1[

end;

return S;

end;

Fig. 4.7. An example of variable selection based on simulated annealing
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3 IBM Research, Zürich, Switzerland ael@zurich.ibm.com

5.1 Introduction

Although many embedded feature selection methods have been introduced
during the last few years, a unifying theoretical framework has not been de-
veloped to date. We start this chapter by defining such a framework which
we think is general enough to cover many embedded methods. We will then
discuss embedded methods based on how they solve the feature selection prob-
lem.
Embedded methods di↵er from other feature selection methods in the way
feature selection and learning interact. Filter methods do not incorporate
learning. Wrapper methods use a learning machine to measure the quality of
subsets of features without incorporating knowledge about the specific struc-
ture of the classification or regression function, and can therefore be combined
with any learning machine. In contrast to filter and wrapper approaches em-
bedded methods do not separate the learning from the feature selection part
— the structure of the class of functions under consideration plays a crucial
role. For example, Weston et al. (2000) measure the importance of a feature
using a bound that is valid for Support Vector Machines only (Section 5.3.1)
- thus it is not possible to use this method with, for example, decision trees.

Feature selection can be understood as finding the feature subset of a
certain size that leads to the largest possible generalization or equivalently
to minimal risk. Every subset of features is modeled by a vector � 2 {0, 1}n

of indicator variables, �i := 1 indicating that a feature is present in a subset
and �i := 0 indicating that that feature is absent (i = 1, · · · , n). Given a
parameterized family of classification or regression functions4 f : ⇤ ⇥ Rn !
R, (↵,x) 7! f(↵,x) we try to find a vector of indicator variables �⇤ 2 {0, 1}n

and an ↵⇤ 2 ⇤ that minimize the expected risk

4For example, in the case of a linear Support Vector Machine, the vector ↵ codes
the weight vector w 2 Rn and the o↵set b 2 R of the hyperplane.
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R(↵,�) =
Z

L[f(↵,� � x), y] dP (x, y), (5.1)

where � denotes the entrywise product (Hadamard product), L is a loss
function and P is a measure on the domain of the training data (X, Y ).
In some cases we will also have the additional constraint s(�)  �0, where
s : [0, 1]n ! R+ measures the sparsity of a given indicator variable �. For
example, s could be defined to be s(�) := l0(�)  �0, that is to bound the
zero “norm” l0(�) - which counts the number of nonzero entries in � - from
above by some number �0.5

The wrapper approach to approximate minimizers of (5.1) can be formulated
in the following way

min
�2{0,1}n

G(f⇤,�, X, Y ) s.t.

(

s(�)  �0

f⇤ = eT (F ,�, X, Y ),
(5.2)

where F ⇢ RRn

denotes the family of classification or regression functions.
Given such a family F , a fixed indicator vector � and the training data (X, Y )
the output of the function eT is a classifying or regression function f⇤ trained
on the data X using the feature subset defined by �. The function G measures
the performance of a trained classifier f⇤(�) on the training data for a given
�. It is very important to understand that — although we write G(f⇤, ·, ·, ·)
to denote that G depends on the classifying or regression function f⇤ — the
function G does not depend on the structure of f⇤; G can only access f⇤ as
a black box, for example in a cross-validation scheme. Moreover, G does not
depend on the specific learner eT . In other words eT could be any o↵-the-shelf
classification algorithm and G guides the search through the space of feature
subsets.6

If we allow G to depend on the learner eT and on parameters of f⇤ we get
the following formulation:

min
�2{0,1}n

G(↵⇤, eT , �, X, Y ) s.t.

(

s(�)  �0

↵⇤ = eT (�, X, Y ).
(5.3)

To emphasize that G can access the structure of the classifying or regression
function we use the notation f(↵⇤, ·) instead of f⇤. In this formulation the
function G can use information about the learner and the class of functions
on which it operates. Thus, G could evaluate, e.g., a bound on the expected

5Please note that l0(·) is not a norm, since l0(c�) 6= |c| l0(�) for � 6= 0, |c| /2
{0, 1}.

6A function is no more than a complete collection of all input-output pairs.
Thus one could argue that having f⇤ as a black box is equivalent to having f⇤ as a
analytical expression. That is true in theory, but for many applications it does not
hold true, for example for reasons of feasibility.
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risk valid for the specific choice of eT and the classifying function f(↵⇤, ·)
(see Section 5.3.1). To simplify the notation we will also write G(↵⇤,�, X, Y )
whenever eT and F(⇤) are defined in the context. We define methods of type
(5.3) as embedded methods.
Some embedded methods do not make use of a model selection criterion to
evaluate a specific subset of features. Instead, they directly use the learner eT .
Assuming that many learning methods eT can be formulated as an optimization
problem7:

↵⇤ = argmin
↵2⇤

T (↵,�, X, Y ) = eT (�, X, Y )

we can rewrite the minimization problem (5.3) for the special case of G = T
as

min
↵2⇤,�2{0,1}n

T (↵,�, X, Y ) s.t. s(�)  �0. (5.4)

Unfortunately, both minimization problems (5.3) and (5.4) are hard to
solve. Existing embedded methods approximate solutions of the minimization
problem. In this chapter we discuss embedded methods according to how they
solve problem (5.3) or (5.4):

1. Methods that iteratively add or remove features from the data to greedily
approximate a solution of minimization problem (5.3) or (5.4) are discussed
in Section 5.2.

2. Methods of the second type relax the integrality restriction of � 2 {0, 1}n

and minimize G over the compact set [0, 1]n. In this case we refer to � 2
[0, 1]n as scaling factors instead of indicator variables (Chapelle, 2002).
Section 5.3 is devoted to these methods.

3. If T and s are convex functions and if we assume � 2 [0, 1]n, problem (5.4)
can be converted into a problem of the form

min
↵2⇤,�2[0,1]n

T (↵,�, X, Y ) + �s(�). (5.5)

More specifically, let T and s be strictly convex functions and let (↵⇤,�⇤)
be a solution of problem (5.4) for a given �0 > 0. Then there exists a unique
� > 0 such that (↵⇤,�⇤) solves (5.5). Furthermore if (↵⇤,�⇤) solves (5.5)
for a given � > 0 then there exists one and only one �0 such that (↵⇤,�⇤)
solves (5.4). The focus of Section 5.4 is on methods that can be formulated
as a minimization problem of type (5.5).

5.2 Forward-Backward Methods

In this section we discuss methods that iteratively add or remove features
from the data to greedily approximate a solution of the minimization problem

7For better readability, we assume that the function has one and only one mini-
mum. However, this is not the case for all algorithms.
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(5.3). These methods can be grouped into three categories. Forward selection
methods: these methods start with one or a few features selected according to
a method-specific selection criteria. More features are iteratively added until
a stopping criterion is met. Backward elimination methods: methods of this
type start with all features and iteratively remove one feature or bunches of
features. Nested methods: during an iteration features can be added as well
as removed from the data.

5.2.1 Sensitivity of the Output

Several methods that rank features according to their influence on the regres-
sion or discriminant function f have been proposed. These methods make use
of a variety of criteria. For instance, one can measure the sensitivity of the
output on the point xk with respect to the i-th feature by8

ti,k :=
@f

@xi

�

�

�

�

x=xk

, (5.6)

and the final criterion for that feature could be the `1 or `2 norm of the vector
ti.

The underlying assumption of methods based on derivatives of the clas-
sifying function is the following: if changing the value of a feature does not
result in a major change of the regression or classification function, the feature
is not important. This approach can be used for a wide range of regression or
classification functions. For example, the squared derivative of a linear model
fw,b(x) = b + x ·w w.r.t. feature i yields ti,k = w2

i , 8k. This quantity is used
as a ranking criterion in Recursive Feature Elimination (RFE) (Guyon et al.,
2002). The sensitivity of the output has also been used for neural networks.
A good introduction can be found in Leray and Gallinari (1999). The authors
also discuss methods that include second derivatives of the regression function
(second order methods) as well as methods based on the regression function
itself (zero-order methods). The sensitivity criterion can be used by methods
of all three categories: forward, backward and nested.

In the following paragraph we develop a link between the minimization prob-
lem (5.4) of embedded methods and methods that use the sensitivity of the
classifying function as a measure for feature relevance. The optimization of
(5.4) is done over ⇤ and {0, 1}n. Since this minimization problem is di�-
cult to solve, many methods fix � and optimize over ⇤, fix ↵ and opti-
mize over ⌃ in an alternating fashion. In many cases, like RFE and Optimal
Brain Damage, the optimization over ⇤ is a standard learning method, like
SVM (RFE) or neural networks (OBD). Oftentimes, the full calculation of
min

�2{0,1}n G(�,↵) (for a fixed ↵) is too expensive since it might involve

8Notation: x
k

denotes the kth training point, x
k,i

the ith feature of training point
x

k

, and xi denotes the ith feature of training point x.
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setting one �i at a turn to zero, training the learner and evaluating the result.
Instead, methods that are based on the sensitivity of the classifying (or regres-
sion) function or weight based methods (Section 5.2.3) use the gradient of G
with respect to an indicator variable to approximate the expensive calculation
of the minimum.

Suppose that we want to learn a parameterized function f(↵,x). The
vector ↵ can, for example, be the weights of a neural network. We would like
to find the weight vector ↵ which minimizes a regularized functional

T (↵) =
m
X

k=1

L(f(↵,xk), yk) +⌦(↵). (5.7)

Here L is a loss function and ⌦ is a regularization term such as �||↵||2.
Let us introduce a scaling factor �i 2 [0, 1] for every input component i. The
functional T now also depends on the vector of scaling factors � and we write
it as T (↵,�). Let G be defined as

G(�) = min
↵

T (↵,�) = min
↵

m
X

k=1

L(f(↵,� � xk), yk) +⌦(↵).

The removal of feature p corresponds to changing the p-th component of the
scaling vector � := (1, · · · , 1) to 0. We will refer to this vector as 10(p).
A greedy backward method would start with all features, i.e. � = 1. As said
earlier, for every p 2 {1, ..., n} it would have to calculate G(10(p)), remove the
feature p that minimizes this value and continue with the remaining features.
However, the value G(10(p)) can be approximated by the value of G(1) and
the gradient of T at the minimal point:

G(10(p)) ⇡ G(1)� @G(�)
@�p

�

�

�

�

�=1

(p = 1, ..., n). (5.8)

Let us write G(�) = T (↵⇤(�),�), where ↵⇤(�) denotes the parameter vector
which minimizes T (for a given �). Then,

@G(�)
@�p

=
X

j

@↵⇤j (�)
@�p

= 0
z }| {

@T (↵,�)
@↵j

�

�

�

�

↵=↵⇤(�)

+
@T (↵,�)
@�p

�

�

�

�

↵=↵⇤(�)

(5.9)

(p = 1, ..., n) and with equation (5.8) we obtain

G(10(p)) ⇡ G(1)� @T (↵,�)
@�p

�

�

�

�

(↵,�)=(↵⇤(1),1)

(p = 1, ..., n). (5.10)

For every p 2 {1, ..., n} the gradient of T can be expressed as
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@T (↵,�)
@�p

�

�

�

�

�=1

�2
(eq.5.7)

=

"

m
X

k=1

L0(f(↵,xk), yk) xk,p
@f

@xp
(↵,xk)

#2

(Cauchy-Schwarz)


m
X

k=1

[L0(f(↵,xk), yk) xk,p]
2

m
X

k=1



@f

@xp
(↵,xk)

�2

 max
k=1,...,m

L0(f(↵,xk), yk)2

·
m
X

k=1

(xk,p)2
m
X

k=1



@f

@xp
(↵,xk)

�2

(⇤)
= C

m
X

k=1



@f

@xp
(↵,xk)

�2

/ ||tp||22,

where L0(·, ·) denotes the derivative of L with respect to its first variable, C
is a constant independent of p and tp has been defined in (5.6). For equality
(⇤) to hold, we assume that each input has zero mean and unit variance. This
inequality and the approximation (5.10) link the definition (5.4) to methods
based on the sensitivity of the output: The removal of a feature does not
change the value of the objective G significantly if the classifying function f
is not sensitive to that feature.

5.2.2 Forward Selection

In this section we describe the forward selection methods Gram-Schmidt
Orthogonalization, decision trees and the Grafting-method. The three ap-
proaches iteratively increase the number of features to construct a target
function.

Forward Selection with Least Squares

If S is a set of features, let XS denotes the submatrix of the design matrix
where only the features in S are included: XS := (xk,p)k21,...,m,i2S . When
doing standard regression with the subset S, the residuals on the training
points are given by

PSY with PS := I �X>
S (XSX>

S )�1XS . (5.11)

Note that PS is a projection matrix, i.e. P 2
S = PS .

The classical forward selection for least square finds greedily the compo-
nents which minimize the residual errors:

1. Start with Y = (y1 . . . ym)> and S = ;.
2. Find the component i such that ||P{i}Y ||2 = Y >P{i}Y is minimal.
3. Add i to S
4. Recompute the residuals Y with (5.11)
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5. Stop or go back to 2

More recent algorithms based on this idea include Gram-Schmidt Orthog-
onalization described below and Least Angle Regression (LARS) (Efron et al.,
2004).

Grafting

For fixed �0,�1,�2 > 0, Perkins et al. (2003) suggested minimizing the func-
tion

C(↵) =
1
m

m
X

k=1

L(f(↵,xk), yk) + �2k↵k2 + �1k↵k1 + �0 l0(↵) (5.12)

over the set of parameters ⇤ that defines the family of regression or classi-
fication functions F = {f(↵, ·) | ↵ 2 ⇤}.9 We restrict our analysis to linear
models, i.e. F := {f : Rn ! R | f(x) = w · x + b,w 2 Rn, b 2 R}. In this
case wi is associated with feature i (i = 1, · · · , n). Therefore requiring the
l0 as well as the l1 norm of w to be small results in reducing the number
of features used. Note that for families of non-linear functions this approach
does not necessarily result in a feature selection method. Since the objective
C has the structure of minimizing a loss function plus a sparsity term it will
also be mentioned in Section 5.4.
Perkins et al. (2003) solve problem (5.12) in a greedy forward way. In every
iteration the working set of parameters is extended by one ↵i and the newly
obtained objective function is minimized over the enlarged working set. The
selection criterion for new parameters is |@C/@↵i|. Thus, the ↵i is selected
which yields the maximum decrease of the objective function C after one gra-
dient step. Furthermore, the authors discuss possible stopping criteria.
Note that Grafting is an embedded method, because the structure of the tar-
get functions f (namely linear functions) is important for the feature selection
part.

Decision Trees

Decision trees can be used to learn discrete valued functions. The most promi-
nent approaches include CART (Breiman et al., 1984), ID3 (Quinlan, 1986)
and C4.5 (Quinlan, 1993). Decision trees are iteratively built by recursively
partitioning the data depending on the value of a specific feature. The “split-
ting” feature is chosen according to its importance for the classification task. A
widely used criterion for the importance of a feature is the mutual information
between feature i and the outputs Y (Duda et al., 2001, Section 8.3.2):

9The original optimization problem is slightly more complex. It includes weighted
Minkowski norms.
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MI(Xi, Y ) = H(Y )�H(Y |Xi),

where H is the entropy (Cover and Thomas, 1991, Chapter 2) and Xi :=
(x1,i, · · · , xm,i). In case of a continuous input space, the components of vector
Xi are replaced by binary values corresponding to decisions of the type xk,i 
threshold. Another choice is to split the data in such a way that the resulting
tree has minimal empirical error.
In many cases, only a subset of the features is needed to fully explain the data.
Thus, feature selection is implicitly built into the algorithm and therefore
decision tree learning can be understood as an embedded method.

Gram-Schmidt Orthogonalization

Gram-Schmidt Orthogonalization (e.g. Chen et al., 1989) uses the angle of a
feature to the target as an evaluation criterion to measure the importance of
a feature for classification or regression purposes:

cos(Xi, Y ) =
hXi, Y i2
kXik2kY k2 , (i = 1, ..., n)

In an iterative procedure the angle of every feature to the target is com-
puted and the feature maximizing this quantity is selected. The remaining
features are mapped to the null subspace of the previously selected features
and the next iteration starts. During each iteration the least-squares solu-
tion of a linear-in-its-parameters model is computed based on the already
ranked features. Thus the selection method is an embedded method for a lin-
ear least-square predictor. It is similar in spirit to the partial least squares
(PLS) algorithm (Wold, 1975), but instead of constructing features that are
linear combinations of the input variables, the Gram-Schmidt variable selec-
tion method selects variables.
Rivals and Personnaz (2003) suggested using polynomials as baseline func-
tions. In a first step all monomials of degree smaller than an a priori fixed
number d are ranked using Gram-Schmidt Orthogonalization. In a second
step the highest ranked monomials are used to construct a polynomial. To
reduce the complexity of the constructed polynomial one monomial at a time
is removed from the polynomial in an iterative procedure until a stopping cri-
terion is met. For large data sets the authors use the Fisher test as a stopping
criterion; for small data sets the leave-one-out error is used since the statis-
tical requirements for the hypothesis test are not satisfied. Both criteria are
based on the mean squared error. The paper also describes how the ranked
monomials can be used to select a subset of features as inputs to a neural
network. Since this approach has more the flavor of a filter method, we do not
discuss the details here.
(Stoppiglia et al., 2003) introduced a stopping criterion for the iteration dur-
ing Gram-Schmidt Orthogonalization by adding a random feature to the set
of features. The idea is that features ranked higher than the random feature
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carry information about the target concept whereas features ranked lower
than the random feature are irrelevant. See also Chapter 2 for more details
on Gram-Schmidt Orthogonalization, probe methods and the Fisher test.

5.2.3 Backward Elimination

Starting with all features, backward elimination methods iteratively remove
features from the data according to a selection criterion until a stopping cri-
terion is met. In this section we first discuss methods that derive the selection
criterion from the analysis of the weight vector of the classifying or regression
function. In the second part we briefly mention a method that uses a learning
bound as a selection criterion.

Weight Based Analysis

In this section we review algorithms which choose features according to the
weights given to those features by a classifier. The motivation for this is based
on the idea that the value of a feature is measured by the change in expected
value of error when removing it. Given this assumption, these methods ap-
proximate this goal by using the weights given by the classifier itself.

Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a recently proposed feature selection
algorithm described in Guyon et al. (2002). The method, given that one wishes
to employ only �0 < n input dimensions in the final decision rule, attempts
to find the best subset of size �0 by a kind of greedy backward selection. It
operates by trying to choose the �0 features which lead to the largest margin of
class separation, using an SVM classifier (see Chapter 1). This combinatorial
problem is solved in a greedy fashion at each iteration of training by removing
the input dimension that decreases the margin the least until only �0 input
dimensions remain.

Algorithm 1: Recursive Feature Elimination (RFE) in the linear case.
1: repeat
2: Find w and b by training a linear SVM.
3: Remove the feature with the smallest value |w

i

|.
4: until �0 features remain.

The algorithm can be accelerated by removing more than one feature in
step 2. RFE has shown good performance on problems of gene selection for
microarray data (Guyon et al., 2002, Weston et al., 2003, Rakotomamonjy,
2003). In such data there are thousands of features, and the authors usually
remove half of the features in each step.
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One can also generalize the algorithm to the nonlinear case (Guyon
et al., 2002). For SVMs the margin is inversely proportional to the value
W 2(↵) :=

P

↵k↵lykylk(xk,xl)(= kwk2). The algorithm thus tries to remove
features which keep this quantity small10. This leads to the following iterative
procedure:

Algorithm 2: Recursive Feature Elimination (RFE) in the nonlinear
case.

1: repeat
2: Train a SVM resulting in a vector ↵ and scalar b.
3: Given the solution ↵, calculate for each feature p:

W 2
(�p)(↵) = ↵

k

↵
l

y
k

y
l

k(x�p

k

,x�p

l

)

(where x�p

k

means training point k with feature p removed).
4: Remove the feature with smallest value of |W 2(↵)�W 2

(�p)(↵)|.
5: until �0 features remain.

If the classifier is a linear one, this algorithm corresponds to removing the
smallest corresponding value of |wi| in each iteration. The nonlinear formu-
lation helps to understand how RFE actually works. Given the criterion of
small W 2 (large margin) as a measure of generalization ability of a classi-
fier, one could at this point simply choose one of the usual search procedures
(hill climbing, backward elimination, etc.). However, even if we were to choose
backward elimination, we would still have to train 1

2 (n2 + n� �2
0 + �0) SVMs

(i.e. on each iteration we have to train as many SVMs as there are features)
which could be prohibitive for problems of high input dimension. Instead, the
trick in RFE is to estimate in each iteration the change in W 2 by only con-
sidering the change in the kernel k resulting from removing one feature, and
assuming the vector ↵ stays fixed.

Note that RFE has been designed for two-class problems although a multi-
class version can be derived easily for a one-against-the-rest approach (Weston
et al., 2003). The idea is then to remove the features that lead to the smallest
value of

PQ
c=1 |W 2

c (↵c) � W 2
c,(�p)(↵

c)| where W 2
c (↵c) is the inverse margin

for the machine discriminating class c from all the others. This would lead to
removing the same features from all the hyperplanes that build up the multi-
class classifier, thus coupling the classifiers. This is useful if the same features

10Although the margin has been shown to be related to the generalization ability
by theoretical bounds for SVMs (Vapnik, 1998), if you change the feature space
by removing features, bounds on the test error usually also involve another term
controlling this change, e.g. the bound R2kwk2 in equation (5.16) also includes the
radius R of the sphere around the data in feature space. However, if the data is
suitably normalized, it appears that RFE works well.
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are relevant for discriminating between di↵erent classes, if this is not the case
it may not be a good idea to couple the hyperplanes in this way.

Clearly, it is easy to generalize RFE to other domains as well, such as other
classifications algorithms or regression. In Zhu and Hastie (2003) the authors
show how to adapt RFE to penalized logistic regression to give performance
similar to SVMs, but with the added benefit of being able to output probability
of correctness, rather than just predictions. They demonstrate that RFE gives
performance superior to a univariate correlation score feature selector using
this classifier.

Finally, in Lal et al. (2004) the authors show how to treat groups of features
with RFE in the domain of Brain Computer Interfaces (BCI). In this problem
there are several features for each EEG channel, and one is interested in finding
which channels are relevant for a particular task. Therefore the authors modify
RFE to remove the least important channel on each iteration by measuring
the importance of a channel with

P

i2Cj
|wi| for each channel (set of features)

Cj .

RFE-Perceptron

In Gentile (2004), the authors propose an algorithm similar to RFE but for
(approximate) large margin perceptrons using the p-norm (Grove et al., 1997)
(ALMAp). For p = 2 the algorithm is similar to an SVM and for p = 1
the algorithm behaves more like an multiplicative update algorithm such as
Winnow (Kivinen and Warmuth, 1995). They adapt the p-norm according to
the number of features so when the feature size is shrunk su�ciently their al-
gorithm behaves more like an SVM (they report that using the full feature set
Winnow generally outperforms an SVM). The authors then propose a feature
selection method that removes the features with the smallest weights until w
fails to satisfy:

P

i |wi| � 1� ↵(1� ↵)�p/(p�1) where ↵ 2 (0, 1] is a hyperpa-
rameter controlling the degree of accuracy and � is the margin obtained from
running ALMAp. This di↵erentiates it from RFE which requires setting the
number of features to remove in advance (see Chapter 2 for statistical tests
and cross-validation). The authors report this automatic choice results in a
small number of chosen features, and generalization ability often close to the
optimum number of features for RFE chosen using the test set.

Optimal Brain Damage

Optimal Brain Damage (OBD) (LeCun et al., 1990) is a technique for pruning
weights in a Neural Network. The method works by, after having chosen a
reasonable network architecture and training that network, first computing the
second derivatives hii for each weight wi. It then sorts the weights by saliency,
defined as hiiw2

i /2 and deletes r weights with low saliency, and then repeats.
Essentially, this measures the change in error when a weight is decreased.
Thus OBD removes weights which do not appear to influence the training
error. The authors demonstrate good performance on an Optical Character



150 Thomas Navin Lal, Olivier Chapelle, Jason Weston, and André Elissee↵

Recognition (OCR) problem. Starting with a highly constrained and sparsely
connected network with 2,578 weights, trained on 9300 examples, they were
able to delete more than 1000 weights without reducing training or testing
error.

Motivation for Weight Based Approaches

In this section we motivate weight-based approaches based on the minimiza-
tion problem (5.4) for embedded methods. Suppose that the function f is a
typical neural network:

f(w,x) = f̃(. . . , wiqx
i, . . . , w̃),

where the vector w of weights has been split between the weights wiq of the
first layer and the rest of the parameters w̃. The connection of the i-th neuron
of the input layer and the q-th neuron of the hidden layer is weighted by wiq

(i 2 {1, · · · , n}, q 2 {1, · · · , Q}, Q 2 N).
For a fixed � = 1, let w⇤ be a minimizer of T (w,�) =

P

k L(f(w,� �
xk), yk) + �⌦(w). With equation (5.9) we get for p = 1, ..., n:

@G(�)
@�p

�

�

�

�
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@�p
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�

�
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=
m
X

k=1
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X
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w⇤pq
@f̃(. . . , tpq, . . . , w̃⇤)

@tpq
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�

�

�

�

tpq=w⇤pqxp

.(5.13)

On the other hand, since the weight vector w⇤ is a minimizer of T (w,1), we
also have

0 =
@T (w,�)
@wpq

�

�

�

�

(w,�)=(w⇤,1)

=
m
X

k=1

L0(f(w⇤,xk), yk) xp
k

@f̃(. . . , tpq, . . . , w̃⇤)
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�

�

�

�

�

tpq=w⇤pqxp

+
@�⌦(w)
@wpq

�

�

�

�

w=w⇤
.

By multiplying this last equation by wpq, summing over q and combining it
with (5.13), we finally get

@G(�)
@�p

�

�

�

�

�=1

= �
Q
X

q=1

w⇤pq
@�⌦(w)
@wpq

�

�

�

�

w=w⇤
.

If the regularization term ⌦ is quadratic, this last equation yields

@G(�)
@�p

�

�

�

�

�=1

= �2�
Q
X

q=1

�

w⇤pq

�2
.

This equation suggests to remove the component such that the l2 norm of
the weights associated with this input is small. More generally, weight based
methods remove the component with the smallest influence on G after one
gradient step.
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Bounds for Support Vector Machines

Rakotomamonjy (2003) reports a greedy backward feature Rakotomamonjy
(2003) reports a greedy backward feature selection method similar to RFE.
Two bounds on the leave-one-out error LOO of a trained hard margin SVM
classifier are used as ranking criterion: the radius margin bound (Vapnik,
1998):

LOO  4R2kwk2, (5.14)

where R denotes the radius of the smallest sphere that contains the training
data11, and the span-estimate (Vapnik and Chapelle, 2000):

LOO 
X

k

↵⇤kS2
k, S2

k =
1

(K̃�1)kk

, K̃ =

 

KSV 1
1> 0

!

,

where K̃ is the “augmented” kernel matrix computed only on the support
vectors. Such SVM having kernel matrix K is trained with squared slack
variables. Based on these bounds, two types of ranking criteria for features
are introduced:

(i) Feature i is removed from the training data. An SVM is trained and the
leave-one-out error LOO�i is computed. The same procedure is repeated
for the remaining features. The features are ranked according to the values
of LOO�i (the feature i with the highest value of LOO�i is ranked first).
This approach might be computationally expensive but it can be approxi-
mated in the following way: An SVM is trained using all features. Let ↵⇤

be the solution. To measure the importance of feature i, the i-th compo-
nent is removed from the kernel matrix. The bound ]LOO

�i

is calculated
using the reduced kernel matrix and ↵⇤. The features are ranked according
to the values of ]LOO

�i

. The assumption that would justify this approach
is that the solution vector ↵⇤�i of an SVM trained on the training data
where the i-th feature was removed can be approximated by the solution
↵⇤.

(ii) Instead of ranking features according to how their removal changes the
value of the bound, the author also suggested to use the sensitivity of the
bound with respect to a feature as a ranking criterion. In other words, a
feature i is ranked according to the absolute value of the derivative of the
bound with respect to this feature (the feature yielding the highest value
is ranked first).

Like RFE, the method starts with a trained SVM that uses all features. The
features are ranked using one of the two approaches (i) or (ii). The least ranked
feature is removed from the data and the next iteration starts. This method
is closely related to the work of Weston et al. (2000): Instead of iteratively

11Please note that R was previously also used for the risk.
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removing features, scaling factors are introduced and optimized by a gradient
descent (see also Section 5.3.1).

The method described by (Rakotomamonjy, 2003) can be interpreted as an
approximation to the optimization problem (5.3). The functional eT is the Sup-
port Vector Machine and the functional G is either the radius/margin bound
or the leave-one-out estimate. The minimization over ⌃ is approximated in a
greedy backward way without the guarantee of finding a global minimum. In
(i), the criterion G is explicitly computed after a tentative feature has been
removed, whereas in (ii), the gradient @G/@�i is calculated to measure the
importance of that feature.

5.3 Optimization of Scaling Factors

5.3.1 Scaling Factors for SVM

One method of using SVMs for feature selection is choosing the scaling factors
which minimize a bound, as proposed by the authors of Weston et al. (2000).
The idea is the following. Feature selection is performed by scaling the input
parameters by a vector � 2 [0, 1]n. Larger values of �i indicate more useful
features. Thus the problem is now one of choosing the best kernel of the form:

k�(x,x0) = k(� � x,� � x0), (5.15)

where � is element-wise multiplication, i.e. we wish to find the optimal pa-
rameters �. This can be achieved by choosing these hyperparameters via a
generalization bound.

Gradient Descent on the R2w2 Bound

Taking the expectation on both sides of inequality (5.14) and using the fact
that the leave-one-out error is an unbiased estimator of the generalization
error (Luntz and Brailovsky, 1996) one gets the following bound for hard
margin SVMs,12

EPerr  4
m

E
�

R2kwk2 , (5.16)

if the training data of size m belong to a sphere of size R and are separable
with margin 1/kwk2 (both in the feature space). Here, the expectation is
taken over sets of training data of size m. Although other bounds exist, this
one is probably the simplest to implement. A study of using other bounds
for the same purpose is conducted in (Chapelle et al., 2002). The values of

12For soft margin SVMs, the simplest way to still make this apply is to add a
ridge to kernel matrix (Chapelle et al., 2002).



5 Embedded Methods 153

� can be found by minimizing such a bound by gradient descent, providing
the kernel itself is di↵erentiable. This can be solved by iteratively training an
SVM, updating � (the kernel) according to the gradient, and retraining until
convergence. An implementation is available at (Spider, 2004). This method
has been successfully used for visual classification (face detection, pedestrian
detection) (Weston et al., 2000) and for gene selection for microarray data
(Weston et al., 2000, 2003).

After optimization of the scaling factors, most of them will hopefully be
small and one can explicitly discard some components and optimize the scaling
factors for the remaining components. There are 3 di↵erent ways of discarding
irrelevant components:

• The most straightforward is to remove the components which have small
scaling factors. This is somehow similar to the RFE algorithm (see Section
5.2.3, as well as the end of this section).

• A more expensive strategy is to explicitly remove one feature, retrain an
SVM and see by how much the radius margin bound increases (cf. Chapelle
(2002), Rakotomamonjy (2003) and Section 5.2.3). Add this feature back
to the data and remove the next feature and so on.

• To avoid such expensive retrainings, (Chapelle, 2002) suggest to use second
order information and, similarly to OBD (LeCun et al., 1990), remove the
features p which have a small value of

�2
p
@R2kwk2

@�2
p

.

One could easily use the same trick for classifiers other than SVMs if a bound
for that classifier is readily available. Alternatively one could use a validation
set instead, this route is explored in Chapelle et al. (2002).

Other Criteria

In the previous section, the hyperparameters � were optimized by gradient
descent on R2w2. Note that other model selection criteria are possible such
as the span bound (Vapnik and Chapelle, 2000) or a validation error. Exper-
imental results of such approaches are presented in Chapelle et al. (2002),
but from a practical point of view, these quantities are more di�cult to opti-
mize because they are highly non-convex. In equation (5.16), one can use the
variance instead of the radius, i.e.

R2 ⇡ 1
m

m
X

k=1

 

�(xk)� 1
m

m
X

l=1

�(xl)

!2

=
1
m

m
X

k=1

k(xk,xk)� 1
m2

m
X

k,l=1

k(xk,xl).

(5.17)
The first advantage in using the variance instead of the radius is that it is easier
to compute. But a second advantage is that it is less sensitive to outliers and
that it is theoretically sound (Bousquet, 2002).
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A similar approach to the one described in the previous section is to con-
sider the scaling factors � not anymore as hyperparameters but as parameters
of the learning algorithm (Grandvalet and Canu, 2003). A scalar parameter
�0 controls the norm of � � 0:

min
�

max
↵

X

k

↵k � 1
2

X

k,l

↵k↵lykylk�(xk,xl)

under constraints

0  ↵k  C,
X

↵kyk = 0 and ||�||p = �0, (5.18)

with k� defined in (5.15). The closer the hyperparameter p is to 0, the sparser
the solution, but also the more di�cult the optimization.

Linear SVMs

We now study the special case of optimizing the scaling factors for a linear
kernel,

k�(xk,xl) =
n
X

i=1

�2
i xk,ixl,i.

Assume that the data are centered and that each component is rescaled
such that it has unit variance. Then the variance criterion (5.17), as an ap-
proximation of the radius, gives

R2 =
1
m

n
X

i=1

m
X

k=1

�2
i (xk,i)2 =

n
X

i=1

�2
i .

Since for hard-margin SVMs the maximum of the dual is equal to w2/2,
the optimization of the radius-margin criterion (5.16) can be rewritten as the
maximization of the margin under constant radius13,

min
�

max
↵

X

k

↵k � 1
2

m
X

k,l=1

↵k↵lykyl

n
X

i=1

�2
i xk,ixl,i (5.19)

under constraints

↵k � 0,
X

↵kyk = 0 and
X

�2
i = 1.

Note that in the linear case, we recover the optimization procedure pro-
posed in Grandvalet and Canu (2003) with p = 2 in (5.18).

13It is indeed possible to fix the radius since multiplying the vector � by a scalar
� would result in a multiplication of R2 by �2 and a weight vector w with norm
kwk/� and thus would not a↵ect the bound.
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As explained in the beginning of this section, it is possible to find the
optimal scaling factors � by gradient descent. Moreover, it turns out that
(5.19) is a convex optimization problem in �2

i (as a pointwise maximum of
linear functions) and is thus easy to solve. However, when the number of
variables is larger than the number of training points, it might be advantageous
to take the dual of (5.19) and solve the following optimization problem:

max
↵

m
X

k=1

↵k

under constraints
↵k � 0,

X

↵kyk = 0

�1 
m
X

k=1

↵kykxk,i  1, 1  i  n.

Let µ+
i and µ�i be the Lagrange multipliers associated with the two sets

of constraints above. Then, one can recover the scaling parameters �i by
�2

i = µ+
i + µ�i , which is typically a sparse vector. A similar approach was

proposed by Peleg and Meir (2004).
Please note that although this kind of approach is appealing, this might

lead to overfitting in the case where there are more dimensions than training
samples.

Link with RFE

When the input components are normalized to have variance 1, the derivative
of the radius/margin bound with respect to the square of the scaling factors
is

@R2w2

@�2
p

= �R2w2
p + w2.

>From this point of view, RFE amounts to making one gradient step and
removing the components with the smallest scaling factors.

5.3.2 Automatic Relevance Determination

Automatic Relevance Determination has first been introduced in the context
of Neural Networks (MacKay, 1994, Neal, 1996). In this section, we follow
the Sparse Bayesian learning framework described in Tipping (2001). Further
details as well as application to gene expression data can be found in Li et al.
(2002).

In a probabilistic framework, a model of the likelihood of the data is chosen
P (y|w) as well as a prior on the weight vector, P (w). To predict the output of
a test point x, the average of fw(x) over the posterior distribution P (w|y) is
computed. If this integral is too complicated to estimate, a standard solution is
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to predict using the function fwmap , where wmap is the vector of parameters
called the Maximum a Posteriori (MAP), i.e.

wmap = argmax
w

P (w|y) = argmin
w

� log P (y|w)� log P (w). (5.20)

The right hand side of the previous equation can be interpreted as the mini-
mization of a regularized risk, the first term being the empirical risk and the
second term being the regularization term.

One way to get a sparse vector wmap is to introduce several hyperparam-
eters �i controlling the variance of the wi (Tipping, 2001),

P (w|�) =
n
Y

i=1

r

�i

2⇡
exp(��iw

2
i /2).

The vector � is learned by maximum likelihood type II, i.e. by finding the
vector � which maximizes (assuming a (improper) flat hyperprior on �),

P (y|�) =
Z

P (y|w)P (w|�)dw. (5.21)

Using a Laplace approximation to compute the above integral and setting the
derivative of (5.21) to 0, in can be shown that at the optimum the vector �
satisfies (MacKay, 1994, Tipping, 2001)

�i =
1� �iH

�1
ii

(wi)2map
, (5.22)

where H is the Hessian of the log posterior around its maximum, H =
�r2 log P (w|y)|wmap .

An iterative scheme is adopted: compute wmap with (5.20) and update �
using (5.22).

• When a component is not useful for the learning task, the maximization
of the marginalized likelihood (5.21) over the corresponding �i will result
in �i !1 and thus wi ! 0, e↵ectively pruning the weight wi.

• From this point of view, ��1/2
i is the Bayesian equivalent of the scaling

factors �i introduced in Section 5.3.1.
• The prior on the weights wi can be computed as

P (wi) =
Z

P (wi|�i)P (�i)d�i.

When the hyperprior on �i is a Gamma distribution, this gives a Student-t
distribution on P (wi) (Tipping, 2001): it is sharply peaked around 0 and
thus tends to set the weights wi at 0, leading to a sparse solution.
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5.3.3 Variable Scaling: Extension to Maximum Entropy
Discrimination

The Maximum Entropy Discrimination (MED) framework has been intro-
duced in Jaakkola et al. (1999). It is a probabilistic model in which one does
not learn parameters of a model, but distributions over them. Those distri-
butions are found by minimizing the KL divergence with respect to a prior
distribution while taking into account constraints given by the labeled exam-
ples. For classification, it turns out that the optimization problem solved in
Jaakkola et al. (1999) is very similar to the SVM one.

Feature selection can be easily integrated in this framework (Jebara and
Jaakkola, 2000). For this purpose, one has to specify a prior probability p0

that a feature is active.
If wi would be the weight associated with a given feature for a linear

model (as found by a linear SVM for instance), then the expectation of this
weight taking into account this sparse prior is modified as follows Jebara and
Jaakkola (2000),

wi

1 + 1�p0
p0

exp(�w2
i )

.

This has the e↵ect of discarding the components for which

w2
i ⌧ log

1� p0

p0
.

For this reason, even though the feature selection is done in a complete
di↵erent framework than a standard SVM, this algorithm turns out to be
similar to RFE in the sense that it ignores features whose weights are smaller
than a threshold. The MED framework was recently extended to the case
where multiple inter-related learning tasks are jointly solved (Jebara, 2004).

5.3.4 Joint Classifier and Feature Optimization (JCFO)

The Joint Classifier and Feature Optimization (JCFO) algorithm (Krishna-
puram et al., 2004) is similar to sparse Gaussian Process for classification (see
also Seeger (2000), Williams and Barber (1998)) with an ARD prior (Section
5.3.2). It considers classifiers of the form:

m
X

k=1

↵kk(� � x,� � xk) + b.

The aim of this classifier is to find a function with a sparse vector ↵ and a
sparse vector of scaling factors �. This is achieved by using a Laplacian prior
on ↵ and �. The inference in this probabilistic model is done by a type of EM
algorithm which uses a a conjugate gradient descent on � during the M-step.
Note that, as in Section 5.3.1, this gradient descent can be avoided in the case
of a linear kernel.
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5.4 Sparsity Term

In the case of linear models, indicator variables are not necessary as feature
selection can be enforced on the parameters of the model directly. This is
generally done by adding a sparsity term to the objective function that the
model minimizes. To link minimization problem (5.4) of the introductory sec-
tion to methods that use a sparsity term for feature selection purposes, we
consider linear decision functions of the form f(w,x) = w · x, indicator vari-
ables � 2 {0, 1}n and we make use of the following lemma,

Lemma: If the learning criterion T can be expressed as T (w,�) =
P

L(f(w�
�,xk), yk) +⌦(w) and ⌦ is component-wise minimized at 0, then

min
w, l0(�)=�0

T (w,�) = min
l0(w)=�0

T (w,1), (5.23)

where the zero “norm” l0 is defined as l0(�) := cardinality({i 2 {1, · · · , n} :
�i 6= 0}).
Proof: Let w⇤ and �⇤ minimize the left hand side of (5.23). Then T (w⇤,�⇤) �
T (w⇤��⇤,1) because setting one of the component of w to 0 will decrease ⌦
by assumption. Thus, the left hand side of (5.23) is greater or equal than its
right hand side. On the other hand, if w⇤ is the minimizer of the right hand
side, defining �i = 1w⇤i 6=0 shows the other inequality.

In other words, in the linear case, one can ignore the scaling factors � and
directly find a sparse vector w. The following section presents in more detail
how this is implemented for several algorithms. For the sake of simplicity,
we will assume that the target is in {�1, 1}. When generalizations to more
complex problems (regression or multi-class) are possible, it will be stated
clearly.

5.4.1 Feature Selection as an Optimization Problem

Most linear models that we consider can be understood as the result of the
following minimization:

min
w,b

1
m

m
X

k=1

L (w · xk + b, yk) + C⌦(w),

where L(f(xk), yk) measures the loss of a function f(x) = (w · x + b) on the
training point (xk, yk), ⌦(w) : Rn ! R+ is a penalizing term and C is a
trade-o↵ coe�cient balancing the empirical error with this penalizing term.
Examples of empirical errors are:

1. The `1 hinge loss:

`hinge (w · x + b, y) := |1� y (w · x + b)|+ ,

where |z|+ = z if z > 0 and |z|+ = 0 otherwise.
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2. The `2 loss:
`2 (w · x + b, y) := (w · x + b� y)2 .

3. The Logistic loss:

`Logistic (w · x + b, y) := log(1 + e�y(w·x+b)).

This loss, usually used in logistic regression, is based on the following
generalized linear model: log

⇣

P (y=1|w,b)
1�P (y=1|w,b)

⌘

= w · x + b.

The penalizing terms that we will consider here will be of two types:

1. The `0 norm:
⌦(w) = `0(w)

representing the number of non-zero coordinates of w.
2. The `1 norm:

⌦(w) =
n
X

i=1

|wi|.

Table 5.1 introduces the possible combinations of loss and sparsity along
with the corresponding algorithms.

Loss \ Sparsity `0 `1

hinge FSV [5.4.3] `1 SVM [5.4.2]

`2 multiplicative update [5.4.3] LASSO [5.4.4]

Logistic ⇥ Generalized Lasso [5.4.4]

Table 5.1. Methods that have been designed to enforce feature selection during
the training of a linear model. A cross means that such combination has not been
considered so far. The number in brackets refers to the section number.

5.4.2 `1 Support Vector Machine

The `1 Support Vector Machine (`1-SVM) of Bradley and Mangasarian (1998)
(Mangasarian, 1968) for classification solves the following optimization prob-
lem:

min
w,b

n
X

i=1

|wi|+ C
m
X

k=1

⇠k

subject to: ⇠k � 0 and yk (w · xk + b) � 1 � ⇠k. The main di↵erence com-
pared to a classical SVM is the replacement of the quadratic regularization



160 Thomas Navin Lal, Olivier Chapelle, Jason Weston, and André Elissee↵

term kwk22 by the `1 norm
P

i |wi|. This slight change in the regularization
term induces a big di↵erence in the final outcome of the optimization. This
is due to the strict convexity shape of the quadratic norm. Assume that two
linear models parameterized by w1 and w2 are consistent on the training set.
Assume furthermore that w1 uses only the first half of the features and w2

the second half (the input space is built from redundant features). Then any
linear combination: w = (1 � �)w1 + �w2 (� 2 (0, 1)) will have a smaller `2
norm than w1 or w2. This implies - in this particular case - that choosing a
vector w with more features induces a strictly smaller `2 norm. This shows
that the SVM tends to return a model that uses many redundant features.
It is by the way one of the strengths of the SVM to distribute the classifica-
tion decision among many redundant features, making it more robust to the
overall noise.14 In the context of feature selection, such a property might be
a drawback. The introduction of the `1 norm tends to remove this property
by giving the same value of the regularization term to all the w 2 [w1,w2].
This lets other factors (like the minimization of the empirical error) choose
the right model and hence choose a sparse model if it decreases the empirical
error. Note that the trade-o↵ parameter C can be used to balance the amount
of sparsity relative to the empirical error. A small C will lead to a sparse linear
model but whose empirical error might be larger as with a large C.

The `1 SVM was applied as a feature selection method by di↵erent authors.
Bradley and Mangasarian (1998) introduced this version of the SVM more like
a general classification technique but they noted the ability of this method to
return sparse linear models. (Fung and Mangasarian, 2003) exploited this
property to perform feature selection introducing a new optimization tech-
nique. Note that the `1 SVM can be defined for regression as well. (Bi et al.,
2003) use this approach in the context of drug design.

5.4.3 Concave Minimization

In the case of linear models, feature selection can be understood as the fol-
lowing optimization problem:

min
w,b

`0(w)

subject to: yk (w · xk + b) � 0. Said di↵erently, feature selection is interpreted
as finding a w with as few non zero coordinates as possible such that the de-
rived linear model is consistent on the training set. This problem is known to
be NP-hard (Amaldi and Kann, 1998) and hence cannot be solved directly. In
this section, we present two attempts to approximately optimize it. Both ap-
proximations are based on replacing `0 by a smooth function whose gradient

14If each redundant feature is perturbed by the same zero mean random noise,
adding these features would reduce the overall influence of this noise to the output
of the SVM.
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can be computed and can be used to perform a gradient descent. Note that
the above problem does not match the goal of feature selection in machine
learning. The latter is indeed interested in improving generalization error. In
the current set-up, we are just interested in finding the smallest number of
features consistent with the training set. This can obviously lead to overfit-
ting when the number of training samples is much smaller than the number of
dimensions.15 This supports the idea that exact minimization of the `0 norm
is not desired and it motivates approximations that push the solution towards
low capacity systems for which the generalization error is better controlled.
Such systems might be, for instance, large margin classifiers. The iterative
nature of the methods that we describe below make it possible as well to use
early stopping. The latter technique computes an estimate of the generaliza-
tion error on a validation set and stops the procedure when the error estimate
is too high.

Feature Selection Concave (FSV)

Bradley and Mangasarian (1998) propose to approximate the function `0(w)
as:

`0(w) ⇡
n
X

i=1

1� exp(�↵|wi|).

The coe�cient ↵ controls the steepness of the function and its closeness to
`0(w). In their paper, Bradley and Mangasarian suggest to take ↵ = 5 as a first
guess. Note that this function is not di↵erentiable directly but a constrained
gradient descent can be applied without any di�culty. Algorithm 3 presents
the method. Although this algorithm is presented here for separable datasets,
it is described in the original paper for non-separable datasets. The errors are
then computed using the hinge loss.

Multiplicative Update

Weston et al. (2003) use a slightly di↵erent function. They replace the `0 norm
by:

`0(w)$
n
X

i=1

log (✏+ |wi|) .

Although not a good approximation of `0, Weston et al. argue that its min-
imum is close to the minimum of the `0 norm. The interest of taking such
an approximation is that it leads directly to an iterative scheme whose basic
step is a classical SVM optimization problem. The multiplicative update can
therefore be implemented very quickly based on any SVM optimization code.
Algorithm 4 describes the approach.

15Having a small number of samples increases the chance of having a noisy feature
completely correlated with the output target.



162 Thomas Navin Lal, Olivier Chapelle, Jason Weston, and André Elissee↵

Algorithm 3: Feature Selection Concave (FSV)
Require: ↵: controls the steepness of the objective function
1: Start with v0

2: cont=true; t=0;
3: while (cont==true) do
4: Let v⇤ be the solution of the Linear Program: {Find descent direction}

min
v

n

k=1

↵e�↵v

t
k v

k

� vt

k

subject to: y
k

(w · x
k

+ b) � 1, �v
k

 w
k

 v
k

5: vt+1 = v⇤;
6: if (vt+1 == vt) then
7: cont=false; {If nothing changes, stop}
8: end if
9: t=t+1;

10: end while

Algorithm 4: Multiplicative update
1: Start with �0 = (1, ..., 1) 2 Rn

2: cont=true; t=0;
3: while (cont==true) do
4: Let w⇤ be the minimum of: {SVM optimization}

min
w

kwk22
subject to: y

k

w · (�t � x
k

) + b � 1
5: �t+1 = �t �w⇤; {� is the component-wise multiplication}
6: if (�t+1 == �t) then
7: cont=false; {If nothing changes, stop}
8: end if
9: t=t+1;

10: end while

As for FSV, the multiplicative update can be extended to non separable
datasets. The errors are then measured with a quadratic loss. Both FSV and
multiplicative update can be generalized to regression problems. We refer the
reader to the original papers for more details.

5.4.4 LASSO

The LASSO technique (Least Absolute Shrinkage and Selection Operator)
(Tibshirani, 1996) is very similar in its spirit to the `1 SVM. It minimizes the
following problem:

min
w,b

m
X

k=1

(w · xk � yk)2
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subject to:
Pn

i=1 |wi|  �0. The use of the `1 norm constraint on the param-
eter leads to a sparse model as in the case of the `1 SVM. It can be used for
regression and classification. Recently, the LASSO technique has been gener-
alized to handle classification problem with a more adequate loss. Roth (2003)
defined what is called generalized LASSO as:

min
w,b

m
X

k=1

log(1 + e�yk(w·xk+b))

subject to:
Pn

i=1 |wi|  �0. Although the problem is convex, it is not quadratic
nor linear. To solve it, Roth suggests to use an Iterative Reweighed Least
Square scheme. The generalized LASSO has the advantage of producing sparse
models whose outputs can be interpreted as probabilities.

5.4.5 Other Methods

This section is by no means an exhaustive survey of all machine learning
techniques that can be understood as minimizing an empirical error plus a
sparsity term. Such an interpretation encompasses too many methods to dis-
cuss them in this chapter. We have instead presented examples of which we
believe that they cover a wide range of approaches. Other methods, like sparse
kernel Fisher discriminant (Mika et al., 2000), the grafting method (Perkins
et al., 2003) (see also Section 5.2.2) or the Potential Support Vector Machine
(Hochreiter and Obermayer, 2004) can be understood - in a certain sense -
as minimizing an empirical error plus a sparsity term. In fact, any machine
learning technique involving a linear model can be extended to implement fea-
ture selection by adding a sparsity term. We have shown two of those sparsity
terms in this section (namely the `1 and the `0 norm). We believe they can
be combined with most objective functions and optimized using the methods
described, or variants.

5.5 Discussions and Conclusions

The introduction of this chapter provides a theoretical framework which uni-
fies many embedded feature selection methods that were introduced during
the last few years. This framework is built upon the concept of scaling factors.
We discussed embedded methods along how they approximate the proposed
optimization problem:

• Explicit removal or addition of features - the scaling factors are optimized
over the discrete set {0, 1}n in a greedy iteration,

• Optimization of scaling factors over the compact interval [0, 1]n, and
• Linear approaches, that directly enforce sparsity of the model parameters.



164 Thomas Navin Lal, Olivier Chapelle, Jason Weston, and André Elissee↵

>From the literature that covers embedded methods it is neither possible to
infer a ranking that reflects the relative abilities of the methods nor is it pos-
sible to state which methods work best in which scenario. These conclusions
could be drawn only from a systematic comparison - which clearly is beyond
the scope of this chapter.

Every family of feature selection methods (filter, wrapper and embedded)
has its own advantages and drawbacks. In general, filter methods are fast, since
they do not incorporate learning. Most wrapper methods are slower than filter
methods, since they typically need to evaluate a cross-validation scheme at
every iteration. Whenever the function that measures the quality of a scaling
factor can be evaluated faster than a cross-validation error estimation pro-
cedure, we expect embedded methods to be faster than wrapper approaches.
Embedded methods tend to have higher capacity than filter methods and are
therefore more likely to overfit. We thus expect filter methods to perform bet-
ter if only small amounts of training data are available. Embedded methods
will eventually outperform filter methods as the number of training points
increase.
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Chapter 6

Information-Theoretic Methods

Kari Torkkola1
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Kari.Torkkola@motorola.com

6.1 Introduction

Shannon’s seminal work on information theory provided the conceptual frame-
work for communication through noisy channels (Shannon, 1948). This work,
quantifying the information content of coded messages, established the basis
for all current systems aiming to transmit information through any medium.

By using information theory, variable selection and feature construction
can be viewed as coding and distortion problems. Variables or features can be
understood as a “noisy channel” that conveys information about the message.
The aim would be to select or to construct features that provide as much
information as possible about the “message”. The message usually comes in
the form of another variable which could be the class label or the target for
prediction or regression.

This chapter gives a brief tutorial to the use of information-theoretic
concepts as components of various variable selection and feature construc-
tion methods. We begin by introducing basic concepts in information the-
ory, mainly entropy, conditional entropy, and mutual information. Criteria
for variable selection are then presented, concentrating on classification prob-
lems. Relationships between the Bayes error rate and mutual information are
reviewed. Evaluation and optimization of these criteria are also discussed. Be-
sides variable selection, this chapter also briefly touches feature construction,
distance metric construction, and distributional clustering using information
theory.

6.2 What is relevance?

6.2.1 Defining variable selection and feature construction

Variable selection generally must contain two major components. There needs
to be a criterion, which, given a set of variables, evaluates joint relevance of
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the set. The second component is a search mechanism that adds or removes
variables to the current set (Chapter 4). It may also be that the criterion only
evaluates the relevance of a single variable, or a small number of variables at
a time. This may lead to di↵erent search strategies.

Feature construction problems may be divided in two categories depending
upon whether the constructed features are a continuous or a discrete-valued
function of the original variables. In the former case the relevance criterion
should be expressible as a function of the training set, and it should be di↵er-
entiable with respect to constructed features, which in turn should be di↵er-
entiable with respect to parameters of the construction function. This would
make it possible to perform numerical optimization of the criterion. The latter
case leads to a similar search problem as in variable selection.

Both the selection and the construction problems require a definition of
“relevance”. Once defined, we can formalize both as follows. We denote the
original variables by X 2 Rd, and the selected subset by �. Here � could also
denote features after construction, �i = g(xi,✓), where ✓ denotes parameters
of the construction function or the indices of selected variables, and xi is the
ith data point. The whole variable selection or feature construction process
can then be written as

✓⇤ = argmax
✓

[I(Y ;�(X, ✓))], (6.1)

subject to some constraints, such as the dimension of �, d� < d. Without
constraints or regularization the optimal � would be equal to the original
variables, of course. I denotes a function that evaluates the relevance between
some variable of interest Y , such as a class label, and a representation �. This
chapter is mostly concerned with using mutual information as the function.

6.2.2 The Bayes error is relevant for classification

In classification, relevance is closely related to discrimination. An optimal
criterion should reflect the Bayes risk in the selected or transformed variable
space (Chapter 1). The Bayes risk is defined in terms of a problem specific loss
function as ebayes(X) = Ex[L(y, ŷ)], where ŷ denotes the estimated variable
and y the true variable value. In the simplest case of 0/1-loss for classification
this can be written as the Bayes error

ebayes(X) = Ex[Pr(y 6= ŷ)] =
Z

x

p(x)
⇣

1�max
i

(p(yi|x))
⌘

dx, (6.2)

where x denotes the variable vector in the selected or transformed space and
yi denotes the class label. Note that the direct use of this criterion would
require the full knowledge of posterior probability density functions of classes
p(yi|x). Estimating the Bayes error in practice would thus require estimating
posterior probability density functions of classes, and numerical integration of
a nonlinear function of those, which is di�cult given only a training data set.
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Another noteworthy point is that the Bayes error is the lower bound on
attainable error rate given perfect knowledge of the classes (and thus a perfect
classifier). In practical problems, the aim is to train a predictor using a limited
data set in order to minimize the generalization error of the predictor, i.e., the
error on unseen future data drawn from the same joint distribution pX,Y as the
training data. However, for a training data set of limited size and for a given
predictor, and a given loss function, two problems with the same Bayes risk
may result in very di↵erent generalization errors. This is why the predictor
and the loss function should ideally also be included in the variable selection
process (Kohavi and John, 1997, Tsamardinos and Aliferis, 2003).

There is a wide spectrum of other class separability measures mainly for
feature construction problems, that could be roughly categorized from more
heuristic to more principled measures as follows:

1. Sums of distances between data points of di↵erent classes. The distance
metric between data points could be Euclidean, for example.

2. Nonlinear functions of the distances or sums of the distances.
3. Probabilistic measures based on class conditional densities. These mea-

sures may make an approximation to class conditional densities followed
by some distance measure between densities. For example, this distance
measure could be Battacharyya distance or divergence (Devijver and Kit-
tler, 1982, Guorong et al., 1996, Saon and Padmanabhan, 2001). Some
of these probabilistic measures can be shown to bound the Bayes error
(Devijver and Kittler, 1982). A Gaussian assumption usually needs to be
made about the class-conditional densities to make numerical optimiza-
tion tractable. Equal class covariance assumption, although restrictive,
leads to the well known Linear Discriminant Analysis (LDA), which has
an analytic solution (Chapter 1). Some measures allow non-parametric
estimation of the class conditional densities.

4. The Bayes error.

A thorough overview of all these measures is given by Devijver and Kittler
(1982).

We now introduce some basic concepts in information theory, and discuss
how they are related to class separability and the Bayes error. Later we move
into actually using information-theoretic concepts in variable selection.

6.3 Information theory

6.3.1 Elementary concepts

Assume a continuous random variable X 2 Rd representing available variables
or observations1, and a discrete-valued random variable Y representing the
class labels.

1 If X is discrete, integrals in the following equations can be replaced by sums.
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The uncertainty or entropy in drawing one sample of Y at random is ex-
pressed in terms of class prior probabilities. According to Shannon’s definition

H(Y ) = Ey[log2
1

p(y)
] = �

X

y

p(y) log2(p(y)). (6.3)

If all values of Y have equal probabilities the entropy is at maximum, decreas-
ing as the “unevenness” of p(Y ) increases. Entropy can also be written for a
continuous variable as

H(X) = E
x

[log2
1

p(x)
] = �

Z

x

p(x) log2(p(x))dx. (6.4)

Whereas (6.3) gives the absolute entropy of a discrete variable, (6.4) gives a
di↵erential entropy. It is only meaningful to compare entropies between two
distributions rather than to look at the absolute values.

After having made an observation of a variable vector x, the uncertainty of
the class identity is defined in terms of the conditional density p(y|x) and it is
accordingly called conditional entropy or equivocation (the average ambiguity
of the received signal)

H(Y |X) =
Z

x

p(x)

 

�
X

y

p(y|x) log2(p(y|x))

!

dx. (6.5)

The expression in parenthesis is the entropy of Y for a particular value x.
H(Y |X) is thus the expectation of class entropy over all possible values of x.

The amount by which the class uncertainty is reduced after having ob-
served the variable vector x is called the mutual information between X and
Y . It can be written as

I(Y, X) = H(Y )�H(Y |X) (6.6)

=
X

y

Z

x

p(y, x) log2
p(y, x)

p(y)p(x)
dx (6.7)

Equation (6.7) can be obtained from (6.6) by using the identities p(y,x) =
p(y|x)p(x) and p(y) =

R

x

p(y,x)dx. Entropy and mutual information are
often illustrated in the form of a Venn diagram as in Fig. 6.1.

Mutual information measures dependence between variables, in this case
between Y and X. It vanishes if and only if p(y, x) = p(y)p(x), that is, when
the joint density of Y and X can be factored as a product of marginal densities.
This is the condition for independence. Mutual information can also be seen as
the Kullback-Leibler divergence measure between p(y, x) and its factored form
p(y)p(x). In general, for two densities p1(x) and p2(x), the Kullback-Leibler
divergence DKL(p1||p2) is defined as

DKL(p1||p2) =
Z

x

p1(x) log2
p1(x)
p2(x)

dx. (6.8)
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H(X)

H(Y)

H(X|Y)

H(Y|X)

I(X;Y)H(X,Y)

Fig. 6.1. Relationships between the entropies of two dependent variables X and
Y . H(X) and H(Y ) are each represented by a circle. Joint entropy H(X, Y ) consists
of the union of the circles, and mutual information I(X; Y ) the intersection of the
circles. Thus H(X, Y ) = H(X) + H(Y )� I(X; Y ).

6.3.2 Channel coding theorem and rate-distortion theorem

Shannon’s work shows that the mutual information (MI) given by (6.7) is
the solution to several important problems in communication. The two most
well known results are the channel coding theorem and the rate-distortion
theorem.

Shannon showed that the rate of transmission of information through a
channel with input X and output Y 0 is R = H(X)�H(X|Y 0) = I(X, Y 0). The
capacity of this particular (fixed) channel is defined as the maximum rate over
all possible input distributions, C = maxp(X) R. Maximizing the rate means
thus choosing an input distribution that matches the channel since we cannot
have an e↵ect on the channel itself. The maximization is possibly carried out
under some constraints, such as fixed power or e�ciency of the channel.

Variable selection and feature construction have the following analogy to
the communication setting. Channel input now consists of the available vari-
ables X, which can be thought of as a result of source coding. By some process
the real source Y is now represented (encoded) as X. In contrast to the com-
munication setting, now the channel input distribution X is fixed, but we can
modify how the input is communicated to the receiver by the channel either
by selecting a subset of available variables or by constructing new features.
Both can be represented by modeling the channel output as � = g(X, ✓) where
g denotes some selection or construction function, and ✓ represents some tun-
able parameters. In Shannon’s case ✓ was fixed but X was subject to change.
Now the “channel” capacity can be represented as C = max✓ R subject to
some constraints, such as keeping the dimensionality of the new feature repre-
sentation as a small constant. Maximizing MI between Y and � thus produces
a representation that provides maximal information about Y .

The rate-distortion theorem is concerned with finding the simplest repre-
sentation (in terms of bits/sec) to a continuous source signal within a given
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tolerable upper limit of distortion. Such a signal representation could then
be transmitted through a channel without wasting the channel capacity. In
this case the solution for a given distortion D is the representation � that
minimizes the rate R(D) = minE(d)D I(X,�). This rate-distortion function
alone is not as relevant to the feature selection problem as the channel ca-
pacity. However, a combination of the two results in a loss function that does
not require setting constraints to the dimensionality of the representation,
rather it emerges as the solution (Tishby et al., 1999). We discuss briefly this
information bottleneck in Section 6.7.

6.4 Information-theoretic criteria for variable selection

The variable selection problem can now be viewed as a communication prob-
lem. The aim would be to construct the “channel” by selecting a variable or a
set of variables X that maximizes the information transmitted about the mes-
sage Y as measured by mutual information I(X, Y ). According to previous
treatment, this determines the best rate of information about the message Y .
We discuss next how MI bounds the Bayes error in classification problems, and
how MI is related to other criteria, such as maximum likelihood estimation.

6.4.1 Optimality of MI in classification

Since the Bayes error is the ultimate criterion for any procedure related to dis-
crimination, any proxy criterion such as mutual information should be related
to the Bayes error.

Antos et al. (1999) have shown that no Bayes error estimate can be trusted
for all data distributions, not even if the sample size tends to infinity. Even
though there are consistent classification rules (such as k-nn), their conver-
gence to the Bayes error may be arbitrarily slow. It is thus not possible ever
to make claims about universally superior feature extraction method (for clas-
sification).

A similar notion is discussed by Feder et al. (1992) and Feder and Merhav
(1994). The Bayes error is not uniquely determined by conditional entropy,
but the latter provides bounds for the former. Although intuitively thinking,
the higher the uncertainty of a variable, the more di�cult the prediction of a
variable would appear to be, this is not always the case. Two random variables
with the same conditional entropy may have di↵erent Bayes error rates, within
the following bounds.

An upper bound on the Bayes error

ebayes(X)  1
2
H(Y |X) =

1
2
(H(Y )� I(Y, X)) (6.9)

was obtained by Hellman and Raviv (1970) for the binary case and Feder and
Merhav (1994) for the general case. A lower bound on the error also involving
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conditional entropy or mutual information is given by Fano’s inequality (Fano,
1961)

ebayes(X) � 1� I(Y,X) + log 2
log(|Y |) , (6.10)

where |Y | refers to the cardinality of Y . Extensions to this bound have been
presented by Han and Verdú (1994). Both bounds are minimized when the
mutual information between Y and X is maximized, or when H(Y |X) is
minimized. This will serve as one justification of using I(Y, X) as a proxy
to the Bayes error. These bounds are relatively tight, in the sense that both
inequalities can be obtained with equality. Every point in the boundary can
be attained (depending on p(y|x)), as discussed by Feder and Merhav (1994).

6.4.2 Alternative views to mutual information and to conditional
entropy

Besides the Bayes error bounds, usage of MI or conditional entropy in variable
selection or feature construction can also be justified from several di↵erent
points of view. We enumerate some of them here.

1. Entropy of the posteriors. In order to make classifying each point x in
the variable (or feature) space as certain as possible without ambiguity,
the posterior probability of just one class p(yi|x) should dominate, and
p(yj |x), j 6= i, should be close to zero. This can be conveniently quan-
tified by entropy of the class label distribution. For a given x, the class
label entropy �Pi p(yi|x) log2(p(yi|x)) should be as small as possible,
and thus one should minimize this over the entire space leading to min-
imizing E

x

[�Pi p(yi|x) log2(p(yi|x))], which, in fact, is the definition of
H(Y |X).

2. Divergence between class conditional densities and marginal density. For
independent x, y, we can write p(x, y) = p(x)p(y), whereas in general,
p(x, y) = p(x|y)p(y). One should thus attempt to maximize a distance
measure between p(x) and p(x|y) in order to find x maximally depen-
dent on y, the labels. This can also be viewed as making each class con-
ditional density p(x|y) stand out from the marginal density p(x). The
KL-divergence

DKL(p(x|y)||p(y)) =
Z

x

p(x|y) log2
p(x|y)
p(x)

dx (6.11)

between the two should be maximized over all classes. Taking the expec-
tation with respect to y gives

Ey[DKL(p(x|y)||p(y))] =
X

y

p(y)
Z

x

p(x|y) log2
1

p(x)
p(x|y)dx

=
X

y

Z

x

p(x, y) log2
p(x, y)

p(x)p(y)
dx, (6.12)
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which can be seen to be the expression for mutual information between x
and y.

3. Maximum likelihood. Conditional entropy is also related to maximum like-
lihood parameter estimation (Peltonen and Kaski, 2005). Log-Likelihood
of a generative parametric model of the posterior densities of classes equals

L(✓) = E
x,y[log2 p̂(y|x;✓)] =

X

y

Z

x

p(x, y) log2 p̂(y|x;✓)dx

=
X

y

Z

x

p(x)p(y|x) log2 p̂(y|x;✓)dx

=
Z

x

p(x)

 

X

y

p(y|x) log2 p̂(y|x;✓)

!

dx

=
Z

x

p(x)

 

X

y

p(y|x) log2 p(y|x)�DKL(p(y|x)||p̂(y|x;✓))

!

dx

= �H(Y |X)� E
x

[DKL(p(y|x)||p̂(y|x;✓)]. (6.13)

The true data generating model is denoted by p(y|x) and the generative
parametric model by p̂(y|x;✓). Thus, maximizing the likelihood of a gen-
erative model is equivalent to minimization of the sum of the conditional
entropy and the discrepancy between the model and the true data genera-
tor. In the large sample limit with consistent density estimators the latter
term vanishes.

6.4.3 An example in variable ranking using maximum mutual
information

Mutual information is widely used in decision tree construction to rank vari-
ables one at a time (Breiman et al., 1984, Quinlan, 1993). In this context, and
in some others, for example, in text classification, it has been called Infor-
mation Gain (IG). We describe first variable ranking in decision trees, after
which the setting is changed to a typical variable selection problem.

Given a set of training data at a node in a decision tree, the aim is to choose
one variable and a test on values of the variable, such that the chosen test
best separates the classes. IG is defined as the reduction of class label entropy
when the class distribution of training data in a branch of the decision tree is
compared to average entropies of the new sk partitions (new branches of the
tree) constructed using a test on values of chosen variable k.

Igain(k) = H(p̂)�
sk
X

i=1

ni

n
H(p̂ik) (6.14)

Here p̂ denotes the class label distribution of a set of data in a node of a
decision tree before making a split, p̂ik denotes the label class distribution
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in the ith partition, and ni denotes the number of examples in partition i.
Entropies are usually estimated using simply observed counts as in (6.16).
Comparing to (6.6), information gain can be seen to be essentially the same
expression as the mutual information between variable k and the class label.
If variable k is continuous, the split is made into two partitions, finding a
threshold that maximizes IG. Continuous and discrete variables can thus be
compared on the same basis. Note that this corresponds to discretizing the
continuous variable in two levels for the current split.

However, IG favors variables that result in splitting the node into a large
number of trivial partitions. This is a problem with discrete variables that have
a large number of levels and little training data. As a remedy, the information
gain ratio (IGR) has been suggested, which is defined as the IG normalized
by the entropy of the split itself (Quinlan, 1993):

Igain ratio(k) = Igain(k)/H(p̂k) (6.15)

where

H(p̂k) = �
sk
X

i=1

ni

n
log2

ni

n
. (6.16)

This leaves only the e↵ect of class entropy within new nodes, not in the number
of new nodes.

Instead of IG, the Gini-index has also been used in decision tree construc-
tion for CART (Breiman et al., 1984). For two classes, the Gini-index replaces
P2

i=1 pi log2 pi by 2
P2

i=1(1� pi)pi. The behavior of the two functions is very
similar.

In a typical variable selection problem, one wishes to evaluate (6.14) for
each variable Xk and perhaps pick the highest ranking one to the current
working set of variables (Section 6.4.5). Equation (6.14) can now be written
as

I(Y, Xk) = H(Y )�H(Y |Xk)

= H(Y )�
sk
X

i=1

p(xki)H(Y |xki) (6.17)

=
m
X

j=1

p(yj) log2 p(yj)�
sk
X

i=1

p(xki)
m
X

j=1

p(yj |xki) log2 p(yj |xki).

Here xki denotes the ith discrete value of Xk, p(xki) denotes its probability of
occurrence in Xk, and Y denotes the class labels. In practice, the probabilities
have been replaced by empirical frequencies, which unfortunately introduces a
bias (Section 6.4.4). IG has been often used for variable ranking in text analysis
and information retrieval applications (Yang and Pedersen, 1997, Forman,
2003).



178 Kari Torkkola

6.4.4 Evaluation or optimization of MI in practice

MI is defined in terms of full knowledge of the joint density. In practice this is
not available. Between two variables the non-parametric histogram approach
can be used (Battiti, 1994), but in higher dimensions any amount of data is
too sparse to bin. Thus the practical estimation of MI from data based on (6.7)
is di�cult. In higher dimensions one might have to resort to simple parametric
class density estimates (such as Gaussians) and plug them into the definition
of MI.

Since we might most often be interested in evaluating the conditional en-
tropy or MI, and MI can be expressed as a di↵erence between two entropies,
the estimation of entropy is a key issue. The simplest way is the maximum like-
lihood estimate based on histograms (such as (6.16)). This estimate is known
to have a negative bias that can be corrected to some extent by the so-called
Miller-Madow bias correction. This consists of adding (m̂�1)/2N to the esti-
mate, where m̂ denotes an estimate of the number of bins with nonzero prob-
ability, and N is the number of observations. As shown by Paninski (2003),
this cannot be done in many practical cases, such as when the number of bins
is close to the number of observations.

Bayesian techniques can be used if some information about the underlying
probability density function is available in terms of a prior (Wolpert and Wolf,
1995, Za↵alon and Hutter, 2002). The same applies to the estimation of MI.

At this point it is worthwhile noting that stochastic optimization does not
necessarily require estimating the underlying quantity but only its gradient
with respect to parameters to be optimized. This is applicable in feature con-
struction problems where the MI is a function of the constructed features,
which in turn are a function of a parameter to be optimized to maximize the
MI (Section 6.5).

6.4.5 Usage of MI in variable selection

The purpose of variable selection is twofold. First, to remove irrelevant vari-
ables and, second, to remove redundant variables.

Simple variable ranking by any criterion, including information-theoretic
criteria, is sub-optimal. This may be good enough in many cases, though.
It is clear that addressing redundancy requires evaluating a joint measure of
relevancy, such as MI. Measuring irrelevancy cannot be done one variable at
a time, either. It is not di�cult to devise cases where the single most relevant
variable according to any criterion is not among the joint two most relevant
variables.

Thus greedy variable selection based on ranking may not work very well
when there are dependencies among relevant variables. Because the evaluation
of a joint criterion is often hard or impossible (See Section 6.4.4), except for
a small number of variables (such as two), there are a number of practical
approaches that remove the overlap or redundancies in the selected variable
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set by evaluating a pairwise criterion. One such approach is MIFS (mutual
information based feature selection) (Battiti, 1994) and variants. MIFS adds
that variable X̂ to the current set of chosen variables �, which maximizes

I(Y, X̂)� �
X

Xj2�

I(X̂,Xj). (6.18)

The first term attempts to maximize the relevancy of X̂ to Y , and the second
term attempts to minimize the redundancy between X̂ and the already chosen
set �. The balance between maximizing relevance and minimizing redundancy
is determined by parameter �.

MIFS

1: Set X̂ = argmax
Xi

I(Y, X
i

);

set � {X̂};
set F  {X1, ..., XN

} \ {X̂}.
2: For all pairs (i, j), X

i

2 F and X
j

2 �
evaluate and save I(X

i

, X
j

) unless already saved.

3: Set X̂ = argmax
Xi

I(Y, X
i

)� �
Xj2�

I(X
i

, X
j

) ;

set � � [ {X̂};
set F  F \ {X̂},
and repeat from step 2 until |�| is desired.

This is, of course, only a heuristic approximation to evaluating the full joint
criterion, which is nearly impossible to estimate when d� is high. The same
basic strategy with minor variations has also been adopted in other works
(Yu and Liu, 2003, Vasconcelos, 2003, Fleuret, 2004). In some special cases
a modification of this approximation can be shown to be equal to optimizing
the true joint criterion (Vasconcelos, 2003).

6.4.6 Usefulness of measures other than Shannon’s

Shannon derived the entropy measure axiomatically and showed, for example,
that no other measure would fulfill all the axioms. However, if the aim is
not to calculate an absolute value of the entropy or divergence, but rather
to find a distribution that minimizes/maximizes the entropy or divergence,
the axioms used in deriving the measure can be relaxed and still the result
of the optimization is the same distribution (Kapur, 1994). One example is
the Renyi entropy (Renyi, 1961, Kapur, 1994), which is defined for a discrete
variable Y and for a continuous variable X as

H↵(Y ) =
1

1� ↵ log2

X

y

p(y)↵; H↵(X) =
1

1� ↵ log2

Z

x

p(x)↵dx,

(6.19)
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where ↵ > 0, ↵ 6= 1, and lim↵!1 H↵ = H. This is a parametric family that has
the Shannon entropy as one member of the family (↵! 1), but could exhibit
other desirable properties with some other parameter values. For example,
quadratic Renyi entropy is straightforward to estimate from a set of samples
using the Parzen window approach (Principe et al., 2000). The Renyi entropy
has been earlier used in feature construction and image registration (Principe
et al., 2000, Hero et al., 2001).

6.4.7 Markov Blankets

A Markov Blanket (MB) of a joint probability distribution of a target vari-
able is defined as the minimal union of all variables that make the target
independent of all other variables (strongly relevant features) (Koller and Sa-
hami, 1996). Thus if we have a variable set X, the Markov blanket of a target
variable Y , denoted by M(X, Y ) is the smallest subset of X such that Y
is independent of the rest of the variables X \ M(X, Y ). Thus the Markov
blanket minimizes DKL[p(Y |M(X, Y )||p(Y |X)]. All information to estimate
the probability distribution of Y is contained in M(X, Y ). However, for a
0/1-loss function, only the most probable classification is needed, and thus
a MB may contain unnecessary variables. Redundancy between the features
must be dealt with other methods.

Since MB does not contain irrelevant variables, finding the MB might be
useful as the first step in feature selection in applications where the data has a
large number of irrelevant variables. Such applications are common in biology.
Gene expression analysis is one an example (Aliferis et al., 2003, Xing et al.,
2001).

Inducing the MB may take time exponential in the size of the MB if in-
ferring a full dependency network is attempted. To overcome this limitation,
fast alternatives have been developed recently (Aliferis et al., 2003, Tsamardi-
nos et al., 2003). Extracting the MB from a decision tree after training it for
classification has been shown to outperform methods that directly attempt
to infer the dependency network (Frey et al., 2003). This approach is very
similar to extracting important variables from a random forest after having
trained it to a classification task first (Breiman, 2001, Tuv, 2005).

6.5 MI for feature construction

As a criterion for feature construction, MI is as valid as for variable selection.
Given a set of training data {xi, yi} as samples of a continuous-valued random
variable X, xi 2 Rd, and class labels as samples of a discrete-valued random
variable Y , yi 2 {1, 2, ...,my}, i 2 {1, ...,m}, the objective is to find a trans-
formation (or its parameters ✓) to �i 2 Rd� , d� < d such that �i = g(✓,xi)
maximizes I(Y,�), the mutual information (MI) between transformed data �
and class labels Y (6.1). The procedure is depicted in Fig. 6.2. The crux is of
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course to express I as a function of the data set, I({�i, yi}), in a di↵erentiable
form. Once that is done, we can perform gradient ascent on I as follows

✓t+1 = ✓t + ⌘
@I

@✓
= ✓t + ⌘

m
X

i=1

@I

@�i

@�i

@✓
. (6.20)

In its simplest form �i = Sxi, where S is a d� ⇥ d projection matrix. In
the general case �i could be any nonlinear parametric transform of xi, such
as a neural network.

Class labels: y

High-dimens-
ional data: x

g(θ,x)

Mutual Information 
I(y,Φ)

Gradient

Low dimensional
features: Φ

θ∂
∂ I

Fig. 6.2. Learning feature transforms by maximizing the mutual information
between class labels and transformed features.

No combinatorial optimization is required as in the search of the best
variable combination. Instead, a continuous function optimization problem
needs to be solved. Evaluating the actual MI and its full gradient can be hard
to do in the general multi-class case without resorting to modeling the classes
as single Gaussians. This is exactly the direction some research has taken
(Guorong et al., 1996, Saon and Padmanabhan, 2001).

Another alternative is to approximate the MI by a criterion that allows
computational shortcuts. One example is to replace the KL-divergence be-
tween the joint density and the product of marginals by a quadratic divergence
which is simpler to di↵erentiate and to evaluate in a non-parametric fashion
(Devijver and Kittler, 1982, Aladjem, 1998, Principe et al., 2000, Torkkola,
2003).

Optimization can also be done using the stochastic gradient, which means
that the actual function may not need to be evaluated accurately but only
its gradient with respect to a single data point (Torkkola, 2003, Peltonen and
Kaski, 2005).

6.6 Information theory in learning distance metrics

Variable selection and feature construction can be seen as two particular ways
to ignore irrelevant information in the data and to make relevant information
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more explicit. In continuous feature spaces there exists another alternative for
the same purpose: learning a distance metric that reflects the relevance of the
target variable.

Both selection and (linear) feature construction can be expressed as �i =
Sxi where S is a d� ⇥ d projection or selection matrix. These selected or
constructed features implicitly define a global Euclidean metric between two
original data samples x and x0 as

d2
A(x,x0) = (x� x0)T ST S(x� x0) = (x� x0)T A(x� x0). (6.21)

Now, A is fixed throughout the original feature space since variable selec-
tion and feature construction are typically global in the sense that the selected
or constructed features are then used the same way everywhere in the sample
space. Whatever criterion for selection or construction is used, the attempt is
to find such a matrix A that minimizes or maximizes its expected value over
the whole sample space. As A is a result of global optimization, it may not be
optimal locally. A particular feature may be more relevant in one location in
the sample space whereas another feature may be more relevant elsewhere.

In a more general case the matrix A depends on the location of the data
point:

d2
A(x,x + dx) = dxT A(x)dx. (6.22)

It is possible to learn a metric in the original space of variables that varies
according to location, as the relevance to an auxiliary variable Y also varies
according to the location. The distance between two nearby points in the
feature space should reflect the di↵erence in the conditional distributions of
the auxiliary variable p(y|x) as follows:

d2
J(x,x + dx) = DKL[p(y|x)||p(y|x + dx)] =

1
2
dxT J(x)dx. (6.23)

J(x) equals the Fisher information matrix, which is derived from the
Kullback-Leibler divergences between the conditional auxiliary variable at
two di↵erent locations, x and x + dx. It scales the local distance between
the two locations (Kaski and Sinkkonen, 2004, Peltonen et al., 2004). Rather
than learning or selecting features that remain fixed throughout the feature
space, this results in learning local metrics that enhance information relevant
to the task. Distances between distant points are defined as minimum path
integrals of (6.23). The metric then needs to be embedded into, for example, a
clustering algorithm resulting in “semi-supervised” clustering that reflects the
auxiliary variable (Peltonen et al., 2004).

6.7 Information Bottleneck and variants

The information bottleneck method (IB) takes a rate-distortion approach to
feature construction by finding a representation � of original variables X so
as to minimize the loss function
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L(p(�|x)) = I(X,�)� �I(�, Y ). (6.24)

The loss function is a compromise between trying to preserve as much in-
formation as possible about a “relevant” variable Y while at the same time
attempting to form as compact a representation as possible by minimizing
I(X,�) (Tishby et al., 1999). The representation � can be seen as a bottle-
neck that extracts relevant information about Y from X.

The solution to the minimization problem is a set of iterative equations.
One of the equations calculates � using the KL-divergence between p(Y |X)
and p(Y |�). Viewing this KL-divergence as an appropriate distortion measure
between conditional distributions, the algorithm can be seen as very similar in
structure to the EM algorithm. Indeed, it has been shown recently that both
the IB and the EM algorithms are special cases of more general Bregman
divergence optimization (Banerjee et al., 2004).

In its original form IB constructed clusters of original variables as the
new representation � (Tishby et al., 1999). For example, if the variables X
represent co-occurrence data, such as whether a particular word occurred in
document xi or not, IB finds a reduced number of word clusters by grouping
together words such that the new co-occurrence data � provides as much
information as possible about the document class or identity. This is a very
natural representation in the text domain. Extensions exist for multivariate
cases, for continuous variables, and for feature construction, in which case �
would be a function of the original variables (Globerson and Tishby, 2003).

6.8 Discussion

Information theory provides a principled way of addressing many of the prob-
lems in variable selection and feature construction. Shannon’s seminal work
showed how mutual information provides a measure of the maximum transmis-
sion rate of information through a channel. This chapter presented an analogy
to variable selection and feature construction with mutual information as the
criterion to provide maximal information about the variable of interest.

Even though this chapter has elaborated more on classification, select-
ing or constructing features that maximize the mutual information between
the variable of interest Y and the features � has a wider applicability. Such
features constitute a maximally informative statistic of Y , which is a gener-
alization of the concept of a su�cient statistic (Wolf and George, 1999). Any
inference strategy based on Y may be replaced by a strategy based on a su�-
cient statistic. However, a su�cient statistic of a low dimensionality may not
necessarily exist, whereas a maximally informative statistic exists.

Pearson’s chi-squared (�2) test is commonly used in statistics to test
whether two observed discrete distributions are produced by the same un-
derlying distribution (or to test whether two distributions are independent).
In feature selection literature this statistic is also called the strength of as-
sociation (Chapter 3). The test statistic is �2 =

P

i(Oi � Ei)2/Ei, where Oi
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are the observed counts and Ei are the expected counts. However, Pearson
developed the �2 test only as a computationally convenient approximation2 to
the log-likelihood ratio test or the G test because calculating likelihood ratios
was laborious at the time. The statistic is G = 2

P

i Oi log(Oi/Ei). Now, this
can be seen as the Kullback-Leibler divergence between the two distributions.

In supervised learning one typically minimizes the Mean Squared Error
(MSE) between the learner output and the target variable. This is equivalent
to minimizing a second order statistic, the energy or the variance of the error.
If the pdf of the error signal is Gaussian this is naturally enough. However,
this may not be the case. In order to transfer all information from the tar-
get variable to the learner, one should constrain the statistics of all orders,
not just the second. One way to do this is to minimize the error entropy as
discussed by Erdogmus et al. (2002, 2003). Likewise, mutual information has
a connection to the Canonical Correlation Analysis (CCA), a method that
makes use of second order cross-statistic. CCA attempts to maximize the cor-
relation between linear transforms of two di↵erent sets of variables. Assuming
Gaussian input variables, maximizing the mutual information between the
outputs is equivalent to CCA (Becker, 1996, Chechik et al., 2005). Again, if
the Gaussianity does not hold, and if the transform is anything more than a
linear transform, maximizing the MI provides a more general solution.

Unlike in communications applications, in statistical inference from data,
the underlying true densities appearing in the definitions of information-
theoretic criteria are generally not available. The application of these criteria
hinges then on estimating them accurately enough from available data. As
discussed by Paninski (2003), no unbiased estimator for entropy or mutual
information exists. However, recent work towards lower bias estimators holds
some promise even for small data sets (Paninski, 2003, Kraskov et al., 2003).
Furthermore, applying the information-theoretic criteria optimally would en-
tail estimating joint criteria of multiple variables, which is a hard problem
by itself. Current work has approached the problem either by avoiding it, by
devising strategies where evaluation of pairwise MI su�ces, or by approximat-
ing it by parametric estimation of the underlying densities or by replacing the
definition of MI by an approximation that is easier to compute. Future work
needs to characterize which approach is appropriate for what kind of data.
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Chapter 7

Ensemble Learning

Eugene Tuv⇤

Intel, eugene.tuv@intel.com

7.1 Introduction

Supervised ensemble methods construct a set of base learners (experts) and
use their weighted outcome to predict new data. Numerous empirical stud-
ies confirm that ensemble methods often outperform any single base learner
(Freund and Schapire, 1996, Bauer and Kohavi, 1999, Dietterich, 2000b). The
improvement is intuitively clear when a base algorithm is unstable. In an
unstable algorithm small changes in the training data lead to large changes
in the resulting base learner (such as for decision tree, neural network, etc).
Recently, a series of theoretical developments (Bousquet and Elissee↵, 2000,
Poggio et al., 2002, Mukherjee et al., 2003, Poggio et al., 2004) also confirmed
the fundamental role of stability for generalization (ability to perform well on
the unseen data) of any learning engine. Given a multivariate learning algo-
rithm, model selection and feature selection are closely related problems (the
latter is a special case of the former). Thus, it is sensible that model-based
feature selection methods (wrappers, embedded) would benefit from the regu-
larization e↵ect provided by ensemble aggregation. This is especially true for
the fast, greedy and unstable learners often used for feature evaluation.

In this chapter we demonstrate two types of model-based variable scoring
and filtering: embedded and sensitivity based. In both cases the ensemble
aggregation plays a key role in robust variable relevance estimation. We briefly
review ensemble methods in section 7.2. We distinguish between two main
types of ensembles: parallel and serial, and describe in detail two representative
techniques: bagging and boosting. In section 7.3 we define importance metrics,
and illustrate their properties on a simulated data. The vote aggregation in
the context of the Bayesian framework is described in section 7.4. Even though
throughout the chapter we used a binary decision tree as a base learner, the
methods discussed are generic. The generalization is explicitly pointed out in
section 7.3.
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7.2 Overview of ensemble methods

Ensemble methods combine outputs from multiple base learners to improve
the performance of the resulting committee. There are two primary approaches
to ensemble construction: parallel and serial.

A parallel ensemble combines independently constructed accurate and di-
verse base learners. That is, an individual base learner needs to have an error
rate better than a random guess, and di↵erent base learners should make
di↵erent errors on new data. It is intuitive then, that an ensemble of such
base learners will outperform any single of its components since diverse errors
will cancel out. More formal treatments of ensembles of diverse and accu-
rate base learners were provided by Hansen and Salamon (1990), Amit and
Geman (1997). Parallel ensembles are variance-reduction techniques, and in
most cases, they are applied to unstable, high-variance algorithms (like trees).
Although, Valentini and Dietterich (2003) showed that ensembles of low-bias
support vector machines (SVMs) often outperform a single, best-tuned, canon-
ical SVM (Boser et al., 1992).

In serial ensembles, every new expert that is constructed relies on previ-
ously built experts in such a way that the resulting weighted combination of
base learners forms an accurate learning engine. A serial ensemble algorithm
is often more complex, but it is targeted to reduce both bias and variance,
and can show excellent performance.

7.2.1 Parallel Ensembles

Many methods were developed to impose diversity in the ensemble construc-
tion process. Bagging (Bootstrap Aggregation) trains each base learner on
a di↵erent bootstrap sample drawn from the data (Breiman, 1996). Other
methods generate diversity by injecting randomness into the learning algo-
rithm (e.g. randomly initialized weights in neural networks), manipulating
the input features, manipulating the output targets, etc. More comprehensive
overviews of ensemble methods were presented by Dietterich (2000a), Valen-
tini and Masulli (2002).

Random Forest (Breiman, 2001) is an improved bagging method that ex-
tends the “random subspace” method (Ho 1998). It grows a forest of random
trees on bagged samples showing excellent results comparable with the best
known classifiers. Random Forest (RF) does not overfit, and can be summa-
rized as follows:

1. a number n is specified much smaller than the total number of variables
N (typically n ⇠ pN)

2. each tree of maximum depth is grown on a bootstrap sample of the training
set

3. at each node, n variables are selected at random out of the N
4. the split used is the best split on these n variables
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Note that for every tree grown in RF, about one-third of the cases are out-of-
bag (out of the bootstrap sample). The out-of-bag (OOB) samples can serve
as a test set for the tree grown on the non-OOB data. We discuss in section
7.3.1 how OOB samples can be used for variable scoring.

7.2.2 Serial Ensembles

A serial ensemble results in an additive model built by a forward-stagewise
algorithm. The Adaboost algorithm was introduced by Freund and Schapire
(1996). At every step of ensemble construction the boosting scheme adds a new
base learner that is forced (by reweighting the training data) to concentrate
on the training observations that are misclassified by the previous sequence.
Boosting showed dramatic improvement in accuracy even with very weak base
learners (like decision stumps). In the numerous studies, Adaboost showed
remarkable performance on a variety of problems, except for datasets with
high levels of noise in the target variable.

Breiman (1997), Friedman et al. (2000) showed that the Adaboost algo-
rithm is a form of gradient optimization in functional space, and is equivalent
to the following forward-stagewise, additive algorithm with the exponential
loss function  (y, F (x) = exp(�yF (x)) and base learner family {b(x, �)}�

Algorithm 5: Forward stagewise boosting
1. Initialize F (x)=0.
2. For l=1 to L

(a) Compute (�
l

, �
l

) = arg min
�,�

m

i=1  (y
i

, F
l�1(xi

) + �b(x
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, �))
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)
3. Output F (x) = F

L

(x) = L

l=1 �l

b(x, �
l

)

A Gradient Tree Boosting (GTB) learning machine (Friedman, 1999a,b)
uses a numeric approximation to solve (2a) in the Algorithm 5 with robust
loss functions like L1 loss:  (F (x), y) = |F (x) � y| or Huber’s loss function

:  (F (x), y) =

(

|y � F (x)|2, for |F (x)� y|  �

�(|y � F (x)|� �/2), otherwise
where � = ↵th �

quantile|F (x)� y|, usually ↵ = 0.1
GTB uses gradient descent in functional space for numerical optimization,
and at every iteration l of GTB a new base learner (a shallow tree in this
case) Tl is fitted to the generalized residuals with respect to a loss function  

�


@ (yi, F (xi)
@F (xi)

�

F=Fl�1

(7.1)

This provides terminal regions Rjl, j = 1, 2, ..., Jl. The corresponding con-
stants �jl are solutions to
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�jl = arg min
�

X

xi2Rjl

 (yi, Fl�1(xi) + �) (7.2)

and updated Fl(x) in (2b) of Algorithm 5 is given by

Fl(x) = Fl�1(x) +
Jl
X

j=1

�jlI(x 2 Rjl) (7.3)

In a K-class classification problem with response y taking K unordered
values {c1, ..., cK} GTB builds a multinomial logistic model to estimate the
class conditional probabilities pk(x) = Pr(y = ck|x), for k = 1, 2, ...,K and

pk(x) =
eFk(x)

PK
l=1 eFl(x)

(7.4)

with the
PK

l=1 Fl(x) = 0.

Penalized, stagewise formulation and feature selection

Friedman (1999a) also showed empirically that an introduction of shrinkage
factor 0 < ⌫ < 1 in (2b) step of Algorithm 5 could dramatically improve the
performance of the resulting ensemble

Fl(x) = Fl�1(x) + ⌫ · �lb(x, �l) (7.5)

There is a strong connection between GTB’s additive tree expansion with a
shrinkage strategy (7.5) and a“lasso”penalized linear regression on all possible
(J-region) trees (Tibshirani, 1996) (7.6),(7.7).

F̂ (x) =
X

âkTk(x) (7.6)

where

âk = arg min
ak

m
X

i=1

 (yi,
X

akTk(x)) + �
X

|ak| (7.7)

They produce very similar solutions as the shrinkage parameter in (7.5) be-
comes arbitrary small (⌫ ! 0) with the number of trees in (7.6) ⇠ 1/�. It was
first suggested by Hastie et al. (2001), and rigorously derived by Efron et al.
(2004).

Both, the commonly used L2 penalty
P

a2
k (common for ridge regression,

support vector machines), and the “lasso” penalty in (7.7) penalize larger ab-
solute values of the coe�cients am. However, the L2 penalty discourages vari-
ation in absolute values, and tends to produce coe�cients similar in absolute
values, whereas the L1 penalty is not concerned with variance in coe�cients,
and tends to produce sparse solutions with more variability in the absolute
value of coe�cients, with many of them being zero. Thus, GTB with the
shrinkage strategy carries out feature selection in the form of selecting a small
subset of relevant features (simple functions of inputs - shallow trees) out of
all possible trees.
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Hybrid GTB and RF (GTB-FS)

For data sets with very large number of variables standard GTB with an
exhaustive search over all variables could be computationally prohibitory ex-
pensive. Random Forests, on the other hand, are comprised from trees of max-
imum depth, and they are challenging to build for very large sample sizes. For
massive datasets (in both dimensions) Borisov et al. (2005) proposed a hybrid
(GTB and RF) ensemble method, GTB-FS, that is at least as accurate as
both of them, and incomparably faster. GTB-FS is built with shallow trees
using a small subset of variables at every step, and capable of handling huge
(in both dimensions) datasets. The main idea is to select a small sample of
features at every step of the ensemble construction. The sampling distribu-
tion is modified at every iteration to promote features more relevant to the
learning task (generalized residuals from the previous iteration). A measure
of relevance could be approximated by variable importance evaluated over a
historical window of prior iterations. The averaging window could be moving,
weighted by distance in time, shrinking in time, etc.. Naturally, the sampling
strategy is closely tied to GTB’s regularization coe�cient. Sampling weights
could be initialized using prior knowledge or data (from an initial run of a
single tree or a simple univariate measure of relevance, etc.), or set to equal.

7.3 Variable Selection and Ranking with Tree
Ensembles

In this section we give the formal definitions for embedded and sensitivity-
based variable scoring metrics. We explore several feature selection aspects on
a simulated data comparing di↵erent importance metrics and ensemble types.

7.3.1 Relative Variables Importance Metrics

A decision tree partitions the X space into a set of disjoint regions, and as-
signs a response value to each corresponding region. It uses a greedy, top-down
recursive partitioning strategy. At every step a decision tree uses exhaustive
search by trying all combinations of variables and split points to achieve the
maximum reduction in impurity. Therefore, the tree construction process itself
can be considered as a type of variable selection (a kind of forward selection
embedded algorithm, see also (Chapter 5), and the impurity reduction due
to a split on a specific variable could indicate the relative importance of that
variable to the tree model. Note, that this relative importance is multivariate-
model based, and is di↵erent from the relevance measured by standard, uni-
variate filter methods (Chapter 3).

For a single decision tree a measure of variable importance is proposed in
(Breiman et al., 1984):
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V I(xi, T ) =
X

t2T

�I(xi, t) (7.8)

where �I(xi, t) = I(t) � pLI(tL) � pRI(tR) is the decrease in impurity due
to an actual (or potential) split on variable xi at a node t of the optimally
pruned tree T . pL, pR are the proportions of cases sent to the left(or right) by
xi. Node impurity I(t) for regression is defined as 1

N(t)

P

s2t(ys � ȳ)2 where
the sum and mean are taken over all observations s in node t, and N(t) is
the number of observations in node t. For classification I(t) = Gini(t) where
Gini(t) is the Gini index of node t:

Gini(t) =
X

i 6=j

pt
ip

t
j (7.9)

and pt
i is the proportion of observations in t whose response label equals

i (y = i) and i, j run through all response class numbers. The Gini index
is in the same family of functions as entropy �Pi pt

ilog(pt
i), and measures

node impurity. It is zero when t has observations only from one class, and is
maximum when classes are perfectly mixed.

An important question remains for tree based models: how to rank vari-
ables that were masked by others with slightly higher splitting scores, but
could provide as accurate a model if used instead.

One of key features of CART (Breiman et al., 1984) is a notion of surrogate
splits. In CART methodology, the surrogate splits is used mainly to handle
missing values, detect masking, and assess variable-importance ranking. The
predictive association of a surrogate variable xs for the best splitter x⇤ at a
tree node t is defined through the probability that xs predicts the action of
x⇤ correctly and this is estimated as:

p(xs, x
⇤) = pL(xs, x

⇤) + pR(xs, x
⇤)

where pL(xs, x⇤) and pR(xs, x⇤) define the estimated probabilities that both
xs and x⇤ send a case in t left (right). The predictive measure of association
�(x⇤|xs) between xs and x⇤ is defined as

�(x⇤|xs) =
min(pL, pR)� (1� p(xs, x⇤))

min(pL, pR)
(7.10)

It measures the relative reduction in error due to using xs to predict x⇤ (1�
p(xs, x⇤)) as compared with the “näıve” rule that matches the action with
max(pL, pR) (with error min(pL, pR)). If �(x⇤|xs) < 0 then xs is disregarded
as a surrogate for x⇤.

The sum in (7.8) is taken over all internal tree nodes where xi is a primary
splitter or a surrogate variable (�(x⇤|xi) > 0 for a primary splitter x⇤). Often
a variable that does not appear in a tree will still be ranked high on the
variable importance list constructed using surrogate variables.
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In the following example the Iris classification solution (Fisher, 1936) is
given by a single tree that used only one variable to split nodes. Relative
variable ranking takes into account surrogate variables, and Figure 7.1 depicts
an adequate relative variable importance pareto for all four variables.

Fig. 7.1. Iris flower data, three species are classified: setosa (S), versicolor (C),
and virginica (V) using four predictors: sepal length, sepal width, petal length, and
petal width. Relative variable ranking calculation takes into account the surrogate
variables. Even though the decision tree uses only one variable (petal width), an
adequate relative importance is presented for all four variables.

For the stochastic tree ensembles (GTB, RF, GTB-FS) of M trees this
importance measure is easily generalized. It is simply averaged over the trees

M(xi) =
1
M

M
X

j=1

V I(xi, Tj) (7.11)

The regularization e↵ect of averaging makes this measure more reliable, and
because of the stochastic nature of the ensembles (a slightly di↵erent version
of the data is used for each expert for both RF / GTB) the masking issue is
not a problem (especially for the independently built RF). Therefore, in (7.11)
the sum is evaluated only over internal nodes where the variable of interest
is the primary splitter. For a classification problem, GTB and GTB-FS build
separate models fk(x) to predict each of the K classes
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Fk(x) =
M
X

j=1

Tkj(x)

In this case (7.11) generalizes to

M(xi, k) =
1
M

M
X

j=1

M(xi, Tkj)

and represents the relevance of Xi to separate class k from the rest of them.
The overall relevance of Xi can be obtained by averaging over all classes

M(xi) =
1
K

K
X

k=1

M(xi, k)

The matrix {Mik := M(xi, k}) could be used in number of ways. One could
average the matrix over a selected subsets of classes to estimate the variable
importance for that subset. In the same way, one could determine what class
a chosen subset of variables separates best. For a parallel ensemble (RF) it is
not obvious how to extract embedded importance ranking by class.

It is clear that the relative variable importance approach naturally gener-
alizes beyond trees to any unstable scoring mechanism. Relevance scores are
calculated over multiple permutations of data, variables, or both with a fixed
scoring method and averaged. The score can be obtained from a base learner
or a simple univariate score. If one is only interested in a simple variable
ranking, then ranks from heterogeneous ranking methods could be combined
too.

Breiman (2001) proposed a sensitivity based measure of variable relevance
evaluated by a Random Forest. For a classification problem it is summarized
as follows:

• Classify the OOB cases (those out of the bootstrap sample) and count the
number of votes cast for the correct class in every tree grown in the forest

• Randomly permute the values of variable n in the OOB cases and classify
these cases down the tree

• Subtract the number of votes for the correct class in the variable-n-
permuted OOB data from the untouched OOB data

• Average this number over all trees in the forest to obtain the raw impor-
tance score for variable n.

Clearly, this measure of relevance could be calculated by class and overall. For
regression, the same method is used, but variable importance is measured by
the residual sum of squares.

Breiman (2002) also noticed that the correlations of these scores between
trees are quite low, and therefore one can compute the standard errors in the
standard way, divide the raw score by its standard error to get a z-score, and
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assign a significance level to the z-score assuming normality. (The null hypoth-
esis tested is that the mean score is zero, against the one-sided alternative that
the mean score is positive).

Again, the “sensitivity” criterion described above can be easily generalized
to any cross-validated committees (Parmanto et al., 1996) of any learning
machine. Each variable can be scored by the change in the cross-validation
error after a rerun of the same learning algorithm on the same data with
the variable of interest noised-out (randomly permuted). Significant positive
change in the error would indicate that the variable is important (at least to
a chosen learning scheme).

In classical statistical modeling the importance of each predictor variable
is proportional to its contribution to the variation reduction of the target
variable. For example, in multiple linear regression, the partial R2 gives the
incremental predictive power of each additional input variable measured by the
marginal contribution of an input variable when all others are already included
in the model. To illustrate how the methods described above rank variables we
generated 5000 samples from a simple linear model z = x1+2x2+...+10x10+✏
with independent xi. For this example an input’s partial R2 ⇠ the square of
the corresponding coe�cient.

Figure (7.2) shows the relative variable ranking (compared to the maxi-
mum) for this simple linear model calculated using three methods: RF-ERR,
RF-MSE, GTB. Here, RF-ERR represents the sensitivity-based measure eval-
uated by Random Forest. RF-MSE and GTB are the impurity reduction mea-
sures (7.11) calculated by RF and GTB ensembles, correspondingly. To com-
pare these scores to the “true” linear coe�cient we took the square root of all
scores. All methods rank variables correctly. GTB gives relative scores very
close to the theoretical. RF-MSE also does very well but slightly overestimates
the importance of the least significant predictors. RF-ERR overestimates the
importance of all but the top few predictors.

7.3.2 Variable Importance Ranking, Filtering, and Compactness

In this section we look at the problem of variable-relevance scoring from several
slightly di↵erent angles: variable ranking (where interest is in the relative
relevance score to the target for all input variables), variable filtering (where
we are more interested in separation of irrelevant inputs), best compact subset
(where we want to find a small subset of independent variables with the most
predictive power). We use a simple metric to measure compactness of variable
scoring: the proportion of top ranked variables covering all relevant predictors.

To study these properties of the di↵erent variable importance metrics de-
fined above, we simulated a dataset that conceptually represents an important
class of problems often dealt with in the industrial applications: a large num-
ber of variables with a small number relevant. Among the relevant variables
only a few are highly influential, and the rest are the weak predictors. Input
variables are often correlated.
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Fig. 7.2. Relative variable ranking (square root of the scores) for a simple linear
model z = x1 +2x2 + ...+10x10 + ✏ computed by the sensitivity based measure RF-
ERR, and the impurity-reduction measures calculated by Random Forest (RF-MSE)
and Gradient Tree Boosting (GTB) ensembles.

The data generated had one numeric response, and 203 input variables:
x1, ..., x100 are highly correlated with one another, and are reasonably predic-
tive of the response (R2 ⇠ 0.5); a, b, and c are independent variables that are
much weaker predictors (R2 ⇠ 0.1); y1, ..., y100 are i.i.d. N(0, 1) noise vari-
ables. The actual response variable was generated using z = x1 +a+b+c+✏),
where ✏ ⇠ N(0, 1). Therefore, the best compactness score for our artificial
data is 4/203 ⇠ 0.2%

Consider first the impurity-reduction measures embedded in the tree based
learners. For a single tree (7.8) and its generalization for ensembles (7.11) this
measure strongly depends on the complexity (and the generalizability) of the
model. In the high-dimensional problems even with no predictive relationship,
a single tree would have no problem finding split variables/points. The relative
variable ranking would convey no useful information since the optimal tree
corresponds to a root node. The generalization error would grow with every
split and that would indicate the anomaly in this analysis.

Figure 7.3 shows the variable importance results of fitting a single tree to
the full model z ⇠ a + b + c + x1 + x2 + ... + x100 + y1 + y2 + ... + y100. The
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relative variable ranking is calculated from the optimally-pruned single tree
using the impurity-reduction scores. The left graph corresponds to the variable
importance evaluated over a single tree with no surrogate variables included.
The right graph corresponds to the same tree, but the scores are computed
for all variables that satisfy the surrogate condition �(x⇤|xs) < 0 defined
by (7.10). In both cases the single tree failed to detect the importance of the
weak independent predictors a, b (both have relevance scores 0). The surrogate
method correctly ranked all correlated xs similarly high on the importance list.
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Fig. 7.3. Relative variable ranking computed by CART using impurity reduction
scores. The left graph corresponds to the optimally-pruned tree with no surrogate
variables included. The right graph corresponds to the same tree, but the scores are
computed for all variables that satisfy the surrogate condition �(x⇤|x

s

) < 0 defined
by (7.10). In both cases the single tree failed to detect the importance of the weak
predictors a, b.

Figure 7.4 shows the relative variable ranking computed by Gradient Tree
Boosting (GTB) using impurity-reduction scores. The left graph corresponds
to the standard (tuned) GTB, and the right graph corresponds to GTB with
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dynamic feature selection (GTB-FS). For GTB-FS 50 variables are selected
at every split for every expert-tree in the ensemble. Both provide similar ac-
curacy (with GTB-FS slightly better), but GTB-FS is four times faster. Both
produce very compact importance scores (⇠ 2%), with the bulk of the vari-
ables well separated from a small group of relevant champions. Standard GBT
produced an accurate relative ranking within relevant variables while GTB-
FS upweighted scores for weak predictors a, b, c. In general, in the presence of
correlated predictors a sequential ensemble like GTB (that acts similar to a
forward, stepwise procedure) will produce a more compact representation of
relevant variables than a parallel ensemble where every expert sees practically
the same copy of the data.
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Fig. 7.4. Relative variable ranking computed by Gradient Tree Boosting (GTB)
using impurity-reduction scores. The left graph corresponds to the standard (tuned)
GTB, and the right graph corresponds to GTB with dynamic-feature selection
(GTB-FS). For GTB-FS 50 variables are selected at every split for every expert-tree,
and the variable sampling distribution is modified at every iteration to promote fea-
tures that are more relevant to its learning task from the generalized residuals from
the previous iteration
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Figure 7.5 shows the relative variable ranking computed by RF using the
impurity-reduction measure (7.11). The left graph corresponds to the best
tuned RF, while the right graph corresponds to a very fast RF with only one
variable selected at random at every split. There is no dramatic di↵erence
in generalization error between two forests, but there is noticeable di↵erence
between the two variable rankings. The fast RF gave the least compact rep-
resentation of important variables with noise variables ys having minimum
relative importance around 15%, and weak predictors a, b, c scoring close to
noise. But it seemed to be perfect tool to assess variable masking. The tuned
RF gave accurate relative scores between the top strong predictor x(100%),
weak predictors a, b, c (⇠ 40%), and noise variables ys (< 5%). In terms of the
best subset selection the compactness score of the tuned RF is ⇠ 15%, while
it is close to 50% for the fast one.
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Fig. 7.5. Relative variable ranking computed by RF using the impurity-reduction
scores. The left graph corresponds to the best tuned RF, and the right graph corre-
sponds to a very fast RF with only one variable selected at random at every split.

Figure 7.6 shows the sensitivity-based variable relevance translated to the
z scores generated by RF. Solid and dotted lines represent 5% and 1% sig-
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nificance levels, respectively. Weak, but independent predictors a, b, c show
higher relevance than strong, but highly correlated predictors xs. The incor-
rect relative ranking among the relevant predictors is due to the fact that
there is no predictive “substitutes” for independent variables a, b, c, whereas
the predictive power of xs is uniformly distributed among the 100 variables
by RF. Noise variables ys are seen to have statistically insignificant relevance
to the response. Notice also that the compactness score for this measure is
very good too ⇠ 2%. Also, unlike embedded impurity reduction ranking, the
“honest” sensitivity measure provides a clear statistical cuto↵ point between
noise and useful features. Thus, if the additional computational burden is not
a concern, the sensitivity-based relevance measure seems to do a fine job for
variable filtering (correct ranking order could still be a challenge). It proved
to be a reliable noise filtering mechanism on many real datasets too.
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Fig. 7.6. RF sensitivity-based variable relevance translated to the z scores. The
solid and dotted lines represent 5%/1% significance-level performance. Weak, but
independent predictors a, b, c show higher relevance than strong, but highly correlated
predictors x

s

. Noise variables y
s

show insignificant relevance to the response.

7.4 Bayesian Voting

In Bayesian learning (Gelman et al., 1995) a sampling model P (y|x, ✓) given
the parameters ✓ is defined, and the prior distribution P (✓) that reflects our
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knowledge about the parameters is specified also. After observing the data D
the posterior distribution

P (✓|D) =
P (D|✓)P (✓)
R

P (D|✓)P (✓)
(7.12)

represents the updated knowledge about the model parameters, and is used
for the exact inference (prediction)

P (y|xnew, D) =
Z

P (xnew|✓) · P (✓|D)d✓ (7.13)

The integral in (7.13) is often di�cult to evaluate, and numeric approxima-
tions are employed that use Markov Chain Monte Carlo Methods (MCMC) to
sample from the posterior distribution. Samples are generated from a Markov
chain with a stationary distribution being the desired posterior. There is a
number of MCMC procedures including Gibbs sampling and the Metropolis-
Hastings algorithm for sampling from the posterior. MCMC methods were
discussed by Gillks et al. (1996).

A Gibbs classifier provides a simple approximation to the Bayesian op-
timal classifier. It draws a single sample from the posterior distribution for
the parameter ✓, and then classifies to the class label corresponding to that
parameter. Ng and Jordan (2001) proposed an ensemble of Gibbs classifiers
called Voting Gibbs (VG) that draws m samples from the posterior distribu-
tion and takes a majority vote to make the final prediction. They showed that
the relative error of Voting Gibbs compared to the Bayesian optimal classifiers
decays at the rate of O(1/m). More interestingly in the context of this chap-
ter, it was shown that there is a particular choice of priors that make the VG
algorithm highly resistant to irrelevant features. Moreover, they showed that
the VG algorithm with a particular misspecified prior has sample complexity
that is logarithmic in the number of irrelevant features.

Multi-Layer Perceptrons such as Bayesian Neural Networks carryout inter-
nal feature selection through the Automatic Relevance Determination (ARD)
mechanism (MacKay, 1994, Neal, 1996). ARD uses hierarchical hyperpriors
on the input weights. Conditional on the values of these hyperparameters, the
input weights have independent Gaussian prior distributions with standard
deviations given by the corresponding hyperparameters. If a hyperparameter
specifies a small standard deviation, the e↵ect of the corresponding input vari-
able is likely to be small. Conversely, a larger standard deviation indicates a
likely strong e↵ect. The posterior distribution of these hyperparameters re-
veals an input’s relevance after observing the training data.

A popular trend in Bayesian model (variable) selection is to estimate pos-
terior model probabilities using variable dimension MCMC methods (Green,
1995, Stephens, 2000). These methods allow jumps between models with dif-
ferent dimensionality in the parameters, and therefore sampling includes pos-
terior distributions of input combinations. The variable dimension MCMCs



204 Eugene Tuv

visit models according to their posterior probabilities, and hence the most
probable models are visited in a finite sample. Then the posterior probabili-
ties of the models-input combinations are estimated based on the number of
visits for each model, and the input variables could be ranked based on the
marginal distributions (Vehtari and Lampinen, 2002).

7.5 Discussions

We described ensemble-based variable ranking and filtering methods that
proved to be very e↵ective (the top second and third entry at this feature
selection challenge used Random Forest for variable selection). Despite many
obvious advantages in using tree as a base learner, there are some issues with
using trees for the feature ranking. Trees tend to split on variables with more
distinct values. This e↵ect is more pronounced for categorical predictors with
many levels. It often makes a less relevant (or completely irrelevant) input
variable more “attractive” to split on only because it has high cardinality.
Clearly it could have a strong e↵ect on embedded impurity reduction mea-
sures (7.8),(7.11). It is unlikely that sensitivity based ranking is completely
immune to this problem either. To alleviate this problem some cardinality ad-
justments could be made either during the tree construction process or when
the variable scoring is evaluated over the ensemble. An example of such an
adjustment is the information gain ratio used in some decision tree algorithms.
Another sensible solution would be to factor in the generalizability of a poten-
tial or actual split on a hold-out portion of the data. That would be especially
appropriate for ensembles with dynamic feature selection GTB-FS described
in section 7.2.2 .

As was discussed in section 7.4, the Bayesian framework provides feature
selection as an internal mechanism making it practically insensitive to a poten-
tially very large number of irrelevant inputs. If the variable ranking is of inter-
est, simple and very e�cient, embedded-ensemble-based ranking described in
section 7.3.2 clearly would be a preferred choice compared to a computation-
ally challenging MCMC procedure. The sensitivity-based approach outlined
in section 7.3.2 also would be a preferred approach if one needs to separate
relevant features from the noise. However, if one is interested in a small model
with the same predictive accuracy as a full model, Bayesian variable dimension
MCMC methods provide a ranking of subsets of inputs giving a natural way
to find smaller combinations of potentially useful input variables. The other
ensemble-based methods presented in the chapter (sequential to a lesser de-
gree) have to use some heuristic procedure (like backward elimination) to find
a good small-subset model. However, it is questionable how capable Bayesian
best-subset selection is when the underling model has a set of weak but rel-
evant predictors and many important and highly correlated inputs - MCMC
chain is more likely to visit combinations of inputs with many relevant and re-
dundant inputs. It seems reasonable though that for the best-subset problem
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a sequential ensemble could use a penalization strategy to prevent redundant
variables from entering the model by penalizing the algorithm for adding new
variables.

It is often desirable to understand e↵ects of interactions, interdependencies
(such as masking, etc.) between input variables. In the Bayesian framework
input dependencies could be examined through correlations between ARD
values. Also posterior joint probabilities of inputs could provide insights on
joint predictive e↵ects and dependencies of input variables.

A relatively straightforward and generic approach to rank input interac-
tions could be devised using ensembles of trees, specifically the serial GTB
ensemble described in the section 7.3.2. It is applicable to practically any
supervised settings (including mixed type data). Assume that the ANOVA
decomposition of the target function f(x) is

f(x) =
X

j

fj(xj) +
X

ij

fij(xi,xj) +
X

ijk

fijk(xi,xj ,xk) + ... (7.14)

The first term in the decomposition represents main e↵ects, the second term
has the second-order interactions, etc. In the tree-based ensembles the order
of interactions in the model is controlled by the tree depth (size) (Hastie et al.,
2001). Tree stumps limit an ensemble model to main e↵ects only, trees with
at most three terminal nodes allow second order interactions in the model,
etc. Suppose we would like to rank the predictive importance of second-order
interactions. Given the additive nature of a decomposition it is easy to remove
the main e↵ects by building a model with an ensemble of stumps and taking
residuals. The next step would be building a model for the residuals with an
ensemble of trees of size at most three, and ranking pairs of distinct variables
participating in any consecutive split in terms of impurity reduction score
averaged over the ensemble.

It is also not di�cult to imagine a scheme to evaluate masking e↵ects
for input variables over an ensemble using predictive measure of association
(7.10).
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8.1 Introduction

The theory of fuzzy logic, founded by Zadeh (1965), deals with the linguis-
tic notion of graded membership, unlike the computational functions of the
digital computer with bivalent propositions. Since mentation and cognitive
functions of brains are based on relative grades of information acquired by the
natural (biological) sensory systems, fuzzy logic has been used as a power-
ful tool for modeling human thinking and cognition (Gupta and Sinha, 1999,
Gupta et al., 2003). The perceptions and actions of the cognitive process thus
act on the graded information associated with fuzzy concepts, fuzzy judgment,
fuzzy reasoning, and cognition. The most successful domain of fuzzy logic has
been in the field of feedback control of various physical and chemical processes
such as temperature, electric current, flow of liquid/gas, and the motion of
machines (Gupta, 1994, Rao and Gupta, 1994, Sun and Jang, 1993, Gupta and
Kaufmann, 1988, Kiszka et al., 1985, Berenji and Langari, 1992, Lee, 1990a,b).
Fuzzy logic principles can also be applied to other areas. For example, these
fuzzy principles have been used in the area such as fuzzy knowledge–based
systems that use fuzzy IF–THEN rules, fuzzy software engineering, which
may incorporate fuzziness in data and programs, and fuzzy database systems
in the field of medicine, economics, and management problems. It is exciting
to note that some consumer electronic and automotive industry products in
the current market have used technology based on fuzzy logic, and the per-
formance of these products has significantly improved (Al-Holou et al., 2002,
Eichfeld et al., 1996).

Conventional forms of fuzzy systems have low capabilities for learning and
adaptation. Fuzzy mathematics provides an inference mechanism for approx-
imate reasoning under cognitive uncertainty, while neural networks o↵er ad-
vantages such as learning and adaptation, generalization, approximation and
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fault tolerance. These networks are also capable of dealing with computational
complexity, nonlinearity, and uncertainty. The integration of these two fields,
fuzzy logic and neural networks, has given birth to an innovative technologi-
cal field called fuzzy neural networks (FNNs) (Qi and Gupta, 1991, 1992a,b,
Rao and Gupta, 1994, Jin et al., 1995). Extensive studies have indicated that
FNNs, with the unique capabilities of dealing with numerical data, and linguis-
tic knowledge and information, have the potential of capturing the attributes
of these two fascinating fields—fuzzy logic and neural networks—into a single
capsule, fuzzy neural networks. In view of the robust capabilities of FNNs,
it is believed that they posses a great potential as emulation machines for a
variety of behaviors associated with human cognition and intelligence (Gupta
and Sinha, 1999).

Although much progress has been made in the field of fuzzy neural net-
works (FNNs), there are no universally accepted models of FNNs so far. FNNs
can be defined as distributed parallel information processing schemes that em-
ploy neuronlike processing unit with learning capabilities and fuzzy operations
for dealing with fuzzy signals§. Among such FNNs, two main classes of FNNs
have been studied extensively, and have been proved to have robust capabili-
ties for processing fuzzy information for specified tasks. The first category of
FNNs has fuzzy triangular inputs and outputs, and it implements a mapping
from a fuzzy input set to a fuzzy output set, and has the potential for real-
izing fuzzy logic functions on a compact fuzzy set. The other class of FNNs
deals with crisp input and output signals. However, the internal structure
of this type of FNN contains many fuzzy operations and approximate rea-
soning using the rule-based knowledge framework. It can be expected that
this type of FNNs could implement fuzzy systems for real-world applications.
Studies on the first class of FNNs can be traced back to 1974 (Lee and Lee,
1974), when the concepts of fuzzy sets into neural networks were introduced
for the generalization of the McCulloch–Pitts (Mc-P) model by using inter-
mediate values between zero and one. Various types of fuzzy neurons were
developed using the notions of standard fuzzy arithmetic and fuzzy logic such
as t-norm, t-conorm, and fuzzy implications (Hayashi and Buckley, 1993c,b,a,
1994a, Pedrycz, 1991, 1993). Some applications of this class of FNNs have
been reported (Sun and Jang, 1993, Kosko, 1992, Wang, 1993). Important
contributions have also been made on the universal approximation capabili-
ties of fuzzy systems that can be expressed in the form of FNNs, and genetic
algorithms have also been used in the learning schemes of FNNs (Hayashi and
Buckley, 1994b, Sun and Jang, 1990, Jang, 1992, Kosko, 1994, Pedrycz, 1995,
Mendel and Wang, 1992, 1993, Wang, 1993).

The objective of this chapter is to provide an overview of the basic prin-
ciples, mathematical descriptions, and the state-of-the-art developments of
FNNs. It contains four sections. In Section 8.2 the foundations of fuzzy sets

§This definition is very general and it may cover other approaches combining
fuzzy logic and neural networks (Gupta and Sinha, 1999)
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and systems are briefly reviewed in order to provide the necessary mathe-
matical background. The basic definitions of fuzzy neurons with fuzzy input
signals and weights are introduced in Section 8.3. Both the structures and
learning mechanisms of hybrid fuzzy neural networks (HFNNs) are studied in
Section 8.4. Function approximation capabilities of FNNs are also discussed
in this section. The material presented in this chapter not only provides an
overview of the existing results but also presents some state-of-the-art new
achievements and open problems in the field of fuzzy neural computing.

8.2 Fuzzy Sets and Systems: An Overview

Fuzzy set theory is a generalization of conventional set theory and was intro-
duced by Zadeh in 1965 (Zadeh, 1965, 1972, 1973). It provides a mathematical
tool for dealing with linguistic variables associated with natural languages.
Some introductory definitions of fuzzy sets, fuzzy logic, and fuzzy systems are
reviewed in this section. Systematic descriptions of these topics can be found
in several texts (Zadeh and Bellman, 1977, Prade and Dubois, 1980, Gupta
and Kaufmann, 1985, 1988). A central notion of fuzzy set theory, as described
in the following sections, is that it is permissible for elements to be only partial
elements of a set rather than full membership.

8.2.1 Some Preliminaries

A “fuzzy” set is defined as a set whose boundary is not sharp. Let X = {x}
be a conventional set with generic elements x. A fuzzy set A is characterized
by a membership function µA(x) defined on X, a set of ordered pairs A =
{x, µA(x)} , x 2X, where µA(x) is the grade of membership of x in A, and is
defined as

µA : X ! [0,1] (8.1)

Thus, a fuzzy set A in X can also be represented as

A = {(x, µA(x)) : x 2X} (8.2)

The set X may be either a discrete set with discrete elements or a continuous
set with continuous elements. For instance, X = {1, 2, 3, . . . , 35} is a discrete
set, and X = <+ = [0,+1) is a continuous set. In this case, alternative ways
of expressing a fuzzy set A in a discrete set X = {x1, x2, . . . , xm} are

A = {(x, µA(x)) : x 2X} = {µA(x1)/x1, µA(x2)/x2, . . . , µA(xm)/xm}

=
m
X

i=1

µA(xi)/xi =
X

xi2X
µA(xi)/xi

Similarly, a fuzzy set A of a continuous set X is represented by
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Table 8.1. Fuzzy set–theoretic definitions and operations

Inclusion: A ⇢ B implies that µ
A

(x)  µ
B

(x), 8x 2 X ;

Intersection: A \B, an intersection of A and B, implies that

µ
A\B

(x) = min[µ
A

(x), µ
B

(x)] = µ
A

(x) ^ µ
B

(x)

= A AND B, 8x 2 X

Union: A [B, a union of A and B, implies that

µ
A[B

(x) = max[µ
A

(x), µ
B

(x)] = µ
A

(x) _ µ
B

(x)

= A OR B, 8x 2 X

Complement: A, a complement of A, implies that

µ
A

= 1� µ
A

(x) = NOT A, 8x 2 X ;

A =
Z

X
µA(x)/x

where the signs
P

and
R

do not mean conventional summation and integra-
tion, and ”/” is only a marker between the membership µA(xi) and its element
xi and does not represent division.

A fuzzy set is said to be a normal fuzzy set if and only if

max
x2X

µA(x) = 1

Assume that A and B are two normal fuzzy sets defined on X with mem-
bership functions µA(x) and µB(x), x 2X. The set-theoretic definitions and
operations such as inclusion (⇢), intersection (\), union ([), and the comple-
ment of the two fuzzy sets are defined as follows:

(i) The intersection of fuzzy sets A and B corresponds to the connective
“AND.” Thus, A \B = A AND B.

(ii) The union of fuzzy sets A and B corresponds to the connective “OR.”
Thus, A [B = A OR B.

(iii) The operation of complementation corresponds to the negation NOT.
Thus, A = NOT A.

Fuzzy set operations are summarized in Table 8.1.
Given two sets A and B as shown in Fig. 8.1a, the logic operations listed

above are shown in Figs. 8.1b–8.1d. An example is also given below.

Example 1. Assume X = {a, b, c, d, e}. Let

A = {0.5/a, 0.9/b, 0.7/c, 0.6/d, 1/e}

and

B = {0.7/a, 1/b, 0.8/c, 0.5/d, 0/e}
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(a) Two fuzzy sets A and B
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(b) Intersection: A \B
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(c) Union: A [B

A
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0.5

1.0
A

(d) Complement: A (NOTA)

Fig. 8.1. Some logic operations on fuzzy sets.

Then

A \B = {0.5/a, 0.9/b, 0.7/c, 0.5/d, 0/e}
and

A [B = {0.7/a, 1/b, 0.8/c, 0.6/d, 1/e}
and

A = {0.5/a, 0.1/b, 0.3/c, 0.4/d, 0/e} ⌅

Some other operations of two-fuzzy sets are defined as follows:

(i) The product of two fuzzy sets A and B, written as A ·B, is defined as

µA·B = µA(x) · µB(x), 8x 2X (8.3)

(ii) The algebraic sum of two fuzzy sets A and B, written as A�B, is defined
as

µA�B = µA(x) + µB(x)� µA(x) · µB(x), 8x 2X (8.4)

(iii) A fuzzy relation R between the two (nonfuzzy) sets X and Y is a fuzzy
set in the Cartesian product X ⇥ Y ; that is, R ⇢ X ⇥ Y . Hence, the
fuzzy relation R is defined as

R = {µR(x, y)/(x, y)}, 8(x, y) 2X ⇥ Y (8.5)

For example, a fuzzy relation R between two sets X = {x1, x2, . . . , xm}
and Y = {y1, y2, . . . , yn} can be represented by
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R =
i=m,j=n
X

i=1,j=1

µR(xi, yj)/(xi, yj)

or, a matrix expression of the relation R is

R =

2

6

6

6

6

4

µR(x1, y1) µR(x1, y2) · · · µR(x1, yn)
µR(x2, y1) µR(x2, y2) · · · µR(x2, yn)

...
...

. . .
...

µR(xm, y1) µR(xm, y2) · · · µR(xm, yn)

3

7

7

7

7

5

(iv) The max–min composition of two fuzzy relations R ⇢ X ⇥ Y and S ⇢
Y ⇥ Z, written as R � S, is defined as a fuzzy relation R � S ⇢ X ⇥ Z
such that

µR�S(x, z) = max
y2Y

(µR(x, y) ^ µS(y, z)) (8.6)

for each x 2X, z 2 Z, where ^ = min.
(v) The Cartesian product of two fuzzy sets A ⇢ X and B ⇢ Y , written as

A⇥B, is defined as a fuzzy set in X ⇥ Y , such that

µA⇥B(x, y) = µA(x) ^ µB(y) (8.7)

for each x 2X and y 2 Y .

8.2.2 Fuzzy Membership Functions (FMFs)

The definitions of fuzzy membership functions (FMFs) of fuzzy sets play an
important role in fuzzy set theory and its applications. The following are
several types of fuzzy membership functions on a one-dimensional continuous
space, as illustrated in Fig. 8.2, which are either continuous, or discontinuous
in terms of a finite number of switching points:

(i) Triangular function:

µ(x, a, b, c) = max
✓

min
✓

x� a

b� a
,
c� x

c� b

◆

, 0
◆

, a 6= b and c 6= b (8.8)

(ii) Trapezoidal function:

µ(x, a, b, c, d) = max
✓

min
✓

x� a

b� a
, 1,

d� x

d� c

◆

, 0
◆

(8.9)

a 6= b and c 6= d
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(b) Trapezoidal function, Eqn. (8.9):
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(c) Sinusoidal function, Eqn. (8.10):
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(d) Gaussian function, Eqn. (8.11):
µ(x, 30, 60)
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Fig. 8.2. Examples of some fuzzy membership functions (FMFs), Eqns. (8.8)–(8.13).

(iii) Sinusoidal function:

µ(x, a, b) =

8

<

:

sin(ax� b), if
b

a
 x  ⇡ + b

a
, a 6= 0

0, otherwise
(8.10)

(iv) Gaussian function:
µ(x,�, c) = e�[(x�c)/�]2 (8.11)

where c is a center parameter for controlling the center position of µ(x,�, c)
and � is a parameter for defining the width of µ(x,�, c).
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(v) Generalized bell function:

µ(x, a, b, c) =
1

1 +
�

�

x�c
a

�

�

2b
, with b > 0 (8.12)

(vi) Sigmoidal function:

µ(x, a, c) =
1

1 + exp( �a(x� c) )
(8.13)

where the parameter c determines the position of µ(x, a, c)|x=c = 0.5.

It should be noted that an FMF contains a set of parameters that de-
fine the shape of the membership function. Usually, these parameters can be
predetermined by human experience, knowledge, or known data. However, in
fuzzy-neural systems they can be adapted online according to the specified
environment in order to achieve the optimal performance.

Since the early 1970s, because of the simplicity in their formulations and
computational e�ciency, both triangular and trapezoid functions have been
used extensively as FMFs in fuzzy logical systems (Gupta and Kaufmann,
1985, 1988). However, these two types of FMFs consist of straight line seg-
ments, and are not smooth at the switching points, which are determined by
the preselected parameters. This raises some di�culties for fuzzy neural com-
puting. Some studies have indicated that continuous and di↵erentiable FMFs
such as Gaussian functions, sigmoidal functions, and sinusoidal functions are
good candidates for fuzzy neural computing (Sun and Jang, 1993, Jin et al.,
1994, 1995).

8.2.3 Fuzzy Systems

A fuzzy system with a basic configuration as depicted in Fig. 8.3 has four prin-
cipal elements: fuzzifier, fuzzy rule base, fuzzy inference engine, and defuzzifier.
Without the loss of generality, we will consider here multiinput single-output
fuzzy systems: S ⇢ <n ! <, where S is a compact set.

In such a fuzzy system, the fuzzifier deals with a mapping from the input
space S ⇢ <n to the fuzzy sets defined in S, which are characterized by a
membership function µF : S ! [0,1], and is labeled by a linguistic variable F
such as “small,”“medium,”“large,” or “very large.” The most commonly used
fuzzifier is a singleton fuzzifier, which is defined as follows:

x 2 S ! fuzzy set Ax ⇢ S with µAx(x) = 1, and
µAx(x0) = 0 for x0 2 S and x0 6= x (8.14)

Thus, by defining a membership function of the input, the fuzzifier changes
the range of crisp values of input variables into a corresponding universe of
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Fig. 8.3. A schematic representation of a fuzzy system.

discourse, and converts nonfuzzy (crisp) input data into suitable linguistic
values.

The fuzzy rule base consists of a set of linguistic rules of the following form:
“IF a set of conditions are satisfied, THEN a set of consequences are inferred.”

In other words, a fuzzy rule base is a collection of IF–THEN values. More-
over, we consider in this chapter a fuzzy rule base having M rules of the
following forms

Rj(j = 1, 2, . . . ,M): IF x1 is Aj
1, AND x2 is Aj

2,
AND, . . . , AND xn is Aj

n, THEN y is Bj . (8.15)

where xi(i = 1, 2, . . . , n) are the input variables to the fuzzy system, y is the
output variable of the fuzzy system, and Aj

i and Bj are the linguistic variables
characterized by the fuzzy membership functions µAj

i
and µBj , respectively. In

practical applications, the rules can be extracted from either numerical data or
human knowledge for the problem of concern. A simple example of three rules
for the single-input and single-output case can be given as Rj(j = 1, 2, 3): IF x
is Aj THEN y is Bj , where Aj and Bj are characterized by trapezoidal mem-
bership functions. A1 and B1 are labeled by the linguistic variable “small,”A2

and B2 are “medium,” and A3 and B3 are “large,” respectively, as illustrated
in Fig. 8.4.

Each rule Rj can be viewed as a fuzzy implication

Aj
1 ⇥ · · ·⇥Aj

n ! Bj

which is a fuzzy set in S ⇥< with

µAj
1⇥···⇥Aj

n!Bj (x1, . . . , xn, y) = µAj
1
(x1)⌦ · · ·⌦ µBj (y) (8.16)

for x 2 S and y 2 <. The most commonly used operations for ⌦ are product
and min operations defined as

Product operation: µAj
1
(x1)⌦ µAj

2
(x2) =

h

µAj
1
(x1) · µAj

2
(x2)

i

(8.17)
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Fig. 8.4. An example of the fuzzy IF–THEN rule.

Min operation: µAj
1
(x1)⌦ µAj

2
(x2) = min

h

µAj
1
(x1), µAj

2
(x2)

i

(8.18)

The fuzzy inference engine is a decisionmaking logic that uses the fuzzy rules
provided by the fuzzy rule base to implement a mapping from the fuzzy sets
in the input space S to the fuzzy sets in the output space <. The e�ciency of
a fuzzy inference engine greatly depends on the knowledge base of the system
considered. Let Ax be an arbitrary fuzzy set in S. Then each Rj of the fuzzy
rule base creates a fuzzy Ax �Rj in < based on the sup–star composition:

µAx�Rj = sup
x02S

h

µAx(x0)⌦ µAj
1⇥···⇥Aj

n!Bj (x01, . . . , x
0
n, z)

i

= sup
x02S

h

µAx(x0)⌦ µAj
1
(x01)⌦ · · ·⌦ µAj

n
(x0n)⌦ µBj (z)

i

(8.19)

The defuzzifier provides a mapping from the fuzzy sets in < to crisp points
in <. The following centroid defuzzifier, which performs a mapping from the
fuzzy set Ax � Rj(j = 1, 2, . . . ,M) in < to a crisp point y 2 <, is the most
commonly used method (Mendel 1995), and is defined as follows:

y =

M
X

j=1

cjµAx�Rj (cj)

M
X

j=1

µAx�Rj (cj)

(8.20)
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where cj is the point in < at which µBj (cj) achieves the maximum value
µBj (cj) = 1.

Next, if one assumes that ⌦ is a product operation (product inference),
then for µAx(x) = 1 and µAx(x0) = 0 for all x0 2 S with x0 6= x, replacing ⌦
in Eqn. (8.19) with the conventional product yields

µAx�Rj (cj) = sup
x02S

h

µAx(x0) µAj
1
(x01) · · · µAj

n
(x0n) µBj (cj)

i

=
n
Y

i=1

µAj
i
(xi) (8.21)

Thus, the analytical relationship between the crisp input x and the crisp
output y is

y =

M
X

j=1

cj

 

n
Y

i=1

µAj
i
(xi)

!

M
X

j=1

 

n
Y

i=1

µAj
i
(xi)

! (8.22)

Other types of defuzzifiers, such as a maximum defuzzifier, mean of maxima
defuzzifier, and height defuzzifier, can also be applied to form the mapping
from the crisp input x to the crisp output y 2 <.

It is worth to note that from Eqn. (8.22), one may get a Gaussian kernel
by using the Gaussian membership function given in Eqn. (8.11). However,
a fundamental di↵erence between the kernel method and the fuzzy system is
that the former needs to center the kernels on sample data in general, while the
latter does not need. Also, the fuzzy membership function does not express a
probability of the input, but a possibility of the input. Thus, it is not necessary
that the sum or the integration of the membership function for all the input
values is 1.

8.3 Building Fuzzy Neurons (FNs) Using Fuzzy
Arithmetic and Fuzzy Logic Operations

Integrating the basic mathematics of fuzzy logic discussed in the previous
section and the basic structure of neurons (Gupta et al., 2003), some models
of fuzzy neurons (FNs) are introduced in this section.

8.3.1 Definition of Fuzzy Neurons

When we consider fuzzy uncertainties within neural units, the inputs and/or
the weights of a neuron can be expressed in terms of their membership func-
tions, and several types of fuzzy neurons (FNs) based on fuzzy arithmetic
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and logic operations can be defined. According to the nature of neural inputs
and weights (fuzzy or nonfuzzy), we define the following three types of fuzzy
neurons with fuzzy operations:

(i) FN1 has nonfuzzy neural inputs but fuzzy synaptic weights;
(ii) FN2 has fuzzy neural inputs and nonfuzzy synaptic weights;
(iii) FN3 has fuzzy neural inputs and fuzzy synaptic weights.

Restricting the synaptic weights to fuzzy quantities may avoid deformation
of fuzzy input signals in fuzzy neural computation. Since FN1 and FN2 may
be considered as special cases of FN3, emphasis will be devoted only to FN3,
which will be simply referred to as an FN in the following discussion.

The mathematical operations involved in a conventional neuron are

(i) The weighting of the neural inputs with synaptic weights;
(ii) The aggregation of these weighted neural inputs;
(iii) The nonlinear operation on this aggregation.

The mathematical operations in fuzzy neural networks can be carried out
using either fuzzy arithmetic operations or fuzzy logic operations. In this sec-
tion, we briefly describe fuzzy neurons first using fuzzy arithmetic operations
and then using fuzzy logic operations.

Fuzzy Arithmetic–Based Fuzzy Neurons

The weighting of fuzzy neural inputs using the synaptic weights can be ex-
pressed by fuzzy multiplication, and the aggregation operation of weighted
neural inputs by fuzzy addition, and these modifications lead to a fuzzy neu-
ral architecture. On the basis of fuzzy arithmetic operations, the mathematical
expression of such an FN is given by the following equation

y = � ( (+)n
i=0wi(·)xi ) , x0 = 1 (8.23)

where � is a neural activation function, (+) and (·) respectively are the fuzzy
addition and fuzzy multiplication operators, and w0 is the threshold.

Fuzzy neural inputs and fuzzy synaptic weights are defined on an n-
dimensional hypercube in terms of their membership functions xi and wi,
and are as follows:

x = [x0 x1 x2 · · · xn]T 2 [0,1](n+1), x0 = 1
w = [w0 w1 w2 · · · wn]T 2 [0,1](n+1)

)

(8.24)

Fuzzy Logic–Based Fuzzy Neurons

Alternatively, fuzzy logic operations, using OR, AND, and NOT, or their
generalized versions, can be employed to perform fuzzy neural operations. In
this case, fuzzy logic operations can be expressed by the following two neural
models
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w 0 :AND

w 1 :AND

w 2 :AND

w :AND

OR
-1

1

x12 [0 ; 1]

x22 [0 ; 1]

xn
n

2 [0 ; 1]

y 2 [0 ; 1]

x0= 1

Fig. 8.5. OR–AND-type fuzzy neuron.

(i) OR–AND-type fuzzy neuron (Fig. 8.5):

This type of fuzzy neuron is described by

y = �( ORn
i=0(wi AND xi) )

= �( OR(w0 AND x0, w1 AND x1, . . . , wn AND xn) ) (8.25)

A schematic representation of this neuron is shown in Fig. 8.5. This OR–
AND fuzzy operations–based neuron is similar to that of the conventional
type of neurons (Gupta et al., 2003)

(ii) AND–OR-type fuzzy neuron (Fig. 8.6):

This type of fuzzy neuron is shown in Fig. 8.6, and is described by

y = �( ANDn
i=0(wi OR xi) )

= �( AND(w0 OR x0, w1 OR x1, . . . , wn OR xn) ) (8.26)

This AND–OR-type of fuzzy neuron is similar to that of the radial basis
function (RBF) neurons, and is useful for pattern recognition and other deci-
sionmaking problems. However, only the OR–AND-type of fuzzy neurons is
explored in the following discussions.

w 0 : OR

w 1 : OR

w 2 : OR

wn :OR

AND
-1

1

x12 [0 ; 1]

x22 [0 ; 1]

xn 2 [0 ; 1]

y 2 [0 ; 1]

x0= 1

Fig. 8.6. AND–OR-type fuzzy neuron.
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8.3.2 Utilization of T and S Operators

Definition and Properties

The T operator (t-norm) and S operator (t-conorm), which are generalized
AND and OR operations, respectively, can be employed e↵ectively to deal
with the fuzzy operations given in Eqns. (8.25) and (8.26). Let x1, x2 2 [0,1]
be two triangular fuzzy numbers. The T operator T : [0,1] ⇥ [0,1] ! [0,1]
represents the generalized AND operation, and is defined as

(x1 AND x2)
4= (x1 T x2) = T(x1, x2) (8.27)

Similarly, the S operator S : [0,1] ⇥ [0,1] ! [0,1] represents the generalized
OR operation, and is defined as

(x1 OR x2)
4= (x1 S x2) = S(x1, x2) (8.28)

In fact, a T operator (t-norm) is a nonlinear mapping from [0,1]⇥ [0,1] onto
[0,1]. For three fuzzy numbers x, y, and z 2 [0,1] the T operator satisfies the
following properties

(i) T(x, y) = T(y, x) (commutativity)
(ii) T(T(x, y), z) = T(x,T(y, z)) (associativity)
(iii) T(x1, y1) � T(x2, y2) if x1 � x2 and y1 � y2 (monotonicity)
(iv) T(x, 1) = x (boundary condition)

An S operator (t-conorm) is also a nonlinear mapping from [0,1]⇥ [0,1] onto
[0,1] that di↵ers from a T operator only in the property (iv), the boundary
condition. For the S operator, the boundary conditions are

S(x, 0) = x (8.29)

Some additional properties of the T and S operators are

T(0, 0) = 0, T(1, 1) = 1
S(0, 0) = 0, S(1, 1) = 1

)

(8.30)

Also, using the T and S operators, De Morgan’s theorems are stated as follows:

T(x1, x2) = 1� S(1� x1, 1� x2) (8.31)

and

S(x1, x2) = 1�T(1� x1, 1� x2) (8.32)

Indeed, negation N on x1 2 [0,1] is defined as a mapping

N(x1) = 1� x1 (8.33)

which implies N(0) = 1,N(1) = 0, and N(N(x)) = x.
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Table 8.2. T and S operators on fuzzy variables x and y 2 [0,1]

No. T (x, y): AND operation S (x, y): OR operation N (x)

1 min(x, y) max(x, y) 1� x

2 xy x + y � xy 1� x

3 max(x + y � 1, 0) min(x + y, 1) 1� x

Fuzzy Logic Neuronal Equations

By means of the T and S operators just discussed, the input–output function
y = f(x1, x2, . . . , xn) of the OR–AND fuzzy neuron defined in Eqn. (8.25)
can be represented further as

u = Sn
i=0 [(wi T xi)]

= Sn
i=0 [T(wi, xi)]

= S [T(w0, x0), T(w1, x1), . . . ,T(wn, xn)] 2 [0,1], x0 = 1 (8.34)

and

y = �(u) 2 [0,1], for u � 0 (8.35)

where u 2 [0,1] is an intermediate variable that is introduced to simplify the
mathematical expression of such a fuzzy neural operation. It can be noted that
even if a bipolar activation function �(·) 2 [�1,1] is employed in Eqn. (8.35),
the output y, which is also a fuzzy quantity in terms of the membership grade,
is always located in the unit interval [0,1] because u � 0.

There are many alternative ways to define the expressions for the T and
S operators. However, for simplicity, only the three types of T and S opera-
tors proposed previously are summarized in Table 8.2. Since in fuzzy neural
computing, the operations of the T and S operators defined in Table 8.2 are
often on more than two fuzzy variables, the generalized versions of T and S
operators given in Table 8.2 are provided in Table 8.3 for dealing with n fuzzy
variables x1, x2, . . . , xn 2 [0,1].

According to the three definitions of the T and S operators given in Tables
8.2 and 8.3, we now give the mathematical expressions for three di↵erent types
of OR–AND fuzzy neurons.

Type I (min–max fuzzy neuron):

The operational equation for this type of min–max FN is obtained using the
first type of T and S operators given in Table 8.3 as follows:

u = max
0in

(min(wi, xi))

= max (min(w0, x0),min(w1, x1), . . . ,min(wn, xn)) (8.36)
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Table 8.3. T and S operators for n fuzzy variables x1, x2, . . . , xn

2 [0,1]

No.
T(x1, x2, . . . , xn

)

(AND operation)

S(x1, x2, . . . , xn

)

(OR operation)

1 min(x1, x2, . . . , xn

) max(x1, x2, . . . , xn

)

2
n

i=1

x
i

n

i=1

x
i

�
n

j=1

n

1i1<···<ijn

x
i1 · · ·xij

or equivalently

v1 = x1

v
i

= v
i�1 + x

i

� x
i

v
i�1,

i = 2, 3, . . . , n

x
n

+ v
n�1 � x

n

v
n�1

3

v1 = x1

v
i

= max(v
i�1 + x

i

� 1, 0),

i = 2, 3, . . . , n

max(v
n�1 + x

n

� 1, 0)

min(x1 + x2 + · · ·+ x
n

, 1)

and

y = �(u)

Type II (product–sum fuzzy neuron):

The product–sum fuzzy neuron is of the second type and is expressed by the
following recursive formulations

v0 = w0x0

vi = wixi + vi�1 � wixivi�1, i = 1, 2, 3, . . . , n

u = vn

9

>

=

>

;

(8.37)

and

y = �(u) = �(vn) (8.38)

or equivalently

vi = wixi, i = 0, 1, 2, . . . , n

u =
n
X

i=0

vi �
n
X

j=1

n
X

0i1<i2<···<ijn

vi1vi2 · · · vij

9

>

=

>

;

(8.39)
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and

y = �(u)

For instance, when n = 2, Eqn. (8.37) becomes

v0 = w0x0, x0 = 1
v1 = w1x1 + w0x0 � w1x1w0x0

v2 = w2x2 + w1x1 + w0x0 � w1x1w0x0

� w2x2w1x1 � w2x2w0x0 � w2x2w1x1w0x0

u = v2

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

and

y = �(u) (8.40)

Type III (max–min fuzzy neuron):

The third type of fuzzy neuron is the max–min fuzzy neuron, which is obtained
by using the third type of T and S operators given in Table 8.3.

u = min
⇣

max(w0 + x0 � 1, 0) + max(w1 + x1 � 1, 0) + · · ·

+ max(wn + xn � 1, 0), 1
⌘

= min

 

n
X

i=0

max(wi + xi � 1, 0), 1

!

(8.41)

Noting that since for x1 and x2 2 [0,1]

max(x1 + x2 � 1, 0) = max(x1 + x2, 1)� 1

Eqn. (8.41) can equivalently be expressed as follows:

u = min
⇣

max(w0 + x0, 1)� 1 + max(w1 + x1, 1)� 1 + · · ·

+ max(wn + xn, 1)� 1, 1
⌘

= min

 

n
X

i=0

max(wi + xi, 1)� n, 1

!

(8.42)

and

y = �(u) (8.43)

Example 2. Consider a fuzzy neuron with four inputs x1, x2, x3, and x4 as
shown in Fig. 8.7. Let the nonlinear activation function be a sigmoidal function
�(u) = tanh(u). Using the three types of fuzzy neural operations just discussed
above, the output of the fuzzy neuron can be obtained as given in Table 8.4.

⌅
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x1= 0 :8 T
0.4

T
0.0

x2= 0 :4
T
0.1

x3= 0 :6
T
0.7

x4= 0 :3 T
0.2

õ(Å)

u
S

-1

1 y 2 [0 ; 1]

x0= 1

Fig. 8.7. Example 2: the fuzzy neuron.

Table 8.4. Example 2: output of the fuzzy neurons

Type u Output y = tanh(u)

I: min–max 0.6 0.8090

II: product–sum 0.6441 0.8478

III: max–min 0.5 0.7071

8.4 Hybrid Fuzzy Neural Networks (HFNNs)

The three types of fuzzy neural units discussed in the previous section can be
used to form a class of fuzzy neural networks (FNNs). These FNNs can be
used for nonlinear approximating mappings from the input hypercube [0,1]n
to the output hypercube [0,1]m in a fuzzy logic–based format. Since these FN
models are built by using the standard fuzzy logic, the networks formed by
these FNs are termed regular fuzzy neural networks (RFNNs).

The universal approximation capability of neural networks is one of the
promising advantages for their applications to areas such as identification,
control, and pattern recognition. How well does a neural network approximate
an unknown function? This is an important question that is asked about all
types of neural networks, including multilayered feedforward neural networks
(MFNNs) and dynamic neural networks (DNNs). However, it has been proved
that the RFNNs are not universal approximators (Gupta et al., 2003).

To modify the fuzzy operations in the RFNN so that the universal approxi-
mation capability of the fuzzy neural networks is ensured, some new structures
of fuzzy neurons are discussed in this section.
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8.4.1 Di↵erence-Measure-Based Two-Layered HFNNs

A new architecture of a hybrid fuzzy neural network (HFNN) is shown in
Fig. 8.8, where the HFNN has multiple inputs and a single output, and consists
of an input neural node, one hidden fuzzy neural layer, and an output neural
layer.

In the HFNN, all of the neural inputs are distributed to all the neurons in
the hidden fuzzy neural layer. In such fuzzy neural computing, it is proposed
that this operation can be replaced by a di↵erence measure of the input signal
xi 2 [0,1] and the weight wi 2 [0,1] defined by

d(xi, wi)

(

= 0, if xi = wi

> 0, otherwise
(8.44)

Thus, the output of the neurons in the hidden fuzzy neural layer can be
obtained as follows:

u(1)
i = max ([d(x1, w1),d(x2, w2), . . . ,d(xn, wn)])

= nmax
i=1

( d(xi, wi) ) (8.45)

and

x(i)
i =

(

1, if u(1)
i > ✓(1)

i

0, otherwise
(8.46)

where ✓(1)
i is a threshold associated with the neuron FN(1,i).

There are only two neurons in the output layer. The output of the first
neuron in the output layer is simply the summation of the outputs of all the
neurons in the first layer:

x(2)
1 =

n1
X

j=1

x(1)
j (8.47)

The output of the second neuron in the output layer is a weighted summation
of the form

x(2)
2 =

n1
X

i=1

w(2)
2j x(1)

j (8.48)

Finally, the output of the network is defined as
8

>

<

>

:

x(2)
2

x(2)
1

, if x(2)
1 > 0

0, otherwise
(8.49)
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In this definition all the weights and thresholds are assumed to be triangle
fuzzy numbers. Thus, the operation from the hidden layer to the output layer
deals with a centroid defuzzifier, where the input signals x(1)

1 , x(1)
2 , . . . , x(1)

n1 are
unipolar binary signals (Hayashi and Buckley, 1993a, 1994a). These unipolar
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binary signals can easily be extended to bipolar binary signals as well as to
some modified neural architectures and di↵erent types of fuzzy numbers.

It has been proved that the HFNN described above is a universal approxi-
mator (Hayashi and Buckley, 1993a). However, no related learning algorithm
has been reported to carry out such an approximation.

It is to be noted that the input–output mapping of such an HFNN is
discontinuous since the max operation and hard-limiting functions are used
in forming the input–output mapping. This may cause some di�culties with
the learning phase.

8.4.2 Fuzzy Neurons and Hybrid Fuzzy Neural Networks (HFNNs)

A conventional neuron involves a somatic operation, which is a confluence or
similarity measure operation between the input signals and the corresponding
synaptic weights (Gupta et al., 2003) In the FN model discussed in Section
8.3, this operation was replaced by the T operator. This operation can also be
replaced with a di↵erence measure on the neural input signal xi 2 [0,1] and
the synaptic weight wi 2 [0,1]. This di↵erence measure operation, as discussed
in Section 8.4.1 on two-layered HFNNs and as seen in Eqn. (8.44), is denoted
by d(xi, wi), which satisfies 0  d(xi, wi)  1. For example, d(xi, wi) can be
selected as

d(xi, wi) = |xi, wi|n (8.50)

In the following discussion, we assume that d(xi, wi) is of the quadratic
form

d(xi, wi) = (xi � wi)2 (8.51)

This di↵erence measure operation is then used to replace the T operator in the
fuzzy neuron introduced in Section 8.3. As shown in Fig. 8.9, all these di↵er-
ence measures between the inputs and the associate weights can be combined
by means of the standard S operator.

Thus, the output of such a fuzzy neuron is given by

u = Sn
i=1 ( d(xi, wi) )

= S ( d(x1, w1),d(x2, w2), . . . ,d(xn, wn) ) (8.52)

and, finally, the neural output is given by

y = �(u) (8.53)

Obviously, this type of fuzzy neuron is no longer monotonic in terms of its
fuzzy inputs x1, x2, . . . , xn.

Using this type of fuzzy neuron, a two-layered fuzzy neural network, the
hybrid fuzzy neural network, can easily be formed. The operational equations
of such an HFNN are as follows:
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1

x12 [0 ; 1]

x22 [0 ; 1]

x32 [0 ; 1]

xn 2 [0 ; 1]

y 2 [0 ; 1]

S

d (x1; w1)

d (x2; w2)

d (x3; w3)

d (xn; wn)

u

Fig. 8.9. A fuzzy neuron with the di↵erence measure and S operator, Eqns. (8.52)
and (8.53).

FN(1, i) :

8

>

>

<

>

>

:

u(1)
1 = Sn

`=1

⇣

d
⇣

w(1)
i` , x`

⌘ ⌘

, i = 1, 2, . . . , p

x(1)
1 = �

⇣

u(1)
i

⌘

, i = 1, 2, . . . , p

(8.54)

FN(2, j) :

8

>

>

<

>

>

:

u(2)
j = Sp

q=1

⇣

d
⇣

w(2)
jq , x(1)

q

⌘ ⌘

, i = 1, 2, . . . ,m

yj = �
⇣

u(2)
j

⌘

, i = 1, 2, . . . ,m

(8.55)

It seems that this HFNN has a capability for approximation of functions,
but no strict mathematical proof is currently available as to its universal
approximation for this network. The following example will show that the
HFNN is capable of solving the XOR problem.

Example 3. From this example, it will be seen that a two-variable binary XOR
function y = x1 � x2 can be implemented by a di↵erence-measure-based two-
layered HFNN with two neurons in the hidden layer and one in the output
layer, as shown in Fig. 8.10. In fact, if the S operator is selected as a max
operation, the input–output equation of such a network can be obtained as

u(1)
1 = max{|x1 � 1|, x2}

u(1)
2 = max{x1, |x2 � 1|}
y = max

n

�

�

�

u(1)
1 � 1

�

�

�

,
�

�

�

u(1)
2 � 1

�

�

�

o

The input–output relationship for this HFNN is given in Table 8.5, which
clearly shows an XOR operation of this network.

It is to be noted that in this example, although we have used the S-
operation as a max operation, other types of the S-operation, as tabulated in
Table 8.2, can also be used. ⌅

In addition to the realization of fuzzy XOR operation by HFNNs, an
another architecture, called fuzzy basis function networks (FBFNs), may be
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Table 8.5. Example 3, fuzzy XOR operation

x1 x2 y = x1 � x2

0 0 0

0 1 1

1 0 1

1 1 0

introduced to analyze universal approximation capabilities of fuzzy systems
(Gupta et al., 2003).

Compared to the fuzzy system that has a fuzzifier, a fuzzy rule base, a fuzzy
inference engine, and a defuzzifier discussed in Section 8.2.3 and illustrated
in Fig. 8.3, the fuzzy neural network (FNN) structures discussed so far dealt
only with the fuzzy input signals for a specified task as shown in Fig. 8.11.
On the other hand, an FBFN is used to express an entire fuzzy system in the
context of forming a desired input–output mapping function for crisp signals,
as illustrated in Fig. 8.12.

It has been indicated that if a Gaussian membership function is applied,
the fuzzy system is functionally equivalent to a modified Gaussian network.
Thus, well-known results for the Gaussian network such as online and of-
fline learning algorithms, and universal approximation capabilities might be
employed directly in the design and analysis of fuzzy systems (Gupta et al.,
2003)
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Fig. 8.10. Example 3: a di↵erence-measure-based HFNN with two neurons in the
hidden layer and one neuron in the output layer for the implementation of a two-
variable XOR function, y = x1 � x2.
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Fig. 8.11. A fuzzy neural network (FNN) as a component of a fuzzy system.
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Fig. 8.12. A fuzzy neural network (FNN) implements an entire fuzzy system.

8.4.3 Backpropagation Learning for Hybrid Fuzzy Neural
Networks

The learning procedure for the free parameters in such a neural network is
considered on the basis of the elements of the set of the training patterns.
Given a set of desired data pairs (x(k),y(k)), an error index is defined as

E(k) = 1
2

Pm
j=1

⇥

yd
j (k)� yj(k)

⇤2 = 1
2

Pm
j=1 e2

j (k)

For a two-layered hybrid fuzzy neural network (HFNN) with the operational
equations, Eqns. (8.54) and (8.55), the fuzzy backpropagation (FBP) algo-
rithm is given by the following updating formulations
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where sat(·) is a unipolar saturating function defined as
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In order to derive these updating formulations, the concept of the error par-
tial derivatives �s is introduced below. For such a two-layered fuzzy neural
structure these intermediate variables are denoted as

�(1)i
4= � @E

@u(1)
i

, i = 1, 2, . . . , p (8.61)

�(2)j
4= � @E

@u(2)
j

, j = 1, 2, . . . ,m (8.62)

where �(1)i is the partial derivative of FN(1, i) and �(2)j is that of FN(2, j).
Therefore, Eqns. (8.59) and (8.60) can be represented as
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It is seen that the definition of these partial derivatives not only keeps the
derivation simple but also plays an important role in the final learning formu-
lations. It is easy to derive the �s for the output neurons as follows:
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0
⇣

�(2)j

⌘

(8.65)

For simplicity, assume that the S operator is defined as a max operation
in the following derivation. Then
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Thus, the updating formulations for the weights in the output layer are ob-
tained as follows:

w(2)
jq (k + 1) =

8

>

>

>

>

>

<

>

>

>

>

>

:

sat
⇣

w(2)
jq (k) + ⌘2�

(2)
j

⇣

w(2)
jq (k)� x(1)

q (k)
⌘⌘

,

if u(2)
j =

⇣

w(2)
jq � x(1)

q

⌘2

w(2)
jq (k), otherwise

(8.67)
The next task is to derive the updating formulations for the weights asso-

ciated with the hidden neurons. To do so, we first deal with the �s associated
with the hidden neurons. By means of the chain law, Eqn. (8.61) can be rep-
resented as
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Noting the relationship between u(2)
j and x(1)

i given by Eqn. (8.66), the fol-
lowing partial derivative formulations can be obtained:
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In this case, the weight updating formulations are obtained as follows
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The fuzzy backpropagation (FBP) algorithm obtained above has a two-
way information transfer. First the input fuzzy signals are calculated in the
feedforward path and then the error signals that are used for updating the
process are produced in the backward path. In other words, the input signals
are processed starting from the input layer to the output layer. The error
signals are calculated in the output layer and then propagated to the lower
neural layers. The term backpropagation is used here to reflect this interesting
fact.

8.5 Concluding Remarks

Fuzzy neural networks (FNNs) incorporate both neural networks and fuzzy
mathematics. A neural network is a computational network that has some
special characteristics such as learning, adaptation, and generalization. On
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the other hand, fuzzy mathematics has the capacity for processing the ap-
proximate reasoning and knowledge based information by using fuzzy logic
operations. FNNs retain the advantages of both of these two structures and
are capable of dealing with both numerically expressed and knowledge-based
information. In practice, the learning and adaptation mechanisms of FNNs
can enhance the approximate reasoning power of fuzzy systems.

Neural structures employing fuzzy logic operations, such as t-norm, t-
conorm, and fuzzy implications, can be used for classification, approximation,
and rule generation. Although the various definitions of t-norm and t-conorm
could give di↵erent mathematical descriptions for a network mechanism, the
final results of the mapping realized by the network are quite similar. This
suggests that more attention to this type of FNN should be placed on hybrid
fuzzy neural networks (HFNNs), which may have functional approximation
capability. Also, fuzzy backpropagation (FBP) learning algorithms and ge-
netic algorithms can be applied e↵ectively to tune the parameters in such
a fuzzy network using the data or online sensor measurements. On the other
hand, fuzzy basis function networks (FBFNs) can be used to express fuzzy sys-
tems such that the learning and adaptation capabilities are easily enhanced
for adapting both system parameters and membership functions. Both the
gradient descent technique-based online learning schemes and clustering, and
the generalized inverse approaches-based o✏ine approaches can be employed
in the learning of FBFNs to perform tasks such as modeling, control, and
pattern recognition.

The purpose of this chapter is to help the reader learn not only the exist-
ing results in the field but also the state-of-the-art achievements. The topics
studied in this chapter cover definition, structure, mathematical models, and
learning and adaptation mechanisms of FNNs. The materials reported here
form a basis for applications such as fuzzy modeling and control, pattern
recognition, and fuzzy neural reasoning. Behind the foundations presented in
this chapter, the advanced topics such as fuzzy genetic algorithms, dynamic
fuzzy neural structures, and real-time implementations of FNNs have also
been studied extensively since the mid-1990s. However, these topics are not
discussed in this chapter. An extensive list of references in some literature
(Gupta et al., 2003) will help the readers explore this field in more detail.
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Summary. We organized in 2003 a benchmark of feature selection methods, whose
results are summarized and analyzed in this chapter. The top ranking entrants of the
competition describe their methods and results in more detail in the following chap-
ters. We provided participants with five datasets from di↵erent application domains
and called for classification results using a minimal number of features. Participants
were asked to make on-line submissions on two test sets: a validation set and a “fi-
nal” test set, with performance on the validation set being presented immediately
to the participant and performance on the final test set presented at the end of the
competition. The competition took place over a period of 13 weeks and attracted
78 research groups. In total 1863 entries were made on the validation sets during
the development period and 135 entries on all test sets for the final competition.
The winners used a combination of Bayesian neural networks with ARD priors and
Dirichlet di↵usion trees. Other top entries used a variety of methods for feature se-
lection, which combined filters and/or wrapper or embedded methods using Random
Forests, kernel methods, neural networks as classification engine. The classification
engines most often used after feature selection are regularized kernel methods, in-
cluding SVMs. The results of the benchmark (including the predictions made by the
participants and the features they selected) and the scoring software are publicly
available. The benchmark is available at http://www.nipsfsc.ecs.soton.ac.uk/
for post-challenge submissions to stimulate further research.

9.1 Introduction

Section I provided the reader with a variety of tools to address feature selection
problems. Section II puts these tools to work in the context of a benchmark
of classification problems. The reader has the opportunity of comparing the
relative strengths and weaknesses of the methods and trying to match or
outperform the results obtained by the competitors, since the benchmark is

http://www.nipsfsc.ecs.soton.ac.uk/
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still open for submissions. The results of the competition were reported and
discussed at the NIPS 2003 workshops (Guyon et al., 2005, to appear) and
are presented here in more details.

Many data repositories including the well known UCI Machine Learning
repository (Murphy and Aha, 1994), and dozens of other sites (Kazakov et al.)
provide other opportunities for testing new ideas. Yet, the proliferation of
datasets combined with the creativity of researchers in designing experiments
makes it di�cult to compare one method with another (LaLoudouana and
Tarare, 2002). Our benchmark provides a framework that is limited in scope
(two-class classification problems), but facilitates making comparisons and
deriving conclusions. We summarize the main findings:

• Feature selection can be performed e↵ectively. Even though some
of the best entries use all the features, there is always another entry close
in performance, which uses only a small fraction of the original features.
Using a scoring method that favors small feature sets when performance
is not statistically significantly di↵erent, 7 out of the 10 winning entries
use feature selection.

• Eliminating meaningless features is not critical. By design, our
datasets include many irrelevant “distracters” features: We have purposely
added a large fraction of features whose values are distributed similarly
to the real features but carry no information about classification task. In
contrast with redundant features, which may not be needed to improve
accuracy but carry information, those distracters are “pure noise” and can
only hurt classification performance. Surprisingly, some of the best entries
of the benchmark use all the features.

• Filter methods are powerful. For many years, filter methods have dom-
inated feature selection for computational reasons. It was understood that
wrapper and embedded methods are more powerful, but too computation-
ally expensive. Some of the top ranking entries use one or several filters as
their only selection strategy. A filter as simple as the Pearson correlation
coe�cient proves to be very e↵ective, even though it does not remove fea-
ture redundancy and therefore yields unnecessarily large feature subsets.
Other entrants combined filters and embedded methods to further reduce
the feature set and eliminate redundancies.

• Embedded methods are preferred over wrappers. Wrapper meth-
ods were not used by any of the top entrants. Some of the top entrants
used embedded method to add or eliminate features in the process of
learning. For instance, Bayesians use an Automatic Relevance Determi-
nation (ARD) prior (MacKay, 1994, Neal, 1996) as a form of backward
elimination. Users of ensembles of tree classifiers (like Random Forests)
performed forward selection or feature ranking. Only very few of the top
entrants used search strategies more sophisticated than forward selection
or backward elimination.
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• Non-linear classifiers do not necessarily overfit. Several challenge
datasets included a very large number of features (up to 100,000) and only
a few hundred examples. Therefore, only methods that avoid overfitting
can succeed in such adverse aspect ratios. Not surprisingly, the winning
entries use as classifies either ensemble methods or strongly regularized
classifiers. More surprisingly, non-linear classifiers often outperform linear
classifiers. Hence, with adequate regularization, non-linear classifiers do
not overfit the data, even when the number of features exceeds the number
of examples by orders of magnitude.

• Some methods are both e↵ective and versatile. Although the chal-
lenge datasets were all restricted to be two class problems, they were se-
lected to have a wide range of characteristics: the features were binary
or continuous, they were both sparse and non-sparse, the classes were
balanced in number of examples or strongly unbalanced, the number or
training examples ranged from 100 to 6000, the number of features ranged
from 500 to 100,000, and the ratio of number of examples to number of fea-
tures ranged from 8:1000 to 4:1. By asking participants to enter results on
all five datasets, we could identify several versatile methods, including the
Bayesian neural networks and regularized kernel methods, like regularized
least squares and SVMs. Some methods perform better for specific prob-
lems. For instance the Dirichlet Di↵usion Tree method proved e�cient in
exploiting the clustered structure of the Arcene data that was obtained
by merging data from several sources.

• Unsupervised dimensionality reduction works. Principal Compo-
nent Analysis was successfully used by several researchers to reduce the di-
mension of input space down to a few ten features, without any knowledge
of the class labels. This was not harmful to the prediction performances
and greatly reduced the computational load of the learning machines.

In Section 9.2, we provide some details on the benchmark design. The
datasets and their formatting is further described in Appendix C. In Sec-
tion 9.3 we analyze the benchmark results. The complete result tables are
presented in Appendix D. Fact sheets summarizing the characteristic of the
top ranking entries are found in Appendix C. We also provide supplementary
information on our web site: http://clopinet.com/isabelle/Projects/
NIPS2003/analysis.html.

9.2 Benchmark design

9.2.1 Synopsis

We formatted five datasets (Tables 9.1 and 9.2) from various application do-
mains in a standard text format. All datasets are two-class classification prob-
lems. The data are split into three subsets: a training set, a validation set, and

http://clopinet.com/isabelle/Projects/NIPS2003/analysis.html
http://clopinet.com/isabelle/Projects/NIPS2003/analysis.html
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a test set. All three subsets were made available at the beginning of the bench-
mark, on September 8, 2003. The class labels for the validation set and the
test set were withheld. The identity of the datasets and of the features (some
of which were random features artificially generated) were kept secret. The
participants could submit prediction results on the validation set and get their
performance results and ranking on-line for a period of 12 weeks. On Decem-
ber 1st, 2003, the participants had to turn in their results on the test set.
The validation set labels were released at that time. On December 8th, 2003,
the participants could make submissions of test set predictions, after having
trained on both the training and the validation set.

9.2.2 Challenge format

We gave to our benchmark the format of a challenge to stimulate participa-
tion. We made available a web-based automatic system to submit prediction
results and get immediate feed-back, inspired by the system of the NIPS2000
and NIPS2001 unlabelled data competitions (S. Kremer et al., 2000-2001).
However, unlike what had been done for the unlabelled data competitions,
the subset of the data called “validation set”was used during the development
period, and the separate “test set” was used for final scoring.

During development participants could submit validation results on any of
the five datasets proposed (not necessarily all). But at the challenge deadline
results on all five independent test sets had to be returned. This avoided a
common problem of “multiple track” benchmarks in which hardly any conclu-
sion can be drawn because too few participants enter each track.

To promote collaboration between researchers, reduce the level of anxiety,
and let people explore various strategies (e.g. “pure” methods and “hybrids”),
we allowed participating groups to submit a total of five final entries on De-
cember 1st and five entries on December 8th.

Our format was very successful: it attracted 78 research groups who com-
peted for 13 weeks and made a total of 1863 entries. Twenty groups were
eligible for being ranked on December 1st (56 submissions), and 16 groups on
December 8th (36 submissions). Our feature selection benchmark residing on
the web site http://www.nipsfsc.ecs.soton.ac.uk/results/ remains active as a
resource for researchers in feature selection.

9.2.3 Choice of the theme and the datasets

As of 1997, when a special issue on relevance including several papers on vari-
able and feature selection was published (Blum and Langley, 1997, Kohavi and
John, 1997), few domains explored used more than 40 features5. The situation

5In this paper, we do not make a distinction between features and variables. The
benchmark addresses the problem of selecting input variables. Those may actually
be features derived from the original variables using a preprocessing step.
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Table 9.1. NIPS 2003 challenge datasets. We show for the various datasets their
type (dense, sparse, or sparse binary), and number of features, training examples,
validation examples, and test examples. All problems are two-class classification
problems.

Dataset Domain Type # Feat. # Tr. # Val. # Te.

Arcene Mass Spec. Dense 10000 100 100 700

Dexter Text categorization Sparse 20000 300 300 2000

Dorothea Drug discov. Sp. bin. 100000 800 350 800

Gisette Digit recog. Dense 5000 6000 1000 6500

Madelon Artificial data Dense 500 2000 600 1800

has changed considerably in the past few years: in the 2003 special issue edited
by one of the authors for JMLR (Guyon and Elissee↵, 2003), most papers ex-
plore domains with hundreds to tens of thousands of variables or features.
The applications are driving this e↵ort: bioinformatics, cheminformatics, text
processing, speech processing, and machine vision provide machine learning
with problems in very high dimensional spaces, but often with relatively few
examples (hundreds).

Performing feature selection may have various motivations. Like for other
space dimensionality reduction methods, the goals of feature selection include:
compressing data, improving prediction performance, and visualizing data.
But, the goals of feature selection also include: data understanding, reducing
the number of measurements, reducing the storage requirements, and reducing
training and utilization times.

The necessary computing power to handle large datasets is now available in
simple laptops, so there is a proliferation of solutions proposed for such prob-
lems. Yet, there does not seem to be an emerging unity, be it from the stand-
point of experimental design, algorithms, or theoretical analysis. We formatted
five datasets for the purpose of benchmarking variable selection algorithms in
a controlled manner (Guyon, 2003) (see Table 9.1). The datasets were chosen
to span a variety of domains: cancer prediction from mass-spectrometry data,
handwritten digit recognition, text classification, and prediction of molecular
activity, used in drug discovery. One dataset is artificial. We chose datasets
that had su�ciently many examples to create a large enough test set to obtain
statistically significant results. The input variables are continuous or binary,
sparse or dense.

To prevent researchers familiar with the datasets to have an advantage, we
concealed the identity of the datasets during the benchmark and we disguised
the datasets as explained in the next section.
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9.2.4 Data preparation

The details of data preparation can be found in Appendix B. The data prepa-
ration was designed to facilitate classification (by extracting features), disguise
the datasets and compress them, facilitate performance assessment (by adding
meaningless features), and facilitate importing data into various platforms. We
examine each aspect of our design and summarize some statistics in Table 9.2
showing the variety of the resulting tasks.

Dataset profiles

We briefly describe the datasets we are using:

• Arcene: Arcene is a biomedical application. The task is to separate
cancer samples from normal samples, using mass-spectra of blood serum.
Three datasets from two sources (NCI and EVMS) were merged (E. F. Pet-
ricoin III et al., 2002, Adam Bao-Ling et al., 2002). All used the same
SELDI instrument. Two datasets included prostate cancer samples and
one included ovarian cancer samples. The NCI ovarian cancer data con-
sist of 253 spectra (162 cancer, 91 control), and 15154 features. The NCI
prostate cancer data consist of 322 spectra (69 cancer, 253 control), and
15154 features. The EVMS prostate cancer data consist of 652 spectra
from 326 samples (167 cancer, 159 control), and 48538 features. The spec-
tra preprocessing included mass-alignment and baseline removal. The re-
sulting features are normalized spectral intensities for the various mass
over charge values.

• Dexter: Dexter is a text categorization application. The task is to iden-
tify texts about“corporate acquisitions”. The data were originally collected
and labeled by Carnegie Group, Inc. and Reuters, Ltd. in the course
of developing the CONSTRUE text categorization system. The partic-
ular subset of texts used was assembled and preprocessed by Thorsten
Joachims (Joachims, 1998). The data contains 1300 texts about corporate
acquisitions and 1300 texts about other topics, and 9947 features repre-
senting frequencies of occurrence of word stems in text.

• Dorothea: Dorothea is a drug discovery application. The task is to
identify compounds that bind to a target site on thrombin, a key receptor
in blood clotting. The data were provided by DuPont Pharmaceuticals
Research Laboratories for the KDD Cup 2001. It includes 2543 compounds
tested for their ability to bind to thrombin; 192 ŞactiveŤ (bind well); the
rest ŞinactiveŤ. The 139,351 binary features describe three-dimensional
properties of the molecule.

• Gisette: Gisette is a handwritten digit recognition application. The task
is to separate two confusable classes: four and nine. The data were origi-
nally compiled by NIST and are made available by Yann Le Cun (LeCun).
The dataset includes 13500 digits size-normalized and centered in a fixed-
size image of dimension 28x28. We selected one di�cult two-class separate
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Table 9.2. Range of task di�culty. We show for the various datasets their
sparseness (fraction of zero values), whether the features are binary or continuous,
the ”aspect ratio” of the data that is the ratio of the number of features to the
number of training examples, the fraction of probes in the original feature set, and
the number of clusters per class.

Dataset Sparseness Binary #Feat/#Tr Fprobe Cluster

Arcene 0.50 No 100 0.30 > 3

Dexter 0.995 No 67 0.503 -

Dorothea 0.99 Yes 125 0.50 -

Gisette 0.87 Almost 0.83 0.50 1-2?

Madelon < 0.01 No 0.25 0.96 16

(separating the digits “four” from “nine”) and added to the pixels features
that are products of pixels in the region of the image that is most infor-
mative.

• Madelon: Madelon is an artificial task inspired by Perkins et al. (Perkins
et al., 2003). Gaussian clusters are positioned on the vertices of a hyper-
cube and labelled randomly. We used a hypercube in five dimensions with
thirty-two clusters of points (16 per class). Five redundant features were
added, obtained by multiplying the useful features by a random matrix.
Some of the previously defined features were repeated to create 10 more
features. The other 480 features are drawn from a Gaussian distribution
and labelled randomly. The data were distorted by adding noise, flipping
labels, shifting and rescaling. The program of data generation is provided
in Appendix B (Guyon, 2003).

Data modifications and formatting

The datasets were modified by introducing a number of meaningless features
called probes. Such probes have a function in performance assessment: a good
feature selection algorithm should eliminate most of the probes. For each
dataset we chose probes according to a distribution that resembles that of the
real features. For Arcene, the probes were obtained by randomly permuting
the intensity values (across all examples) in the least informative regions of
the spectra. For Dexter, we added random probes drawn according to Zipf’s
law. For Dorothea, we ranked the features according to their correlation to
the target and permuted the values of the 50000 least informative across all
examples. For Gisette, we created additional features that were products of
pixels and permuted their values across examples. For Madelon, the probes
were drawn from a Gaussian distribution. Details are found in Appendix B.
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The number of features ended up being very di↵erent from the original
one, making the datasets more di�cult to recognize. To further disguise the
dataset, we sometimes eliminated a few patterns to round the number of
examples. We randomized the order of the features and the patterns. Finally,
non-binary features were shifted, scaled and rounded to obtain 1000 integers
in the range 0 to 999, for ease of encoding them in ASCII and subsequently
compressing them. Although the formats are trivial to read, we also provided
sample Matlab code to read the file.

Performance assessment was facilitated by the randomization of examples
(patterns). This ensured that training, validation, and test set would be sim-
ilarly distributed. We ran preliminary classification experiments to estimate
the best error rate that could be obtained. We reserved a test set of su�cient
size to provide statistically significant results using a simple scheme based
on well-known error bounds (Guyon et al., 1998): the test set size should be
100/E, where E is the error rate of the best classifier. We verified a posteriori
that our estimates were good: According to the McNemar test, there were
always at least a pair of entries with results statistically significantly di↵erent
in the top ten entries (in spite of the high correlation between entries due to
the fact that each group could submit 5 entries).

9.2.5 Result format and performance assessment

We asked the participants to return files containing the class predictions for
training, validation, and test sets for all five tasks proposed, and the list of
features used. Optionally, classification confidence values could be provided.
During the development period, submissions with validation set results on one
or more tasks were accepted. But a final entry had to be a full submission.

The performances were assessed with several metrics:

• BER: The balanced error rate, that is the average of the error rate of the
positive class and the error rate of the negative class. This metric was used
because some datasets (particularly Dorothea) are unbalanced.

• AUC: Area under the ROC curve. The ROC curve is obtained by varying a
threshold on the discriminant values (outputs) of the classifier. The curve
represents the fraction of true positive as a function of the fraction of false
negative. For classifiers with binary outputs, BER=1-AUC.

• Ffeat: Fraction of features selected.
• Fprobe: Fraction of probes found in the feature set selected.

We ranked the participants with the test set results using a score combining
BER, Ffeat and Fprobe as follows:

• Make pairwise comparisons between classifiers for each dataset:
– Use the McNemar test to determine whether classifier A is better than

classifier B according to the BER with 5% risk. Obtain a score of 1
(better), 0 (don’t know) or Ű1 (worse).
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– If the score is 0, break the tie with Ffeat if the relative di↵erence is
larger than 5%.

– If the score is still 0, break the tie with Fprobe.
• The overall score for each dataset is the sum of the pairwise comparison

scores (normalized by the maximum achievable score, that is the number
of submissions minus one).

• The global score is the average of the dataset scores.

With this scheme, we obtain positive or negative scores. Even a score of
zero is good, because out of the 75, only 20 self-selected participants decided to
make final submissions on December 1st and 16 on December 8th. The scheme
favors accuracy over compactness of the feature set. Still some top ranking
entries have very compact feature sets. One advantage of our scheme is that
it has only 2 parameters (the risk of the test and the threshold for Ffeat) to
which scoring is relatively insensitive. One disadvantage is that the scoring
changes when new classification entries are made in the challenge. However,
we found that the five top ranking groups are consistently ranked at the top
and in the same order under changes of the set of submissions.

9.3 Challenge results

9.3.1 Participant performances

The winners of the benchmark (both December 1st and 8th) are Radford Neal
and Jianguo Zhang, with a combination of Bayesian neural networks and
Dirichlet di↵usion trees. Their achievements are significant since they win on
the overall ranking with respect to our scoring metric, and also with respect
to the balanced error rate (BER), the area under the ROC curve (AUC), and
they have the smallest feature set among the top entries that have performance
not statistically significantly worse. They are also the top entrants December
1st for Arcene and Dexter and December 1st and 8th for Dorothea.

The scores of the best entries are shown in Table 9.3 and are further com-
mented upon in Section 9.3.2. The full result tables are found in Appendix D.

BER distribution

In Figure 9.1 we show the distribution of the BER performance obtained
throughout the development period on the validation set. We plotted results
on the validation set because many more entries were made on the valida-
tion set only. This allows us to compare the di�culty of the five tasks of the
benchmark. The Gisette dataset is the easiest one to learn and has also
the smallest variance among participants. Next come Dexter. The Arcene
and Dorothea datasets are harder and show a lot of variance among par-
ticipants. This could be attributed to particular di�culties of these datasets:
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Arcene was obtained by grouping data from several sources and Dorothea
has strongly unbalanced classes. Finally, the Madelon datasets has a bimodal
performance distribution. This property of the disdribution may be traced to
the fact that Madelon is a very non-linear problem requiring feature se-
lection techniques that do not select features for their individual predictive
power. The worst performing methods may have failed to select the informa-
tive features or may have used linear classifiers.
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Fig. 9.1. Distribution of validation set balanced error rate (BER).

Error bars

The test set sizes were computed to obtain reasonable error bars on the pre-
diction errors, with the empirical formula M ·E = 100, where M is the number
of test examples and E is the error rate (Guyon et al., 1998). Not knowing
in advance what the best error rate would be, we made rough estimates. A
posteriori, we can verify that the test set sizes chosen give us acceptable error
bars. For simplicity, we treat the balanced error rate (BER) as a regular error
rate and calculate error bars assuming i.i.d. errors using the Binomial distribu-
tion. This gives us a standard error of

p

(BER(100�BER))/M (in percent),
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which we use as error bar. For every data set, such error bars are around 10%
of the BER. The value of M ·E is also not far from our target value 100 that
we anticipated (Table 9.4). Having a large enough number of test examples
allowed us making reliable comparisons between classifiers and assessing the
significance of the di↵erence in balanced error rates with statistical tests. The
McNemar test at 5% risk always uncovered at least one significant di↵erence
in the top ten ranking entries for every dataset and for both submissions of
December 1st and 8th (see the tables in appendix).

Model selection

Several participants used their performance on the validation set as an indi-
cator of how well they would perform on the test set. This method of model
selection proved to be accurate, since the ranking of the best challengers has
changed little when the final performance was computed with the test set.
We show in Table 9.5 the validation set error bars computed in the same way
we computed the test set error bars. Clearly, the error bar for the Arcene
validation set makes it unfit for model selection. Indeed, we computed the
correlation between the validation set BER and test set BER of all the entries
submitted during the development period and found a poor correlation for the
Arcene dataset. Neal and Zhang report on their paper having been mislead
by the validation set error rate in their Arcene submission.

E↵ectiveness of feature selection

One of the main question the benchmark attempted to answer is whether
feature selection is harmful or useful to prediction performance and, if harm-
ful, whether one can significantly reduce the number of features without sig-
nificantly reducing performance. To answer this question, we examined the
smallest fraction of features used as a function of the BER obtained by the
participants. To assess the significance, we used the error bars (sigma) com-
puted in Table 9.4. Our observations are:

• Dexter. The winning entries of both dates have the smallest BER and a
significantly reduced feature set.

• Gisette. The winning entries of both dates are within one sigma of the
smallest BER entry and also correspond to a significant reduction in the
number of features.

• Madelon. Entries were made that are within 2 sigma of the best entry
and use only 8 features (the true dimensionality of the problem is 5, only
20 redundant features are relevant).

• Arcene. The December 8 winners succeeded in reducing significantly the
number of features within one sigma of the best performance.

• Dorothea. The winning entries use all the features.
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We show in Tables 9.6 and 9.7 the statistics of the winning entries. We
notice that the reduced feature sets eliminated most of the random probes. In
conclusion, even though some classifiers can accommodate large numbers of
irrelevant features, it is possible to get rid of those irrelevant features without
significantly degrading performance.

Performance progress in time

We investigated how the participants progressed over time. In Figure 9.2, we
show the evolution of the balanced error rate on the test set. We see that except
for a last minute improvement during the final submission, the performance
remained steady after about a month, in spite of the fact that the number
of entrants kept increasing. The performances on the validation set evolved
slightly di↵erently. After about 2 months, there seemed to be an improvement
for Arcene and Dorothea. But this improvement is not reflected by an
improvement on the test set. Therefore, we might trace it to a problem of
overfitting.
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9.3.2 Methods employed

We performed a survey of the methods employed among the contributer of this
book, who are all among the top ranking participants. Since a wide variety of
methods were employed, we grouped them into coarse categories to be able
to draw useful conclusions. The results are listed in Table 9.3. Our findings
include:

• Feature selection. Although the winners and several top ranking chal-
lengers use a combination of filters and embedded methods, several high
ranking participants obtain good results using only filters, even simple
correlation coe�cients. The second best entrants use Random Forests (an
ensemble of tree classifiers) as a filter. Search strategies are generally un-
sophisticated (simple feature ranking, forward selection or backward elim-
ination.) Only 2 out of 17 in our survey used a more sophisticated search
strategy. The selection criterion used is usually based on cross-validation.
A majority use K-fold, with K between 3 and 10. Two groups (including
the winners) made use of “random probes” that are random features pur-
posely introduced to track the fraction of falsely selected features. One
group used the area under the ROC curve computed on the training set.

• Classifier. Although the winners use a neural network classifier, kernel
methods are most popular: 12/17 in the survey. Of the 12 kernel methods
employed, 8 are SVMs. In spite of the high risk of overfitting, 8 of the
12 groups using kernel methods found that Gaussian kernels gave them
better results than the linear kernel on Arcene, Dexter, Dorothea, or
Gisette (for Madelon all best ranking groups used a Gaussian kernel).

• Ensemble methods. Some groups relied on a committee of classifiers
to make the final decision. The techniques to build such committee in-
clude sampling from the posterior distribution using MCMC (Neal, 1996)
and bagging (Breiman, 1996). The groups that used ensemble methods
reported improved accuracy, except Torkkola and Tuv, who found no sig-
nificant improvement.

• Transduction. Since all the datasets were provided since the beginning
of the benchmark (validation and test set deprived of their class labels),
it was possible to make use of the unlabelled data as part of learning
(sometimes referred to as transduction (Vapnik, 1998)). Only three groups
took advantage of that, including the winners.

• Preprocessing. Centering and scaling the features was the most common
preprocessing used. Some methods required discretization of the features.
One group normalized the patterns. Principal Componant Analysis (PCA)
was used by several groups, including the winners, as a means of construct-
ing features.
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9.4 Post-challenge verifications

In this section, we provide the results of some experiments conducted after
the end of the competition to verify some of the observations made and verify
the validity of the entries.

9.4.1 Verification of the observations

We conducted a limited set of experiments to strengthen the conclusions of
the previous section.

In a first set of experiments, we selected fifty entries (five for each dataset
for each submission date), which o↵ered reduced feature sets (of the order
of 10% of the total number of features or less. We trained an SVM with a
choice of preprocessing and hyperparameters and selected the best one by 10-
fold cross-validation. The details about our experimental setup are found in
Appendix A.

Linear vs. non-linear classifier

We verified empirically the observation from the challenge results that non-
linear classifiers perform better than linear classifiers by training an SVM on
feature subsets submitted at the benchmark.

For each dataset, across all 10 feature sets (5 for December 1st and 5 for
December 8th), for the top five best classifiers obtained by hyperparamenter
selection, we computed statistics about the most frequently used kernels and
methods of preprocessing.6 In Table 9.9, we see that the linear SVM rarely
shows up in the top five best hyperparameters combinations.

Preprocessing

We used three methods of preprocessings:

• prep1 = feature standardization: Each feature was separately stan-
dardized, by substracting its mean and dividing by the standard deviation.
To avoid dividing by too small values, the standard deviation was aug-
mented by a fudge factor equal to the median of the standard deviations
of all features. In case of sparse data, the mean was not substracted.

• prep2 = pattern normalization: Each example is divided by its L2

norm.
• prep3 = global normalization: Each example is divided by the mean

L2 norm of examples.

6Since the performance of the 5th performer for some datasets was equal to that
of the 6th 7th and even the 8th, to avoid the arbirtrariness of picking the best 5 by
“sort” we picked also the next several equal results.
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Our hyperparameter selection study indicates that, except for Madelon
and Arcene, L2 normalization (prep2) is quite e↵ective compared to the
more popular prep1 (each feature is centered by its means and and scaled by
its standard deviation.)

E↵ectiveness of SVMs

One observation of the challenge is that SVMs (and other kernel methods) are
e↵ective classifiers and that they can be combined with a variety of feature
selection methods used as “filters”. Our hyperparameter selection experiments
also provide us with the opportunity to check whether we can get perfor-
mance that is similar to that of the challengers by training an SVM on the
feature sets they declared. This allows us to determine whether the perfor-
mance is classifier dependent. As can be seen in Figure 9.3, for most datasets,
SVMs achieve comparable results as the classifiers used by the challengers.
We achieve better results for Gisette. For Dorothea, we do not match the
results of the challengers, which can partly be explained by the fact that we
did not select the bias properly (our AUC results compare more favorably to
the challengers’ AUCs.)
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Fig. 9.3. Results of the best SVM in the fifty feature subset study. The
symbol shapes represent datasets: Arcene =circle, Dexter =square, Dorothea
=diamond, Gisette =triangle, Madelon =star. The symbol colors represent the
date: Dec. 1st=red, Dec. 8th=black.
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E↵ectiveness of feature selection

One observation is that strongly regularized classifiers are immune to a large
fraction of irrelevant features. We performed feature selection experiments
with two simple feature selection methods:

• A feature ranking method with a correlation coe�cient (we used Golub’s
criterion (T. R. Golub et al., 1999) that is, for each feature, the ratio of the
distance between the class means over the average of the class standard
deviation.)

• An embedded method with backward selection of features using and SVM
(RFE-SVM (Guyon et al., 2002), see Chapter 5)).

We ranked the features using the entire training data set. We then selected
nested subsets of the top ranking features to train our classifier. We generated
numbers of features approximately equally spaces in a logarithmic scale, such
that altogether we have 25 values per dataset. For each feature set we con-
ducted a search in hyperparameter space (kernel, normalization scheme, C)
using 10-fold cross-validation. The choices of hyperparameters and normaliza-
tion are the same as in the previous section.

We tried two variants of our method: selecting the best SVM based on
10-fold cross-validation, and voting on the 5 best selected. Based on our ex-
periments, it seems that the voting method does not improve on the best.
Our experiments indicate that SVMs perform better without feature selection
on the datasets of the challenge and are therefore immune to the presence of
meaningless features.

9.4.2 Verification of the validity of the entries

Our benchmark design could not hinder participants from “cheating” in the
following way. An entrant could “declare” a smaller feature subset than the
one used to make predictions. To deter participants from cheating, we warned
them that we would be performing a stage of verification. Such verification is
described in this section.

Examining the fraction of probes

As part of the design of the benchmark, we introduced in the datasets random
features (called probes) to monitor the e↵ectiveness of the feature selection
methods in discarding irrelevant features. In the result Table 9.3, we see that
entrants who selected on average less than 50% of the features have feature sets
generally containing less than 20% of probes. But in larger subsets, the fraction
of probes can be substantial without altering the classification performance.
Thus, a small fraction of probes is an indicator of quality of the feature subset,
but a large fraction of probes cannot be used to detect potential breaking of
the rules of the challenge.
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Specifically, for Madelon, all feature subsets under examination are com-
pletely free of probes. Thus the best entrants were very successful at filter-
ing out all the irrelevant features in this artificially generated dataset. For
Arcene, all the subsets have less than 12% of probes, and the subset with
12% of probes selected a total of 44% of the feature. So we have no reason
to suspect anything wrong. For Gisette, all the feature sets investigated
have less than 0.5% probes, except for one that has 19% probes, for 10% of
features selected. For Dorothea, one entry has a high fraction of random
probes (pwKPKbca, P-SVM Sepp Hochreiter 60%). For Dexter, the sub-
sets selected have up to 40% probes. The test presented in the next sections
cleared these entries of any suspicions, showing that the corresponding feature
selection methods are ine�cient at filtering irrelevant features but that the
classifiers employed are immune to a large fraction of probes.

Testing new examples restricted to the specified feature subset

We performed a more reliable check using Madelon data. We generated
additional test data (two additional test sets of the same size as the original
test set: 1800 examples each). We selected entries with small feature sets of the
five top groups from December 1st (corresponding the the entries emphasized
in Table 9.3). We sent to these five groups the new test sets, restricted to
the feature subsets of their selected entries, namely each group received the
additional test data projected on one of the feature sets it submitted. We
asked them to return the class label predictions. We scored the results and
compared them to their results on the original test set to detect an eventual
significant discrepancy. Specifically, we performed the following calculations:

• Compute for each test set the mean error rate over the 5 entries checked:
µ1, µ2, µ3.

• Compute the overall mean µ = (µ1 + µ2 + µ3)/3.
• Compute corrective factors µ/µ1, µ/µ2, µ/µ3.
• Apply the corrective factors to the error rates obtained.
• Compute an error bar as

p

µ(1� µ)/m, where m is the size of each test
set.

We find that the increases in error rates from the original test set to the
new test sets are within the error bar (Table 9.10). Therefore, all five en-
tries checked pass the test satisfactorily. The December 8th entries were not
checked.

Comparing with the performance of a reference classifier

We performed another check on a selection of entries with small feature sets
(five for each data set and each submission date, i.e. a total of 50). We
trained an SVM with the datasets restricted to the selected features (we



258 Isabelle Guyon, Steve Gunn, Asa Ben Hur, and Gideon Dror

used SVMlight (Joachims, 1998) with a hyperparameter search, as detailed
in Appendix A). We looked for outliers of BER performance that might be
indicative that the feature subset submitted was fraudulent. To correct for the
fact that our best SVM classifier does not perform on average similarly to the
challengers’ classifiers, we computed a correction for each dataset k:

ck =< Reference SVM BER� Corresponding challenge BER >

where the average denoted by the bracket is taken for each dataset over 10
feature sets (5 for each date.) We computed for each challenge entry being
checked the following T statistic:

T =
Reference SVM BER� Corresponding challenge BER� ck

stdev(Di↵erencek)

where k is the dataset number and stdev(Di↵erencek) is the standard devia-
tion of (Reference SVM BER�Corresponding challenge BER�ck), computed
separately for each dataset. We show in figure 9.4 the T statistics as a function
of the corresponding challenge BER for the various entries. We also show the
limits corresponding to one sided risks of 0.01 (dashed line) and 0.05 (dotted
line) to reject to null hypothesis that the T statistic is equal to zero (no signif-
icant di↵erence in performance between the entry and our reference method.)
No entry is suspicious according to this test. The only entry above the 0.05
line is for Madelon and had a fraction of probes of zero, so it is really sound.
N.B. The lines drawn according to the T distributions were computed for 9
degrees of freedom (10 entries minus one.) Using the normal distribution in-
stead of the T distribution yields a dotted line (risk 0.05) at 1.65 and a dashed
line (risk 0.01) at 2.33. This does not change our results.

9.5 Conclusions and future work

The challenge results demonstrate that a significant reduction in the num-
ber of features can be achieved without significant performance degradation.
A variety of methods are available to perform feature selection and the sim-
plest ones (including feature ranking with correlation coe�cients) perform
very competitively. Eliminating meaningless features is not critical to obtain
good classification performances: Regularized classifier (e.g. Bayesian methods
using ARD priors, regularized least-square or SVMs) do not need feature se-
lection to perform well. Further, such regularized methods often attain better
performance with non-linear classifiers, overcoming the problem of overfitting
despite the large dimensionality of input space (up to 100,000 features) and
the relatively small number of training examples (hundreds).

While the challenge helped answering some important questions, it left
some questions unanswered and raised new ones:
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Fig. 9.4. Second verification. Fifty submitted feature sets were tested to see
whether their corresponding challenge performance significantly di↵ered from our
reference SVM classifier. The symbol shapes represent datasets: Arcene =circle,
Dexter =square, Dorothea =diamond, Gisette =triangle, Madelon =star. The
symbol colors represent the date: Dec. 1st=red, Dec. 8th=black.

• Do ensemble methods work better? Some participants reported improve-
ments with ensemble methods, others found that the best performing sin-
gle classifier performed similarly to the ensemble.

• Does transduction help? By design, we had shu✏ed the examples to have a
uniform distribution of examples in the training, validation and test sets.
We did not expect transductive methods to perform significantly better.
Yet some participants reported some benefits of using the unlabeled data
of the the validation and test set as part of training.

• How predominant is the role of hyperparameter selection? Several partici-
pants obtained very di↵erent performances with the same learning machine
and learning algorithm. Could this be traced to di↵erences in the hyper-
paramenter selection strategies?

• Which method of space dimensionality reduction works best? PCA was used
successfully by some of the top entrants. But no comparison was made with
other methods, perhaps because PCA is so easy to use, perhaps because
it is widespread. Does it work better that the many other methods?

• Why are wrappers not popular? Wrappers were not among the methods
used by the top entrants. Is it because they are too slow, to complicated
or because they do not perform well?
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• Which model selection method works best? Possible strategies to select
the optimum number of features include K-fold cross-validation and the
computation of pvalues. The hyperparameters may be selected jointly with
the number of features, or before or after feature selection. A variety of
strategies were used by the top ranking participants so it is not clear
whether there is an optimum way of tackling this problem.

Several pending questions revolve around the problems of model selection
and ensemble methods. A new benchmark is in preparation to clarify these
issues. See: http://clopinet.com/isabelle/Projects/modelselect/.
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A Details about the fifty feature subset study

We selected 50 feature subsets, five for each dataset both for December 1st

and for December 8th entries (see Table 9.11). You can download the corre-
sponding challenge entries, including the subsets themselves from:
http://clopinet.com/isabelle/Projects/NIPS2003/Resu_Challenge.zip.
We used a soft-margin SVM implemented in SVMlight (Joachims, 1998), with
a choice of kernels (linear, polynomial, and Gaussian) and a choice of prepro-
cessings and hyperparameters selected with 10-fold cross-validation. For the
December 8th feature sets, we trained on both the training set and the valida-
tion set to be in the same conditions as the challengers. Specifically, for each
(dataset, feature-set, date) the following settings were tried:

• Eight di↵erent kernels:
– linear,
– polynomial of degree 2, 3, 4, 5,
– RBF with width 0.1, 1, 10.
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• Three values of C were tried:
– C = 0.1, 1, 10;

• Three preprocessings:
– prep1: each feature was separately standardized, by substracting its

mean and dividing by (std + fudge factor). In case of sparse data, the
mean is not substracted.

– prep2: each example is divided by its L2 norm.
– prep3: each example is divided by the mean L2 norm of examples. On

some datasets we also used the raw data. However, for some datasets
(e.g. Madelon) the SVM classifiers spent too much time on each trial,
so we removed it from the bank of normalization methods.

In total, for each (dataset, feature-set, date), we estimated the perfor-
mance of the SVM classifier on 8 ⇥ 3 ⇥ 3 = 72 hyper parameter sets. The
estimation was performed using 10-fold cross validation on the training set
(for December 8 submissions, the 10-fold cross validation was performed on
the training+validation set).

Biasing. Within the 10 fold cross validation we first trained the predictor
on the whole training set and ran it on the test set part of the data split,
then chose a bias such the ratio of positive to negative examples corresponds
to that of the training set. This bias is then subtracted from the scores of
predictor when ran on each fold.

Code availability. The datasets and the Matlab code of this study can be
dowloaded from our web site at http://clopinet.com/isabelle/Projects/
NIPS2003/download, file matlab_batch_may04.zip as well as the results of
our best classifiers selected by CV (file best_reference_svm.zip) and the
results of the vote of our top 5 best classifiers selected by CV (file vote_
reference_svm.zip). For questions, please contact Gideon Dror.

http://clopinet.com/isabelle/Projects/NIPS2003/download
http://clopinet.com/isabelle/Projects/NIPS2003/download
matlab_batch_may04.zip
best_reference_svm.zip
vote_reference_svm.zip
vote_reference_svm.zip


Table 9.3. Challenge results. We show the top entries sorted by their score, the
balanced error rate in percent (BER) and corresponding rank in parenthesis, the
area under the ROC curve times 100 (AUC) and corresponding rank in parenthesis,
the percentage of features used (Ffeat), and the percentage of probes in the features
selected (Fprob). The entries emphasized were submitted for verification (see text.)
The columns “Chapter” refers to the chapter number and the corresponding “fact
sheets” summarizing the methods found in the book appendices.

(a) December 1st 2003 challenge results.

Method Group Chapter Score BER (Rk) AUC (Rk) Ffeat Fprob

BayesNN-DFT Neal/Zhang 10 88 6.84 (1) 97.22 (1) 80.3 47.77
BayesNN-DFT Neal/Zhang 10 86.18 6.87 (2) 97.21 (2) 80.3 47.77
BayesNN-small Neal 10 68.73 8.20 (3) 96.12 (5) 4.74 2.91
BayesNN-large Neal 10 59.64 8.21 (4) 96.36 (3) 60.3 28.51
RF+RLSC Torkkola/Tuv 11 59.27 9.07 (7) 90.93 (29) 22.54 17.53
final2 Chen 12 52 9.31 (9) 90.69 (31) 24.91 11.98
SVMBased3 Zhili/Li 13 41.82 9.21 (8) 93.60 (16) 29.51 21.72
SVMBased4 Zhili/Li 13 41.09 9.40 (10) 93.41 (18) 29.51 21.72
final1 Chen 12 40.36 10.38 (23) 89.62 (34) 6.23 6.1
transSVM2 Zhili 13 36 9.60 (13) 93.21 (20) 29.51 21.72
myBestValid Zhili 13 36 9.60 (14) 93.21 (21) 29.51 21.72
TransSVM1 Zhili 13 36 9.60 (15) 93.21 (22) 29.51 21.72
BayesNN-E Neal 10 29.45 8.43 (5) 96.30 (4) 96.75 56.67
Collection2 Sa↵ari 14 28 10.03 (20) 89.97 (32) 7.71 10.6
Collection1 Sa↵ari 14 20.73 10.06 (21) 89.94 (33) 32.26 25.5

(b) December 8th 2003 challenge results.

Method Group Chapter Score BER (Rk) AUC (Rk) Ffeat Fprob

BayesNN-DFT Neal/Zhang 10 71.43 6.48 (1) 97.20 (1) 80.3 47.77
BayesNN-large Neal 10 66.29 7.27 (3) 96.98 (3) 60.3 28.51
BayesNN-small Neal 10 61.14 7.13 (2) 97.08 (2) 4.74 2.91
final 2-3 Chen 12 49.14 7.91 (8) 91.45 (25) 24.91 9.91
BayesNN-large Neal 10 49.14 7.83 (5) 96.78 (4) 60.3 28.51
final2-2 Chen 12 40 8.80 (17) 89.84 (29) 24.62 6.68
Ghostminer1 Ghostminer 23 37.14 7.89 (7) 92.11 (21) 80.6 36.05
RF+RLSC Torkkola/Tuv 11 35.43 8.04 (9) 91.96 (22) 22.38 17.52
Ghostminer2 Ghostminer 23 35.43 7.86 (6) 92.14 (20) 80.6 36.05
RF+RLSC Torkkola/Tuv 11 34.29 8.23 (12) 91.77 (23) 22.38 17.52
FS+SVM Lal 20 31.43 8.99 (19) 91.01 (27) 20.91 17.28
Ghostminer3 Ghostminer 23 26.29 8.24 (13) 91.76 (24) 80.6 36.05
CBAMethod3E CBA group 22 21.14 8.14 (10) 96.62 (5) 12.78 0.06
CBAMethod3E CBA group 22 21.14 8.14 (11) 96.62 (6) 12.78 0.06
Nameless Navot/Bachr. 17 12 7.78 (4) 96.43 (9) 32.28 16.22
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Table 9.4. Error bars on the best entries. We show the BER of the best
entries (in percent) and the corresponding error bars (standard error for the binomial
distribution).

Dataset Test set size M Best BER M ·BER Error bar

Arcene 700 10.73 (Dec. 8, Chen) 75.11 1.17

Dexter 2000 3.30 (Dec. 8, Lal) 66 0.40

Dorothea 800 8.54 (Dec. 1, Neal) 68.32 0.99

Gisette 6500 1.26 (Dec. 8, Neal) 81.90 0.14

Madelon 1800 6.22 (Dec. 8, Neal) 111.96 0.57

Table 9.5. Use of the validation set for model selection. We show the vali-
dation set error bars for the best BER (in percent) and the R2 of the test BER and
the validation BER.

Dataset Validation set size Error bar R2

Arcene 100 3.09 81.28

Dexter 300 1.03 94.37

Dorothea 350 1.49 93.11

Gisette 1000 0.35 99.71

Madelon 600 0.98 98.62

Table 9.6. December 1st 2003 winners by dataset.

Dataset Method Group Score BER AUC Ffeat Fprob

Arcene BayesNN-DFT Neal & Zhang 98.18 13.30 (1) 93.48 (1) 100.00 30.00

Dexter BayesNN-DFT Neal & Zhang 96.36 3.90 (1) 99.01 (2) 1.52 12.87

Dorothea BayesNN-DFT Neal & Zhang 98.18 8.54 (1) 95.92 (2) 100.00 50.00

Gisette final 2 Yi-Wei Chen 98.18 1.37 (8) 98.63 (31) 18.26 0.00

Madelon Bayesian+SVM Chu Wei 100.00 7.17 (5) 96.95 (7) 1.60 0.00
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Table 9.7. December 8th 2003 winners by dataset.

Dataset Method Group Score BER AUC Ffeat Fprob

Arcene BayesNN-small Radford Neal 94.29 11.86 (7) 95.47 (1) 10.70 1.03

Dexter FS+SVM Navin Lal 100.00 3.30 (1) 96.70 (23) 18.57 42.14

Dorothea BayesNN-DFT Neal & Zhang 97.14 8.61 (1) 95.92 (2) 100.00 50.00

Gisette final2-2 Yi-Wei Chen 97.14 1.35 (7) 98.71 (22) 18.32 0.00

Madelon Bayesian+SVM Chu Wei 94.29 7.11 (13) 96.95 (10) 1.60 0.00

Table 9.8. Methods employed by the challengers. The classifiers are grouped
in four categories: N=neural network, K=SVM or other kernel method, T=tree clas-
sifiers, O=other. The feature selection engines (Fengine) are grouped in three cate-
gories: C=single variable criteria including correlation coe�cients, T=tree classifiers
used as a filter, E=Wrapper or embedded methods. The search methods are iden-
tified by: E=embedded, R=feature ranking, B=backward elimination, F=forward
selection, S=more elaborated search. Fact sheets summarizing the methods are ap-
pended.

Group Chapter Classifier Fengine Fsearch Ensemble Transduction

Neal/Zhang 10 N/O C/E E Yes Yes

Torkkola/Tuv 11 K T R Yes No

Chen/Lin 12 K C/T/E R/E No No

Zhili/Li 13 K C/E E No Yes

Sa↵ari 14 N C R Yes No

Borisov et al 15 T T E Yes No

Rosset/Zhu 16 K K E No No

Navot/Bachrach 17 K E S No Yes

Wei Chu et al 18 K K R No No

Hohreiter et al 19 K K R Yes No

Lal et al 20 K C R No No

Embrechts/Bress 21 K K B Yes No

CBA group 22 K C R No No

Ghostminer 23 K C/T B Yes No

SK Lee et al 24 K/O C S No No

Boullé 25 N/O C F No No

Lemaire/Clérot 26 N N B No No
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Table 9.9. SVM experiments on 50 feature subsets from the challenge
results. The values shown are the percentages of time a given hyperparameter
choice showed up in the five top choices selected by ten-fold cross-validation, out of
all hyperparameter settings tried.

Kernel Preprocessing

Dataset linear poly2 poly3 poly4 poly5 rbf 0.5 rbf 1 rbf 2 prep1 prep2 prep3

Arcene 0.00 0.00 38.46 38.46 23.08 0.00 0.00 0.00 46.15 30.77 23.08

Dexter 13.33 0.00 13.33 33.33 20.00 0.00 20.00 0.00 6.67 93.33 0.00

Dorothea 0.00 20.00 20.00 0.00 40.00 20.00 0.00 0.00 0.00 60.00 40.00

Gisette 0.00 0.00 23.08 23.08 23.08 0.00 15.38 15.38 0.00 100.00 0.00

Madelon 0.00 0.00 0.00 0.00 0.00 20.00 40.00 40.00 100.00 0.00 0.00

Table 9.10. Result verification using Madelon data. We provided to five
entrants additional test data restricted to the feature set they had declared. We
adjusted the performances to account for the dataset variability (values shown in
parentheses, see text for details). All five entrants pass the test since the adjusted
performances on the second and third datasets are not worse than those on the first
one, within the computed error bar 0.67.

Entry Ffeat Fprob Test1 BER Test2 BER Test3 BER

BayesNN-small 3.4 0 7.72 (8.83) 9.78 (9.30) 9.72 (9.05)

RF+RLSC 3.8 0 6.67 (7.63) 8.28 (7.87) 8.72 (8.12)

SVMbased3 2.6 0 8.56 (9.79) 10.39 (9.88) 9.55 (8.89)

final1 4.8 16.67 6.61 (7.56) 7.72 (7.34) 8.56 (7.97)

Collection2 2 0 9.44 (10.80) 10.78 (10.25) 11.38 (10.60)
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Table 9.11. Fifty entries selected to perform experiments. The balanced
error rate (BER) and the area under the ROC curve (AUC) are multiplied by 100.
The challenge rank is in parenthesis. We also show the percentage of features used
(Ffeat), and the percentage of probes in the features selected (Fprob). The team are
named by one of their member, see the papers for the complete list of authors.

Data set Entry ID Method Team BER (Rk) AUC (Rk) Ffeat Fprobe

December 1st

vqUNMWlP inf5 Sa↵ari 17.30 (17) 82.70 (38) 5.00 0.00
VeJsRriv KPLS Embrecht 16.71 (12) 83.67 (34) 5.14 8.56

Arcene DZSQTBfy BayesNN Neal 16.59 (10) 91.15 (8) 10.70 1.03
XNexBfhI multi23 SK Lee 18.41 (20) 81.59 (40) 1.85 0.00
HEdOWjxU Mod. R Ng 19.64 (32) 86.72 (25) 3.60 8.06

DZSQTBfy BayesNN Neal 4.00 (4) 99.03 (1) 1.52 12.87
voCGSrBX Collection Sa↵ari 4.95 (11) 95.05 (35) 5.01 36.86

Dexter EoeosKio IDEAL Borisov 5.50 (18) 98.35 (10) 1.00 25.50
UFXqDSHR RF+RLSC Torkkola 5.40 (16) 94.60 (38) 2.50 28.40
XyxUJuLe Nameless Navot 5.25 (12) 98.80 (5) 7 43.71

aIiushFx Nameless Navot 10.86 (6) 92.19 (13) 0.30 0.00
DZSQTBfy BayesNN Neal 10.63 (5) 93.50 (5) 0.50 0.40

Dorothea WSRyGqDz SVMb3 Zhili 11.52 (11) 88.48 (20) 0.50 18.88
HEdOWjxU Mod. RF Ng 13.72 (16) 91.67 (16) 0.40 20.75
pwKPKbca P-SVM Hochreiter 17.06 (36) 90.56 (17) 0.14 60.00

tKBRMGYn final 1 YW Chen 1.37 (9) 98.63 (32) 18.26 0.00
DRDFlzUC transSVM Zhili 1.58 (11) 99.84 (9) 15.00 0.00

Gisette GbXDjoiG FS + SVM Lal 1.69 (16) 98.31 (33) 14.00 0.00
UFXqDSHR RF+RLSC Torkkola 1.89 (19) 98.11 (39) 6.14 0.00
DZSQTBfy BayesNN Neal 2.03 (26) 99.79 (14) 7.58 0.26

kPdhkAos BayesSVM Chu Wei 7.17 (5) 96.95 (7) 1.60 0.00
UFXqDSHR RF+RLSC Torkkola 6.67 (3) 93.33 (33) 3.80 0.00

Madelon WOzFIref P-SVM Hochreiter 8.67 (20) 96.46 (12) 1.40 0.00
DZSQTBfy BayesNN Neal 7.72 (7) 97.11 (4) 3.40 0.00
DRDFlzUC transSVM Zhili 8.56 (13) 95.78 (20) 2.60 0.00

December 8th

caBnuxYN BayesNN Neal 11.86 (7) 95.47 (1) 10.70 1.03
UHLVxHZK RF Ng 12.63 (10) 93.79 (6) 3.80 0.79

Arcene RpBzOXAE CBAMet3 CBA 11.12 (4) 94.89 (2) 28.25 0.28
ZdtHhsyQ FS+SVM Lal 12.76 (12) 87.24 (22) 47.00 5.89
wCttZQak Nameless Navot 15.82 (19) 84.18 (29) 44.00 12.48

ZdtHhsyQ FS+SVM Lal 3.30 (1) 96.70 (23) 18.57 42.14
caBnuxYN BayesNN Neal 4.05 (7) 99.09 (3) 1.52 12.87

Dexter bMLBEZfq Sparse DIMACS 5.05 (14) 94.37 (29) 0.93 6.49
PVxqJatq RF+RLSC Torkkola 4.65 (10) 95.35 (27) 2.50 28.40
BuVgdqsc final2 YW Chen 5.35 (15) 96.86 (21) 1.21 2.90

wCttZQak Nameless Navot 11.40 (7) 93.10 (7) 0.40 0.00
caBnuxYN BayesNN Neal 11.07 (6) 93.42 (6) 0.50 0.40

Dorothea untoIUbA ESNB+NN Boulle 14.59 (17) 91.50 (13) 0.07 0.00
UHLVxHZK RF Ng 14.24 (16) 91.40 (14) 0.32 4.38
oIiuFkuN original Zhili 13.46 (14) 86.54 (22) 0.50 18.88

RqsEHylt P-SVM/nu Hochreiter 1.82 (19) 99.79 (10) 4.00 0.50
PVxqJatq RF+RLSC Torkkola 1.77 (17) 98.23 (29) 6.14 0.00

Gisette MLOvCsXB P-SVM/nu Hochreiter 1.75 (15) 99.79 (13) 9.90 19.19
oIiuFkuN original Zhili 1.58 (11) 99.84 (9) 15.00 0.00
caBnuxYN BayesNN Neal 2.09 (25) 99.78 (17) 7.58 0.26

PDDChpVk Bayesian Chu Wei 7.11 (13) 96.95 (10) 1.60 0.00
caBnuxYN BayesNN Neal 6.56 (4) 97.62 (3) 3.40 0.00

Madelon BuVgdqsc final2 YW Chen 7.11 (12) 92.89 (25) 3.20 0.00
jMqjOeOo RF+RLSC Torkkola 6.67 (6) 93.33 (22) 3.80 0.00
NiMXNqvY GhostMiner Team 7.44 (14) 92.56 (26) 3.00 0.00
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Our winning entry in the NIPS 2003 challenge was a hybrid, in which our
predictions for the five data sets were made using di↵erent methods of classi-
fication, or, for the Madelon data set, by averaging the predictions produced
using two methods. However, two aspects of our approach were the same for
all data sets:

• We reduced the number of features used for classification to no more than a
few hundred, either by selecting a subset of features using simple univariate
significance tests, or by performing a global dimensionality reduction using
Principal Component Analysis (PCA).

• We then applied a classification method based on Bayesian learning, using
an Automatic Relevance Determination (ARD) prior that allows the model
to determine which of these features are most relevant.

Selecting features with univariate tests is a simple example of the “filter”
approach discussed in Chapter 3. Reducing dimensionality using a method
that looks at all (or most) features is an alternative to feature selection in
problems where the cost of measuring many features for new items is not an
issue. We used PCA because it is simple, and feasible for even the largest of
the five data sets.

Two types of classifiers were used in our winning entry. Bayesian neural
network learning with computation by Markov chain Monte Carlo (MCMC)
is a well-developed methodology, which has performed well in past bench-
mark comparisons (Neal, 1996, 1998, Rasmussen, 1996, Lampinen and Vehtari,
2001). Dirichlet di↵usion trees (Neal, 2001, 2003) are a new Bayesian approach
to density modeling and hierarchical clustering. We experimented with using
the trees produced by a Dirichlet di↵usion tree model (using MCMC) as the
basis for a classifier, with excellent results on two of the data sets. As allowed
by the challenge rules, we constructed these trees using both the training

http://www.cs.utoronto.ca/~radford/
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data and the unlabelled data in the validation and test sets. This approach
— sometimes referred to as “transduction” or “semi-supervised learning” —
tries to exploit the possible connection between the distribution of features
and the relationship of the class to these features. We also used the available
unlabelled data in a more minor way when finding the principal components
looked at by some of the neural network models.

The ARD prior used in both the neural network and Dirichlet di↵usion
tree models is an example of (soft) feature selection using an “embedded”
approach, as discussed in Chapter 5. The number of features in four of the
five data sets is too large for ARD to be used directly, due to computational
costs, which is why some feature selection or dimensionality reduction was
done first. (With 500 features, the Madelon data set can be handled directly,
though the computations are a bit arduous.) However, by using ARD, we can
a↵ord to keep more features, or reduce dimensionality less, than if we used a
classification method that could not learn to ignore some features. This lessens
the chance that useful information will be discarded by the fairly simple-
minded feature selection and dimensionality reduction methods we used.

In this chapter, we describe the methods used in our winning entry, and
discuss why these methods performed as they did. We also present refined and
simplified versions of the methods using Bayesian neural networks with PCA
and variable selection, for which scripts have been made publicly available (at
www.cs.utoronto.ca/~radford/). The scripts use the R language (available
at www.r-project.org) for preprocessing, and the neural network module of
R. M. Neal’s Software for Flexible Bayesian Modeling (available at www.cs.
utoronto.ca/~radford/) for fitting Bayesian models using MCMC. To begin,
however, we discuss some general issues regarding Bayesian and non-Bayesian
learning methods, and their implications for feature selection.

10.1 Bayesian Models vs. Learning Machines

Chapter 1 of this book discusses classification in terms of “learning machines”.
Such a machine may be visualized as a box with inputs that can be set to
the features describing some item, and which then produces an output that
is the machine’s prediction for that item’s class. The box has various knobs,
whose settings a↵ect how this prediction is done. Learning is seen as a process
of fiddling with these knobs, in light of how well the box predicts the classes
of items in a known training set, so as to produce good predictions for the
classes of future items. This view of learning leads one to choose machines
of adequate but limited complexity, providing a suitable trade-o↵ of “bias”
and “variance”, perhaps estimated by means of cross-validation. One way of
limiting complexity is to choose a small set of features to input to the machine.

The Bayesian approach to classification is quite di↵erent. Rather than a
process of adjusting knobs on a machine, learning is seen as probabilistic
inference, in which we predict the unknown class of a new item using the
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conditional probability distribution for this class given the known features for
this item, and the known features and classes for the items in the training
set. Using X to denote sets of features and Y to denote classes, we will write
this as P (Ynew |Xnew, Xtrain, Ytrain). Such predictive distributions are usually
expressed in terms of a model for the conditional probability of the class of an
item given its features. The model usually has parameters, ✓, whose values are
unknown, and which are therefore assigned a probability distribution, P (✓),
known as the prior distribution. The choice of both the model and the prior
should reflect our knowledge of the problem before seeing the training set.
When we then condition on the known features and classes of items in the
training set, we obtain the posterior distribution for the model parameters:

P (✓ |Xtrain, Ytrain) =
P (✓) P (Ytrain |Xtrain, ✓)

R

P (✓) P (Ytrain |Xtrain, ✓) d✓
(10.1)

This equation assumes that the distribution of the feature values, X, contains
no information about how items should be classified, as modeled using ✓. In
a Bayesian approach to semi-supervised learning, this would not be assumed,
and hence additional factors of P (X | ✓) would appear. In our approach to the
challenge problems, however, the semi-supervised aspects were instead done
in an ad hoc way.

Using this posterior distribution, the predictive distribution for the class
of a new item can be expressed in terms of an integral over the parameters,
which averages the conditional probabilities for the class of the new item given
its features, as defined by the model, with respect to the posterior distribution
of the model parameters:

P (Ynew |Xnew, Xtrain, Ytrain) =
Z

P (Ynew |Xnew, ✓) P (✓ |Xtrain, Ytrain) d✓ (10.2)

The integral above is usually analytically intractable. Since ✓ is generally high-
dimensional, a standard approach is to approximate it using Monte Carlo
methods, after obtaining a sample of many values for ✓ drawn from the pos-
terior distribution by simulating a suitable Markov chain. Reviewing such
Markov chain Monte Carlo methods is beyond the scope of this chapter. In-
troductions to MCMC methods include (Neal, 1993) and (Liu, 2001).

These two approaches to classification correspond to the “frequentist” and
“Bayesian” frameworks for statistics, whose respective merits have long been
debated (see Bernardo and Smith, 1994). One di↵erence is that the Bayesian
approach provides, in theory, a unique solution to the classification problem
— the one derived from the model and prior that express our prior beliefs
about the situation — whereas the “learning machine” approach inevitably
leaves some choices to be made arbitrarily, or by applying prior knowledge
informally. For high-dimensional classification problems, however, a purely
Bayesian approach may sometimes be impractical, because the intellectual ef-
fort required to formalize our prior knowledge of a complex situation and the
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computational e↵ort of computing integrals over a parameter space of enor-
mous dimension may both be prohibitive. Use of ad hoc frequentist methods
may then be necessary in order to reduce the problem to a manageable size.

The need for such compromises should not make one lose sight of the fun-
damentally di↵erent nature of Bayesian methods. In a pure Bayesian approach
to classification, we would not remove some features from the model, unless
we really had certain prior knowledge that they are irrelevant — the best
prediction for the class of a new item is found using a model that looks at all
features that might possibly be relevant. In situations where we wish to elimi-
nate some features in order to avoid the costs of measuring these features when
classifying new items, we would quantify these costs, and treat the selection
of a subset of features as a decision problem trading o↵ the cost of measure-
ment with the cost of sub-optimal classification. The optimal solution to this
decision problem would base the choice of a prediction rule that looks at a
subset of features on evaluations made using a predictive model that looks at
all features. When the cost of measuring features for new items is not an issue,
we would eliminate features from a Bayesian model only to reduce the e↵ort
involved in training and prediction, not because including all features would
reduce the performance of a properly formulated and implemented model.

This may seem surprising from the “learning machine” viewpoint. Won’t a
model in which the number of features, and hence also the number of param-
eters, is much greater than the number of training items “overfit” the data,
and make bad predictions for new items? The crucial point to keep in mind
here is that the parameters of a Bayesian model do not correspond to the
“knobs” that are adjusted to make a learning machine predict better. Predic-
tions based on a Bayesian model are made using equation (10.2). Seen as a
function of Xnew, with Xtrain and Ytrain fixed, this prediction function is gen-
erally not expressible as P (Ynew |Xnew, ✓) for some fixed value of ✓. When the
training set is small, the predictive distribution for Ynew will tend to be “sim-
ple”, because it will be found by integrating P (Ynew |Xnew, ✓) with respect to
a fairly broad posterior distribution for ✓, which will cause the complexities
of P (Ynew |Xnew, ✓) for individual ✓ values to be averaged away. With a larger
training set, the posterior distribution of ✓ will be more concentrated, and
the predictive distribution may be more complex, if a complex distribution
is actually favoured by the data. No explicit adjustment of the model on the
basis of the size of the training set is necessary in order to achieve this e↵ect.

The practical import of this is that when selecting a subset of features, or
otherwise reducing dimensionality, our goal is merely to reduce the number
of features to the point where using a Bayesian model is intellectually and
computationally feasible. There is no need to reduce the number of features
to an even smaller number to avoid “overfitting”. An appropriate Bayesian
model, using an appropriate prior, will be able to learn to what extent each of
the remaining features are relevant to the task of predicting the class. If there
is a cost to measuring features in the future, their number can be reduced
further after fitting this model by seeing which features turned out to play
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a substantial role in predictions. In practice, when models are imperfectly
specified and implemented, it is possible that a model using a small number
of features may sometimes do better than a less-than-perfect model using a
larger number of features, but there is no reason to expect this in general.

10.2 Selecting Features with Univariate Tests

One way to reduce the number of variables used in the model to what can
be handled computationally is to select a subset of features that appear to
be associated with the class. There are many ways of doing this, as discussed
in Chapter 3. We used a fairly simple approach, in which we looked at only
one feature at a time. There is no guarantee that this will work — it could
be that no single feature contains any information about the class, but that
that some pairs (or larger subsets) of features are informative when looked
at jointly. However, it may be that for most real problems, features that are
relevant to predicting the class are at least somewhat relevant on their own.
If so, we will be able to select the relevant features with univariate tests of
association with the class. We can then use a model that looks only at these
features, and that can explore possible interactions among them.

One criterion for identifying relevant features is the sample correlation of
a feature with the class, numerically encoded in some way (e.g., as �1 and
+1). The sample correlation of x1, . . . , xm with y1, . . . , ym is defined as

rxy =
(1/m)

Pm
i=1(xi � x̄)(yi � ȳ)

sx sy
(10.3)

where x̄ and sx are the sample mean and standard deviation of x1, . . . , xm

and ȳ and sy are the sample mean and standard deviation of y1, . . . , ym.
The correlation of a feature with the class will seldom be exactly zero,

which raises the question of how big rxy must be for us to consider that x is
a good candidate for a relevant feature. A frequentist approach to answering
this question is to compute the probability that a value for rxy as big or bigger
than the actual value would arise if the feature actually has no association
with the class. If this “p-value” is quite small, we might consider it unlikely
that there is no association. We can find the p-value using a permutation test
(Cox and Hinkley, 1974, Section 6.2), based on the idea that if there is no real
association, the class labels might just as well have been matched up with the
features in a completely di↵erent way.

One way to compute this permutation test p-value is as follows:

p = 2 min
⇣ 1

m!

X

⇡

I
�

rxy⇡ � rxy

�

,
1
m!

X

⇡

I
�

rxy⇡  rxy

�

⌘

(10.4)

where the sums are over all m! possible permutations of y1, . . . , ym, with y⇡

denoting the class labels as permuted by ⇡. The indicator functions have the
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value one if the correlation of x with y⇡ is at least as high (or at least as low)
as the actual correlation. We take the minimum so that the test is sensitive
to either positive or negative correlations. The multiplication by 2 ensures
that p has (approximately) a uniform distribution over (0, 1) when there is no
real association, which is the conventional property of p-values. Since m! is
generally very large, we will in practice approximate p using averages of the
indicator functions over a few thousand randomly chosen permutations.

In the special case where x1, . . . , xm are binary, p can be computed exactly
using hypergeometric probabilities. It may be useful to convert some non-
binary features to binary by thresholding them at some value, and then testing
for an association of the class with this binary feature. This might reveal an
association that is not apparent when looking at the original feature.

One might also look at the correlation of the class with some other trans-
formation of a feature, such as its square or square root. There are endless such
possibilities, however. Rather than try them all, we can instead transform the
feature values to ranks — i.e., if xi is greater than or equal to k of the other
xj , it is replaced by the value k — and then find the correlation of the class
with these ranks. The result (sometimes called the “Spearman correlation”) is
invariant to any monotonic transformation of the original feature, and hence
can detect any monotonic relationship with the class.

Nonmonotonic relationships can be detected using a runs test (Gibbons,
1985, Chapter 3). Let ⇡ be a permutation for which x⇡i  x⇡i+1 for all i. If
the class is unrelated to x, the corresponding permutation of the class values,
y⇡1 , . . . , y⇡m , should not di↵er systematically from a random permutation. We
can test this by counting how often y⇡i equals y⇡i+1 , and then computing a
p-value as the probability of a count this big or bigger arising when the y
values are randomly permuted. If there are ties among the xi, there will be
more than one permutation ⇡ that orders them, so we average the counts over
all such permutations (or in practice, a random sample of them).

The tests described above are of increasing generality, testing for linear,
monotonic, and arbitrary nonmonotonic relationships. The increase in gener-
ality comes at the cost of power, however — a linear relationship that produces
a small p-value in a permutation test based on correlation with the original
feature value might not produce such a small p-value when the test is based
on correlation with the ranks, or when a runs test is used. Accordingly, it may
be desirable to select features using more than one test, perhaps with di↵erent
p-value thresholds for each.

Finally, one should note that an optimistic bias can result from selecting a
subset of features using significance tests and then using this subset in a model
as if they were the only features. The predictive probabilities produced using
such a model may be more certain (i.e., closer to zero or one) than is actually
justified. In the extreme, one might think the class is highly predictable when
in fact none of the features are informative — the selected features having
appeared to be associated with the class only by chance. One check for such
problems is to see whether the p-values found for all the features using one of
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the procedures above appear to be distributed uniformly over (0, 1), as would
be expected if none of them is actually associated with the class. For all the
challenge data sets, the distribution of p-values is far from uniform, indicating
that at least some features are informative.

10.3 Reducing Dimensionality Using PCA

Rather than select a manageably small subset of the original features to use
in our model, we can instead create a small set of new variables, which we
hope will capture the important information in the full data set. Of the many
such methods for “dimensionality reduction”, we used the simplest, known as
Principal Components Analysis (PCA), in which the new variables are linear
combinations of the original feature, chosen to capture as much of the original
variance as possible. There is no guarantee that a small number of principal
components with the highest variance will contain the information needed for
classification — conceivably, the important information could be contained in
linear combinations of variables whose variance is low rather than high. In
practice, however, the first few principal components usually contain at least
some useful information.

Let X be the matrix of feature values, with m rows representing cases, and
n columns of feature values. (This notation is consistent with other chapters
in this book, but note that the universal convention in statistics is that the
number of features is p and the size of the training set is n.) The principal
component vectors are the eigenvectors of the n ⇥ n matrix XT X, ordered
by decreasing magnitude of the corresponding eigenvalue. When there are
more features than cases (i.e., n > m), only the m eigenvectors with non-zero
eigenvalues are meaningful. In this case, the principal component vectors can
more e�ciently be computed from the m⇥m matrix XXT , using the fact that
if v is an eigenvector of XXT then XT v is an eigenvector of XT X, with the
same eigenvalue. Once the principal component vectors have been found, the
n feature values for a case are reduced to k values by finding the projections
of the feature vector on the first k principal component vectors.

Before finding the principal components, the matrix of feature values, X,
may be modified by subtracting the mean from each feature value, and per-
haps dividing by its standard deviation. However, if zero is a value of special
significance, one might decide not to subtract the mean, in order to preserve
this meaning. Similarly, dividing by the standard deviations might be harmful
if the standard deviations of the features are a good guide to their relevance.

10.4 Bayesian Logistic Regression

Before discussing the methods used for our winning entry, it is worthwhile
discussing some much simpler methods based on logistic regression, which
also give very good results on some of the challenge data sets.
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The linear logistic regression model expresses the probability distribution
for the class of item i, given the features for that item, as follows:

P (Yi = 1 |Xi = xi) =
h

1 + exp
⇣

�
⇣

↵+
n
X

j=1

�jxij

⌘⌘i�1
(10.5)

Maximum likelihood is sometimes used to select values for the parameters ↵
and � that best fit the data, but when the classes can be linearly separated,
the maximum likelihood estimates will be both infinite and non-unique. This
situation will arise whenever the number of features (n) is greater than the
number of items in the training set (m). Bayesian methods for logistic regres-
sion have no problem in this situation, however, since the Bayesian predictions
are obtained by averaging (10.5) with respect to the posterior distribution for
the parameters, rather than selecting some particular estimate.

To do Bayesian logistic regression, we must first select a prior distribution
for the parameters. The intercept parameter, ↵, can be given a rather broad
prior distribution, since the data will su�ce to constrain this parameter in
any case. The prior used for the �j parameters is more crucial. Perhaps the
simplest option is to give � a multivariate Gaussian prior with mean zero and
diagonal covariance �2In, where In is the n by n identity matrix. The value of
� will determine to what extent the model thinks the class can be predicted
from the features — if � is zero, for instance, the features will have no e↵ect
on the predictions. Often, we would have little prior idea as to how predictable
the class is, and would therefore not be in a position to fix � to any specific
value. Instead, we can treat � as an additional “hyperparameter”, to which we
give a fairly broad prior distribution, allowing the degree of predictability to be
inferred from the training data. It is convenient for this prior to take the form
of a gamma distribution for 1/�2, since this form of prior is “conjugate”, which
allows some operations to be done analytically. Extremely vague (or improper)
priors must be avoided, since the limit � ! 0 will not be completely excluded
by the data, and in the case of linearly separable data, � ! 1 will also be
compatible with the data. A prior that gives substantial probability to values
of � ranging over a few orders of magnitude is often appropriate.

This prior distribution for � is spherically symmetric. If R is any orthogonal
matrix (e.g., a rotation), transforming the Xi to X 0

i = RXi and � to �0 =
R� will have no e↵ect on the probabilities in (10.5), since �0T X 0

i = �T Xi.
Furthermore, with a spherically symmetric prior, �0 will have the same prior
density as �. Applying any such transformation to the data will therefore have
no e↵ect on the final predictions from a Bayesian model with such a prior.

This invariance to orthogonal transformations has two important implica-
tions. First, we see that logistic regression with a spherically symmetric prior
cannot be seen as performing any sort of feature selection, since the original
coordinate system, in terms of which the features are defined, has no signif-
icance. Second, when the number of features (n) is greater than number of
items in the training set (m), we can exploit the model’s invariance under
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orthogonal transformations to reduce the computation time needed for the
MCMC runs, by e↵ectively reducing the number of features looked at from n
to m.

We do this by finding an orthogonal transformation, R, for which all but
m of the components of the transformed features, RXi, are zero in all m train-
ing cases. Such a transformation always exists. One convenient choice is the
transformation that projects Xi onto the m principal components found from
the training cases, and projects the portion of Xi normal to the space of these
principal components onto some set of n�m additional orthogonal directions.
For the training cases, the projections in these n�m other directions will all
be zero, so that X 0

ij will be zero for j > m. Clearly, one then need only com-
pute the first m terms of the sum in (10.5). For a test case, one can imagine
that its component normal to the space of principal components is aligned
with one of the additional directions, so that all but m+1 of the components
in the transformed vector are zero. The final result is that only �1, . . . ,�m+1

need be represented, which produces a large reduction in computation time
when, for example, m = 100 and n = 10000, as in the Arcene dataset.

Despite its possibly excessive simplicity, this model sometimes produces
quite good results on problems such as classifying tumors based on gene ex-
pression data from DNA microarrays. (We have found this to be true, for
example, on the data from Golub et al., 1999.) Although such problems have
a great many features, they may nevertheless be rather easy, if a large number
of these features carry information about the class. Computational cost can
be further reduced by looking only at the projections onto the first k principal
components, with k < m. This sometimes has a negligible e↵ect, when the
variance in the remaining directions is very small, and when the e↵ect is not
negligible, it is sometimes beneficial. Results on the challenge datasets using
such a model with k = 40 are reported in Section 10.7.

Bayesian logistic regression can also be done using a prior that expresses
the belief that some of the features are likely to be much more relevant to
predicting the class than others — i.e., that some of the �j parameters are
likely to be much bigger than others. As for the simpler prior described above,
it will usually be appropriate to include a hyperparameter, �, in the model,
that captures the overall scale of the �j parameters, and hence the overall
degree to which the class can be predicted from the features. Conditional on
this hyperparameter, we can let the �j be independent under the prior. To
allow some of the �j to be much larger than others, we can let the prior for �j

given � be a heavy-tailed distribution (e.g., a t distribution with two degrees
of freedom), with mean zero, and width parameter �. If only a few features are
relevant, the posterior distribution for � will be concentrated on values close
to zero, and most of the �j will therefore also be close to zero. However, due
to the heavy tails of the prior, a few of the �j can still take on large values,
allowing a few of the features to influence the class probabilities.

This model is equivalent to one in which each �j has a Gaussian prior
distribution, but with individual variances, s2

j , that are variable hyperparam-
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eters. If 1/s2
j is given a gamma distribution, the resulting e↵ective prior for �j

(integrating over sj) will be a t distribution. This view of the model is related
to the ARD priors for neural networks discussed in the next section.

When the �j are given non-Gaussian priors, the model is no longer spher-
ically symmetrical. Accordingly, the number of features can no longer be re-
duced from n to m by applying an orthogonal transformation. The posterior
distribution of the parameters may also have many modes, in which di↵erent
sets of features are regarded as relevant. For these reasons, MCMC computa-
tions become time-consuming when the number of features exceeds a thousand
or so. Section 10.7 reports results using logistic regression models with heavy-
tailed priors applied to the challenge datasets after reducing dimensionality
using PCA, or selecting a subset of features using univariate significance tests.

10.5 Bayesian Neural Network Models

In the logistic regression models of the previous section, the features of an
item influence class probabilities only through a linear combination of the
feature values. For many problems, this is not an adequate model. One way of
extending logistic regression to allow for non-linear relationships is to model
the class probability function using a neural network with hidden units, also
known as a multilayer perceptron network.

Many architectures for such networks are possible. The neural network
methods we used for the feature selection challenge used two“layers”of hidden
units, producing a model that can be written as follows:

P (Yi = 1 |Xi = xi) =
⇥

1 + exp(�f(xi))
⇤�1 (10.6)

f(xi) = c +
H
X

l=1

w`h`(xi) (10.7)

h`(xi) = tanh
⇣

b` +
G
X

k=1

vk`gk(xi)
⌘

(10.8)

gk(xi) = tanh
⇣

ak +
n
X

j=1

ujkxij

⌘

(10.9)

This network is illustrated in Figure 10.1. A large class of functions, f , can
be represented by such a network as we vary the network’s parameters — the
“biases” ak, b`, and c and the “weights” ujk, vk`, and w` — provided that G
and H, the numbers of hidden units in the two layers, are fairly large.

The traditional methods for training such networks (Rumelhart, Hinton,
and Williams, 1986), based on maximum likelihood estimation of the pa-
rameters, have been successful for many problems, but di�culties with local
maxima and with overfitting can arise. These problems can be avoided in a
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Bayesian approach using Markov chain Monte Carlo, in which predictions are
based not on one network, but on the average class probabilities from many
networks, in which the parameters are drawn at random from their posterior
distribution, as simulated using a Markov chain. Full details of this approach
can be found in (Neal, 1996). Here, we can only briefly discuss some issues
relating to feature selection.

Analogously with the logistic regression models discussed in Section 10.4,
the computation needed for Bayesian neural network models with a large num-
ber of features can be greatly reduced if the prior distribution for parameters
is spherically symmetrical. This will be the case if the prior distribution for
the input-to-hidden weights, ujk, is a multivariate Gaussian with mean zero
and covariance matrix �In, where � may be a hyperparameter that is given
a higher-level prior distribution. By applying an orthogonal transformation
to the feature space, the m training items can be changed so that n �m of
the features are always zero. Consequently, these features and their associated
weights, ujk, need not be represented, since features that are always zero will
have no e↵ect in equation (10.9).

Such models sometimes work well, but for many problems, it is important
to learn that some features are more relevant to predicting the class than oth-
ers. This can be done using an “Automatic Relevance Determination” (ARD)
prior (MacKay, 1994, Neal, 1996) for the input-to-hidden weights, ujk. In an
ARD prior, each feature is associated with a hyperparameter, �j , that ex-
presses how relevant that feature is. Conditional on these hyperparameters,
the ujk have a multivariate Gaussian distribution with mean zero and diagonal

f(x )i
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Fig. 10.1. A neural network with two hidden layers. The circles on the left represent
the feature values for a particular item. The circles in the middle represent the
values of hidden units, which are computed by applying the tanh function to a
linear combination of the values to which they are connected by the arrows. The
circle on the right represents the function value computed by the network, which is
used to define the class probabilities.
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covariance matrix, with the variance of ujk being �2
j . The �j hyperparameters

are themselves given a fairly broad prior distribution, which may depend on a
yet higher-level hyperparameter. The posterior distribution for �j will tend to
concentrate on small values if feature j is not useful for predicting the class,
given the other features that are present. Random associations between the
class and this feature will then have little detrimental influence on the pre-
dictions made by the model, since the weights, ujk, for that feature will be
small.

ARD models with tens of thousands of features are not presently feasible,
for two reasons. First, a simple prior distribution (e.g., based on a gamma
distribution) for the �j may not be adequate for such a large number of
features. It might instead be necessary to use a more elaborate prior that
allowed for a larger class of distributions for these relevance hyperparameters.
Whether this is actually necessary is not known, however, because of the
second reason — simulating a Markov chain that adequately samples from
the posterior distribution over tens of thousands of relevance hyperparameters
would take an infeasibly large amount of computation time. For these reasons,
dimensionality reduction or preliminary selection of features, as described in
Sections 10.2 and 10.3, is necessary to reduce the number of features to around
a thousand at most, after which an ARD model can discover which of these
features are most relevant.

10.6 Dirichlet Di↵usion Tree Models

For two of the challenge datasets, we tried out a method that hierarchically
clusters the training and test items, and then classifies the unlabelled items
on the basis of their positions in the hierarchy. This is a “semi-supervised”
approach, since the unlabelled data is used during training.

The hierarchical clustering was based on the “Dirichlet di↵usion tree”
model of Neal (2001, 2003). This is a Bayesian clustering method, which pro-
duces not a single tree, but a set of trees drawn from the posterior distribution
of trees. We applied this Dirichlet di↵usion tree model to a set of principal
component values derived from all the features. Hyperparameters analogous to
those used in ARD priors allowed the model to learn which of these principal
components were involved in the clusters, and which instead had distributions
that could be modeled independently of the others.

A Dirichlet di↵usion tree has the data items as terminal (leaf) nodes. The
way in which these items are grouped in a hierarchy is analogous to how
species are arranged in a phylogenetic tree to represent their evolutionary
relationships. The model can be defined by a random procedure for generating
both a dataset and a tree that describes the relationships underlying the
data. This procedure is based on a Gaussian di↵usion process, also known as
Brownian motion, which is described in terms of a fictitious time variable,
which varies from t = 0 to t = 1.
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Fig. 10.2. A Dirichlet di↵usion tree with five items. Di↵usion time is on the hori-
zontal axis. The vertical axis represent the value of a single feature. The plot on the
left shows the tree with details of the Brownian di↵usion paths included. The plot
on the right shows the same tree with details of the paths suppressed between di-
vergence points, as is done in practice when performing computations. The di↵usion
standard deviation used was � = 1; the divergence function was a(t) = 1/(1�t).

The process is illustrated for a single feature, x, in Figure 10.2. The first
data point (which could be any of the five shown) is generated by starting
a di↵usion process with x = 0 at t = 0. As t increases, x di↵uses, with the
variance of x(t + ✏) � x(t) being equal to �2✏, where � is a hyperparameter
giving the di↵usion standard deviation for the feature. The value of x when
t = 1 gives the value of the feature for this first data point. The second data
point is generated in the same fashion, except that the di↵usion path for this
data point initially follows the same di↵usion path as the first data point. At
a random time, however, the path of the second data point diverges from that
of the first, and thereafter proceeds independently.

The distribution of the time when the path to the second point diverges is
determined by a “divergence function”, a(t). In the example, a(t) = 1/(1�t).
If the path has not diverged by time t, the probability of divergence within
the next small time interval ✏ is a(t)✏. If

R 1
0 a(t)dt is infinite, divergence is

guaranteed to occur before time t = 1, and hence the second data point will
not be the same as the first.

Later data points are generated in analogous fashion, each following pre-
vious paths for a while, but at some time diverging and then proceeding
independently. When, before divergence, the path to the new point comes to
a branch, where previous paths diverged, the new path takes a branch chosen
randomly with probabilities proportional to the number of times each branch
was taken previously. A similar “reinforcement” mechanism modifies the di-
vergence probability — the probability of divergence occurring between time
t and t + ✏ is a(t)✏/d, where d is the number of previous data points that
followed the current path.
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As shown by Neal (2001, 2003), even though this procedure produces data
points sequentially, the order of the data points produced is not actually sig-
nificant — the distribution over datasets is “exchangeable”, meaning that the
probability density for a dataset is not changed when the items are permuted.

When there is more than one feature, the values for di↵erent features are
produced by independent di↵usions, but with the same tree structure (and
divergence times) being used for all features. It is often useful to model the
observed values of the features as being the values of the terminal nodes
in the tree plus Gaussian “noise”. By letting both the standard deviation of
this noise and the di↵usion standard deviation be hyperparameters specific to
each feature, we can express the idea that the variation of some of the features
may be mostly “noise” that is unrelated to the other feature values, while the
variation of other features is mostly related to the underlying tree (and hence
to other such features that also depend on the tree), with little “noise”.

Given some particular dataset, we can try to find the posterior distribu-
tion over trees that might have been produced along with this dataset, if the
data were the result of the Dirichlet di↵usion tree process. Since this poste-
rior distribution is complex, we will need to apply Markov chain Monte Carlo
methods, as described by Neal (2003). The Markov chain can sample not just
for the underlying tree, but also for the noise and di↵usion standard devia-
tion hyperparameters, and for hyperparameters that determine the divergence
function.

Once we have a sample of trees from the posterior distribution, we might
use them in various ways to classify unlabelled items. One class of methods use
only the tree structure, without paying attention to the divergence times of the
branch points in the tree. Another class of methods use the divergence times
in the tree to define a measure of distance between items. Similar methods
for classification based on trees have been developed independently by Kemp,
Gri�ths, Stromsten, and Tenenbaum (2004).

The simplest method using only the structure of the tree predicts the class
of an unlabelled item based on the nearest neighboring items in the tree that
have labels. The probability that the unlabelled item has class +1 based on
this tree is then estimated as the proportion of these labelled nearest neighbors
that have class +1. For the tree in Figure 10.3, for example, this procedure
will predict that items B, C, and E have class +1 with probability 1, since
in each case there is only a single nearest labelled item, and it is of class +1.
Item H, however, has four nearest labelled items, of which two are labelled
+1 and two are labelled �1, and is therefore predicted to be of class +1 with
probability 2/4 = 0.5. These probabilities based on a single tree are averaged
for all the trees in the sample from the posterior to get the final predictive
probabilities.

We can try to make better use of the unlabelled data by classifying unla-
belled items in succession, using the newly added labels when classifying later
items. At each stage, we find one of the unlabeled items that is closest to a
labeled item, as measured by divergence time (though the final result actual
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Fig. 10.3. A tree with labelled and unlabelled items. This dendrogram shows a
single tree with both labelled (training) and unlabelled (test) items at the leaves.
Labels for the unlabelled items can be predicted in various ways, as described in the
text.

depends only on the tree structure, not the divergence times), and assign a
label to this unlabelled item based on the labeled items nearest it, including
items that were assigned labels in previous stages. For the tree in Figure 10.3,
we would start with item E, and predict that it is in class +1 with probability
1. Next we will look at items B and C, and again predict that they are in
class +1 with probability 1. So far, the results are the same as for the pre-
vious method. When we come to item H, however, we will predict that it is
in class +1 with probability 5/7, since five of its seven nearest neighbors are
now labelled as being in class +1, a result that is di↵erent from the previous
method’s prediction of equal probabilities for class +1 and �1. When some of
the nearest neighbors are not classified either way with probability 1, we treat
them as contributing the appropriate fraction to the counts for both classes.
As before, the final predictive probabilities are obtained by averaging over all
trees in the sample from the posterior distribution.

The second class of methods measures the distance between two items by
one minus the time at which the paths to the two items diverged. In the tree
in Figure 10.3, for example, items B and D have distance of approximately
0.25, and items C and G have distance of about 0.6.

These distances can be averaged over a sample of trees drawn from the
posterior distribution to obtain a final distance measure, which can be used
to classify the test data by various methods. The simplest is to classify based
on the k nearest neighbors according to this distance measure. We also tried
using this distance to define a covariance function for a Gaussian distribution
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of latent values representing the logits of the class probabilities for each item
(Neal, 1999).

Alternatively, we can classify unlabelled items by a weighted average in
which training items nearer the test item are given more weight. Suppose the
divergence time in a particular tree between items j and k is tjk (i.e., their
distance in this tree is 1 � tjk). For an unlabelled test observation i, we let
the weight of the labelled observation j be ertij � 1, which gives the following
probability that the unknown label, Yi, of the test item is +1:

P (Yi = 1) =
X

j : yj=+1

�

ertij�1
�

.

X

j

�

ertij�1
�

(10.10)

Here, j indexes the training observations. The value of r to use for each tree
can be chosen by leave-one-out cross validation. The final predictions are made
by averaging the class probabilities found using each of the trees drawn from
the posterior distribution.

From our preliminary experiments, it is unclear which of the above some-
what ad hoc methods is best. Further work is needed to evaluate these meth-
ods, and to develop methods that have clearer justifications.

10.7 Methods and Results for the Challenge Data Sets

In this section, we present and discuss the results obtained by our winning
challenge submission, BayesNN-DFT-combo, and by two other submissions,
BayesNN-small and BayesNN-large, which came second and third (with al-
most equal overall balanced error rates).

The BayesNN-small and BayesNN-large entries used Bayesian neural net-
work models (see Section 10.5). BayesNN-large used as many features as
seemed desirable in terms of predictive performance. BayesNN-small used as
small a set of features as seemed possible without seriously a↵ecting predic-
tive performance. In both cases, balanced error rate on the validation set was
the primary criterion for estimating performance on the test set. For some
datasets, a small set of features was judged best, in which case the BayesNN-
small and BayesNN-large methods were the same. BayesNN-DFT-combo was
the same as BayesNN-large except for the Arcene dataset, for which a Dirichlet
di↵usion tree method was used, and the Madelon dataset, for which predic-
tions from Dirichlet di↵usion tree and neural network methods were averaged.
Two entries were made for each method — one in which only the training data
was used, and one in which both training and validation data was used. The
second submission for each method was the same as the first, except for the
use of additional data, and sometimes a di↵erent length MCMC run.

In these original challenge submissions, various ad hoc methods were em-
ployed, which seemed in our judgement to be desirable in light of the specifics
of the datasets, but which make it di�cult to say exactly what was responsi-
ble for the good performance. For some of the original challenge submissions,
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the Markov chain Monte Carlo runs were allowed to continue for several days,
which might or might not have been essential, but which seemed advisable
when the aim was to achieve the best predictive performance. (For models of
the sort we used, it is di�cult to tell for sure whether an MCMC run has truly
converged.) To better understand the methods involved, we have therefore in-
cluded results obtained using simplified versions of the logistic regression and
neural network methods, implemented using scripts that are available on the
web, at www.cs.utoronto.ca/~radford/. There are six simplified methods,
which use various feature selection or dimensionality reduction methods, and
either linear logistic regression or neural network models.

Three of these simplified methods use the first 40 principal components
rather than individual features (see Section 10.3). These principal components
were based on the subset of features that were non-zero in at least four of the
training cases. The New-Bayes-lrg-pc method applies linear logistic regres-
sion with a spherically-symmetric Gaussian prior to the values of the first 40
principal components. As discussed in Section 10.4, this may be similar to
applying logistic regression with a spherically-symmetric Gaussian prior to
all the original features. The New-Bayes-lr-pc method instead uses a prior in
which (conditional on a single high-level width hyperparameter) the regres-
sion coe�cients for the 40 principal components are independent and have a
t distribution with two degrees of freedom as their prior. This heavy-tailed
prior allows some of the principal components to have much more influence
than others. The New-Bayes-nn-pc method applies a neural network model
with two hidden layers, with 20 and 8 hidden units, to the 40 principal compo-
nents, using an ARD prior that again allows some of the principal components
to have more influence than others.

The other three simplified methods use a subset of the features. A subset
was first selected based on the results of the univariate significance tests dis-
cussed in Section 10.2, with the number of features chosen by hand, based on
what appeared to be adequate. The New-Bayes-lr-sel method uses these fea-
tures in a linear logistic regression model with a heavy-tailed prior that allows
some features to be much more important than others. The New-Bayes-nn-sel
method uses these features in a neural network model with two hidden layers,
with 20 and 8 hidden units, with an ARD prior that allows some features to
have more influence. A smaller subset of features was then found by looking at
the posterior distribution of the relevance of each feature in the Bayes-new-lr-
sel and Bayes-new-nn-sel models, with the number of features to retain again
being chosen by hand. This smaller subset was used in the New-Bayes-nn-red
method, which was otherwise the same as New-Bayes-nn-sel.

For each dataset, the method from among these six that had the smallest
validation error when fit using only the training data was selected as the
method to use for that dataset in the New-Bayes-large method. The best
from among New-Bayes-lr-sel, New-Bayes-nn-sel, and New-Bayes-nn-red was
selected as the method to use for the New-Bayes-small method.

www.cs.utoronto.ca/~radford/
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As for the original challenge entries, two submissions were made for each
method, one using only the training data, and one using both training and
validation data. The submissions were otherwise identical. In particular, fea-
ture subsets were chosen once, based solely on the training data (apart from
some final model selection based on validation error). The same subset was
then used for the second submission, without redoing the feature selection
using the additional data in the validation set.

The neural network methods used in the original challenge submissions
(the BayesNN methods) were generally similar to the corresponding New-
Bayes methods, but di↵ered in many details, some specific to particular
datasets. The BayesNN methods based on principal components used the
first 50 components. The use of only 40 components for the New-Bayes meth-
ods was aimed at reducing the computational burden for people reproducing
the results. Similary, the first hidden layer for the BayesNN methods usu-
ally had 25 units, rather than the 20 units for the New-Bayes methods. For
BayesNN, features were often transformed in ways that increased their corre-
lation with the class before being used, but this was not done for New-Bayes,
for the sake of simplicity. Many of these di↵erences might be expected to re-
sult in the New-Bayes methods having somewhat worse performance than the
original submissions, though some refinements and possibly-di↵erent human
judgements could produce the reverse e↵ect instead.

The remainder of this section details how these methods were applied to
each of the five challenge datasets, and discusses the resulting performance.
Tables 1 through 5 below summarize the performance of each method in terms
of “balanced error rate” (which averages the error rate for both classes) when
trained using the training data alone, and when using the training plus the
validation data. These tables also show the number of features used by each
method, and the performance of the best of the original challenge entries (the
best is sometimes di↵erent for the two training scenarios). Note that although
the source for each dataset is briefly described below, this information was
not available at the time of the original BayesNN submissions, and was delib-
erately not used when designing the New-Bayes methods.

10.7.1 The Arcene Dataset

The Arcene dataset is derived from mass spectrograms of blood serum used
as a way of distinguishing people with cancer (class +1) from people without
cancer (class �1). The data comes from three sources, two for prostate cancer
and one for ovarian cancer. There were 10000 features. The feature values
were thresholded so that around half of the values were zero. Approximately
44% of the cases were positive. Accordingly, in order to minimize the posterior
expected loss under the balanced error rate criterion, test cases were predicted
to be in class +1 if the probability of class +1 was greater than 0.44.

For the New-Bayes methods, features that are non-zero in fewer than four
training cases were eliminated from consideration. The first 40 principal com-
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Fig. 10.4. Scatterplots of Arcene training data. The plot on the left shows two
informative features, with values jittered by ±8 to reduce overlap. The plot on the
right shows two informative principal components. Black dots indicate items in class
+1, gray dots items in class �1.

ponents were found after centering and scaling the remaining 9656 features,
and used for New-Bayes-lrg-pc, New-Bayes-lr-pc, and New-Bayes-nn-pc. A
large number of the features were relevant according to one or more of the
univariate significance tests of Section 10.2. Using fairly stringent criteria of
p-values less than 0.0008, 0.002, and 0.002 for the permutation test on cor-
relation with ranks, the hypergeometric test, and the runs test, a subset of
484 features was chosen for use in New-Bayes-lr-sel and New-Bayes-nn-sel. A
smaller subset of 100 features was chosen based on the ARD hyperparameter
values in the MCMC run for New-Bayes-nn-sel. This smaller subset was used
by New-Bayes-nn-red.

As can be seen in Figure 10.4, although both individual features and the
principal component values contain some information about the class, the re-
lationship is sometimes rather complex. We would therefore expect non-linear
models such as neural networks to do better than linear logistic regression.
This is confirmed by the results in Table 10.1. The best performance on the
test cases was achieved by New-Bayes-nn-red, but since this method had the
worst error rate on the validation set, it was not chosen for New-Bayes-small
or New-bayes-large, which instead used the methods of New-Bayes-nn-sel and
New-Bayes-nn-pc. Error on the small validation set (100 cases) was clearly
not a very good guide for model selection.

The time required (on a 3GHz Pentium 4) for the New-Bayes MCMC runs
(on the training data only) ranged from 2 minutes for New-Bayes-lrg-pc to
7.5 hours for New-Bayes-nn-sel.

The original BayesNN-large and BayesNN-small submissions were similar
to New-Bayes-large and New-Bayes-small. One di↵erence is that BayesNN-



288 Radford M. Neal and Jianguo Zhang

Number of Training Data Only Train+Valid.
Method Features Valid. Error Test Error Test Error

New-Bayes-lrg-pc 9656 .1372 .1954 .1687
New-Bayes-lr-pc 9656 .1461 .1979 .1725
New-Bayes-lr-sel 484 .1891 .1877 .1424
New-Bayes-nn-pc/large 9656 .1282 .1699 .1469
New-Bayes-nn-sel/small 484 .1778 .1607 .1218
New-Bayes-nn-red 100 .2029 .1599 .0720

BayesNN-small 1070 .1575 .1659 .1186
BayesNN-large 9656 .1396 .1919 .1588
BayesNN-DFT-combo 10000 .0722 .1330 .1225

Best Original Entry
BayesNN-DFT-combo 10000 .0722 .1330
final2-2 (Yi-Wei Chen) 10000 .1073

Table 10.1. Arcene results (10000 features, 100 train, 100 validation, 700 test).

Number of Training Data Only Train+Valid.
Method Features Valid. Error Test Error Test Error

New-Bayes-lrg-pc 4724 .0300 .0295 .0298
New-Bayes-lr-pc 4724 .0320 .0295 .0295
New-Bayes-lr-sel 1135 .0190 .0186 .0175
New-Bayes-nn-pc/large 4724 .0170 .0134 .0125
New-Bayes-nn-sel/small 1135 .0190 .0188 .0168
New-Bayes-nn-red 326 .0200 .0203 .0186

BayesNN-small 379 .0250 .0203 .0209
BayesNN-large/combo 5000 .0160 .0129 .0126

Best Original Entry
BayesNN-large/combo 5000 .0160 .0129 .0126

Table 10.2. Gisette results (5000 features, 6000 train, 1000 validation, 6500 test).

large looked at 50 principal components, found after a power transformation
of each feature (with power of 1/2, 1, or 2) chosen to maximize correlation
with the class. Based on validation error rates, such transformations were not
used for BayesNN-small.

For the winning BayesNN-DFT-combo entry, we decided on the basis of
validation error rates (which in this instance proved to be a good guide) not
to use one of the neural network methods for this dataset, but instead to use
Dirichlet di↵usion tree methods, as described in Section 10.6.

The Dirichlet di↵usion tree models were applied to principal component
values for all the cases (training, validation, and test), producing a sample
of trees drawn from the posterior distribution. Feature values were always
centred before principal components were taken. We tried both rescaling each
feature to have standard deviation of one before taking principal components,
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Number of Training Data Only Train+Valid.
Method Features Valid. Error Test Error Test Error

New-Bayes-lrg-pc 1458 .0800 .0770 .0505
New-Bayes-lr-pc 1458 .0900 .0705 .0475
New-Bayes-lr-sel 298 .0767 .0360 .0455
New-Bayes-nn-pc 1458 .0900 .0740 .0505
New-Bayes-nn-sel 298 .0800 .0510 .0505
New-Bayes-nn-red/small/large 100 .0733 .0550 .0555

BayesNN-small/large/combo 303 .0533 .0390 .0405

Best Original Entry
BayesNN-small/large/combo 303 .0533 .0390
FS+SVM (Navin Lal) 3714 .0330

Note: The best original entry using training data was actually BayesNN-large, but it used the same method with
303 features as BayesNN-small. Due to a glitch, the result submitted for BayesNN-large was slightly different
(and slightly better) than that for BayesNN-small. I have listed BayesNN-small as best since it essentially was.

Table 10.3. Dexter results (20000 features, 300 train, 300 validation, 2000 test).

Number of Training Data Only Train+Valid.
Method Features Valid. Error Test Error Test Error

New-Bayes-lrg-pc 55230 .1330 .1396 .1367
New-Bayes-lr-pc 55230 .1314 .1176 .1226
New-Bayes-lr-sel 683 .1321 .1126 .1193
New-Bayes-nn-pc/large 55230 .1131 .1166 .1046
New-Bayes-nn-sel/small 683 .1253 .1110 .1121
New-Bayes-nn-red 72 .1830 .2053 .1956

BayesNN-small 500 .1110 .1063 .1107
BayesNN-large/combo 100000 .0547 .0854 .0861

Best Original Entry
BayesNN-large/combo 100000 .0547 .0854 .0861

Table 10.4. Dorothea results (100000 features, 800 train, 350 validation, 800 test).

Number of Training Data Only Train+Valid.
Method Features Valid. Error Test Error Test Error

New-Bayes-lrg-pc 500 .4117 .3994 .3944
New-Bayes-lr-pc 500 .4100 .3922 .3961
New-Bayes-lr-sel 38 .4233 .4133 .3983
New-Bayes-nn-pc 500 .1333 .1239 .1300
New-Bayes-nn-sel 38 .1383 .1144 .0950
New-Bayes-nn-red/small/large 21 .0917 .0883 .0994

BayesNN-small/large 17 .0733 .0772 .0656
BayesNN-DFT-combo 500 .0677 .0717 .0622

Best Original Entry
final1 (Yi-Wei Chen) 24 .0750 .0661
BayesNN-DFT-combo 500 .0622

Table 10.5. Madelon results (500 features, 2000 train, 600 validation, 1800 test).
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and leaving the features with their original scales. We also tried rescaling
the resulting principal component values to have standard deviation one, and
leaving them with their original scales. The combinations of these choices
produce four possible methods.

For all four methods, we used a prior in which each feature had hyperpa-
rameters for the di↵usion standard deviation and the noise standard deviation,
which allows the model to decide that some features are mostly “noise”, and
should not influence the clustering. The models we used were based on the
first 100 principal components, because we found that when models with more
principal components were fitted, most components beyond these first 100 had
noise standard deviations that were greater than their di↵usion standard de-
viation (at least when features were not rescaled).

We found that the various classification methods described in Section 10.6
produced quite similar results. In our challenge entry, we used the method of
classifying unlabelled items in succession, using the newly added labels when
classifying later items. We found that the validation error rates when using
rescaled features were higher than when features were not rescaled. However,
we decided nevertheless to base our predictions on the average probabilities
from all four methods (i.e., rescaling features or not, and rescaling principal
components or not). This produced smaller validation error than any of the
individual methods.

Figure 10.5 shows one tree from the posterior distribution of a Dirichlet
di↵usion model (with only training cases shown). The early split into three
subtrees is evident, which likely corresponds to the three sources of the data
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Fig. 10.5. A dendrogram of a tree drawn from the posterior distribution of a Dirich-
let di↵usion tree model for the Arcene data (based on un-rescaled principal compo-
nents found from un-rescaled features). Only training cases are shown here, though
the tree was constructed based on all the cases. Class +1 is labelled with “#”; class
�1 with “0”. The vertical axis shows divergence time in the tree.
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that were merged to produced this dataset. The labels for the leaves of the tree
are clearly related to the clustering, providing a good basis for classification.

As seen in Table 10.1, the BayesNN-DFT-combo entry using Dirichlet
di↵usion trees had the best performance of any entry when using the training
data only. However, when both training and validation data was used, both
the original BayesNN-small method and the New-Bayes-small method did
better than BayesNN-DFT-combo, and New-Bayes-nn-red did even better.
A possible explanation for this is that the Dirichlet di↵usion tree method is
very good at accommodating the three very distinct clusters underlying this
dataset, allowing it to obtain good results even with only the 100 training
cases. Once a total of 200 cases (training plus validation) are used, however,
the neural network models seem to be more capable.

10.7.2 The Gisette Dataset

The Gisette dataset is derived from images of handwritten examples of the
digits “4” and “9”. The digits were scaled to a uniform size and centred in a
28-pixel by 28-pixel field. Gisette has 5000 features, which include the pixel
values, thresholded to produce a substantial fraction of zeros, many products
of pairs of values for randomly-selected pixels, and many “probe” features
unrelated to the class. Note that both thresholding and the introduction of
random products are probably undesirable when using a flexible model such
as a neural network. There are equal numbers of cases in the two classes.

For the New-Bayes methods, a few features were eliminated from consid-
eration because they were non-zero in fewer than four training cases. The
first 40 principal components of the remaining 4724 features were found (with
scaling and centering) using only the training data (to save time and mem-
ory), and used for New-Bayes-lrg-pc, New-Bayes-lr-pc, and New-Bayes-nn-pc.
According to the univariate significance tests of Section 10.2, a large number
of features were related to the class — e.g., for 2021 features, the p-value for
the hypergeometric significance test applied to the binary form of the fea-
ture (zero/non-zero) is less than 0.05. A subset of features of size 1135 with
the smallest p-values was chosen based on the need to reduce the number of
features for computational reasons, and used for New-Bayes-lr-sel and New-
Bayes-nn-sel. A smaller subset of 326 features was chosen based on the ARD
hyperparameter values in the MCMC run for New-Bayes-nn-sel, and on the
magnitude of the regression coe�cients in the MCMC run for New-Bayes-lr-
sel. This smaller subset was used for New-Bayes-nn-red. Based on results on
the validation set the New-Bayes-nn-pc method was used for New-Bayes-large,
and the New-Bayes-nn-sel method was used for New-Bayes-small.

As can be seen in Table 10.2, the best performance was achieved by New-
Bayes-nn-pc. Figure 10.6 shows how some of the principal components used
by this method relate to the class. The advantage that a non-linear neural
network model will have over linear logistic regression can be seen in the left
plot of this figure.
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Fig. 10.6. Scatterplots of principal components from Gisette training data. Only
1000 randomly chosen training cases are shown, with the classes distinguished by
black and gray dots.

The time required (on a 3GHz Pentium 4) for the New-Bayes MCMC runs
(on the training data only) ranged from 3 hours for New-Bayes-lrg-pc to 25
hours for New-Bayes-nn-sel.

The best original challenge submission was BayesNN-large (also used for
BayesNN-DFT-combo), which is similar in both method and performance to
New-Bayes-nn-pc.

10.7.3 The Dexter Dataset

The Dexter dataset is derived from data on the frequency of words in doc-
uments, with class +1 consisting of documents about corporate acquisitions,
and class �1 consisting of documents about other topics. There are equal
numbers of cases in the two classes. The 20000 features for Dexter are mostly
zero; the non-zero values are integers from 1 to 999.

The New-Bayes methods looked only at the 1458 features that are non-
zero in four or more of the 300 training cases. Only these features were used
when finding the first 40 principal components (without centering or scaling,
using all the data), and when selecting a smaller subset of features. Many
of the individual features are obviously informative, as are a number of the
principal components, as can be seen in Figure 10.7.

The New-Bayes-lr-sel and New-Bayes-nn-sel methods looked at the subset
of 298 features for which the p-value from at least one of three univariate
significance tests was less than 0.05, a threshold chosen since it produced
what seemed to be a reasonable number of features. The three tests applied
were a permutation test based on the correlation of the class with the ranked
data, a hypergeometric significance test with the features converted to binary
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Fig. 10.7. Scatterplots of Dexter training data. The plot on the left shows two
informative features, with values jittered by ±8 to reduce overlap. The plot on the
right shows two informative principal components. Black dots indicate items in class
+1, gray dots items in class �1.

form according to whether they were zero or non-zero, and a runs test sensitive
to non-monotic relationships. Given knowledge of the source of this data (not
available at the time of the original challenge), the runs test would seem
inappropriate, since it is unlikely that the frequencies of any words would be
non-monotonically related to the class.

A smaller subset of 100 features was selected by looking at the relevance
hyperparameters from the MCMC run done for the New-Bayes-nn-sel method.
Looking instead at the magnitudes of weights from the MCMC run for New-
Bayes-lr-sel would have produced mostly the same features. The somewhat
arbitrary decision to choose 100 features was motivated simply by a desire
to reduce the number substantially from 298, without drastically a↵ecting
predictive performance. The New-Bayes-nn-red method using this reduced
feature set had the lowest validation error of the six New-Bayes methods,
and was therefore chosen as the method to use for both New-Bayes-small and
New-Bayes-large.

As can be seen from Table 10.3, the performance of the New-Bayes methods
that looked at the 298 selected features was better than that of the methods
that used principal components, especially when only the 300 training cases
were used. The best performance from among the New-Bayes methods was
obtained by New-Bayes-lr-sel. The di↵erence in error rate between New-Bayes-
lr-sel and the next best method, New-Bayes-nn-sel, is statistically significant
for the results using training data only (where the methods produced dif-
ferent predictions for 52 test cases), but not for the results using training
and validation data (where the methods di↵ered for 40 test cases). The New-
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Bayes-nn-red method, which had the best validation error rate, was worse
than New-Bayes-nn-sel, though the di↵erence is not statistically significant.

The New-Bayes-nn-red method does achieve reasonably good performance
using a quite small set of features. Excluding some preliminary BayesNN sub-
missions that used methods similar to New-Bayes-nn-red, the best method in
the original challenge that used less than 150 features was CBAMethod3E,
which used 119 features and achieved an error rate of 0.0600 using both train-
ing and validation data.

One puzzling aspect of the results is that, except for the methods using
principal components, using both training and validation data did not help
performance, and indeed seemed sometimes to have hurt it. (The biggest drop
in performance, for New-Bayes-lr-sel, results from di↵erences in predictions for
63 test cases, giving a p-value of 0.023.)

The time required (on a 3GHz Pentium 4) for the New-Bayes MCMC runs
(on the training data only) ranged from 10 minutes for New-Bayes-lrg to 14
hours for New-Bayes-nn-sel.

In the original BayesNN-small method (also used for BayesNN-large and
BayesNN-DFT-combo), various power transformations of the features were
considered, with the result that most features were transformed by taking the
square root, as this improved the correlation with the class. This may explain
why the performance of BayesNN-small is better than that of New-Bayes-
small. With knowledge of the data source, a transformation such as square
root seems natural, since it leads to more emphasis on whether or not a word
is used at all, with less emphasis on exactly how many times it is used.

10.7.4 The Dorothea Dataset

The Dorothea dataset was derived from data on whether or not small organic
molecules bind to thrombin. Class +1 consists of molecules that do bind,
and class �1 of molecules that do not bind. The 100000 features are binary
indicators of the presence or absence of various features in the molecule’s
three-dimensional structure. The features are very sparse, with less than 1%
of the values being one. Only a few (9.75%) of the molecules are in class +1.
Accordingly, to minimize the balanced error rate, test cases were predicted to
be in class +1 if the probability of class +1 was greater than 0.0975.

The New-Bayes methods looked only at the 55230 features that are non-
zero in four or more of the 800 training cases. These features were used when
finding the first 40 principal components (without centering or scaling, using
all the data), and when selecting a smaller subset of 683 features (using hyper-
geometric significance tests with p-value threshold of 0.001). This subset of 683
features was used for New-Bayes-lr-sel and New-Bayes-nn-sel, and a smaller
subset of 72 features was then found using the hyperparameter values in the
MCMC runs for these methods. On the basis of the balanced error rates on
the validation cases, the New-Bayes-nn-pc method was chosen for New-Bayes-
large, and the New-Bayes-nn-sel method was chosen for New-Bayes-small.
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Fig. 10.8. Scatterplots of Dorothea training data, showing four informative prin-
cipal components. Black dots indicate items in class +1, gray dots items in class
�1.

As seen in Table 10.4, the New-Bayes-nn-pc and New-Bayes-nn-sel meth-
ods did better than the other New-Bayes methods (with little di↵erence be-
tween them). The smaller subset used by New-Bayes-nn-red appears to have
been too small (or not chosen well). New-Bayes-lr-pc and New-Bayes-lr-sel
did almost as well as the neural network methods, showing that this dataset
exhibits only a slight (though not negligible) degree of non-linearity, as can
be seen also from Figure 10.8.

As was the case with Dexter, there is a puzzling tendency for the methods
to perform slightly worse rather than better when using both training and
validation data.

The time required (on a 3GHz Pentium 4) for the New-Bayes MCMC runs
(on the training data only) ranged from 26 minutes for New-Bayes-lrg-pc to
21 hours for New-Bayes-nn-sel.

The BayesNN-small method from the original challenge was similer to
New-Bayes-nn-sel. However, BayesNN-large, whose performance is better than
that of any other method, di↵ered in several ways from New-Bayes-large. Like
New-Bayes-large, it was based on a neural network with two hidden layers.
Like New-Bayes-large, it also looked at principal components, but di↵ered in
using the first 50, found from all features that are non-zero in two or more
cases (training, validation, or test). In addition, BayesNN-large looked at 60
of the original features, selected on the basis of ARD hyperparameters from
other neural network runs. Finally, the neural network for BayesNN-large
had three additional inputs, equal to the logs of one plus the numbers of
singleton, doubleton, and tripleton features that are non-zero in each case. A
singleton feature is one that is non-zero in exactly one of the cases (training,
validation, or test). There are 10896 singleton features. A doubleton feature
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is one that is non-zero in exactly two of the cases. There are 7199 doubleton
features. Similarly, there are 5661 tripleton features. There are 12 training
cases in which one or more of the singleton features is non-zero. (In fact, in
all these cases, at least 36 singleton features are non-zero.) Every one of these
12 training cases is in class +1. The presense of singleton features therefore
appears to be highly informative, though the reason for this is obscure, even
with some knowledge of the source of the data. It is likely that BayesNN-large
performs better than New-Bayes-large principally because it was provided
with this information.

10.7.5 The Madelon Dataset

The Madelon dataset was artificially generated by placing 16 clusters of points
from class +1 and 16 clusters of points from class �1 on the vertices of a five-
dimensional hypercube, and then using various transformations of the five
coordinates of these points as features (along with some additional useless
features). Extra noise was added to features as well, and a few (1%) of the
class labels were flipped at random. There were equal numbers of cases in the
two classes. The 500 features had values ranging from 0 to 999, but 99% of
the feature values were between 400 and 600.

With 500 features and 2000 training cases, the Madelon dataset is just
small enough that it is feasible to use neural network models that look at all
features. For uniformity with the other datasets, however, the New-Bayes-lr-sel
and New-Bayes-nn-sel methods looked at a subset of features chosen according
to univariate significance tests. The New-Bayes-nn-red method uses a smaller
set of features selected based on the ARD hyperparameters from the MCMC
runs for New-Bayes-nn-sel along with those for an MCMC run of a neural
network model that looked at all the features. Methods looking at principal
components (found with centering and scaling) were also run.

As can be seen in Figure 10.9, some of the features, as well as some of
the principal components, are highly informative, but their relationship to
the class is not linear. This explains the poor performance of methods using
linear logistic regression (see Table 10.5). The smallest validation error rate
was achieved by New-Bayes-nn-red, which was therefore chosen for both New-
Bayes-small and New-Bayes-large. New-Bayes-nn-red did prove the best of
the New-Bayes methods when using only the training data, and was close
to the best when using both training and validation data, despite a puzzling
worsening in performance with the addition of the validation data (perhaps
explainable by poor MCMC convergence).

The computer time (on a 3GHz Pentium 4) for the MCMC runs done for
the New-Bayes methods (on the training data only) ranged from one hour for
New-Bayes-lrg-sel to 36 hours for the MCMC run with the neural network
model looking at all 500 features.

The original BayesNN-small method (which was also used for BayesNN-
large) was similar to New-Bayes-nn-red. However, ARD hyperparameters from
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Fig. 10.9. Scatterplots of Madelon training data. The plot on the left shows two
informative features; that on the right shows two informative principal components.
Black dots indicate items in class +1, gray dots items in class �1.

a larger set of MCMC runs were used, including one run of a Gaussian process
classification model (Neal, 1999) using all 500 features. This produced better
results, perhaps because of a better selection of features.

For the winning BayesNN-DFT-combo entry, we averaged the predictive
probabilities from BayesNN-small and from a Dirichlet di↵usion tree model,
since the validation error rates for these two methods were quite close. The
Dirichlet di↵usion trees were fit to the first six principal components, since
preliminary runs indicated that only the first five principal components were
important (one more was kept out of a sense of caution). Principal components
were found after the features were centred, but not rescaled, since rescaling
produced a larger validation error rate. Classification was done by successively
assigning unlabelled items to classes, using the newly added class labels when
classifying later items.

The performance of this BayesNN-DFT-combo entry was the best of any
method when using both training and validation data. When using only train-
ing data, it was close to the best.

10.8 Conclusions

We have shown that Bayesian neural network models can perform very well
on high-dimensional classification problems with up to 100000 features by first
reducing dimensionality to no more than about a thousand features, and then
applying ARD priors that can automatically determine the relevance of the
remaining features. For some problems, reducing dimensionality using PCA
(applied to most or all features) worked best. For others, selecting a subset of
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features using univariate significance tests worked better. A further reduction
in the number of features based on the values of the ARD hyperparameters
sometimes improved performance further, or at least did not reduce perfor-
mance much. Classification using Dirichlet di↵usion trees also performed very
well on some problems, and is a promising area for further research.

A further advantage of Bayesian methods not discussed earlier is that
they produce good indications of uncertainty. This is evidenced by the very
good performance of the best of our methods in terms of the area under the
ROC curve (AUC), which was often substantially greater than that of other
methods, even when these methods had a similar balanced error rate.

From a Bayesian standpoint, the methods we used are a compromise, in
which computational cost forces the use of somewhat ad hoc methods for
dimensionality reduction before a Bayesian model is applied. With improve-
ments in computer hardware and in algorithms for Bayesian computation, we
may hope to reduce the extent to which dimensionality needs to be reduced
for computational reasons. Problems in which the number of features is too
great for them all to be used will probably always exist, however. Accepting
this, we might nevertheless hope to avoid the optimistic bias that can arise
when we select a subset of features and then use the same data used for selec-
tion when finding the posterior distribution for a model looking only at this
subset of features. This is a topic on which we are currently working.

Another area in which further research is needed is selection of a model (or
models) from among those that have been tried. For the New-Bayes methods
(and mostly for the original challenge submissions as well), we made this
choice based on performance on the validation set, but this did not always
work well (especially for Arcene). According to Bayesian theory, models should
be compared on the basis of their “marginal likelihood” (also known as the
“evidence”), but this approach also has problems, notably a great sensitivity
to prior specifications, and exceptional computational di�culties.

A final lesson can be learned from the fact that, for several of the datasets,
our original challenge submissions performed better than the similar but more
systematic methods used for the New-Bayes methods. Even when no knowl-
edge of the nature of the datasets was available, exploratory data analysis
(e.g., looking at plots) was able to suggest various modifications specific to
each dataset, which do appear to have been mostly beneficial. The diversity
of possible classification methods is such that no automatic procedure is yet
able to completely replace human judgement. We expect this to be even more
true when prior information regarding the nature of the dataset is available.
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Summary. It has been recently pointed out that the Regularized Least Squares
Classifier (RLSC), continues to be a viable option for binary classification problems.
We apply RLSC to the datasets of the NIPS 2003 Feature Selection Challenge using
Gaussian kernels. Since RLSC is sensitive to noise variables, ensemble-based variable
filtering is applied first. RLSC makes use of the best-ranked variables only. We
compare the performance of a stochastic ensemble of RLSCs to a single best RLSC.
Our results indicate that in terms of classification error rate the two are similar on
the challenge data. However, especially with large data sets, ensembles could provide
other advantages that we list.

11.1 Introduction

Regularized least-squares regression and classification dates back to the work
of Tikhonov and Arsenin (1977), and to ridge regression (Hoerl and Ken-
nard, 1970). It has been re-advocated and revived recently by Poggio and
Smale (2003), Cucker and Smale (2001), Rifkin (2002), Poggio et al. (2002).
The Regularized Least Squares Classifier (RLSC) is an old combination of
a quadratic loss function combined with regularization in reproducing kernel
Hilbert space, leading to a solution of a simple linear system. In many cases
in the work cited above, this simple RLSC appears to equal or exceed the per-
formance of modern developments in machine learning such as support vector
machines (SVM) (Boser et al., 1992, Schölkopf and Smola, 2002).

This simplicity of the RLSC approach is a major thread in this paper. We
verify the above mentioned findings using the NIPS 2003 Feature Selection
Challenge data sets which all define binary classification problems.

The combination of RLSC with Gaussian kernels and the usual choice of
spherical covariances gives an equal weight to every component of the feature
vector. This poses a problem if a large proportion of the features consists of
noise. With the datasets of the challenge this is exactly the case. In order to
succeed in these circumstances, noise variables need to be removed or weighted
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down. We apply ensemble-based variable filtering to remove noise variables. A
Random Forest (RF) is trained for the classification task, and an importance
measure for each variable is derived from the forest (Breiman, 2001). Only
the highest ranking variables are then passed to RLSC. We chose Random
Forests (RF) for this task for several reasons. RF can handle huge numbers of
variables easily. A global relative variable importance measure can be derived
as a by-product from the Gini-index used in the forest construction with
no extra computation involved. In order to compare RF variable selection
and RF classification to our procedure of RF variable selection and RLSC
classification, see the results of Ng and Breiman (2005).

In this paper we study empirically how a stochastic ensemble of RLSCs
with minimum regularization compares to a single optimized RLSC. Our moti-
vation to do this is the well known fact that ensembles of simple weak learners
are known to produce stable models that often significantly outperform an op-
timally tuned single base learner (Breiman, 1996, Freund and Schapire, 1995,
Breiman, 2001). A further advantage of ensembles is the possibility of paral-
lelization. Using much smaller sample sizes to train each expert of an ensemble
could be faster than training a single learner using a huge data set.

For an ensemble to be e↵ective, the individual experts need to have low bias
and the errors they make should be uncorrelated (Bousquet and Elissee↵, 2000,
Breiman, 2001). Using minimum regularization with RLSC reduces the bias
of the learner making it a good candidate for ensemble methods. Diversity of
the learners can be accomplished by training base learners using independent
random samples of the training data.

The structure of this paper is as follows. We begin by briefly describing
the RLSC, theory behind it, and its connections to support vector machines.
We discuss ensembles, especially ensembles of RLSCs and the interplay of
regularization and bias in ensembles. The scheme for variable filtering using
ensembles of trees is discussed next, after which we describe experimentation
with the challenge data sets. We discuss our findings regarding ensembles of
RLSCs, and conclude by touching upon several possible future directions.

11.2 Regularized Least-Squares Classification (RLSC)

In supervised learning the training data (xi, yi)m
i=1 are used to construct a

function f : X ! Y that predicts or generalizes well. To measure goodness of
the learned function f(x) a loss function L(f(x), y) is needed. Some commonly
used loss functions for regression are as follows:

• Square loss or L2: L(f(x), y) = (f(x)� y)2 (the most common),
• Absolute value, or L1 loss: L(f(x), y) = |f(x)� y|,
• Huber’s loss function :

(

|y � f(x)|2, for |f(x)� y|  �

�(|y � f(x)|� �/2), otherwise
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• Vapnik’s ✏-insensitive loss: L(f(x), y) = (|f(x)� y|� ✏)+, where (.)+ = 0
if the argument is negative.

Examples of loss functions for binary classification (�1,+1) are

• Misclassification: L(f(x), y) = I(sign(f(x)) 6= y)
• Exponential (Adaboost): L(f(x), y) = exp(�yf(x))
• Hinge loss (implicitly introduced by Vapnik) in binary SVM classification:

L(f(x), y) = (1� yf(x))+
• Binomial deviance (logistic regression): L(f(x), y) = log(1+exp(�2yf(x)))
• Squared error: L(f(x), y) = (1� yf(x))2

Given a loss function, the goal of learning is to find an approximation
function f(x) that minimizes the expected risk, or the generalization error

EP (x,y)L(f(x), y) (11.1)

where P (x, y) is the unknown joint distribution of future observations (x, y).
Given a finite sample from the (X,Y) domain this problem is ill-posed.

The regularization approach of Tikhonov and Arsenin (1977) restores well-
posedness (existence, uniqueness, and stability) to the empirical loss by re-
stricting the hypothesis space, the functional space of possible solutions:

f̂ = argmin
f2H

1
m

m
X

i=1

L(f(xi), yi) + � kfk2k (11.2)

The hypothesis space H here is a Reproducing Kernel Hilbert Space (RKHS)
defined by a kernel k. � is a positive regularization parameter.

The mathematical foundations for this framework as well as a key algo-
rithm to solve (11.2) are derived elegantly by Poggio and Smale (2003) for the
square loss function. The algorithm can be summarized as follows:

(1.) Start with the data (xi, yi)m
i=1.

(2.) Choose a symmetric , positive definite kernel, such as

k(x,x0) = e�
||x�x

0||2

2�2 . (11.3)

(3.) The representer theorem (Schölkopf and Smola, 2002) states that the so-
lution to (11.2) is

f(x) =
m
X

i=1

↵ik(xi,x). (11.4)

For functions of form (11.4) the norm in (11.2) is kfk2k = ↵T K↵, where
Kij = k(xi,xj). It is now easy to insert the square loss function, the
norm, and (11.4) in (11.2), and di↵erentiate w.r.t ↵. This leads to solving

(m�I + K)↵ = y (11.5)

representing well-posed linear ridge regression (Hoerl and Kennard, 1970).
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The generalization ability of this solution, as well choosing the regulariza-
tion parameter � were studied by Cucker and Smale (2001, 2003).

Thus, the regularized least-squares algorithm solves a simple well defined
linear problem. The solution is a linear kernel expansion of the same form
as the one given by support vector machines (SVM.) Note also that SVM
formulation naturally fits in the regularization framework (11.2). Inserting
the SVM hinge loss function L(f(x), y) = (1 � yf(x))+ to (11.2) leads to
solving a quadratic optimization problem instead of a linear solution.

RLSC with the quadratic loss function, that is more common for regression,
has also proven to be very e↵ective in binary classification problems (Suykens
and Vandervalle, 1999, Rifkin, 2002).

11.3 Model Averaging and Regularization

11.3.1 Stability

Generalization ability of a learned function is closely related to its stability.
Stability of the solution could be loosely defined as continuous dependence on
the data. A stable solution changes very little for small changes in data. A
comprehensive treatment of this connection can be found in (Bousquet and
Elissee↵, 2000).

Furthermore, it is well known that bagging (bootstrap aggregation) can
dramatically reduce the variance of unstable learners providing some regular-
ization e↵ect (Breiman, 1996). Bagged ensembles do not overfit, and they are
limited by the learning power of base learners. Key to the performance is a
low bias of the base learner, and low correlation between base learners.

Evgeniou (2000) experimented with ensembles of SVMs. He used a few
datasets from the UCI benchmark collection tuning all parameters separately
for both a single SVM and for an ensemble of SVMs to achieve the best
performance. He found that both perform similarly. He also found that gen-
eralization bounds for ensembles are tighter than for a single machine.

Poggio et al. (2002) studied the relationship between stability and bagging.
They showed that there is a bagging scheme, where each expert is trained on a
disjoint subset of the training data, providing strong stability to ensembles of
non-strongly stable experts, and therefore providing the same order of conver-
gence for the generalization error as Tikhonov regularization. Thus, at least
asymptotically, bagging strongly stable experts would not improve generaliza-
tion ability of the individual member, since regularization would provide the
same exact e↵ect.

11.3.2 Ensembles of RLSCs

Since the sizes of the challenge datasets are relatively small, we compare simple
stochastic aggregation of LSCs to the best individually trained RLSC.
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We are looking for diverse low biased experts. For RLSC, bias is controlled
by the regularization parameter, and by the � in case of Gaussian kernel. In-
stead of bootstrap sampling from training data which imposes a fixed sampling
strategy, we found that often much smaller sample sizes improve performance,
but in general it is data set specific.

Combining the outputs of the experts in an ensemble can be done in several
ways. We performed majority voting over the outputs of the experts. In binary
classification this is equivalent to averaging the discretized (+1,-1) predictions
of the experts. In our experiments this performed better than averaging the
actual numeric expert outputs before applying their decision function (sign).

11.4 Variable Filtering with Tree-Based Ensembles

For most datasets from the challenge we noticed a significant improvement in
accuracy when only a small (but important) fraction of the original variables
was used in kernel construction.

We used fast exploratory tree-based models for variable filtering. One of
many important properties of CART (Breiman et al., 1984) is its embedded
ability to select important variables during tree construction using greedy
recursive partition, where impurity reduction is maximized at every step. Im-
purity measures the unevenness of class distribution. If data of a node in a
decision tree belongs to a single class it is pure, or, impurity equals zero. If
every class is equally probable, impurity is at the maximum. Entropy is ob-
viously one such measure. CART uses the Gini index IG(t) =

P

q 6=r p̂tqp̂tr,
where p̂tq is the probability of class q estimated from the data at node t.
Variable importance then can be defined as a sum over the tree nodes

M(xi, T ) =
X

t2T

�IG(xi, t), (11.6)

where �IG(xi, t) is the decrease in impurity due to an actual or potential
split on variable xi at a node t of the optimally pruned tree T . The sum in
(11.6) is taken over all internal tree nodes where xi was a primary splitter
or a surrogate variable. Consequently, no additional e↵ort is needed for its
calculation.

Two recent advances in tree ensembles, Multivariate Adaptive Regression
Trees, or MART (Friedman, 1999a,b) and Random Forests, or RF (Breiman,
2001), inherit all nice properties of a single tree, and provide a more reliable
estimate of this value, as the importance measure is averaged over the NT

trees in the ensemble

M(xi) =
1

NT

NT
X

k=1

M(xi, Tk). (11.7)
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In both cases the trees have the same depth. Thus there is no need to normalize
individual tree importances. The maximum of M(xi) over the variables is
scaled to be 100.

MART builds shallow trees using all variables, and hence, can handle large
datasets with a moderate number of variables. RF builds maximal trees but
chooses a small random subset of variables at every split, and easily handles
thousands of variables in datasets of moderate size. For datasets massive in
both dimensions a hybrid scheme with shallow trees and dynamic variable
selection has been shown to have at least the same accuracy but to be much
faster than either MART or RF (Chapter 15).

Note that the index of variable importance defined in the above measures
is the global contribution of a variable to the learned model. It is not just a
univariate response-predictor relationship.

For the NIPS challenge we used RF to select important variables. A forest
was grown using the training data until there was no improvement in the gen-
eralization error. Typically, this limit was around 100 trees. As an individual
tree is grown, a random sample of the variables is drawn, out of which the
best split is chosen, instead of considering all of the variables. The size of this
sample was typically

p
N , N being the number of original variables. A fast

Intel in-house implementation of the RF was used. Breiman’s original Fortran
implementation can be used for the same purpose.

11.5 Experiments with Challenge Data Sets

As discussed in the chapter presenting the challenge, the data sets were divided
in three parts: the actual training data set, a validation set, and the test set.
In the first phase of the challenge, only the labels of the training set were
provided. Preliminary submissions were evaluated using the validation data,
final submissions using the test data.

In the second phase of the challenge the validation data set labels were
also provided for a period of one week. We did not repeat feature selection
experiments by pooling labeled validation data together with the training
data. We used the same feature sets and classifier structures that were chosen
in the first phase, and only retrained those using the combined training and
validation data sets. Since this was suboptimal for the second phase of the
challenge, we only report experiments that were performed for the first phase.

11.5.1 Variable Selection Experiments

Initial experimentation was performed to determine whether variable selection
was necessary at all. We trained ensembles of RLSCs for three smallest data
sets, Madelon, Dexter, and Arcene. Results are given in Table 11.1 together
with later selection experiments. The last column shows error rates using all
variables, and the middle column shows these initial selection experiments.
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Fig. 11.1. The importance of the top 33 out of 500 variables of Madelon derived
from a training set of 2000 cases in 500 trees. Variable importance has a clear cut-o↵
point at 19 variables. Compare to Fig 11.2.

The numbers are averages of ten-fold cross validation (CV), by which we
mean dividing the training data set in ten equal sized parts, training using
nine parts, testing using the remaining part, repeating by leaving a di↵erent
part aside, and averaging the ten tests.

These results appearer to indicate that RLSC is sensitive to noise vari-
ables in data, and that variable selection based on importances derived from
Random Forests improves cross-validation results.

For the rest of the experiments, we adopted the following variable selection
procedure. Importances are calculated by a random forest as described in Sec.
11.4. Variable importances M(xj) are then sorted in descending order, and
di↵erences �M(xj) = M(xj)�M(xj+1) are calculated. Sorting the di↵erences
in descending order produces a list of candidates for cut-o↵ points. Figure
11.1 shows a clear example of such a cut-o↵ point. For comparison, and to
demonstate the stability of the selection method, Figure 11.2 plots the same
importances derived from the validation set, which is smaller. Variables and
their order are the same (not shown), only the cut-o↵ point is not as clear as
with a larger amount of data.

For each data set, the smallest possible variable set as indicated by a cut-
o↵ point was tried first. If the results were unsatisfactory (not competitive
with other entrants), variable selection by the next cut-o↵ point was tried,
and so on, until satisfactory results were obtained. The maximum number of
variables considered was about 500. We display these results in Table 11.1.
Full cross-validation was thus not done over the whole possible range of the
number of selected variables.

The variable set was thereafter fixed to the one that produced the smallest
cross-validation error, with two exceptions: Contrary to other data sets, on
Arcene the error rate using the validation set did not follow cross-validation
error but was the smallest when all variables were used. Arcene is evidently
such a small data set that variable selection and classifier training both us-
ing the 100 training samples, will overfit. The second exception is Dexter,
which gave the best results using 500 variables ranked by maximum mutual
information with the class labels (Torkkola, 2003), (Chapter 6).
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Fig. 11.2. Importances derived from the 600 cases in the validation set for the
top 33 out of 500 variables of Madelon. The top 19 variables are the same as those
derived from the training data set (Figure 11.1), but the cut-o↵ point is not as clear.

Table 11.1. Experimentation with the number of selected variables. Ten-fold cross-
valdation errors on training data using a number of best ranked variables. See text
for Arcene and Dexter.

Data set Selection All variables

11 19 25 500

Madelon 0.1295 0.1071 0.1497 0.254

49 109 432 20000

Dexter 0.0767 0.0738 0.033 0.324

13 87 434 10000

Arcene 0.267 0.0406 0.0430 0.1307

44 156 307 5000

Gisette 0.0453 0.0247 0.0218 -

284 1000000

Dorothea 0.0280 -

At this point we also studied preprocessing. In every case, the mean is
subtracted first. In addition, we experimented with 1) standardization of indi-
vidual variables, and 2) weighting variables by their importance. Due to lack of
space these experiments are not tabulated, but the decisions are summarized
in table 11.2.

Once the variable set and the preprocessing is fixed, the next task is to
optimize the classifier parameters.

11.5.2 Parameters of a single RLSC and an ensemble of RLSCs

An individual RLSC has two parameters that need to be determined by cross-
validation. These are
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Table 11.2. Variable selection, standardization, and variable weighting decisions.

Data Original Selected Selection Stand- Weight-

set variables variables method ardize? ing?

Madelon 500 19 RF yes no

Dexter 20000 500 MMI yes by MI

Arcene 10000 10000 none no no

Gisette 5000 307 RF no no

Dorothea 100000 284 RF no no

(1.) Kernel parameters. After a brief experimentation with polynomial kernels,
we adopted Gaussian kernels. The only parameter is the kernel width �2,
the range of which was determined as a function of the average squared
distance between samples in the training set, d2

av. This was approximated
as the average distance between 1000 randomly chosen sample pairs. Since
the optimal width depends on the data, the kernel width was varied typ-
ically within d2

av/30 < �2 < 10d2
av in cross-validation experiments.

(2.) Regularization. For a single RLSC, regularization is critical in order not
to overfit. The choice was again made by cross-validation, and appears to
be very data dependent.

A stochastic ensemble of RLSCs has two additional parameters. We discuss
each in turn.

(1.) Kernel parameters. To make the best possible use of an ensemble, individ-
ual classifiers should overfit in order to reduce the bias of the ensemble.
Variance of the individual classifiers is averaged out by combining the
individual outputs. In general, this leads to the optimum kernel width be-
ing narrower than the optimum width for a single RLSC. As with a single
RLSC, the optimum width needs to be determined by cross-validation.

(2.) Regularization. The quest for low bias also typically leads to regularizing
RLSCs minimally in order to guarantee the existence of the solution to
equation (11.5) in badly conditioned cases.

(3.) Ensemble size. Not too much attention needs to be paid to the size of an
ensemble NT as long as it is reasonably large. If the training data set or
the fraction sampled from it is small, determining the weights of an RLSC
is computationally so light that the ensemble size can just be kept as a
relatively large number, typically NT = 200. Increasing the size did not
have a detrimental e↵ect in our experiments.

(4.) Fraction of training data sampled for individual RLSCs. A typical bagging
procedure would sample the training data with replacement (bootstrap
sample), that is, the same data point could occur in the sample multi-
ple times (Breiman, 1996). With decision trees these duplicated samples
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contribute to the statistics of classes in the nodes. The case is di↵erent
with RLSC. Duplication of the same sample would only lead to a duplica-
tion of the same kernel function in the classifier. This does not change the
solution and gains nothing for the classifier. Thus, contrary to typical bag-
ging, we sampled the training data without replacement for each RLSC.
The optimal fraction ftd of training data to sample is mainly a function
of the size of the data set, and the nature of the data set. A larger data
set generally can do with a smaller fraction of the data sampled for each
RLSC. Ensembles with a variable ftd were not experimented with.

To determine the parameters for the single best RLSC, we have thus a
two-dimensional parameter space in which to run the cross-validation exper-
iments. For an ensemble, although the problem seems to be a search in a
four-dimensional parameter space, it is in fact two-dimensional at most. Reg-
ularization coe�cient and ensemble size can be dropped from the parameter
search, since the former needs to be very close to zero, and the latter needs
to be a number around 100-200. Ensemble performance does not seem to be
terribly sensitive to a proportion of data sampled for each base learner either.
It is also noteworthy that leave-one-out (LOO) cross-validation can be done
analytically as described by Rifkin (2002). If fS denotes the function obtained
using all training data, and fSi the function when data sample i is removed,
the LOO value is

yi � fSi(xi) =
yi � fS(xi)

1�Gii
, (11.8)

where G = (K + m�I)�1. Rifkin (2002) also shows that the number of LOO
errors can be bound by

|xi : yif(xi)  k(xi,xi)
k(xi,xi) + m�

|. (11.9)

However, we used empirical 10-fold cross-validation in the experimentation.

11.5.3 Classifier parameter optimization experiments

Kernel width and regularization parameter search comparing a single RLSC
to an ensemble of RLSCs on Madelon is presented in Fig. 11.3. This is a very
typical plot for a single RLSC. For each kernel width there is a narrow range
of optimal regularization parameters. There is also a relatively narrow range
of kernel widths around the optimal one.

Optimal kernel width is di↵erent for a single RLSC and for an ensemble.
With every challenge data set, the optimal ensemble kernel was narrower than
that of a single RLSC. One illustration is given in Fig. 11.4.

There are two further observations we can make about ensembles of RLSCs
on the basis of these two plots: 1) Tuning of the regularization parameter can
be eliminated unless ill-conditioning requires some positive value. 2) Not much
can be gained in terms of reducing the error rate using the ensemble vs. a single
optimized RLSC.



11 Ensembles of Regularized Least Squares Classifiers 311

−Inf −8 −7 −6 −5 −4 −3 −2 −1 0 

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19
0.011111
0.016667
0.033333
     0.1
     0.2
     0.5
       1
       2
       5

Fig. 11.3. Cross-validation experimentation in order to find the optimal combi-
nation of kernel width and regularization parameter for the Madelon data set. The
vertical axis is the 10-fold cross-validation error rate on training data, the horizontal
axis is log10(�), and each curve corresponds to a specific kernel width. The legend
displays the multiplier to d2

av

= 37.5. A single RLSC is denoted by solid lines, and
dashed lines denote an ensemble of 200 RLSCs, each trained using a random sample
of 40% of the training data. The color coding remains the same.
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Fig. 11.4. Dashed line: Cross-validation error of a single RLSC as a function of
the kernel width. The solid line plots the same for an ensemble. The regularization
parameter was kept fixed.

The size of the ensemble does not appear to matter much, as long as it
is above a certain limit (100-200 experts.) As an example we plot the cross-
validation accuracy on Gisette as a function of the ensemble size and the
fraction of the data sampled for each expert (Figure 11.5.)

In general, the trend in the challenge data sets appears to be that the
larger the training data set, the smaller ftd, the fraction of data to sample
for each expert in the ensemble, can be. This is advantageous regarding the
computational complexity of an ensemble. Solving the linear system directly
using all training data is O(N3), where N is the training set size. There is a
limit to N (even with current computers) which makes solving the full system
if not impossible, at least very inconvenient. Solving instead 200 systems of
size N/10 can be much more feasible if O(N3) passes some resource limit but
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Fig. 11.5. Cross-validation experimentation to illustrate the optimal combination
of the ensemble size against the fraction of data sampled for Gisette. Dark squares
indicate low error rate.

O((N/10)3) does not. A further advantage of ensembles is that they can be
easily parallelized.

We present classification error rates both for CV and for the validation set
in Table 11.3. Corresponding ensemble parameters are shown in Table 11.4.
Even though there is no di↵erence in CV/validation error rates between using
a single RLSC or an ensemble of LSCs, we decided to make our entry to the
challenge using ensembles. This was motivated by a combination of two facts,
1) small sample sizes in some of the data sets, and 2) because of the reduced
sensitivity of an ensemble to parameter choices. Results of the challenge entry
on the test set are presented in Table 11.5 together with the results of the
winner.

Our overall score was 5th of the entries in the challenge and 2nd of the
entrants. To what extent this success is due to the RF variable selection and
to what extent due to the classifier, is unclear. However, on Arcene no vari-
able selection was used. The results are thus fully attributable to the classi-
fier, and appear to be competitive with any other classifier in the challenge.
On Madelon, RF picked the correct variable set with no probes. On Gisette
no probes were chosen either. But with Dexter, Dorothea, and Gisette we
stopped increasing the number of selected variables too early. Since this pro-
cess includes some heuristic parameters (Sec. 11.5.1), cross-validation experi-
mentation should be run over a wider range of expected number of variables
than what was done in this work.
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Table 11.3. Error rates (both using 10-fold cross validation and the validation data
set) after optimizing �2 and � for a single RLSC, and �2 and the fraction of data
sampled for each RLSC in an ensemble of 200 classifiers.

Data Single RLSC, Single RLSC, Ensemble, Ensemble,

set cross-validation validation set cross-validation validation set

Madelon 0.0949 0.0700 0.0927 0.0667

Dexter 0.0287 0.0633 0.0300 0.0633

Arcene 0.1133 0.1331 0.1128 0.1331

Gisette 0.0165 0.0210 0.0202 0.0210

Dorothea 0.0270 0.1183 0.0284 0.1183

Table 11.4. Ensemble parameter choices used in the challenge. Kernel width here
denotes a multiplier to d2

av

.

Data set Ensemble size Data fraction Regularization Kernel width

Madelon 200 0.4 0 1/30

Dexter 200 0.7 1e-4 1/2.5

Arcene 200 0.8 0 1/10

Gisette 200 0.3 0 1

Dorothea 30 0.6 0 1/10

Table 11.5. NIPS 2003 challenge results on the test data for ensembles of RLSCs.

Dec. 1st Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 59.27 9.07 90.93 22.54 17.53 88.00 6.84 97.22 80.3 47.8 0.6

Arcene 81.82 15.14 84.86 100.0 30.0 98.18 13.30 93.48 100.0 30.0 0

Dexter 49.09 5.40 94.60 2.5 28.4 96.36 3.90 99.01 1.5 12.9 1

Dorothea 23.64 16.23 83.77 0.28 29.23 98.18 8.54 95.92 100.0 50.0 1

Gisette 45.45 1.89 98.11 6.14 0 98.18 1.37 98.63 18.3 0.0 1

Madelon 96.36 6.67 93.33 3.8 0 100.00 7.17 96.95 1.6 0.0 0
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11.5.4 Summary of the approach

We summarize here the procedure used in our submission to the challenge.

Variable ranking by Random Forest:

(1.) Compute an importance index for each
variable for each tree in the process of
growing the tree as the decrease of im-
purity to an actual or potential split
on the variable at a node (eq. 11.6).

(2.) Grow around 100 trees (until no
more generalization improvement.)
Tree variability is obtained by boot-
srap sampling training data, and by
drawing at random

p
N variables at

each node and choosing the best split
on these variables.

(3.) Compute the average importance in-
dex over all trees in the forest (eq.
11.7).

The optimum number of features is se-
lected using ten-fold CV by trying sub-
sets of variables corresponding to “cut-o↵
points” (Sec. 11.5.1).

Training RLSC ensembles:

(1.) Train multiple RLSCs by
subsampling a fraction f

td

of the training data, with-
out replacement (com-
putationally e�cient be-
cause one does not need to
recompute the kernel ma-
trix.) Fix the regulariza-
tion parameter to a van-
ishingly small value. The
ensemble size should be
large (around 200) since
there is no risk of overfit-
ting.

(2.) Optimize the kernel width
and the fraction f

td

.
(3.) Vote on the classifier de-

cisions with weight 1.

11.6 Future Directions

We outline here three major directions that we feel do have a chance of im-
proving or extending the work presented in this paper.

11.6.1 Diversification

The ensemble construction process is computationally light because the whole
kernel matrix K for all available training data can be pre-computed, and
sampled from, to construct the individual classifiers of the ensemble.

However, only one source of diversification is provided to the experts, the
random sample of training data points. For ensemble methods to work opti-
mally, the experts should be as diverse as possible.

We believe that a kernel width that varies across the experts randomly
over a range that is derived from sample distances, could improve ensem-
ble performance. Combination of this with ensemble postprocessing discussed
later would lead to elimination of the kernel width selection procedure alto-
gether. Also the whole kernel matrix would not have to be re-calculated for
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each sampled kernel width. Only a function of an existing kernel matrix needs
to be calculated.

Another possibility for diversification is to use random feature selection, in
addition to random training sample selection. Unfortunately, unlike in Ran-
dom Forests, a computational cost is incurred, since the kernel needs to be
explicitly re-evaluated for each di↵erent random feature combination.

11.6.2 Supervised kernels

We describe an approach in this paper that consists of two disjoint systems,
Random Forests for variable selection, and RLSC for the actual classification.
Even though the two systems nicely complement each other, RF providing fast
embedded variable selection and RLSC providing highly capable base learners
to compensate for the lack of smoothness of the trees of an RF, an integrated
approach would be desirable. We describe an idea towards such a system.

RF could act as one type of supervised kernel generator using the pairwise
similarities between cases. Similarity for a single tree between two cases could
be defined as the total number of common parent nodes, normalized by the
level of the deepest case, and summed up for the ensemble. Minimum number
of common parents to define nonzero similarity is another parameter that
could be used like width in Gaussian kernels.

Figure 11.6 illustrates the di↵erence between a Gaussian kernel and the
proposed supervised kernel.

An advantage of the method is that it works for any type of data, numeric,
categorical, or mixed, even for data with missing values. This is because the
base learners of the Random Forest can tolerate these.

A further advantage is that explicit variable selection is bypassed alto-
gether. Important variables will become used in the trees of the forest, and
they thus participate implicitly in the evaluation of the kernel.

11.6.3 Ensemble postprocessing

A well known avenue to improve the accuracy of an ensemble is to replace
the simple averaging of individual experts by a weighting scheme. Instead
of giving equal weight to each expert, the outputs of more reliable experts
are weighted up. Linear regression can be applied to learn these weights. To
avoid overfitting, the training material for this regression should be produced
by passing only those samples through an expert, that did not participate in
construction of the particular expert (out-of-bag samples.) Since the outputs
of the experts are correlated (even though the aim is to minimize this corre-
lation), Partial Least Squares or Principal Components Regression could well
be used to find aggregation weights.
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Fig. 11.6. Gaussian kernel compared to a supervised kernel using the Arcene
dataset. Left side depicts the 100⇥ 100 Gaussian kernel matrix of the dataset clus-
tered in three clusters. Each cluster has samples from both classes. Class identity of
a sample is depicted as the graphs below and between the kernel matrix images. For
ideal classification purposes, the kernel matrix should reflect the similarity within a
class and dissimilarity between classes. This can be seen on the right side of the fig-
ure, where the proposed supervised kernel has split the first cluster (top left corner)
into the two classes nicely. Splits on the second and third clusters are not that clean
but still visible, and much more so than what can be seen in the Gaussian kernel.

11.7 Conclusion

We have described a relatively simple approach to the combined problem of
variable selection and classifier design as a combination of random forests
and regularized least squares classifiers. As applied to the NIPS 2003 Feature
Selection Challenge, this approach ranked the 5th of entries and the 2nd of
entrants in the initial part of the challenge.

Even though individual RLSC could achieve comparable accuracy through
careful tuning over parameter space, we found that ensembles are easier to
train, and are less sensitive to parameter changes. The generalization error
stabilizes after a relatively small number of base learners is added to the
ensemble (less than 200.) Naturally it does not hurt to add more experts as
there is no overfitting. The optimal kernel width for an ensemble is consistently
smaller than that of the best single RLSC, and the range of optimal values is
wider. It is consistent with known results on superior performance of ensembles
consisting of low bias and high variance base learners.

The random sample of data used to build each individual learner was
relatively small. The fact that the larger the data set, the smaller the sample
size needed, makes parallel ensemble construction much more e�cient than
constructing a single RLSC using all of the data.
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Chapter 12

Combining SVMs with Various Feature
Selection Strategies
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Summary. This article investigates the performance of combining support vector
machines (SVM) and various feature selection strategies. Some of them are filter-type
approaches: general feature selection methods independent of SVM, and some are
wrapper-type methods: modifications of SVM which can be used to select features.
We apply these strategies while participating to the NIPS 2003 Feature Selection
Challenge and rank third as a group.

12.1 Introduction

Support Vector Machine (SVM) (Boser et al., 1992, Cortes and Vapnik, 1995)
is an e↵ective classification method, but it does not directly obtain the feature
importance. In this article we combine SVM with various feature selection
strategies and investigate their performance. Some of them are“filters”: general
feature selection methods independent of SVM. That is, these methods select
important features first and then SVM is applied for classification. On the
other hand, some are wrapper-type methods: modifications of SVM which
choose important features as well as conduct training/testing. We apply these
strategies while participating to the NIPS 2003 Feature Selection Challenge.
Overall we rank third as a group and are the winner of one data set.

In the NIPS 2003 Feature Selection Challenge, the main judging criterion
is the balanced error rate (BER). Its definition is:

BER ⌘ 1
2
(
# positive instances predicted wrong

# positive instances
+

# negative instances predicted wrong
# negative instances

) .
(12.1)

For example, assume a test data set contains 90 positive and 10 negative
instances. If all the instances are predicted as positive, then BER is 50%
since the first term of (12.1) is 0/90 but the second is 10/10. There are other



320 Yi-Wei Chen and Chih-Jen Lin

judging criteria such as the number of features and probes, but throughout
the competition we focus on how to get the smallest BER.

This article is organized as follows. In Section 2 we introduce support
vector classification. Section 3 discusses various feature selection strategies. In
Section 4, we show the experimental results during the development period of
the competition. In Section 5, the final competition results are listed. Finally,
we have discussion and conclusions in Section 6. All competition data sets are
available at http://clopinet.com/isabelle/Projects/NIPS2003/.

12.2 Support Vector Classification

Recently, support vector machines (SVMs) have been a promising tool for
data classification. Its basic idea is to map data into a high dimensional space
and find a separating hyperplane with the maximal margin. Given training
vectors xk 2 Rn, k = 1, . . . ,m in two classes, and a vector of labels y 2 Rm

such that yk 2 {1,�1}, SVM solves a quadratic optimization problem:

min
w,b,⇠

1
2
wT w + C

m
X

k=1

⇠k , (12.2)

subject to yk(wT�(xk) + b) � 1� ⇠k,

⇠k � 0, k = 1, . . . ,m,

where training data are mapped to a higher dimensional space by the function
�, and C is a penalty parameter on the training error. For any testing instance
x, the decision function (predictor) is

f(x) = sgn
�

wT�(x) + b
�

.

Practically, we need only k(x,x0) = �(x)T�(x0), the kernel function, to
train the SVM. The RBF kernel is used in our experiments:

k(x,x0) = exp(��kx� x0k2) . (12.3)

With the RBF kernel (12.3), there are two parameters to be determined in
the SVM model: C and �. To get good generalization ability, we conduct a
validation process to decide parameters. The procedure is as the following:

(1.) Consider a grid space of (C, �) with log2 C 2 {�5,�3, . . . , 15} and log2 � 2
{�15,�13, . . . , 3}.

(2.) For each hyperparameter pair (C, �) in the search space, conduct 5-fold cross
validation on the training set.

(3.) Choose the parameter (C, �) that leads to the lowest CV balanced error rate.
(4.) Use the best parameter to create a model as the predictor.

http://clopinet.com/isabelle/Projects/NIPS2003/
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12.3 Feature Selection Strategies

In this Section, we discuss feature selection strategies tried during the compe-
tition. We name each method to be like “A + B,” where A is a filter to select
features and B is a classifier or a wrapper. If a method is “A + B + C,” then
there are two filters A and B.

12.3.1 No Selection: Direct Use of SVM

The first strategy is to directly use SVM without feature selection. Thus, the
procedure in Section 12.2 is considered.

12.3.2 F-score for Feature Selection: F-score + SVM

F-score is a simple technique which measures the discrimination of two sets
of real numbers. Given training vectors xk, k = 1, . . . ,m, if the number of
positive and negative instances are n+ and n�, respectively, then the F-score
of the ith feature is defined as:

F (i) ⌘
⇣

x̄(+)
i � x̄i

⌘2
+
⇣

x̄(�)
i � x̄i

⌘2

1
n+�1

n+
P

k=1

⇣

x(+)
k,i � x̄(+)

i

⌘2
+ 1

n��1

n�
P

k=1

⇣

x(�)
k,i � x̄(�)

i

⌘2
, (12.4)

where x̄i, x̄(+)
i , x̄(�)

i are the average of the ith feature of the whole, positive,
and negative data sets, respectively; x(+)

k,i is the ith feature of the kth positive
instance, and x(�)

k,i is the ith feature of the kth negative instance. The numer-
ator indicates the discrimination between the positive and negative sets, and
the denominator indicates the one within each of the two sets. The larger the
F-score is, the more likely this feature is more discriminative. Therefore, we
use this score as a feature selection criterion.

A disadvantage of F-score is that it does not reveal mutual information
among features. Consider one simple example in Figure 12.1. Both features of
this data have low F-scores as in (12.4) the denominator (the sum of variances
of the positive and negative sets) is much larger than the numerator.

Despite this disadvantage, F-score is simple and generally quite e↵ective.
We select features with high F-scores and then apply SVM for training/pre-
diction. The procedure is summarized below:

(1.) Calculate F-score of every feature.
(2.) Pick some possible thresholds by human eye to cut low and high F-scores.
(3.) For each threshold, do the following

a) Drop features with F-score below this threshold.
b) Randomly split the training data into Xtrain and Xvalid.
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+1

−1

Fig. 12.1. A two-feature example showing the disadvantage of F-score

c) Let Xtrain be the new training data. Use the SVM procedure in Section
12.2 to obtain a predictor; use the predictor to predict Xvalid.

d) Repeat the steps above five times, and then calculate the average valida-
tion error.

(4.) Choose the threshold with the lowest average validation error.
(5.) Drop features with F-score below the selected threshold. Then apply the SVM

procedure in Section 12.2.

In the above procedure, possible thresholds are identified by human eye.
For data sets in this competition, there is a quite clear gap between high and
lower scores (see Figure 12.2, which will be described in Section 12.4). We can
automate this step by, for example, gradually adding high-F-score features,
until the validation accuracy decreases.

12.3.3 F-score and Random Forest for Feature Selection: F-score
+ RF + SVM

Random Forest (RF) is a classification method, but it also provides feature im-
portance (Breiman, 2001). Its basic idea is as follows: A forest contains many
decision trees, each of which is constructed from instances with randomly sam-
pled features. The prediction is by a majority vote of decision trees. To obtain
a feature importance criterion, first we split the training sets to two parts.
By training with the first and predicting the second we obtain an accuracy
value. For the jth feature, we randomly permute its values in the second set
and obtain another accuracy. The di↵erence between the two numbers can
indicate the importance of the jth feature.

In practice, the RF code we used cannot handle too many features. Thus,
before using RF to select features, we obtain a subset of features using F-
score selection first. This approach is thus called “F-score + RF + SVM” and
is summarized below:

(1.) F-score
a) Consider the subset of features obtained in Section 12.3.2.

(2.) RF
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a) Initialize the RF working data set to include all training instances with
the subset of features selected from Step 1. Use RF to obtain the rank of
features.

b) Use RF as a predictor and conduct 5-fold CV on the working set.
c) Update the working set by removing half of the features which are least

important and go to Step 2b.
Stop if the number of features is small.

d) Among various feature subsets chosen above, select one with the lowest
CV error.

(3.) SVM
a) Apply the SVM procedure in Section 12.2 on the training data with the

selected features.

Note that the rank of features is obtained at Step 2a and is not updated
throughout iterations. An earlier study on using RF for feature selection is
(Svetnik et al., 2004).

12.3.4 Random Forest and RM-bound SVM for Feature Selection:
RF + RM-SVM

Chapelle et al. (2002) directly use SVM to conduct feature selection. They
consider the RBF kernel with feature-wise scaling factors:

k(x,x0) = exp

 

�
n
X

i=1

�i(xi � x0i)
2

!

. (12.5)

By minimizing an estimation of generalization errors, which is a function of
�1, . . . , �n, we can have feature importance. Leave-one-out (loo) errors are
such an estimation and are bounded by a smoother function (Vapnik, 1998):

loo  4kw̃k2R̃2 . (12.6)

We refer to this upper bound as the radius margin (RM) bound. Here, w̃T ⌘
[ wT

p
C⇠

T ] and (w, ⇠) is the optimal solution of the L2-SVM:

min
w,b,⇠

1
2
wT w +

C

2

m
X

k=1

⇠2k ,

under the same constraints of (12.2); R̃ is the radius of the smallest sphere
containing all [ �(xk)T eT

k /
p

C ] , k = 1, . . . ,m, where ek is a zero vector except
the kth component is one.

We minimize the bound 4kw̃k2R̃2 with respect to C and �1, . . . , �n via a
gradient-based method. Using these parameters, an SVM model can be built
for future prediction. Therefore we call this machine an RM-bound SVM.
When the number of features is large, minimizing the RM bound is time
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consuming. Thus, we apply this technique only on the problem MADELON,
which has 500 features. To further reduce the computational burden, we use
RF to pre-select important features. Thus, this method is referred to as “RF
+ RM-SVM.”

12.4 Experimental Results

In the experiment, we use LIBSVM1 (Chang and Lin, 2001) for SVM classi-
fication. For feature selection methods, we use the randomForest (Liaw and
Wiener, 2002) package2 in software R for RF and modify the implementation
in (Chung et al., 2003) for the RM-bound SVM3. Before doing experiments,
data sets are scaled. With training, validation, and testing data together, we
scale each feature to [0, 1]. Except scaling, there is no other data preprocessing.

In the development period, only labels of training sets are known. An on-
line judge returns BER of what competitors predict about validation sets, but
labels of validation sets and even information of testing sets are kept unknown.

We mainly focus on three feature selection strategies discussed in Sections
3.1-3.3: SVM, F-score + SVM, and F-score + RF + SVM. For RF + RM-
SVM, due to the large number of features, we only apply it on MADELON.
The RF procedure in Section 12.3.3 selects 16 features, and then RM-SVM is
used. In all experiments we focused on getting the smallest BER.

For the strategy F-score + RF + SVM, after the initial selection by F-score,
we found that RF retains all features. That is, by comparing cross-validation
BER using di↵erent subsets of features, the one with all features is the best.
Hence, F+RF+SVM is in fact the same as F+SVM for all the five data sets.
Since our validation accuracy of DOROTHEA is not as good as that by some
participants, we consider a heuristic by submitting results via the top 100,
200, and 300 features from RF. The BERs of the validation set are 0.1431,
0.1251, and 0.1498, respectively. Therefore, we consider “F-score + RF top
200 + SVM” for DOROTHEA.

Table 12.1 presents the BER on validation data sets by di↵erent feature
selection strategies. It shows that no method is the best on all data sets.

In Table 12.2 we list the CV BER on the training set. Results of the first
three problems are quite di↵erent from those in Table 12.1. Due to the small
training sets or other reasons, CV does not accurately indicate the future
performance.

In Table 12.3, the first row indicates the threshold of F-score. The second
row is the number of selected features which is compared to the total number

1http://www.csie.ntu.edu.tw/~cjlin/libsvm
2http://www.r-project.org/
3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
4Our implementation of RF+RM-SVM is applicable to only MADELON, which

has a smaller number of features.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.r-project.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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Table 12.1. Comparison of di↵erent methods during the development period: BERs
of validation sets (in percentage); bold-faced entries correspond to approaches used
to generate our final submission

Dataset ARCENE DEXTER DOROTHEA GISETTE MADELON

SVM 13.31 11.67 33.98 2.10 40.17

F+SVM 21.43 8.00 21.38 1.80 13.00

F+RF+SVM 21.43 8.00 12.51 1.80 13.00

RF+RM-SVM4 – – – – 7.50

Table 12.2. CV BER on the training set (in percentage)

Dataset ARCENE DEXTER DOROTHEA GISETTE MADELON

SVM 11.04 8.33 39.38 2.08 39.85

F+SVM 9.25 4.00 14.21 1.37 11.60

of features in the third row. Figure 12.2 presents the curve of F-scores against
features.

Table 12.3. F-score threshold and the number of features selected in F+SVM

Dataset ARCENE DEXTER DOROTHEA GISETTE MADELON

F-score threshold 0.1 0.015 0.05 0.01 0.005

#features selected 661 209 445 913 13

#total features 10000 20000 100000 5000 500

12.5 Competition Results

For each data set, we submit the final result using the method that leads
to the best validation accuracy in Table 12.1. A comparison of competition
results (ours and winning entries) is in Table 12.4 and 12.5.

For the December 1st submissions, we rank 1st on GISETTE, 3rd on MADE-
LON, and 5th on ARCENE. Overall we rank 3rd as a group and our best entry
is the 6th, using the criterion of the organizers. For the December 8th submis-
sions, we rank 2nd as a group and our best entry is the 4th.
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Fig. 12.2. Curves of F-scores against features; features with F-scores below the
horizontal line are dropped

12.6 Discussion and Conclusions

Usually SVM su↵ers from a large number of features, but we find that a direct
use of SVM works well on GISETTE and ARCENE. After the competition, we
realize that GISETTE comes from an OCR problem MNIST (LeCun et al.,
1998), which contains 784 features of gray-level values. Thus, all features are
of the same type and tend to be equally important. Our earlier experience
indicates that for such problems, SVM can handle a rather large set of fea-
tures. As the 5,000 features of GISETTE are a combination of the original 784
features, SVM may still work under the same explanation. For ARCENE, we
need further investigation to know why direct SVM performs well.

For the data set MADELON, the winner (see Chapter 18) uses a kind of
Bayesian SVM (Chu et al., 2003). It is similar to RM-SVM by minimizing a
function of feature-wise scaling factors. The main di↵erence is that RM-SVM
uses an loo bound, but Bayesian SVM derives a Bayesian evidence function.
For this problem Tables 12.4- 12.5 indicate that the two approaches achieve
very similar BER. This result seems to indicate a strong relation between
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Table 12.4. NIPS 2003 challenge results on December 1st

Dec. 1st Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

OVERALL 52.00 9.31 90.69 24.9 12.0 88.00 6.84 97.22 80.3 47.8 0.4

ARCENE 74.55 15.27 84.73 100.0 30.0 98.18 13.30 93.48 100.0 30.0 0

DEXTER 0.00 6.50 93.50 1.0 10.5 96.36 3.90 99.01 1.5 12.9 1

DOROTHEA -3.64 16.82 83.18 0.5 2.7 98.18 8.54 95.92 100.0 50.0 1

GISETTE 98.18 1.37 98.63 18.3 0.0 98.18 1.37 98.63 18.3 0.0 0

MADELON 90.91 6.61 93.39 4.8 16.7 100.00 7.17 96.95 1.6 0.0 0

Table 12.5. NIPS 2003 challenge results on December 8th

Dec. 8th Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

OVERALL 49.14 7.91 91.45 24.9 9.9 88.00 6.84 97.22 80.3 47.8 0.4

ARCENE 68.57 10.73 90.63 100.0 30.0 94.29 11.86 95.47 10.7 1.0 0

DEXTER 22.86 5.35 96.86 1.2 2.9 100.00 3.30 96.70 18.6 42.1 1

DOROTHEA 8.57 15.61 77.56 0.2 0.0 97.14 8.61 95.92 100.0 50.0 1

GISETTE 97.14 1.35 98.71 18.3 0.0 97.14 1.35 98.71 18.3 0.0 0

MADELON 71.43 7.11 92.89 3.2 0.0 94.29 7.11 96.95 1.6 0.0 1

the two methods. Though they are derived from di↵erent aspects, it is worth
investigating the possible connection.

In conclusion, we have tried several feature selection strategies in this
competition. Most of them are independent of the classifier used. This work is
a preliminary study to determine what feature selection strategies should be
included in an SVM package. In the future, we would like to have a systematic
comparison on more data sets.
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Summary. SVM-related feature selection has shown to be e↵ective, while feature
selection with transductive SVMs has been less studied. This paper investigates the
use of transductive SVMs for feature selection, based on three SVM-related feature
selection methods: filtering scores + SVM wrapper, recursive feature elimination
(RFE) and multiplicative updates(MU). We show transductive SVMs can be tailored
to feature selection by embracing feature scores for feature filtering, or acting as
wrappers and embedded feature selectors. We conduct experiments on the feature
selection competition tasks to demonstrate the performance of Transductive SVMs
in feature selection and classification.

13.1 Introduction

SVMs have been studied to work with di↵erent categories of feature selection
methods, like wrappers, embedded methods, and filters. For example, the
SVM as a wrapper can be used to select features, while the feature set quality
is indicated by the performance of the trained SVM (Yu and Cho, 2003).
Feature selection can also be conducted during the process of training SVMs.
This induces some embedded feature selection methods (Brank et al., 2002,
Guyon et al., 2002, Weston et al., 2003, 2000, Guyon et al., 2003, Perkins et al.,
2003). SVMs are also useful for filter methods. Although filters often score or
rank features without utilizing a learning machine, they can utilize a SVM as
the final predictor for classification. Moreover, filters are often integrated as a
preprocessing step into wrappers and embedded methods, such that they can
help feature selection of wrappers or embedded methods.

The development of SVM-related feature selection methods motivates us to
explore the role of Transductive SVMs (TSVMs) in feature selection. Trans-
ductive SVMs are a type of transductive learning (Vapnik, 1998) machine.
They aim to build SVM models upon both labeled and unlabeled data. Trans-
ductive SVMs, as generalized from inductive SVMs, inherit the advantages of
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inductive SVMs such as the large margin (Boser et al., 1992) and regular-
ization formulation as well as kernel mapping. Besides, TSVMs are suitable
for the tasks we consider here, which are characterized by many available
unlabeled data. We thus consider extending SVM-related feature selection to
TSVM-related feature selection.

Feature selection with transduction has drawn some attentions (Weston
et al., 2002, Wu and Flach, 2002, Jebara and Jaakkola, 2000). Particularly We-
ston initiated the use of TSVMs for feature selection (Weston et al., 2002).
Among many variants of transductive SVMs (Bennett and Demiriz, 1998,
Fung and Mangasarian, 2001, Joachims, 1999b), we in this paper try to sys-
tematically adapt the 2-norm TSVM powered by the SVMLight (Joachims,
1999b) to feature selection, based on modification of SVM-related feature se-
lection methods.

The paper is organized as follows. In section 2, the formulations of SVMs
and TSVMs are briefly reviewed, including some practical issues like imple-
mentation and model selection. In section 3, several SVM-related feature se-
lection methods are discussed. In section 4, we explain how to extend them to
transductive SVM-related feature selection. In section 5, we give some anal-
ysis on the five feature selection competition tasks and a synthetic dataset.
Section 6 discusses our approach and concludes this paper.

13.2 SVMs and Transductive SVMs

13.2.1 Support Vector Machines

Given a set of n-dimensional training patterns X = {xi}m
i=1 labeled by

{yi}m
i=1, and their mapping {�(xi)}m

i=1 via a kernel function k(xi,xj) =
�(xi)T�(xj)0, a SVM has the following primal form P1.

P1: Minimize over (w, b, ⇠1, . . . , ⇠m) :

||w||pp + C
m
X

i=1

⇠i

subject to: 8m
i=1 : yi(wT�(xi)0 + b) � 1� ⇠i, ⇠i � 0

The SVM predictor for a pattern x, as shown below, is determined by the
vector inner product between the w and the mapped vector �(x), plus the
constant b.

y = sgn(wT�(x)0 + b).

The predictor actually corresponds to a separating hyperplane in the mapped
feature space. The prediction for each training pattern xi is associated with
a violation term ⇠i. The C is a user-specified constant to control the penalty
to these violation terms.
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The parameter p in the above P1 indicates, which type of norm of w is
evaluated. It is usually set to 1 or 2, resulting in the 1-norm(l1-SVM) and
2-norm SVM(l2-SVM) respectively. The l2-SVM has the following dual form
P2, which is a typical quadratic programming problem.

P2: Maximize over (↵1, . . . ,↵m) :

J = �1
2

m
X

i,j=1

↵i↵jyiyj�(xi)T�(xj)0 +
m
X

i=1

↵i

subject to:
m
X

i=1

↵iyi = 0 and 8m
i=1 : 0  ↵i  C

The dual form is a convex problem. It can be e�ciently solved by sequential
minimal optimization (Platt, 1998), or by decomposition into subtasks suitable
for standard quadratic programming routines (Joachims, 1999a).

Hyperparameter selection is particularly important for SVMs. The per-
formance of SVM models crucially depends on the type of kernel, kernel pa-
rameters, and the constant C. Some theoretical bounds are useful for model
selection (Weston et al., 2000). But an easy way to implement hyperparameter
selection is to perform a grid search guided by the cross validation accuracy.
Though the approach is computationally intensive, it is still tractable in most
cases where computational resources are plentiful. Some built-in routines are
available (Chang and Lin, 2001) for grid model search.

13.2.2 Transductive Support Vector Machines

The 1-norm and 2-norm transductive SVMs have been discussed in (Bennett
and Demiriz, 1998) and (Joachims, 1999b) respectively. Their general setting
can be described as P3.

P3: Minimize over (y⇤1 , . . . , y⇤k,w, b, ⇠1, . . . , ⇠m, ⇠⇤1 , . . . , ⇠⇤k) :

||w||pp + C
m
X

i=1

⇠i + C⇤
k
X

j=1

⇠⇤j

subject to: 8m
i=1 : yi(wT�(xi)0 + b) � 1� ⇠i, ⇠i > 0
8k

j=1 : y⇤j (wT�(x⇤j )
0 + b) � 1� ⇠⇤j , ⇠⇤j > 0

where each y⇤j is the unknown label for x⇤j , which is one of the k unlabelled
patterns.

Compared with the P1, the formulation of TSVMs (P3) takes the unla-
belled data into account, by modelling the violation terms ⇠⇤j caused by pre-
dicting each unlabelled pattern �(x⇤j ) into y⇤j . The penalty to these violation
terms is controlled by a new constant C⇤.

Exactly solving the transductive problem requires searching all possible
assignments of y⇤1 , . . . , y⇤k and specifying many terms of ⇠⇤, which is often
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Fig. 13.1. A Toy TSVM Example. The solid line is the decision plane of an inductive SVM,

which only train labeled data denoted by filled rectangles and triangles. The TSVM as depicted

by the dashed line utilizes the additional unlabeled data

intractable for large datasets. But it is worth mentioning the l2-TSVM imple-
mented in the SVMLight (Joachims, 1999a). It e�ciently approximates the
solution by using a form of local search, and is scalable to cases of thousands
of data points. We briefly mention the TSVM implementation by SVMLight
as follows.

• 1. Build an inductive SVM P2, and use it to predict unlabeled data into
positive and negative classes as a pre-specified ratio. Initialize the constant
C⇤ to be a small value.

• 2. Train a new inductive SVM P3 with predicted labels of y⇤j .
• 3. Pick a pair of unlabelled patterns, which are near the separating plane

and are associated with positive and negative predicted labels respectively.
Try to switch their labels to reduce the objective value of P3 and rebuild
a SVM. And repeat this step till no more pair can be found

• 4. Increase C⇤ a little, and go back to step 2. If C⇤ is large enough, stop
and report the final model.

The TSVM model is obtained from training a number of inductive SVM
models. In time/resource-limited cases, we can stop the training process early
and use the incomplete model. The constant C⇤ can also be set to be small
to make the training process short.
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13.3 Feature Selection Methods Related with SVMs

13.3.1 Filtering Scores+SVM Wrapper

This approach first filters some features based on scores like Pearson corre-
lation coe�cients, Fisher scores or mutual information (Forman, 2003). It is
then followed by feature selection using SVM as a wrapper to maximize the
SVM performance such as the cross validation accuracy. This wrapper ap-
proach selects features in a manner of sequential forward/backward search as
ordered by filtering scores.

Di↵erent scores may perform di↵erently for di↵erent datasets, wrappers or
the final predictors. The Fisher score, which is commonly used in SVM-related
feature selection, is given by

st = (µ+
t � µ�t )2/((�+

t )2 + (��t )2)

where µ+
t ,�+

t are the mean and standard deviation for the t-th feature in the
positive class. Similarly, µ�t ,��t for the negative class. But for tasks with very
unbalanced positive/negative training patterns, scores taking the unbalance
into account might be more suitable. For example, we find a variant of odds
ratio (Mladenic and Grobelnik, 1999) more suitable for the Dorothea data. It
is calculated by

st = exp(tprt � fprt),

where the tpr means the true positive rate: the rate of positive examples
containing positive feature values, and fpr means the false positive rate: the
rate of negative examples containing positive feature values. They can be more
easily calculated according to the (Table 13.1).

Table 13.1. odds ratio

Feature Value

0 1

Class -1 a b fpr=b/(a+b)

Class +1 c d tpr=d/(c+d)

Simple scoring schemes plus the sequential search of wrapper are easy
to implement and use. However, simple scoring schemes may not be able
to distinguish redundant features, and cannot deal with features nonlinearly
correlated with each other. E↵orts can be put to invent or modify scoring
schemes, to adopt complicated search strategies other than the score-based
sequential one, or to use specific performance measures for wrappers. But
alternatively some embedded feature selection methods such as the RFE and
MU described below can be used.
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13.3.2 Recursive Feature Elimination

The RFE approach operates in an iterative manner to eliminate features with
small weights approximated from l2�SVM. At each iteration, the weight of
the t-th feature is given by the change of the objective value J in P2 by
leaving this feature out, assuming the set of all {↵i} will remain unchanged.

The objective value after leaving the t-th feature out is

J 0t = �1
2

m
X

i,j=1

↵i↵jyiyj�(xi \ xit)T�(xj \ xjt)0 +
n
X

i=1

↵i

where (xi \ xit) denotes the input pattern i with feature t removed.
The weight of the t-th feature can be defined by

st =
p

|�Jt| =
p

|J � J 0t|. (13.1)

The following approximation suggested in (Guyon et al., 2003) is easier to
calculate.

s2
t ⇡

m
X

i,j=1

↵i↵jyiyj�(xit)T�(xjt)0 (13.2)

Specifically, the feature weights are identical to the w if the SVM is built
upon a linear kernel.

13.3.3 Multiplicative Updates

The multiplicative updates as proposed in (Weston et al., 2003) formulates
feature selection as a l0�SVM, and suggests iteratively multiplying the w
specified by a l1 or l2 SVM back into each mapped pattern �(x). Some features
then will be deactivated by small w values. The MU method by its formulation
is general to feature selection in some implicit feature space. But for kernels
like RBF kernels the feature selection in feature space is hard because the w
could be infinitly long.

The features we deal with in this paper are limited to those in the input
space. To realize multiplicative updates by multiplying feature weights into
patterns, we use the technique of RFE to approximate feature weights. This
version of MU can be summarized as follows:

1 Let z be an all-one vector matching the length of input vectors
2 Solve the following SVM variant with p = 2:

P4: Minimize over (w, b, ⇠1, . . . , ⇠m) :

||w||pp + C
m
X

i=1

⇠i

subject to: 8m
i=1 : yi(wT�(z ⇤ xi) + b) � 1� ⇠i, ⇠i > 0
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where z⇤xi denotes the component-wise product between the weight vector
z and the input pattern xi as given by z ⇤w = (z1xi1, z2xi2 . . .). Note the
exact formulation of MU actually requires z ⇤w.

3 Let s be the vector of all weights st based on (Eq.13.1 or 13.2). Set z z⇤s.
4 Back to the step 2 till there are enough iterations/ features.

13.4 Transductive SVM-Related Feature Selection

Extending previous SVM-related feature selection methods to transductive
feature selection is straightforward, only requiring replacing SVMs by TSVMs.
Specifically, we can devise three TSVM-related feature selection methods: 1)
Filtering scores+TSVM by using TSVMs as the wrapper and final predictor;
2) TSVM+RFE by iteratively eliminating features with weights calculated
from TSVM models; and 3) TSVM+MU by deactivating features by weights
approximated from TSVM models.

To save space, we simply describe the three TSVM-related feature selection
approaches as the following general procedures.

1 Preprocess data and calculate filtering scores s. And optionally further
normalize data.

2 Initialize z as an all-one input vector.
3 Set z  z ⇤ s. Set part of small entries of z to zero according to a ra-

tio/threshold, and possibly discretize non-zero z to 1.
4 Get a (sub-)optimal TSVM as measured by CV accuracy or other bounds,

Minimize over (y⇤1 , . . . , y⇤k,w, b, ⇠1, . . . , ⇠m, ⇠⇤1 , . . . , ⇠⇤k) :

1
2
||w||22 + C

m
X

i=1

⇠i + C⇤
k
X

j=1

⇠⇤j

subject to: 8m
i=1 : yi(wT�(z ⇤ xi)0 + b) � 1� ⇠i, ⇠i > 0
8k

j=1 : y⇤j (wT�(z ⇤ x⇤j )
0 + b) � 1� ⇠⇤j , ⇠⇤j > 0

5 For RFE or MU approaches, approximate feature weights s from the model
in step 4 according to (Eq.13.1 or Eq.13.2).

6 Go back to step 3 unless there is an expected number of features/iterations.
7 Output the final predictor and features indicated by large values of z.

The step 3 involves selecting a ratio/number of features according to a
threshold cutting the vector z. For filtering scores and the RFE approach,
the vector z is converted to a binary vector. And for the MU approach, part
of small entries of z can be set to zero. And then the z ⇤ x has the e↵ect of
pruning or deactivating some features.

The threshold is often set to prune a (fixed) number/ratio of features at
each iteration. The quality of remaining features is then measured by the
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optimality of the TSVM model obtained in step 4. We generally use the cross-
validation accuracy as the performance indicator of TSVM models. For a
subset of features as selected by choosing a threshold value, we run the model
search upon the free parameters like [C,C⇤,�(RBF ), d(Poly)] and determine
the best parameter set that results in the highest cross validation accuracy.

13.5 Experimentation

13.5.1 Overall Performance on the Five Feature Selection Tasks

We only participated in the competition due on 1 Dec, 2003. During which
both validation and test data are used as unlabelled data in our experiments.
Our best challenge results are given in (Table 13.2). Compared with the win-
ning challenge entry, our approach achieves positive scores for all tasks except
the Arcene data. The Arcene data is challenging for us because of the overfit-
ting caused by the nonlinear RBF kernels. For the Arcene data, we actually
select features constructed from PCA on the Arcene data, and then train RBF
TSVMs, but unfortunately the learning models we constructed does not gen-
eralize well. In some sense, it actually reflects the nontrivial importance of the
learning machines in feature selection tasks for classification.

And for comparison with other contestant’s submissions, we refer readers
to Chen & Lin’s paper, which has intensively investigated some SVM-related
feature selection methods. Since their results even show better scores than
ours, together with the fact that the McNemar tests conducted by the com-
petition organizers show no significant di↵erence between these top entries
except the winning one, we hereby do not claim any guaranteed superiority
of our TSVM-related approach. We mainly intend to show that SVM-related
feature selection can be extended to TSVMs. These TSVM-related methods
usually have comparable performance, and even show improvement for some
tasks like the Dexter data.

For the five challenge tasks, we use various preprocessing techniques and
di↵erent combination of feature selection procedures, which are briefly sum-
marized in (Table 13.3). And more miscellaneous techniques can be found
in the supplementary website 3. Filtering scores are usually calculated first,
and part of features with small values are then discarded by inspecting the
score distribution. And then a normalization step is often adopted. For Arcene
and Madelon data, we normalize the features to be with zero mean and unit
standard deviation. As for Dexter and Dorothea data, we divide each entry of
their data matrix by the square root of the production of row sum and column
sum. At each iteration of wrapper feature selection, the model parameters are
often set to be the same as those used in the final predictor. For Dexter and
Madelon data, we also test the RFE and MU embedded approach.

3http://www.comp.hkbu.edu.hk/⇠vincent/nipsTransFS.htm



13 Feature Selection for Classification Using TSVMs 337

Table 13.2. NIPS 2003 challenge results for Wu & Li

Dec. 1st Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 41.82 9.21 93.60 29.51 21.72 88.00 6.84 97.22 80.3 47.8 0.8

Arcene -41.82 20.01 85.97 100 30 98.18 13.30 93.48 100.0 30.0 1

Dexter 70.91 4.40 97.92 29.47 59.71 96.36 3.90 99.01 1.5 12.9 0

Dorothea 78.18 11.52 88.48 0.5 18.88 98.18 8.54 95.92 100.0 50.0 1

Gisette 56.36 1.58 99.84 15 0 98.18 1.37 98.63 18.3 0.0 1

Madelon 45.45 8.56 95.78 2.6 0 100.00 7.17 96.95 1.6 0.0 1

Table 13.3. Methods Used. RBF: Gaussian radial basis function k(xi, xj) =

exp (� ||xi�xj ||
2

�2 ) where � is a user-specified scaling factor and g = 1/
p

2�2. Lin: Linear kernel

function k(xi, x

0
j) = x

T
i x

0
j . Poly: Polynomial kernel function k(xi, x

0
j) = (xT

i x

0
j + 1)d where d

is a user-specified positive integer.

Arcene Dexter Dorothea Gisette Madelon

Filtering Scores odds ratio Fisher Fisher Fisher

Normalization Centered PCA Divide row and column sum Mean 0, std 1

Wrapper TSVM TSVM TSVM SVM TSVM

Embedded RFE/MU MU

Final Predictor RBF(C, g = 25, 2�6) Lin Lin(
C+
C�

= 20) Poly (d = 2) RBF(C, g = 1)

In this paper, we present some main observations on dealing with the con-
test tasks. Specifically, in Sec.13.5.2, we show filtering scores together with
TSVM wrappers are simple and useful. And then we present two examples
of using the TSVM-RFE and TSVM-MU. At the end of this section, we an-
alyze the performance of di↵erent methods in selecting salient features for a
synthetic data.

13.5.2 Filtering Scores + TSVM Wrapper

Features relevant to labels are usually given large filtering scores. Even with-
out rigorous criteria, a significant portion of features with small scores can
be removed based on the intuition about the score distribution. After the
initial feature pruning, and based on the feature ranking by filtering scores,
several iterations of backward feature elimination guided by the performance
of SVM/TSVM models can result in a more compact feature set.

For example, the Madelon data is artificially created to be very nonlinear
and noisy. It often makes RBF SVMs perform as badly as random guess. But
the Fisher scores can indicate that a small set of Madelon features are much
more relevant to labels than others. The SVM and TSVM models further
pinpoint that the range of (8⇠16) features induces the most accurate and sta-
ble prediction, measured by the 5-fold cross validation(CV) errors of training
data (Figure 13.2-left) or the mean error of predicting the validation dataset
by using the five CV models (Figure 13.2-right).
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Fig. 13.2. 5-fold CV errors of Madelon training data (Left), and the average testing
errors of validation data (Right) by the 5 CV models. (RBF kernel,� =

p
2/2, C = 1)

Another example is the Dexter data(Figure 13.3), which are originated
from the Reuters text categorization benchmark. Both the SVM and TSVM
wrappers indicate about 30% features with highest Fisher scores lead to pre-
diction improvement. Moreover, the clear performance gap between SVMs and
TSVMs actually verifies that TSVMs can achieve better performance than the
inductive SVMs for this text data (Joachims, 1999b), even with random fea-
tures added by competition organizers.
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Fig. 13.3. 5-fold CV errors of Dexter training data (Left) and the mean testing
errors of validation data (Right). (Linear kernel, C = 1)
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The Dorothea data is very unbalanced with the ratio of positive and nega-
tive patterns in the training set approaching 78/722. To deal with the unbal-
ance property, we use the odd-ratio score, which favors the positive samples.
And for model training, we follow the formulation of introducing an additional
C to control the positive and negative patterns di↵erently. Through model se-
lection we find the ratio of 20 runs well. Results in (Figure 13.4) indicate that
features ranked by odd-ratio scores are generally better than those based on
Fisher scores. And the TSVM approach based on features ranked by odd-ratio
has some advantages in constructing wrapper models and the final predictor.
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Fig. 13.4. 5-fold CV errors of Dorothea training data (Left) and the mean testing
error of validation dataset (Right). (Linear kernel, C = 1, C+/C� = 20)

13.5.3 Embedded Feature Selection by TSVMs

TSVM-MU and SVM-MU

The experiment is conducted upon the Madelon data and results are shown
in (Figure 13.5). The methods tested are the TSVM-MU and the SVM-MU.
Thirty-two features with highest Fisher scores are selected as the starting
feature set, because we know from a previous experiment(Figure 13.2) that
the best generalization ability should lie in this feature subset if the Fisher
scores are trustable. The performance of selecting 16,8,4,2 features using the
TSVM-MU and SVM-MU are recorded. As shown from the results, both the
TSVM-MU and SVM-MU improve the CV accuracy of the training data and
the prediction rate of the validation dataset, compared with the Fisher-TSVM
and Fisher-SVM methods. It means the multiplicative updates can refine the
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features selected by the simple Fisher score. Statistically speaking, the refine-
ment is not significant, especially by considering the cost of approximating
the feature weights, which involves operations on the kernel matrix. For the
comparison between TSVM-MU and SVM-MU, no strong conclusion can be
drawn, though a slight gap can be observed for the two methods.
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Fig. 13.5. 5-fold CV testing errors of Madelon validation data. (RBF kernel,� =
1, C = 1)

TSVM-RFE and SVM-RFE

We test the TSVM-RFE and the SVM-RFE on the Dexter data and show
results in (Figure 13.6). The observation is that the TSVM-RFE runs better
than either the SVM-RFE approach or the Fisher-TSVM. We further submit
post-challenges entries to the competition system by taking only the test data
as the unlabelled data. The number of features selected ranges from 500 to
6000. As shown in (Table 13.4), the TSVM-RFE has smaller probe ratios
and balance error rates than the SVM-RFE. This indicates the TSVM-RFE
approach can select better features than the SVM-RFE, and consequently
ensures good classification results. These TSVM-RFE submissions also have
good ranks compared with other contestants’ submissions.

13.5.4 Feature Saliency Check

Without too much information on the features of the data in the competition,
we use a toy dataset for feature saliency check and give some discussions on
the tradeo↵ between feature saliency and classification.

We test an artificial dataset similar to the one in (Weston et al., 2003). In
our experiments, the size of the test data is fixed at 500. In each of 50 trials, 30
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Table 13.4. Comparisons between SVM+RFE and TSVM+RFE

SVM+RFE TSVM+RFE

Feat BER AUC Probe BER AUC Probe

6000 0.0355 99.29 3155 0.0330 98.48 2649

3000 0.0375 99.28 1138 0.0340 98.67 923

500 0.0505 99.17 54 0.0350 98.88 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.06

0.065

0.07

0.075

0.08

0.085

0.09

Ratio of Features Selected

Err
or

Fisher+SVM 
Fisher+TSVM
SVM+RFE    
TSVM+RFE   

Fig. 13.6. 5-fold CV testing error of Dexter validation data. The 5-fold cross vali-
dated pair t-test shows the SVM-RFE and the TSVM-RFE have di↵erences for the
feature ratio up to 50% at the confidence rate 95%.(Linear kernel, C = 1)

training patterns are generated. The dataset is near linearly separable and has
100 features. But only six features are relevant and others are random probes.
Moreover, among the six relevant features three are redundantly relevant to
positive labels, and the other three are redundantly related to negative labels.
The most compact size of features thus is two, though the number of relevant
features can be up to six. We compare feature selection algorithms when they
select 2, 4, 6 features.

We follow the way in (Weston et al., 2003) that uses a linear kernel and a
large C (108⇠9 in our experiments) to force a hard-margin predictor. To avoid
the di�culty in obtaining the hard-margin predictor due to wrongly selecting
a high ratio of random probes, we limit the number of epochs of optimizing
a SVM QP to be 105. If the maximum number of epochs is reached, we stop
training the model.

The feature selection performance, as indicated by the average prediction
accuracy on test data, is reported in (Table 13.5) and (Table 13.6). Results in
the first table are only calculated from models that are converged within 105

epochs. Results in the second table are based on all models including those
early-stopped.
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The feature saliency measure we used is adapted from (Perkins et al.,
2003). We define the following saliency score:

s = (ng/nr) + (nu/nf )� 1

where nr is the number of relevant and non-redundant features of the data,
and ng is the number of relevant and non-redundant features selected by
feature selection methods. For our task nr = 2, and ng could be 0, 1, 2 in each
trial. The nu is the number of relevant features, which excludes random probes
but allows redundancy. And nf is the number of features selected by feature
selection methods. We run experiments with nf set to 2, 4, 6 respectively. The
range of saliency score s thus is [�1, 1]. For example, when nf = 2, finding two
relevant and non-redundant features gives a maximal score of 1, while finding
two random features only results in a minimal score of -1. And the results of
saliency scores are shown in Table 13.7.

Results shown in the three tables match some previous observations. All
feature selection methods can be used to find some relevant features such that
the prediction accuracy is better than training with all features. The TSVM
approaches of RFE and MU achieve high accuracy and saliency when the
feature size is moderate (nf = 4, 6). But in the extreme case of selecting the
most compact size of features(nf = 2), the MU-SVM ranks the best with
the highest feature saliency score (0.86) and success rate of training models
(44/50). But note that the smallest classification error is not achieved when
the most compact feature sets (nf = 2) are found. It implies that the tasks of
feature selection for classification should sacrifice part of feature saliency for
a higher classification accuracy.

Method n
f

= 2 n
f

= 4 n
f

= 6

Fisher-SVM 0.2203(42) 0.0968(6) 0.0693

Fisher-TSVM 0.1400(49) 0.0568(19) 0.0538(3)

RFE-SVM 0.0538(15) 0.0412 0.0526

RFE-TSVM 0.0369(28) 0.0343(2) 0.0339(1)

MU-SVM 0.0544(6) 0.0420 0.0380

MU-TSVM 0.0459(25) 0.0328(2) 0.0317

Table 13.5. Average testing errors of predictions based on converged models. The
number in bracket denotes the number of non-converged models within 50 trials

13.6 Conclusion and Discussion

The paper discusses the use of transductive SVMs for feature selection. It
extends three SVM-related feature selection methods to the TSVMs setting.
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Method n
f

= 2 n
f

= 4 n
f

= 6 n
f

= 100

Fisher-SVM 0.2113 0.1204 0.0693 0.1516

Fisher-TSVM 0.2112 0.1295 0.0639 0.1495

RFE-SVM 0.1062 0.0412 0.0526 0.1516

RFE-TSVM 0.1046 0.0362 0.0348 0.1495

MU-SVM 0.0705 0.0420 0.0380 0.1516

MU-TSVM 0.0835 0.0328 0.0317 0.1495

Table 13.6. Average testing errors of predictions based on all models

Method n
f

= 2 n
f

= 4 n
f

= 6

Fisher 0.5100 (1) 0.5800 (23) 0.5367 (37)

RFE-SVM 0.7900 (33) 0.7600 (44) 0.5933 (45)

RFE-TSVM 0.7700 (33) 0.7800 (45) 0.6233 (46)

MU-SVM 0.8600 (40) 0.7600 (47) 0.6400 (48)

MU-TSVM 0.8000 (35) 0.7850 (46) 0.6033 (47)

Table 13.7. Feature Saliency. Number in bracket denotes the hit times of selecting
at least two non-redundant relevant features within 50 trials

It shows that for some tasks the application of transductive SVMs to fea-
ture selection is superior to the application of inductive SVMs in terms of
classification accuracy, and feature saliency.

Feature selection incorporated with transduction is a direction to be fur-
ther explored. Since transduction has become a general learning paradigm
containing many transductive algorithms, other transductive algorithms for
feature selection are worthy of being studied. More generally, it is interesting
to investigate under what circumstance the unlabelled data will (fail to) help
feature selection and classification.

For the specific TSVM-based feature selection methods we have dealt with,
many issues can be further studied. The computational cost is one of the key
concerns. Though the TSVM implementation we use is flexible in training
(controlled by the complexity parameter C* and early stopping), it causes
great overhead when good TSVM models are needed. Besides, with the rather
simple CV indication, the search for the best number of features is also com-
putationally intensive. E↵orts for addressing these issues will not only help
feature selection, but also contribute to provide e�cient TSVM solvers and
and help solving challenging model selection problems.
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Chapter 14

Variable Selection using Correlation and Single
Variable Classifier Methods: Applications

Amir Reza Sa↵ari Azar Alamdari

Electrical Engineering Department, Sahand University of Technology, Mellat
Blvd., Tabriz, Iran. amir@ymer.org

Summary. Correlation and single variable classifier methods are very simple al-
gorithms to select a subset of variables in a dimension reduction problem, which
utilize some measures to detect relevancy of a single variable to the target classes
without considering the predictor properties to be used. In this paper, along with the
description of correlation and single variable classifier ranking methods, the applica-
tion of these algorithms to the NIPS 2003 Feature Selection Challenge problems is
also presented. The results show that these methods can be used as one of primary,
computational cost e�cient, and easy to implement techniques which have good
performance especially when variable space is very large. Also, it has been shown
that in all cases using an ensemble averaging predictor would result in a better
performance, compared to a single stand-alone predictor.

14.1 Introduction

Variable and feature selection have become one of the most important topics
in the machine learning field, especially for those applications with very large
variable spaces. Examples vary from image processing, internet texts process-
ing to gene expression array analysis, and in all of these cases handling the
large amount of datasets is the major problem.

Any method used to select some variables in a dataset, resulting in a di-
mension reduction, is called a variable selection method, which is the main
theme of this book. These methods vary from filter methods to more complex
wrappers and embedded algorithms. Filter methods are one of the simplest
techniques for variable selection problems, and they can be used as an inde-
pendent or primary dimension reduction tool before applying more complex
methods. Most of filter methods utilize a measure of how a single variable could
be useful independently from other variables and from the classifier which, is to
be used. So the main step is to apply this measure to each individual variable
and then select those with the highest values as the best variables, assuming
that this measure provides higher values for better variables. Correlation and
single variable classifier are two examples of filter algorithms.
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In Section 14.2, there is a brief introduction to correlation and single vari-
able classifier methods. Details about the mathematical description and con-
cepts of these methods are not included in this section and unfamiliar readers
can refer to Chapter 3 in this book for more details. Section 14.3 is an intro-
duction to ensemble averaging methods used as the main predictors in this
work, and in Section 14.4, the results and comparisons of applied methods
on 5 di↵erent datasets of NIPS 2003 Feature Selection Challenge are shown.
There is also a conclusion section discussing the results.

14.2 Introduction to Correlation and Single Variable
Classifier Methods

Since Chapter 3 covers filter methods in details, this section contains only
a short introduction to the correlation and single variable classifier fea-
ture ranking algorithms. Consider a classification problem with two classes,
�1 and �2 represented by +1 and �1 respectively. Let X = {xk|xk =
(xk1, xk2, . . . , xkn)T 2 Rn, k = 1, 2, . . . ,m} be the set of m input examples
and Y = {yk|yk 2 {+1,�1}, k = 1, 2, . . . ,m} be the set of corresponding
output labels. If xi = (x1i, x2i, . . . , xmi)T denotes the ith variable vector for
i = 1, 2, . . . , n and y = (y1, y2, . . . , ym)T represents the output vector, then
the correlation scoring function is given below (Guyon and Elissee↵, 2003):

C(i) =
(xi � µi)T (y � µy)
kxi � µik ⇥ ky � µyk =

Pm
k=1(xki � µi)(yk � µy)

p

Pm
k=1(xki � µi)2

Pm
k=1(yk � µy)2

(14.1)

where µi and µy are the expectation values for the variable vector xi and
the output labels vector y, respectively and k.k denotes Euclidean norm. It
is clear that this function calculates cosine of the angle between the variable
and target vector for each variable. In other words, higher absolute value
of correlation indicates higher linear correlation between that variable and
target.

Single variable classifier (Guyon and Elissee↵, 2003) is a measure of how
a single variable can predict output labels without using other variables. In
other words, a single variable classifier method constructs a predictor using
only the given variable and then measures its correct prediction rate (the num-
ber of correct predictions over the total number of examples) on the set of
given examples as the corresponding single variable classifier value. The cross-
validation technique can be used to estimate the prediction rate, if there is no
validation set. Because this method needs a predictor and a validation algo-
rithm, there exists no explicit equation indicating the single variable classifier
values.

There is a very simple way to calculate the single variable classifier quan-
tities. This method is used for all experiments in the application section.
First of all, for each variable i, a class dependent variable set is constructed:
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Xi,1 = {xki|yk = 1} and Xi,�1 = {xki|yk = �1}. Let µ1
i and µ�1

i be the
expectation values of the Xi,1 and Xi,�1 sets, respectively. These values are
the concentration point of each class on the ith variable axis. The following
equation provides a simple predictor based only on the ith variable:

y = sign((xi � µ1
i + µ�1

i

2
)(µ1

i � µ�1
i )), xi 2 R (14.2)

where y is the estimated output label, xi is the input value from ith variable,
and the sign(x) gives the sign of its input as +1 for x � 0 and �1 for
x < 0. The first term inside the sign function, determines the distance and
the direction of the input variable from the threshold point, µ1

i +µ�1
i

2 , and
the second term determines the corresponding output class label due to the
direction.

Assuming that the test set has the same statistical characteristics (i.e.
means and variances), the correct prediction rate of this predictor on the
training set can be used to determine the single variable classifier value for
each of the variables, and there is no need to do cross-validation operations.

14.2.1 Characteristics of the Correlation and Single Variable
Classifier

There are some characteristics of these methods which should be pointed out
before proceeding to the applications. The main advantage of using these
methods are their simplicity and hence, computational time e�ciency. Other
methods, which use search methods in possible subsets of variable space, need
much more computation time when compared to filter methods. So, if there is
a time or computation constraint, one can use these methods. In addition to
the simplicity, these methods can also suggest how much class distributions are
nonlinear or subjected to noise. In most cases, those variables with nonlinear
correlation to the output labels, result in a low value and this can be used
to identify them easily. Very noisy variables also can be thought as a highly
nonlinear variable. As a result, the scoring functions described above give lower
values for both of the noisy and nonlinear variables and it is not possible to
distinguish between them using only these methods.

To gain more insight, consider a classification problem with two input
variables, shown in Figure 14.1. Both variables are drawn from a normal dis-
tribution with di↵erent mean values set to (0,0) and (0,3) for class 1 and class
2, respectively. The standard deviations for both classes are equal to 1. The
dataset plot is shown in upper right section together with axes interchanged
in the lower left to simplify the understanding of images. Also, the histograms
of each class distribution are shown in upper left for the vertical axis and in
the lower right for the horizontal axis. The total number of examples is 500 for
each class. On each axis, the correlation and single variable classifier values
are printed. These values are calculated using the methods described in pre-
vious section. As shown in Fig.1, regardless of the class labels, first variable is
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pure noise. The correlation value for a noisy variable is very low and the single
variable classifier value is about 0.5, indicating that the prediction using this
variable is the same as randomly choosing target labels. The second variable
is a linearly correlated variable with the target labels, resulting in high val-
ues. For a nonlinear problem, consider Figure 14.2 which is the famous XOR
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Fig. 14.1. A simple two variable classification problem: var.1 is a pure noise variable,
var.2 is a linearly correlated one.

classification problem. This time each variable has no prediction power when
used individually, but can classify the classes when used with the other one.
As shown in Figure 14.2, the class distribution on each axis is the same, simi-
lar to the situation in noisy variables, and both correlation and single variable
classifier values are very low. Summarizing the examples, correlation and sin-
gle variable classifier methods can distinguish clearly between a highly noisy
variable and one with linear correlation to target values, and they can be used
to filter out highly noisy variables. But in nonlinear problems these methods
are less applicable and would conflict between noisy and nonlinear variables.
Another disadvantage of these methods is the lack of redundancy check in the
selected variable subset. In other words, if there were some correlated or sim-
ilar variables, which carry the same information, these methods would select
all of them, because there is no check to exclude the similar variables.
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Fig. 14.2. Nonlinear XOR problem: both variables have very low values.

14.3 Ensemble Averaging

Ensemble averaging is a simple method to obtain a powerful predictor using
a committee of weaker predictors (Haykin, 1999). The general configuration
is shown in Figure 14.3 which illustrates some di↵erent experts or predic-
tors sharing the same input, in which the individual outputs are combined
to produce an overall output. The main hypothesis is that a combination of
di↵erently trained predictors can help to improve the prediction performance
with increasing the accuracy and confidence of any decision. This is useful
especially when the performance of any individual predictor is not satisfac-
tory whether because of variable space complexity, over-fitting, or insu�cient
number of training examples comparing to the input space dimensionality.

There are several ways to combine outputs of individual predictors. The
first one is to vote over di↵erent decisions of experts about a given input. This
is called the voting system: each expert provides its final decision as a class
label, and then the class label with the higher number of votes is selected as
final output of the system.

If the output of each predictor before decision is a confidence value, , then
another way to combine outputs is to average the predictor confidence for a
given input, and then select the class with higherest confidence value as final
decision. This scheme is a bit di↵erent from the previous system, because
in voting each predictor shares the same right to select a class label, but in
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Combiner 

.... 

Input Pattern 

Output Decision 

Fig. 14.3. General structure of an ensemble averaging predictor using N experts.

confidence averaging those with less confidence values have lower e↵ect on the
final decision than those with higher confidence values.

For example, consider a classification problem in which both of its class
examples are drawn from a normal distribution with mean values of (0,0) for
class 1 and (1,1) for class 2 with standard deviations equal to 1, as shown in
Figure 14.4. The individual prediction error of 9 MLP neural networks with
di↵erent initial weights is shown in Table 14.1. Here the values are prediction
errors on 20000 unseen test examples. All networks have 2 tangent sigmoid
neurons in hidden layer and are trained using scaled conjugate gradient (SCG)
on 4000 examples.

The average prediction error of each network is about 0.4795 which is
a bit better than a random guess, and this is due to the high overlap and
conflict of class distributions. Using a voting method, the overall prediction
error turns to be 0.2395 which shows a 0.2400 improvement. This is why in
most cases ensemble averaging can convert a group of weak predictors to a
stronger one easily. Even using 2 MLPs in the committee would result in a
0.2303 improvement. Additional MLPs are presented here to show that the
bad performance of each MLP is not due to the learning processes. The e↵ect
of more committee members on the overall improvement is not so much here,
but might be important in more di�cult problems. Note that the second row
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Fig. 14.4. Dataset used to train neural networks in ensemble averaging example.

in Table 14.1 shows the ensemble prediction error due to the addition of each
MLP to the committee.

Since the original distribution is normal, the Bayesian optimum estimation
of the class labels can be carried out easily. For each test example, its distance
from the mean points of each class can be used to predict the output label.
Using this method, the test prediction error is 0.2396. Again this shows that
ensemble averaging method can improve the prediction performance of a set of
weak learners to a near Bayesian optimum predictor. The cost of this process
is just training more weak predictors, which in most of cases is not too high
(according to computation time).

For more information about ensemble methods and other committee ma-
chines, refer to Chapter 1 and Chapter 7 in this book and also (Haykin, 1999,

Table 14.1. Prediction error of individual neural networks, the first row, and the
prediction error of the committee according to the number of members in the en-
semble, the second row.

Network No. 1 2 3 4 5 6 7 8 9

0.4799 0.4799 0.4784 0.4806 0.4796 0.4783 0.4805 0.4790 0.4794

Member Num. 1 2 3 4 5 6 7 8 9

0.4799 0.2492 0.2392 0.2425 0.2401 0.2424 0.2392 0.2403 0.2395
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Bauer and Kohavi, 1999, Freund and Schapire, 1996, Opitz and Maclin, 1999).
Note that this section is not related explicitly to the variable selection issues.

14.4 Applications to NIPS 2003 Feature Selection
Challenge

This section contains applications of the discussed methods to the NIPS 2003
Feature Selection Challenge. The main goal in this challenge was to reduce the
variable space as much as possible while improving the performance of pre-
dictors as higher as possible. There were five di↵erent datasets with di↵erent
size of variable spaces ranging from 500 to 100,000. The number of training
examples was also di↵erent and in some cases was very low with respect to
the space dimensionality. In addition, some pure noisy variables were included
in the datasets as random probes to measure the quality of variable selection
methods.

The results of the correlation and single variable classifier analysis for each
dataset are shown in Figure 14.5. Values are sorted in descending manner
according to the correlation values. Since the descending order of variables
for the correlation and single variable classifier values are not the same, there
are some irregularities in the single variable classifier plots. Note that the
logarithmic scale is used for the horizontal axis for more clarity on first parts
of the plot.

Before proceeding to the applications sections, it is useful to explain the
common overall procedures applied to the challenge datasets in this work.
The dataset specific information will be given in next subsections. There are
three di↵erent but not independent processes to solve the problem of each
dataset: variable selection, preprocessing, and classification. The followings
are the summarized steps for these three basic tasks:

(1.) First of all, constant variables, which their values do not change over the
training set, are detected and removed from the dataset.

(2.) The variables are normalized to have zero mean values and also to fit in
the [�1, 1] range, except the Dorothea (see Dorothea subsection).

(3.) For each dataset, using a k-fold cross-validation (k depends on the
dataset), a MLP neural network with one hidden layer is trained to esti-
mate the number of neurons in the hidden layer.

(4.) The correlation and single variable classifier values are calculated and
sorted for each variable in the dataset, as shown in Figure 14.5.

(5.) The first estimation for the number of good variables in each dataset is
computed using a simple cross-validation method for the MLP predictor in
step 2. Since an online validation test was provided through the challenge
website, these numbers were optimized in next steps to be consistent with
the actual preprocessing and also predictors.
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Fig. 14.5. Correlation and single variable classifier values plot for 5 challenge
datasets. Correlation values are plotted with black lines while single variable classi-
fier values are in grey. The dashed horizontal line indicates the threshold.

(6.) 25 MLP networks with di↵erent randomly chosen initial weights are
trained on the selected subset using SCG algorithm. The transfer func-
tion of each neuron is selected to be tangent sigmoid for all predictors.
The number of neurons in the hidden layer is selected on the basis of the
experimental results of the variable selection step, but is tuned manually
according to the online validation tests.

(7.) After the training, those networks with acceptable training error perfor-
mances are selected as committee members (because in some cases the
networks are stuck in a local minima during the training sessions). This
selection procedure is carried out by filtering out low performance net-
works using a threshold on the training error.

(8.) For validation/test class prediction, the output values of the committee
networks are averaged to give the overall confidence about the class labels.
The sign of this confidence value gives the final predicted class label.

(9.) The necessity of a linear PCA (Haykin, 1999) preprocessing method usage
is also determined for each dataset by applying the PCA to the selected
subset of variables and then comparing the validation classification results
to the non-preprocessing system.

(10.) These procedures are applied for both correlation and single variable clas-
sifier ranking methods in each dataset, and then one with higher validation
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performance (lower classification error) and also lower number of variables
is selected as the basic algorithm for the variable selection in that dataset.

(11.) Using online validation utility, the number of variables and also the num-
ber of neurons in the hidden layer of MLPs are tuned manually to give
the best result.

The following subsections have the detailed information about the applica-
tion of the described methods on each dataset specifically. More information
about this competition, the results, and the descriptions of the datasets can
be found in the following website:
http://clopinet.com/isabelle/Projects/NIPS2003/#challenge.

14.4.1 Arcene

This is the first dataset with a high number of variables (10000) and rela-
tively low number of examples (100). The correlation values are sorted and
those with values higher than 0.05 are selected, which is about 20% of all the
variables, see Figure 14.5.a.

The correlation analysis shows that in comparison to other datasets dis-
cussed below, the numbers of variables with relatively good correlation values
are high in Arcene. As a result, it seems that this dataset consists of many
linearly correlated parts with less contributed noise. The fraction of random
probes included in the selected variables is 2.92% which again shows that
correlation analysis is good for noisy variables detection and removal.

A linear PCA is applied to the selected subset and the components with
low contribution to overall variance are removed. Then 25 MLP networks
with 5 hidden neurons are trained on the resulting dataset, as discussed in
previous section. It is useful to note that because of the very low number of
examples, all networks are subject to over-fitting. The average prediction error
for single networks on the unseen validation set is 0.2199. Using a committee
the prediction error lowers to 0.1437 which shows a 0.0762 improvement. This
result is expected for the cases with low number of examples and hence low
generalization. The prediction error of ensemble on unseen test examples is
0.1924.

14.4.2 Dexter

The second dataset is Dexter with again unbalanced number of variables
(20000) and examples (300). The correlation values are sorted and those with
higher values than 0.0065 are selected which is about 5% of overall variables,
see Figure 14.5.b.

Note that there are many variables with fixed values in this and others
datasets. Since using these variables gains no power in prediction algorithm,
they can be easily filtered out. These variables consist about 60% of overall
variables in this dataset. There are also many variables with low correlation

http://clopinet.com/isabelle/Projects/NIPS2003/#challenge
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values. This indicates a highly nonlinear or a noisy problem compared to the
previous dataset. Another fact that suggests this issue, is seen from the number
of selected variables (5%) with very low threshold value of 0.0065 which is very
close to the correlation values of pure noisy variables. As a result, the fraction
of random probes included in the selected variables is 36.86%, which is very
high.

There is no preprocessing for this dataset, except the normalization ap-
plied in first steps. 25 MLP networks with 2 hidden neurons are trained on the
resulting dataset. The prediction error average for single networks on the un-
seen validation set is 0.0821, where using a committee improves the prediction
error to 0.0700. The ensemble prediction error on the unseen test examples is
0.0495.

14.4.3 Dorothea

Dorothea is the third dataset. Its variable are all binary values with a very
high dimensional input space (100000) and relatively low number of exam-
ples (800). Also this dataset is highly unbalanced according to the number
of positive and negative examples, where positive examples consist only 10%
of all the examples. The single variable classifier values are sorted and those
with higher values than 0.52 are selected, which represents about 1.25% of
variables, see Figure 14.5.c.

Fig.5.c together with the number of selected variables (1.25%) with low
threshold value of 0.52 for single variable classifier shows that this problem has
again many nonlinear or noisy parts. The fraction of random probes included
in the selected variables is 13.22%, indicating that lowering the threshold value
results in a higher number of noise variables to be included in the selected set.

In preprocessing step, every binary value of zero in dataset is converted
to -1. 25 MLP networks with 2 hidden neurons are trained on the resulting
dataset. Since the number of negative examples is much higher than positive
ones, each network tends to predict more negative. The main performance
measure of this competition was balanced error rate (BER), which calculates
the average of the false detections according to the number of positive and
negative examples by:

BER = 0.5(
Fp

Np
+

Fn

Nn
) (14.3)

where Np and Nn are the total number of positive and negative examples,
respectively, and Fp and Fn are the number of false detections of the positive
and negative examples, respectively. As a result, the risk of an erroneous
prediction for both classes is not equal and a risk minimization (Bishop, 1997)
scenario must be used. In this way, the decision boundary, which is zero for
other datasets, is shifted toward -0.7. This results in the prediction of negative
label if the confidence were higher than -0.7. So, only the examples for which
the predictor is more confident about them are detected as negative. The -0.7
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bias value is calculated first with a cross-validation method and then optimized
with online validation tests manually.

The prediction error average for single networks on the unseen validation
set is 0.1643. The committee has prediction error of 0.1020 and shows a 0.0623
improvement, which is again expected because of the low number of examples,
especially positive ones. The ensemble prediction error on the unseen test set
is 0.1393.

14.4.4 Gisette

The fourth dataset is Gisette with a balanced number of variables (5000) and
examples (6000). The single variable classifier values are sorted and those with
higher values than 0.56 are selected which is about 10% of all the variables,
see Figure 14.5.d.

single variable classifier analysis shows that this example is not much non-
linear or subjected to noise, because the number of variables with good values
is high. The fraction of random probes included in the selected variables is
zero, indicating very good performance in noisy variables removal.

A linear PCA is applied and the components with low contribution to the
overall variance are removed. Then 25 MLP networks with 3 hidden neurons
are trained on the resulting dataset. Because of the relatively high number of
examples according to the di�culty of the problem, it is expected that the
performance of a committee and individual members would be close. Predic-
tion error average for single networks on the unseen validation set is 0.0309.
Using a committee, the prediction error only improves by 0.0019 and becomes
0.0290. The ensemble prediction error on the unseen test set is 0.0258.

14.4.5 Madelon

The last dataset is Madelon with (2000) number of examples and (500) vari-
ables. The single variable classifier values are sorted and those with higher val-
ues than 0.55 are selected, which is about 2% of variables, see Figure 14.5.e.
This dataset is a highly nonlinear classification problem as seen from single
variable classifier values. The fraction of random probes included in the se-
lected variables is zero. Since this dataset is a high dimensional XOR problem,
it is a matter of chance to get none of the random probes in the selected subset
and this is not an indication of the power of this method.

There is no preprocessing for this dataset, except the primary normal-
ization. 25 MLP networks with 25 hidden neurons are trained on resulting
dataset. The number of neurons in hidden layer is more than other cases be-
cause of nonlinearity of class distributions. Prediction error average for single
networks on unseen validation set is 0.1309 and combining them into a com-
mittee, prediction error improves by 0.0292 and reaches 0.1017. The ensemble
prediction error on the unseen test set is 0.0944.
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14.5 Conclusion

In this paper, the correlation and SVC based variable selection methods were
introduced and applied to the NIPS 2003 Feature Selection Challenge. There
was also a brief introduction to ensemble averaging methods and it was shown
how a committee of weak predictors could be converted to a stronger one.

The overall performance of applied methods to 5 di↵erent datasets of chal-
lenge is shown in Table 14.2 together with the best winning entry of the
challenge. Table 14.3 shows the improvements obtained by using a commit-
tee instead of a single MLP network for the validation sets of the challenge
datasets.

Table 14.2. NIPS 2003 challenge results for Collection2.

Dec. 1st Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 28.00 10.03 89.97 7.71 10.60 88.00 6.84 97.22 80.3 47.8 1

Arcene 25.45 19.24 80.76 20.18 2.92 98.18 13.30 93.48 100.0 30.0 1

Dexter 63.64 4.95 95.05 5.01 36.86 96.36 3.90 99.01 1.5 12.9 1

Dorothea 32.73 13.93 86.07 1.25 13.22 98.18 8.54 95.92 100.0 50.0 1

Gisette -23.64 2.58 97.42 10.10 0 98.18 1.37 98.63 18.3 0.0 1

Madelon 41.82 9.44 90.56 2 0 100.00 7.17 96.95 1.6 0.0 1

Table 14.3. Improvements obtained by using a committee instead of a single MLP
network on the validation set.

Overall Arcene Dexter Dorothea Gisette Madelon

3.63 7.62 1.21 6.23 0.19 2.29

Summarizing the results, the correlation and single variable classifier are
very simple, easy to implement, and computationally e�cient algorithms,
which have relatively good performance compared to other complex methods.
These methods are very useful when the variable space dimension is large and
other methods using exhaustive search in subset of possible variables need
much more computations. On a Pentium IV, 2.4GHz PC with 512MB RAM
running Microsoft Windows 2000 Professional, all computations for variable
selection using Matlab 6.5 finished in less than 15 minutes for both correla-
tion and single variable classifier values of all 5 datasets. This is quite great
performance if one considers the large size of the challenge datasets.
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Fig. 14.6. Similarity plots of the variable selection using correlation and single
variable classifier methods on challenge datasets. Note that the vertical solid line
indicates the number of selected variables for each dataset in the competition.

A simple comparison between the correlation and single variable classifier
ranking methods is given in Figure 14.6. Let SN

COR and SN
SV C be the subsets

of the original dataset with N selected variables according to their rankings
using the correlation and single variable classifier, respectively. In this case the
vertical axis of Figure 14.6 shows the fraction of the total number of common
elements in these two sets per set sizes, i.e. Nc = F (SN

COR\SN
SV C)

N , where F (.)
returns the number of elements of the input set argument. In other words,
this figure shows the similarity in the selected variable subsets according to
the correlation and single variable classifier methods.

As it is obvious from this figure, the correlation and single variable classifier
share most of the best variables (left parts of the plots) in all of the datasets,
except Arcene. In other words, linear correlation might result in a good

Overall Arcene Dexter Dorothea Gisette Madelon

Average 0.7950 0.8013 0.7796 0.7959 0.8712 0.7269

Application 0.7698 0.7661 0.7193 0.6042 0.8594 0.9000

Table 14.4. The average rate of the common variables using correlation and single
variable classifier for the challenge datasets, first row. Second row presents this rate
for the number of selected variables in the application section.
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single variable classifier score and vice versa. Table 14.4 shows the average
of these plots in first row, together with the rate of the common variable in
the selected subset of variables for the application section discussed earlier.
Another interesting issue is the relation between the rate of the random probes
and the rate of the common variables in the subsets of datasets used in the
applications. For Gisette and Madelon the total number of selected random
probes was zero. Table 14.4 shows that the common variable rate for these
two datasets are also higher, comparing to other datasets. The Dexter and
Dorothea had the worst performance in filtering out the random probes,
and the rates of common variables for these two sets are also lower than
others. In other words, as the filtering system starts to select the random
probes, the di↵erence between the correlation and single variable classifier
grows higher. Note that these results and analysis are only experimental and
have no theoretical basis and the relation between these ranking and filtering
methods might be a case of future study.

It is obvious that these simple ranking methods are not the best ones to
choose a subset of variables, especially in nonlinear classification problems,
in which one has to consider a couple of variables together to understand the
underlying distribution. But it is useful to note that these methods can be used
to guess the nonlinearity degree of the problem and on the other hand filter
out very noisy variables. As a result, these can be used as a primary analysis
and selection tools in very large variable spaces, comparing to methods and
results obtained by other challenge participants.

Another point is the benefits of using a simple ensemble averaging method
over single predictors, especially in situations where generalization is not sat-
isfactory, due to the complexity of the problem, or low number of training
examples. Results show a 3.63% improvement in overall performance using
an ensemble averaging scenario over single predictors. Training 25 neural net-
works for each dataset take 5-30 minutes on average depending on the size
of the dataset. This is fast enough to be implemented in order to improve
prediction performance especially when the numbers of training examples are
low.

The overall results can be found in the challenge results website under
Collection2 method name. Also, you can visit the following link for some
Matlab programs used by the author and additional information for this
challenge: http://www.ymer.org/research/variable.htm.
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Chapter 15
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Summary. Tree-based ensembles have been proven to be among the most accurate
and versatile state-of-the-art learning machines. The best known are MART (gradi-
ent tree boosting) and RF (Random Forest.) Usage of such ensembles in supervised
problems with a very high dimensional input space can be challenging. Modelling
with MART becomes computationally infeasible, and RF can produce low quality
models when only a small subset of predictors is relevant. We propose an impor-
tance based sampling scheme where only a small sample of variables is selected at
every step of ensemble construction. The sampling distribution is modified at every
iteration to promote variables more relevant to the target. Experiments show that
this method gives MART a very substantial performance boost with at least the
same level of accuracy. It also adds a bias correction element to RF for very noisy
problems. MART with dynamic feature selection produced very competitive results
at the NIPS-2003 feature selection challenge.

15.1 Background

It is di�cult to overestimate the influence of decision trees in general and
CART (Breiman et al., 1984) in particular on machine and statistical learn-
ing. CART has practically all the properties of a universal learner: fast, works
with mixed-type data, elegantly handles missing data, invariant to monotone
transformations of the input variables (and therefore resistent to outliers in in-
put space.) Another key advantage of CART is an embedded ability to select
important variables during tree construction. Because it is a greedy, recur-
sive algorithm, where impurity reduction is maximized through an exhaustive
search at every split, CART is resistant to irrelevant inputs. Moreover, it
is easy to define an adequate measure of variable importance such that its
computation requires practically no extra work (Breiman et al., 1984):

V I(xi, T ) =
X

t2T

�I(xi, t) (15.1)
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where �I(xi, t) = I(t) � pLI(tL) � pRI(tR) is the decrease in impurity due
to an actual (or potential) split on variable xi at a node t of the optimally
pruned tree T . Node impurity I(t) for regression is defined as

P

s2t(ys � ȳ)2
where the sum and mean are taken over all observations s in node t. For
classification I(t) = Gini(t) , where N(t) is the number of observations in
node t, and Gini(t) is the Gini index of node t:

Gini(t) =
X

i 6=j

pt
ip

t
j (15.2)

where pt
i is the proportions of observations in t whose response label equals

i (y = i) and i, j run through all response class numbers. The sum in Equa-
tion 15.1 is taken over all internal tree nodes where xi was a primary splitter
or a surrogate variable.

The main limitation of CART is its relatively low accuracy. In response,
there was an explosive development of model averaging methods (Breiman,
1996, Freund and Schapire, 1996, Ho, 1998, Breiman, 1998, Dietterich, 2000)
during the last decade that resulted in series of very accurate tree-based en-
sembles. An overview of ensemble methods is given in Chapter 7. Two of the
most recent advances in tree ensembles - MART (gradient tree boosting)
(Friedman, 1999a,b) and Tree Forests (Ho, 1998, Breiman, 2001) have been
proven to be among the most accurate and versatile state-of-the-art learning
machines. MART is a serial ensemble where every new expert constructed
relies on previously built experts. At every iteration l of MART a new tree Tl

is fitted to the generalized residuals with respect to a loss function  

�


@ (yi, F (xi)
@F (xi)

�

F=Fl�1

(15.3)

giving terminal regions Rjl, j = 1, 2, ..., Jl. The corresponding constants �jl

are solutions
�jl = arg min

�

X

xi2Rjl

L(yi, Fl�1(xi) + �) (15.4)

and

Fl(x) = Fl�1(x) + ⌫ ·
Jl
X

j=1

�jlI(x 2 Rjl) (15.5)

where 0 < ⌫ < 1 is a regularization parameter (learning rate.) The solution is
given by

F̂ (x) = FL(x), (15.6)

where the size of the ensemble L is chosen to avoid overfitting (usually by
monitoring validation errors.)

RF builds trees independently of each other on a bootstrap sample of the
training data, and predicts by a majority vote (or an average in regression.)
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At each tree split, a random, small subset of the variables participate in split
selection (typically the square root of total number of variables.)

MART and RF inherit all nice properties of a single tree, and also pro-
vide (as a byproduct) more reliable estimate of the variable importance. The
importance measure Equation 15.1 is averaged over the trees in the ensemble

V I(xi) =
1
L

L
X

l=0

V I(xi, Tl) (15.7)

MART builds shallow trees using all variables (on a subsample of the
training data), and hence, it can handle large datasets with a moderate number
of inputs. Very high dimensional data (NIPS-2003 challenge) is extremely
challenging for MART. RF builds maximum-sized trees on a bootstrap sample
of the training data but chooses a small, random subset of variables at every
split. Therefore, it can easily handle thousands of variables in datasets of
moderate size, but its performance could be significantly degraded when only
a small fraction of inputs is relevant. Thus, for massive and possibly noisy
problems some kind of hybrid scheme is very tempting. Such a hybrid ensemble
with shallow trees and dynamic variable selection is the primary goal of this
study.

15.2 Dynamic Feature Selection

The main idea in this work is to select a small sample of features at every
step of the ensemble construction. The sampling distribution is modified at
every iteration to promote more relevant features. Throughout this paper we
assume that the result of an algorithm’s iteration is a new base learner (tree)
added to an ensemble. Di↵erent strategies are considered for serial (MART)
and parallel (RF) ensembles.

For MART the proposed strategy attempts to change the sampling distri-
bution for every new expert by up-weighting variables that are more relevant
to its learning task (based on the generalized residuals from previous itera-
tions.) A measure of relevance can be generated by using variable importance
evaluated over a historical window of prior iterations. This window could be
moving, weighted by distance in time, shrinking in time, etc. Naturally, the
sampling strategy is closely tied to the MART’s regularization coe�cient.

For the parallel ensemble (RF), variable relevance to a specific iteration is
not an issue. Thus, a reasonable strategy is to minimize the sampling weights
for noisy variables while maintaining the sampling probabilities for relevant
variables dominant and preferably balanced (to preserve diversity.) Sampling
weights could be initialized using prior knowledge, data (such as an initial
run of a single tree, for a simple univariate measure of relevance, etc), or
set to equal values. For the NIPS challenge we used a simpler strategy to
exclude irrelevant variables from the model construction (MART), and at the
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same time ensuring that less important but relevant variables have a chance
to be selected. We operated under the assumption that only a small fraction
of variables was relevant (given the huge dimensionality of the datasets.) We
chose the variable sampling size large enough to allow all relevant variables
to enter the model after an initial “burn-in” period. The sampling weight
evaluation window was set to maximum (all prior iterations were used.)

15.2.1 MART and RF in the presence of noise

Since MART exhaustively searches through all inputs for the best split, it
should be more resistent to noise than RF. The following simulation study
illustrates this point. Figure 15.1 presents the comparison of MART and RF
predictive accuracy on 200 artificial multi-class problems with 50 inputs (most
of which are irrelevant to the target.) The data sets were created using the
artificial data generator described in Section 15.3.1. We set the number of
variables sampled by RF to 9 (larger values did not improve predictive ac-
curacy.) MART was built with 500 trees of depth 5, learning rate set to 0.1.

One can see that in the presence of noise MART is consistently more
accurate (but much slower) than RF, and the di↵erence increases when the
fraction of relevant variables shrinks.

15.2.2 MART with dynamic feature selection

For problems in high dimensional input space it would be desirable to apply
the variable-sampling technique used by RF. Obviously, such a hybrid scheme
would dramatically decrease the computational complexity of MART. How-
ever, as shown in the Section 15.3, the uniform sampling used in the parallel
ensemble (RF) could cause a significant performance degradation for sequen-
tially boosted trees (MART.)

Instead the variable-sampling probability is modified at every iteration to
reflect variable importance learned from the previous iterations (as a byprod-
uct of tree construction) Equation 15.7. Specifically for the NIPS-2003 submis-
sion (with datasets with up to 100K inputs) we applied the following sampling
scheme:
a small, fixed subset S from a set M of all input variables is sampled with
replacement but only distinct elements are kept (sampling without replace-
ment is more appropriate here but it is more computationally expensive.)
The sampling probability for a variable i at iteration l is proportional to the
corresponding weight

p(xi, l) = w(xi, l)/
X

j

w(xj , l) (15.8)

Weights have two components
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Fig. 15.1. Distribution (log scale) of RF error rates relative to MART on a seven-
class problem for di↵erent proportions P (N0) of variables relevant to the response

w(xi, l) = I(xi, l) + SV I(xi, l), (15.9)

where SV I(xi, l) =
l
P

j=1
V I(xi, j), V I(xi, j) is the squared-influence of the i-th

variable in the jth tree as defined by Equation 15.1; I(xi, l) is a contribution
of the initial influence I(xi, 0) for the ith variable at the lth iteration. We used
the exponentially decreasing in time initial influences

I(xi, l) = I(xi, 0) · (1� S/M)↵l, (15.10)

where ↵ is an adjustable parameter controlling how fast initial weights de-
crease (empirically chosen in range 0.5-2.) Here, I(xi, 0) represents prior
knowledge about the variable influences, and this governs the sampling weights
for a number of initial iterations. For the NIPS challenge we used I(xi, 0) equal
to the sum of variances of log-odds for both response classes.
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It is obvious that I(xi, l) decreases and SV I(xi, l) grows with the number
of iterations l. Therefore, for su�ciently low initial influences, the learned
variable importance will dominate the sampling weights after a number of
iterations. Note that sampling with replacement (versus without) reduces the
computational time for the NIPS data sets up to 5 times. However, it poses
additional challenges related to potential “overweighting” e↵ect for a small
group of influential variables preventing other relevant variables from entering
the model. This e↵ect could be controlled by a gradual transition from initial
to learned importance based upon the weights.

Here is the formal description of the dynamic feature weighting algorithm.

MART-WS algorithm for gradient tree boosting with dynamic
feature selection

(1.) Set I(xi, 0) for i = 1, . . . , n to the initial response deviation. Initialize
w(xi, 0) = I(xi, 0). Set current residuals (responses) to output variable
values. Set SV I(xi, 0) = 0.

(2.) Fit the next MART tree to the current pseudo residuals (15.3), using
p(xi, l) = w(xi, l)/

P

i w(xi, l) as the selection weights. At each tree node,
a small fixed number n0 << n of variables is selected with replacement
using selection probabilities p(xi, l) and the best split is searched only
amongst this subset. l is the current iteration number.

(3.) Calculate variable importance V I(xi, l) on the i-th variable as in (15.1)
(4.) Calculate SV I(xi, l+1) = SV I(xi, l)+V I(xi, l). Update variable weights

as w(xi, l + 1) = I(xi, 0) · (1� S/M)↵·(l+1) + SV I(xi, l + 1).
(5.) Update residuals with the di↵erence between the predicted values and the

old residuals.
(6.) Return to step 2 if the maximum iteration number is not exceeded (l <

lmax).

It is also important to note that MART with this dynamic variable selection
strategy normally requires a smaller learning/regularization rate, and more
iterations might be needed to reach optimal performance. Still it is a very
small price to pay for a huge performance gain compared to the standard
MART (up to 100 times on NIPS data.)

Example 1 As an illustration consider a simple example with two simu-
lated data sets of 3000 samples consisting of N = 100 and N = 400 inputs,
xi=1,..,N distributed uniformly in (0,1) with response y = x1. A 3/2 partition
was used for training/test. For a classification setting y is discretized to 5
classes.

Figure 15.2 shows that MART with uniform feature selection needs to
sample almost all variables to match the standard MART accuracy. MART
with weighted variable sampling achieves good performance with few selected
variables for both regression and classification, and obviously, with dramatic
gain in speed.
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Fig. 15.2. MART performance with uniform and weighted sampling on Example
1 data with one relevant input, and N � 1 irrelevant.

15.2.3 Application of weighted sampling to RF

A similar sampling strategy could be applied to RF construction. In the case of
a parallel ensemble (RF) each new expert is trained on a bootstrapped version
of the same data (whereas residuals from the previous iterations in MART.)
The goal is to prevent irrelevant variables from entering the model, and at the
same time to allow all relevant inputs to participate at every iteration of the
model construction.
The proposed strategy is to adjust sampling weights (15.9) in such a way that
the expected change in weights is independent from the previous iterations:

w(xi, l) = w(xi, l � 1) + V I(xi, l)/p(xi, l)(S) (15.11)

where p(xi, l)(S) is a probability for the variable i to enter subset S of split can-
didates at iteration l. This probability can be estimated as 1� (1�p(xi, l))|S|.
Here p(xi, l) is the sampling probability of variable i at iteration l. Note
that there is a considerable di↵erence between MART and RF in terms of
SV I(xi, l) dependence on l. Since MART learns each next tree in the spirit
of gradient descent, SV I(xi, l) tends to a constant with the growth of l. RF
learns each tree independently so SV I(xi, l) is not bounded above but grows
like O(l). This is the main reason why the importance weight strategies for
MART and RF have to be di↵erent. This di↵erence is accounted for by the fac-
tor p(xi, l) in (15.11) and by constant initial influences w(xi, 0) = C · I(xi, 0)
(we set C to values in the range from 0.1-10.)

Figure 15.3 shows relative performance of standard RF and RF with the
dynamic sampling on data from Example 1. It is clear that weighted sam-
pling significantly improves accuracy in regression. In classification, there is an
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improvement for noisier data (N=400.) Both schemes provide comparable ac-
curacy in classification when the number of selected features is large enough.
However, RF with weighted variable sampling achieves the best predictive
accuracy with half as many variables per split as does standard RF.
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Fig. 15.3. RF performance with uniform (standard) and weighted sampling on
Example 1 data (section 15.2.2) with one relevant input, and N � 1 irrelevant.

15.2.4 Relative importance of input variables for ensembles with
weighted sampling

We did a small simulation to study how relative variable importance estimated
from the final model changes when the weighted feature selection is used. As
an example, we considered the linear model y =

P4
i=1 aixi + ", where ai = i,

and " is small N(0, 0.5) noise. Independent noise variables xi, i = 5, . . . 50
were added. The joint distribution for all x ⇠ N(0,I). Here, the expected
variable importance for xi=1,2,3,4 as measured by the squared-influence (15.7)
is a2

i . MART and RF with uniform (-US) and weighted (-WS) sampling were
trained, and variable importances averaged over 100 replications. Table 15.1
has the summarized relative squared-influence results for the 4 original vari-
ables and an extra row with the maximum relative squared-influence achieved
by one of the 50 noise variables. Variables with the highest influence were
assigned score 1, and importances of the rest were scaled correspondingly (for
each algorithm.)

From Table 15.1 one can see that the relative influence of noise variables
learned by both MART and RF is consistently (with tight variance) and sig-
nificantly smaller when the weighted variable selection (WS) mechanism was
used (more so for RF, up to 8 times.) All the methods resulted in relative
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Table 15.1. Input variables relative average squared-influences (and standard devia-
tions) for a linear model learned by MART/RF with uniform and weighted (US/WS)
variable sampling. The first column shows the “true” variable relative squared-
influences. The last row shows the maximum relative importance of noise variables.
Noise is much better separated from the relevant variables with the weighted scheme.

TrueRelativeV I
i

MART-WS MART-US MART RF RF-WS

0.063 0.050(0.007) 0.076(0.007) 0.073(0.006) 0.088(0.01) 0.036(0.005)

0.25 0.285(0.015) 0.284(0.02) 0.268(0.013) 0.284(0.04) 0.215(0.014)

0.563 0.610(0.025) 0.597(0.027) 0.595(0.029) 0.610(0.07) 0.562(0.025)

1 1.000(0) 1.000(0) 1.000(0) 1.000(0) 1.000(0)

max noise 0.003(5e-4) 0.022(0.002) 0.007(0.001) 0.044(0.003) 0.008(6e-4)

variable importances consistent with what was expected for the four relevant
inputs.

15.3 Experimental results

Denote by MART-WS MART with weighted variable selection, MART-US as
MART with uniform variable selection, RF-WS as RF with weighted variable
selection. We conducted the following experiments:
1) Compared MART, MART-WS, MART-US, RF and RF-WS on 9 UCI
repository and artificial classification/regression data sets.
2) Explored how MART-WS, RF-WS and RF predictive accuracy depends on
the proportion of relevant variables and the number of variables sampled.
3) Explored di↵erent variable sampling weights wi(t) initialization strategy.
Error was reported as an average test error over multiple runs with a 3/2
train/test partition.

15.3.1 Artificial Data Generator

For generating diverse functional dependencies we use Freidman’s random
function generator (Freidman 1999a.) Each target function takes the form

f(x) =
L
X

l=1

aigl(x)

where L is an adjustable parameter (50 in our experiments), ai are random
coe�cients taken from a uniform distribution U [�1, 1], and each gl(x) is a
random function of a randomly selected subset of size nl, of N0 input vari-
ables. More precisely, each gl(x) is a multi-dimensional Gaussian function of
a selected feature subset with random mean vector and random covariance
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matrix. The size of each subset is itself taken to be a random number [1.5+r],
where r is drawn from an exponential distribution with mean equal to 2. Thus,
the expected number of inputs for each of gl(x) is between 3 and 4, but there
are some higher order interactions if L is large enough. All xi are sampled
from the standard normal distribution N(0, I). For classification problems we
generated K = 7 class labels by thresholding each target at corresponding
quantiles. Each data set has 5000 observations.

15.3.2 UCI repository data sets

In the first series of experiments we ran all five algorithms ( MART, MART-
WS, MART-US, RF, RF-WS ) against 9 UCI repository classification prob-
lems. Parameters were chosen based on an initial exploratory 500 iteration
run for each algorithm. Test errors were averaged over 200 runs.

Table 15.2. Misclassification rates for MART, MART-WS, MART-US, RF, RF-WS
on UCI repository classification data sets.

Dataset Samples Variables MART-WS MART-US MART RF-WS RF

connect 7000 43 0.2129 0.2150 0.2062 0.2298 0.2319

dna 1999 181 0.0349 0.0339 0.0354 0.0496 0.0428

letter 20000 17 0.0381 0.0403 0.0404 0.0435 0.0441

musk 6598 167 0.0123 0.0125 0.0124 0.0254 0.0252

diabetes 768 9 0.2283 0.2306 0.2301 0.2268 0.2265

satellite 6435 37 0.0789 0.0785 0.0799 0.0854 0.0853

segment 2310 20 0.0203 0.0213 0.0189 0.023 0.0238

shuttle 10000 10 0.0017 0.0013 0.0011 0.0016 0.0016

spectro 531 94 0.4518 0.4608 0.4791 0.4277 0.4350

The results summarized in Table 15.2 show that MART-WS and MART-
US maintain the same predictive accuracy as MART, being 3-15 times faster
(with the number of variables sampled S ⇠ 1

2
p
|M | .) However, as shown in the

next section, MART-US’s relative performance could be worse in the presence
of noise. RF-WS is not superior to ordinary RF on the UCI repository data.
We tried di↵erent variable weights initialization for MART/RF-WS without
an evident di↵erence in accuracy.

15.3.3 NIPS challenge data

For the NIPS challenge submission we used MART-WS. No data preprocessing
was done. Table 15.3 shows cross-validation errors for the challenge datasets
for RF, RF-WS, MART, MART-WS. In three cases (where we were able to
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run the standard MART) MART-WS significantly outperforms MART. It is
also nearly 100 times faster. In 3 out of 5 cases RF with feature selection does
better than RF.

Table 15.3. NIPS challenge datasets cross-validation errors for best tuned
MART,MART-WS,RF,RF-WS. For two datasets it was computationally infeasible
to tune the standard MART (error value in the table replaced by ”-”)

Data Variables Observations Best RF RF-WS MART MART-WS

Gisette 5000 6000 0.0126 0.0265 0.026 0.028 0.016

Madelon 500 2000 0.0622 0.270 0.148 0.205 0.1256

Arcene 10000 100 0.072 0.19 0.13 0.23 0.14

Dexter 20000 300 0.033 0.08 0.066 - 0.08

Dorothea 100000 800 0.0854 0.057 0.056 - 0.0892

The Table 15.4 presents a comparison of our method (MART-WS) results
on all five NIPS challenge data sets. All results are reported on the hidden
test set.

The results where percent of selected features is less than 100% were ob-
tained using two runs.The first run was to select important variables, the
second one to build the model. But in general this does not allow us to build
a better model - one can adjust the importance learning rate instead.

15.3.4 Artificial data - classification

Using the data set generator (Section 15.3.1) 200 data sets of size 5000 with
N0 = 2, 4, 10 significant inputs, and 50 � N0 noise inputs were generated
from the uniform (0,1) distribution. Test error is calculated from a single run
for each algorithm and each of 200 sets. The number of selected features for
MART-US, MART-WS and RF-WS was taken to be S = 8. Figure 15.4 shows
(on log scale) distributions of error rates relative to MART for MART/RF-
WS/US for two di↵erent proportions of relevant variables P (N0)=0.04,0.2.

From Figure 15.4 it is evident that weighted feature selection (MART-
WS) gives better results than uniform (MART-US), and the di↵erence is more
prominent when a proportion of relevant features is smaller. In the latter case
RF-WS gives substantial improvement over standard RF also. Notice that
there is a slight improvement (3-5%) in predictive accuracy with MART-WS
over standard MART.

Next, we tried to evaluate MART/RF-WS performance dependency on
the number of variables sampled and the e↵ect of weights initialization. We
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Table 15.4. NIPS 2003 challenge, results for MART-WS.

MART �WS best entry The winning entry

Dataset BER AUC Feat Probe BER AUC Feat Probe

Gisette 0.0189 0.9985 12.00 0.00 0.0126 0.9992 94.48 50.40

Arcene 0.1304 0.9481 100.00 30.00 0.0720 0.9811 1.00 0.0

Dexter 0.0625 0.9870 0.5 6.00 0.0330 0.9670 18.57 42.14

Dorothea 0.0892 0.9480 100.00 50.00 0.0854 0.9592 100.00 50.00

Madelon 0.1256 0.9473 100.00 96.00 0.0622 0.9807 100.00 96.00

Overall 0.0853 0.9658 62.50 36.40 0.0648 0.9720 80.30 47.77
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Fig. 15.4. Distribution (log scale) of relative (to MART) multiclass misclassification
rate for MART-WS/US, RF, RF-WS for di↵erent proportions P (N0) of relevant
variables N0.

used 50 data sets from 200 described in the beginning of the section, and
ran all five algorithms 20 times, with di↵erent fractions of variables sampled.
Figure 15.6 compares errors rates for all classifiers averaged over all 50 data
sets and 20 replication runs for di↵erent numbers of selected variables and N0

values. Figure 15.6 shows results on the same data sets with initial variable
weights estimated using variable importance (15.1) from a single CART run
using all inputs.

Figure 15.5 and 15.6 show that the weighted feature selection for RF is
e↵ective only when the proportion of relevant predictors is small. A better
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Fig. 15.5. Relative (to MART) misclassification rate for MART-WS/US,RF, RF-
WS as a function of feature sampling rate for di↵erent fractions P (N0) = 0.04, 0.2
of relevant variables N0
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Fig. 15.6. Relative (to MART) misclassification rate for MART-WS/US, RF, RF-
WS as a function of feature sampling rate for di↵erent proportions P (N0) = 0.04, 0.2
of relevant variables N0. Initial variable weights were estimated using single CART
run.
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estimation of the initial variable weights may help improving the predictive
performance or reducing the number of features without altering performance.

15.3.5 Artificial data sets - regression

We used the same 50 datasets from Section 15.3.4 but responses were not dis-
cretized this time. The number of selected features for MART-US, MART-WS
and RF-WS was also taken to be S = 8. The number of iterations was 1000,
and the learning rate = 0.01. Figure 15.7 and 15.8 illustrate the dependency
of test error on the number of variables selected per split and the proportion
of relevant inputs. In all cases MART-WS outperforms MART/MART-US,
with no e↵ect of weight initialization on accuracy. However, by using CART
to estimate the initial variable weights far fewer iterations were needed to
reach the optimal predictive accuracy for MART-WS; also, RF-WS needed a
smaller fraction of variables sampled (especially in the case of fewer relevant
variables.)
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Fig. 15.7. Regression MSE for MART-WS/US, RF, RF-WS as a function of feature
sampling rate for di↵erent proportions P (N0) = 0.04, 0.2 of relevant variables N0

15.4 Summary

In this paper we introduced an embedded, dynamic soft variable selection
method for tree ensembles. The core idea is to select a small fixed sample
of variables at every tree construction step in an ensemble. The sampling
distribution is modified at every iteration to up-weight more relevant features
based on dynamically learned importances. Di↵erent strategies are proposed
for serial (MART) and parallel (RF) ensembles.



15 Tree-Based Ensembles with Dynamic Feature Selection 377

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Fraction of selected features

M
SE

Estimated initial weights, P(N0) = 0.04

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Fraction of selected features

M
SE

Estimated initial weights, P(N0) = 0.2

MART−WS
MART−US
RF−WS
RF
MART

Fig. 15.8. Regression MSE for MART-WS/US, RF, RF-WS as a function of feature
sampling rate for di↵erent proportions P (N0) = 0.04, 0.2 of relevant variables N0.
Initial variable weights were estimated using a single CART run.

The considered scheme for MART (MART-WS) tested on the UCI reposi-
tory and artificial datasets demonstrated a substantial reduction in computa-
tional complexity without loss of accuracy (and in noisy data it often outper-
formed MART.) For very high dimensional problems MART-WS (NIPS-2003
challenge) is up to 100 times faster than MART, and its overall results achieved
were ranked among the several best in the feature selection challenge. Simple
uniform sampling of variables showed significant degradation in accuracy for
MART in the presence of noise.

Thus, this fast, hybrid scheme - stage-wise stochastic boosting of shallow
random trees built on a small intelligently sampled subset of variables - can
be applied to noisy, massive (in both dimensions) regression and classifica-
tion problems with predictive power comparable to the best known learning
engines. Based on our experience, this combination of speed, accuracy, and
applicability makes MART-WS the best universal learner available.

A similar weighted feature selection scheme was applied to RF. The re-
sulting procedure (RF-WS) showed substantial improvement in accuracy for
regression models and some improvement in classification when the proportion
of relevant features was small. However, individual experts in RF-WS are not
independent, and therefore, it loses the attractive computational parallelism
and limits the interpretative power of RF (Breiman, 2003).

It was also demonstrated that estimating the initial sampling weights could
result in a simpler (and faster) model, but not necessarily a more accurate one.

Several potential improvements could be considered. The proposed method
implies that in the presence of noise there is a “burn-in” period in ensemble
construction, and therefore some kind of postprocessing scheme to assign an
appropriate weight for each expert in the ensemble could be useful. Some
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preliminary experiments showed that regularized regression (we used ridge
regression) applied to the outputs of individual trees treated as new features
(with the original response) on a validation/test portion of the data could give
a noticeable improvement in accuracy.

The e↵ect of “overweighting” needs to be investigated for problems where
a sizeable subset of dominant variables (often collinear) will prevent relevant
(but less important) variables from entering the model. A more adaptive strat-
egy to adjust feature sampling weights could help.
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Summary. We consider the generic regularized optimization problem ŵ(�) =
arg min

w

m

k=1 L(y
k

, xT

k

w) + �J(w). We derive a general characterization of the
properties of (loss L, penalty J) pairs which give piecewise linear coe�cient paths.
Such pairs allow us to e�ciently generate the full regularized coe�cient paths. We il-
lustrate how we can use our results to build robust, e�cient and adaptable modeling
tools.

16.1 Introduction

With the advent of modern high technologies, much of the data we regularly
encounter nowadays are:

• High-dimensional, i.e. have a large number of variables or features, possi-
bly many more than observations (n � m or N � m). Biological data,
in particular gene microarrays, and commercial databases used in data
mining are two obvious examples.

• Noisy and dirty, with mis-specified or mis-measured data, low signal-to-
noise ratio or both. Commercial data bases are inherently problematic
because of the manual nature of data collection. Scientific and biologi-
cal datasets may well su↵er from low signal-to-noise ratio or from noisy
measurements as well.

• Contain many irrelevant variables or features.

Blindly fitting models to such data is guaranteed to give badly over-fitted and
useless models. Thus, methods for controlling model complexity (also known
as regularization) are essential in modern data analysis.

In this chapter we discuss some of the statistical and computational consid-
erations in defining regularization approaches that lead to useful and practical
modeling tools.

In a standard supervised problem, we are given a set of training data
(x1, y1), (x2, y2), . . ., (xm, ym), where xk = (xk,1, xk,2, . . . , xk,n)T 2 Rn is
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the input, yk is the output. In regression problems, yk 2 R is a quantitative
continuous variable; while in two-class classification problems, yk 2 {1,�1}
is a qualitative binary categorical variable. The goal is to build a prediction
model f̂(x) using the training data, so later on when we see a new input x,
we can either forecast a real response f̂(x) if it is a regression problem, or
assign a class label sign

h

f̂(x)
i

if it is a classification problem.
The generic regularized model fitting problem can be written as:

f̂ = arg min
f

m
X

k=1

L(yk, f(xk)) + �J(f), (16.1)

where L(y, f) is a loss function that describes the goodness of fit of our model
to the training data; J(f) is a penalty functional that describes the complexity
of the model; � is a regularization parameter that controls the balance between
the loss and the penalty.

For simplicity, in this chapter, we concentrate on the linear model f(x) =
xT w + b. Obviously, we can include more flexible models in the linear model
framework by enlarging the original input x to higher dimensional bases, e.g.
high order polynomials, kernel bases or wavelet bases. To make solving the
optimization problems feasible, we consider convex loss functions only. We
also only consider the Lq-norm of the coe�cient vector (J(f) = kwkq, q � 1)
as the penalty functional. For notational simplicity, we also omit the o↵set
parameter b.

Thus, the regularized optimization problem consists of three components:

• The empirical loss function. It typically corresponds to a likelihood under
an assumed error model. For example, squared error loss implicitly assumes
an iid Gaussian error distribution, while the logistic log-likelihood loss
assumes the data is Bernoulli.

• The complexity penalty. It can be viewed as representing a log-prior over
the model parameters. For example, an L2-norm penalty corresponds to a
Gaussian prior, while an L1-norm penalty corresponds to a double expo-
nential prior.

• The regularization parameter. It balances the loss and the penalty. From a
Bayesian perspective, it can be viewed as setting the strength of the prior.

We address statistical and computational issues related to these three com-
ponents. In section 16.2 we compare the statistical properties of the L1-norm
penalty and the L2-norm penalty, and propose a bet on sparseness principle. In
section 16.3 we discuss the favorable computational properties of the L1-norm
penalty. We show that under certain circumstances, the paths of regularized
solutions have a piecewise linear property which allows us to develop a new
approach to solving L1-regularized problems and e�ciently generate the reg-
ularized solutions for all values of the regularization parameter. In section
16.4 we combine statistical considerations in selecting loss functions with our
computational results to suggest a new classification tool. Finally, in section
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16.5 we briefly review the performance of our tools on the feature selection
challenge datasets.

16.1.1 Some specific examples of regularized modeling approaches

Many of the commonly used methods for data mining, machine learning and
statistical modeling can be described as exact or approximate regularized
optimization approaches.

The obvious examples from the statistics literature are explicit regularized
linear regression approaches, such as ridge regression (Hoerl and Kennard,
1970) and the Lasso (Tibshirani, 1996). Both of these use squared error loss,
but they di↵er in the penalty they impose on the coe�cient vector w describ-
ing the fitted model:

Ridge: ŵ(�) = arg min
w

m
X

k=1

(yk � xT
k w)2 + �kwk22, (16.2)

Lasso: ŵ(�) = arg min
w

m
X

k=1

(yk � xT
k w)2 + �kwk1. (16.3)

Another example from the statistics literature is the penalized logistic regres-
sion model (Wahba, 1990) for classification, which is widely used in medical
decisions and credit scoring:

ŵ(�) = arg min
w

m
X

k=1

log(1 + e�ykx

T
k w) + �kwk22, (16.4)

where L(y, f) = log(1 + e�yf ) is the negative binomial log-likelihood.
Many “modern” methods for machine learning and signal processing can

also be cast in the framework of regularized optimization. For example, the
regularized support vector machine (Vapnik, 1995) uses the hinge loss function
and the L2-norm penalty3:

ŵ(�) = arg min
w

X

k=1

(1� ykxT
k w)+ + �kwk22, (16.5)

where (·)+ is the positive part of the argument.
AdaBoost (Freund and Schapire, 1996) is a popular and highly success-

ful method for iteratively building an additive model from a dictionary of
“weak learners”. In (Rosset et al., 2004) we show that the AdaBoost algo-
rithm approximately follows the path of the L1-norm regularized solutions to
the exponential loss function e�yf as the regularization parameter � decreases.

3This representation di↵ers from the “standard” optimization representation of
the regularized SVM, however it is mathematically equivalent to it.
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16.1.2 An illustrative example

Before delving into any technical details, we use the following simple simulated
example (discussed in more detail in (Rosset and Zhu, 2003)) to illustrate the
importance of all three components of the regularized optimization problem
for building good prediction models:

• An appropriate loss function that either matches data error distribution
or is robust enough to account for lack of knowledge of this distribution.

• An appropriate regularization scheme.
• Selection of an appropriate value for the regularization parameter.

Take m = 100 observations and n = 80 variables, where all xk,i are i.i.d
N(0, 1) and the true model is:

yk = 10 · xk,1 + ✏k (16.6)

✏k
iid⇠ 0.9 ·N(0, 1) + 0.1 ·N(0, 100) (16.7)

So the true model only depends on the first variable, and the normality of
residuals, implicitly assumed by using squared error loss, is violated.

We compare three parametric regularized fitting problems on this data:

Ridge: ŵ(�) = arg min
w

m
X

k=1

(yk � xT
k w)2 + �kwk22 (16.8)

Lasso: ŵ(�) = arg min
w

m
X

k=1

(yk � xT
k w)2 + �kwk1 (16.9)

Huberized Lasso: ŵ(�) = arg min
w

m
X

k=1

LH(yk,xT
k w) + �kwk1 (16.10)

where

LH(y, xT w) =

(

(y � xT w)2 if |y � xT w|  1
2|y � xT w|� 1 otherwise

Figure 16.1 shows the solution coe�cient paths ŵ(�) for the ridge (left),
the Lasso (middle) and the Huberized Lasso (right)4. Since the true model
is sparse with only one non-zero coe�cient, the L1-norm regularization is
appropriate here (see section 16.2 for details). Since the error distribution has
a long tail, a robust loss function (like Huber’s loss LH) is appropriate. Thus,
both Ridge and the Lasso fail in identifying the correct model E(Y |x) = 10x1

while the Huberized Lasso identifies it exactly, if we choose the appropriate

4To follow the tradition of the original Lasso paper (Tibshirani, 1996), we plot
ŵ(�) as a function of the appropriate norm kŵk

q

, q 2 {1, 2}, rather than the regu-
larization parameter �. It is easy to show that there is a one to one correspondence
between � and kŵk

q

.
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regularization parameter. That is, the rightmost plot of Figure 16.1, at kŵk1 =
10, recovers exactly the original model from which the data was generated.
Figure 16.2 gives the reducible squared error loss of the models along the three
regularized paths and illustrates the superiority of the Huberized Lasso.
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Fig. 16.1. Coe�cient paths for ridge (left), Lasso (middle) and Huberized Lasso
(right) for data example. The full solid line is for ŵ1, and the dashed lines for the
noise variables. The true model is E(Y |x) = 10x1.

Thus we see that in this simple example, the correct combination of loss,
penalty and regularization parameter choice allows us to identify the correct
model exactly, while failing on any of these three components significantly
degrades the performance.

16.2 The L1-norm penalty

In this section we concentrate on the statistical properties of the L1-norm
penalty. We first show that solutions to L1-regularized problems have a sparse-
ness property, i.e. that they cannot have too many non-zero coe�cients. Then
we show that in the case that L1-norm penalty is appropriate from a Bayesian
perspective, i.e. when the true model is sparse, the problem is “easy” to solve
in terms of model complexity. On the other hand, spherically symmetric prob-
lems where the L2-norm penalty is appropriate are “hard” to solve from that
perspective. These two properties establish the usefulness of the L1-norm
penalty from a statistical perspective.

16.2.1 Sparseness

A canonical example that uses the L1-norm penalty is the Lasso for regres-
sion problems (16.9). The L1-norm penalty shrinks the fitted coe�cients ŵ
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Fig. 16.2. Reducible error for the models along the regularized paths.

towards zero. It is well known that this shrinkage has the e↵ect of control-
ling the variance of ŵ, hence possibly improves the fitted model’s prediction
accuracy. Another property of the L1-norm penalty is that because of the
L1 nature of the penalty, making � su�ciently large will cause some of the
coe�cients ŵi’s to be exactly zero, i.e. sparse solution. Hence, the L1-norm
penalty has an inherent variable/feature selection property. We illustrate the
concept of sparseness of ŵ(�) with a simple example. We generate 10 training
data of two classes. Each data point contains five variables: x1, x2, . . . , x5, but
the true classification boundary, x1 + x2 = 0, only depends on the first two
variables. We compare the fitted coe�cient paths for the L1-norm support
vector machine and the standard L2-norm support vector machine. In Figure
16.3, the two solid paths are for x1 and x2 (or ŵ1 and ŵ2); the dashed lines
are for the irrelevant noise variables. As we can see in the left panel, when
kŵk1  0.7, only the relevant variables have non-zero fitted coe�cients, while
the noise variables have zero coe�cients. Thus when the regularization param-
eter varies, the L1-norm penalty does a kind of continuous variable selection.
This is not the case for the standard L2-norm penalty (right panel).

From a Bayesian perspective, the L1-norm penalty corresponds to putting
a double-exponential log-prior on the coe�cient vector describing the model.
Thus, the equal-penalty contours in the n-dimensional Euclidean space spanned
by the model’s coe�cients are hyper-diamonds, as illustrated in left panel of
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ŵŵ

kŵk
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Fig. 16.3. Coe�cient paths for the L1-norm SVM (left) and the L2-norm SVM
(right) for simulated data example. The solid lines correspond to the relevant vari-
ables, and the dashed lines correspond to the noise variables.

Figure 16.4, compared to hyper-spheres for the L2-norm penalty and hyper-
cubes for the L1-norm penalty.

Observing that a hyper-diamond has the vast majority of its volume in the
corners gives us an intuitive sense of why we may expect the L1-norm penalty
to give sparse models. It turns out that this is indeed the case, and in fact the
following general result holds:

Theorem 1. There always exists a solution of (16.1) with J(f) = kwk1 that
has at most m non-zero coe�cients, even if n > m.

This theorem establishes the existence of a sparse solution. We omit the proof
of the theorem here and refer the readers to (Rosset et al., 2004) for details.
With a little more work (again, see (Rosset et al., 2004) for details), under
some additional mild conditions, we can also show that either (a) any solution
of (16.1) with J(f) = kwk1 has at most m non-zero coe�cients or (b) the
sparse solution is unique.
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Fig. 16.4. Left panel: Contours of various L
q

penalty functions. Right panel: Piece-
wise linear solution paths for the Lasso on a 4-variable example.

16.2.2 Bet on sparseness

Based on the statistical property of the L1-norm penalty, we quote the bet
on sparseness principle for high-dimensional problems from (Friedman et al.,
2004). Suppose we have 100 data points and our model is a linear combina-
tion of 10, 000 variables. Suppose the true coe�cients of these variables are
“randomly drawn” from a Gaussian prior. Then we know that, in a Bayesian
sense, the best predictor would be a ridge regression; that is, we should use
an L2-norm rather than an L1-norm penalty when fitting the coe�cients. On
the other hand, if there are only a small number of non-zero true coe�cients,
the L1-norm penalty will work better. We think of this as a sparse scenario,
while the first case (Gaussian coe�cients) as non-sparse. Note however that
in the first scenario, although the L2-norm penalty is best, neither method
does very well since there is too little data from which to estimate 10, 000
non-zero coe�cients. This is the curse of dimensionality taking its toll. In the
sparse setting, we can potentially do well with the L1-norm penalty, since the
number of non-zero coe�cients is small. The L2-norm penalty fails again.

In other words, use of the L1-norm penalty follows what we call the bet on
sparseness principle for high-dimensional problems:

Use a procedure that does well in sparse problems, since no procedure
does well in non-sparse problems.

Figure 16.5 illustrates this point in the context of logistic regression. The
details are given in the caption. Note that we are not using the training data to
select �, but rather are reporting the best possible behavior for each method in
the di↵erent scenarios. The L2-norm penalty performs poorly everywhere. The
L1-norm penalty performs reasonably well in the only two situations where it
can (sparse coe�cients). As expected the performance gets worse as the noise
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level increases (notice that the maximum noise level is 0.25), and as the model
becomes less sparse.

These empirical results are supported by a large body of theoretical results
(e.g. (Donoho and Johnstone, 1994), (Donoho et al., 1992), (Donoho et al.,
1995)) that support the superiority of L1-norm estimation in sparse settings.
One recent interesting result is by (Ng, 2004), which shows that when using the
L1-norm penalty, the sample complexity, i.e., the number of training examples
required to learn “well”, grows only logarithmically in the number of irrelevant
variables; while the L2-norm penalty has a worst case sample complexity that
grows at least linearly in the number of irrelevant variables.

16.3 Piecewise linear solution paths

To get a good fitted model f̂(x) that performs well on future data, we also
need to select an appropriate regularization parameter �. In practice, people
usually pre-specify a finite set of values for the regularization parameter that
covers a wide range, then either use a separate validation dataset or use cross-
validation to select a value for the regularization parameter that gives the
best performance among the given set. In this section, we concentrate our
attention on (loss L, penalty J) pairings where the solution path ŵ(�) is
piecewise linear as a function of �, i.e. 9�0 = 0 < �1 < . . . < �T = 1 and
�0,�1, . . . ,�T�1 2 Rn such that ŵ(�) = ŵ(�t)+(���t)�t where t is such that
�t  �  �t+1. Such models are attractive because they allow us to generate
the whole regularized path ŵ(�), 0  �  1 simply by calculating the
directions �1, . . . ,�T�1, hence help us understand how the solution changes
with � and facilitate the adaptive selection of the regularization parameter �.

Again, a canonical example is the Lasso (16.9). Recently (Efron et al.,
2004) have shown that the piecewise linear coe�cient paths property holds
for the Lasso. Their results show that the number of linear pieces in the Lasso
path is approximately the number of the variables in x, and the complexity
of generating the whole coe�cient path, for all values of �, is approximately
equal to one least square calculation on the full sample.

A simple example to illustrate the piecewise linear property can be seen
in the right panel of Figure 16.4, where we show the Lasso solution paths for
a 4-variable synthetic dataset. The plot shows the Lasso solutions ŵ(�) as a
function of kŵk15. Each line represents one coe�cient and gives its values at
the solution for the range of � values. We observe that between every two “+”
signs the lines are straight, i.e. the coe�cient paths are piecewise-linear, as a
function of �, and the 1-dimensional curve ŵ(�) is piecewise linear in R4.

The questions which are of interest to us, in trying to understand the
piecewise linear property and extend its usefulness beyond the Lasso, are:

5It is easy to show that if ŵ(�) is piecewise linear in �, then it is also piecewise
linear in kŵk1; the opposite is not necessarily true. See (Rosset and Zhu, 2003) for
details.
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Fig. 16.5. Simulations that show the superiority of the L1-norm penalty over L2-
norm in classification. Each run has 50 observations with 300 independent Gaussian
variables. In the top row only 3 coe�cients are non-zero, generated from a Gaussian.
In the middle row, 30 are non-zero, and the last row all 300 coe�cients are non-zero,
generated from a Gaussian distribution. In each case the coe�cients are scaled to give
di↵erent noise levels (we define noise level as E [p(x)(1� p(x))]). L1-norm penalty is
used in the left column, L2-norm penalty in the right. In both cases we used a series of
100 values of �, and picked the value that minimized the theoretical misclassification
error. In the figures we report the best misclassification error, displayed as box-plots
over 20 realizations for each combination.
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(1.) What is the general characterization of (loss, penalty) pairs which give
piecewise linear solution paths?

(2.) For what members of this family can we build e�cient algorithms for
generating the whole solution path?

(3.) What are statistically interesting members of this family, which define
modeling problems that are of interest, and allow us to utilize our e�cient
algorithms for building new and useful modeling tools?

In this section and the next we attempt to answer these questions. Our
results are based on (Rosset and Zhu, 2003), and allow us to:

• Define general conditions to describe which regularized optimization prob-
lems yield piecewise linear regularized solution paths;

• Design e�cient algorithms to generate the whole regularized solution paths
for some members of this family;

• Suggest new and interesting modeling tools which combine robust loss,
L1-norm regularization and e�cient computations.

16.3.1 Su�cient conditions for piecewise linearity

We now develop a general criterion for piecewise linear solution paths in the
case that the loss and penalty are both twice di↵erentiable. This will serve
us as an intuitive guide to identify regularized models where we can expect
piecewise linearity. It will also prove useful as a tool in asserting piecewise
linearity for non-twice di↵erentiable functions.

For the coe�cient paths to be piecewise linear, we require that @ŵ(�)
@� is a

piecewise constant vector as a function of �, or in other words that over ranges
of � values:

lim
✏!0

ŵ(�+ ✏)� ŵ(�)
✏

= constant (16.11)

To get a condition, let us start by considering only w values where L, J
are both twice di↵erentiable, with bounded second derivatives in the rel-
evant region. Throughout this section we are going to use the notation
L(w) =

Pm
k=1 L(yk,xT

k w) in the obvious way, i.e. we make the dependence
on the data X, Y implicit, since we are dealing with optimization problems
in the coe�cients w only, and assuming the data is fixed.

With some algebra, which we skip here for brevity, we obtain the following
result:

Lemma 1. For twice di↵erentiable loss and penalty, a su�cient and necessary
condition for piecewise linear coe�cient paths is that the direction

@ŵ(�)
@�

= �(r2L(ŵ(�)) + �r2J(ŵ(�)))�1rJ(ŵ(�)) (16.12)

is a piecewise constant vector in Rn as a function of �.



390 Saharon Rosset and Ji Zhu

The obvious realistic situation (i.e. not necessarily twice di↵erentiable loss
and penalty) in which Lemma 1 holds and we get piecewise linear coe�cient
paths is:

• L is piecewise quadratic as a function of w along the optimal path ŵ(�).
• J is piecewise linear as a function of w along this path.

So we can conclude that the search for regularized problems with piecewise
linear coe�cient paths should concentrate on losses L which are “almost ev-
erywhere” quadratic and penalties J which are “almost everywhere” linear.

16.3.2 The piecewise linear “toolbox”

Based on this characterization of what constitutes piecewise linear solution
paths, we can now create a “toolbox” of loss functions and penalty functionals
combinations which yield this property.

On the loss side, we require a “piecewise quadratic” function. Thus, our
toolbox includes:

• Pure quadratic loss functions: (y�xT w)2 for regression, (1� yxT w)2+ for
classification;

• Mixture of quadratic and linear pieces, which includes Huber’s loss (16.10)
for regression, and the new classification loss we introduce in section 16.4;

• Mixture of linear and constant pieces, such as the absolute loss for regres-
sion |y � xT w| and the hinge loss of SVMs (the first term in (16.5)).

On the penalty side, we require a “piecewise linear” function, which in our
family of Lq norms, leaves us with:

• The L1-norm penalty;
• The L1-norm penalty J(w) = maxi |wi|.

Any combination of loss and penalty from these families will thus give us
piecewise linear solution paths, for example:

(1.) 1-norm support vector machines. In (Zhu et al., 2003) we present an algo-
rithm for e�cient solution of the 1-norm SVM utilizing this property. The
standard (2-norm) SVM has a similar “piecewise linear” property, albeit
one not covered by the theory presented here. Details, with a resulting
e�cient algorithm, can be found in (Hastie et al., 2004).

(2.) The Lasso (16.9) and L1-norm penalized Huber’s loss (16.10), which we
have presented in section 16.1.2. In fact, the solution paths in Figure 16.1
were generated using the algorithm we present in the next section which
takes computational advantage of the piecewise linear property.
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16.3.3 An interesting family

We now define a family of almost quadratic loss functions whose L1-norm
regularized solution paths are piecewise linear — a family we consider to be
most useful and practical, because it yields a simple and provably e�cient
algorithm to generate the whole regularized solution path. We fix the penalty
to be the L1-norm:

J(w) = kwk1 =
X

i

|wi|. (16.13)

And the loss is required to be di↵erentiable and piecewise quadratic in a fixed
function of the sample response and the prediction xT w:

L(w) =
P

k L(yk,xT
k w) (16.14)

L(y, xT w) = a(r)r2 + b(r)r + c(r) (16.15)

where r = r(y, xT w) = (y � xT w) is the residual for regression and r =
r(y,xT w) = (yxT w) is the margin for classification; and a(·), b(·), c(·) are
piecewise constant functions, with a finite (usually small) number of pieces,
defined so as to make the function L once di↵erentiable everywhere.

Some examples from this family are:

• The Lasso: L(y, xT w) = (y � xT w)2, i.e. a ⌘ 1, b ⌘ 0, c ⌘ 0.
• The Huber loss function with fixed knot � (define r = y�xT w the residual):

L(r) =

(

r2 if |r|  �

2�|r|� �2 otherwise
(16.16)

• Squared hinge loss for classification (define r = yxT w the margin):

L(r) =

(

(1� r)2 if r  1
0 otherwise

(16.17)

Theorem 2. All regularized problems of the form (16.1) using (16.13) and
(16.15) (with r being either the residual or the margin) generate piecewise
linear solution coe�cient paths ŵ(�) as the regularization parameter � varies.

The proof is based on explicitly writing and investigating the Karush-
Kuhn-Tucker (KKT) conditions for these regularized problems, and we omit
it for space considerations. The full proof is available in (Rosset and Zhu,
2003).

Based on this theorem and careful examination of the KKT conditions we
can derive a generic algorithm to generate coe�cient paths for all members
of the almost quadratic family of loss functions with L1-norm penalty. Our
algorithm starts at ŵ = 0 (or, equivalently, � = 1) and follows the linear
pieces, while identifying the direction change events and re-calculating the
direction when they occur. These direction change events occur when:
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• A new variable enters the regularized solution ; (i.e. a 0 coe�cient becomes
non-0)

• A variable in the solution is dropped (i.e. a non-0 coe�cient becomes 0)
• A residual crosses a “knot” of non-twice-di↵erentiability in the loss

The Lar-Lasso algorithm (Efron et al., 2004) is a simplified version of our
algorithm since knot crossing events do not occur in the Lasso (as the loss is
twice di↵erentiable). Notice that the algorithm does not calculate � explicitly.

Algorithm 6: An algorithm for almost quadratic loss with L1-
norm penalty

Initialization ŵ = 0,A = arg max
i

(rL(ŵ))
i

, �A = �sgn(rL(ŵ))A, �AC = 0,
where A contains the indices of the non-zero coe�cients.

Main While (max|rL(ŵ)| > 0)

• d1 = min{d > 0 : |rL(ŵ + d�)
i

| = |rL(ŵ + d�)
i

0 |, i /2 A, i0 2 A}.
• d2 = min{d > 0 : (ŵ + d�)

i

= 0, i 2 A} (hit 0).
• d3 = min{d > 0 : r(y

k

, xT

k

(ŵ + d�)) hits a knot, k = 1, . . . , m}.
• Set d = min(d1, d2, d3).
• If d = d1 then add variable attaining equality at d to A.
• If d = d2 then remove variable attaining 0 at d from A.
• ŵ  ŵ + d�
• C =

k

a(r(y
k

, xT

k

ŵ))x
k,AxT

k,A.
• �A = C�1(�sgn(ŵA)).
• �AC = 0.

It should be noted that our formulation here of the almost quadratic family
with the L1-norm penalty has ignored the existence of a non-penalized inter-
cept. This has been done for simplicity of exposition, however incorporating a
non-penalized intercept into the algorithm is straightforward. The computer
implementation we use for numerical examples throughout this chapter allow
for the inclusion of a non-penalized intercept.

The computational complexity of this algorithm turns out to be O(m2n)
both when m > n and when n > m, under mild assumptions (see (Rosset and
Zhu, 2003) for details). For this computational cost we get the full regularized
solution path, i.e. ŵ(�), 8�.

16.4 A robust, e�cient and adaptable method for
classification

In section 16.1.2, we presented an example using a robust Huberized loss func-
tion of the almost quadratic family for regression problems. Algorithm 6 was
in fact used to generate the regularized solution paths in the middle and right
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panels of Figure 16.1. We now suggest a new method for classification, which
is of statistical interest and allows us to generate the whole regularized path
e�ciently. We choose a loss function, which is robust, i.e. linear for large
margins. We build on the previous sub-section, in particular Algorithm 6, to
generate the solution paths to the regularized problems ŵ(�) for the L1-norm
regularized version of this fitting problem.

16.4.1 The Huberized hinge loss for classification

For classification we would like to have a loss, which is a function of the
margin: r(y, xT w) = yxT w. This is true of the loss functions typically used
for classification:

Logistic regression: L(y, xT w) = log(1 + exp(�yxT w))
Support vector machines: L(y, xT w) = (1� yxT w)+

Exponential loss (boosting): L(y, xT w) = exp(�yxT w)

The properties we would like from our classification loss are:

• We would like it to be almost quadratic, so we can apply Algorithm 6.
• We would like it to be robust, i.e. linear for large absolute value negative

margins, so that outliers would have a small e↵ect on the fit. This property
is shared by the loss functions used for logistic regression and support vec-
tor machines. The squared hinge loss (16.17) and more so the exponential
loss are non-robust in this sense.

This leads us to suggesting for classification the Huberized hinge loss, i.e.
(16.17) Huberized at � < 1:

L(r) =

8

>

<

>

:

(1� �)2 + 2(1� �)(� � r) if r  �

(1� r)2 if � < r  1
0 otherwise

(16.18)

The left panel of Figure 16.6 compares some of these classification loss
functions: the logistic, exponential, squared hinge loss and our suggested loss
function (16.18), with � = �1. The exponential and logistic are scaled up by
4 to make comparison easier. We can see the non-robustness of the squared
and more so the exponential in the way they diverge as the margins become
negative.

To illustrate the similarity between our loss (16.18) and the logistic loss,
and their di↵erence from the squared hinge loss (16.17), consider the following
simple simulated example: x 2 R2 with class centers at (�1,�1) (class “�1”)
and (1, 1) (class “1”) with one big outlier at (30, 100), belonging to the class
“�1”. The Bayes model, ignoring the outlier, is to classify to class “1” i↵
x1 + x2 > 0, hence the best fitted model should have ŵ1 = ŵ2 > 0. The data
and optimal separator can be seen in the right panel of Figure 16.6.
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Fig. 16.6. Left: Classification loss functions. Right: Simulated classification data.

Figure 16.7 shows the regularized model paths and misclassification rate for
this data using the logistic loss (left), the Huberized hinge loss (16.18) (middle)
and the squared hinge loss (16.17) (right). We observe that the logistic and
Huberized regularized model paths are similar and they are both less a↵ected
by the outlier than the non-Huberized squared loss.

16.5 Results on the NIPS-03 challenge datasets

Here we first illustrate our new classification model on the Dexter dataset
from NIPS-03 feature selection workshop, then briefly summarize our results
on all five challenge datasets. Algorithm 7 contains the general procedure that
we follow on all five datasets.

Algorithm 7: General procedure on five challenge datasets
(1.) Pre-selection for each variable, compute the fraction ⌧ of non-zero entries

and p-value of the univariate t-statistic; select the variable only if ⌧ is big
enough or p is small enough. In the case of Dexter, 1152 variables were
pre-selected using this criterion.

(2.) Apply (16.1) on the reduced training dataset. In the case of Dexter, we
used the Huberized hinge loss for L and L1-norm penalty for J .

(3.) Use the validation dataset to select a regularization parameter �⇤ that
minimizes the balanced error rate.

(4.) Report the model that corresponds to the selected �⇤.

The Dexter dataset contains m = 300 training observations, n = 20, 000
variables and 300 validation observations. Figure 16.8 shows the result. As we
can see, the validation error (solid curve) first decreases then increases, as the
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Fig. 16.7. Performance comparison of the logistic loss (left), the Huberized hinge
loss (middle) and the squared hinge loss (right). The upper panels are for the regu-
larized solution paths ŵ1 (solid) and ŵ2 (dashed). The paths for the logistic loss are
approximated by solving at pre-fixed 200 di↵erent � values, while the paths for the
Huberized hinge loss and the squared hinge loss are solved exactly and e�ciently
using Algorithm 6. The squared hinge loss gives incorrect sign for ŵ2, while the
logistic loss and the Huberized hinge loss have similar solution paths. The lower
panels show the prediction errors along the solution paths and confirm the relative
robustness to the outlier of the logistic loss and the Huberized hinge loss.

regularization parameter � decreases; while the number of non-zero coe�cients
or selected variables (dashed curve) almost increases monotonically. The best
model seems to correspond kŵk1 = 0.14, where the validation error is 0.07
and the number of selected variables is around 120. The entire solution path
has 452 linear pieces, and our current un-optimized R implementation takes
about 3 minutes to generate the whole solution path on an IBM T30 laptop.
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Fig. 16.8. Result on the Dexter dataset: the dotted curve is for the number of
non-zero coe�cients, and the solid curve is for the validation error.

Table 16.1 summarizes our results on all five challenge datasets and com-
pares them with the best winning results. Due to the space limit, we refer
the readers to the fact sheet for details about our procedure and the authors’
website for the code6. As we can see, except for Gisette, our results are not
so satisfactory. Since we are mainly using the original variables as the basis
functions, the classification boundaries are simply linear hyper-planes, which
are obviously not flexible enough. How to generalize the L1 regularization
to the non-parametric setting will be on our main agenda for future work.
For Arcene, Gisette and Madelon, we were able to identify the relevant vari-
ables (the fraction of selected “probes” are low); but for Dexter and Dorothea,
although we greatly reduced the size of variables (the fraction of selected
variables are low), we still kept too many probes. This implies that the L1-
norm regularization may not be penalizing enough in selecting variables. An
alternative heavier “penalizer” is the L0-norm, which corresponds to the best
subset selection method in regression (Furnival and Wilson, 1974). However,
the L0-norm is a non-convex functional, which makes the optimization prob-
lem computationally di�cult, especially when the number of variables is large.
We plan to investigate this further, and some discussion of relevant algorithms
can be found in chapter Chapter 5.

16.6 Conclusion

In this chapter we have tried to design methods which combine computational
and statistical advantages. We emphasize the importance of both appropriate
regularization and robust loss functions for successful practical modeling of
data. From a statistical perspective, we can consider robustness and regular-
ization as almost independent desirable properties dealing with di↵erent issues

6http://www.stat.lsa.umich.edu/˜jizhu/Feature/



16 Sparse, Flexible and E�cient Modeling using L1 Regularization 397

Table 16.1. NIPS 2003 challenge results

Dec. 1st Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 17.82 10.52 92.80 13.99 27.37 88.00 6.84 97.22 80.3 47.8 0.8

Arcene 0 19.62 88.91 30 5.7 98.18 13.30 93.48 100.0 30.0 1

Dexter 12.73 6.90 96.28 0.56 44.64 96.36 3.90 99.01 1.5 12.9 1

Dorothea -14.55 15.69 84.51 5.21 76.99 98.18 8.54 95.92 100.0 50.0 1

Gisette 87.27 1.34 98.26 30 0 98.18 1.37 98.63 18.3 0.0 0

Madelon 3.64 9.06 96.05 4.2 9.52 100.00 7.17 96.95 1.6 0.0 1

in predictive modeling: (a) Robustness mainly protects us against wrong as-
sumptions about our error (or noise) model; (b) Regularization deals mainly
with the uncertainty about our model structure by limiting the model space.
Thus the main goal of regularization is to make the model estimation problem
easier, and match it to the amount of information we have for estimating it,
namely our training data. We have also proposed some modeling tools for both
regression and classification which are robust (because of the loss function),
adaptable (because we can calculate the whole regularized path and choose
a good regularization parameter) and e�cient (because we can calculate the
path with a relatively small computational burden).
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The decision to devote a week or two to playing with the feature selection chal-
lenge (FSC) turned into a major e↵ort that took up most of our time a few
months. In most cases we used standard algorithms, with obvious modifica-
tions for the balanced error measure. Surprisingly enough, the näıve methods
we used turned out to be among the best submissions to the FSC.

Using the insights we gained during our participation in the challenge
we developed novel feature selection algorithms (G-flip and Simba), which
are based on the large margin principle . We used early versions of these
algorithms during the FSC, a detailed description of the mature version of
G-flip and Simba can be found in our contribution to part III of this book
(Chapter 29).

17.1 Methods

Basically, we used a mixture of“out-of-the-box”, well known methods, with one
exception: a novel margin based selection method. We used four stages for each
dataset: preprocessing, feature selection, training and finally classification. For
each dataset we chose the combination of methods that we found to perform
best on the validation dataset. We did not perform exhaustive parameter
tuning; instead we tuned the parameters manually using a trial and error
procedure. Table 17.1 summaries the methods that were used for each dataset.

17.1.1 Preprocessing

The data from Arcene, Gisette and Madelon were normalized such that the
maximum absolute value was set to 1. This was achieved by dividing each value
in the instances matrix by the maximum absolute value in the matrix. We refer
to this normalization as abs1. For Arcene we applied Principal Component
Analysis (PCA) to the training data and used each Principal Component
(PC) as a feature. No preprocessing was applied to Dexter and Dorothea.
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Table 17.1. Summary of methods used.

Dataset Preprocessing Feature selection Classification Comments

Arcene abs1, PCA margin based SVM-RBF � = 50, C = 8

Dexter none Infogain1 trans. linear SVM
3 trans. rounds of
10%, C = 10

Dorothea none Infogain2 Näıve Bayes

Gisette abs1 Infogain1 Agg. Perceptron limit=600

Madelon abs1 margin based trans. SVM-RBF
� = 50, 13 trans.
rounds of 10%, C = 5

17.1.2 Feature Selection

We used three selection methods. Two of them are based on Mutual Informa-
tion and log likelihood ratio, and the third is a novel feature selection method
that is based on margins:

• Infogain1: Features are scored by the mutual information between the
feature value and the labels. For non binary data, the values are converted
to binary values by comparing to the median. See Chapter 6 and section
5 Chapter 3 for more details about Infogain and feature selection using
mutual information in general.

• Infogain2: Features are scored by the following value:

si = (pi � ni) log
✓

pi

ni

◆

where pi and ni are estimations of the chance that feature i equals to 1
in the class and outside the class respectively. The data was ”binarized” in
the same way as for infogain1. We used a simple counts estimations for pi

and ni, were 0.5 was added to the counts as zero correction.
This method can be considered as variation of infogain (as it involves
quantities of the same nature of expectation of log probabilities) or as a
natural score for Näıve Bayes classifier (which uses the quantity log (pi/ni)
for classification).
Note that this score suppresses the e↵ect of zero values (since the equiv-
alent term that involves the quantities (1 � pi) and (1 � ni) is omitted).
Thus it is adequate for sparse data were zero values are weak evidence.

• Margin Based: In (Crammer et al., 2002), a margin term for Nearest-
Neighbor classifiers is presented. The margin of an instance is defined to
be half the di↵erence between the distance to the closest point with an
alternate label and the closest point with the same label. We selected a
subset of features that maximizes the margin on a validation set using a
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greedy hill climbing procedure. A mature version of this algorithm (G-flip)
and other margin based feature selection algorithms are described in detail
in our contribution to part III of this book. A Matlab code is also available.

Infogain1 was used for Gisette and Dexter, Infogain2 for Dorothea and
Margin Based for Arcene and Madelon.

17.1.3 Classification

We used SVM (Boser et al., 1992, Vapnik, 1998), transductive SVM (Joachims,
1999), “sleeping” Näıve Bayes (with Good-Turing zero correction (Orlitsky
et al., 2003)) and Aggressive Perceptron (Crammer et al., 2003) for classifica-
tion.

SVM: see section 3.3 of Chapter 1 for detailed description of SVM. We used
a tool box by (Cawley, 2000). We applied linear SVM and SVM with a Radial
Basis Function (RBF) kernel. In the RBF kernel with a parameter �, the inner
product between two instances x1 and x2 is

K(x1, x2) = e�
||x1�x2||

2

2�2

In order to optimize the balanced error rate (BER) we compensated for the
di↵erent sizes of the two classes as follows. Let R be the ratio between the
size of the positive class and the size of the negative class. Then we set the
cost of misclassifying an instance to C for positive instances and to CR for
negative instances, where C is the standard penalty term of SVM. This was
done by setting the parameter ⇣ of the train function in the tool box to 1 for
positive instances and to R for negative instances.

Transductive SVM: we started by training an SVM on the training set.
Using the classifier obtained we classified the test set. Out of the test set we
took a certain percentage of the instances which obtained the largest margin
and added it to the training set. We repeated this procedure several times.
We denote by perc the percentage of the instances from the test set which
were added to the train set in each round.

Näıve Bayes: Näıve Bayes classifier classifies an instance x by the rule:

X

xi

log
p(Xi = xi|Y = 1)
p(Xi = xi|Y = 0)

? t

where t is a threshold. Since we applied it to a sparse binary dataset, we used
the “sleeping” version which ignores zero valued features. Thus the classifica-
tion rule is:

X

xi=1

log
p(Xi = 1|Y = 1)
p(Xi = 1|Y = 0)

? t
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The threshold was set during training to the value that minimizes the balanced
training error. However, the main di�culty is that the probabilities p(Xi|Y )
are not known, and should be learned. For this task we used a method rem-
iniscent of Good-Turing estimators. Let ny(i) be the number of instances
x in the training set with label y and xi = 1. The simplest estimator is
P (Xi = 1|Y = y) = ny(i)

ny
where ny is the size of class y. However, this estima-

tor is ine�cient in estimating small probabilities. Therefore we have applied
the following correction:

P (Xi = 1|Y = y) =
ny(i) + 1

#{j:ny(j)=ny(i)}
ny

See section 3.1 of Chapter 1 for more details about Näıve Bayes classifiers.

Aggressive Perceptron: The Perceptron algorithms finds a linear separator
w by iterating on the training set {(xi, yi)} and performing the correction
w = w+yixi whenever yi(w ·xi) < 0. The aggressive version (Crammer et al.,
2003) applies the same correction, but does so whenever yi(w · xi) < limit
where limit is a predefined positive threshold.

For ARCENE we used SVM with RBF kernel (� = 0.005, C = 8). For
Gisette we used Aggressive Perceptron with a limit set to 600 (i.e. we require
that y(w · x) > 600 for each (x, y) in the training set). For Dexter we used
transductive SVM with a linear kernel, three transduction rounds of 15%,
C = 8. For Dorothea we used Näıve Bayes with Good-Turing zero correc-
tion. For Madelon we used transductive SVM with RBF kernel (� = 50), 13
transduction rounds of 10%, C = 5.

17.1.4 Implementation

Our implementation was done in Matlab . For SVM we used the tool box by
(Cawley, 2000). All the rest was written specifically for the challenge. Some
of the scripts are provided as supplementary material and can be downloaded
from (Gilad-Bachrach and Navot, 2004). Table 17.2 gives the name of the file
that implements each method. All the runs were done on a couple of standard
PC machines. We did not perform any extensive tuning of parameters, but
instead we applied a rough manual tuning.

17.2 Results

Our results for December 1st and December 8th are presented in Table 17.3
and Table 17.4 respectively. According to the average balanced error rate
(BER) criterion we rank second as a team, just after the winners. Note that
the average BER is the criterion that was used to rank entries during the
challenge, and thus we focused on minimizing this term.
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Table 17.2. Method Implementation

Purpose Method Implementation Used For

Feature Selection Infogain1 info feat select.m Dexter, Gisette

“ Infogain2 infoSleeping feat select.m Dorothea

“ margin-based distBased feat select.m⇤ Madelon, Arcene

Classification SVM svm train.m Arcene

“ trans. SVM transsvm train.m Dexter, Madelon

“ Näıve Bayes näıvebayes train.m Dorothea

“ Agg. Perceptron perceptron train.m Gisette
⇤ This function is the original implementation that was used in the challenge. A

better, and much faster, implementation can be downloaded from
http://www.cs.huji.ac.il/labs/learning/code/feature_selection/. There it

appears under the name of gflip.m.

For Arcene, we did use feature selection in spite of the fact that we used
all the features. We used them to calculate the principal components, but
then only 81 principal components were selected using margin-based feature
selection. This selection made a vast improvement over using all the principal
components.

For Dorothea the accuracy was close to the best using many fewer features
than any of the submissions that ranked above us. We only used 0.3% of the
features (compared with 100% in the entries above us) and chose no probes
(out of 50%).

For Gisette, Madelon and Dexter we were ranked relatively low, but the
di↵erences between the di↵erent submissions on these datasets are very minor.
For example note that our AUC is among the best despite our low rank. This
suggests that the ranking on these datasets is statistically insignificant.

17.3 Discussion

The results suggest that besides Radford Neal and Jianguo Zhang, who were
the clear winners, many of the other submissions, including ours, performed
pretty much the same and can claim second place, depending on the type
of ranking. The bottom line is that we achieved good results using the com-
bination of simple feature selection techniques with standard classification
methods. Moreover, the computational resources needed to get these results
were highly restricted (2 standard desktop PCs).

We also tried to apply 1-Nearest Neighbor (1-NN) instead of SVM with
RBF kernel. It turns out that the SVM is only slightly better than the 50+

http://www.cs.huji.ac.il/labs/learning/code/feature_selection/
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Table 17.3. NIPS 2003 challenge Dec. 1st results

Dec. 1st Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 17.45 8.99 95.54 42.18 24.74 88.00 6.84 97.22 80.3 47.8

Arcene 18.18 17.20 90.13 100 30 98.18 13.30 93.48 100.0 30.0

Dexter 40 5.25 98.8 7 43.71 96.36 3.90 99.01 1.5 12.9

Dorothea 85.45 10.86 92.19 0.3 0 98.18 8.54 95.92 100.0 50.0

Gisette -78.18 3.0 99.63 100 50 98.18 1.37 98.63 18.3 0.0

Madelon 21.82 8.61 96.97 3.6 0 100.00 7.17 96.95 1.6 0.0

Table 17.4. NIPS 2003 challenge Dec. 8th results.

Dec. 8th Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 12 7.78 96.43 32.28 16.22 71.43 6.48 97.2 80.3 47.77

Arcene 37.14 12.66 93.37 100 30 94.29 11.86 95.47 10.7 1.03

Dexter 11.43 5.0 98.65 7 37.14 100 3.3 96.7 18.57 42.14

Dorothea 68.57 11.4 93.1 0.4 0 97.4 8.61 95.92 100.0 50.0

Gisette -62.86 2.23 99.79 50 13.96 97.14 1.35 98.71 18.32 0.0

Madelon 5.71 7.61 97.25 4 0 94.29 7.11 96.95 1.6 0.0

years old nearest neighbor. We also found that the 1-NN is a good predictor for
the performance of SVM-RBF. This is useful, since checking the performance
of SVM-RBF directly requires the e↵ort of parameter tuning.

Other classification algorithms that we tried such asWinnow (Littlestone,
1987) and a few versions of AdaBoost (Freund and Schapire, 1997) were infe-
rior to the chosen algorithms.

References

B. Boser, I. Guyon, and V. Vapnik. Optimal margin classifiers. In In Fifth Annual
Workshop on Computational Learning Theory, pages 144–152, 1992.

G.C. Cawley. Matlab support vector machine toolbox. University
of East Anglia, School of Information Systems, Norwich, U.K., 2000.
http://theoval.sys.uea.ac.uk/˜gcc/svm/toolbox.

K. Crammer, R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin analysis of the
lvq algorithm. In Proceedings of the Fifteenth Annual Conference on Neural
Information Processing, 2002.

K. Crammer, J.S. Kandola, and Y. Singer. Online classification on a budget. In Pro-
ceedings of the Sixteenth Annual Conference on Neural Information Processing,
2003.



17 Margin Based Feature Selection and Infogain with Standard Classifiers 405

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997.

R. Gilad-Bachrach and A. Navot. MATLAB implementation of FSC submission,
2004. http://www.cs.huji.ac.il/labs/learning/code/fsc/.

T. Joachims. Transductive inference for text classification using support vector
machines. In Proceedings of the Sixteenth International Conference on Machine
Learning, pages 200–209, 1999.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2(4):285–318, 1987.

A. Orlitsky, N.P. Santhanam, and J. Zhang. Always good turing: Asymptotically
optimal probability estimation. Science, 302:427–431, 2003.

V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.





Chapter 18

Bayesian Support Vector Machines
for Feature Ranking and Selection

Wei Chu1, S. Sathiya Keerthi2, Chong Jin Ong3, and Zoubin Ghahramani1

1 Gatsby Computational Neuroscience Unit, University College London, London,
WC1N 3AR, UK. chuwei@gatsby.ucl.ac.uk, zoubin@gatsby.ucl.ac.uk

2 Yahoo! Research Lab., Pasadena, CA 91105, USA.
sathiya.keerthi@overture.com

3 Department of Mechanical Engineering, National University of Singapore,
Singapore, 119260. mpeongcj@nus.edu.sg

In this chapter, we develop and evaluate a feature selection algorithm for
Bayesian support vector machines. The relevance level of features are repre-
sented by ARD (automatic relevance determination) parameters, which are
optimized by maximizing the model evidence in the Bayesian framework. The
features are ranked in descending order using the optimal ARD values, and
then forward selection is carried out to determine the minimal set of relevant
features. In the numerical experiments, our approach using ARD for feature
ranking can achieve a more compact feature set than standard ranking tech-
niques, along with better generalization performance.

18.1 Introduction

In the classical supervised learning task, we are given a training set of fixed-
length feature vectors along with target values, from which to learn a math-
ematical model that represents the mapping function between the feature
vectors and the target values. The model is then used to predict the tar-
get for previously unseen instances. The problem of feature selection can be
defined as finding relevant features among the original feature vector, with
the purpose of increasing the accuracy of the resulting model or reducing the
computational load associated with high dimensional problems.

Many approaches have been proposed for feature selection. In general, they
can be categorized along two lines as defined by John et al. (1994):

• Filters: the feature selector is independent of a learning algorithm and
serves as a pre-processing step to modelling. There are two well-known
filter methods, FOCUS and RELIEF. The FOCUS algorithm carries out
an exhaustive search of all feature subsets to determine the minimal set
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of features using a consistency criterion (Almuallim and Dietterich, 1991).
RELIEF (Kira and Rendell, 1992) is a randomized algorithm, which at-
tempts to give each feature a weighting indicating its level of relevance to
the targets.

• Wrapper: this approach searches through the space of feature subsets using
the estimated accuracy from a learning algorithm as the measure of the
goodness for a particular feature subset (Langley and Sage, 1994). This
method is restricted by the time complexity of the learning algorithm,
and when the number of features is large, it may become prohibitively
expensive to run.

There are some learning algorithms which have built-in feature selection. Je-
bara and Jaakkola (2000) formalized a kind of feature weighting in the maxi-
mum entropy discrimination framework, and Weston et al. (2001) introduced
a method of feature selection for support vector machines by minimizing the
bounds on the leave-one-out error. MacKay (1994) and Neal (1996) proposed
automatic relevance determination (ARD) as a hierarchical prior over the
weights in Bayesian neural networks. The weights connected to an irrelevant
input can be automatically punished with a tighter prior in model adapta-
tion, which reduces the influence of such a weight towards zero e↵ectively. In
Gaussian processes, the ARD parameters can be directly embedded into the
covariance function (Williams and Rasmussen, 1996), which results in a type
of feature weighting.

In this paper, we applied Bayesian support vector machines (BSVM) (Chu
et al., 2003, 2004) with ARD techniques to select relevant features. BSVM,
which is rooted in the probabilistic framework of Gaussian processes, can be
regarded as a support vector variant of Gaussian processes. The sparseness in
Bayesian computation helps us to tackle relatively large data sets. Bayesian
techniques are used to carry out model adaptation. The optimal values of
the ARD parameters can be inferred intrinsically in the modelling. Relevance
variables are introduced to indicate the relevance level for features. The fea-
tures can then be ranked from relevant to irrelevant accordingly. In our feature
selection algorithm, a forward selection scheme is employed to determine the
minimal set of relevant features.

The rest of this paper is organized as follows. Section 18.2 reviews the
techniques of BSVM to estimate the optimal values for ARD parameters. Sec-
tion 18.3 describes a forward selection scheme as post-processing to select the
minimal set of relevant features. Section 18.4 presents the results of numerical
experiments, followed by the conclusion in Section 18.5.

18.2 Bayesian Framework

As computationally powerful tools for supervised learning, support vector ma-
chines (SVMs) were introduced by Boser et al. (1992), and have been widely
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used in classification and regression problems (Vapnik, 1995). Let us suppose
that a data set D = {(xi, yi)|i = 1, . . . ,m} is given for training, where the fea-
ture vector xi 2 Rn and yi is the target value. In regression, the target is a real
value, while in classification the target is the class label. SVMs map these fea-
ture vectors into a high dimensional reproducing kernel Hilbert space (RKHS),
where the optimal values of the discriminant function {f(xi)|i = 1, 2, . . . ,m}
can be computed by minimizing a regularized functional. The regularized func-
tional is defined as

min
f2RKHS

R(f) =
m
X

i=1

`(yi, f(xi)) +
1
C
kfk2RKHS, (18.1)

where the regularization parameter C is positive, the stabilizer kfk2RKHS is a
norm in the RKHS and

Pm
i=1 `

�

yi, f(xi)
�

is the empirical loss term (Evgeniou
et al., 1999). For various loss functions, the regularized functional (18.1) can be
minimized by solving a convex quadratic programming optimization problem
that guarantees a unique global minimum solution. In SVMs for classification
(Burges, 1998), hard margin, L1 soft margin and L2 soft margin loss functions
are widely used. For regression, Smola and Schölkopf (1998) have discussed
a lot of common loss functions, such as Laplacian, Huber’s, ✏-insensitive and
Gaussian etc.

If we assume that a prior P(f) / e�
1
C kfk2RKHS and a likelihood P(D|f) /

e�
m
i=1 `(yi,f(xi)), the minimizer of regularized functional (18.1) can be directly

interpreted as maximum a posteriori (MAP) estimate of the function f in
the RKHS (Evgeniou et al., 1999). Due to the duality between RKHS and
stochastic processes (Wahba, 1990), the functions f(xi) in the RKHS can also
be explained as a family of random variables in a Gaussian process. Gaussian
processes have provided a promising non-parametric Bayesian approach to
classification problems (Williams and Barber, 1998). The important advantage
of Gaussian process models over other non-Bayesian models is the explicit
probabilistic formulation. This not only provides probabilistic class prediction
but also gives the ability to infer model parameters in a Bayesian framework.
We follow the standard Gaussian process to describe a Bayesian framework,
in which we impose a Gaussian process prior distribution on these functions
and employ particular loss functions in likelihood evaluation. Compared with
standard Gaussian processes, the particular loss function results in a di↵erent
convex programming problem for computing MAP estimates and leads to
sparseness in computation.

18.2.1 Prior Probability

The functions in the RKHS (or latent functions) are usually assumed as the
realizations of random variables indexed by the input vector xi in a stationary
zero-mean Gaussian process. The Gaussian process can then be specified by
giving the covariance matrix for any finite set of zero-mean random variables
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{f(xi)|i = 1, 2, . . . ,m}. The covariance between the outputs corresponding
to the inputs xi and xj can be defined by Mercer kernel functions, such as
Gaussian kernel, polynomial kernels and spline kernels (Wahba, 1990). We list
two popular covariance functions with ARD parameters in the following:

• ARD Gaussian Kernel: this is a generalization of the popular Gaussian
kernel defined as

Cov[f(xi), f(xj)] = 0 exp

 

�1
2

n
X

l=1

a,l(xi,l � xj,l)2
!

+ b, (18.2)

where l is the feature index, 0 > 0, a,l > 0 and b > 0. 0 denotes the
average power of f(x) that reflects the noise level, while b corresponds to
the variance of the o↵set in the latent functions.4 The ARD parameters a,l

8l are used to indicate the relevance level of the l-th feature to the targets.
Note that a relatively large ARD parameter implies that the associated
feature gives more contributions to the modelling, while a feature weighted
with a very small ARD parameter implies that this feature is irrelevant to
the targets.

• ARD Linear Kernel: this is a type of linear kernel parameterized with ARD
parameters defined as

Cov[f(xi), f(xj)] =
n
X

l=1

a,l xi,l xj,l + b, (18.3)

where b > 0 and a,l > 0.

We collect the parameters in the covariance function (18.2) or (18.3), as
✓, the hyperparameter vector. Then, for a given hyperparameter vector ✓, the
prior probability of the random variables {f(xi)} is a multivariate Gaussian,
which can be simply written as

P(f |✓) =
1

Z
f

exp(�1
2
fT⌃�1f), (18.4)

where f = [f(x1), f(x2), . . . , f(xm)]T , Z
f

= (2⇡)m
2 |⌃| 12 , and ⌃ is the m⇥m

covariance matrix whose ij-th element is Cov[f(xi), f(xj)].

18.2.2 Likelihood

We usually assume that the training data are collected independently. The
probability P(D|f , ✓), known as the likelihood, can be evaluated by:

4In classification settings, it is possible to insert a“jitter” term in the diagonal en-
tries of the covariance matrix, that could reflect the uncertainty in the corresponding
function value.
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P(D|f , ✓) =
m
Y

i=1

P(yi|f(xi)), (18.5)

where � lnP(yi|f(xi)) is usually referred to as the loss function `(yi, f(xi)).
In regression problems, the discrepancy between the target value yi and

the associated latent function f(xi) at the input xi is evaluated by a specific
noise model. Various loss functions can be used depending on the assumption
on the distribution of the additive noise (Chu et al., 2004). In this paper, we
focus on binary classification only.

For binary classifier designs, we measure the probability of the class label yi

for a given latent function f(xi) at xi as the likelihood, which is a conditional
probability P(yi|f(xi)).5 The logistic and probit functions are widely used
in likelihood evaluation (Williams and Barber, 1998, Neal, 1997b). However
these do not result in sparse solutions to the optimization problem. In order to
introduce sparseness into this Bayesian framework, Chu et al. (2003) proposed
a trigonometric loss function. The trigonometric loss function is defined as

`t(yi, f(xi)) =

8

>

<

>

:

+1 if yi · f(xi) 2 (�1,�1];
2 ln sec(⇡

4 (1� yi · f(xi))) if yi · f(xi) 2 (�1,+1);
0 if yi · f(xi) 2 [+1,+1),

(18.6)

where ln denotes the natural logarithm and sec denotes the secant. The
trigonometric likelihood function is therefore written as

Pt(yi|f(xi)) =

8

>

<

>

:

0 if yi · f(xi) 2 (�1,�1];
cos2(⇡

4 (1� yi · f(xi))) if yi · f(xi) 2 (�1,+1);
1 if yi · f(xi) 2 [+1,+1).

(18.7)

Note that Pt(yi = +1|f(xi)) + Pt(yi = �1|f(xi)) = 1 always holds for any
value of f(xi), and the trigonometric loss function possesses a flat zero region
that is the same as the L1 and L2 loss functions in support vector machines.

18.2.3 Posterior Probability

Based on Bayes’ theorem, the posterior probability of f can then be written
as

P(f |D, ✓) =
1

ZS
exp (�S(f)) , (18.8)

where S(f) = 1
2fT⌃�1f +

Pn
i=1 `(yi, f(xi)), `(·) is the loss function we used

and ZS =
R

exp(�S(f)) df . Since P(f |D, ✓) / exp(�S(f)), the Maximum

5Here, y
i

is a discrete random variable, and the sum of the probabilities for all
possible cases of y

i

should be equal to 1, i.e.
yi
P(y

i

|f(x
i

)) = 1, which is referred
to as the normalization requirement.



412 Wei Chu, S. Sathiya Keerthi, Chong Jin Ong, and Zoubin Ghahramani

A Posteriori (MAP) estimate on the values of f is therefore the minimizer of
the following optimization problem:

min
f

S(f) =
1
2
fT⌃�1f +

m
X

i=1

`(yi, f(xi)). (18.9)

This is a regularized functional. For any di↵erentiable loss function, the so-
lution of the regularized functional S(f), is always a linear superposition of
covariance functions, one for each data point. This elegant form of a min-
imizer of (18.9) is also known as the representer theorem (Kimeldorf and
Wahba, 1971). A generalized representer theorem can be found in Schölkopf
et al. (2001), in which the loss function is merely required to be a strictly
monotonically increasing function ` : R! [0,+1).

18.2.4 MAP Estimate

Introducing the trigonometric loss function (18.6) into the regularized func-
tional of (18.9), the optimization problem (18.9) can be then restated as the
following equivalent optimization problem, which we refer to as the primal
problem:

min
f ,⇠

1
2
fT⌃�1f + 2

m
X

i=1

ln sec
⇣⇡

4
⇠i
⌘

(18.10)

subject to yi·f(xi) � 1�⇠i and 0  ⇠i < 2, 8i. Standard Lagrangian techniques
(Fletcher, 1987) are used to derive the dual problem. The dual problem can
be finally simplified as

min
↵

1
2

m
X

i=1

m
X

j=1

(yi↵i)(yj↵j)Cov [f(xi), f(xj)]�
m
X

i=1

↵i

+
m
X

i=1

n

"

4
⇡
↵i arctan

✓

2↵i

⇡

◆

� ln

 

1 +
✓

2↵i

⇡

◆2
!# (18.11)

subject to ↵i � 0,8i. Refer to Chu et al. (2003) for the derivation details.
The dual problem (18.11) is a convex programming problem. The popular

SMO algorithm for classical SVMs (Platt, 1999, Keerthi et al., 2001) can be
easily adapted to solve the optimization problem (Chu et al., 2003). The MAP
estimate on the values of the random variables f can be written in column
vector form as

fMP = ⌃ · � (18.12)

where � = [y1↵1, y2↵2, . . . , ym↵m]T . The training samples (xi, yi) associated
with non-zero Lagrange multiplier ↵i are called support vectors (SVs). The
other samples associated with zero ↵i are not involved in the solution repre-
sentation and the following Bayesian computation. This property is usually
referred to as sparseness, and it reduces the computational cost significantly.
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18.2.5 Hyperparameter Inference

The hyperparameter vector ✓ contains the ARD parameters and other pa-
rameters in the covariance function. The optimal values of hyperparame-
ters ✓ can be inferred by maximizing the posterior probability P(✓|D), using
P(✓|D) = P(D|✓)P(✓)/P(D). The prior distribution on the hyperparameters
P(✓) can be specified by domain knowledge. As we typically have little idea
about the suitable values of ✓ before training data are available, we usually as-
sume a flat distribution for P(✓), i.e., P(✓) is greatly insensitive to the values
of ✓. Therefore, P(D|✓) (which is known as the evidence of ✓) can be used to
assign a preference to alternative values of the hyperparameters ✓ (MacKay,
1992).

The evidence is given by an integral over all f : P(D|✓) =
R P(D|f , ✓)P(f |✓) df .

Using the definitions in (18.4) and (18.5), the evidence can also be written as

P(D|✓) =
1

Z
f

Z

exp(�S(f)) df , (18.13)

where S(f) is defined as in (18.8). Computing the evidence as a high dimen-
sional integral is technically di�cult. So far, a variety of approximation tech-
niques have been discussed: Monte Carlo sampling (Neal, 1997a), the MAP
approach (Williams and Barber, 1998), bounds on the likelihood (Gibbs, 1997)
and mean field approaches (Opper and Winther, 2000, Csató et al., 2000).
Recently, Kim and Ghahramani (2003) coupled the Expectation Propagation
algorithm (Minka, 2001) with variational methods (Seeger, 1999) for evidence
maximization. To maintain the sparseness in Bayesian computation, we apply
Laplace approximation at the MAP estimate. The evidence (18.13) could be
calculated by an explicit formula, and then hyperparameter inference can be
done by gradient-based optimization methods.

The marginalization can be done analytically by considering the Taylor
expansion of S(f) around its minimum S(fMP), and retaining terms up to
the second order. Since the first order derivative with respect to f at the MAP
point fMP is zero, S(f) can be written as

S(f) ⇡ S(fMP) +
1
2
(f � fMP)T

 

@2S(f)
@f@fT

�

�

�

�

f=fMP

!

(f � fMP), (18.14)

where @2S(f)
@f@f

T = ⌃�1 +⇤, and ⇤ is a diagonal matrix coming from the second
order derivative of the loss function we used. Introducing (18.14) into (18.13)
yields

P(D|✓) = exp(�S(fMP)) · |I +⌃ · ⇤|� 1
2 ,

where I is the m ⇥ m identity matrix. Note that, when the trigonometric
loss function (18.6) is employed, only a sub-matrix of ⌃ plays a role in the
determinant |I + ⌃ · ⇤| due to the sparseness of the diagonal matrix ⇤ in
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which only the entries associated with SVs are non-zero. We denote their sub-
matrices as ⌃M and ⇤M respectively by keeping their non-zero entries. The
MAP estimate of f (18.12) on support vectors can also be simplified as ⌃M ·
�M, where �M denotes the sub-vector of � by keeping entries associated with
SVs. Because of these sparseness properties, the negative log of the evidence
can then be simplified as follows

�lnP(D|✓) =
1
2
�T

M·⌃M·�M+2
X

v2SVs

ln sec
⇣⇡

4
⇠v
⌘

+
1
2

ln |I+⌃M·⇤M|, (18.15)

where I is the identity matrix with the size of SVs, “v 2 SVs”denotes that v is
varied over the index set of SVs, and ⇠v = 1� yv · fMP(xv), 8v. The evidence
evaluation is a convenient yardstick for model selection. It is straightforward
to consider the posterior distribution P(✓|D) / P(D|✓)P(✓) by specifying a
particular prior distribution P(✓). The gradient of � lnP(✓|D) with respect
to the variables in the hyperparameter vector ✓ can be explicitly derived (see
Chu et al. (2003) for the detailed derivatives), and then gradient-based opti-
mization methods can be used to find the minimum locally.

The optimization method usually requests evidence evaluation at tens of
di↵erent ✓ before the minimum is found. For each ✓, a quadratic programming
problem should be solved first to find MAP estimate, and then the approxi-
mate evidence (18.15) is calculated along with its gradients with respect to the
hyperparameters. Due to the sparseness, the quadratic programming problem
costs almost the same time as SVMs at the scale about O(m2.2), where m
is the size of training data. In gradient evaluations for ARD parameters, the
inversion of the matrix ⌃M, corresponding to SVs at the MAP estimate, is
required that costs time at O(s3) for each feature, where s is the number of
SVs that is usually much less than m.

18.3 Post-processing for Feature Selection

The generalization performance of BSVM with ARD techniques are very com-
petitive (Chu et al., 2003). In practical applications, it might be desirable to
further select a minimal subset of relevant features for modelling while keeping
the accuracy of the resulting model and reducing the computational load. In
this section, we describe our method for feature selection based on the tech-
niques described in the previous section. The task of feature selection can be
tackled in two steps:

(1.) The original features can be ranked in descending order using the optimal
values of the ARD parameters {l

a}m
l=1 we inferred (see Section 18.3.1).

(2.) Then a subset of the top features in the rank is used as the relevant features
for modelling. The minimal subset can be determined by the validation
performance of the learning machine (see Section 18.3.2).
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18.3.1 Feature Ranking

We first introduce a set of relevance variables {ri}n
i=1 for the features we are

given, which are extracted from the ARD parameters by normalizing them:

ri =
a,i

Pn
j=1 a,j

. (18.16)

The relevance variable indicates the relevance level of the feature to the tar-
gets, which is independent of the overall scale of ARD parameters.

Since there might be several local minima on the curve of � lnP(✓|D), it
is possible that the optimization problem is stuck at local minima in the de-
termination of ✓.6 We may reduce the impact of this problem by minimizing
(18.15) several times starting from several di↵erent initial states, and simply
choosing the one with the highest evidence as our preferred choice for ✓. We
can also organize these candidates together to represent the evidence distribu-
tion that might reduce the uncertainty with respect to the hyperparameters.
An approximation scheme is described in the following.

Suppose we started from several di↵erent initial states, and reached sev-
eral minima ✓⇤⌧ of the optimization problem (18.15). We simply assume that
the underlying distribution is a superposition of individual distributions with
mean ✓⇤⌧ . The underlying distribution P(✓|D) is roughly reconstructed as

P(✓|D) ⇡
t
X

⌧=1

w⌧P⌧ (✓; ✓⇤⌧ ) (18.17)

with
w⌧ =

P(✓⇤⌧ |D)
Pt

◆=1 P(✓⇤◆ |D)
, (18.18)

where t is the number of the minima we have discovered by gradient descent
methods, and P⌧ (✓; ✓⇤⌧ ) denotes the individual distribution which can be any
distribution with the mean ✓⇤⌧ . The values of P(✓⇤⌧ |D) have been obtained from
the functional (18.15) already. In Figure 18.1, we present a simple case as an
illustration.

We can evaluate the expected values of the relevance variables based on
the approximated P(✓|D) (18.17) as follows

r̂i ⇡
t
X

⌧=1

w⌧ri
⌧ , (18.19)

where ri
⌧ is defined as in (18.16) at the minimum ✓⇤⌧ . This is not an approxima-

tion designed for the posterior mean of the relevance variables, but helpful to
overcome the di�culty caused by the poor minima. Using these values {r̂i}d

i=1,
we can sort the features in descending order from relevant to irrelevant.

6Monte Carlo sampling methods can provide a good approximation on the pos-
terior distribution, but might be prohibitively expensive to use for high-dimensional
problems.
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Fig. 18.1. An illustration on the reconstructed curve for the posterior distribution
P(✓|D). ✓⇤1 and ✓⇤2 are the two maxima we found by gradient descent methods. The
underlying distribution P(✓|D) can be simply approximated as the superposition of
two individual distributions (dotted curves) with mean ✓⇤1 and ✓⇤2 respectively. The
weights w1 and w2 for the two distributions are defined as in (18.18). In this graph,
Gaussian distributions with same variance were used as individual distribution.

18.3.2 Feature Selection

Given any learning algorithm, we can select a minimal subset of relevant fea-
tures by carrying out cross validation experiments on progressively larger sets
of features, adding one feature at a time ordered by their relevance variables
r̂i.7 Let S denote the set of relevant features being investigated. The features
top-ranked according to r̂i defined as in (18.19) are added into the set S one
by one, and the validation error is calculated. This procedure is repeated as
long as adding the next top-ranked feature into S does not increase the val-
idation error significantly. This feature set S is then used along with all the
training data for modeling.

18.3.3 Discussion

RELIEF (Kira and Rendell, 1992) also attempts to specify relevance level
for features, but the ARD techniques (MacKay, 1994, Neal, 1996) can carry
out Bayesian inference systematically. In our approach, the performance of

7The relevance variables of useless features are usually much less than the average
level 1/n, where n is the total number of features.
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Table 18.1. The outline of our algorithm for feature selection.

Ranking employ a kind of ARD kernel

randomly select starting points ✓0 for Optimization Package

while Optimization Package requests evidence/gradient evaluation at ✓

solve (18.11) by convex programming to find the MAP estimate

evaluate the approximate evidence (18.13)

calculate the gradients with respect to ✓

return evidence/gradient to the optimization package

Optimization Package returns the optimal ✓⇤

compute the relevance variables defined as in (18.19)

rank the features in descending order

Selection initialize validation error to infinity, and k = 0

do

k = k + 1

use the top k features as input vector to a learning algorithm

carry out cross validation via grid searching on model parameters

pick up the best validation error

while validation error is not increasing significantly

Exit return the top k � 1 features as the minimal subset.

a learning algorithm is used as the criterion to decide the minimal subset;
this is analogous to the wrapper approach (Langley and Sage, 1994). The key
di↵erence is that we only check the subsets including the top-ranked feature
sequentially rather than search through the huge space of feature subsets.

A potential problem may be caused by correlations between features. Such
correlations introduce dependencies into the ARD variables. More exactly, at
the minima, correlated features may share their ARD values randomly. This
makes it di�cult to distinguish relevant features based on their ARD values
alone. In this case, we suggest a backward elimination process (Guyon et al.,
2002). This process begins with the full set and remove the most irrelevant fea-
ture one by one. At each step, we carry out inference on the reduced dataset to
update their relevance variables. This procedure is computationally expensive,
since it requires performing hyperparameter inference m times.
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Table 18.2. NIPS 2003 challenge results we submitted. “Score” denotes the
score used to rank the results by the organizers (times 100). “BER”denotes balanced
error rate (in percent). “AUC” is the area under the ROC curve (times 100). “Feat” is
percent of features used.“Probe”is the percent of probes found in the subset selected.
“Test” is the result of the comparison with the best entry using the MacNemar test.

Dec. 1st Our challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 15.27 9.43 95.70 67.53 38.03 88.00 6.84 97.22 80.3 47.8 0.6

Arcene 78.18 15.17 91.52 100 30 98.18 13.30 93.48 100.0 30.0 0

Dexter -21.82 6.35 98.57 36.04 60.15 96.36 3.90 99.01 1.5 12.9 1

Dorothea -25.45 15.47 92.06 100 50 98.18 8.54 95.92 100.0 50.0 1

Gisette -47.27 2.62 99.67 100 50 98.18 1.37 98.63 18.3 0.0 1

Madelon 100.00 7.17 96.95 1.6 0.0 100.00 7.17 96.95 1.6 0.0 0

18.4 Numerical Experiments

We give an outline of the algorithm for feature selection in Table 18.1.8 The
feature vectors with continuous elements were normalized to have zero mean
and unit variance coordinate-wise. The ARD parameters were used for feature
weighting. The initial value of the hyperparameters were chosen as 0 = 1.0
and b = 10.0. We tried ten times starting from di↵erent values of l

a to max-
imize the evidence by gradient descent methods.9 The ten maxima we found
are used to estimate the values of the relevance variables as in (18.19). In the
forward feature selection, SVMs with Gaussian kernel, exp(�

2 kxi � xjk2),
was used as the learning algorithm. Grid search in the parameter space
spanned by the  in the Gaussian kernel and the regularization factor C
as in (18.1), was carried out to locate the best validation output. The pri-
mary grid search was done on a 7⇥ 7 coarse grid linearly spaced in the region
{(log10 C, log10 )|�0.5  log10 C  2.5,�3  log10   0}, followed by a fine
search on a 9⇥ 9 uniform grid linearly spaced by 0.1 in the (log10 C, log10 )
space. At each node in this grid, 5-fold cross validation was repeated ten times
to reduce the bias in fold generations, and the validation errors were averaged
over all the trials.

The NIPS 2003 challenge results we submitted are reported in Table 18.2.
On the Madelon data set, we carried out feature selection as described in
Table 18.1. For other datasets, we submitted the predictive results of linear

8The source code of Bayesian support vector machines in ANSI C can be accessed
at http://guppy.mpe.nus.edu.sg/⇠chuwei/btsvc.htm.

9The number of the minima should be large enough to reproduce the results
stably.
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Fig. 18.2. The result on Madelon data set for our algorithm. The values of relevance
variables r̂i for the top 13 features are presented in the left part along with the feature
indices, while the validation error rates are plotted in the right part.

SVMs with L1 loss function without strict feature selection at that time.10
The “AUC” performance of our entry is competitive with that of the winning
entry.

The Madelon task11 is to categorize random data into two classes. There
are 2000 samples for training and 1800 samples for test. Each sample has 500
features. In Figure 18.2, we present the top 13 features ranked by the esti-
mated values of relevance variables. The performance of 5-fold cross validation
(SVMs with L1 loss function and Gaussian kernel was used) is presented in
the right part of Figure 18.2. In the challenge, we selected the top 8 features
for modeling, and built up SVMs using ARD Gaussian kernel with fixed rel-
evance variables shown in the left part of Figure 18.2. Cross validation was
carried out to decide the optimal regularization factor and the common scale
parameter in the Gaussian kernel. The blind test on the 1800 samples got
7.17% error rate. This entry was assigned the highest score by the organizers.

In the next experiment, the popular Fisher score was used in feature rank-
ing for comparison purpose. The Fisher score Chapter 3 is defined as

si =
|µi,+ � µi,�|
�i,+ + �i,�

, (18.20)

where µi,+ and �i,+ are the mean and standard deviation of the i-th feature
on the positive samples, while µi,� and �i,� are of the negative samples. In
Figure 18.3, the top-ranked features by their Fisher score (18.20) are presented
in the left graph, and the validation error rate using the top-ranked features
incrementally are presented in the right graph. The best validation result is

10On the Dexter dataset, we simply removed the features with zero weight in the
optimal linear SVMs, and then retrained linear SVMs on the reduced data.

11The data set can be found at http://clopinet.com/isabelle/Projects/NIPS2003/.
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Fig. 18.3. The result on Madelon data set using fisher score for feature ranking.
The fisher scores of the 13 top-ranked features are presented in the left part along
with the feature indices, while the validation error rates are plotted in the right part.

about 0.18 using 12 features, which is much worse than the result of our
algorithm as shown in Figure 18.2.

18.5 Conclusion

In this chapter, we embedded automatic relevance determination in Bayesian
support vector machines to evaluate feature relevance. The Bayesian frame-
work provides various computational procedures for hyperparameter inference,
which can be used for feature selection. The sparseness property introduced
by our loss function (18.6) helps us tackling relatively large data sets. A for-
ward selection method is used to determine the minimal subset of informative
features. Overall we have a probabilistic learning algorithm with built-in fea-
ture selection that selects informative features automatically. The results of
numerical experiments show that this approach can achieve quite compact
feature sets, and achieve good generalization performance.
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Summary. We describe the “Potential Support Vector Machine” (P-SVM) which
is a new filter method for feature selection. The idea of the P-SVM feature selection
is to exchange the role of features and data points in order to construct “support
features”. The “support features” are the selected features. The P-SVM uses a novel
objective function and novel constraints – one constraint for each feature. As with
standard SVMs, the objective function represents a complexity or capacity measure
whereas the constraints enforce low empirical error. In this contribution we extend
the P-SVM in two directions. First, we introduce a parameter which controls the
redundancy among the selected features. Secondly, we propose a nonlinear version of
the P-SVM feature selection which is based on neural network techniques. Finally,
the linear and nonlinear P-SVM feature selection approach is demonstrated on toy
data sets and on data sets from the NIPS 2003 feature selection challenge.

19.1 Introduction

Our focus is on the selection of relevant features, that is on the identification of
features, which have dependencies with the target value. Feature selection is impor-
tant (1) to reduce the e↵ect of the “curse of dimensionality” (Bellman, 1961) when
predicting the target in a subsequent step, (2) to identify features which allow us
understanding the data as well as control or build models of the data generating
process, and (3) to reduce costs for future measurements, data analysis, or predic-
tion. An example for item (2) and (3) are gene expression data sets in the medical
context (e.g. gene expression patterns of tumors), where selecting few relevant genes
may give hints to develop medications and reduce costs through smaller microarrays.
Another example is the World Wide Web domain, where selecting relevant hyper-
links corresponds to the identification of hubs and authorities. Regarding items (2)
and (3), we investigate feature selection methods, which are not tailored to a certain
predictor but are filter methods (cf. Chapter Chapter 3) and lead to compact feature
sets.

We propose the “Potential Support Vector Machine” (P-SVM, Hochreiter and
Obermayer, 2004a) as filter method for feature selection. The P-SVM describes the
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classification or regression function through complex features vectors (certain di-
rections in input space) rather than through the input vectors as standard support
vector machines (SVMs, see Chapter Chapter 1 and Boser et al., 1992, Cortes and
Vapnik, 1995, Schölkopf and Smola, 2002, Vapnik, 1998) do. This description imposes
no restriction on the chosen function class because it is irrelevant how a function
is represented. A feature value is computed by the dot product between the corre-
sponding complex feature vector and an input vector analogous to measurements in
physics.

In the following we give an outline of the P-SVM characteristics. (1) The P-SVM
avoids redundant information in the selected features as will be discussed in Section
19.3. Redundancy is not only opposed to compact feature sets but may reduce the
performance of subsequent model selection methods as shown in (Hochreiter and
Obermayer, 2004a) and in Section 19.5.1. For example statistical feature selection
approaches (cf. Chapter Chapter 3) su↵er from redundant features. (2) The P-SVM
has a sparse representation in terms of complex features as SVM-regression has
with the ✏-insensitive loss. (3) The P-SVM assigns feature relevance values, which
are Lagrange multipliers for the constraints and, therefore, are easy to interpret.
A large absolute value of a Lagrange multiplier is associated with large empirical
error if the according complex feature vector is removed from the description. (4)
The P-SVM is suited for a large number of features because “sequential minimal
optimization” (SMO, Platt, 1999) can be used as solver for the P-SVM optimization
problem. Due to the missing equality constraint, for the P-SVM the SMO is faster
than for SVMs (Hochreiter and Obermayer, 2004a). (5) The P-SVM is based on
a margin-based capacity measure and, therefore, has a theoretical foundation as
standard SVMs have.

In this chapter we will first introduce the P-SVM. Then we will extend the basic
approach to controlling the redundancy between the selected features. Next, we
describe a novel approach, which extends the P-SVM to nonlinear feature selection.
As discussed later in Section 19.4, kernelizing is not su�cient to extract the nonlinear
relevance of the original features because the nonlinearities, which are investigated
are restricted by the kernel. Finally, we apply the generic P-SVM method to the
data sets of the NIPS 2003 feature selection challenge. The “nonlinear” variant of
the P-SVM feature selection method is tested on the nonlinear Madelon data set.

19.2 The Potential Support Vector Machine

We consider a two class classification task, where we are given the training set
of m objects described by input vectors x

i

2 Rn and their binary class labels
y

i

2 {+1,�1}. The input vectors and labels are summarized in the matrix
X = (x1, . . . , xm

) and the vector y. The learning task is to select a classifier g
minimizing a risk functional R(g), from the set of classifiers

g(x) = sign (w · x + b ) , (19.1)

which are parameterized by the weight vector w and the o↵set b. The SVM opti-
mization procedure is given by (Vapnik, 1998, Schölkopf and Smola, 2002)

min
w,b

1
2
kwk2 subject to y

i

(w · x
i

+ b) � 1 , (19.2)
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for linearly separable data. In this SVM formulation the constraints enforce correct
classification for a hyperplane in its canonical form whereas the objective function
maximizes the margin � = kwk�1. The margin relates directly to a capacity
measure. Let R be the radius of the sphere containing all training data, then the
term R

�

is an upper bound for an capacity measure, the VC-dimension (Vapnik, 1998,
Schölkopf and Smola, 2002). SVMs are based on the structural risk minimization
principle which suggests to select from all classifiers, which correctly classify the
training data, the classifier with minimal capacity.

However, the disadvantage of the SVM technique is that it is not scaling in-
variant, e.g. normalization of the data changes both the support vector solution
and the bound R

�

on the capacity. If scaling is justified, we propose to scale the
training data such that the margin � remains constant while R becomes as small
as possible. Optimality is achieved when all directions orthogonal the normal vector
w of the hyperplane with maximal margin � are scaled to zero. The new radius is
R̃  max

i

|ŵ · x
i

|, where ŵ := w

kwk . Here we assumed centered data and a
centered sphere otherwise an o↵set allows us to shift the data or the sphere. The
new radius is the maximal distance from the origin in a one-dimensional problem.

Finally, we suggest to minimize the new objective X> w
2
, which is an upper

bound on the new capacity measure:

R̃2

�2
= R̃2 kwk2  max

i

|w · x
i

| 
i

(w · x
i

)2 = X> w
2

. (19.3)

The new objective function can also be derived from bounds on the generaliza-
tion error when using covering numbers because the output range of the training
data – which must be covered – is bounded by 2 max

i

|w · x
i

|. The new objective
function corresponds to an implicit sphering (whitening) if the data has zero mean
(Hochreiter and Obermayer, 2004c). Most importantly, the solution of eqs. (19.2)
with objective function eq. (19.3) is now invariant under linear transformation of the
data. Until now we motivated a new objective function. In the following we derive
new constraints, which ensure small empirical error.

Definition 1. A complex feature vector z
j

is a direction in the input space
where the feature value f

i,j

of an input vector x
i

is obtained through f
i,j

= x
i

· z
j

.

We aim at expressing the constraints, which enforces small empirical error by N
complex feature vectors z

j

, 1  j  N . Complex features and feature values are
summarized in the matrices Z := (z1, . . . , zN

) and F = X> Z . The ith feature
vector is defined as f

i

= (f
i,1, . . . , fi,N

) = Z>x
i

. The complex features include
Cartesian unit direction, if we set z

j

= e
j

, that is Z = I , F = X>, f
i,j

= x
i,j

and N = n. In this case we obtain input variable selection. The introduction of
complex feature vectors is advantageous for feature construction where a function
of Z (e.g. minimal number of directions or statistical independent directions) is
optimized and for handling relational data (Hochreiter and Obermayer, 2004c).

We now propose to minimize eq. (19.3) under constraints, which are necessary
for the empirical mean squared error Remp (g

w,b

) = 1
2 m

m

i=1 (w · x
i

+ b � y
i

)2

to be minimal (r
w

Remp (g
w,b

) = 0), and we obtain
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lim
t!0+

Remp g
w+tzj ,b

� Remp (g
w,b

)

t
= (z

j

)> r
w

Remp (g
w,b

) = 0(19.4)

and
@Remp (g

w,b

)
@b

= 0 (19.5)

for the constraints. The empirical error is a convex function in (w, b) and possesses
only one minimum, therefore all constraints can be fulfilled simultaneously. The
model selection method which combines both the new objective from eq. (19.3) and
the new constraints from eqs. (19.4) is called “Potential Support Vector Machine”
(P-SVM). Each complex feature z

j

is associated with a constraint in eqs. (19.4).
Our approach enforces minimal empirical error and, therefore, is prone to over-

fitting. To avoid overfitting, we allow for violation of the constraints, controlled by a
hyperparameter ✏. Standardization (mean subtraction and dividing by the standard
deviation) is performed for the feature values (f1,j

, . . . , f
m,j

). We now require, that

(z
j

)> r
w

Remp (g
w,b

) = F> X> w � y
j

 ✏ . (19.6)

in analogy to the concept of the ✏-insensitive loss (Schölkopf and Smola, 2002)
for standard SVMs. Hence, absolute constraint values, i.e. directional derivatives,
smaller than ✏ are considered to be spurious. Note, that standardization leads to
F>1 = 0 and the term F>b 1 vanishes. The value ✏ correlates with the noise level
of the data and is a hyperparameter of model selection. Combining eq. (19.3) and
eqs. (19.6) results in the primal P-SVM optimization problem for feature selection:

min
w

1
2
kX> wk2 subject to

F> X> w � y + ✏ 1 � 0

F> X> w � y � ✏ 1  0
, (19.7)

for which the dual formulation is the

P-SVM feature selection

min
↵

+
,↵

�

1
2

↵+ � ↵�
>

F> F ↵+ � ↵� (19.8)

� y> F ↵+ � ↵� + ✏ 1> ↵+ + ↵�

subject to 0  ↵+ , 0  ↵� .

• ✏: parameter to determine the number of features, large ✏ means
few features

• ↵
j

= ↵+
j

� ↵�
j

: relevance value for complex feature vector z
j

,
↵

j

6= 0 means that vector no. j is selected, positive ↵
j

means class
1 indicative vector z

j

and negative ↵
j

means class -1 indicative
• F = X> Z with data matrix X and the matrix of complex

features vectors Z (variable selection: F = X)
• y: vector of labels

Here ↵+ and ↵� are the Lagrange multipliers for the constraints (See Hochreiter
and Obermayer, 2004a, for the derivation of these equations). Eqs. (19.8) can be
solved using a new sequential minimal optimization (SMO) technique (Hochreiter
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and Obermayer, 2004a). This is important to solve problems with many features
because F> F is a N ⇥N matrix, therefore the optimization problem is quadratic
in the number of complex features.

Using ↵ = ↵+ � ↵�, the weight vector w and the o↵set b are given by

w = Z ↵ =
N

j=1

↵
j

z
j

and b =
1
m

m

i=1

y
i

. (19.9)

Note, that for feature selection, i.e. Z = I , w = ↵ holds, but still we recommend
to solve the dual optimization problem because it has only box constraints while the
primal has twice as many constraints as input variables.

The classification (or regression) function is the given by

g(x) = w · x + b =
N

j=1

↵
j

z
j

· x + b =
N

j=1

↵
j

f
j

+ b . (19.10)

Most importantly, the vector w is expressed through a weighted sum of the com-
plex features. Note, that the knowledge of f

i,j

and labels y
i

for all training input
vectors x

i

is su�cient to select a classifier (see eqs. (19.8)). The complex feature
vectors z

j

must not be known explicitly. Complex feature vectors corresponding to
spurious derivatives (absolute values smaller than ✏) do not enter w because the cor-
responding Lagrange multipliers are zero. In particular the term ✏ 1> ↵+ + ↵�

in the dual eqs. (19.8) leads to a sparse representation of w through complex features
and, therefore, to feature selection.

Note, that the P-SVM is basically a classification method. On UCI benchmark
datasets the P-SVM showed comparable to better results than ⌫-SVMs and C-SVMs
(Hochreiter and Obermayer, 2004a). However for classification the constraints are
relaxed di↵erently (by slack variables) from the approach presented here.

19.3 P-SVM Discussion and Redundancy Control

19.3.1 Correlation Considerations

In this subsection we focus on feature selection and consider the case of F> F =
XX> for the quadratic term of the optimization problem (19.8). Now it is the em-
pirical covariance matrix of the features. The linear term y> X> in eqs. (19.8) com-
putes the correlation between features and target. Thus, such features are selected
which have large target correlation and are not correlated to other features. Large
target correlations result in large negative contributions to the objective function
and small mutual feature correlations in small positive contributions. Consequently,
highly correlated features are not selected together.

In contrast to statistical methods, the P-SVM selects features not only on the
basis of their target correlation. For example, given the values of the left hand side
in Table 19.1, the target t is computed from two features f1 and f2 as t = f1 + f2.
All values have mean zero and the correlation coe�cient between t and f1 is zero.
In this case the P-SVM also selects f1 because it has negative correlation with
f2. The top ranked feature may not be correlated to the target, e.g. if it contains
target-independent information, which can be removed from other features.
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Table 19.1. An example for a relevant feature (f1) without correlation to
the target t = f1 + f2 (left) and an example for an irrelevant feature
(f1) with highest correlation to the target t = f2 + f3 (right).

f1 f2 t f1 f2 f3 t

-2 3 1 0 -1 0 -1

2 -3 -1 1 1 0 1

-2 1 -1 -1 0 -1 -1

2 -1 1 1 0 1 1

The right hand side of Table 19.1 depicts another situation, where t = f2 + f3.
f1, the feature which has highest correlation coe�cient with the target (0.9 compared
to 0.71 of the other features) is not selected because it is correlated to all other
features.

19.3.2 Redundancy versus Selecting Random Probes

For the NIPS feature selection challenge we applied the P-SVM technique and found
that the P-SVM selected a high percentage of random probes as can be seen in Table
19.5. Random probes are selected because they have by chance a small, random
correlation with the target and are not correlated to other selected features. Whereas
many features with high target correlation are not selected if they are correlated with
other selected features. Avoiding redundancy results in selecting random probes.

In this subsection we extent the P-SVM approach in order to control the re-
dundancy among the selected features. We introduce slack variables in the primal
formulation eqs. (19.7) to allow to trade lower correlations in the objective function
for errors in the constraints:

min
w

1
2
kX> wk2 + C 1> ⇠+ + ⇠� (19.11)

subject to F> X> w � y + ✏ 1 + ⇠+ � 0

F> X> w � y � ✏ 1 � ⇠�  0 , 0  ⇠+, ⇠� .

As dual formulation we obtain the following optimization problem.
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P-SVM feature selection with redundancy control

min
↵

+
,↵

�

1
2

↵+ � ↵�
>

F> F ↵+ � ↵� (19.12)

� y> F ↵+ � ↵� + ✏ 1> ↵+ + ↵�

subject to 0  ↵+  C 1 , 0  ↵�  C 1 .

• variables as in problem eqs. (19.8)
• C controls redundancy of selected features, small C results in more

redundancy

The eqs. (19.9) for w and b still hold. The e↵ect of introducing the slack variables
can be best seen at the dual problem. Because the ↵

j

are bounded by C, high correla-
tions are lower weighted in the objective function. Consequently, correlated features
have a lower positive contribution in the objective function and, therefore, selecting
redundant features does not cost as much as in the original P-SVM formulation.
The e↵ect is demonstrated at the following two toy experiments.

In the first two class classification experiment six dimension out of 100 are in-
dicative for the class. The class membership was chosen with equal probability (0.5)
and with equal probability 0.5 either the first three features were class indicators or
the features 4 to 6. If the first three features are class indicators, features a chosen
according to x

i,j

⇠ y
i

N(j, 1), 1  j  3, x
i,j

⇠ N(0, 1), 4  j  6, x
i,j

⇠ N(0, 20),
7  j  100. If features 4 to 6 are class indicators, features a chosen according
to x

i,j

⇠ N(0, 1), 1  j  3, x
i,j

⇠ y
i

N (j � 3, 1), 4  j  6, x
i,j

⇠ N(0, 20),
7  j  100. Only the first six feature are class indicators but mutually redundant.
Finally, the class labels were switched with probability 0.2. In the experiments ✏ is
adjusted to obtain 6 features, i.e. to obtain 6 support vectors. The top part of Table
19.2 shows the result for di↵erent values of C. With decreasing C more relevant
features are selected because the redundancy weighting is down-scaled.

Table 19.2. Toy example for redundancy control. TOP: Feature ranking where
the first 6 features are relevant to predict the class label. With decreasing C more
redundant features are selected and, therefore, more relevant features are found
(their number is given in column “c”). ↵ values are given in brackets. BOTTOM: 60
relevant features exist. Starting from 4 relevant features (93 % probes) reducing C
leads to 40 relevant features (33 % probes).

C ✏ c 1. 2. 3. 4. 5. 6.

10 1.5 3 6 (1.78) 2 (1.12) 26(-0.55) 18(-0.44) 3 (0.35) 52(-0.07)

1 2 4 6 (1.00) 2 (0.71) 5 (0.29) 3 (0.13) 18(-0.09) 26(-0.06)

0.5 2 5 2 (0.50) 5 (0.50) 6 (0.50) 3 (0.22) 18(-0.09) 4 (0.04)

C ✏ # relevant features C ✏ # relevant features

10 0.65 4 0.1 1.7 23

0.5 1 11 0.05 2 31

0.2 1.45 17 0.003 2 40
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In the next experiment we extended the previous experiment by using 940 probes
and 60 features (1000 input components), where either the first 30 or features 31
to 60 are indicative for the class label. Indicative features are chosen according to
x

i,j

⇠ N(2, 1). All other value were as in the previous experiment. The value of ✏ is
adjusted to a value that only about 60 features are selected (↵ 6= 0). The bottom
part of Table 19.2 shows the result for di↵erent values of C. The percentage of probes
in the selected variables is 93 % for C = 10 and reduces to 33 % for C = 0.003.

These simple experiments demonstrated that the original P-SVM selects many
random probes because it minimized feature redundancy. Here we controlled this
e↵ect by introducing slack variables. Note, that for the NIPS challenge submissions
no slack variables were used.

19.3.3 Comparison to Related Methods

1-norm SVMs (Bi et al., 2003). The P-SVM feature selection is related to
the 1-norm SVMs because both use a 1-norm sparsity constraint. However the P-
SVM contains – in contrast to the 1-norm SVM – a quadratic part. The e↵ect of the
quadratic part was demonstrated in Subsection 19.3.1, were we found that important
features are selected through correlation with other features. Comparisons can be
found in the experiments in Subsection 19.5.1.
Zero-norm SVMs (Weston et al., 2003). Zero-norm SVMs optimize a di↵erent
objective than the P-SVM, where the scaling factor of the selected features is no
longer important. Scaling factors may, however, be important if di↵erent features
contain di↵erent levels of noise. We compared the P-SVM with zero-norm SVMs
in the experiments in Subsection 19.5.1 (only 2 features selected). The zero-norm
SVMs select features by successively repeating 1-norm SVMs. The P-SVMs can be
extended in a similar way if after standardization features are weighted by their
actual importance factors.
LASSO (Tibshirani, 1996). The LASSO is quite similar to the P-SVM method.
In contrast to P-SVM, LASSO does not use the linear term of the dual P-SVM in
the objective function but constraints it. P-SVM is derived from an SVM approach,
therefore contains a primal and a dual formulation which allows to apply a fast
SMO procedure. A major di↵erence between P-SVM and LASSO is that LASSO
cannot control the redundancy among the selected features as the P-SVM can with
its slack variables as demonstrated in Subsection 19.3.2. Comparisons to LASSO
are implicitly contained the NIPS feature selection challenge, where the methods of
Saharon Rosset and Ji Zhu are based on the LASSO.

19.4 Nonlinear P-SVM Feature Selection

In this section we extend the P-SVM feature selection approach to assigning rel-
evance values to complex features z

j

, where we now consider also nonlinear com-
binations of the features. To construct new features by nonlinearly combining the
original features (Smola et al., 2001, Kramer, 1991, Schölkopf et al., 1997, Oja, 1991,
Tishby et al., 1999) by using kernels is possible but not su�cient to extract arbi-
trary nonlinear dependencies of features. Only those nonlinearities can be detected
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which are determined by the kernel. A wrong kernel choice does not allow us to ex-
tract proper nonlinearities. Therefore, we attempt to construct proper nonlinearities
by training multi-layer perceptrons (MLPs). After training we determine the rele-
vance of input variables. Our approach is related to input pruning methods (Hassibi
and Stork, 1993, Moody and Utans, 1992) and automatic relevance determination
(ARD, MacKay, 1993, Neal, 1996).

For input x the value y (x) is the output function of the MLP and net
l

= w
l

·
x + b

l

the net input of the hidden unit l. After training on the training set {(x
i

, y
i

)}},
we set net

l

= 0 for the forward and backward pass. For training example x
i

this leads
to a new output of ỹ

l

(x
i

) and an induced error of e
l

(x
i

) = 1
2 (ỹ

l

(x
i

) � y (x
i

))2.
The error indicates the relevance of net

l

but does not supply a desired value for net
l

.
However, the gradient descent update signal for net

l

supplies a new target value y
l,i

for net
l

(x
i

) and we arrive at the regression task:

y
l,i

= w
l

· x
i

+ b
l

, y
l,i

:= � @e
l

(x
i

)
@net

l

(x
i

)
. (19.13)

This regression problem is now solved by the P-SVM which selects the relevant
input variables for hidden unit l. Fig. 19.1 depicts the regression task. The vectors
w

l

are now expressed through complex features z
j

and allow to assign for each
l a relevance value ↵

j,l

to z
j

. Finally, the results for all l are combined and the
complex features z

j

are ranked by their relevance values ↵
j,l

, e.g. by the maximal
absolute weight or squared weight sum. The pseudo code of the algorithm is shown
in Algorithm 8.

Fig. 19.1. Outline of the nonlinear P-SVM. After MLP training the P-SVM solves
the regression task y

l,i

= w
l

·x
i

+ b
l

, where y
l,i

:= � @el(xi)

@netl(xi)
for w

l

= 0 and

b
l

= 0. The P-SVM selects the relevant input variables to hidden unit l.
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Algorithm 8: Nonlinear P-SVM Feature Selection

BEGIN INITIALIZATION
training set {(x

i

, y
i

)},
MLP architecture and activation function,
MLP training parameters (learning rate),
MLP learning stop criterion: small error threshold

END INITIALIZATION

BEGIN PROCEDURE
Step 1: perform standardization
Step 2: train an MLP with standard back-propagation until stop criterion
Step 3: {determine feature relevance values for each new feature}

for all hidden units l in chosen hidden layer do
for i = 1 to m do

MLP forward pass with unit l clamped to 0
MLP backward pass to compute y

l,i

= � @el(xi)

@netl(xi)

end for
hidden layer with the new features (recommended: first hidden layer),
chose P-SVM parameter ✏
solve regression task 8

i

: y
l,i

= w
l

· x
i

+ b
l

by the P-SVM method
and determine relevance values ↵

j,l

per new feature
end for

Step 4: {compute relevance values}
combine (squared sum or maximal value) all ↵

j,l

to determine relevance
of z

j

END PROCEDURE

Other targets. The net input net
l

(x
i

) as target value instead of y
l,i

does not
take into account that a hidden unit may not be used, may be less used than others,
or may have varying influence on the net output over the examples. Setting net

l

to other values than 0 (e.g. its mean value) when y
l,i

is computed works as well
as long as saturating regions are avoided. Saturation regions lead to scaling e↵ects
through di↵erent derivatives at di↵erent input regions and reduce the comparability
of relevance values of one input variable at di↵erent units.

Redundancy. The P-SVM is applied to each unit l, therefore the selected input
variables may be redundant after combining the results for each l.

19.5 Experiments

19.5.1 Linear P-SVM Feature Selection

Weston Data

We consider a 2 class classification task with 600 data points (300 from each class)
which is similar to the data set in (Weston et al., 2000) but more di�cult. 100
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randomly chosen data points are used for feature and model selection. The remaining
500 data points serve as test set. We constructed 2000 input variables from which
only the first 20 input variables have dependencies with the class and the remaining
1980 are random probes. For each data point four out of the first 20 input variables
are indicative for the class label. The data points are in one of five modes, where
the mode determines which input variable is indicative. The modes, which lead to
objects groups, are l = 0, 4, 8, 12, 16 with associated input variables: l = 0 �! x

i,1

– x
i,4; l = 4 �! x

i,5 – x
i,8; l = 8 �! x

i,9 – x
i,12; l = 12 �! x

i,13 – x
i,16;

l = 16 �! x
i,17 – x

i,20.
A label from {+1,�1} and a mode from {0, 4, 8, 12, 16} was randomly and uni-

formly chosen. Then the four indicative input variables x
i,l+⌧

, 1  ⌧  4, were
chosen according to x

i,l+⌧

⇠ y
i

·N(2, 0.5 ⌧). Input variables x
i,j

for j 6= l+⌧, j  20
were chosen according to x

i,j

⇠ N(0, 1). Finally, for 21  j  2000 the input
variables x

i,j

were chosen according to x
i,j

⇠ N(0, 20).

Table 19.3. Classification performance for the “Weston” data set. Results
are an average over 10 runs on di↵erent training and test sets. The values are the
fractions of misclassification. The table shows the results using the top ranked 5,
10, 15, 20, and 30 features for the methods: Fisher statistics (Kendall and Stuart,
1977), Recursive Feature Elimination (RFE), R2W2, and the P-SVM. Best results
are marked in bold.

Method number of features

5 10 15 20 30

Fisher 0.31 0.28 0.26 0.25 0.26

RFE 0.33 0.32 0.32 0.31 0.32

R2W2 0.29 0.28 0.28 0.27 0.27

P-SVM 0.28 0.23 0.24 0.24 0.26

We compare the linear P-SVM feature selection technique to the Fisher statistic
(Kendall and Stuart, 1977), the Recursive Feature Elimination (RFE) method of
Guyon et al. (2002) and the linear R2W2 method (Weston et al., 2000). The exper-
iment is taken from (Hochreiter and Obermayer, 2004b). First we ranked features
on the training set, where for RFE the ranking was based on multiple runs. Then
we trained a standard C-SVM1 with the top ranked 5, 10, 15, 20, and 30 input vari-
ables. The hyperparameter C was selected from the set {0.01, 0.1, 1, 10, 100} through
5-fold cross-validation. Table 19.3 shows the results. The P-SVM method performed
best.

The performance of the methods depends on how many modes are represented
through the input variables. The results in Table 19.3 must be compared to the
classification performance with 20 relevant features (perfect selection), which leads
to a fractional error of 0.10, and without feature selection, which leads to a fractional
error of 0.38.

1For this experiment we used the Spider-Software, where the C-SVM was easier
to use as classifier than the ⌫-SVM.
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This benchmark is a very di�cult feature selection task because it contains many
features but only few of them are indicative, features are indicative for only 1/5 of
the data, and features are noisy. It is di�cult to extract the few indicative features
for all objects groups with the few available examples because it is highly probable
that at least some features will be highly correlated to the target.

Two best features experiment

We compare the P-SVM feature selection technique to the 1-norm and 0-norm sup-
port vector machine by performing the benchmark in Weston et al. (2003). The two
class classification task has six dimension out of 100 which are indicative for the
class. The class membership was chosen with equal probability (0.5) and with prob-
ability 0.7 the first three features were class indicators and otherwise the features
4 to 6 are class indicators. For the first case input variables are chosen according
to x

i,j

⇠ y
i

N(j, 1), 1  j  3, x
i,j

⇠ N(0, 1), 4  j  6, and x
i,j

⇠ N(0, 20),
7  j  100. For the second case the input variables are x

i,j

⇠ N(0, 1), 1  j  3,
x

i,j

⇠ y
i

N(j � 3, 1), 4  j  6, and x
i,j

⇠ N(0, 20), 7  j  100. Only the first six
input variables are class indicators but mutual redundant. The two top ranked input
variables are used for classification. Training and feature selection is performed on
10, 20, and 30 randomly chosen training points and the selected model is tested on
additionally 500 test points. The result is an average over 100 trials.

The feature selection methods, which are compared in Weston et al. (2003), are:
no feature selection (no FS), 2-norm SVM (largest weights), 1-norm SVM (largest
weights), correlation coe�cient (CORR), RFE, R2W2, and three approaches to zero-
norm feature selection, namely FSV (Bradley et al., 1998, Bradley and Mangasarian,
1998), `2-AROM, and `1-AROM (Weston et al., 2003). The correlation coe�cient is
computed as (µ+ � µ�)2 / �2

+ + �2
� , where µ+ and �+ are the mean and the

standard deviation of the feature value for the positive class and µ� and �� the
according values for the negative class. The authors in (Weston et al., 2003) only
mentioned that they used “linear decision rules” while used for the P-SVM a linear
⌫-SVM with ⌫ = 0.3 as classifier.

Table 19.4 shows the results as an average over 100 trials. The table reports the
percentage of test error with the according standard deviation2 and the number of
times that the selected features are relevant and non-redundant. The P-SVM method
performs as good as the best methods for 10 and 20 data points but for 30 data
points worse than the zero-norm methods and better than other methods. Because
the zero-norm approaches solve iteratively one- or two-norm SVM problems, it may
be possible to do the same for the P-SVM approach by re-weighting the features by
their ↵-values.

NIPS Challenge

In this section we report the results of the P-SVM method for the NIPS 2003 feature
selection challenge. The method and the results are given in the Fact Sheet (see
Appendix C and the results at the top of Table 19.5. In order to obtain a compact

2Note, that in Weston et al. (2003) the standard deviation of the mean is given,
which scales the standard deviation by a factor of 10.
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Table 19.4. Comparison of di↵erent compact feature set selection meth-
ods. The percentage of the test error with its standard deviation in rectangular
brackets is given. The number of trials where two relevant non-redundant features
are selected is in round brackets. For 10 and 20 point the P-SVM method performs
as good as the best methods and for 30 data points the P-SVM performs worse than
the zero-norm methods but better than the others. Best results are marked in bold.

Method 10 points 20 points 30 points

no FS 33.8 [std: 6.6] (0) 23.2 [std: 5.6] (0) 16.4 [std: 3.9] (0)

2-norm SVM 26.8 [std:13.9] (3) 16.3 [std: 7.7] (16) 13.4 [std: 4.2] (17)

1-norm SVM 25.9 [std:14.5] (17) 11.0 [std:10.9] (67) 12.1 [std:13.5] (66)

CORR 23.6 [std:12.9] (9) 15.8 [std: 5.4] (9) 14.3 [std: 3.2] (5)

RFE 30.1 [std:14.5] (10) 11.6 [std:11.0] (64) 8.2 [std: 6.1] (73)

R2W2 26.3 [std:14.1] (14) 9.8 [std: 8.6] (66) 7.8 [std: 6.1] (67)

FSV 24.6 [std:14.9] (17) 9.1 [std: 8.3] (70) 5.9 [std: 5.4] (85)

`2-AROM 26.7 [std:14.6] (15) 8.8 [std: 9.0] (74) 5.7 [std: 5.0] (85)

`1-AROM 25.8 [std:14.9] (20) 8.9 [std: 9.7] (77) 5.9 [std: 5.1] (83)

P-SVM 26.0 [std:13.8] (13) 8.6 [std: 7.4] (67) 6.9 [std: 9.1] (73)

feature set we applied the P-SVM method without slack variables. Therefore, the
P-SVM method selects a high percentage of random “probes”, i.e. features which
are artificially constructed and are not related to the target. Especially prominent
is this behavior for the data set Arcene, where features are highly correlated with
each other. This correlation was figured out by a post challenge submission and by
the data set description which was made available after the challenge.

We computed the NIPS challenge results for methods with compact feature sets,
i.e. methods which based their classification on less than 10 % extracted features.
We report only methods, which have a non-negative score to ensure su�cient clas-
sification performance. The bottom of Table 19.5 reports the results. The P-SVM
method yields good results if compact feature sets are desired. In summary, the P-
SVM method has shown good performance as a feature selection method especially
for compact feature sets.

19.5.2 Nonlinear P-SVM Feature Selection

Toy Data

In this experiment we constructed two data sets in which the relevant features cannot
be found by linear feature selection techniques. We generated 500 data vectors x

i

(1  i  500) with 100 input variables x
i,j

(1  j  100). Each input variable
was chosen according to x

i,j

⇠ N(0, 1). The attributes y
i

of the data vectors x
i

were
computed from the first two variables by A) y

i

= x2
i,1 + x2

i,2 and B) y
i

= x
i,1xi,2.

We thresholded y
i

by y
i

> 1 ) y
i

= 1 and y
i

< �1 ) y
i

= �1. For both
tasks the correlation coe�cient between the target and the relevant input variables
is zero. For task A) this follows from the fact that the first and third moments of
the zero-mean Gaussian are zero and for task B) if follows from the zero mean of
input variables (XOR problem).
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Table 19.5. NIPS 2003 challenge results for P-SVM. “Score”: The score used
to rank the results by the organizers (times 100). “BER”: Balanced error rate (in
percent). “AUC”: Area under the ROC curve (times 100). “Feat”: Percent of features
used. “Probe”: Percent of probes found in the subset selected. “Test”: Result of the
comparison with the best entry using the MacNemar test. TOP: General result table.
BOTTOM: Results for compact feature sets with non-negative score. The column
“Method” gives the method name. The P-SVM has multiple entries were di↵erent
weighting of the CV folds is used to select features and hyperparameters. The results
are listed according to the percentage of features used.

Dec. 1st Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 14.18 11.28 93.66 4.6 34.74 88.00 6.84 97.22 80.3 47.8 1

Arcene 16.36 20.55 87.75 7 61 98.18 13.30 93.48 100 30.0 1

Dexter -60 8.70 96.39 2.5 46.6 96.36 3.90 99.01 1.5 12.9 1

Dorothea 29.09 16.21 88.00 0.2 29.58 98.18 8.54 95.92 100 50.0 1

Gisette 18.18 2.06 99.76 12 36.5 98.18 1.37 98.63 18.3 0.0 1

Madelon 67.27 8.89 96.39 1.4 0 100.0 7.17 96.95 1.6 0.0 1

Dec. 1st Method Feat Score BER AUC Probe Test

P-SVM (1) 3.83 0 11.82 93.41 34.6 1

Modified-RF 3.86 6.91 10.46 94.58 9.82 1

P-SVM (2) 4.63 14.18 11.28 93.66 34.74 1

BayesNN-small 4.74 68.73 8.20 96.12 2.91 0.8

final-1 6.23 40.36 10.38 89.62 6.1 0.6

P-SVM (3) 7.38 5.09 12.14 93.46 45.65 1

Collection2 7.71 28 10.03 89.97 10.6 1

We performed 10 trials for each task with the P-SVM nonlinear relevance ex-
traction method. First, a 3-layered multi-layer perceptron (100 inputs, 10 hidden,
one output) with sigmoid units in [�1, 1] was trained until the error was 5 % of its
initial value. The P-SVM method was applied and features were ranked according to
their maximal values of ↵

j,l

. In all trials the P-SVM ranked the two relevant features
x

i,1 and x
i,2 on top and produced a clear visible gap between the relevance values

of the true relevant features and the remaining features. For comparison we also
performed 5 trials with linear P-SVM feature selection on each of both tasks. The
linear version failed to detect the true relevant features. For comparison we selected
input variables with “Optimal Brain Surgeon” (OBS, Hassibi and Stork, 1993) and
“Optimal Brain Damage” (OBD, LeCun et al., 1990). We applied OBS and OBD in
two ways after the neural network has been trained: first, we computed the saliency
values for all weights with OBS and OBD and ranked the features according to their
highest values; secondly, we successively deleted weights according to the OBS and
OBD procedure and ranked a feature before another feature if at least one input
weight is removed later than all the input weights of the other feature. For the latter
we retrained the neural network if the error increased more than 10 % since the last
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training. OBS and OBD lead also to success at this task. This experiment demon-
strated that P-SVM nonlinear relevance extraction is able to reliably detect relevant
features whereas the linear P-SVM method could not identify relevant features.

NIPS Challenge: Madelon

The data generation procedure of the NIPS feature selection challenge was made
public after the challenge. Therefore, we know that the class labels for the data set
Madelon were constructed nonlinearly from the input variables. After the challenge,
when knowing the data generation process, we computed Pearson’s correlation co-
e�cient for each pair of features. That allowed us to extract the 20 relevant features
through looking for a set of 20 features, which have high intercorrelation.

For nonlinear feature selection (P-SVM, OBS, OBD) we used 3-layered multi-
layer perceptrons (MLPs) with 20 hidden units and 4-layered MLPs with 10 hidden
units in each hidden layer. All non-input units have a sigmoid activation function
in range [�1, 1]. We trained the MLPs with backpropagation until the error was at
5 % of its initial value. Features were ranked by the P-SVM, OBS, and OBD as in
Subsection 19.5.2.

The linear P-SVM ranked in 10 runs 13 out of 20 true relevant features at the
top. Nonlinear P-SVMs with 3-layered and 4-layered nets ranked in 10 runs always
18 to 20 relevant features at the top, however no gap in relevance values between
features and probes was visible. Table 19.6 shows typical results. Increasing the
✏ value produces a gap in the relevance values between the true relevant features
and the probes, however fewer true relevant features are ranked at the top (see in
Table 19.6). Both the ranking by OBS and OBD through the saliency and through
backward elimination lead to inferior results compared to the P-SVM method. On
average 3 true relevant features were extracted (Table 19.6 presents typical results).
For backward elimination we started by removing a sets of weights (4-layered: 4⇥500,
3⇥400, 3⇥300, 3⇥200, 2⇥100, 3⇥50, 20, 2⇥10 = 5,090; 3-layered: 19⇥500, 200,
100, 2⇥50, 5⇥20 = 10,000). After removing a set we extensively retrained. After
removing weight sets, we deleted weights step by step. As seen in previous studies,
OBS and OBD tend to keep large weights which result from overfitting (Hochreiter
and Schmidhuber, 1997). Only the nonlinear P-SVM was able to rank almost all
relevant features at the top. This experiment showed that the nonlinear extension of
the P-SVM feature selection method can detect relevant features, which are missed
with the linear version and also missed by OBS and OBD.

19.6 Conclusion

In the future we intend to investigate how optimization of the complex feature vec-
tors (e.g. to obtain few feature vectors or independent features) can be integrated
into our approach. Further we intend to apply the P-SVM method to genomic data
(e.g. microsatellites) to identify genetic causes for various diseases (e.g. schizophre-
nia).

On the NIPS 2003 feature selection challenge data sets we have experimentally
shown that the linear P-SVM method is one of the best methods for selecting a
compact feature set. The linear P-SVM approach has been generalized to include
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redundancy control and nonlinearities. Nonlinear P-SVM feature selection does not
only extract features, which are missed by its linear version but has the potential to
give the features a more appropriate ranking. This property is especially important
for data sets, where only few top ranked features control the data generating process.
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Table 19.6. Madelon nonlinear feature selection examples. Typical runs for
linear (average over four runs with di↵erent ✏) and nonlinear P-SVM, OBS, and
OBD. Selected input variables are ordered line-wise and true features are marked
boldface. The nonlinear methods are based on a 3-layered and a 4-layered neural net-
work. OBS and OBD ranking uses either the saliency values or successively deleted
weights. For the latter a feature is ranked according to when its last weight is deleted.
For the P-SVM the ✏ values are given in brackets. The linear P-SVM was not able
to find all true relevant features whereas the nonlinear P-SVM finds all of them.

Method feature ranking

linear P-SVM 242 476 337 65 339 454 494 443 49 379

(✏ = 3.0, 473 129 106 431 324 120 425 378 44 11

2.6, 2.2, 1.8) 297 56 164 495 121 227 137 283 412 482

nonlinear P-SVM 452 494 49 319 242 473 443 379 65 456

(3-layered net) 106 154 282 29 129 337 339 434 454 476

(✏ = 0.01) 122 195 223 343 21 402 315 479 409 330

nonlinear P-SVM 65 494 242 379 443 454 434 476 129 282

(4-layered net) 106 154 473 452 319 339 49 456 308 387

(✏ = 0.01) 283 311 139 162 236 457 229 190 16 453

nonlinear P-SVM 65 494 242 379 443 476 434 454 106 129

(4-layered net) 282 308 387 311 283 139 162 16 236 457

(✏ = 0.2) 229 190 453 35 136 474 359 407 76 336

OBS 62 49 169 324 457 424 442 348 302 497

saliency 66 310 61 336 44 299 453 161 212 48

(3-layered net) 78 383 162 5 317 425 197 331 495 153

OBS 425 302 443 66 246 49 297 497 249 39

saliency 169 164 453 324 166 298 137 11 311 421

(4-layered net) 292 62 433 404 6 310 224 349 476 431

OBS 242 49 337 497 324 457 318 50 154 62

elimination 162 206 56 299 310 169 348 5 412 128

(3-layered net) 495 27 6 442 415 424 19 47 61 25

OBS 49 443 283 324 497 297 319 164 138 5

elimination 62 249 86 349 246 43 208 6 310 491

(4-layered net) 410 291 298 54 166 302 476 457 482 212

OBD 49 62 169 457 324 424 442 348 497 310

saliency 61 299 336 154 161 78 453 313 293 5

(3-layered net) 495 153 331 292 128 162 121 302 287 411

OBD 425 66 443 246 49 297 249 169 302 497

saliency 39 453 164 224 324 62 298 349 137 310

(4-layered net) 421 6 43 292 291 58 457 404 166 433
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Summary. Our goal for the competition was to evaluate the usefulness of simple
machine learning techniques. We decided to use the Fisher criterion (see Chapter 2)
as a feature selection method and Support Vector Machines (see Chapter 1) for
the classification part. Here we explain how we chose the regularization parameter
C of the SVM, how we determined the kernel parameter � and how we estimated
the number of features used for each data set. All analyzes were carried out on the
training sets of the competition data. We choose the data set Arcene as an example
to explain the approach step by step.
In our view the point of this competition was the construction of a well performing
classifier rather than the systematic analysis of a specific approach. This is why our
search for the best classifier was only guided by the described methods and that we
deviated from the road map at several occasions.
All calculations were done with the software (Spider, 2005).

20.1 The Parameters � and C of the SVM

For numerical reasons every data point was normalized such that the average l2-
norm is 1: let {x

k

, k = 1, ..., m} be the set of training examples. Every x was divided

by ( 1
m

k

kx
k

k2) 1
2 .

For the data sets Arcene, Dexter, Gisette and Madelon a hard margin SVM
was calculated. For the unbalanced data set Dorothea a soft margin SVM was
chosen and the regularization parameter C was obtained by cross validation prior to
feature selection. An example of the cross validation error estimates for the data set
Arcene can be found in Figure 20.1. Furthermore, we used a class specific 2-norm
penalty by adding a ridge to the kernel matrix (Brown et al., 2000): Let r1 be the
fraction of positive examples in the training data and let r�1 be the fraction of neg-
ative examples. For each of the two classes we added a di↵erent ridge to the kernel
matrix k: for positive examples x

i

we set k
ii

! k
ii

+ r1 and for negative examples
we set k

ii

! k
ii

+ r�1. Adding class specific ridges to the diagonal of the kernel
matrix is equivalent to choosing two di↵erent values of C for the di↵erent classes
(e.g. Schmidt and Gish (1996), Schölkopf and Smola (2002)).
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Fig. 1. For each value of C (x-axis) the 20-fold cross-validation error (y-axis) is
plotted using a linear SVM on data set Arcene.

and Gish [1996], Schölkopf and Smola [2002]).

For the data sets Dorothea, Gisette and Madelon we chose a Gaus-
sian kernel. Prior to feature selection, the kernel parameter � was found by a
heuristic: for each k let tk denote the distance of point xk to the set formed
by the points of the other class. The value of � was set to the mean of the
tk values1. For the remaining two data sets Arcene and Dexter we used a
linear kernel.

2 Feature Ranking

The features were ranked according to their correlation coe�cients (reference
within book ...):
For a set T = {t1, ..., tm} ⇢ Rn define the mean µi(T ) = 1

m

Pm
k=1 tk,i and the

variance Vi(T ) = 1
m

Pm
k=1(tk,i�µi(T ))2 (i = 1, ..., n). The score Ri of feature

i is then given by:

Ri(X) =
(µj(X+)� µj(X�))2

Vj(X+) + Vj(X�)
,

1 In later steps we use an SVM with this � in a cross validation scheme for further
model selection. The calculation of � involves all labels. Thus, when we test a
trained model on a cross validation test set, we make a systematic error, because
the label information of the test set is contained in �. However, we find that
the value for � is not a↵ected much when the test data is removed before the
calculation.

Fig. 20.1. For each value of C (x-axis) the 20-fold cross-validation error (y-axis) is
plotted using a linear SVM on data set Arcene.

For the data sets Dorothea, Gisette and Madelon we chose a Gaussian ker-
nel. Prior to feature selection, the kernel parameter � was found by a heuristic: for
each k let t

k

denote the distance of point x
k

to the set formed by the points of the
other class. The value of � was set to the mean of the t

k

values1. For the remaining
two data sets Arcene and Dexter we used a linear kernel.

20.2 Feature Ranking

The features were ranked according to their Fisher score (see Chapter 2): For a
set T = {t1, ..., tm

} ⇢ Rn define the mean µ
i

(T ) = 1
m

m

k=1 t
k,i

and the variance
V

i

(T ) = 1
m

m

k=1(tk,i

�µ
i

(T ))2 (i = 1, ..., n). The score R
i

of feature i is then given
by:

R
i

(X) =
µ

j

(X+)� µ
j

(X�)
2

V
j

(X+) + V
j

(X�)
,

with X+ := {x
k

2 X | y
k

= 1} and X� similarly. >From Figure 20.2 it can be seen
that only few of the 10000 features of the data set Arcene show a high correlation
with the labels. However, it is not obvious how many features should be used for
classification.

1 In later steps we use an SVM with this � in a cross validation scheme for
further model selection. The calculation of � involves all labels. Thus, when we test
a trained model on a cross validation test set, we make a systematic error, because
the label information of the test set is contained in �. However, we find that the
value for � is not a↵ected much when the test data is removed before the calculation.
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Fig. 2. The upper plot shows the correlation coe�cient (y-axis) for each feature
(x-axis) of the data set Arcene. The lower part of the figure is a histogram of the
correlation scores for the same data set. Please note that only few features show a
high correlation with the labels.

with X+ := {xk 2 X | yk = 1} and X� similarly. From Figure 2 it can
be seen that only few of the 10000 features of the data set Arcene show a
high correlation with the labels. However, it is not obvious how many features
should be used for classification.

3 Number of Features

The list of ranked features provides an estimate of how valuable a feature is
for a given classification task. We are interested in the expected risk of an
SVM for any given number N of best features. Provided with these values, we
could choose the best number of features, i.e. the number N that minimizes
the expected risk.
The expected risk could be estimated by ranking the features using the com-
plete training set. In a second step a cross-validation error estimation can be
applied for every number n of best features. However, this approach bears
the risk of overfitting since all data is used during the ranking procedure. To
avoid this drawback, we proceed as follows:
For given number N of best features we approximate the expected risk using
a ten-fold cross-validation scheme (see Figure 3): ten times, the training data
are split into a training set which forms 90% of the data and a test set forming
the remaining 10%. The training data are split, such that the union of the
test sets forms the training data (partition). A training set - test set - pair is
called a fold. For each fold we proceed as follows:

Fig. 20.2. The upper plot shows the Fisher scores (y-axis) for each feature (x-axis)
of the data set Arcene. The lower part of the figure is a histogram of the scores for
the same data set. Please note that only few features show a high correlation with
the labels.

20.3 Number of Features

The list of ranked features provides an estimate of how valuable a feature is for a
given classification task. We were interested in the expected risk of an SVM for any
given number N of best features. Provided with these values, we could choose the
best number of features, i.e. the number N that minimizes the expected risk.
The expected risk could be estimated by ranking the features using the complete
training set. In a second step a cross-validation error estimation can be applied for
every number n of best features. However, this approach bears the risk of overfitting
since all data is used during the ranking procedure. To avoid this drawback, we
proceeded as follows:
For given number N of best features we approximated the expected risk using a
ten-fold cross-validation scheme (see Figure 20.3): ten times, the training data were
split into a training set which formed 90% of the data and a test set which formed
the remaining 10%. The training data were split such that the union of the test sets
formed the training data (partition). A training set - test set - pair is called a fold.
For each fold we proceeded as follows:
The features were ranked based on the training set. For a given N we restricted
the training and the test set examples to the best N ranked features. An SVM was
trained on the restricted training set and then tested on the restricted test set of
the fold. For each fold we obtained a test error - these errors were averaged over the
folds. As a results we got an estimate of the expected risk for the best N features.
We repeated this procedure for di↵erent values of N .

Figure 20.4 shows the best N features versus the 10-fold cross-validation errors
for the data set Arcene. Based on this result we used the best 4700 features for the
competition.
Once the number N of best features was estimated all data were used, restricted
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Fig. 3. This plot describes the process of calculating an estimate of the expected
risk when only using the best N ranked features for classification. First the data is
split into 10 train-test folds. The features are ranked on each training set, a classifier
is trained using the best N features only and tested on the corresponding test set.
The 10 test errors are averaged. Please note that the set of features used by the
classifier might vary. Please see also Figure 4: every point of the plot is one error
estimation for a specific N (from Lal et al. [2004]) .

The features are ranked based on the training set. For a given N we restrict
the training and the test set examples to the best N ranked features. An SVM
is trained on the restricted training set and then tested on the restricted test
set of the fold. For each fold we obtain a test error - these errors are averaged
over the folds. As a results we get an estimate of the expected risk for the
best N features. We repeat this procedure for di↵erent values of N .

Figure 4 shows the best N features versus the 10-fold cross-validation
errors for the data set Arcene. Based on this result we used the best 4700
features for the competition.
Once the number N of best features is estimated all data are used, restricted
to these best N features and an SVM is trained. To avoid overfitting no further
adjustment of C or � is done. The trained model is then used to predict the
labels of the unseen test set examples.

Fig. 20.3. This plot describes the process of calculating an estimate of the expected
risk when only using the best N ranked features for classification. First the data is
split into 10 train-test folds. The features are ranked on each training set, a classifier
is trained using the best N features only and tested on the corresponding test set.
The 10 test errors are averaged. Please note that the set of features used by the
classifier might vary. Please see also Figure 20.4: every point of the plot is one error
estimation for a specific N (from Lal et al. (2004)) .

to these best N features and an SVM was trained. To avoid overfitting no further
adjustment of C or � was done. The trained model was then used to predict the
labels of the unseen test set examples.

20.4 Summary

We explained how a simple filter method can be combined with SVMs. More specif-
ically we reported how we estimated the number of features to be used for classi-
fication and how the kernel parameter as well as the regularization parameter of
the SVM can be determined. The performance on the competition data sets can be
found in Tables 20.2 and 20.3.
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Fig. 4. Data set Arcene: This plot shows an error estimation of the expected risk
(y-axis) using only the best N features (x-axis) which are ranked according to their
correlation score. The error estimates were obtained by the cross validation scheme
shown in Figure 3.

Methods FS + SVM used for the competition

Require: data set d, kernel function k, kernel parameter �
1: normalize data

8x 2 d x x/
1

|d|
y2d

kyk2

2: estimate SVM parameter C via cross-validation on d using all features (for soft
margin SVM only).

3: estimate the number n0 of best features as described in Figure 3.
4: use all available data d to rank the features according to their correlation coef-

ficients.
5: restrict d to the best n0 ranked features.
6: train an SVM based on the restricted data d using kernel k and regularization

parameter C.

4 Summary

We explained how a simple filter method can be combined with SVMs. More
specifically we reported how we estimated the number of features to be used
for classification and how the kernel parameter as well as the regularization
parameter of the SVM can be determined. The performance on the competi-
tion data sets can be found in Tables 2 and 3.

Fig. 20.4. Data set Arcene: This plot shows an error estimation of the expected
risk (y-axis) using only the best N features (x-axis) which are ranked according to
their Fisher score. The error estimates were obtained by the cross validation scheme
shown in Figure 20.3.

Methods FS + SVM used for the competition

Require: data set d, kernel function k, kernel parameter �
1: normalize data

8x 2 d x x/
1
|d|

y2d

kyk2

2: estimate SVM parameter C via cross-validation on d using all features
(for soft margin SVM only).

3: estimate the number n0 of best features as described in Figure 20.3.
4: use all available data d to rank features according to their Fisher scores.
5: restrict d to the best n0 ranked features.
6: train an SVM based on the restricted data d using kernel k and

regularization parameter C.
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Summary. This chapter introduces Direct Kernel Partial Least Squares (DK-PLS)
and feature selection via sensitivity analysis for DK-PLS. The overall feature selec-
tion strategy for the five data sets used in the NIPS competition is outlined as
well.

21.1 Introduction

A direct kernel method is a general paradigm that extends a linear classification
or regression method to a more powerful nonlinear method by introducing a kernel
transformation of the data as a preprocessing procedure. The advantages of direct
kernel methods in this case are: (i) a transparent explanation for nonlinear modeling,
while preserving the structure of the original linear model; (ii) a simple extension
of linear methods to nonlinear learning models; (iii) the Mercer condition for the
kernel can be relaxed. Disadvantages of direct kernel methods are: (i) the full kernel
has to be present in memory; (ii) direct kernel methods are not exactly equivalent to
related kernel methods, where the kernel is introduced inherently in the paradigm,
rather than explicit in the preprocessing; (iii) direct kernel methods require kernel
centering.

This chapter is organized as follows: section 2 gives a brief overview of partial
least squares (PLS), section 3 explains direct kernel methods, section 4 describes a
procedure for kernel centering, section 5 describes model metrics, section 6 discusses
data conditioning and preprocessing, section 7 introduces sensitivity analysis, and
section 8 outlines the heuristic feature selection procedure that was applied to the
four data sets in the NIPS feature selection challenge.

21.2 Partial Least Squares Regression (PLS)

21.2.1 Introduction

Partial Least Squares Regression (PLS) was conceived by the Swedish statistician
Herman Wold for econometrics modeling of multivariate time series. The first PLS
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publication was a sociology application in 1975 (Wold, 1975, Wold et al., 2001). His
son, Svante Wold, applied PLS to chemometrics in the early eighties (Wold et al.,
2001, Wold, 2001). Currently PLS has become one of the most popular and powerful
tools in chemometrics, mainly because of the quality of building models with many
variables with collinearity. A decade ago it was not uncommon to have entire Gordon
conferences on drug design being dominated by the theory of PLS. The mathematics
behind PLS are outlined in Bennett and Embrechts (2003), Wold et al. (2001). The
acronym PLS, which originally stood for partial least squares, can be misleading.
Therefore Svante Wold proposes that the PLS acronym stands for projection on
latent structures, which is more meaningful.

PLS can be viewed as an alternative to principal components regression, but now
takes into account the variable dependence. The data are first transformed into a
di↵erent basis, similar to Principal Component Analysis (PCA), and only a few (the
most important) PLS components (or latent variables) are considered for building a
regression model (just as in PCA). These PLS components or scores are similar to
the principal components in PCA. Unlike PCA, the basis vectors of PLS are not a
set of orthonormal eigenvectors of the correlation matrix XT X, where the successive
orthogonal directions explain the largest variance in the data, but are actually a set
of conjugant gradient vectors to the correlation matrices that span a Krylov space
(Ipsen and Meyer, 1998). Just like in PCA the basis vectors can be peeled o↵ from
the data matrix X successively in the NIPALS algorithm (Nonlinear Iterative Partial
Least Squares), also introduced by Wold (1966).

PLS regression is one of the most powerful data mining tools for large data
sets with an overabundance of descriptive features with collinearity. The NIPALS
implementation of PLS is elegant and fast. Furthermore, one of the unique charac-
teristics of PLS is the ability to reconstruct logical flow implications and to be able
to distinguish cause and consequence relationships from a database (Hulland, 1999).

What makes PLS especially interesting for data mining applications is a recent
extension to nonlinear PLS or kernel PLS (Bennett and Embrechts, 2003, Rosipal
and Trejo, 2001) which incorporates the kernel transform, similar to support vector
machines (Boser et al., 1992, Cristianini and Shawe-Taylor, 2000, Schölkopf and
Smola, 2001). Nonlinear Kernel PLS has recently been explained in the context
of neural networks (i.e., perceptrons and radial basis functions) (Embrechts and
Bennett, 2002).

21.2.2 PLS Algorithm

PLS analysis considers the response vector (or response matrix, in case of multiple
responses), typically denoted as y. PLS regression maximizes latent variable corre-
lation with the response vector. Therefore, the first latent variable (which is a linear
combination of the original input variables) possesses maximum correlation with the
response variable, while remaining conjugate gradient with respect to the correlation
matrix to the remaining latent variables. Because the first few partial least squares
components, or latent variables, capture most of the correlation with the response,
powerful and elegant (linear) prediction models result.

Rosipal and Trejo (2001) modified the PLS algorithm by normalizing the scores
rather than the basis vectors in order to make the traditional algorithm ready for the
kernel formulation. The original NIPALS algorithm for PLS for one response vari-
able can be modified to the algorithm presented in Algorithm 9 (following Rosipal).
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Extension to a kernel-based algorithm is now straightforward (Rosipal and Trejo,
2001). The PLS algorithm can be interpreted here as a one-layer linear neural net-
work without activation function and weight vector w. Note that although step 2
of the algorithm calls for a random initialization, the result of the algorithm is not
stochastic.

Algorithm 9: Algorithm for PLS for one single response, following Rosi-
pal and Trejo (2001)
(1.) Do for each latent variable
(2.) Randomly initialize an n-dimensional vector u
(3.) Calculate the score, and normalize the m-dimensional vector t

t = XT

nm

X
mn

u, t t
||t||

(4.) Recalibrate u

u = (yT t)y, u u
||u||

(5.) Deflate

X  X � ttT X

y  Y � ttT y

(6.) Store t in T, store u in U
(7.) Go to 1 for the next latent variable
(8.) Calculate weights according to

w = XT U(T T XXT U)�1T T y

21.2.3 Kernel PLS (K-PLS)

The K-PLS method can be reformulated to resemble support vector machines, but
it can also be interpreted as a kernel and centering transformation of the descriptor
data followed by a regular PLS method (Bennett and Embrechts, 2003). K-PLS
was first introduced by Lindgren et al. (1993) in the context of working with linear
kernels on data sets with more input descriptors than data, in order to make the
PLS modeling more e�cient. Early applications of K-PLS were done mainly in this
context (Gao and Ren, 1998, 1999, Ren and Gao, 1995). Direct kernel PLS or DK-
PLS first considers the kernel as a data transformation, and then applies a regular
PLS algorithm. It is important to point out here that DK-PLS is fundamentally a
di↵erent algorithm than the K-PLS algorithm introduced by Rosipal, because the
DK-PLS algorithm operates on the square kernel, KKT , rather than the original
kernel K.
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21.3 Regression Models Based on Direct Kernels

The kernel transformation is an elegant way to make a regression model nonlin-
ear. The kernel transformation goes back at least to the early 1900’s, when Hilbert
addressed kernels in the mathematical literature. A kernel is a matrix containing sim-
ilarity measures in a dataset: either between the data of the dataset itself, or with
other data (e.g., support vectors (Boser et al., 1992, Cristianini and Shawe-Taylor,
2000, Schölkopf and Smola, 2001)). A classical use of a kernel is the correlation
matrix used for determining the principal components in principal component anal-
ysis, where the feature kernel contains linear similarity measures between (centered)
attributes. In support vector machines, the kernel entries are similarity measures
between data rather than features and these similarity measures are usually nonlin-
ear, unlike the dot product similarity measure that we used before defining a kernel.
There are many possible nonlinear similarity measures, but in order to be mathe-
matically tractable the kernel has to satisfy certain conditions, the so-called Mercer
conditions (Cristianini and Shawe-Taylor, 2000, Schölkopf and Smola, 2001).

$
K

mm

=

k11 k12 ... k1m

k21 k22 ... k2m

...

k
m1 k

m2 ... k
mm

(21.1)

The expression above, introduces the general structure for the data kernel matrix,
$
K

mm

, for m data and n features. The kernel matrix is a symmetrical matrix where
each entry contains a (linear or nonlinear) similarity between two data vectors.
There are many di↵erent possibilities for defining similarity metrics such as the dot
product, which is a linear similarity measure and the Radial Basis Function kernel
or RBF kernel, which is a nonlinear similarity measure. The RBF kernel is the most
widely used nonlinear kernel and the kernel entries are defined by

k
ij

= e�
kxj�xlk22

2�2 (21.2)

Note that in the kernel definition above, the kernel entry contains the square of the
Euclidean distance (or two-norm) between data points, which is a dissimilarity mea-
sure (rather than a similarity), in a negative exponential. The negative exponential
also contains a free parameter, � , which is the Parzen window width for the RBF
kernel. The proper choice for selecting the Parzen window is usually determined by
an additional tuning, also hyper-tuning, on an external validation set.

The kernel transformation is applied here as a data transformation in a sepa-
rate pre-processing stage. The features derived for a pattern vector x of dimension
n now consist of a m-dimensional vector containing the similarities between x and
the m training examples. We actually replace the data by a nonlinear data kernel
and apply a traditional linear predictive model. Methods where a traditional linear
algorithm is used on a nonlinear kernel transform of the data are introduced in this
chapter as direct kernel methods. The elegance and advantage of such a direct kernel
method is that the nonlinear aspects of the problem are captured entirely in the
kernel and are transparent to the applied algorithm. If a linear algorithm was used
before introducing the kernel transformation, the required mathematical operations
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remain linear. It is now clear how linear methods such as principal component re-
gression, ridge regression, and partial least squares can be turned into nonlinear
direct kernel methods, by using exactly the same algorithm and code: only the data
are di↵erent, and we operate on the kernel transformation of the data rather than
the data themselves.

In order to make out-of-sample predictions on true test data, a similar kernel
transformation needs to be applied to the test data. The idea of direct kernel methods
is illustrated in Figure 21.1, by showing how any regression model can be applied
to kernel-transformed data. One could also represent the kernel transformation in
a neural network type of flow diagram and the first hidden layer would now yield
the kernel-transformed data, and the weights in the first layer would be just the
descriptors of the training data. The second layer contains the weights that can
be calculated by applying PLS. When a radial basis function kernel is used, the
first layer would be the same as the first layer in a radial basis function neural
network, but the weights in the second layer are calculated di↵erently. Note that
because of the emphasis on direct kernels as a data transformation we use here the
terminology and notation for weights, rather than the familiar alphas in the support
vector machine literature. In the next section kernel centering will be discussed. We
introduce the symbol in Figure 21.1, indicating multiplication of a centered kernel
by a weight vector.
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Fig. 21.1. Operation schematic for direct kernel methods as a data pre-processing
step (the symbol ⌦ indicates that the weights should be applied to a centered kernel
matrix).
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21.4 Dealing with the Bias: Centering the Kernel

There is still one important detail that was overlooked so far, and that is necessary
to make direct kernel methods work. By applying weights to the kernel transformed
data, there is no constant o↵set term or bias.

The bias term does not have to be explicitly incorporated in the model when
kernel centering is applied. Kernel centering is explained in (Schölkopf and Smola,
2001) which can be extended and summarized in the following recipe: (i) A straight-
forward way for kernel centering is to subtract the average from each column of the
training data kernel, and store these averages for later recall (when centering the
test kernel); (ii) A second step for centering the training kernel is going through
the newly obtained ”vertically” centered kernel again, this time row by row, and
subtracting the row average form each horizontal row entry.

The kernel of the test data needs to be centered in a consistent way, following
a similar procedure. In this case, the stored column centers from the kernel of the
training data will be used for the ”vertical” centering part of the kernel of the test
data. This vertically centered test kernel is then centered horizontally (i.e., for each
row, the average of the vertically centered test kernel is calculated, and each hori-
zontal entry of the vertically centered test kernel is substituted by that entry minus
the row average).

The advantage of the kernel-centering algorithm recipe introduced in this section
is that it is more general than (Schölkopf and Smola, 2001) because it also applies
to rectangular data kernels. The flow chart for pre-processing the data, applying
a kernel transform on this data, and centering the kernel for the training data,
validation data, and test data is shown in Figure 21.2.

Training Data

Test Data

Mahalanobis-scaled
Training Data

Kernel Transformed
Training Data

Centered 
Direct Kernel

(Training Data)

Mahalanobis-scaled
Test Data

Mahalanobis
Scaling Factors

Vertical Kernel
Centering Factors

Kernel Transformed
Test Data

Centered 
Direct Kernel

(Test Data)

Fig. 21.2. Data pre-processing with kernel centering for direct kernel methods.
For a description of the preprocessing and a definition of Mahalanobis scaling, see
Section 21.6.
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21.5 Metrics for Assessing the Model Quality

An obvious question is the proper assessment for the quality of a model. In the case
of a classification problem that would be relatively easy, and one would ultimately
present the number of hits and misses in the form of a confusion matrix. For a
regression problem, a common way to capture the error is by the Root Mean Square
Error index or RMSE, which is defined as the average value of the squared error
(either for the training set or the test set). Assuming a response y, and a prediction
ŷ, the RMSE can be expressed as:

RMSE =
1
m

i

(ŷ
i

� y
i

)2 (21.3)

While the root mean square error is an e�cient way to compare the performance
of di↵erent prediction methods on the same data, it is not an absolute metric in
the sense that the RMSE will depend on how the response for the data was scaled.
In order to overcome this handicap, additional error measures can be introduced
that are less dependent on the scaling and magnitude of the response value. A first
metric that will be used for assessing the quality of a trained model is r2, where r2 is
defined as the correlation coe�cient squared between target values and predictions
for the response according to:
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where m represents the number of data points in the training set. r2 takes values
between zero and unity, and the higher the r2 value, the better the model. An
obvious drawback of r2 for assessing the model quality is that r2 only expresses a
linear correlation, indicating how well the predictions follow a line if is plotted as
function of y. While one would expect a nearly perfect model when r2 is unity, this
is not always the case. A second and more powerful measure to assess the quality of
a trained model is the so-called Press r squared, or R2, often used in chemometric
modeling (Johnson and Wichern, 2000), where R2 is defined as (Golbraikh and
Tropsha, 2002):

R2 = 1�
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(y

i

� ŷ
i

)2
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i

� ȳ)2
(21.5)

We consider R2 as a more reliable measure than r2, because it accounts for the
residual error as well. The higher the value for R2, the better the model. Note that
in certain cases the R2 metric can actually be negative. The R2 metric is commonly
used in chemometrics and is generally smaller than r2. For large datasets, R2 tends
to converge to r2, and the comparison between r2 and R2 for such data often reveals
hidden biases.

For assessing the quality of the validation set or a test set, we will introduce
similar metrics, q2 and Q2, where q2 and Q2 are defined as 1 � r2 and 1 � R2 for
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the data in the test set. For a model that perfectly predicts on the test data, we
now would expect q2 and Q2 to be zero. The reason for introducing metrics that are
symmetric between the training set and the test set is actually to avoid confusion.
Q2 and q2 values will always apply to a validation set or a test set; we expect these
values to be quite low in order to have a good predictive model. R2 and r2 values
will always apply to training data, and should be close to unity for a good training
model.

An additional metric that can be very useful for classification problems is the
area under the ROC curve (Froelicher et al., 2002, Swets et al., 2000). This metric
can actually be extended to regression problems as well (Bi and Bennett, 2003), or
be used just as is a relative quality indicator for a regression model.

21.6 Data Conditioning and Preprocessing

It is customary in predictive modeling to normalize or Mahalanobis scale all the data
first before any further operations. We introduce the term Mahalanobis scaling here
and prefer it above normalization common in the machine learning literature, be-
cause normalization has often di↵erent meanings for di↵erent application domains.3

By normalizing or Mahalanobis scaling we mean here subtracting the average from
each of the descriptive model features or attributes, and dividing each feature en-
try by the standard deviation. This procedure has to be carried out consistently
for training and validation and test data as outlined in Figure 21.2. The division
by the standard deviation in Mahalanobis scaling has the obvious advantage that
the model is now independent of the metric in which the data were expressed. The
centering of the data aspect in Mahalanobis scaling is not always desirable, and
generally depends on the nature of the data and the machine learning model. It has
been observed by the authors that data centering in large datasets with many sparse
binary features can lead to a serious deterioration of the model. Whether or not data
should be centered before proceeding with the kernel transform can be determined
heuristically by observing the model performance with and without centering on an
external validation set.

21.7 Sensitivity Analysis

Sensitivity analysis is a generic and powerful paradigm to select important input
features from a predictive model (Kewley and Embrechts, 2000). The underlying
hypothesis of sensitivity analysis is that once a model is built, all features are frozen
at their average value (i.e., zero in case data were centered first), and then one-by-
one the features are tweaked within their allowable range (i.e., usually between �2
and +2 in the case of Mahalanobis scaled data with centering). We typically chose
7 settings between [�2, 2], and take the largest di↵erence in response between any
of these settings (usually corresponding to the �2 and +2 inputs). The features for
which the predictions do not vary a lot when they are tweaked are considered less

3Editor note: This transformation is also referred to as“standardization” in other
chapters.
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important, and they are slowly pruned out from the input data in a set of successive
iterations between model building and feature selection.

To determine the sensitivity of an input feature the sensitivities were averaged
over an ensemble of 10 di↵erent models where 10% of the training data were left out
of the training set in order to obtain more stable results.

The pruning of less relevant features proceeds now in an iterative fashion, where
10% of the least significant features are dropped each time. The feature selection
process continues until there is a significant degradation in predictive performance
on the validation data. An alternative to determine when to halt the feature pruning
process is by introducing a random variable (usually from a uniform distribution) as
a gauge feature and to iteratively drop features with sensitivities that are less than
the sensitivity of the random variable. Sensitivity analysis for feature selection is a
generic wrapper method and can be applied to any machine learning method and
is illustrated in Figure 21.3. Feature selection via sensitivity analysis is explained in
detailed for neural networks in (Kewley and Embrechts, 2000). This methodology
is model independent and can readily be extended to K-PLS, DK-PLS, SVMs and
predictive models in general.

Fig. 21.3. Schematic procedure for sensitivity analysis
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21.8 Heuristic Feature Selection Policies for the NIPS
Feature Selection Challenge

21.8.1 General Preprocessing and Feature Selection Methodology

Data were preprocessed by centering all the features. It was then decided whether
or not to divide the feature entries by their standard deviation based on the per-
formance on the validation set. For partial least squares methods (PLS, K-PLS, or
DK-PLS) the response variable is always Mahalanobis scaled. In that case a minority
class corresponds to a larger response variable for that class, which is beneficial by
putting more emphasis on minority patterns in the least-squares error measure. All
predictive models for the NIPS feature selection competition were based on a bag-
ging predictions (Breiman, 1996), where the models were average models obtained
from leaving 10% of the data out 100 times. In the case that the data set contained
too many patterns for the kernel to fit in the memory (2 GB in this case), a linear
PLS model rather than DK-PLS was used during the feature elimination procedure.
The final model was then based on a least-squares support vector machine that did
not require the full kernel to be in memory (Keerthi and Shevade, 2003). We usually
note very little di↵erence between predictions based on K-PLS, DK-PLS, and least
squares support vector machines (see next section). Feature elimination proceeds
in two stages: a filtering stage and a wrapping stage. The wrapping procedure for
feature elimination was based on sensitivity analysis as described in the previous
section. Before proceeding with the wrapping procedure features were eliminated by
filtering based on the following recipe:

Feature elimination by filtering:

(1.) eliminate non-changing features
(2.) eliminate binary features that are mostly zero (99%, but can vary depending on

the number of training data)
(3.) inspect features for extreme outliers and drop features that have 6 sigma outliers
(4.) in the case that there are more than 1000 features drop features that show an

absolute value of the correlation coe�cient less than 0.1.

The software used for model building, filtering, and sensitivity analysis is based on
dynamic scripts for the Analyze software [8].

21.8.2 NIPS Feature Selection Challenge

The five feature selection challenge datasets for Arcene, Dexter, Dorothea,
Gisette and Madelon are summarized in Table 21.1, and the competition re-
sults are summarized in Table 21.2 (where AUC stands for area under the ROC
curve). The group rank was 11 and the best entry rank 31. Only one submission
was made for each dataset, and no second submission was made after the validation
data with labels were made available. The features for all datasets are the original
inputs and the feature selection procedure with sensitivity analysis was gauged on
the validation data: i.e., as soon as there was a relative increase in error on the
validation data, the process of iterative pruning with sensitivity analysis was halted.
Responses were always normalized. In the case that there was an imbalance between
class instances in the training data, a classification cut-o↵ was determined based on
cross-validation. While most of the analysis was based on heuristics, the competition
results show that sensitivity analysis is a robust feature selection methodology.
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Arcene

For this dataset the data were centered and the 2000 most correlated features were
retained. Feature selection was based on a repetitive sensitivity analysis, were during
each step 10% of the features were dropped (based on 100 bootstrap models with
leave 10% out) using K-PLS with 5 latent variables and � = 1600. 514 or 5.14% of
the original features were retained based on cross-validation.

Dexter

The Dexter data used the original inputs as features, and the inputs that had more
than 1% nonzero entries were retained. In a next phase the 1000 most correlated
inputs were retained. Feature selection was based on a repetitive sensitivity analysis,
were during each step 10% of the features were dropped (based on 100 bootstrap
models with leave 10% out) using K-PLS with 5 latent variables and � = 900. 205
or 1.57% of the original features were retained based on cross-validation.

Dorothea

The Dorothea data used the original inputs as features, and the inputs that had
more than 3% nonzero entries were retained. The data were centered and in a next
phase feature selection was based on a repetitive sensitivity analysis, were during
each step 10% of the features were dropped (based on 100 bootstrap models with
leave 10% out) using K-PLS with 5 latent variables and � = 15. 540 or 0.54% of the
original features were retained based on cross-validation.

Gisette

The data were centered and the 2000 most correlated inputs were retained as fea-
tures. Feature selection was based on a repetitive sensitivity analysis, were during
each step 10% of the features were dropped (based on 10 bootstrap models with
leave 10% out) using K-PLS with 5 latent variables and � = 20. 1300 or 26% of the
original features were retained based on cross-validation.

Madelon

The data were centered and the 2000 most correlated inputs were retained as fea-
tures. Feature selection was based on a repetitive sensitivity analysis, were during
each step 10% of the features were dropped (based on 100 bootstrap models with
leave 10% out) using K-PLS with 7 latent variables and � = 100. 13 or 2.6% of the
original features were retained based on cross-validation. A classification cut-o↵ was
determined based on cross-validation.
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Table 21.1. Description of Feature Selection Challenge Datasets

Dataset Features Random Probes Training Data Positives

Arcene 10000 3000 100 44

Dexter 20000 10053 300 150

Dorothea 100000 50000 800 78

Gisette 5000 2500 6000 3000

Madelon 500 480 2000 1000

Table 21.2. NIPS 2003 challenge results

Dec. 1st Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 9.82 10.91 89.46 7.17 25.74 88.00 6.84 97.22 80.3 47.8 1

Arcene 81.82 16.71 83.67 5.14 8.56 98.18 13.30 93.48 100.0 30.0 1

Dexter -5.45 6.80 93.47 1.57 28.12 96.36 3.90 99.01 1.5 12.9 1

Dorothea -34.55 19.18 82.10 0.54 92.04 98.18 8.54 95.92 100.0 50.0 1

Gisette 5.45 2.02 97.92 26.0 0 98.18 1.37 98.63 18.3 0.0 1

Madelon 1.82 9.83 90.16 2.6 0 100.00 7.17 96.95 1.6 0.0 1

21.9 Benchmarks

The datasets used for the experiments are shown in Table 21.3 and can be found
in the UCI KDD depository. The results are shown in Figure 21.4. Variables and
responses are normalized first. All experiments were based on leave 10% out 100
times, except for the Mushroom data which used leave 10% out 10 times. Note that
the metrics also include the area under the ROC curve (Froelicher et al., 2002, Swets
et al., 2000) for regression problems, even though the ROC curve does not have a
clear physical meaning anymore. The RBF kernel was determined by hyper-tuning
a K-PLS model. The number of latent variables for the K-PLS and DK-PLS models
was 5, except for the Tic Tac Toe, Mushroom and Boston Housing data sets, where
12 latent variables were used.

The benchmark methods are based on (direct) kernel ridge regression (DKR)
(Hoerl and Kennard, 1970), least-squares support vector machines (LS-SVM) (Suykens
and Vandewalle, 1999, Suykens et al., 2003), kernel PLS (K-PLS) (Rosipal and Trejo,
2001), direct kernel PLS (DK-PLS), partial least squares (PLS) (Wold et al., 2001),
and Support Vector Machines (SVMs) using LibSVM (Wold, 2001). In the above
methods we used a RBF kernel, except for PLS, which is a linear method. Metrics
are based on % correct, least mean square error, area under the ROC curve, and
q2 and Q2 as defined in this chapter. Results are for most cases very similar. The
di↵erence between LS-SVMs and the other methods for Tic Tac Toe data can be
attributed to the automated heuristic for the selection penalty factor as explained
in (Bennett and Embrechts, 2003). The di↵erence between DK-PLS and K-PLS can
be entirely attributed to the fact that DK-PLS e↵ectively uses the square of the
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Table 21.3. Benchmark UCI Datasets

Dataset Examples Features Type

Wine 178 13 3 Class

Cleveland Heart 297 13 2 Class

Tic Tac Toe 958 9 2 Class

Mushroom 8124 14 2 Class

Abalone 4177 8 Regression

Boston Housing 506 13 Regression

Table 21.4. Benchmarks between DKR, LS-SVM, K-PLS, DK-PLS, PLS and SVM
on UCI data

(a) Wine Dataset

Method Correct LMS ROC q2 Q2

DKR 99.06 0.176 1 0.052 0.052

LS-SVM 97.88 0.184 1 0.057 0.057

K-PLS 98.42 0.182 1 0.056 0.056

DK-PLS 96.29 0.207 0.999 0.072 0.072

PLS 96.47 0.277 0.991 0.129 0.130

SVM 98.35 0.185 1 0.058 0.058

(b) Cleveland Heart Dataset

Method Correct LMS ROC q2 Q2

DKR 83.07 0.716 0.901 0.510 0.515

LS-SVM 83.31 0.717 0.901 0.510 0.517

K-PLS 83.24 0.731 0.895 0.532 0.536

DK-PLS 83.52 0.727 0.896 0.528 0.530

PLS 83.40 0.725 0.896 0.527 0.529

SVM 82.93 0.730 0.892 0.526 0.536

(c) Tic Tac Toe Dataset

Method Correct LMS ROC q2 Q2

DKR 99.47 0.388 1 0.154 0.165

LS-SVM 91.74 0.595 0.972 0.383 0.390

K-PLS 99.74 0.383 1 0.154 0.162

DK-PLS 88.96 0.640 0.948 0.451 0.452

PLS 67.79 0.930 0.617 0.952 0.956

SVM 99.27 0.399 1 0.163 0.176

(d) Mushroom Dataset

Method Correct LMS ROC q2 Q2

DKR 100.00 0.057 1 0.003 0.003

LS-SVM 99.48 0.269 1 0.070 0.072

K-PLS 100.00 0.060 1 0.004 0.004

DK-PLS 99.08 0.190 1 0.036 0.036

PLS 93.17 0.519 0.968 0.270 0.270

SVM 100.00 0.066 1 0.004 0.004

(e) Abalone Dataset

Method LMS ROC q2 Q2

DKR 2.167 [0.872] 0.443 0.444

LS-SVM 2.136 [0.874] 0.444 0.445

K-PLS 2.167 [0.864] 0.457 0.458

DK-PLS 2.206 [0.856] 0.472 0.473

PLS 2.245 [0.862] 0.488 0.488

SVM 2.180 [0.875] 0.445 0.464

(f) Boston Housing Dataset

Method LMS ROC q2 Q2

DKR 3.371 [0.952] 0.131 0.139

LS-SVM 3.835 [0.943] 0.173 0.179

K-PLS 3.397 [0.948] 0.123 0.123

DK-PLS 3.761 [0.945] 0.176 0.176

PLS 4.867 [0.931] 0.287 0.289

SVM 3.285 [0.956] 0.131 0.132
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kernel, rather than the kernel. Only on Tic Tac Toe data are DK-PLS predictions
clearly inferior to K-PLS predictions. DK-PLS generally exhibits a slightly inferior
performance compared to K-PLS, but is clearly superior to PLS.

21.10 Conclusions

This chapter introduces direct kernel partial least squares and general recipes for
feature elimination based on filters and a sensitivity analysis wrapper methodology.
Direct kernel methods consider the kernel transformation as a data preprocessing
step, and then use a traditional linear regression method for modeling. Direct kernel
PLS or DK-PLS is fundamentally di↵erent from the original K-PLS introduced by
Rosipal. Like all direct kernel methods, kernel centering is an important conditioning
step. This chapter introduces a more general kernel centering procedure that applies
to rectangular kernels as well as square kernels. The feature selection by sensitivity
analysis is an iterative procedure where a small subset of the features are dropped at
a time (typically 10 percent). The evaluation of feature sensitivities is based on leave
several patterns out several times. It is therefore not uncommon to have actually
run through several thousand models during the feature elimination phase before
building the final predictive model with selected features. Benchmarking studies
compare the performance of DK-PLS with PLS and SVMs. The similarity between
PLS and K-PLS on the wine, Cleveland heart, and abalone data suggests that the
models are linear. The combination of DK-PLS and iterative feature elimination
provides a general-purpose modeling technique that combines the predictive capa-
bilities of nonlinear models with the computational e�ciency and transparency of
linear models.
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Summary. We report on our approach, CBAmethod3E, which was submitted to
the NIPS 2003 Feature Selection Challenge on Dec. 8, 2003. Our approach consists
of combining filtering techniques for variable selection, information gain and feature
correlation, with Support Vector Machines for induction. We ranked 13th overall and
ranked 6th as a group. It is worth pointing out that our feature selection method
was very successful in selecting the second smallest set of features among the top-20
submissions, and in identifying almost all probes in the datasets, resulting in the
challenge’s best performance on the latter benchmark.

22.1 Introduction

Various machine learning applications, such as our case of financial analytics, are
usually overwhelmed with a large number of features. The task of feature selection
in these applications is to improve a performance criterion such as accuracy, but
often also to minimize the cost associated in producing the features. The NIPS 2003
Feature Selection Challenge o↵ered a great testbed for evaluating feature selection
algorithms on datasets with a very large number of features as well as relatively few
training examples.

Due to the large number of the features in the competition datasets, we followed
the filtering approach to feature selection: selecting features in a single pass first and
then applying an inductive algorithm independently. We chose a filtering approach
instead of a wrapper one because of the huge computational costs the latter approach
would entail for the datasets under study. More specifically, we used information gain
(Mitchell, 1997) and analysis of the feature correlation matrix to select features, and
applied Support Vector Machines (SVM) (Boser et al., 1992, Cortes and Vapnik,
1995) as the classification algorithm. Our hypothesis was that by combining those
filtering techniques with SVM we would be able to prune non-relevant features and
learn an SVM classifier that performs at least as good as an SVM classifier learnt on
the whole feature set, albeit with a much smaller feature set. The overall method is
described in Section 2. Section 3 presents the results and provides empirical evidence
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for the above hypothesis. Section 4 refers to a few of the alternative techniques for
feature selection and induction that we tried. Section 5 concludes the paper with a
discussion on lessons learned and future work.

22.2 Description of approach

We first describe the performance criterion that we aimed to optimize while search-
ing for the best feature subset or parameter tuning in SVM induction. We then
present the two filtering techniques for feature selection and briefly describe the
specifics of our SVM approach. We report on the approach submitted on Dec. 8.
For the Dec. 1 submission, we used an alternative approach (see Section 4) that
was abandoned after the Dec. 1 submission because we obtained better performance
with the approach described in the following.

22.2.1 Optimization criterion

For choosing among several algorithms and a range of hyper-parameter settings,
the following optimization criterion was followed: Balanced error rate (BER) using
random ten-fold cross-validation before Dec. 1 (when the validation labels were
not available), and BER on the validation set after Dec. 1 (when the validation
labels were available). BER was calculated in the same way as used by the challenge

organizers: BER = 1
2

fp

tn+fp

+ fn

tp+fn

, with fp = false positives, tn = true negatives,

fn = false negatives and tp = true positives.

22.2.2 Feature selection

Information Gain

Information gain (IG) measures the amount of information in bits about the class
prediction, if the only information available is the presence of a feature and the
corresponding class distribution. Concretely, it measures the expected reduction in
entropy (uncertainty associated with a random feature) (Mitchell, 1997). Given S
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the vector of ith variables in this set, |S
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) with entropy:

H(S) = �p+(S) log2 p+(S)� p�(S) log2 p�(S)

p±(S) is the probability of a training example in the set S to be of the positive/neg-
ative class. We discretized continuous features using information theoretic binning
(Fayyad and Irani, 1993).

For each dataset we selected the subset of features with non-zero information
gain. We used this filtering technique on all datasets, except the Madelon dataset.
For the latter dataset we used a filtering technique based on feature correlation,
defined in the next subsection.
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Correlation

The feature selection algorithm used on the Madelon dataset starts from the cor-
relation matrix M of the dataset’s variables. There are 500 features in this dataset,
and we treat the target (class) variable as the 501st variable, such that we measure
not only feature redundancy (intra-feature correlation), but also feature relevancy
(feature-class correlation). In order to combine redundancy & relevancy informa-
tion into a single measure, we consider the column-wise (or equivalently row-wise)
average absolute correlation hMi

i

= 1
n

j

|M
ij

| and the global average absolute cor-

relation hMi = 1
n

2
i,j

|M
ij

|. Plotting the number of column correlations that exceeds

a multiple of the global average correlation (hMi
i

> t hMi) at di↵erent thresholds
t, yields Figure 22.1.

As can be observed from Figure 22.1, there is a discontinuity in correlation
when varying the threshold t. Most variables have a low correlation, not exceeding
about 5 times average correlation. In contrast, there are 20 features that have a high
correlation with other features, exceeding 33 times the average correlation. We took
these 20 features as input to our model.

Fig. 22.1. The number of Madelon variables having a column correlation above
the threshold
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The same correlation analysis was performed on the other datasets. However no
such distinct discontinuity could be found (i.e. no particular correlation structure
could be discovered) and hence we relied on information gain to select variables for
those datasets. Note that Information Gain produced 13 features on the Madelon
dataset, but the optimization criterion indicated worse generalization performance,
and consequently the information gain approach was not pursued on this dataset.

22.2.3 Induction

As induction algorithm, we choose Support Vector Machines (Boser et al., 1992,
Cortes and Vapnik, 1995). We used the implementation by Chang and Lin (2001)
called LIBSVM. It implements an SVM based on quadratic optimization and an
epsilon-insensitive linear loss function. This translates to the following optimization
problem in dual variables ↵:

max
↵

m

k=1

↵
k

� 1
2

m

k=1

m

l=1

↵
k

↵
l

y
k

y
l

K(x
k

,x
l
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0  ↵
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 C, 8k
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k=1
y

k

↵
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where C is the regularization hyper-parameter, K(x
k

,x
l

) the kernel and y
k

the target
(class) variables. The implementation uses Sequential Minimal Optimization (Platt,
1999) and enhanced heuristics to solve the optimization problem in a fast way. As
SVM kernel we used a linear kernel K(x

k

,x
l

) = x
k

·x
l

for all datasets, except for the
Madelon dataset where we used an RBF-kernel K(x

k

,x
l

) = e��kxk�xlk. The latter
choices were made due to better optimization criterion results in our experiments.

For SVM hyper-parameter optimization (regularization hyper-parameters C and
� in the case of an RBF kernel), we used pattern search (Momma and Bennett,
2002). This technique performs iterative hyper-parameter optimization. Given an
initial hyper-parameter setting, upon each iteration, the technique tries a few variant
settings (in a certain pattern) of the current hyper-parameter settings and chooses
the setting that best improves the performance criterion. If the criterion is not
improved, the pattern is applied on a finer scale. If a pre-determined scale is reached,
optimization stops.

For the imbalanced dataset Dorothea, we applied asymmetrically weighted
regularization values C for the positive and the negative class. We used the
following heuristic: the C of the minority class was always kept at a factor,
|majorityclass|/|minorityclass|, higher than the C of the majority class.

22.3 Final Results

Our submission results are shown in Table 22.1. From a performance point of view,
we have a performance that is not significantly di↵erent from the winner (using
McNemar and 5% risk), on two datasets: Arcene and Madelon. On average, we
rank 13th considering individual submissions, and 6th as a group.

1Performance is not statistically di↵erent from the winner, using McNemar and
5% risk.
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Table 22.1. NIPS 2003 challenge results on December 8th

Dec. 8th Our best challenge entry1 The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall 21.14 8.14 96.62 12.78 0.06 88.00 6.84 97.22 80.3 47.8 0.4

Arcene 85.71 11.12 94.89 28.25 0.28 94.29 11.86 95.47 10.7 1.0 0

Dexter 0 6.00 98.47 0.60 0.0 100.00 3.30 96.70 18.6 42.1 1

Dorothea -28.57 15.26 92.34 0.57 0.0 97.14 8.61 95.92 100.0 50.0 1

Gisette -2.86 1.60 99.85 30.46 0.0 97.14 1.35 98.71 18.3 0.0 0

Madelon 51.43 8.14 96.62 12.78 0.0 94.29 7.11 96.95 1.6 0.0 1

From a feature selection point of view, we rank 2nd (within the 20 best sub-
mission) in minimizing the number of used features, using only 12.78% on average.
However we are consistently 1st in identifying probes: on this benchmark, we are
the best performer on all datasets.

To show the significance of feature selection in our results, we ran experiments
where we ignored the feature selection process altogether, and applied SVMs directly
on all features. In Table 22.2, we report the best BER on the validation set of each
dataset. These results were obtained using linear SVMs, as in all experiments RBF-
kernel SVMs using all features gave worse results compared to linear SVMs. As can
be seen from the table, using all features always gave worse performance on the
validation set, and hence feature selection was always used.

Table 22.2. BER performance on the validation set, using all features
versus the described selected features

Dataset All features Selected features Reduction in BER

Arcene 0.1575 0.1347 -16.87%

Dexter 0.0867 0.0700 -23.81%

Dorothea 0.3398 0.1156 -193.96%

Gisette 0.0200 0.0180 -11.11%

Madelon 0.4000 0.0700 -471.43%

22.4 Alternative approaches pursued

Several other approaches were pursued. All these approaches though gave worse
performance (given the optimization criterion) and hence were not used in the final
submission. We briefly discuss a few of these approaches, as we are restricted by
paper size.
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22.4.1 Alternative feature selection

We used a linear SVM to remove features. The approach is as follows: we first train
a linear SVM (including hyper-parameter optimization) on the full feature set. Then
we retain only the features that correspond with the largest weights in the linear
function. Finally, we train the final SVM model using these selected features. We
experimented with di↵erent feature fractions retained, as in general the approach
does not specify how to choose the number of features to be retained (or the weight
threshold). In Table 22.3, we show a performance comparison at half, the same and
double of the size of the feature set finally submitted. We did not try a variant of the
above approach called Recursive Feature Elimination (RFE), proposed by (Guyon
et al., 2002) due to its prohibitive computational cost.

Table 22.3. BER performance on the validation set, comparing feature
selected by LINSVM versus Infogain/Corr

Dataset Feature LIN SVM feature fraction InfoGain /

Final fraction Half final Final Double final Corr. feature

Arcene 0.2825 0.1802 0.1843 0.1664 0.1347

Dexter 0.0059 0.1000 0.1167 0.1200 0.0700

Dorothea 0.0057 0.2726 0.3267 0.3283 0.1156

Gisette 0.3046 0.0260 0.0310 0.0250 0.0180

Madelon 0.0400 0.1133 0.1651 0.2800 0.0700

22.4.2 Combining feature selection and induction

We tried also a linear programming approach to SVM inspired by Bradley and Man-
gasarian (1998). Here SVM is formulated as a linear optimization problem instead
of the typical SVM quadratic optimization. The resulting model only uses a selected
number of non-zero weights and hence feature selection is embedded in the induction.
Unfortunately the results were not encouraging.

22.5 Discussion and conclusion

We showed how combining a filtering technique for feature selection with SVM leads
to substantial improvement in generalization performance of the SVM models in the
five classification datasets of the competition. The improvement is the highest for
the datasets Madelon and Dorothea as shown in table 2 above. These results provide
evidence that feature selection can help generalization performance of SVMs.

Another lesson learned from our submission is that there is no single best feature
selection technique across all five datasets. We experimented with di↵erent feature
selection techniques and picked the best one for each dataset. Of course, an open
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question still remains: why exactly these techniques worked well together with Sup-
port Vector Machines. A theoretical foundation for the latter is an interesting topic
for future work.

Finally, it is worth pointing out that several of the top-20 submissions in the
competition relied on using large feature sets for each dataset. This is partly due
to the fact that the performance measure for evaluating the results, BER, is a clas-
sification performance measure that does not penalize for the number of features
used. In most real-world applications (e.g. medical and engineering diagnosis, credit
scoring etc.) there is a cost for observing the value of a feature. Hence, in tasks
where feature selection is important, such as in this challenge, there is need for a
performance measure that can reflect the trade-o↵ of feature and misclassification
cost (Turney, 2000, Karakoulas, 1995). In absence of such a measure, our selection of
approaches was influenced by this bias. This resulted in the second smallest feature
set in the top-20 and the most successful removal of probes in the challenge.
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1993.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classifi-
cation using support vector machines. Machine Learning, 46:389–422, 2002.

G. Karakoulas. Cost-e↵ective classification for credit scoring. In Proc3̇rd IntĊonfȦI
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Summary. Di↵erent classification tasks require di↵erent learning schemes to be
satisfactorily solved. Most real-world datasets can be modeled only by complex struc-
tures resulting from deep data exploration with a number of di↵erent classification
and data transformation methods. The search through the space of complex struc-
tures must be augmented with reliable validation strategies. All these techniques
were necessary to build accurate models for the five high-dimensional datasets of
the NIPS 2003 Feature Selection Challenge. Several feature selection algorithms
(e.g. based on variance, correlation coe�cient, decision trees) and several classifica-
tion schemes (e.g. nearest neighbors, Normalized RBF, Support Vector Machines)
were used to build complex models which transform the data and then classify. Com-
mittees of feature selection models and ensemble classifiers were also very helpful to
construct models of high generalization abilities.

23.1 Introduction

Solving classification problems includes both classifiers’ learning and relevant prepa-
ration of the training data. In numerous domains the stage of data preprocessing
can significantly improve the performance of final classification models. A successful
data mining system must be able to combine the two analysis stages and take their
interaction into account. Each classification method may need di↵erently prepared
inputs to build an accurate and reliable model. Therefore we need to search for a
robust combination of methods and their parameters.

Using complex model structures implies the necessity of adequate validation. It
is very important to validate the whole sequences of transformations and classifiers
instead of performing data preprocessing first and then validating the classification
algorithms only. Otherwise we are sentenced to overoptimistic results estimates,
which do not reflect real generalization abilities.

To build and validate complex models it is very important to have general data
analysis tools, which facilitate combining di↵erent algorithms and testing their inter-
action. In the NIPS 2003 Feature Selection Challenge e↵orts we have been supported
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by our object oriented data mining technology of the GhostMiner1 system. All the
algorithms we have used and describe below are components of the package. Re-
cently, we have developed some new functionality of the system to comply with the
needs of feature selection, balanced error minimization etc. Thanks to the general,
object oriented philosophy of the tool all the components could be easily combined
and validated.

It is worth pointing out that all our computations have been run on personal
computers including notebooks – thanks to the algorithms no supercomputers or
clusters are necessary to obtain interesting results in data mining.

23.2 Fundamental algorithms

There is no single model architecture, which could be recommended for all the
possible applications. To solve di↵erent classification problems we need di↵erent
kinds of models and di↵erent data transformation techniques. The search for the
final combined model must be based on a set of fundamental algorithms, possibly
of di↵erent inherent structures and methodologies.

23.2.1 Classification

In our exploration of the datasets we have tested a variety of methods, which imple-
ment di↵erent ways of cost function minimization. This broadens the search area in
the model space. Final models for the five datasets were based on Support Vector
Machines, Normalized Radial Basis Functions and Nearest Neighbors approaches.
Apart from these we have also tested SSV decision tree, IncNet (Jankowski and
Kadirkamanathan, 1997) and Feature Space Mapping (Adamczak et al., 1997) clas-
sification algorithms. The SSV is presented here because it was useful for building
the feature selection parts of the models.

A special treatment was necessary in the case of the Dorothea dataset (and to
a lower extent of Arcene), because the minimization of the standard classification
error or MSE leads to completely di↵erent models than the optimization of the
balanced error rate. The latter is in fact a special case of the classification error
defined by a cost matrix, but not all algorithms support it.

Due to the space limitations we are unable to present the methods in full detail.
Please refer to the bibliography for more information on the algorithms of interest.

Support Vector Machines (SVMs)

We have used Support Vector Machines for several reasons. One of them is that
SVMs optimize margins between class regions. Another one is that with di↵erent
kernel functions the SVM changes from simple linear model to a nonlinear one. Yet
another reason is that the SVM model may be implemented really e↵ectively and
can deal with high-dimensional data.

1GhostMiner is a trademark of FQS Poland
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SVMs were proposed initially by Boser et al. (1992) and thoroughly examined by
Vapnik (1995, 1998). They are often very accurate and e�cient. The idea is appli-
cable to both data classification and function approximation tasks. The statement
of the SVM optimization for classification problems may be the following:

min
w,b,⇠

1
2
||w||2 + C

m

i=1

⇠
i

(23.1)

with constraints:
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where m is the number of vectors, x
i

is the ith data vector and y
i

is its class label
(1 or �1 – the binary classification). The dual problem definition is:
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The k(·) function is called a kernel and k(x
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, x
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.
Most often used kernels are: gaussian, linear, sigmoidal and polynomial. With

the exception of the linear kernel all the others have some parameters of free choice.
Although in our framework we have implemented all the kernels, we recommend
only the most useful ones: linear, Gaussian and exponential inverse of distance. In
the simplest case k(·) is defined by:

k(x, x0) = xT x0. (23.8)

To add a nonlinear behavior, the Gaussian kernel can be used instead:

k(x, x0) = G(x, x0;�) = exp(�||x � x0||2/�). (23.9)

Interesting results may also be obtained using the following kernel (exponential
inverse of distance) which is quite similar to the Gaussian one:

k(x, x0) = exp(�||x � x0||/�). (23.10)

The main problem with the original definition of SVM was that its learning
procedure, the quadratic programming (QP), converged very slowly. Recent years
have brought a few novel methods of acceleration of the QP procedure for SVM
learning. The most attention deserve the methods proposed by Osuna et al. (1997b),
Joachims (1998), Saunders et al. (1998), Platt (1998, 1999) and Chang et al. (2000).
Platt’s Sequential Minimal Optimization (SMO) algorithm for the QP problems
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is very fast and provides an analytical solution. Further improvements to the QP
procedure were made by Shevade et al. (2000).

The SMO algorithm augmented by the ideas presented in (Shevade et al., 2000)
yields very fast and accurate solution of SVM learning problem. We have used such
a version of SVM in our research.

The common point of acceleration of the QP procedure is the decomposition
of ↵ to a working part (↵

B

) and a fixed part (↵
R

):
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is a permutation of matrix Q.

The decomposition scheme consists of two steps: selection of ↵
B

and optimiza-
tion of Eq. 23.11. These two steps are repeated as long as the stop criterion is not
satisfied. The SMO selects only two ↵ scalars to put them to ↵

B

. This is equiva-
lent to the optimization of two (potential) support vectors in a single optimization
step. The ↵

B

selection procedure introduced in (Platt, 1998) was optimized by She-
vade et al. (2000). Keerthy proposed to optimize Equation 23.11 for the two indices
(B = {i, j}) which violate the KKT conditions Equation 23.2 and Equation 23.3)
the most:
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where f(↵) = 1

2↵T Q↵ + 1T ↵, and rf(·) defines the gradient. For details on the
stopping criterion see (Shevade et al., 2000).

When B consists of two indices the QP optimization defined by Equation 23.11
may be solved analytically. This was proposed in the SMO algorithm (Platt, 1998).

In the case of unbalanced data (large di↵erence of the numbers of representatives
of di↵erent classes) Osuna et al. (1997a) proposed to use a separate C parameter
for each class. This changes the goal described by Equation 23.1 to:
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A method of automatic selection of C (Equation 23.1) and � (Equation 23.9)
parameters can be found in (Jankowski and Grabczewki, 2003).

Normalized Radial Basis Function (NRBF) Networks

The NRBF is a Radial Basis Function network with normalized Gaussian transfer
functions. It resembles the concept of Parzen windows. The number of basis functions
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in the NRBF is equal to the number of vectors in the training dataset. Each basis
function is placed exactly at the place defined by given input vector. The NRBF
may be seen as lazy learning algorithm because there are no adaptation parameters.

Let X = {x
i

: i = 1, . . . , m} be a set of input patterns and Y = {y
i

: i =
1, . . . , m} a set of class labels. The final class label (decision) on unseen vector x is
computed as a conditional probability of class c given vector x:
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where G(x,x
i

;�) is the Gaussian kernel (Equation 23.9) with � parameter. It can
be seen that K

i=1 P (i|x,X ,Y ) = 1, where K is the number of classes.

The behavior of NRBF is similar (but not equivalent) to the k nearest neighbors
model (see Section 23.2.1) – the classification decision of given vector x depends on
the neighborhood region of x (on which basis function is the nearest). The biggest
di↵erence is that the NRBF decision (P (c|x,X ,Y )) changes continuously while for
kNN it is discrete.

If the training dataset consists of a large number of vectors the Learning Vec-
tor Quantization (Kohonen, 1986) or prototype selection methods (Grochowski and
Jankowski, 2004) can be used to reduce the number of vectors appropriately.

k Nearest Neighbors (kNN)

k Nearest Neighbors models were proposed by Cover and Hart (1967) and are de-
signed to classify unseen vectors on the basis of the class labels observed for neighbor-
ing reference vectors (typically the training set vectors). The kNN is parameterized
by k, the number of nearest neighbors considered during classification. The win-
ner class for a given vector x may be defined as the majority class within the set
NN(x; k) of its k nearest neighbors.

Typically k is chosen manually. Sub-optimal value of k may be estimated quite
e↵ectively via cross-validation based learning – since each fold may estimate a dif-
ferent optimum for k, the sub-optimal value may be estimated by the k for which
the average test accuracy (counted for the submodels of the CV based learning) is
maximal.

The set NN(x; k) of nearest neighbors depends on the measure used to compute
distances between x and the reference vectors. In most cases the Euclidean measure
is used. The Euclidean measure can be simply generalized to the Minkovsky measure:
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The Euclidean metric corresponds to ↵ = 2, which is completely isotropic, and
Manhattan metric to ↵ = 1.
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Sometimes good results can be obtained using the Canberra measure:
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The Chebychev function corresponds to the infinite Minkovsky exponent:
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Please note that in the case of symbolic attributes a special metric or a data
transformation (see (Grabczewski and Jankowski, 2003)) should be used.

SSV tree

The Separability of Split Value (SSV) criterion is one of the most e�cient heuristic
used for decision tree construction (Grabczewski and Duch, 1999, 2000). Its basic
advantage is that it can be applied to both continuous and discrete features in such a
manner that the estimates of separability can be compared regardless the substantial
di↵erence in types.

The split value (or cut-o↵ point) is defined di↵erently for continuous and sym-
bolic features. For continuous features it is a real number and for symbolic ones it is
a subset of the set of alternative values of the feature. The left side (LS) and right
side (RS) of a split value s of feature f for a given dataset D is defined as:

LS(s, f, D) =
{x 2 D : f(x) < s} if f is continuous

{x 2 D : f(x) 62 s} otherwise

RS(s, f, D) = D � LS(s, f, D)

(23.22)

where f(x) is the f ’s feature value for the data vector x. The definition of the
separability of split value s is:
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where C is the set of classes and D
c

is the set of data vectors from D assigned to
class c 2 C.

Among all the split values which separate the maximum number of pairs of
vectors from di↵erent classes the most preferred is the one that separates the smallest
number of pairs of vectors belonging to the same class. For every dataset containing
vectors, which belong to at least two di↵erent classes, for each feature represented
in the data by at least two di↵erent values, there exists a non-trivial split value with
maximum separability. When the feature being examined is continuous and there
are several di↵erent split values of maximum separability, close to each other, the
split value closest to their average is selected. To avoid such ties and to eliminate
unnecessary computations, the analysis should be restricted to the split values that
are natural for the given dataset (i.e. centered between adjacent feature values that
occur in the data vectors). If there are non-maximal (regarding separability) split
values between two maxima or if the feature is discrete, then the average is not a
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reasonable choice – the winner split value should be selected randomly from those
of maximum separability.

Decision trees are constructed recursively by searching for best splits among all
the splits for all the features. At each stage when the best split is found and the
subsets of data resulting from the split are not completely pure (i.e. contain data
belonging to more than one class) each of the subsets is analyzed in the same way as
the whole data. The decision tree built this way gives maximum possible accuracy
(100% if there are no contradictory examples in the data), which usually means that
the created model overfits the data. To remedy this a cross validation training is
performed to find the optimal parameters for pruning the tree. The optimal pruning
produces a tree capable of good generalization of the patterns used in the tree
construction process.

Like most decision tree algorithms the SSV based method is independent on the
scaling of the feature values, so in particular it is normalization and standardization
invariant. The decision borders are perpendicular to the feature space axes and can
be described by logical formulae, however in some cases it is a restriction, which
limits accuracy. Nevertheless its ability to find informative features can be helpful
in feature selection for other classification methods.

The SSV criterion has been successfully used not only for building classification
trees, but also for feature selection (Duch et al., 2002, 2003) and data type conver-
sion (from continuous to discrete and in the opposite direction (Grabczewski and
Jankowski, 2003)).

23.2.2 Feature extraction

Providing classifiers with feature spaces, which help obtaining the best possible accu-
racy is a very complex task. Feature selection and construction play a very important
role here. There is no single recipe for good data transformation and no unarguable
method to compare the performance of di↵erent feature selection algorithms. More-
over each classifier may require di↵erent data preparation. To obtain an accurate
and stable final model with a particular classifier one must validate a number of
data preparation methods.

The term feature extraction encompasses both selection and construction of fea-
tures. Thorough analysis includes testing filters (which are independent on the clas-
sifier) and wrappers (which use external classifiers to estimate feature importance).
Feature selection strategies either produce a ranking (each feature is assessed sepa-
rately) or perform full-featured selection (select/deselect with respect to the inter-
action between the features).

CC based feature ranking

The correlation coe�cient (CC) is a simple but very robust tool in statistics. It is
very helpful also in the task of feature selection. For two random variables X and
Y it is defined as

%(X, Y ) =
E(XY )� E(X)E(Y )

D2(X)D2(Y )
, (23.24)

where E and D2 stand for the expected value and variance respectively. %(X, Y )
is equal to 0 if X and Y are independent and is equal to 1 when the variables are
linearly dependent (Y = aX + b).
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The correlation coe�cient calculated for a feature (treated as a random variable)
and the class labels (in fact the integer codes of the labels) is a good measure
of feature usefulness for the purpose of classification. The feature list ordered by
decreasing absolute values of the CC may serve as feature ranking.

SSV based feature selection

Decision tree algorithms are known to have the ability of detecting the features that
are important for classification. Feature selection is inherent there, so they do not
need any feature selection at the data preparation phase. Inversely: their capabilities
can be used for feature selection.

Feature selection based on the SSV criterion can be designed in di↵erent ways.
The most e�cient (from the computational point of view) one is to create feature
ranking on the basis of the maximum SSV criterion values calculated for each of the
features and for the whole training dataset. The cost is the same as when creating
decision stubs (single-split decision trees).

Another way is to create a single decision tree and read feature importance
from it. The filter we have used for this type of SSV based feature selection is the
algorithm 12.

Feature selection filter based on the SSV criterion

I Input: A sample X of input patterns and their labels Y (training data)
J Output: List of features ordered by decreasing importance.

• T  the SSV decision tree built for hX, Y i.
• For each non-final (i.e. which is not a leaf) node N of T ,

G(N) E(N)� E(N1)� E(N2), where N1 and N2 are the subnodes of
N , and E(N) is the number of vectors in X falling into N but incorrectly
classified by N .

• F  the set of all the features of the input space.
• i 0
• While F 6= ; do:

– For each feature f 2 F not used by T define its rank R(f) i.
Remove these features from F .

– Prune T by deleting all the final splits of nodes N for which G(N) is
minimal.

– Prune T by deleting all the final splits of nodes N for which G(N) = 0.
– i i + 1

• The result is the list of features in decreasing order of R(f).

This implements a full-featured filter – the decision tree building algorithm se-
lects the splits locally, i.e. with respect to the splits selected in earlier stages, so that
the features occurring in the tree, are complementary. The selection can be done
by dropping all the features of rank equal to 0 or by picking a given number of top
ranked features.
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In some cases the full classification trees use only a small part of the features.
It does not allow to select any number of features – the maximum is the number of
features used by the tree. To remedy this the Sequential Feature Selection technique
(described below) can be used.

The SSV criterion is defined to reflect class separability and has no parameters
to adjust it to standard or balanced classification error. Thus we have also used the
SSV framework to construct trees with balanced classification error as split eligibility
criterion. It was especially useful for the exploration of the Dorothea dataset.

Feature selection wrapper

Wrapper methods use external algorithms and search techniques to determine the
best (from the point of view of some particular criterion) values of some parameters.
The technique may also be helpful in feature selection. A wrapper method available
in the GhostMiner package simply adds the features one by one to some initial
set of (base) features and estimates the performance of a classifier in so extended
feature spaces. If the initial set of features is empty then the classifier is trained
on one-dimensional datasets, and the results for all the features are collected – the
feature ranking is built according to the accuracies. When started with some base
features the method searches for additional features, which extending the preselected
set yield a satisfactory improvement in submodel accuracy.

The basic advantage of the wrapper method of feature selection is that its appli-
cations are dedicated to some particular models. The major drawback of wrappers
is that they require multiple training of their submodels.

Feature selection committee

The task of feature selection committees is to combine di↵erent feature selection
methods and select features which seem attractive from di↵erent points of view.
Several feature selection models are constructed independently and their selection
results collected. The committee selects the features most often selected by its mem-
bers. If we assign the value of 1 to each selected feature and 0 to not selected then
we may sum up the scores obtained from the committee members to get an integer
value for each of the features. The committee scores are integer values in the range
of 0 to the number of committee members. Setting a threshold value for the scores
gives a criterion of final selection. The threshold equal to the committee size selects
the features selected by each of the committee members while the value of 1 results
in a weak rejection committee. The two border values correspond respectively to the
intersection and the sum of the sets of features determined by the members.

Sequential feature selection

Full-featured filters select the features providing di↵erent (complementary) infor-
mation about the classification task. They are likely to reject informative features,
which although valuable do not introduce anything new to already selected ones.
If we want neither simple rankings, which do not reflect features dependencies nor
filters that deselect informative but not independent features, the sequential feature
selection technique may be of interest. The idea is to select just a number of top
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ranked features and repeat filtering in the feature space reduced by the selected fea-
tures. The parameters of this method are the filter algorithm, the number of filter
runs and the number of features to select after each step.

The method is helpful in the case of full-featured filters, especially like the ones
based on decision trees, which in some circumstances can select only a small number
of features. Running them repetitively facilitates selection of any number of features.

Information theory based filters

There is a number of feature filters based on information theory. Unfortunately they
usually su↵er from the necessity of data discretization by external methods. The
equal-width and equal-frequency discretizations are not very robust. Much more in-
teresting results can be obtained with SSV based discretization (Duch et al., 2003,
Grabczewski, 2004) but in most cases they are not better than those of SSV fea-
ture selection while being more computationally expensive. Some successful methods
which employ information gain or mutual information were tried by us on the NIPS
FSC datasets. The results were very similar to those obtained with CC or SSV based
feature selection. The lack of information theory models inside GhostMiner sig-
nificantly reduced our validation possibilities for these models – this is the major
reason why we have not used the methods in our final models.

PCA

The Principal Components Analysis is a well known technique of data transforma-
tion. In its standard formulation it finds linear combinations of features which show
the directions of largest variance of the data. Viewing the data in two dimensional
plots, where the axes are the first and the second principal components is often very
informative. Using the largest variance directions as features may significantly lower
dimensionality of the space (where most classification models are more e↵ective)
without a substantial reduction of information. This feature extraction method con-
structs valuable features, but it can not be treated as a feature selection technique
because all the feature values are still necessary to calculate the new features.

23.3 Fully operational complex models

It can be seen in Section 31.4 that single classification algorithms are often not suf-
ficient to solve a given problem with high accuracy and confidence. It is much more
successful to examine di↵erent combinations of data transformation and classifica-
tion models presented in the previous sections (23.2.1 and 23.2.2). Sometimes it is
recommended to use even more than one transformation before classification (com-
pare section 23.4.3), but searching for a suitable model sequence and configuration
is far from trivial. Sometimes, default parameters (commonly used as starting con-
figuration) are completely inadequate for a specific dataset (compare section 23.4.4).
Also, a combination of transformation and classifier useful for one dataset may be
useless for another dataset.

It is recommended to search for proper parameters of transformations and clas-
sifiers with a meta-learning. Meta-learning should perform internal validation of
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meta-parameters (the parameters the values of which are searched for), otherwise
the learning process is very likely to end up with an overfitted model.

The task of searching for complex models can be viewed as a number of sub-
problems: testing of base classifiers, testing of feature selection algorithms in the
context of their suitability for base classifiers, parameters tuning for models, which
seem promising solutions, branching of promising solutions (substitution of parts in
the complex models), further search for configuration of complex models, testing of
feature selection committees and classification committees. The whole process must
switch from one subproblem to another with repetitions and backtracking.

Reliable validation is extremely important in the case of complex models (combi-
nations of transformations and classifiers). If a transformation is supervised (depen-
dent on the class labels) then it is insu�cient to validate the classifier – instead, the
cross-validation (or other random validation procedure) should run over the whole
combination of transformation and classifier. Otherwise the prediction of accuracy
and their variance is overoptimistic and falsifies the real generalization possibility.
In the case of unsupervised transformations (like PCA, standardization or selection
of high variance features), they may be applied before the validation, however if a
combination of supervised and unsupervised transformations is used to prepare data
for a classification model, then the combination is supervised and as such, must be
nested in the validation.

The cross-validation test may be easily changed into a cross-validation commit-
tee. It means that all the models built in the cross-validation test can compose a
committee. The final decision of the CV committee are based on the voting scheme.
To reduce the probability of impasse, it is recommended to use an odd number of
CV folds (especially in the case of two–class problems). CV committees have several
important advantages: the first is that committee decisions are more stable than
those of single models, the second is that the estimated accuracy and variance of
the submodels are known directly from the CV, another one is that they avoid the
problem of configuration parameters, which although validated may be suitable only
for a particular dataset size (the numbers of features, vectors, etc.) and applied to
the whole training dataset may produce less successful models.

If for a given dataset we had a number of interesting (complex) models then we
would choose the best one according to the following criterion:

best-model = arg max
M

[ accuracy(M)� ↵ · standard-deviation(M) ] (23.25)

with the values of ↵ close to 1. The aim is to prefer not only accurate but also
confident models.

23.4 Challenge data exploration

The challenge datasets di↵er in many aspects (their size – the number of features and
vectors, the source, the representation type, etc.). As a result, the final classification
models are also significantly di↵erent.

Below, an overview of the most interesting models for the challenge datasets
is presented. For each dataset there is a table depicting the structure of our best
model and its error rate calculated by the challenge organizers for the test part of
the dataset.
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Table 23.1. NIPS 2003 challenge results.

Dec. 8th Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat2 Probe2 Score BER AUC Feat Probe Test

Overall 37.14 7.98 92.11 26.8 — 71.43 6.48 97.20 80.3 47.8 0.8

Arcene 14.29 13.53 86.47 75 — 94.29 11.86 95.47 10.7 1.0 1

Dexter 71.43 3.50 96.50 40 — 100.00 3.30 96.70 18.6 42.1 0

Dorothea 17.14 13.11 86.89 2 — 97.14 8.61 95.92 100.0 50.0 1

Gisette 57.14 1.31 98.69 14 — 97.14 1.35 98.71 18.3 0.0 0

Madelon 65.71 7.44 92.56 3 0.0 94.29 7.11 96.95 1.6 0.0 1

The models were submitted to the second part of the contest (December 8th).
We assessed the second stage as the most important. Thus, for real, we did not take
part in the stage of December 1st. In the final contest we reached the group rank
of 3 and best entry rank of 7. Table 23.1 presents a summary of the results.

23.4.1 Arcene (spectroscopic data)

Arcene and Dorothea are characterized by high quotient of the number of at-
tributes and the number of input vectors (⇡ 100). In such spaces looking for accu-
rate and certain classification is a very hard problem. If a supervised preprocessing
is used and then the validation (such as the CV test) performed, the classification
accuracy estimates are overoptimistic – real accuracy on unseen data is dramatically
higher (the generalization is very poor).

The best model we have found is a CV Committee of combinations of SSV based
feature selection and the SVM classifier with linear kernel and class balance. The
CV test error was 7.8%± 5%.

CV Committee 9-fold [ SSV 7000 ! SVM linear ] Test error: 13.5%

The training set was standardized before feature selection. Quite similar results
can be obtained with the correlation coe�cient based feature selection. The use of
CV Committee increases the CV test accuracy by 1-1.5% It was a surprise, that
using SVM with linear kernel and no feature selection the CV test accuracy was
only 2% lower (than the best score) with slightly higher variance.

The CV test accuracy goes down (quite monotonically) when SSV or correlation
coe�cient selection is used to extract less than 7000 features.

It can be observed that SVMs with linear kernel work very well in high-
dimensional spaces while with gaussian kernel rather do not.

2We did not submit the lists of selected features to the contest (except for Made-
lon). Hence the fractions of features di↵er from the ones calculated by the organizers
and some probe information is missing.
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23.4.2 Dexter (corporate acquisitions)

In the case of Dexter the first step of the analysis was to remove the zero–variance
features. After that the number of features reduced from 20 000 to 11 035.

The Dexter dataset is sparse. It is important to treat undefined values as
zeros, not like a missing value – otherwise the classification is much more di�cult.
Data standardization also makes the task harder, so we have used the original data.
Alternatively, a standardization using the mean and the standard deviation over the
whole training set (not per feature) can be used. The best model we have found,
consists of the correlation coe�cient feature selector and SVM with linear kernel.
The CV test error was around 4.8%± 2%.

CC 8000 ! SVM linear Test error: 3.5%

Very similar results were obtained using CV Committee of the above combina-
tions (2 more vectors misclassified on the test set). Another model with very similar
certainty was a CV Committee of the same combinations but with 5000 features
selected.

23.4.3 Dorothea (which compounds bind to Thrombin)

The Dorothea dataset is binary and strongly sparse. As it was already mentioned,
it has (over) 100 times more features than vectors.

In the first step unsupervised feature selection was used. A given feature was se-
lected only if it had a su�cient variance (high variance selection – HVS): in practice,
more than p 1s per feature were required. There are no features with high number
of 1s in the training data, so the values of the p parameter we have used are: 8, 10
and 11.

After the preprocessing the best combinations of models use both supervised
and unsupervised data transformations before final classification. One of the best
models starts with selection of features with high variance, next the SSV selects
2000 features (respecting the class balance), then two first principal components are
extracted (see Fig. 23.1), and finally the SVM classifier with gaussian kernel is used
(also respecting the class balance). The CV test of this model estimated the error
of 12.3%± 4.4%.

HVS p=11 ! SSV 2000+balance

! PCA 2 ! SVM Gaussian C=50
Test error: 13.1%

Similar results can be obtained with p = 8 for the high variance selection or with
SSV based selection of 1500 features.
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Fig. 23.1. First two principal components of Dorothea after SSV feature selection.

23.4.4 Gisette (handwritten digits)

The Gisette dataset has nearly balanced numbers of instances and attributes. The
major problem of this data was not only to find a proper combination of models but
also to tune the parameters of the CC selector and SVM classifier. Our best model
uses 700 features, and gives the CV test error of 1.5%± 0.5%:

CC 700 ! SVM Gauss C=1000 bias=0.002 Test error: 1.31%

Another interesting model is the combination of correlation coe�cient based
feature selector (with just 200 features) and kNN with the number of neighbors
(k) equal to 5. The CV test error of such configuration is 3.6%, and the standard
deviation is smaller than 0.6%. When the correlation coe�cient selector is used to
select 50 features the CV test error increases to 5%.

23.4.5 Madelon (random data)

Madelon is a dataset of its own kind. In comparison to Arcene and Dorothea,
it has a small quotient of the numbers of features and instances.

Atypically, to select relevant features the feature selection committee was used.
The committee members were a SSV ranking, a SSV single tree (ST) selection and
a correlation coe�cient selector.
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Selection Committee [ SSV, SSV ST,

Correlation coe�cient ] ! NRBF
Test error: 7.44%

The CV test error of the above combination of models is 9% ± 0.5% (very sta-
ble model). Although the selection committee looks complicated, it selects just 15
features. The validation techniques showed that both selecting more features and
reducing the number of features led to a decrease of the accuracy on unseen data. In
the cases of Madelon and Gisette the subtask of finding an accurate and stable
classifier was much harder than the feature selection stage.

Slightly worse results can be obtained with kNN model instead of NRBF – the
CV test accuracy reduction is close to 1%.

23.5 Conclusions

The challenge e↵orts of our group brought a number of conclusions which in general
are compatible with our earlier experience, however some aspects deserve to be
emphasized and some are a surprise:

• It has been confirmed in practice that there is no single architecture (neither
learning algorithm nor model combination scheme) of best performance for all
the tasks. Although the SVM method was used most often in the final models,
its internal structure was not the same each time – some models were based on
linear and some on gaussian kernels.

• The models created must be properly validated – all the supervised data pre-
processing (like most feature selection methods) must be included in a complex
model validated with a CV or similar technique. Otherwise there is a serious
danger of overfitting the training data.

• It is advantageous to build committees of models, which proved their general-
ization abilities in a CV test.

• It is surprising that a feature ranking method as simple as the one based on the
correlation coe�cient is a very valuable component of complex models.

There is still a lot of work to be done in the area of feature selection and building
e�cient model combinations. The problem is NP-complete, and the needs are grow-
ing due to the bioinformatics and text mining applications. Among other things we
should: look for stronger and still e↵ective feature selection algorithms; construct
powerful aggregation or aggregation–selection algorithms to help the classifiers by
supplying more informative features; develop intelligent meta-learning techniques
which could help in automating the search for adequate complex models.
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The filter is a simple and practical method for feature selection, but it can introduce
biases resulting in decreased prediction performance. We propose an enhanced filter
method that exploits features from two information-based filtering steps: supervised
and unsupervised. By combining the features in these steps we attempt to reduce
biases caused by misleading causal relations induced in the supervised selection
procedure. When tested with the five datasets given at the NIPS 2003 Feature
Extraction Workshop, our approach attained a significant performance, considering
the simplicity of the approach. We expect the combined information-based method
to be a promising substitute for classical filter methods.

24.1 Introduction

Recent pattern classification studies such as DNA microarray analysis or text min-
ing tend to deal with larger data and it becomes more di�cult to manage the high
dimensionality of the data. Feature selection can help us improve classification per-
formance or save computational resources by dimension reduction. It also helps us
understand the intrinsic properties of the data by extracting meaningful attributes.

The filter method is a practical feature selection technique that chooses a sub-
set of highly ranked features with respect to certain scoring criteria (see Chapter
3 for more details). This method is frequently used because of its computational
e�ciency and statistical robustness against overfitting (Hastie et al., 2001, Guyon
and Elissee↵, 2003). However, this method can result in biased features that have
negative e↵ects on prediction performance, especially when we try to find the fea-
tures only informative to the class variable. Our primary objective is to enhance
classical supervised filter methods by reducing the e↵ect of such biases.

In an information theoretical framework, we analyze the dependency between
features and the biases caused by misleading causal relations estimated in the su-
pervised feature selection procedure. Based on this analysis, we devise a simple
heuristic method to avoid such biases. Finally, we test our method on the five NIPS
2003 Feature Extraction benchmark datasets.
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24.2 Methods

The task of feature selection is to find a subset �
M

of a set of features � such
that Pr(Y |�

M

) and Pr(Y |�) are as close as possible, for the class label Y (Koller
and Sahami, 1996). If we find such a subset, the optimal feature set, we can use
it in place of the whole set of features without losing significant information. We
divide the selection procedure into two steps, supervised and unsupervised. In the
supervised step we search for the optimal subset, while in the unsupervised step we
try to find additional features that are relevant but not selected in the supervised
step because of the biases.

24.2.1 Supervised Feature Selection

We can formalize the definition of our optimal feature set by employing the concept
of the Markov blanket.

Definition 1. A Markov blanket �
M(Y ) for the class label Y is a set of features,

which makes Y be conditionally independent of � � �
M(Y ), given �

M(Y ).

The Markov blanket �
M(Y ) subsumes all the information of the rest of the features

with respect to Y , and thus is the optimal subset. To find �
M(Y ) we require some

measures to estimate the relevance and the dependence relations of � and Y . We use
the idea of conditional mutual information (CMI) which is defined as follows (Cover
and Thomas, 1991):

I(P ; Q|R) ,
p2P q2Q r2R

Pr(p, q, r)log
Pr(p, q|r)

Pr(p|r)Pr(q|r) (24.1)

Conditional mutual information is a measure of the amount of information one
variable P contains about another variable Q, given R (to see a more detailed in-
troduction, refer to Chapter 6). Let �

i

and �
j

be features such that �
i

, �
j

2 �.
Based on the CMI we define two metrics, the significance and dependence as shown
in Table 24.1.

Table 24.1. Two metrics for supervised feature selection

Metric Definition

Significance I(�
i

; Y |�
j

)

Dependence I(�
i

; �
j

|Y )

Unfortunately, it is often computationally intractable to find the exact Markov
blanket of Y . Therefore, instead of finding the exact �

M(Y ), we try to select the
features that (1) have considerable information on Y , but (2) are independent of
the other features – the two properties of the features of �

M(Y ). Our two metrics
are suitable for this purpose: the significance I(�

i

; Y |�
j

) indicates how much infor-
mation �

i

has about Y given �
j

; the dependence I(�
i

; �
j

|Y ) evaluates how much
information is shared between �

i

and �
j

given Y , i.e. how they are dependent.



24 Combining Supervised & Unsupervised Feature Selection 493

We devise a heuristic multi-objective optimization algorithm to determine a
subset of features with high significance and low dependence (see Fig. 24.1). This
algorithm first calculates the significance and dependence of each pair of features.
Next, it takes out the most significant N

B

features and stores them in a bucket B,
and then restores the most dependent N

B

/2 features from the bucket to the original
feature pool. It then outputs the features remaining in the bucket and repeats the
process until the predefined N

�

features are selected.

Procedure SupervisedSelection(�, N
�

, N
B

)

�: Set of features

N
�

: Maximum number of features to be selected

N
B

: Size of the bucket

STEP 1. Compute the significance and dependence matrices.

STEP 2. Initialize a bucket B of size N
B

containing the features.

STEP 3. // Extract those features with high significance and low dependence //

Do,

Sort the significance values in decreasing order.

Take out the N
B

most significant values from � and store in B.

Restore the N
B

/2, the most dependent features from B to �.

Output features in B.

Until (N
�

features are selected).

Fig. 24.1. Outline of the multi-objective optimization algorithm

Note that to satisfy both objectives, significance and dependence, the size of
N

B

should be carefully chosen (N
B

� 2). For the experiment, we set N
B

= 4
and the desired maximum number of features N

�

to the 50 percent of the total
number features in each dataset, as these parameter values showed the best average
prediction performance1. Moreover, if �

i

has high significance values in terms of
many other features �

k

(k = 1, . . . , N), the feature �
i

can be selected repeatedly
in our procedure. Therefore the resulting subset may contain fewer features than
specified.

Also note that given I(�
i

; Y ) = I(�
j

; Y ), the value of the significance I(�
i

; Y |�
p

)
can be higher than I(�

j

; Y |�
q

) when there exists a feature �
p

which is independent
of �

i

more than �
q

is of �
j

. Because we use a forward selection strategy, we can
choose features more e↵ectively using this property assuming that there exists a
number of su�ciently independent features of �

i

and �
j

(see Fig. 24.2).

1We also tried N
B

= 2, 4, 8, . . . , 64 and N
�

= 10, 20, 30, 40, 50 percent of the
total number of features.
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Φ i

YI(Φ i;Y)

Φ j

YI(Φ j;Y)

(a) I(�i; Y ) = I(�j ; Y )

Φ i

YI(Φ i;Y|Φp)

Φj

Y

I(Φ j;Y|Φq)

Φq

Φp

(b) I(�i; Y |�p) > I(�j ; Y |�q)

Fig. 24.2. Conditioning can improve the e�ciency of the selection procedure. (a)
Let I(�

i

; Y ) = I(�
j

; Y ). Considering only the relevance to Y , we may choose both
features �

i

and �
j

as they are equally favorable. (b) However, let �
p

and �
q

be the
most independent features of �

i

and �
j

, respectively. If I(�
i

; Y |�
p

) > I(�
j

; Y |�
q

),
the feature �

i

is more favorable than �
j

because �
i

has a more independent buddy
�

p

and therefore has more chance of being selected when we apply the second
criterion, independence.

24.2.2 Unsupervised Feature Selection

One fundamental assumption of the supervised step is that the employed metrics
correctly represent the information on the dependence relationship of the variables.
This is one of the common assumptions in supervised feature selection approaches
using a sort of metrics to estimate the underlying probabilistic distribution. We call
this condition faithfulness (Spirtes et al., 1993).

Definition 2. Let G be a causal graph and P a probabilistic distribution implied
by G. Then G and P are faithful to one another if and only if every independence
relation in P is entailed by the independence relation in G.

Unfortunately, even if the data are generated faithfully from a model, it is not
guaranteed that we can reconstruct the original structure of the model from the
data. More specifically, the metrics used to estimate the probability distribution can
mislead us to a false image of the original causal relationship (Pearl, 1988, Spirtes
et al., 1993, Shipley, 2000). There are two such case:

• Case 1. I(�
i

; �
j

|Y ) ⇡ 0, but I(�
i

; �
j

)� 0.
In the supervised step, we may select both �

i

and �
j

as they are independent to
each other, given that other conditions are satisfactory (Fig. 3(a)). However, we
might have chosen either �

i

or �
j

, not both, when I(�
i

; �
j

) is relatively high
(Fig. 3(c)).

• Case 2. I(�
i

; �
j

|Y )� 0, but I(�
i

; �
j

) ⇡ 0.
The opposite case. We may not select either �

i

or �
j

in the supervised step as
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they are dependent (Fig. 3(c)). However, we might have chosen both features
(Fig. 3(d)).

Φi

P(Φi =T)   P(Φi =F)
    0.5           0.5

Φi    P(Φj =T)   P(Φj =F)
 F     0.005       0.495
 T     0.495       0.005 

Φi  Φj    P(Y =T)    P(Y =F)
 F  F    0.0050     0.4900
 T  F    0.0050     0.0001 
 F  T    0.0001     0.0050
 T  T    0.4900     0.0050

Φj

Y

(a) I(�i; �j |Y ) = 0.0413 ⇡ 0 (case 1).

Φi

P(Φi =T)   P(Φi =F)
    0.5           0.5

Φi    P(Φj =T)   P(Φj =F)
 F     0.25         0.25
 T     0.25         0.25 

Φi  Φj    P(Y =T)    P(Y =F)
 F  F    0.2475     0.0025
 T  F    0.0025     0.2475 
 F  T    0.0025     0.2475
 T  T    0.2475     0.0025

Φj

Y

(b) I(�i; �j |Y ) = 0.6371 � 0 (case 2).

Φi

P(Φi =T)   P(Φi =F)
    0.5           0.5

Φi    P(Φj =T)   P(Φj =F)
 F     0.005       0.495
 T     0.495       0.005 

Φj

(c) I(�i; �j) = 0.6371 � 0 (case 1).

Φi

P(Φi =T)   P(Φi =F)
    0.5           0.5

Φi    P(Φj =T)   P(Φj =F)
 F     0.25         0.25
 T     0.25         0.25 

Φj

(d) I(�i; �j) = 0 (case 2).

Fig. 24.3. Examples of misleading causal relations.

Therefore, we should also consider the value of I(�
i

; �
j

) to determine the causal re-
lationship of features. One possible way to perform this task is to calculate I(�

i

; �
j

)
during the supervised step; but we do not know whether I(�

i

; �
j

|Y ) or I(�
i

; �
j

)
shows the true dependence information. We simplify the task by separating it into
an unsupervised step which uses only the information in I(�

i

; �
j

) and try to find
the subset of the most independent features to resolve the second case problem. We
ignore the first case problem, however, because it is not serious compared to the
second case and requires time-consuming redundancy analysis within the acquired
feature subset.

To find the subset with the most independent features, we adopt a hierarchical
agglomerative clustering algorithm with average linkage. This is a bottom-up clus-
tering algorithm, which starts from a set of clusters consisting of only one data point,
then merges neighboring clusters using a defined distance measure, and finishes with
the desired number of clusters (Duda et al., 2001). For the distance measure, the
inverse of mutual information between features, I(�

i

; �
j

)�1, is used. After cluster-
ing, the feature �

i

with the highest I(�
i

; Y ) value in each cluster is selected as its
representative. The number of clusters is set to the 10 percent2 of the total number
of features in each dataset, as it showed the best average prediction performance.

2We also tried 10,20,30,40,50 percent of the total number of features.
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Finally, we combine the two resulting feature sets from the previous two steps by
the union-set operation.

24.3 Experiments

24.3.1 Datasets

We used five benchmark datasets from the Workshop on Feature Extraction of
the NIPS Conference 2003, available at http://clopinet.com/isabelle/Projects/
NIPS2003. The properties of each dataset are summarized in Table 24.2. Each dataset
is designed to reflect the specific properties of popular research domains.

Table 24.2. The properties of the five NIPS datasets

Dataset Train Validate Test Feature Research Domain

Arcene 100 100 700 10,000 Microarray analysis

Gisette 6,000 1,000 6,500 5,000 OCR(handwritten digits)

Dorothea 800 350 800 100,000 Drug response

Dexter 300 300 2,000 20,000 Text categorization

Madelon 2,000 600 1,800 500 Artificial (XOR pattern)

24.3.2 Preprocessing

First, we discretized all datasets using an EM algorithm that uses the following
model. Suppose that the features �

k

in each of the ‘on’ and ‘o↵’ states can be
modeled by a Gaussian distribution N(�

k

|µ
i

,�
i

), where µ
i

and �
i

are the mean
and standard deviation (i = 1, 2). Given this assumption, the marginal probability
of a feature �

k

can be modeled by a weighted sum of these Gaussian probability
functions:

P (�
k

) = w1N(�
k

|µ1,�1) + w2N(�
k

|µ2,�2) (24.2)

This model is called a univariate mixture model with two components (Xing, 2002).
After finding two Gaussian components that are the best fits for the data, we assigned
a binary label to each component. Next we filtered out uninformative features which
have a lower mutual information value, I(�

k

; Y ), than the threshold: the threshold
was set to the average mutual information value of the randomly permuted feature
vectors of each dataset.

24.3.3 Results

We acquired three feature subsets, ‘S’, ‘US’, and ‘MIXED’, from the supervised and
unsupervised feature selection and from a combination of these steps. As the test

http://clopinet.com/isabelle/Projects/NIPS2003
http://clopinet.com/isabelle/Projects/NIPS2003
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dataset was closed at the time of the experiment, we used validation sets to evaluate
the prediction performance of classifiers. We compared the prediction errors using
the four feature subsets (S, US, MIXED and SIMPLE) and two classifiers, näıve
Bayes (NB) and support vector machine (SVM) (Boser et al., 1992). The SIMPLE
feature subset was constructed by applying a classical filter method with information
theoretic ranking criteria, to have the same number of features as the MIXED set.
We used the classifiers in the Java-based open source data-mining software, WEKA
version 3.4 (Witten and Frank, 2000), which is downloadable from http://www.cs.
waikato.ac.nz/ml/weka. Because one of our objectives was to investigate the pure
performance gain acquired by feature selection, we did not optimize the classifiers
specifically for each dataset (the linear kernel and defaults parameters (regularization
constant C = 10) were used for all datasets).

Our challenge result of the feature extraction is summarized in Table 24.3. Con-
sidering the rank, our best entry (ranked 40th considering individual submissions,
and 15th as a group) is not among the best. However, the performance in cases of
Arcene and Gisette is not significantly di↵erent from the winning entry, albeit we
did not perform any model optimization. Moreover, we only used less than 5 per-
cent of features in average, while the winners used almost 80 percent. Considering
only the entries with less than 5 percent of the total number of features, our method
ranked 6th. Our method also showed good overall performance in filtering out probes:
especially in cases of Arcene and Gisette, we perfected identified the probes. How-
ever, the case of Madelon dataset was an exception. The worst performance is also
recorded in case of the Madelon. One reason can be found in the characteristic
of this dataset which contains artificially constructed nonlinear patterns. The non-
linearity might have a negative e↵ect on our method which is composed of linear
procedures. Another possible reason is that we filtered out a large number of features
in preprocessing: we might have thrown away discriminating features initially.

The prediction result of the validation data is summarized in Table 24.4. In
general, the subsets show lower error rate in order of SIMPLE, US, S, and MIXED.
For the näıve-Bayes classifer, the MIXED set shows significant performance gain
compared to the S (p-value = 0.0214). For the SVM, we can also identify some
performance gain between S and MIXED, in cases of Arcene, Gisette and Dexter

Table 24.3. NIPS 2003 challenge results.

Dec. 1st Our best challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall -32.36 18.40 81.60 4.34 31.51 88.00 6.84 97.22 80.3 47.77 1

Arcene 67.27 18.41 81.59 1.85 0.00 98.18 13.30 93.48 100 30.00 1

Dexter -81.82 14.60 85.40 5.09 37.46 96.36 3.90 99.01 1.52 12.87 1

Dorothea 10.91 15.26 84.74 0.77 27.68 98.18 8.54 95.92 100 50.00 1

Gisette -40.00 2.74 97.26 9.30 0.00 98.18 1.37 98.63 18.26 0.00 1

Madelon -67.27 38.5 61.50 2.40 91.67 100 7.17 96.95 1.60 0.00 1

http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
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Table 24.4. Prediction result of four feature subsets and two classifiers

näıve-Bayes (Error %) SVM (Error %)

Dataset SIMPLE US S MIXED SIMPLE US S MIXED

Arcene 51.00 34.00 31.00 28.00 53.00 35.00 21.00 14.00

Gisette 49.33 30.60 10.80 7.40 49.30 38.70 3.50 3.10

Dorothea 13.38 16.86 6.57 5.43 12.13 12.00 5.43 7.15

Dexter 45.67 46.67 17.33 13.33 47.00 56.00 20.00 18.67

Madelon 50.45 43.00 38.83 39.00 50.80 41.33 38.83 39.83

p-value3 n/a 0.0810 0.0279 0.0214 n/a 0.1397 0.0281 0.2398
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datasets. However, the gain is not so significant as the näıve-Bayes case (p-value =
0.2398).

24.4 Conclusions

We have presented an enhanced feature selection method that uses the mutually
compensating, combined feature selected from two separate filtering steps based on
well-known information theoretic concepts. Our adjustment of selection procedures
came as a result of an examination that showed that the biases can be regarded
as a consequence of misleading casual relations estimated by certain measures in
supervised selection procedures.

The main advantage of our method is that it can expect better accuracy with a
computational time similar to the classical filter method. Our experimental results

3The p-values denote the statistical significance of the di↵erence between two
feature sets, i.e. (SIMPLE & US), (US & S), and (S & MIXED), which is evaluted
by paired t-Test.
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support this aspect showing that our method performs well over the datasets used.
However, the algorithms suggested in the filtering steps rely on a set of parame-
ters, which can a↵ect the prediction performance. We empirically determined these
parameters, but with a more systematic approach, we may be able to improve the
performance. Finally, we expect that devising a fast but more accurate feature com-
bining method may increase the e�ciency of the feature selection, which should be
the focus of future investigations.
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Chapter 25

An Enhanced Selective Näıve Bayes Method
with Optimal Discretization

Marc Boullé

France Telecom R&D, 2 avenue Pierre Marzin, 22307 Lannion Cedex, France
marc.boulle@francetelecom.com

In this chapter, we present an extension of the wrapper approach applied to the
predictor. The originality is to use the area under the training lift curve as a criterion
of feature set optimality and to preprocess the numeric variables with a new optimal
discretization method. The method is experimented on the NIPS 2003 datasets both
as a wrapper and as a filter for multi-layer perceptron.

25.1 Introduction

The Näıve Bayes approach is based on the assumption that the variables are inde-
pendent within each output label, which can harm the performances when violated.
In order to better deal with highly correlated variables, the Selective Näıve Bayes
approach (Langley and Sage, 1994) uses a greedy forward search to select the vari-
ables. The accuracy is evaluated directly on the training set, and the variables are
selected as long as they do not degrade the accuracy. For numeric variables, the prob-
ability distribution is evaluated according to a Gaussian distribution whose mean
and variance are estimated on the training examples.

Although the approach performs quite well on datasets with a reasonable number
of variables, it does not scale on very large datasets with hundred or thousands of
variables, such as in marketing applications. We propose to enhance the original
method by exploiting a new Bayes optimal discretization method called MODL and
by evaluating the predictors with a new criterion more sensitive than the accuracy.
In the NIPS Challenge, the method is experimented both as a wrapper approach
(ESNB) and as a filter for multi-layer perceptron (ESNB+NN). The method is fast,
robust and manages to find a good trade-o↵ between the error rate and the number
of selected variables. However, the method needs further improvements in order to
reach better error rates.

We detail and comment the ESNB method in section 25.2 and focus on the
MODL discretization method in section 25.3. We present the results of the method
in the NIPS Challenge in section 25.4.
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25.2 The Enhanced Selective Näıve Bayes Method

In this section, we describe three enhancements to the Selective Näıve Bayes method:
the use of a new discretization method to pre-process numeric variables, the use
of the area under the lift curve to evaluate the performance of predictors and a
post-processing correction of the predicted output label probabilities. Lift curves
summarize the cumulative percent of targets recovered in the top quantiles of a
sample (Witten and Franck, 2000).

The evaluation of the probabilities for numeric variables has already been dis-
cussed in the literature (Dougherty et al., 1995, Hsu et al., 2002, Yang and Webb,
2002). Experiments have shown that even a simple Equal Width discretization with
10 bins brings superior performances compared to the assumption using a Gaussian
distribution. In a selection process, the risk of overfitting the data raises with the
number of variables. Slight losses in the quality of the evaluation of the probability
distribution of the variables may have cumulated e↵ects and lead to the selection of
irrelevant or redundant variables. We propose to use a new supervized discretization
method called MODL, which is Bayes optimal. This method is described in section
25.3.

In the wrapper approach, (Kohavi and John, 1997) propose to evaluate the selec-
tion process using accuracy with a five-fold cross validation. However, the accuracy
criterion su↵ers from some limits, even when the predictive performance is the only
concern. (Provost et al., 1998) propose to use Receiver Operating Analysis (ROC)
analysis rather than the accuracy. In marketing applications for example, the lift
curves are often used to evaluate predictors. In the context of variable selection,
there are other justifications to replace accuracy by another criterion. In case of a
skewed distribution of output labels, the accuracy may never be better than the
majority accuracy, so that the selection process ends with an empty set of variables.
This problem also arises when several consecutive selected variables are necessary
to improve the accuracy. In the method proposed in (Langley and Sage, 1994), the
selection process is iterated as long as there is no decay in the accuracy. This solution
raises new problems, such as the selection of irrelevant variables with no e↵ect on
accuracy, or even the selection of redundant variables with either insignificant e↵ect
or no e↵ect on accuracy. We propose to use the area under the lift curve, measured
directly on the training set, to evaluate whether a new variable should be selected.
If we note TP (True Positive), TN (True Negative), FP (False Positive) and FN
(False Negative) the four possible outcomes of the confusion matrix, the lift curve
is obtained by plotting TP (in %) against TP+FP

TP+FP+TN+FN

⇥ 100% for each confi-
dence value, starting at (0,1) and ending at (1,0). At each step of the algorithm, the
variable which brings the best increase of the area under the lift curve is choosen
and the selection process stops as soon as this area does not rise anymore. This
allows capturing slight enhancements in the learning process and helps avoiding the
selection of redundant variables or probes that have no e↵ect on the lift curve.

The last problem is related to the Näıve Bayes algorithm itself, which is a good
rank estimator, but a weak probability estimator (Hand and Yu, 2001). We propose
to add a correction to the estimation of the output labels probabilities at the end
of the learning process, instead of using the standard 50% probability threshold to
predict the output label. For a given probability threshold, we compute the resulting
confusion matrix on the training set and score it owing to the chi-square criterion.
The higher the chi-square criterion is, the more correlated are the predicted output
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labels and the true output labels. The best probability threshold is found by eval-
uating all possible confusion matrices, once the training examples have been sorted
by decreasing probability of output label. This corresponds to finding the best point
on the lift curve, owing to the maximization of the chi-square criterion of the related
confusion matrix.

Altogether, the algorithm can be optimized in O(n2m log(m)) time, where n is
the number of input variables and m the number of training examples. The pre-
processing step needs O(nm log(m)) to discretize all the variables. The forward
selection process requires O(n2m log(m)) time, owing to the decomposability of the
Näıve Bayes formula on the variables. The O(m log(m)) term in the complexity is
due to the evaluation of the area under the lift curve, based on the sort of the train-
ing examples. The post-processing correction needs O(m log(m)) time by sorting
the training examples and evaluating all possible probability thresholds. However,
the irrelevant variables can be detected just after the discretization step: they are
discretized in a single interval. If n

r

is the number of relevant variable and n
s

is
the number of selected variables at the end of the learning process, the practical
complexity of the algorithm is O(n

r

n
s

m log(m)) time, which is often far below the
theoretical complexity when the number of input variables is very high.

Enhanced Selective Näıve Bayes algorithm:

• Initialization
– Discretize each variable with the MODL discretization method
– Create an initial empty selected variable set and a set of relevant variables

• Selection process
Repeat the following steps
– For each unselected relevant variable

· Compute the Näıve Bayes predictor with the additional variable, on the
basis of the previous best predictor

· Evaluate the resulting predictor with the area under the lift curve
– If the evaluation is strictly improved

· Add the best variable to the selected variable set
· Update the best predictor

• Post-processing
– Find the best decision threshold by maximizing the chi-square criterion of

the contingency table

25.3 The MODL Discretization Method

In this section, we present the MODL approach which results in a Bayes optimal
evaluation criterion of discretizations and the greedy heuristic used to find near-
optimal discretizations.

The objective of the process is to induce a list of intervals that splits the value
domain of a numeric input variable. The training examples are described by pairs
of values: the numeric input value and the output label. If we sort the training
examples according to their input values, we obtain a string S of output labels. We
now propose the following formal definition of a discretization model.

Definition: A standard discretization model is defined by the following proper-
ties:
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• the discretization model relies only on the order of the output labels in the string
S, without using the values of the input variable;

• the discretization model allows to split the string S into a list of substrings (the
intervals);

• in each interval, the distribution of the output labels is defined by the frequencies
of the output labels in the interval.

Such a discretization model is called a SDM model.

Notations:
m : number of training examples
J : number of output labels
I : number of intervals
m

i

: number of training examples in the interval i
m

ij

: number of examples with output label j in the interval i
A SDM model is completely defined by the set of parameters {I, m

i

(1  i 
I), m

ij

(1  i  I, 1  j  J)}.

This definition is very general, and most discretization methods rely on SDM
models. They first sort the samples according to the variable to discretize (property
1) and try to define a set of intervals by partitioning the string of output labels
(property 2). The evaluation criterion is always based on the frequencies of output
labels (property 3).

In the Bayesian approach, the best model is found by maximizing the proba-
bility P (model/data) of the model given the data. Using the Bayes rule and since
the probability P (data) is constant under varying the model, this is equivalent to
maximize P (Model)P (Data/Model). We define below a prior which is essentially
a uniform prior at each stage of the hierarchy of the SDM model parameters. We
also introduce a strong hypothesis of independence of the distributions of the class
values. This hypothesis is often assumed (at least implicitely) by many discretization
methods, that try to merge similar intervals and separate intervals with significantly
di↵erent distributions of class values.

Definition: The following distribution prior on SDM models is called the three-
stage prior:

• the number of intervals I is uniformly distributed between 1 and m;
• for a given number of intervals I, every division of the string to discretize into I

intervals is equiprobable;
• for a given interval, every distribution of output labels in the interval is equiprob-

able;
• the distributions of the output labels in each interval are independent from each

other.

Theorem 1. (Boullé, 2004b) A SDM model distributed according to the three-stage
prior is Bayes optimal for a given set of training examples to discretize if the fol-
lowing criterion is minimal on the set of all SDM models:

log(m) + log
m + I � 1

I � 1
+

I

i=1

log
m

i

+ J � 1
J � 1

+
I

i=1

log
m

i

!
m

i,1! . . . mi,J

!
.

(25.1)
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The first term of the criterion stands for the choice of the number of intervals,
the second term for the choice of the bounds of the intervals and the third term for
the choice of the output labels distribution in each interval. The last term encodes
the probability of the data given the model.

Once the optimality of the evaluation criterion is established, the problem is
to design an e�cient minimization algorithm. The MODL method uses a greedy
bottom-up merge algorithm to perform this optimization, that can be optimized in
O(m log(m)) time. This algorithm exploits the additivity of the MODL criterion,
memorizes the variations �value of the criterion related to the merges, and keeps
these merge evaluations in a maintained sorted list (such as an AVL binary search
tree for example).

The method is fully described and experimented in (Boullé, 2004a,b). Compared
to other discretization methods, the MODL method obtains better classification
performances with fewer intervals. Random variables are discretized with a single
interval since this is the most probable discretization model of such variables. The
MODL method is thus e�cient at detecting probes.

25.4 Results on the NIPS challenge

In this section, we report the results obtained by the ESNB method on the NIPS
2003 Challenge datasets (Guyon, 2003). Each dataset is divided in 3 sets: training,
validation and test. In the first period, only the training sets could be used for train-
ing for submission of the original challenge entries. In the second period, the training
and validation sets were used together for the validation entries. We submitted one
original challenge entry using the ESNB method. Since the results looked promiss-
ing, we decided to submit two validation entries, one using the ESNB method and
the other using the method as a filter for multi-layer perceptron (ESNB+NN). The
ESNB method is fully automatic and does not require any parameter. In the fil-
ter approach, we use a non-linear multi-layer perceptron applied on the variables
selected by the ESNB method. The multi-layer perceptron is trained using back-
propagation with sigmoid activation function, regularized with orthogonal weight
decay. The training set of the challenge is used to train and the validation set to
stop training. This predictor is trained with a hidden layer containing 1, 5, 10, 25 or
50 neurons, and the best neural architecture is chosen based on the validation set:
50 neurons for the Madelon dataset and 1 neuron for the other datasets. We report
in Table 25.1 the results of our ESNB entry by Dec. 1st and in Table 25.2 the results
of our ESNB+NN entry by Dec. 8th.

The ESNB method has a low computation time, with on average 5 mn per
dataset on a PC 1.7 Mhz. The MODL discretization methods is very e�cient at
detecting probes and the use of the area under the lift curve as a feature subset
selection criterion helps removing redondant variables. This results in small numbers
of selected features, on average 1% of the input variables. Compared to the Dec. 1st

original entry, the ESNB method is able to exploit the increased number of training
examples available in the Dec. 8th experiments. It selects more features (a total of 321
versus 252) while keeping less probes (1 versus 3) and improves the balanced error
rate from 19.85% down to 18.25%. The ESNB+NN method largely improves the
results of the ESNB method, especially when the bias of the Näıve Bayes approach
is too limiting. Using the ESNB method as a filter approach is thus relevant. In
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Table 25.1. Challenge results for the ESNB method (Dec. 1st).

Dec. 1st ESNB challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall -57.82 19.85 85.96 1.02 10.6 88.00 6.84 97.22 80.3 47.77 1

Arcene -78.18 31.25 75.93 0.05 40 98.18 13.30 93.48 100.0 30.0 1

Dexter -45.45 9.80 96.42 0.17 0 96.36 3.90 99.01 1.52 12.87 1

Dorothea -45.45 21.03 89.43 0.05 1.89 98.18 8.54 95.92 100.0 50.0 1

Gisette -56.36 3.12 99.49 3.02 0 98.18 1.37 98.63 18.26 0.0 1

Madelon -63.64 34.06 68.51 1.8 11.11 100.00 7.17 96.95 1.6 0.0 1

Table 25.2. Challenge results for the (ESNB+NN) method (Dec. 8th).

Dec. 8th ESNB+NN challenge entry The winning challenge entry

Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

Overall -28 12.42 93.12 1.04 1.43 71.43 6.48 97.20 80.3 47.77 1

Arcene -60 22.92 83.78 0.14 7.14 94.29 11.86 95.47 10.7 1.03 1

Dexter -25.71 7.20 97.49 0.33 0 100 3.30 96.70 18.57 42.14 1

Dorothea 54.29 14.59 91.50 0.07 0 97.14 8.61 95.92 100 50 1

Gisette -42.86 2.46 99.64 3.26 0 97.14 1.35 98.71 18.32 0 1

Madelon -65.71 14.94 93.22 1.4 0 94.29 7.11 96.95 1.6 0 1

order to evaluate the method both on the balanced error rate and the number of
the selected variables, we report the method results and the entry results of all the
other participants on a bi-criteria plan displayed in figure 25.1.

The results of the ESNB methods used as a filter approach are on the Pareto
curve in figure 25.1. Many methods obtain a better error rate, up to twice better
than that of the ESNB+NN method, but at the expense of a significantly higher
number of selected variables.

25.5 Conclusion

The ESNB method is a feature selection method derived from the Näıve Bayes
method enclosed in a wrapper approach. It benefits from the use of the Bayes optimal
MODL discretization method and from the evaluation of predictor using the area
under the lift curve instead of the accuracy. It can be exploited either directly or as
a filter approach with a powerful predictor applied on the selected features.

Experiments on the NIPS 2003 datasets show that this fully automatic method is
fast, robust, and exhibits results with a good trade-o↵ between error rate and number
of selected variables. However, the method su↵ers from several weaknesses partly
related to the bias of the Näıve Bayes approach. In future work, we plan to improve
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Fig. 25.1. Bi-criteria analysis of the challenge results with the balanced error rate
on the x-coordinate and the number of selected variables on the y-coordinate

the error rate of the method, with the smallest possible decay in computation time
and selected variable number. The wrapper method can be improved by replacing
the forward selection algorithm by a more sophisticated search heuristic. Exploiting
ensemble methods is a promising direction for selecting a more comprehensive set
of selected variables. Although the univariate evaluation of variables is robust owing
to the MODL discretization method, the overfitting behaviour resulting from the
selection of a set of variables could be reduced by using regularization techniques.
A last direction is to decrease the bias of the Näıve Bayes approach by detecting
interactions between variables or building new features combining multiple input
variables.
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Summary. We propose in this chapter a new method to score subsets of variables
according to their usefulness for a given model. It can be qualified as a variable
ranking method ‘in the context of other variables’. The method consists in replacing
a variable value by another value obtained by randomly choosing a among other
values of that variable in the training set. The impact of this change on the output
is measured and averaged over all training examples and changes of that variable for
a given training example. As a search strategy, backward elimination is used. This
method is applicable on every kind of model and on classification or regression task.
We assess the e�ciency of the method with our results on the NIPS 2003 feature
selection challenge.

26.1 Introduction

In this chapter, we describe the ROBELON method used in the NIPS Feature Se-
lection Challenge and its use in variable selection.

The objective of variable selection (Guyon and Elissee↵, 2003) is three-fold:
improve the prediction performance of the predictors, provide faster and more cost-
e↵ective predictors, and allow a better understanding of the underlying process that
generated the data. Among techniques devoted to variable selection we find filter
methods (cf. chapter 3 ‘Filter methods’), which select variables by ranking them
with correlation coe�cients, and subset selection methods, which assess subsets of
variables according to their usefulness to a given model.

Wrapper methods (cf. chapter 4 ‘Search strategies’ and chapter 5 ’Embedded
Methods’ (Kohavi and John, 1997)) rely on a model as a black box to score subsets
of variables according to their usefulness for the modeling task. In practice, one
needs to define: (i) how to search the space of all possible variable subsets; (ii) how
to assess the prediction performance of a model to guide the search and halt it; (iii)
which model to use.
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We propose a new method to perform the second point above and to score
subsets of variables according to their predictive power for the modeling task. It
relies on a definition of the variable importance as measured from the variation of
the predictive performance of the model. The method is motivated and described in
section 26.2. Its use in variable selection is described in section 26.3. We compare in
section 26.4 the performance of the proposed method with other techniques on the
NIPS feature selection challenge 2003 and we conclude in section 26.5.

26.2 Analysis of an Input Variable Influence

26.2.1 Motivation and previous works

Our motivation is to measure variable importance given a predictive model. The
model is considered a perfect black box and the method has to be usable on a
very large variety of models for classification (whatever the number of classes) or
regression problems.

Since the model is a perfect black box let the model, f , be just an input-output
mapping function for an example k : yk = f(xk) = f(xk

1 , ..., xk

n

).
The ‘importance’ of a variable for a predictive model is naturally defined in terms

of influence on the output when the value of a variable changes. Although natural,
this definition hides some pitfalls we briefly discuss below.

The black box model could be a non-linear model for which the variation of the
output can be non-monotonous. Hence, the influence of an input variable cannot be
evaluated by a local measurement as for example partial derivatives or di↵erences
(Réfénes et al., 1994, Moody, 1994, Baxt and White, 1995).

The choice of the input variation range and should depend on the variable: too
small a value has the same drawback as the partial derivatives (local information
and not well suited for discrete variables), too large a value can be misleading if the
function (the model) with respect to an input V is non-monotonous, or periodic.

Recently, Féraud et al. (Féraud and Clérot, 2002) propose a global saliency mea-
surement which seems to answer to the first question. But their definition however
does not take into account the true interval of variation of the input variables. They
propose to use a prior on the possible values of the input variables. The knowledge
needed to define this prior depends on the specificities of the input variable (discrete,
positive, bounded, etc). Such individual knowledge is clearly di�cult and costly to
obtain for databases with a large number of variables. A more automatic way than
this ‘prior’ approach is needed to answer to the second question.

A first step in this direction is given by Breiman in (Breiman, 2001) (paper
updated for the version 3.0 of the random forest) where he proposes a method
which relies on the distribution of probability of the variable studied. Each example
is perturbed by randomly drawing another value of the studied variable among
the values spanned by this variable across all examples. The performance of the
perturbed set are then compared to the ‘intact’ set. Ranking variable performance
di↵erences allows to rank variable importance. This method allows to automatically
determine the possible values of a variable from its probability distribution, even
if perturbing every example only once does not explore the influence of the full
probability distribution of the variable. Moreover, although (Breiman, 2001) seems
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to restrict the method to random forests, it can obviously be extended to other
models.

The method described in this article combines the definition of the ‘variable
importance’ as given in Féraud et al. (Féraud and Clérot, 2002) (‘saliency’ in their
paper) with an extension of Breiman’s idea (Breiman, 2001). This new definition
of variable importance both takes into account the probability distribution of the
studied variable and the probability distribution of the examples.

26.2.2 Definition of the variable importance

The importance of an input variable is a function of examples x probability dis-
tribution and of the probability distribution of the considered variable (V

j

). Let us
define:

• V
j

the variable for which we look for the importance;
• V

ij

the realization of the variable V
j

for the example i;
• x

m

= (V
mj

)
j=1...n

the example m a vector with n components;
• f the predictive model;
• P

Vj (v) the probability distribution of the variable V
j

;
• P

x

(u) the probability distribution of examples X;

• f
j

(a; b) = f
j

(a1, ..., an

; b) = f(a1, ..., aj-1, b, aj+1, ..., an

) where a
p

is the pth com-
ponent of the vector a.

The importance of the variable V
j

is the average of the measured variation of the
predictive model output when examples are perturbed according to the probability
distribution of the variable V

j

. The perturbed output of the model f , for an example

x
i

, is the model output for this example but having exchanged the jth component of

this example with the jth component of another example, k. The measured variation,
for the example x

i

, is then the di↵erence between the ‘true output’ f
j

(x
i

; V
ij

) and
the ‘perturbed output’ f

j

(x
i

; V
kj

) of the model. The importance of the variable V
j

is then the average of |f
j

(x
i

; V
ij

) � f
j

(x
i

; V
kj

)| on both the examples probability
distribution and the probability distribution of the variable V

j

. The importance of
the variable V

j

for the model f is then:

S(V
j

|f) = P
Vj (v)dvP

x

(u)du |f (u)� f
j

(u, v)| (26.1)

26.2.3 Computation

Approximating the distributions by the empirical distributions the computation of
the average of S(V

j

|f) is:

S(V
j

|f) = P
Vj (v)dv P

x

(u)du |f (u)� f
j

(u, v)| (26.2)

= P
x

(u)du P
Vj (v)dv |f (u)� f

j

(u, v)| (26.3)

=
1
m

m

i=1

1
m

m

k=1

|f
j

(x
i

; V
ij

)� f
j

(x
i

; V
kj

)| (26.4)
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This computation would require to use all the possible values of the variable
V

j

for all examples available. For m examples in the training set and therefore m
possible values of V

j

the computation time scales as m2 and becomes very long for
large databases. There are, at least, two faster heuristics to compute S(V

j

|f):

(1.) We draw simultaneously x
i

and V
kj

and compute one realization of |f
j

(x
i

, V
ij

)�
f

j

(x
i

, V
kj

)|. Such realizations are considered as a constant value perturbed by
a zero-mean noise; they are successively fed to a Kalman filter to estimate the
average (Maybeck, 1979, Welch and Bishop, 2001).

(2.) The empirical variable probability distribution can be approximated using l
(arbitrary chosen) representative examples of an ordered statistic (the values of
the central individuals of l partiles for example).

S(V
j

|f) =
1
m

m

i=1

1
l

l

p=1

|f
j

(x
i

; V
ij

)� f
j

(x
i

; v
p

)|P (v
p

) (26.5)

where P (v
p

) represent the probability to observe the value v
p

. This method is
especially useful when V

j

takes only discrete values since the inner sum is exact
and not an approximation. The computation can also be stopped with a Kalman
filter.

A regularization technique has to be applied during the training process and/or a
preprocessing to ensure that only not correlated (Moody, 1994) and relevant features
will survive after convergence (Burkitt, 1992, Rumelhart et al., 1986).

26.3 Application to feature subset selection

The wrapper methodology o↵ers a simple and powerful way to address the problem
of variable selection, regardless the chosen learning machine. The learning machine
is considered a perfect black box and the method lends itself to o↵-the-shelf machine
learning software packages. Exhaustive search can only be performed if the number
of variables is small and heuristics are otherwise necessary. Among these, backward
elimination and ‘driven’ forward selection which can both rely on the variable im-
portance described above.

In backward elimination one starts with the set of all variables and progressively
eliminates the least important variable. The model is re-trained after every selection
step. In forward selection, as in (Breiman, 2001), at a first step we train a model with
all variables. Then we rank the variables using the method described in this paper.
In a second step we train models where variables are progressively incorporated into
larger and larger subsets according to their ranks.

Comparison between both methods will be discussed elsewhere. Hereafter we
restrict the discussion to backward elimination. We note here that both methods
have the appealing property of depending on one parameter only, the degradation of
the performance of the model trained with the subset relatively to the best possible
performance reached.

To speed up the backward elimination another parameter is added. At each step
of the backward elimination we remove all variables with an importance smaller
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than a very low threshold (10�6). With this implementation the backward elimina-
tion method has only two simple parameters, a performance threshold to define the
selected subset and an importance threshold to discard variables with ‘no’ impor-
tance.

26.4 Results on the NIPS Feature Selection Challenge

26.4.1 Introduction

The purpose of the NIPS 2003 workshop on feature extraction was to bring together
researchers of various application domains to share techniques and methods. Orga-
nizers of the challenge formatted a number of datasets for the purpose of bench-
marking feature selection algorithms in a controlled manner. The data sets were
chosen to span a wide variety of domains. They chose data sets that had su�ciently
many examples to create a large enough test set to obtain statistically significant
results. The input variables are continuous or binary, sparse or dense. All problems
however are two-class classification problems. The similarity of the tasks will allow
participants to enter results on all data sets to test the genericity of the algorithms.
Each dataset was split in 3 sets: training, validation and test set. All the informa-
tions about the challenge, the datasets, the results can be found in this book and
on: www.nipsfsc.ecs.soton.ac.uk.

26.4.2 Test conditions of the proposed method

As we wish to investigated the performance of our variable importance measurement,
we chose to use a single learning machine for all datasets (no bagging, no Ada-boost,
no other bootstrap method): a MLP neural network with 1 hidden layer, tangent
hyperbolic activation function and stochastic back-propagation of the squared error
as training algorithm.

We added a regularization term active only on directions in weight space which
are orthogonal to the training update (Burkitt, 1992). Other methods to measure
the sensitivity of the output of neural networks can be found in the chapter 5.2.3 of
this book.

In the first period of the challenge, only training sets could be used for training for
submission of the original challenge entries. For each dataset we split the training
set in two sets: a training (70 %) and a validation set (30 %); the validation set
of the challenge is then used as a test set. This training set is used to train and
the validation set is used to stop training. We made an original submission before
December first. We named our submissions on the challenge web site ROBELON for
RObuts Backward ELimination On Neural network. In the figure 26.1 we call this
submission ‘ROBELON original entry’.

We made, three months after, a new submission where the training set of the
challenge is used to train and the validation set of the challenge is used to stop
training. Even if this submission has been made after the 8th december, as we used
no information about the databases, this submission is called ‘ROBELON validation
entry’ in the figure 26.1.

www.nipsfsc.ecs.soton.ac.uk
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In both cases the preprocessing used is only a zero-mean, unit-variance stan-
dardization. The variables importance is measured using only the training set. The
strategy used to constitute the selected variable subset is the standard backward
elimination. The subset of variables was chosen as the smallest subset allowing a
performance greater than 95 % of the best performance reached during the selection
process.

26.4.3 Comparison with others results

‘Variable selection’ is always somewhat ambiguous when the result is judged from
the balanced error rate (BER) only, specially when di↵erent learning machines are
used, since it is more a matter of balance between the BER and the number of
features used rather than a matter of BER only: to prefer a BER=0.1 using 50 % of
features to a BER=0.12 using 10 % of the features is mostly a matter of application
requirements. In some applications, one would trade some accuracy for less features
as, for example, in real-time network applications.

What we expect from a variable selection technique is to adapt itself in such
situation by removing as many features as possible. Therefore, what we can expect
from the combination of our simple model and our selection technique is to keep
a BER reasonably close to the average while using significantly less features on
all datasets. The table 26.1 presents the detailed original results obtained by the
method.

Table 26.1. NIPS 2003 challenge results for ROBELON.

Dec. 1st Our best challenge entry The winning challenge entry

Dataset Score BER BER⇤ AUC Feat Probe Score BER AUC Feat Probe

Overall -62.18 16.37 20.1 83.63 1.12 21.47 88.00 6.84 97.22 80.3 47.8

Arcene -85.45 29.65 20.2 70.35 1.50 60.0 98.18 13.30 93.48 100.0 30.0

Dexter -49.09 9.70 15.1 90.30 0.61 29.51 96.36 3.90 99.01 1.5 12.9

Dorothea -56.36 22.24 30.0 77.76 0.07 12.31 98.18 8.54 95.92 100.0 50.0

Gisette -70.91 3.48 3.5 96.52 1.80 5.56 98.18 1.37 98.63 18.3 0.0

Madelon -49.09 16.78 31.5 83.22 1.60 0.0 100.00 7.17 96.95 1.6 0.0

BER⇤: same model using all the variables as a rough guide

In order to evaluate the method both on the BER and the number of the selected
variables, we report the method results and all the challenge entry results on a bi-
criteria plan displayed in figure 26.1.

The table 26.1 and the figure 26.1 show that restricting ourselves to a simple
model with no bootstrap techniques cannot allow us to reach very good BER, par-
ticularly on databases as ARCENE where the number of examples is quite small.
Several methods obtain a better error rate, up to twice better than the ‘ROBELON’
method, but at the expense of a significantly higher number of selected variables.
Although admittedly not the most adapted for accuracy on some datasets, this sim-
ple model indeed reaches a ‘reasonable’ BER. The proposed method, combined with
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Fig. 26.1. Bi-criteria analysis of the challenge results with the balanced error rate
versus the number of selected variables (the line is only a guide for the eyes)

backward elimination using only one neural network, selects very few variables com-
pared with the other methods. The proposed variable selection technique exhibits
the expected behavior by both keeping the BER to a reasonable level (better than
the BER with all features, except for ARCENE as already discussed, close to the
average result of the challenge) and dramatically reducing the number of features
on all datasets. The number of selected probes decreases when the number of the
training examples increases.

26.5 Conclusions

We presented a new measure which allows to estimate the importance of each input
variable of a model. This measure has no adjustable parameter, is applicable on
every kind of model and for classification or regression task.

Experimental results on the NIPS 2003 feature selection challenge show that
using this measure coupled with backward elimination allows to reduce considerably
the number of input variables with no degradation of the modeling accuracy. Future
work will investigate the behavior of this importance measurement when applied to
variable selection with bootstrapped models.
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Summary. In this chapter, we study and put under a common framework a
number of non-linear dimensionality reduction methods, such as Locally Lin-
ear Embedding, Isomap, Laplacian eigenmaps and kernel PCA, which are
based on performing an eigen-decomposition (hence the name “spectral”).
That framework also includes classical methods such as PCA and metric mul-
tidimensional scaling (MDS). It also includes the data transformation step
used in spectral clustering. We show that in all of these cases the learning
algorithm estimates the principal eigenfunctions of an operator that depends
on the unknown data density and on a kernel that is not necessarily positive
semi-definite. This helps generalizing some of these algorithms so as to pre-
dict an embedding for out-of-sample examples without having to retrain the
model. It also makes it more transparent what these algorithm are minimizing
on the empirical data and gives a corresponding notion of generalization error.

27.1 Introduction

Unsupervised learning algorithms attempt to extract important characteristics of
the unknown data distribution from the given examples. High-density regions are
such salient features and they can be described by clustering algorithms (where
typically each cluster corresponds to a high density “blob”) or by manifold learning
algorithms (which discover high-density low-dimensional surfaces). A more generic
description of the density is given by algorithms that estimate the density function.

In the context of supervised learning (each example is associated with a tar-
get label) or semi-supervised learning (a few examples are labeled but most are
not), manifold learning algorithms can be used as pre-processing methods to per-
form dimensionality reduction. Each input example is then associated with a low-
dimensional representation, which corresponds to its estimated coordinates on the
manifold. Since the manifold learning can be done without using the target labels,
it can be applied on all of the input examples (both those labeled and those unla-
beled). If there are many unlabeled examples, it has been shown that they can help
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to learn a more useful low-dimensional representation of the data (Belkin and Niyogi,
2003b). Dimensionality reduction is an interesting alternative to feature selection:
for instance classical Principal Component Analysis (PCA) is used successfully in
Chapter Chapter 10. Like feature selection it yields a low-dimensional representation,
which helps building lower capacity predictors in order to improve generalization.
However, unlike feature selection it may preserve information from all the original
input variables. In fact, if the data really lie on a low-dimensional manifold, it may
preserve almost all of the original information while representing it in a way that
eases learning. For example, manifold learning algorithms such as those described
in this chapter often have the property of “unfolding” the manifold, i.e. flattening it
out, as shown in figure 27.1. On the other hand, these techniques being purely unsu-
pervised, they may throw away low variance variations that are highly predictive of
the target label, or keep some with high variance but irrelevant for the classification
task at hand. It is still possible to combine dimensionality reduction with a feature
extraction algorithm, the latter being applied on the reduced coordinates in order to
select those most appropriate for classification (e.g. in Chapter Chapter 29, a PCA
step is used in experiments for the feature selection challenge). In addition to being
useful as a preprocessing step for supervised or semi-supervised learning, linear and
non-linear dimensionality reduction is also often used for data analysis and visual-
ization, e.g. (Vlachos et al., 2002), since visualizing the projected data (two or three
dimensions at a time) can help to better understand them.

In the last few years, many unsupervised learning algorithms have been proposed,
which share the use of an eigen-decomposition for obtaining a lower-dimensional em-
bedding of the data that characterizes a non-linear manifold near which the data
would lie: Locally Linear Embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenen-
baum et al., 2000) and Laplacian eigenmaps (Belkin and Niyogi, 2003a). There are
also many variants of spectral clustering (Weiss, 1999, Ng et al., 2002), in which
such an embedding is an intermediate step before obtaining a clustering of the data
that can capture flat, elongated and even curved clusters. The two tasks (manifold
learning and clustering) are linked because the clusters that spectral clustering man-
ages to capture can be arbitrary curved manifolds (as long as there is enough data
to locally capture the curvature of the manifold): clusters and manifold both are
zones of high density. An interesting advantage of the family of manifold learning
algorithms described in this chapter is that they can easily be applied in the case of
non-vectorial data as well as data for which no vectorial representation is available
but for which a similarity function between objects can be computed, as in the MDS
(multi-dimensional scaling) algorithms (Torgerson, 1952, Cox and Cox, 1994).

There are of course several dimensionality reduction methods that do not fall in
the spectral framework described here, but which may have interesting connections
nonetheless. For example, the principal curves algorithms (Hastie and Stuetzle, 1989,
Kegl and Krzyzak, 2002) have been introduced based on geometric grounds, mostly
for 1-dimensional manifolds. Although they optimize a di↵erent type of criterion,
their spirit is close to that of LLE and Isomap. Another very interesting family of
algorithms is the Self-Organizing Map (Kohonen, 1990). With these algorithms, the
low dimensional embedding space is discretized (into topologically organized centers)
and one learns the coordinates in the raw high-dimensional space of each of these
centers. Another neural network like approach to dimensionality reduction is the
auto-associative neural network (Rumelhart et al., 1986, Bourlard and Kamp, 1988,
Saund, 1989), in which one trains a multi-layer neural network to predict its input,
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but forcing the intermediate representation of the hidden units to be a compact code.
In section 27.2.7 we discuss in more detail a family of density estimation algorithms
that can be written as mixtures of Gaussians with low-rank covariance matrices,
having intimate connections with the LLE and Isomap algorithms.

An interesting question that will not be studied further in this chapter is that
of selecting the dimensionality of the embedding. This is fundamentally a question
of model selection. It could be addressed using traditional model selection methods
(such as cross-validation) when the low-dimensional representation is used as input
for a supervised learning algorithm. Another approach is that of inferring the di-
mensionality based on purely unsupervised grounds, using the geometric properties
of the empirical data distribution (Kégl, 2003).

27.1.1 Transduction and Induction

The end result of most inductive machine learning algorithms is a function that
minimizes the empirical average of a loss criterion (possibly plus regularization).
The function can be applied on new points and for such learning algorithms it is
clear that the ideal solution is a function that minimizes the expected value of that
loss criterion under the unknown true distribution from which the data was sampled.
That expected loss is known as the generalization error.

However, such a characterization was missing for spectral embedding algo-
rithms such as metric Multi-Dimensional Scaling (MDS) (Torgerson, 1952, Cox and
Cox, 1994), spectral clustering (see (Weiss, 1999) for a review), Laplacian eigen-
maps (Belkin and Niyogi, 2003a), Locally Linear Embedding (LLE) (Roweis and
Saul, 2000) and Isomap (Tenenbaum et al., 2000), which are used either for dimen-
sionality reduction or for clustering. As such these algorithms are therefore really
transduction algorithms: any test data for which an embedding is desired must be
included in the (unlabeled) “training set” on which the algorithm is applied. For ex-
ample, if the embedding obtained is used as an input representation for a supervised
learning algorithm, the input part of the test examples must be provided at the time
of learning the embedding. The basic form of these algorithms does not provide a
generic function that can be applied to new points in order to obtain an embed-
ding or a cluster membership, and the notion of generalization error that would be
implicitly minimized is not clearly defined either.

As a natural consequence of providing a unifying framework for these algorithms,
we provide an answer to these questions. A loss criterion for spectral embedding
algorithms can be defined. It is a reconstruction error that depends on pairs of
examples. Minimizing its average value yields the eigenvectors that provide the clas-
sical output of these algorithms, i.e. the embeddings. Minimizing its expected value
over the true underlying distribution yields the eigenfunctions of a linear operator
(called L here) that is defined with a similarity function (a kernel, but not nec-
essarily positive semi-definite) and the data-generating density. When the kernel
is positive semi-definite and we work with the empirical density there is a direct
correspondence between these algorithms and kernel Principal Component Analysis
(PCA) (Schölkopf et al., 1998). Our work is also a direct continuation of previ-
ous work (Williams and Seeger, 2000) noting that the Nyström formula and the
kernel PCA projection (which are equivalent) represent an approximation of the
eigenfunctions of the above linear operator. Previous analysis of the convergence of
generalization error of kernel PCA (Shawe-Taylor et al., 2002, Shawe-Taylor and
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Williams, 2003, Zwald et al., 2004) also help to justify the view that these methods
are estimating the convergent limit of some eigenvectors (at least when the kernel
is positive semi-definite). The eigenvectors can then be turned into estimators of
eigenfunctions, which can therefore be applied to new points, turning the spectral
embedding algorithms into function induction algorithms. The Nyström formula ob-
tained this way is well known (Baker, 1977), and will be given in eq. 27.2 below. This
formula has been used previously for estimating extensions of eigenvectors in Gaus-
sian process regression (Williams and Seeger, 2001), and it was noted (Williams and
Seeger, 2000) that it corresponds to the projection of a test point computed with
kernel PCA.

In order to extend spectral embedding algorithms such as LLE and Isomap to
out-of-sample examples, this chapter defines for these spectral embedding algorithms
data-dependent kernels k

m

that can be applied outside of the training set. See also
the independent work (Ham et al., 2003) for a kernel view of LLE and Isomap, but
where the kernels are only applied on the training set.

Obtaining an induced function that can be applied to out-of-sample examples
is not only interesting from a theoretical point of view, it is also computationally
useful. It allows us to say something about new examples without having to re-do
the kernel computations (building the Gram matrix, normalizing it, and computing
the principal eigenvectors, which all take at least time quadratic in the number of
training examples). The formula proposed requires time linear in the training set
size.

Additional contributions of this chapter include a characterization of the empir-
ically estimated eigenfunctions in terms of eigenvectors in the case where the kernel
is not positive semi-definite (which is often the case for MDS and Isomap), a con-
vergence theorem linking the Nyström formula to the eigenfunctions of L, as well as
experiments on MDS, Isomap, LLE and spectral clustering / Laplacian eigenmaps
showing that the Nyström formula for out-of-sample examples is accurate.

27.1.2 Notation

To simplify the presentation, we will consider the vector-space versions of these
algorithms, in which we start from a data set X = (x1, . . . , xm

) with x
i

2 Rn

sampled i.i.d. from an unknown distribution with density p(·). However, the results
in this chapter can be readily extended to the case of arbitrary objects, with p(x)dx
replaced by dµ(x) with µ(x) an appropriate measure, and the only quantity that is
required in the algorithms is the similarity or distance between pairs of objects (e.g.
similarity k

m

(x
i

, x
j

) below). See for example the treatment of pairwise measurement
data for LLE (Saul and Roweis, 2002) and Isomap (Tenenbaum et al., 2000), and
for MDS in section 27.2.2.

Below we will use the notation

E
x

[f(x)] = f(x)p(x)dx

for averaging over p(x) and

Ê
x

[f(x)] =
1
m

m

i=1

f(x
i

)
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for averaging over the data in X , i.e. over the empirical distribution denoted p̂(x).
We will denote kernels with k

m

(x, y) or k̃(x, y), symmetric functions, not always
positive semi-definite, that may depend not only on x and y but also on the data X .
The spectral embedding algorithms construct an a�nity matrix K , either explicitly
through

K
ij

= k
m

(x
i

, x
j

) (27.1)

or implicitly through a procedure that takes the data X and computes K . We denote
by v

r,i

the i-th coordinate of the r-th eigenvector of K (sorted in order of decreasing
eigenvalues), associated with the eigenvalue `

r

. With these notations, the Nyström
formula discussed above can be written:

f
r,m

(x) =

p
m
`
r

m

i=1

v
r,i

k
m

(x, x
i

) (27.2)

where f
r,m

is the r-th Nyström estimator with m samples. We will show in section
27.3 that it estimates the r-th eigenfunction of a linear operator and that it provides
an embedding for a new example x.

27.2 Data-Dependent Kernels for Spectral Embedding
Algorithms

The first and foremost observation to make is that many spectral embedding algo-
rithms can be cast in a common framework. The spectral embedding algorithms can
be seen to build a (m⇥m) similarity matrix K (also called the Gram matrix)1 and
compute its principal eigenvectors v

r

= (v
r,1, . . . , vr,m

)T (one entry per exemple)
with eigenvalues `

r

(sorted by decreasing order). The embedding associated with the
i-th training example is given by the i-th element of the principal eigenvectors, up
to some scaling:

P(x
i

) = (v1,i

, v2,i

, . . . , v
N,i

)T (27.3)

where N  m is the desired number of embedding coordinates. The scaling factor
depends on the algorithm: for instance, in kernel PCA, MDS and Isomap, v

r,i

is
multiplied by

p
`
r

, and in LLE it is multiplied by
p

m to obtain the actual embedding
coordinates.

In general, we will see that K
ij

depends not only on (x
i

, x
j

) but also on the
other training examples. Nonetheless, as we show below, it can always be written
K

ij

= k
m

(x
i

, x
j

) where k
m

is a “data-dependent” kernel (i.e. it is a function of
the m elements of the training set X , and not just of its two arguments). In many
algorithms a matrix K̃ is first formed from a simpler, often data-independent kernel
(such as the Gaussian kernel), and then transformed into K . We want to think of
the entries of K as being generated by applying k

m

to the pairs (x
i

,x
j

) because
this will help us generalize to new examples not in the training set X , and it will
help us thinking about what happens as m increases.

For each of these methods, by defining a kernel k
m

that can be applied outside
of the training set, we will be able to generalize the embedding to a new point x,

1For Laplacian eigenmaps (section 27.2.4) and LLE (section 27.2.6), the matrix
K discussed here is not the one defined in the original papers on these algorithms,
but a transformation of it to reverse the order of eigenvalues, as we see below.
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via the Nyström formula (eq. 27.2 above, and section 27.3.2). This will only require
computations of the form k

m

(x, x
i

) with x
i

a training point.

27.2.1 Kernel Principal Component Analysis

Kernel PCA is an unsupervised manifold learning technique that maps data points
to a new space, generally lower-dimensional (but not necessarily). It generalizes the
Principal Component Analysis approach to non-linear transformations using the
kernel trick (Schölkopf et al., 1996, 1998, Schölkopf et al., 1999). One considers the
data mapped into a “feature space”, a Hilbert space of possibly infinite dimension
such that if x is mapped to �̃(x), we have h�̃(x), �̃(y)i = k̃(x, y). Here, k̃ must be
a positive (semi)-definite kernel, and is often taken as the Gaussian kernel2, i.e.

k̃(x, y) = e�
kx�yk2

�2 . (27.4)

The kernel PCA algorithm consists in performing PCA in the feature space:
it implicitly finds the leading eigenvectors and eigenvalues of the covariance of the
projection �̃(x) of the data. If the data are centered in feature space (Ê

x

[�̃(x)] = 0),
the (empirical) feature space covariance matrix is C = Ê

x

[�̃(x)�̃(x)T ]. In general,
however, the data are not centered, and we need to define a “centered” mapping

�
m

(x) = �̃(x)� 1
m

m

i=1

�̃(x
i

)

and an associated data-dependent kernel k
m

such that k
m

(x, y) = h�
m

(x), �
m

(y)i,
which rewrites:

k
m

(x, y) = k̃(x, y)� Ê
x

0 [k̃(x0, y)]� Ê
y

0 [k̃(x, y0)] + Ê
x

0
,y

0 [k̃(x0, y0)]. (27.5)

The empirical covariance matrix C in “feature space” is thus actually defined by

C = Ê
x

[�
m

(x)�
m

(x)T ] (27.6)

with eigenvectors w
r

associated with eigenvalues �
r

. As shown in (Schölkopf et al.,
1998), this eigen-decomposition of C is related to the one of K (the Gram matrix
defined by eq. 27.1) through �

r

= `
r

/m and

w
r

=
1p
`
r

m

i=1

v
r,i

�
m

(x
i

)

where v
r

are the eigenvectors of K , associated with eigenvalues `
r

. As in PCA, one
can then obtain the embedding of a training point x

i

by the projection of �
m

(x
i

)
on the leading eigenvectors (w1, . . . , wN

) of C , which yields exactly the embedding
of eq. 27.3, if we multiply v

r,i

by
p
`
r

.
Note that, as in PCA, we can also compute the projection P(x)=(P1(x),. . . ,P

N

(x))T

for a new point x, which is written

P
r

(x) = hw
r

, �
m

(x)i =
1p
`
r

m

i=1

v
r,i

k
m

(x
i

, x). (27.7)

This is the key observation that will allow us, in section 27.3.2, to extend to new
points the embedding obtained with other spectral algorithms.

2Using the Gaussian kernel is not always a good idea, as seen in section 27.5.1,
and other nonlinear kernels, such as polynomial kernels, may be more suited.



27 Spectral Dimensionality Reduction 525

27.2.2 Multi-Dimensional Scaling

Metric Multi-Dimensional Scaling (MDS) (Torgerson, 1952, Cox and Cox, 1994)
starts from a notion of distance d(x, y) that is computed between each pair of
training examples to fill a matrix K̃

ij

= d2(x
i

, x
j

). The idea is to find a low-
dimensional embedding of the dataset X that preserves the given distances between
training points. To do so, the distances are converted to equivalent dot products
using the “double-centering” formula, which makes K

ij

depend not only on (x
i

, x
j

)
but also on all the other examples:

K
ij

= �1
2

K̃
ij

� 1
m

S
i

� 1
m

S
j

+
1

m2
k

S
k

(27.8)

where the S
i

are the row sums of K̃ :

S
i

=
m

j=1

K̃
ij

. (27.9)

Eq. 27.8 is used to obtain for K
ij

the centered dot product between x
i

and x
j

from
the pairwise squared distances given by d2, just as eq. 27.5 yields the centered dot
product (in feature space) from the pairwise non-centered dot products given by k̃.
The embedding of the example x

i

is then given by eq. 27.3 with v
r,i

multiplied byp
`
r

. If d is the Euclidean distance, this is the same embedding as in classical (linear)
PCA.

A corresponding data-dependent kernel which generates the matrix K is:

k
m

(x, y) = �1
2

d2(x, y)� Ê
x

0 [d2(x0, y)]� Ê
y

0 [d2(x, y0)] + Ê
x

0
,y

0 [d2(x0, y0)] .

(27.10)

27.2.3 Spectral Clustering

Several variants of spectral clustering have been proposed (Weiss, 1999). They can
yield impressively good results where traditional clustering looking for “round blobs”
in the data, such as k-means, would fail miserably (see figure 27.1). It is based on
two main steps: first embedding the data points in a space in which clusters are more
“obvious” (using the eigenvectors of a Gram matrix), and then applying a classical
clustering algorithm such as k-means, e.g. as in (Ng et al., 2002). To construct the
spectral clustering a�nity matrix K , we first apply a data-independent kernel k̃
such as the Gaussian kernel to each pair of examples: K̃

ij

= k̃(x
i

, x
j

). The matrix
K̃ is then normalized, e.g. using “divisive” normalization (Weiss, 1999, Ng et al.,
2002)3 :

K
ij

=
K̃

ij

S
i

S
j

(27.11)

3Better embeddings for clustering are usually obtained if we define S
i

=

j 6=i

K̃
ij

: this alternative normalization can also be cast into the general frame-
work developed here, with a slightly di↵erent kernel. Also, one could take the row
average instead of the row sum, which seems more natural even if it does not change
the embedding.
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with S
i

and S
j

defined by eq. 27.9. To obtain N clusters, the first N principal eigen-
vectors of K are computed and k-means is applied on the embedding coordinates
after normalizing each embedding vector to have unit norm: the r-th coordinate of

the i-th example is v
r,i

/ N

l=1 v2
l,i

. Note that if one is interested in the embedding

prior to normalization, this embedding should be multiplied by
p

m to be stable (to
keep the same order of magnitude) as m varies.

To generalize spectral clustering to out-of-sample points, we will need a kernel
that could have generated that matrix K :

k
m

(x, y) =
1
m

k̃(x, y)

Ê
x

0 [k̃(x0, y)]Ê
y

0 [k̃(x, y0)]
. (27.12)

)

Fig. 27.1. Example of the transformation learned as part of spectral clustering.

Input data on the left, transformed data on the right. Gray level and cross/circle

drawing are only used to show which points get mapped where: the mapping reveals

both the clusters and the internal structure of the two manifolds.

Note that this divisive normalization comes out of the justification of spectral
clustering as a relaxed statement of the min-cut problem (Chung, 1997, Spielman
and Teng, 1996) (to divide the examples into two groups such as to minimize the sum
of the “similarities” between pairs of points straddling the two groups). The additive
normalization performed with kernel PCA (eq. 27.5) makes sense geometrically as a
centering in feature space. Both the divisive normalization and the additive normal-
ization procedures make use of a kernel row/column average. It would be interesting
to find a similarly pleasing geometric interpretation to the divisive normalization.

27.2.4 Laplacian Eigenmaps

The Laplacian eigenmaps method is a recently proposed dimensionality reduction
procedure (Belkin and Niyogi, 2003a) that was found to be very successful for semi-
supervised learning, where one uses a large unlabeled dataset to learn the manifold
structure, thus reducing the dimensionality of labeled data (which can benefit to
supervised learning algorithms). Several variants have been proposed by the authors
and we focus here on the latest one, but they all share the same spirit.

The Laplacian operator has a natural interpretation as a smoothness functional:
we look for an embedding (y1, . . . , ym

) of the training points such that ky
i

� y
j

k2
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is small when i and j are “near” each other, i.e. when k̃(x
i

, x
j

) is large (if k̃ can
be interpreted as a similarity function). This corresponds to minimizing

ij

ky
i

�
y

j

k2k̃(x
i

, x
j

). It has to be done under a norm constraint, and an appropriate one
is that, denoting Y the (m⇥N) matrix whose i-th row is y

i

, we force Y T SY = I ,
where S is the diagonal matrix with elements S

i

from eq. 27.9 (row sums of K̃ ,
possibly ignoring diagonal terms). This norm constraint has the advantage of giving
an appropriate weight to examples that are “connected” to more other examples.
Rearranging this criterion, the solutions to the constrained optimization problem
correspond to the following generalized eigenproblem:

(S � K̃)z
r

= �
r

Sz
r

(27.13)

with eigenvalues �
r

, and eigenvectors z
r

being the columns of Y . The solution with
smallest (zero) eigenvalue corresponds to the uninteresting solution with constant
embedding, so it is discarded. The eigenvalue corresponding to a solution quantifies
the above defined smoothness, so we keep the N solutions with smallest non-zero
eigenvalues, yielding the desired embedding.

Here, the matrix S � K̃ is the so-called graph Laplacian, and it can be shown
(Belkin and Niyogi, 2003a) to be an approximation of the manifold Laplace Beltrami
operator, when using the Gaussian kernel or the k-nearest-neighbor kernel for the
similarity k̃(·, ·) on the graph. The k-nearest-neighbor kernel is represented by the
symmetric matrix K̃ whose element (i, j) is 1 if x

i

and x
j

are k-nearest-neighbors (x
i

is among the k nearest neighbors of x
j

or vice versa) and 0 otherwise. Approximating
the Laplace Beltrami operator is motivated by the fact that its eigenfunctions are
mappings that optimally preserve the “locality” of data (Belkin and Niyogi, 2003a).

It turns out that the above algorithm results in the same embedding (up to
scaling) that is computed with the spectral clustering algorithm from (Shi and Malik,
1997) described in section 27.2.3: as noted in (Weiss, 1999) (Normalization Lemma
1), an equivalent result (up to a component-wise scaling of the embedding) can be
obtained by considering the principal eigenvectors v

r

of the normalized matrix K
defined in eq. 27.11. To fit the common framework for spectral embedding in this
chapter, we have used the latter formulation. Therefore, the same data-dependent
kernel can be defined as for spectral clustering (eq. 27.12) to generate the matrix
K , i.e. spectral clustering just adds a clustering step after a Laplacian eigenmaps
dimensionality reduction.

27.2.5 Isomap

Isomap (Tenenbaum et al., 2000) generalizes MDS (section 27.2.2) to non-linear
manifolds. It is based on replacing the Euclidean distance by an empirical approx-
imation of the geodesic distance on the manifold. We define the geodesic distance
d̂(·, ·) with respect to a data set X , a distance d(·, ·) and a neighborhood k as follows:

d̂(x, y) = min
⇡

|⇡|

i=1

d(⇡
i

, ⇡
i+1) (27.14)

where ⇡ is a sequence of points of length |⇡| = l � 2 with ⇡1 = x, ⇡
l

= y,
⇡

i

2 X 8i 2 {2, . . . , l � 1} and (⇡
i

,⇡
i+1) are k-nearest-neighbors of each other.

The length |⇡| = l is free in the minimization. The Isomap algorithm obtains the
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normalized matrix K from which the embedding is derived by transforming the
raw pairwise distances matrix as follows: (1) compute the matrix K̃

ij

= d̂2(x
i

, x
j

)
of squared geodesic distances with respect to the data X and (2) apply to this
matrix the double-centering transformation (eq. 27.8), as for MDS. As in MDS, the
embedding of x

i

is given by eq. 27.3 with v
r,i

multiplied by
p
`
r

. Step (1) can be done
in O(n3) operations very easily (e.g. by Floyd’s algorithm), but in (Tenenbaum et al.,
2000) it is suggested to use more e�cient algorithms exploiting the sparse structure
of the neighborhood graph, such as those presented in (Kumar et al., 1994).

There are several ways to define a kernel that generates K and also generalizes
out-of-sample. The solution we have chosen simply computes the geodesic distances
without involving the out-of-sample point(s) along the geodesic distance sequence
(except for the last distance). This is automatically achieved with the above defini-
tion of geodesic distance d̂, which only uses the training points to find the shortest
path between x and y. The double-centering kernel transformation of eq. 27.10 can
then be applied to obtain k

m

, using the geodesic distance d̂ instead of the MDS
distance d.

27.2.6 Locally Linear Embedding

The Locally Linear Embedding (LLE) algorithm (Roweis and Saul, 2000) looks for
an embedding that preserves the local geometry in the neighborhood of each data
point. The idea is to find a low-dimensional representation where the reconstruction
of a data point from its neighbors is similar to the one in input space. First, a sparse
matrix of local predictive weights W

ij

is computed, such that
j

W
ij

= 1, W
ii

= 0,

W
ij

= 0 if x
j

is not a k-nearest-neighbor of x
i

and k(
j

W
ij

x
j

)�x
i

k2 is minimized.
To find those weights, for a given training point x

i

with neighbors (y
i1, . . . , yik

),

a local Gram matrix K(i) is computed, such that K(i)
rs

= hy
ir

� x
i

, y
is

� x
i

i. To
improve the condition of this Gram matrix (to avoid potential issues when solving
the linear system below), it is recommended to add a small multiple of the identity
matrix:

K(i)
rs

 K(i)
rs

+ �
rs

�2

k
Tr(K(i))

with Tr the trace operator, � the Kronecker symbol, and �2 ⌧ 1. The weights are
then obtained by solving the linear system defined by

r

K(i)
rs

W
ir

= 1 for all s, then
rescaling the W

ir

so that they sum to 1 (Saul and Roweis, 2002).
From the weights W

ij

, the matrix K̃ = (I �W )T (I �W ) is formed. The em-
bedding is obtained from the lowest eigenvectors of K̃ , except for the eigenvector
with the smallest eigenvalue, which is uninteresting because it is proportional to
(1, 1, . . . , 1) (and its eigenvalue is 0). Since we want to select the principal eigenvec-
tors, we define our normalized matrix by K = cI � K̃ (c being any real number)
and ignore the top eigenvector (although one could apply an additive normalization
to remove the components along the (1, 1, . . . , 1) direction). The LLE embedding for
x

i

is then given by eq. 27.3 (multiplied by
p

m), starting at the second eigenvector
(since the principal one is constant). If one insists on having a positive semi-definite
matrix K , one can take for c the largest eigenvalue of K̃ (note that c only changes
the eigenvalues additively and has no influence on the embedding of the training
set).

In order to define a kernel k
m

generating K , we first denote by w(x, x
i

) the
weight of x

i

in the reconstruction of any point x 2 Rn by its k nearest neighbors in
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the training set. This is the same reconstruction as above, i.e. the w(x, x
i

) are such
that they sum to 1, k(

i

w(x, x
i

)x
i

)� xk2 is minimized, and w(x, x
i

) = 0 if x
i

is
not in the k nearest neighbors of x. If x = x

j

2 X , we have w(x, x
i

) = �
ij

. Let
us now define a kernel k0

m

by k0
m

(x
i

, x) = k0
m

(x, x
i

) = w(x, x
i

) and k0
m

(x, y) = 0
when neither x nor y is in the training set X . Let k00

m

be such that k00
m

(x
i

, x
j

) =
W

ij

+ W
ji

�
k

W
ki

W
kj

and k00
m

(x, y) = 0 when either x or y is not in X . It can
be shown that the kernel k

m

= (c� 1)k0
m

+ k00
m

is then such that

k
m

(x
i

, x
j

) = (c� 1)�
ij

+ W
ij

+ W
ji

�
k

W
ki

W
kj

= K
ij

so that it can be used to generate K . There could be other ways to obtain a data-
dependent kernel for LLE that can be applied out-of-sample: a justification for using
this specific kernel will be given in section 27.3.1.

As noted independently in (Ham et al., 2003), LLE can thus be seen as perform-
ing kernel PCA with a particular kernel matrix. This identification becomes even
more accurate when one notes that getting rid of the constant eigenvector (principal
eigenvector of K) is equivalent to the centering operation in feature space required
for kernel PCA (Ham et al., 2003).

It is interesting to note a recent descendant of Laplacian eigenmaps, Isomap and
LLE, called Hessian eigenmaps (Donoho and Grimes, 2003), which considers the
limit case of the continuum of the manifold, and replaces the Laplacian in Lapla-
cian eigenmaps by a Hessian. Despite attractive theoretical properties, the Hessian
eigenmaps algorithm, being based on estimation of second order derivatives (which
is di�cult with sparse noisy data), has yet to be applied successfully on real-world
high-dimensional data.

27.2.7 Mixtures of Low-Rank Gaussians

Isomap and LLE are two instances of a larger family of unsupervised learning al-
gorithms which characterize the data distribution by a large set of locally linear
low-dimensional patches. A simple example of this type of model is a mixture of
Gaussians (centered on each example in the standard non-parametric setting) whose
covariance matrices are summarized by a few eigenvectors (i.e. principal directions).
The mixture of factor analyzers (Ghahramani and Hinton, 1996) is a parametric
version of this type of model, in which the EM algorithm is used to estimate the
means and the low-rank covariance matrices. A non-parametric version of the mix-
ture of factor analyzers aimed at capturing manifold structure is the Manifold Parzen
Windows algorithm (Vincent and Bengio, 2003), which does not require an iterative
algorithm for training. With such models, one can obtain a local low-dimensional
representation of examples falling near a Gaussian center, but it may be incompara-
ble to the representation obtained for a nearby Gaussian center, because the eigen-
vectors of the covariance matrices of neighboring Gaussians may not be aligned.
In order to perform dimensionality reduction from such models, several algorithms
have thus been proposed (Teh and Roweis, 2003, Brand, 2003, Verbeek et al., 2004),
which look for a global representation that agrees with each local patch. Although
these algorithms do not fall into the “spectral manifold learning” family studied in
more detailed in this chapter, they are very close in spirit.
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27.2.8 Summary

Algorithm Description Connections / Discussion

Kernel PCA Embedding in a high (possibly in-
finite) dimensional space (kernel
trick) followed by standard PCA.

PCA can be performed using only
dot products (i.e. the kernel ma-
trix).

MDS Distance-preserving embedding
in a low-dimensional space.

If distances are obtained from the
dot product (or kernel) k, it is
equivalent to kernel PCA with
the same kernel k.

Spectral Clustering N-dimensional embedding of the
data followed by projection on
the unit sphere and any stan-
dard clustering algorithm (e.g.
N-means), N being the number
of clusters.

If the embedding is obtained from
the Gaussian kernel as dot prod-
uct, points nearby have a dot
product close to 1 and points far
away have a dot product close
to 0. Therefore, projecting the
points in a space of dimension N
will concentrate all points of the
same cluster on a single coordi-
nate, each cluster being assigned
a di↵erent coordinate.

Isomap Geodesic distance-preserving em-
bedding in a low dimensional
space, the geodesic distances be-
ing estimated from a neighbor-
hood graph.

Isomap is similar to MDS except
it uses (approximate) geodesic
distances rather than distances
defined from a given kernel.

LLE Low-dimensional embedding that
preserves the linear reconstruc-
tion of each point by its neigh-
bors.

LLE is a more “local” algorithm
as it only tries to preserve lo-
cal properties. However, it can
be found to be similar to ker-
nel PCA when using a particu-
lar kernel matrix. Besides, the re-
moval of the top eigenvector cor-
responds to the centering of the
kernel matrix.

Laplacian eigenmaps Locality-preserving embedding
obtained from the eigenfunctions
of the Laplacian operator on a
neighborhood graph.

Laplacian eigenmaps is also a “lo-
cal” algorithm, like LLE. The em-
bedding obtained is the same as
spectral clustering (before pro-
jecting on the unit sphere): pre-
serving locality is tightly linked
to preserving cluster structure.
This embedding is motivated by
the optimality of the eigenfunc-
tions of the Laplacian on the
underlying manifold as locality-
preserving mappings.

27.3 Kernel Eigenfunctions for Induction

With the exception of kernel PCA, the spectral manifold learning algorithms pre-
sented in section 27.2 do not provide us with an immediate way to obtain the em-
bedding for a new point x /2 X . However, for some of them, extensions have already
been proposed. We briefly review them in section 27.3.1. In section 27.3.2, we take
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advantage of the common framework developed in section 27.2: each algorithm being
associated with a data-dependent kernel k

m

generating a Gram matrix K , we can
apply the Nyström formula (eq. 27.2) to obtain the embedding for a new point x.

27.3.1 Extensions to Spectral Embedding Algorithms

For metric MDS, it is suggested in (Gower, 1968) to solve exactly for the coordinates
of the new point such that its distances to the training points are the same in the
original input space and in the computed embedding, but in general this requires
adding a new dimension. Note also that (Williams, 2001) makes a connection be-
tween kernel PCA and metric MDS, remarking that kernel PCA is a form of MDS
when the kernel is isotropic. In the following, we will pursue this connection in order
to obtain out-of-sample embeddings.

A formula has been proposed (de Silva and Tenenbaum, 2003) to approximate
Isomap using only a subset of the examples (the “landmark” points) to compute the
eigenvectors. Using the notation of this chapter, that formula is

e
r

(x) =
1

2
p
`
r

i

v
r,i

(Ê
x

0 [d̂2(x0, x
i

)]� d̂2(x
i

, x)) (27.15)

which is applied to obtain an embedding for the non-landmark examples. One can
show (Bengio et al., 2004) that e

r

(x) is the Nyström formula when k
m

(x, y) is
defined as in section 27.2.5. Landmark Isomap is thus equivalent to performing
Isomap on the landmark points only and then predicting the embedding of the
other points using the Nyström formula, which is the solution we also propose in
what follows.

For LLE, with the notations of section 27.2.6, an extension suggested in (Saul and
Roweis, 2002) is to take for a new point x the embedding P(x) = (P1(x), . . . , P

N

(x))T ,
where

P
r

(x) =
m

i=1

P
r

(x
i

)w(x, x
i

).

Interestingly, the same embedding can be obtained from the Nyström formula and
the kernel k

m

defined in section 27.2.6, when the constant c ! +1 (Bengio et al.,
2004).

27.3.2 From Eigenvectors to Eigenfunctions

From the common framework developed in section 27.2, one can see spectral algo-
rithms as performing a kind of kernel PCA with a specific kernel. (Ng et al., 2002) had
already noted the link between kernel PCA and spectral clustering. Recently, (Ham
et al., 2003) have also shown how Isomap, LLE and Laplacian eigenmaps can be
interpreted as performing a form of kernel PCA. Here, we propose a similar view,
extending the framework to allow negative eigenvalues (which may be the case for
Isomap). In addition, those papers did not propose to use this link in order to per-
form function induction, i.e. obtain an embedding for out-of-sample points. Indeed,
since there exists a natural extension to new points for kernel PCA (the projection
onto the eigenspaces of the covariance matrix, see eq. 27.7), it is natural to ask
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whether it makes sense to use such a formula in the more general setting where the
kernel may be data-dependent and may have negative eigenvalues.

As noted in (Williams and Seeger, 2000), the kernel PCA projection formula
(eq. 27.7) is proportional to the so-called Nyström formula (Baker, 1977, Williams
and Seeger, 2000) (eq. 27.2), which has been used successfully to “predict” the value
of an eigenvector on a new data point, in order to speed-up kernel methods compu-
tations by focusing the heavier computations (the eigen-decomposition) on a subset
of examples (Williams and Seeger, 2001). The use of this formula can be justified
by considering the convergence of eigenvectors and eigenvalues, as the number of
examples increases (Baker, 1977, Koltchinskii, 1998, Koltchinskii and Giné, 2000,
Williams and Seeger, 2000). In particular, (Shawe-Taylor et al., 2002, Shawe-Taylor
and Williams, 2003, Zwald et al., 2004) give bounds on the kernel PCA convergence
error (in the sense of the projection error with respect to the subspace spanned by
the eigenvectors), using concentration inequalities.

Based on this kernel PCA convergence results, we conjecture that in the limit,
each eigenvector would converge to an eigenfunction for a linear operator (defined
below), in the sense that the i-th element of the r-th eigenvector converges to the
application of the r-th eigenfunction to x

i

. Proposition 2 below formalizes this state-
ment and provides su�cient conditions for such a convergence.

In the following we will assume that the (possibly data-dependent) kernel k
m

is
bounded (i.e. 9k

max

, 8x, y |k
m

(x, y)| < k
max

) and has a discrete spectrum, i.e. that
it can be written as a discrete expansion

k
m

(x, y) =
1

r=1

↵
r,m

 
r,m

(x) 
r,m

(y).

Consider the space H
p

of continuous functions f on Rn that are square integrable
as follows:

f2(x)p(x)dx <1
with the data-generating density function p(x). One must note that we actually do
not work on functions but on equivalence classes: we say two continuous functions
f and g belong to the same equivalence class (with respect to p) if and only if

(f(x) � g(x))2p(x)dx = 0 (if p is strictly positive, then each equivalence class
contains only one function).

We will assume that k
m

converges uniformly in its arguments (in some proba-
bilistic manner, e.g. almost surely or in probability) to its limit k as m ! 1. We
will associate with each k

m

a linear operator L
m

and with k a linear operator L,
such that for any f 2 H

p

,

L
m

f =
1
m

m

i=1

k
m

(·, x
i

)f(x
i

) (27.16)

and

Lf = k(·, y)f(y)p(y)dy (27.17)

which makes sense because we work in a space of functions defined everywhere.
Furthermore, as k

m

(·, y) and k(·, y) are square-integrable in the sense defined above,
for each f and each m, the functions L

m

f and Lf are square-integrable in the
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sense defined above. We will show that the Nyström formula (eq. 27.2) gives the
eigenfunctions of L

m

(proposition 1), that their value on the training examples
corresponds to the spectral embedding, and that they converge to the eigenfunctions
of L (proposition 2). These results will hold even if k

m

has negative eigenvalues.
The eigensystems of interest are thus the following:

Lf
r

= �
r

f
r

(27.18)

and
L

m

f
r,m

= �
r,m

f
r,m

(27.19)

where (�
r

, f
r

) and (�
r,m

, f
r,m

) are the corresponding eigenvalues and eigenfunctions.
Note that when eq. 27.19 is evaluated only at the x

i

2 X , the set of equations
reduces to the eigensystem

Kv
r

= m�
r,m

v
r

.

The following proposition gives a more complete characterization of the eigenfunc-
tions of L

m

, even in the case where eigenvalues may be negative. The next two
propositions formalize the link already made in (Williams and Seeger, 2000) be-
tween the Nyström formula and eigenfunctions of L.

Proposition 1 L
m

has in its image N  m eigenfunctions of the form:

f
r,m

(x) =

p
m
`
r

m

i=1

v
r,i

k
m

(x, x
i

) (27.20)

with corresponding non-zero eigenvalues �
r,m

= `r
m

, where v
r

= (v
r,1, . . . , vr,m

)T is
the r-th eigenvector of the Gram matrix K, associated with the eigenvalue `

r

.
For x

i

2 X these functions coincide with the corresponding eigenvectors, in the
sense that f

r,m

(x
i

) =
p

mv
r,i

.

Proof
First, we show that the f

r,m

defined by eq. 27.20 coincide with the eigenvectors
of K at x

i

2 X . For f
r,m

associated with a non-zero eigenvalue,

f
r,m

(x
i

) =

p
m
`
r

m

j=1

v
r,j

k
m

(x
i

, x
j

) =

p
m
`
r

`
r

v
r,i

=
p

mv
r,i

. (27.21)

The v
r

being orthonormal the f
r,m

(for di↵erent values of r) are therefore di↵erent
from each other.

Then for any x 2 Rn

(L
m

f
r,m

)(x) =
1
m

m

i=1

k
m

(x, x
i

)f
r,m

(x
i

) =
1p
m

m

i=1

k
m

(x, x
i

)v
r,i

=
`
r

m
f

r,m

(x)

(27.22)
which shows that f

r,m

is an eigenfunction of L
m

with eigenvalue �
r,m

= `
r

/m. ⇤

Discussion



534 Yoshua Bengio et al.

The previous result shows that the Nyström formula generalizes the spec-
tral embedding outside of the training set. This means the embedding P(x) =
(P1(x), . . . , P

N

(x))T for a new point x is given (up to some scaling) by

P
r

(x) =
f

r,m

(x)p
m

=
1
`
r

m

i=1

v
r,i

k
m

(x, x
i

) (27.23)

where the scaling is the same as the one described in section 27.2 (so that the
embedding obtained on the training set is coherent with the one obtained from the
eigenvectors, thanks to eq. 27.21).

However, there could be many possible generalizations. To justify the use of this
particular generalization, the following proposition helps understanding the conver-
gence of these functions as m increases. We would like the out-of-sample embedding
predictions obtained with the Nyström formula to be somehow close to the asymp-
totic embedding (the embedding one would obtain as m!1).

Note also that the convergence of eigenvectors to eigenfunctions shown in (Baker,
1977) applies to data x

i

which are deterministically chosen to span a domain,
whereas here the x

i

form a random sample from an unknown distribution.

Proposition 2 If k
m

= k is bounded and not data-dependent, then the eigenfunc-
tions f

r,m

of L
m

associated with non-zero eigenvalues of multiplicity 1 converge to
the corresponding eigenfunctions of L (almost surely, and up to the sign).

For k
m

data-dependent but bounded (almost surely, and independently of m)
and converging uniformly to k, if the eigen-decomposition of the Gram matrix
(k

m

(x
i

, x
j

)) converges4 to the eigen-decomposition of the Gram matrix (k(x
i

, x
j

))
then a similar result holds: the eigenfunctions f

r,m

of L
m

associated with non-zero
eigenvalues of multiplicity 1 converge to the corresponding eigenfunctions of L (al-
most surely, and up to the sign).

Proof
In the following, we will denote by f̂ 2 H

p̂

the restriction of a function f 2 H
p

to the training set X = {x1, . . . , xm

}, and by L̂
m

the operator in H
p̂

defined as
in eq. 27.16, which has the same eigenvalues and eigenfunctions as L

m

(except the
eigenfunctions are restricted to X). We start with the case where k

m

= k. We first
take advantage of (Koltchinskii and Giné, 2000), theorem 3.1, that shows that the
distance between the eigenvalue spectra of L̂

m

and L converges to 0 almost surely.
We then use theorem 2.1 from (Koltchinskii, 1998), which is stated as follows. Let
k be a symmetric kernel such that E[|k(X, X)|] < +1 and E[k2(X, Y )] < +1 (so
that the operator L defined by eq. 27.17 is Hilbert-Schmidt and k can be written
k(x, y) =

i2I

µ
i

 
i

(x) 
i

(y) with I a discrete set). Suppose that F is a class of
measurable functions such that there exists F 2 H

p

verifying |f(x)|  F (x) for all
f 2 F . Moreover, suppose that for all i 2 I, {f 

i

: f 2 F} 2 GC(p), where GC(p)
denotes the set of p-Glivenko-Cantelli classes (see, e.g., (van der Vaart and Wellner,
1996)). Then, for all non-zero eigenvalue �

r

4The convergences should be almost sure, otherwise the result may hold with a
di↵erent kind of probabilistic convergence, e.g. in probability.
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sup
f,g2F

hP
r

(L̂
m

)f̂ , ĝiHp̂ � hPr

(L)f, giHp ! 0 (27.24)

almost surely when m ! +1, with P
r

(L) the projection on the r-th eigenspace of
L, and P

r

(L̂
m

), with probability 1 and for m su�ciently large, the projection on the
corresponding eigenspace of L̂

m

(for more details see (Koltchinskii, 1998)).
Let us consider the r-th eigenspace of L (of dimension 1 because we have consid-

ered eigenvalues of multiplicity 1), i.e. the eigenspace spanned by the eigenfunction
f

r

: the r-th eigenspace of L̂
m

is also 1-dimensional, almost surely (because of the
convergence of the spectrum), and spanned by f

r,m

. Let x 2 Rn be any point in the
input space, and F = {h

x

} with h
x

= k(x, ·) 2 H
p

. For any i 2 I

1
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h
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(x
j

) 
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)� h
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(y) 
i

(y)p(y)dy ! 0

almost surely (thanks to the strong law of large numbers), so that F verifies the
hypothesis needed to apply the theorem above. In addition,

hP
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(L)h
x

, h
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iHp = hhh
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if
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, h
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i = hh
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, f
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i2Hp = (Lf
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and similarly, using eq. 27.22, we have with probability 1 and for m large enough:
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The conclusion of the theorem thus tells us that

�2
r,m

f
r,m

(x)2 � �2
r

f
r

(x)2 ! 0

almost surely. Since we have the convergence of the eigenvalues, this implies

f
r,m

(x)2 � f
r

(x)2 ! 0 (27.26)

almost surely, which shows the (simple) convergence of the eigenfunctions, up to the
sign. To get the convergence in H

p

, we need to show that k|f
r,m

|� |f
r

|kHp ! 0, i.e.

g
r,m

(x)dx! 0 (27.27)

with g
r,m

(x) = (|f
r,m

(x)| � |f
r

(x)|)2p(x). We will need to show that both f
r,m

and f
r

are bounded (independently of m). Since f
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is an eigenfunction of L, we
have |�
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, we have
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almost surely (thanks to the convergence of �
r,m

). Therefore, we have that (al-
most surely) g

r,m

(x)  (c0
r

+ c00
r

)2p(x) which is an integrable function, and from
eq. 27.26, g

r,m

(x) ! 0 for all x. The theorem of dominated convergence can thus
be applied, which proves eq. 27.27 is true (almost surely), and there is convergence
of the eigenfunctions in H

p

.
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If k
m

is data-dependent but converges, in a way such that the eigen-decomposition
of the Gram matrix (k

m

(x
i

, x
j

)) converges to the eigen-decomposition of the Gram
matrix (k(x

i

, x
j

)), with k the limit of k
m

, we want to apply the same reason-
ing. Because of the convergence of the eigen-decomposition of the Gram matrix,
eq. 27.24 still holds. However, eq. 27.25 has to be replaced with a limit, because
h

x

= k(x, ·) 6= k
m

(x, ·). This limit still allows to write eq. 27.26 (possibly with a
di↵erent form of probabilistic convergence, depending on the convergence of k

m

to
k), and the same result is obtained. ⇤

Discussion
Kernel PCA has already been shown to be a stable and convergent algo-

rithm (Shawe-Taylor et al., 2002, Shawe-Taylor and Williams, 2003, Zwald et al.,
2004). These papers characterize the rate of convergence of the projection error on
the subspace spanned by the first N eigenvectors of the feature space covariance
matrix. When we perform the PCA or kernel PCA projection on an out-of-sample
point, we are taking advantage of the above convergence and stability properties:
we trust that a principal eigenvector of the empirical covariance matrix estimates
well a corresponding eigenvector of the true covariance matrix. Another justifica-
tion for applying the Nyström formula outside of the training examples is therefore,
as already noted earlier and in (Williams and Seeger, 2000), in the case where k

m

is positive semi-definite, that it corresponds to the kernel PCA projection (on a
corresponding eigenvector of the feature space covariance matrix C).

Clearly, we thus have with the Nyström formula a method to generalize spectral
embedding algorithms to out-of-sample examples, whereas the original spectral em-
bedding methods only provide the transformed coordinates of training points (i.e. an
embedding of the training points). The experiments described in section 27.5 show
empirically the good generalization of this out-of-sample embedding. Note however
that it is not always clear whether the assumptions needed to apply proposition 2
are verified or not (especially because of the data-dependency of k

m

). This propo-
sition mainly gives an intuition of what a spectral embedding technique is doing
(estimating eigenfunctions of a linear operator) in the case of ideal convergence.

(Williams and Seeger, 2000) have shown an interesting justification for esti-
mating the eigenfunctions of L. When an unknown function f is to be estimated
with an approximation g that is a finite linear combination of basis functions, if
f is assumed to come from a zero-mean Gaussian process prior with covariance
E

f

[f(x)f(y)] = k(x, y), then the best choices of basis functions, in terms of ex-
pected squared error, are (up to rotation/scaling) the leading eigenfunctions of the
linear operator L defined by eq 27.17.

27.4 Learning Criterion for the Leading Eigenfunctions

Using an expansion into orthonormal bases (e.g. generalized Fourier decomposition
in the case where p is continuous), the best approximation of k(x, y) (in the sense of
minimizing expected squared error) using only N terms is the expansion that uses
the first N eigenfunctions of L (in the order of decreasing eigenvalues):

N

r=1

�
r

f
r

(x)f
r

(y) ⇡ k(x, y).
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This simple observation allows us to define a loss criterion for spectral embedding
algorithms, something that was lacking up to now for such algorithms. The limit
of this loss converges toward an expected loss whose minimization gives rise to
the eigenfunctions of L. One could thus conceivably estimate this generalization
error using the average of the loss on a test set. That criterion is simply the kernel
reconstruction error
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Proposition 3 The spectral embedding for a continous kernel k with discrete spec-
trum is the solution of a sequential minimization problem, iteratively minimizing for
N = 1, 2, . . . the expected value of the loss criterion
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p(x)p(y)dxdy

(27.28)
where by convention we scale f 0 such that f 0(x)2p(x) = 1 (any other scaling can
be transferred into �0).

Secondly, if the same hypothesis on k
m

as in proposition 2 are verified, the
Monte-Carlo average of the criterion R

km

1
m2

m

i=1

m

j=1

k
m

(x
i

, x
j

)�
N

r=1

�
r,m

f
r,m

(x
i

)f
r,m

(x
j

)

2

converges in probability to the asymptotic expectation of R
k

.

Sketch of proof
The first part of the proposition concerning the sequential minimization of the

loss criterion follows from classical linear algebra (Strang, 1980, Kreyszig, 1990). It
is an extension of the well-known result stating that the best rank N approximation
(for the Frobenius norm) of a symmetric matrix is given by its expansion in terms
of its first N eigenvectors. A proof can be found in (Bengio et al., 2003).

To prove the second part, a reasoning similar to the one in the proof of propo-
sition 2 can be done, in order to obtain that (in probability, when m!1)

(�
r,m

f
r,m

(x)f
r,m

(y)� �
r

f
r

(x)f
r

(y)) p(x)p(y)dxdy ! 0

which, combined with the central limit theorem, leads to the desired convergence.
⇤
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Discussion
Note that the empirical criterion is indi↵erent to the value of the solutions f

r,m

outside of the training set. Therefore, although the Nyström formula gives a possible
solution to the empirical criterion, there are other solutions. Remember that the
task we consider is that of estimating the eigenfunctions of L, i.e. approximating a
similarity function k where it matters according to the unknown density p. Solutions
other than the Nyström formula might also converge to the eigenfunctions of L.
For example one could use a non-parametric estimator (such as a neural network)
to estimate the eigenfunctions. Even if such a solution does not yield the exact
eigenvectors on the training examples (i.e. does not yield the lowest possible error
on the training set), it might still be a good solution in terms of generalization, in
the sense of good approximation of the eigenfunctions of L. It would be interesting
to investigate whether the Nyström formula achieves the fastest possible rate of
convergence to the eigenfunctions of L.

27.5 Experiments

27.5.1 Toy Data Example
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Fig. 27.2. First eigenfunction (gray levels) for various non-linear spectral dimen-

sionality reduction algorithms, on a toy dataset of 500 samples (white dots). Kernel

PCA and spectral clustering use the same Gaussian kernel (eq. 27.4) with bandwidth

� = 0.2, while Isomap and LLE use 20 neighbors.

We first show on a toy dataset what kind of structure can be discovered from
the eigenfunctions defined in the previous sections. In figure 27.2, we display with
gray levels the value5 of the first eigenfunction computed for kernel PCA, spectral

5In the case of spectral clustering, this is the logarithm of the eigenfunction that
is displayed, so as to be able to actually see its variations.
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clustering (same as Laplacian eigenmaps), Isomap and LLE, on a toy dataset of
500 examples (remember that the first eigenfunction is proportional to the first
coordinate of the projection, as seen in eq. 27.23). This toy dataset is formed of two
clusters (white dots) with a similar form, one (top-left) with 100 points, and the
other (bottom-right) with 400 points. The clusters are connected (through a low-
density region) in such a way that the data lie approximately on a one-dimensional
manifold. Our C++ code for performing those spectral dimensionality reduction
algorithms can be found in the PLearn library (http://plearn.org).

Although such a toy example does not provide a deep understanding of what
these algorithms do, it reveals several characteristics worth pointing out. First of all,
kernel PCA should not be used with a Gaussian kernel in order to discover a low-
dimensional non-linear manifold. Indeed, one may think kernel PCA does some kind
of “local” PCA within neighborhoods of size of the order of the Gaussian kernel’s
bandwidth, but it is not the case. It actually tends to discriminate smaller regions of
the data as the bandwidth decreases (and a high bandwidth makes it equivalent to
linear PCA). The spectral clustering / Laplacian eigenmaps eigenfunction is more
satisfying, in that it obviously reveals the clustered nature of our data (see foot-
note 5). Note that, even though in this case only one eigenfunction may be enough
to discriminate between the two clusters, one should in general compute as many
eigenfunctions as desired clusters (because each eigenfunction will tend to map to
the same point all clusters but one, e.g. in figure 2(b) almost all points in the bottom-
right cluster are given the same value). As for Isomap and LLE, they give very similar
results, showing they correctly captured the underlying one-dimensional non-linear
manifold. Although it cannot be seen in this particular example, one should keep in
mind that LLE, because it is based only on local computations, does not respect as
well as Isomap the global structure of the data.

27.5.2 Discovering Structure in Face Images

Experiments in this section are done over a subset of the database of 698 synthetic
face images available at http://isomap.stanford.edu. By selecting only images
whose illumination is between 180 and 200, this yields a dataset of 113 examples
in 4096 dimensions, which approximately form a 2-dimensional manifold (the two
degrees of freedom are the rotation angles of the camera). The Isomap algorithm
with 10 nearest neighbors is run on the first 70 examples, while the remaining 43
are projected by the Nyström formula. The embedding thus obtained (figure 27.3)
clearly demonstrates that Isomap captured the intrinsic 2-dimensional manifold, and
that the Nyström formula generalizes well. This is a typical example where such a
non-linear spectral embedding algorithm can prove very useful for data visualization
as well as for dimensionality reduction.

27.5.3 Generalization Performance of Function Induction

Here we want to test one aspect of the theoretical results: does the function induc-
tion achieved with the Nyström formula work well? We would like to know if the
embedding that it predicts on a new point x is close to the embedding that would
have been obtained on x if it had been in the training set. However, how do we
evaluate the “error” thus obtained? Our idea is to compare it to the variations in

http://plearn.org
http://isomap.stanford.edu


540 Yoshua Bengio et al.

Fig. 27.3. 2-dimensional embedding learned by Isomap from 70 high-dimensional

synthetic faces. A few faces from the training set (black background) and from the

test set (light gray background) are projected using the Nystr

¨

om formula. Isomap

catpures the intrinsic 2-dimensional structure of the data, each dimension corre-

sponding to the rotation on a di↵erent axis (left-right and bottom-top).

embedding that result from small perturbations of the training set (such as replacing
a subset of the examples by others from the same distribution).

For this purpose we consider splits of the data in three sets, X = F [R1 [R2

and training either with F [R1 or F [R2, comparing the embeddings on F . For
each algorithm described in section 27.2, we apply the following procedure:

(1.) We choose F ⇢ X with q = |F | samples. The remaining m � q samples in
X/F are split into two equal size subsets R1 and R2. We train (obtain the
eigenvectors) over F [R1 and F [R2 and we calculate the Euclidean distance
between the aligned embeddings obtained for each x

i

2 F . When eigenvalues
are close, the estimated eigenvectors are unstable and can rotate in the subspace
they span. Thus we estimate an alignment (by linear regression) between the
two embeddings using the points in F .

(2.) For each sample x
i

2 F , we also train over {F [ R1}/{xi

}. We apply the
Nyström formula to out-of-sample points to find the predicted embedding of
x

i

and calculate the Euclidean distance between this embedding and the one
obtained when training with F [R1, i.e. with x

i

in the training set (in this case
no alignment is done since the influence of adding a single point is very limited).

(3.) We calculate the mean di↵erence � (and its standard error) between the dis-
tance obtained in step 1 and the one obtained in step 2 for each sample x

i

2 F ,
and we repeat this experiment for various sizes of F .
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The results obtained for MDS, Isomap, spectral clustering and LLE are shown
in figure 27.4 for di↵erent values of |R1|/m (i.e the fraction of points exchanged).
The vertical axis is �, the di↵erence between perturbation error and induction er-
ror. The horizontal zero line corresponds to no di↵erence between the embedding
error due to induction (vs. transduction) and the embedding error due to training
set perturbation. For values of � above the zero line, the embedding error due to
perturbation is greater than the embedding error due to out-of-sample prediction.
Clearly, the in-sample (transduction) vs. out-of-sample (induction) di↵erence is of
the same order of magnitude as the change in embedding due to exchanging a small
fraction of the data (1 to 5%).

Experiments are done over the same face database as in the previous section,
but with the whole set of 698 images. Similar results have been obtained over
other databases such as Ionosphere6 and Swissroll7. Each algorithm generates a
two-dimensional embedding of the images, following the experiments reported for
Isomap. The number of neighbors is 10 for Isomap and LLE, and a Gaussian kernel
with a bandwidth of 0.01 is used for spectral clustering / Laplacian eigenmaps. 95%
confidence intervals are drawn beside each mean di↵erence of error on the figure.

As expected, the mean di↵erence between the two distances is almost monoton-
ically increasing as the number |R1| of substituted training samples grows, mostly
because the training set embedding variability increases. We find in most cases that
the out-of-sample error is less than or comparable to the training set embedding
instability when around 2% of the training examples are substituted randomly.

27.6 Conclusion

Manifold learning and dimensionality reduction are powerful machine learning tools
for which much progress has been achieved in recent years. This chapter sheds light
on a family of such algorithms, involving spectral embedding, which are all based
on the eigen-decomposition of a similarity matrix.

Spectral embedding algorithms such as spectral clustering, Isomap, LLE, met-
ric MDS, and Laplacian eigenmaps are very interesting dimensionality reduction or
clustering methods. However, they lacked up to now a notion of generalization that
would allow to easily extend the embedding out-of-sample without again solving an
eigensystem. This chapter has shown with various arguments that the well known
Nyström formula can be used for this purpose, and that it thus represents the result
of a function induction process. These arguments also help us to understand that
these methods do essentially the same thing, but with respect to di↵erent kernels: they
estimate the eigenfunctions of a linear operator L associated with a kernel and with
the underlying distribution of the data. This analysis also shows that these methods
are minimizing an empirical loss, and that the solutions toward which they converge
are the minimizers of a corresponding expected loss, which thus defines what good
generalization should mean, for these methods. It shows that these unsupervised
learning algorithms can be extended into function induction algorithms. The Nys-
tröm formula is a possible extension but it does not exclude other extensions, which
might be better or worse estimators of the eigenfunctions of the asymptotic linear

6http://www.ics.uci.edu/~mlearn/MLSummary.html
7http://www.cs.toronto.edu/~roweis/lle/

http://www.ics.uci.edu/~mlearn/MLSummary.html
http://www.cs.toronto.edu/~roweis/lle/
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Fig. 27.4. � (training set variability minus out-of-sample error), w.r.t. ⇢ (propor-

tion of substituted training samples) on the “Faces” dataset (m = 698), obtained

with a two-dimensional embedding. Top left: MDS. Top right: spectral clustering or

Laplacian eigenmaps. Bottom left: Isomap. Bottom right: LLE. Error bars are 95%

confidence intervals. Exchanging about 2% of the training examples has an e↵ect

comparable to using the Nystr

¨

om formula.

operator L. When the kernels are positive semi-definite, these methods can also be
immediately seen as performing kernel PCA. Note that Isomap generally yields a
Gram matrix with negative eigenvalues, and users of MDS, spectral clustering or
Laplacian eigenmaps may want to use a kernel that is not guaranteed to be positive
semi-definite. The analysis in this chapter can still be applied in that case, even
though the kernel PCA analogy does not hold anymore. This is important to note
because recent work (Laub and Müller, 2003) has shown that the coordinates cor-
responding to large negative eigenvalues can carry very significant semantics about
the underlying objects. In fact, it is proposed in (Laub and Müller, 2003) to per-
form dimensionality reduction by projecting on the eigenvectors corresponding to
the largest eigenvalues in magnitude (i.e. irrespective of sign).

In this chapter we have given theorems that provide justification for the Nyström
formula in the general case of data-dependent kernels which may not be positive-
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definite. However, these theorems rely on strong assumptions, which may not hold for
particular spectral manifold learning algorithms. To help assess the practical validity
of the Nyström formula for predicting the embedding of out-of-sample points, we
have performed a series of comparative experiments.

The experiments performed here have shown empirically on several data sets
that (i) those spectral embedding algorithms capture di↵erent kinds of non-linearity
in the data, (ii) they can be useful for both data visualization and dimensionality
reduction, and (iii) the predicted out-of-sample embedding is generally not far from
the one that would be obtained by including the test point in the training set, the
di↵erence being of the same order as the e↵ect of small perturbations of the training
set.

An interesting parallel can be drawn between the spectral embedding algorithms
and the view of PCA as finding the principal eigenvectors of a matrix obtained from
the data. The present chapter parallels for spectral embedding the view of PCA
as an estimator of the principal directions of the covariance matrix of the under-
lying unknown distribution, thus introducing a convenient notion of generalization,
relating to an unknown distribution.

Finally, a better understanding of these methods opens the door to new and
potentially much more powerful unsupervised learning algorithms. Several directions
remain to be explored:

(1.) Using a smoother distribution than the empirical distribution to define the linear
operator L

m

. Intuitively, a distribution that is closer to the true underlying
distribution would have a greater chance of yielding better generalization, in
the sense of better estimating eigenfunctions of L. This relates to putting priors
on certain parameters of the density, e.g. as in (Rosales and Frey, 2003).

(2.) All of these methods are capturing salient features of the unknown underlying
density. Can one use the representation learned through the estimated eigen-
functions in order to construct a good density estimator? Looking at figure 27.1
suggests that modeling the density in the transformed space (right hand side)
should be much easier (e.g. would require fewer Gaussians in a Gaussian mix-
ture) than in the original space.

(3.) These transformations discover abstract structures such as clusters and mani-
folds. It might be possible to learn even more abstract (and less local) struc-
tures, starting from these representations. Ultimately, the goal would be to learn
higher-level abstractions on top of lower-level abstractions by iterating the un-
supervised learning process in multiple “layers”.

Looking for extensions such as these is important because all of the manifold
learning algorithms studied here su↵er from the following fundamental weakness:
they are using mostly the neighbors around each example to capture the local struc-
ture of the manifold, i.e. the manifold is seen as a combination of linear patches
around each training example. This is very clear in LLE and Isomap, which have a
simple geometric interpretation, and it is also clear in non-spectral methods such as
Manifold Parzen Windows (Vincent and Bengio, 2003) and other mixtures of factor
analyzers (Ghahramani and Hinton, 1996). In low dimension or when the manifold
is smooth enough, there may be enough examples locally to characterize the plane
tangent to the manifold. However, when the manifold has high curvature with re-
spect to the amount of training data (which can easily be the case, especially with
high-dimensional data), it is hopeless to try to capture the local tangent directions
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based only on local information. Clearly, this is the topic for future work, address-
ing a fundamental question about generalization in high-dimensional data, and for
which the traditional non-parametric approaches may be insu�cient.
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Cybernetics, Tübingen, Germany, 1996.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10:1299–1319, 1998.



546 Yoshua Bengio et al.

J. Shawe-Taylor, N. Cristianini, and J. Kandola. On the concentration of spectral
properties. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances
in Neural Information Processing Systems 14. MIT Press, 2002.

J. Shawe-Taylor and C.K.I. Williams. The stability of kernel principal components
analysis and its relation to the process eigenspectrum. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural Information Processing Systems
15. MIT Press, 2003.

J. Shi and J. Malik. Normalized cuts and image segmentation. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pages 731–737, 1997.

D. Spielman and S. Teng. Spectral partitioning works: planar graphs and finite
element meshes. In Proceedings of the 37th Annual Symposium on Foundations
of Computer Science, 1996.

G. Strang. Linear Algebra and Its Applications. Academic Press, New York, 1980.
Y. Whye Teh and S. Roweis. Automatic alignment of local representations. In

S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems 15. MIT Press, 2003.

J. Tenenbaum, V. de Silva, and J.C.L. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, Dec. 2000.

W. Torgerson. Multidimensional scaling, 1: Theory and method. Psychometrika,
17:401–419, 1952.

A.W. van der Vaart and J. Wellner. Weak Convergence and Empirical Processes
with applications to Statistics. Springer, New York, 1996.

Jakob J. Verbeek, Sam T. Roweis, and Nikos Vlassis. Non-linear cca and pca by
alignment of local models. In S. Thrun, L. Saul, and B. Schölkopf, editors,
Advances in Neural Information Processing Systems 16, Cambridge, MA, 2004.
MIT Press.

P. Vincent and Y. Bengio. Manifold parzen windows. In S. Becker, S. Thrun, and
K. Obermayer, editors, Advances in Neural Information Processing Systems 15,
Cambridge, MA, 2003. MIT Press.

Michail Vlachos, Carlotta Domeniconi, Dimitrios Gunopulos, George Kollios, and
Nick Koudas. Non-linear dimensionality reduction techniques for classification
and visualization. In Proc. of 8th SIGKDD, Edmonton, Canada, 2002. URL
citeseer.ist.psu.edu/573153.html.

Yair Weiss. Segmentation using eigenvectors: a unifying view. In Proceedings IEEE
International Conference on Computer Vision, pages 975–982, 1999.

Christopher K. I. Williams and Matthias Seeger. Using the Nyström method to
speed up kernel machines. In T.K. Leen, T.G. Dietterich, and V. Tresp, ed-
itors, Advances in Neural Information Processing Systems 13, pages 682–688,
Cambridge, MA, 2001. MIT Press.

C.K.I. Williams. On a connection between kernel pca and metric multidimensional
scaling. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural
Information Processing Systems 13, pages 675–681. MIT Press, 2001.

C.K.I. Williams and M. Seeger. The e↵ect of the input density distribution on kernel-
based classifiers. In Proceedings of the Seventeenth International Conference on
Machine Learning. Morgan Kaufmann, 2000.

Laurent Zwald, Olivier Bousquet, and Gilles Blanchard. Statistical properties of
kernel principal component analysis. Technical report, submitted, 2004.

citeseer.ist.psu.edu/573153.html


Chapter 28

Constructing Orthogonal Latent Features for
Arbitrary Loss

Michinari Momma1 and Kristin P. Bennett2

1 Fair Isaac Corporation, San Diego, CA 92130 USA mommam@alum.rpi.edu
2 Department of Mathematical Sciences , Rensselaer Polytechnic Institute, Troy,

NY 12180 USA bennek@rpi.edu

Summary. A boosting framework for constructing orthogonal features targeted to
a given loss function is developed. Combined with techniques from spectral meth-
ods such as PCA and PLS, an orthogonal boosting algorithm for linear hypothesis is
used to e�ciently construct orthogonal latent features selected to optimize the given
loss function. The method is generalized to construct orthogonal nonlinear features
using the kernel trick. The resulting method, Boosted Latent Features (BLF) is
demonstrated to both construct valuable orthogonal features and to be a competi-
tive inference method for a variety of loss functions. For the least squares loss, BLF
reduces to the PLS algorithm and preserves all the attractive properties of that
algorithm. As in PCA and PLS, the resulting nonlinear features are valuable for
visualization, dimensionality reduction, improving generalization by regularization,
and use in other learning algorithms, but now these features can be targeted to a
specific inference task/loss function. The data matrix is factorized by the extracted
features. The low-rank approximation of the data matrix provides e�ciency and
stability in computation, an attractive characteristic of PLS-type methods. Com-
putational results demonstrate the e↵ectiveness of the approach on a wide range of
classification and regression problems.

28.1 Introduction

We consider the problem of feature construction targeted towards a given inference
task. The class of features considered are linear combinations of the input attributes.
The quintessential unsupervised feature extraction method for such linear features
is principal component analysis (PCA). PCA constructs orthogonal features con-
sisting of linear combinations of the input vectors called principal components. In
PCA, the principal components are chosen to maximize the explained variance and
to be orthogonal to each other. The resulting principal components are useful for vi-
sualization, understanding importance of variables, and as a form of dimensionality
reduction or regularization when used in inference functions, e.g principal component
regression. PCA takes into account only the input variables and does not use the re-
sponse variables. While PCA is widely used, it is not appropriate for every task. The
approach is entirely based on the least squares loss, which may not be appropriate
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when the underlying noise is non-Gaussian. PCA may not produce good features
or may require more features for supervised learning tasks such as classification,
regression, and ranking.

Our goal is to construct orthogonal features that are targeted toward a given
inference task. The features are assumed to be linear combinations of the input data
that are orthogonal to each other. The features constructed from factorizations of
the data and hypothesis space are targeted toward a specific inference task as defined
by the loss function. We seek a small set of features that span the portion of the
hypothesis space of interest for the specific inference task. The features act as a form
of regularization: the loss function is minimized with respect to the smaller set of
features instead of the original typically much higher dimensional input space. This
relatively small set of features can then be used for many purposes such as predictive
models, visualization, and outlier detection.

The primary motivation for this approach comes from boosting, which can be
viewed as a method for constructing features as well as predictive models. Ensem-
ble methods such as AdaBoost (Freund and Shapire, 1997) and Gradient Boost
(Friedman, 2001) construct a linear combination of hypotheses in order to optimize
a specified loss function. But the resulting hypotheses do not meet our goals. En-
semble methods typically use many weak hypotheses. But our goal is to create a
few orthogonal features that span the space of interest. The key missing property in
ensemble methods, for the purpose of reducing dimensionality of the feature space,
is orthogonality. Forcing orthogonality can dramatically increase the convergence
speed of the boosting algorithm. Thus much fewer features need to be constructed
to obtain the same decrease in loss function. By simply adding orthogonality to
the ensemble method, the desirable properties of PCA are once again regained – a
small set of orthogonal features are identified that explains properties of the data of
interest; but now the definition of interest can go beyond explaining variance.

Thus, we propose a boosting method with orthogonal components as its weak
hypotheses. Boosting has been shown to be equivalent to gradient descent projected
into a hypothesis space. At each iteration, the hypothesis or feature is constructed to
maximize the inner product with the gradient. In orthogonal boosting, we construct
the feature that is orthogonal to all previous features that maximizes this inner
product. For linear hypotheses, this constrained optimization problem can be very
e�ciently and exactly solved by projecting the data into the orthogonal subspace.

Orthogonal boosting of linear hypotheses is very closely related to spectral or
data factorization methods such as PCA, canonical correlation analysis, factor anal-
ysis, and partial least squares regression (PLS) analysis (Johnson and Wichern, 1992,
Wold, 1966). For least squares regression, orthogonal boosting with linear regression
of linear hypotheses reduces exactly to PLS. The proposed approach generalizes PLS
to an arbitrary loss function. In PLS, the linear hypotheses are called latent vari-
ables or features. Thus we call boosting of such linear hypotheses, Boosted Latent
Features (BLF).

Many papers have been written on PLS and its properties from many di↵erent
perspectives. The boosting perspective given here is novel but our goal is not to give
another perspective on PLS. Our goal is to create an e�cient orthogonal feature con-
struction method that maintains the benefits of PLS. BLF and PLS both construct
a set of orthogonal linear features that form a factorization of the input and response
variables. The BLF algorithm shares with PLS e�ciency and elegance for computing
inference functions. PLS has been shown to be a conjugate gradient method applied
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to the least squares regression. BLF is also a subspace method, closely related to
but not identical to nonlinear conjugate gradient algorithms. Previously CGBOOST
used a nonlinear conjugate gradient algorithm in function space but it did not pro-
duce orthogonal hypotheses and computational results were mixed due to overfitting
(Li et al., 2003). Like PLS, BLF is a form of regularization of the loss function that
reduces the norm of the solution as compared to the unconstrained optimal solu-
tion, alleviating overfitting. An extensive discussion of regularization in PLS and
alternative gradient based regularization strategies can be found in (Friedman and
Popescu, 2004).

A major benefit of BLF is that it can be elegantly and e�ciently extended to
create nonlinear latent hypotheses and functions through the use of kernels. Using
an approach very similar to that of kernel partial least squares (Rosipal and Trejo,
2001), data can be mapped into a feature space and the orthogonal features are
constructed in the feature space. Kernel methods exist for construction of orthogonal
nonlinear feature such as kernel principal component analysis, kernel partial least
squares, and kernel canonical correlation analysis, but they are all based on the
least squares loss (Shawe-Taylor and Cristianini, 2004). See(Borga et al., 1997) for
discussions of their common ancestry. Neural network approaches have been used
to generalize PLS to nonlinear functions (e.g. (Malthouse et al., 1997)). But these
methods face the problems of neural networks: ine�ciency, local minima, limited
loss functions, and lack of generality that are largely eliminated in kernel methods.
Iterative reweighted partial least squares generalized linear PLS to exponential loss
functions (Marx, 1996) using a generalized linear model approach, but this approach
is more computationally costly, less general, and theoretically somewhat more obtuse
than BLF.

BLF is e�cient and stable computationally for kernel logistic regression (KLR).
KLR can be solved by a boosting-type method (Zhu and Hastie, 2002) with the
regularization term explicitly included in its objective function but without orthog-
onalization. An open question is if there are additional advantages to orthogonaliz-
ing weak hypotheses in terms of generalization. Orthogonal least squares regression
and its variants (Chen, 2003, Nair et al., 2002) utilize a similar approach. They
orthogonalize weak hypotheses each consisting of a single support vector, not a lin-
ear combination of support vectors. The BLF can also be applied to extend their
methodologies to other loss functions.

This chapter is organized as follows. We review AnyBoost (Mason et al., 1999) to
provide a general framework for ensemble methods for di↵erentiable loss functions,
and use this to introduce the orthogonalized version of AnyBoost, OrthoAnyBoost.
Section 3 shows how OrthoAnyBoost can be e�ciently implemented in linear hy-
pothesis spaces forming the Boosted Latent Feature Algorithm. Section 4 examines
the convergence properties of BLF. In Section 5, PLS is shown to be the special case
within the BLF framework of the squared loss functions with linear weak hypothe-
ses. Section 28.6 provides variants of BLF for three more loss functions. The kernel
version of BLF is developed in Section 28.7. Computational results found in Sec-
tion 28.8 illustrate the potential of kernel BLF for feature construction. In addition,
standard benchmarks demonstrate the approach is quite competitive with existing
classification and regression algorithms.

The following explains the notation used throughout the paper. Assume we are
given a training data set of size m with a single response, ((x1, y1), . . . , (xm

, y
m

)),
with the column vectors x

i

2 Rn and y
i

2 R. Although PLS and KPLS can be used
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for multivariate response, we focus on cases with univariate response variables. AT

denotes a vector/matrix transpose. The data matrix is X = [x1, . . . ,xm

]T and the
response vector is y = [y1, . . . , ym

]T . After centering each of the predictive variables,

the centered data matrix is denoted by either X or X1. ||y|| denotes the 2-norm of
y. The dot product of two column vectors u and v is denoted by uT v. The outer
product of u and v is denoted by uvT . The reader should be careful to distinguish
the use of dot products from that of outer products. Iteration indices are expressed
as superscripts. Subscripts indicate components of a matrix or vector. In a slight
abuse of notation, we use rl(y, f) to denote the gradient or the subgradient of the
function l with respect to f if the gradient does not exist.

28.2 General Framework in BLF

This section investigates a boosting algorithm that combines properties of the or-
thogonal components of PCA and PLS with the flexibility of general ensemble and
boosting methods with respect to a loss function. The goal is to create a set of
orthogonal features or functions that explain the response according to some loss
function. We adapt notation of the general ensemble method, AnyBoost (Mason
et al., 1999).

28.2.1 AnyBoost

Boosting algorithms construct a set of features called hypotheses that try to span
the response e.g. y ⇡ T c for regression or yT T c > 0 for classification. AnyBoost
(Algorithm 10) (Mason et al., 1999) constructs an optimal linear combination of hy-
potheses to fit the response by performing gradient descent in function or hypothesis
space. Let T be a set of real-valued functions that are the hypotheses. The span of T
forms a linear function space. The inner product in this function space is defined as
tT f ⌘ m

i=1 t(x
i

)f(x
i

). Thus we can also think of t as an m-vector with t
i

= t(x
i

).

A linear combination of the hypotheses, N

i=1 citi for t1, t2, . . . , tN , can be written
as T c where the columns of T are the hypotheses and the vector c contains their
coe�cients. We want to find the element, t 2 span(T ) that approximately minimizes
some loss function l(y, f). AnyBoost accomplishes this by doing gradient descent in
the hypothesis space. Note rl(y, T c) = r

f

l(y, T c) will be used to denote the gra-
dient of the loss function in the function space. Ideally T spans the same space as
y but this is generally not the case. Thus the linear functional is minimized with
respect to the loss function to fit the response.

Given the current function f = T c, a descent direction in the hypothesis space,
ti+1 is constructed. Any function with a positive inner product with the negative
gradient (�rl(y, T c)T ti+1) must be a descent direction. In AnyBoost, a weak learn-
ing algorithm is used to construct a hypothesis that approximately maximizes the
inner product of the hypothesis with the negative gradient at each iteration. The
hypothesis is added with an appropriate stepsize ci+1 to the current function to
form T c+ ci+1ti+1. The algorithm terminates if the weak learner fails to produce a
weak hypothesis that is a descent direction indicating convergence, or if it reaches
the maximum number of iterations.
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Algorithm 10: AnyBoost
Given: class of weak hypotheses T , l(y, t) with gradient rl(y, t), weak
learner that finds t 2 T maximizing uT t:

(1.) Let f = constant or null hypothesis
(2.) Compute u1 = �rl(y, f)
(3.) For i = 1 to N

(4.) Let ti 2 arg max
t2T ui

T

t

(5.) if �ui

T

ti < 0 then return f
(6.) Choose ci to reduce l(y, f + citi)
(7.) Let f = i

j=1 tjcj

(8.) Compute ui+1 = �rl(y, f)
(9.) end for

(10.) return f

Variations can be developed by specifying the weak learner in Step 4, the loss
function, and the algorithm to optimize the step size ci (Step 6). For example,
in (Mason et al., 1999), it is shown that AdaBoost (Freund and Shapire, 1997)
minimizes the exponential loss with exact line search, ConfidenceBoost (Schapire
and Singer, 1999) minimizes the exponential loss with an inexact line search, and
LogitBoost (Friedman et al., 2000) minimizes the negative binomial log-likelihood
with a single Newton step used to compute c. Cost sensitive decision tree algorithms
are commonly used as the weak learner.

28.2.2 AnyBoost with Orthogonal Weak Hypotheses

Our goal is to create a set of orthogonal features that explains the response, i.e.
for regression y ⇡ T c = XV c, T T T = I , where V is a projection matrix with
vi, i = 1, . . . , N as its column vectors, in such a way that a given loss function is
minimized. By changing AnyBoost to produce orthogonal hypotheses, we can force
AnyBoost to produce features that both factorize and explain the input space like
PCA and span the response or output space as in original AnyBoost. The resulting
algorithm becomes:

Algorithm 11: OrthoAnyBoost
Same as Algorithm 10 except for the following steps:

4. Let ti 2 arg max
t2T ui

T

t

subject to tT tj = 0 j = 1, . . . , i� 1.

6. Optimize c to reduce l(y, i

j=1 tjcj)

This simple change has some immediate ramifications. We may now use more
powerful hypotheses since the hypothesis subproblem is now regularized. Second,
the approach is no longer a gradient descent algorithm. We have transformed it into
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a subspace algorithm (Nocedal and Wright, 1999) similar but not equivalent to a
nonlinear conjugate gradient algorithm. At each iteration, the algorithm computes
the optimal solution over the current subspace. This is a form of regularization of the
original problem. Subspace methods such as conjugate gradient can be much faster
than gradient methods particularly for ill-posed problems such as the ones that
we are considering. Empirically BLF converges much faster than boosting without
orthogonalization. In fact for linear hypotheses, we can prove finite termination of
BLF at an optimal solution of the full problem. For the least squares loss with linear
hypotheses, BLF reduces to the conjugate gradient method. We will not show this
directly but instead show that the method reduces to partial least squares, which has
been previously shown to be a conjugate gradient algorithm (Phatak and de Hoog,
2002). Note for finite termination, the regression coe�cients c must be re-optimized
(refitted) at every iteration, an approach not typical of most boosting or ensemble
algorithms.

28.3 BLF with Linear Functions

The OrthoAnyBoost framework can be applied to linear hypotheses. Linear hypothe-
ses are of the form t

k

= xT

k

v in input space or t
k

= �(x
k

)T v in feature space for
use in a kernel framework. We reserve discussion of the natural extension to kernels
to Section 7. To apply OrthoAnyBoost to linear hypotheses requires that the weak
learner (Step 4) and the hypotheses weighting computation (Step 6) be modified
accordingly. The big advantage of linear hypotheses is that the optimal orthogonal
linear function found in Step 4 can be e�ciently computed in closed form by recast-
ing the problem into the null space of the constraints using a widely-used procedure
commonly known as “deflation.” For clarity we first provide a detailed description of
deflation since it has proven a source of confusion and an understanding of deflation
is necessary for all other parts of the algorithm.

28.3.1 Enforcing Orthogonality in Linear Spaces

The requirements that the new hypotheses be orthogonal to all previous constraints
form linear equality constraints in hypothesis space. For linear hypotheses, t = Xv,
Step 4 in OrthoAnyboost reduces to

max
v

ui

T

Xv

subject to tj

T

Xv = 0 j = 1, . . . , i� 1

Xv 2 T
(28.1)

The linear equalities can be eliminated by mapping the problem into the null space
of the linear constraints, as in power methods for computing principal components.
This also provides a way to naturally bound the hypothesis space T so that Problem
(28.1) has a solution. Define T i = [t1, . . . , ti]. Let Zi be any null space matrix for

the matrix T i

T

X . Then for any w, vi = Zi�1wi implies T i

T

Xvi = 0. Note when
i = 1, Z0 is defined to be I as a special case and X1 = X . Problem (28.1) can be
reparameterized as
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max
w

ui

T

XZi�1w

subject to wT w = 1
(28.2)

Note that the constraint wT w = 1 must be added to insure that the problem is
bounded and that an optimal solution always exists. Problem (28.2) has a closed

form solution wi = Z

i�1T
X

T
u

i

kZ

i�1T
X

T
u

ik .

An equivalent way to solve Problem (28.2) is to map the data into the null
space X i = XZi�1 by “deflating” or orthogonalizing the data with respect to the

constraints. At the ith iteration, the linear hypothesis ti = X

i
w

i

kX

i
w

ik is chosen. The

deflated data matrix is X i+1 = (I � titi

T

)X i.
While not obvious, deflating X in this way is equivalent to multiplying X by

the appropriate null space matrix. At the ith iteration, Problem (28.2) is equal to

max
w

ui

T

X iw

subject to wT w = 1.
(28.3)

A major advantage of this form of the problem is that the optimal solution has a

closed form wi / X i

T

ui. The optimal solution in the transformed space is wi. The
optimal solution is the original space is vi = Zi�1wi.

The fact that orthogonality is enforced, i.e. T i

T

X i+i = 0, can be proved by

induction. Consider the second iteration, where t1 = Xw

1

kXw

1k

X2 = (I � t1t1T

)X = X � Xw

1

kXw

1kt
1T

X = X(I � w

1

kXw

1kt
1T

X)

Define Z1 = (I� w

1

kXw

ikt
1T

X), then t1T

X2 = t1T

XZ1 = t1T

X�t1T

Xw

1

kXw

1kt
1T

X =

0. Thus the optimal solution of Problem (28.3) for the second iteration (the first has
no linear constraints) will satisfy the orthogonality constraints. For the ith iteration

assume X i = XZi�1 and tj

T

XZi�1 = 0 j = 1, . . . , i� 1. At iteration i + 1,

X i+1 = (I � titi

T

)X i = X i � X

i
w

i

kX

i
w

ikt
i

T

X i = XZi�1(I � w

i

kX

i
w

ikt
i

T

X i)

By the assumption, tj

T

X i+1 = tj

T

XZi�1(I� w

i

kX

i
w

ikt
i

T

X i) = 0, j = 1, . . . , i�1,

thus we need only worry about ti = X

i
w

i

kX

i
w

ik . Since

ti

T

X i+1 = ti

T

X i(I � wi

kX iwikt
i

T

X i) = ti

T

X i � ti

T X iwi

kX iwikt
i

T

X i = 0.

Thus vi = Zi�1wi satisfies the orthogonality constraints of Problems (28.1) and
(28.2). Note that the optimal wi at each iteration is in the deflated space. Steps at
the end of BLF map the solution back to the original data space. As shown in the

next section, this can be done e�ciently using the stored vectors wi and pi = X i

T

ti

without explicitly deflating the data.

28.3.2 Boosting Latent Features

Algorithm 12 provides the full algorithm for boosting orthogonal linear hypotheses
or latent features. To start the algorithm, the initial or “zeroth” weak hypothesis
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is taken to be a constant hypothesis t / e, a vector of ones. The step size on
the constant column is obtained by solving min

c

l(y, ce), For example for the least
squares loss function, c = µ

y

= mean(y). The first hypothesis is then f = ce. The

data is deflated by the scaled t0 = e

kek so X1 = X � t0t0T

X = X � eµT

X

where
µ

X

is the mean of X . Thus deflation centers each attribute. Frequently centering is
done as preprocessing, thus we treat it as a distinct first step.

Algorithm 12: Boosted Latent Features (BLF)
Input: data X ; response y; number of latent variables N .

(1.) Compute µ
y

= arg min
µy l(y, µ

y

e). Set µ
X

= 1
m

XT e.
Deflate X1 = X � eµT

X

. u1 = �rl(y, µ
y

e), T = [ ].
(2.) For i = 1 to N

(3.) Compute optimal solution to Problem (28.3): wi = X i

T

ui

(4.) Compute linear hypothesis: ti = X iwi, ti  ti/ktik, T = [T t]

(5.) Deflate: pi = X iT ti, X i+1 = X i � tipi

T

(6.) Compute function: (µ
y

, c) = arg min(µy,c) l(y, µ
y

e + T c)

(7.) Compute negative gradient: ui+1 = �rl(y, µ
y

e + T c)
(8.) end

(9.) Final features: T (x) = (x� µ
X

)T W P T W
�1

where W and P have
wi and pi as their columns, respectively.

(10.) Compute coe�cients in original space: g = W P T W
�1

c

(11.) Final function: f(x) = (x� µ
X

)T g + µ
y

.

Using arguments much like those in Section 28.3.1, it can be shown that deflation
forces orthogonality of many of the vectors constructed in the algorithm.

Lemma 1. Orthogonality Properties of BLF. The following properties hold at ter-
mination of BLF:

(1.) The vectors wi are mutually orthogonal: wi

T

wj = 0, for i 6= j.

(2.) The vectors ti are mutually orthogonal: ti

T

tj = 0, for i 6= j.
(3.) The vectors wi are orthogonal to the vectors pj for i < j. Thus P T W is an

upper triangular matrix.

Proof. These properties also hold for PLS and the proofs for PLS in (Höskuldsson,
1988) apply to BLF without change. ⇤

The end products of the algorithm are the final predictive function and the latent
linear features. Recall that the weights for the linear hypotheses were computed in
the null space using the deflated data, thus Steps 9 and 10 are added to create
the linear functions and final predictive function to the original space. As shown in
the following theorem, it is not necessary to explicitly compute the null matrices or
deflate the data to compute the final coe�cients of the latent features.
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Theorem 1 (Mapping to original space). The linear hypotheses T = [t1, . . . , tN ]
in the original centered space are

T = XW (P T W )�1 (28.4)

Proof. The algorithm can run until the centered data matrix X is fully factorized:

X = rank(X)
i=1 tipi

T

and it can be divided into two parts.

X =
N

i=1

tipi

T

+

rank(X)

i=N+1

tipi

T

. (28.5)

Multiplying by W on both sides yields:

XW =
N

i=1

tipi

T

W +

rank(X)

i=N+1

tipi

T

W =
N

i=1

tipi

T

W . (28.6)

By Lemma 1, pi

T

wj = 0 for i = N + 1, . . . , rank(X) with j = 1, . . . , N . So

X � N

i=1 tipi

T

W = X � T P T W = 0 holds. Exploiting the fact that P T W

is invertible (it is in fact a triangular matrix), solving for T yields the solution. ⇤
The final steps in Algorithm 12 give the final latent feature function and predic-

tive functions in the original space. These steps are always the same regardless of
the particular loss function used. Step 9 computes the latent features. The features
may be scaled by the importance represented by the coe�cients c,

T̂ (x) = (x� µ
X

)W P T W
�1

diag(c). (28.7)

As written, BLF does full refitting, i.e. the problem in Step 6 is solved to opti-
mality. This allows us to prove some additional properties of the algorithm.

Lemma 2. Optimal Refit Let l be a convex continuously (sub)di↵erentiable func-
tion. At each iteration after Step 6 is successfully completed

T Trl(y, µ
y

e + T c) = 0 (28.8)

Proof. We prove this for the subgradient case since the di↵erentiable functions are
just a special case and let r denote a subgradient. For convex unconstrained min-
imization with subgradients, a solution is optimal if and only if there exists a zero
subgradient at that point (Bazaraa et al., 1993). The optimality condition for c is:
0 = r

c

Loss(y, µ
y

e + T c) = T TrLoss(y, µ
y

e + T c) by the chain rule. ⇤

Corollary 1. Orthogonality of U and T At iteration i let ui+1 = �rl(y, µ
y

e+
T c), where rl(y, µ

y

e + T c) is the optimal subgradient found by refitting satisfying
(28.8), then

ui

T

tj = 0, for i > j. (28.9)

Proof. By Lemma 1, at the ith step, ui+1T

T = 0. Since T = [t1 · · · ti], ui+1T

tj =
0, for i � j holds in general. ⇤

This property permits W to be expressed in terms of the original variables.
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Corollary 2. Alternate form of W At iteration i let ui = �rl(y, µ
y

e + T c)
where rl(y, µ

y

e+T c) is the optimal subgradient found by refitting satisfying (28.8),

then wi = XT ui for i = 1, . . . N , where X is the centered data.

For AdaBoost with discrete functions, the step sizes ci are not reoptimized at
later iterations. Step 6 in Algorithm 12 optimizes just one ci. Therefore, the in-
equality i > j in Equation (28.9) only holds with i = j + 1. The relation uj+1tj = 0
is known in AdaBoost as “the weak hypothesis will be exactly uncorrelated with
the labels” (Schapire and Singer, 1999), where “labels” corresponds to the pseudo
residual u.

28.4 Convergence Properties of BLF

If BLF is not stopped early by restricting the number of latent variables, BLF
constructs a solution of the full model

min
g,µy l(y, Xg + µ

y

e) (28.10)

in a finite number of iterations. Without loss of generality, assume that the threshold
is eliminated by augmenting X with a constant column and that data centering is
optionally done as a preliminary step to form X . Equivalently we can say BLF
constructs an optimal solution of

min
g

l(y, Xg) (28.11)

Theorem 2. Finite Convergence of BLF to Full Model Let l be a convex
(sub)di↵erentiable function and ui be the negative (sub)gradient in Step 7 that is
optimal for refitting. Assume BLF is modified to check for termination conditions

at each iterations, e.g. at each iteration BLF calculates g = W P T W
�1

c and

terminates if g is optimal for (28.11) or if X = T P T . Then BLF terminates in a
finite number of iterations and g is optimal for (28.11).

Proof. The algorithm will terminate finitely since the number of iterations is limited
by the rank of X . If g is optimal then the result holds. If the algorithm terminates be-
cause X = T P T then due to refitting 0 = T T ui+1 = T Trl(y, T c) = T Trl(y, Xg).

Multiplying by P , P T Trl(y, Xg) = XTrl(y, Xg) = 0, thus the (sub)gradient of
the original problem is zero and thus optimal since the first order optimality condi-
tions are satisfied and l is convex (Bazaraa et al., 1993). ⇤

By introducing orthogonality, BLF goes from being a gradient descent algorithm,
which may have slow convergence for ill-conditioned loss functions to a conjugate-
gradient-like subspace method with finite termination. As we show in the next sec-
tion, BLF with least squares loss reduces to PLS, which has been previously shown
to be a conjugate gradient algorithm. Thus we can view BLF as a novel nonlinear
conjugate gradient algorithm. Empirically the di↵erence in convergence rate of the
gradient/boosting method versus the orthogonal BLF method can be quite marked
for some loss functions. Figure 28.1 illustrates the di↵erent convergence rates for
the negative binomial or logistic loss evaluated on the training data with the kernel
trick explained in detail in Section 28.7. Without deflation and refit the method is
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Fig. 28.1. Objective values of logistic loss for Diabetes data. Four possible options
are examined: with/without deflation and with/without refit. Note the kernel trick
is used to enrich the input space.

just boosting. Without deflation and with refit the method is a gradient method
with a more extensive line search. Details about the logistic loss implementation
are provided in Section 6.2. The figure shows that without deflation the algorithm
stalls and fails to make progress, a classic problem with gradient descent methods.
With deflation, convergence improves markedly, with the fastest algorithm being
BLF with deflation and refitting.

In practice BLF would be halted after a few iterations and the di↵erence between
BLF with and without refitting is not large in the first five iterations. This sugges-
tions that full refitting may not be necessary to achieve good testing set results, but
we leave the computational study of the best BLF variant to future work.

28.5 PLS and BLF

For the least squares loss function, orthogonal boosting with linear hypotheses re-
duces to the well studied partial least squares regression (PLS) algorithm. We derive
BLF with least squares loss and show it reduces to PLS (Algorithm 13).

The PLS loss function is the squared loss: l(y, f) = ky � fk22. The negative
gradient in Step 7 in Algorithm 12 is simply the residual: u1 = �rl(y, f) = (y� f).
As discussed above, the first step of BLF uses the constant hypothesis so deflation
is equivalent to centering the data. Also at the constant hypothesis, the negative
gradient of the squared loss is �rl(y, µ

y

e) = y� µ
y

e, which is precisely u1 in PLS
(Step 1), the step that mean centers the response. In general, at the ith iteration,
the negative gradient is: ui = �rl(y, µ

y

e + i�1
j=1 tjcj) = y � µ

y

e � i�1
j=1 tjcj =

y � f . The negative gradient is exactly the residual for the squared loss. At the ith
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Algorithm 13: Linear PLS
Input: X , y, N .

(1.) Center data and compute mean response:
µ

X

= 1
m

XT e, X1 = X � eµT

X

, µ
y

= 1
m

eT y.
u1 = y � µ

y

e T = [ ].
(2.) For i = 1 to N

(3.) Compute optimal solution to problem (28.3): wi = X i

T

ui

(4.) Compute linear hypothesis: ti = X iwi, ti  ti/ktik, T = [T t]

(5.) Deflate: pi = X iT ti, X i+1 = X i � tipi

T

(6.) Compute function: ci = ui

T

ti

(7.) Compute negative gradient: ui+1 = ui � tici

(8.) end

(9.) Final features: T (x) = (x� µ
X

)T W P T W
�1

where W and P have
wi and pi as their columns, respectively.

(10.) Compute coe�cients in original space: g = W P T W
�1

c

(11.) Final function: f(x) = (x� µ
X

)T g + µ
y

.

iteration, the algorithm finds the descent direction by maximizing the inner product
between ui and the data projection X iwi. Since, all the variables are centered,
maximizing the inner product becomes equivalent to maximizing the covariance of
the residual response with the linear hypothesis, which corresponds to the statistical
interpretation of the PLS optimization problem.

Step 6 computes the regression coe�cients. PLS optimizes one coe�cient at a
time in closed form, but because of the orthogonality of latent features and the least
squares loss function, the coe�cient is globally optimal for the loss function and
there is no need for refit. PLS will be equivalent to ordinary least squares or the full
model when the full rank of the original matrix is used in the extracted features. As
noted above, for a generic loss function, refit is needed to insure convergence to the
optimal solution of for the full-model and can increase the convergence rate.

BLF can be regarded as a generalization of PLS to an arbitrary loss function.
The algorithmic and regularization properties of PLS have been extensively studied.
PLS is in fact a classic conjugate gradient or Lanczos method (Phatak and de Hoog,
2002). Thus for least squares loss, BLF reduces to a conjugate gradient method
that exploits second order properties of the loss function. BLF is not a classical
nonlinear conjugate gradient algorithm. Conjugate gradient boosting in hypothesis
space has been tried previously with mixed results (Li et al., 2003). BLF requires the
hypotheses to be orthogonal in the hypothesis space. A nonlinear conjugate gradient
algorithm would not enforce this property. BLF is a novel subspace optimization
algorithm. It would be interesting to investigate the convergence rate properties of
BLF and to compare BLF with a nonlinear conjugate algorithm but we leave these
for future work.

PLS is known to regularize the solution and the extent of the regularization
depends on the number of features constructed. See (Friedman and Popescu, 2004)
for a nice analysis of these properties. When the number of feature is equal to the
rank of the data, the PLS solution will coincide with the ordinary least squares
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solution. The norm of the regression weights increases as more latent features are
added. This property is also maintained but we have not formally proven it. BLF is
closely related to the gradient based regularization also proposed in (Friedman and
Popescu, 2004).

28.6 BLF for Arbitrary Loss

As discussed, Algorithm 12 gives the general framework for BLF. Among many
choices of loss functions, the following loss functions are examined:

(1.) Squared loss (PLS)
l(y, f) =

m

i=1

�2
i

(y
i

� f(x
i

))2 , (28.12)

(2.) Least absolute deviation (1-norm loss)

l(y, f) =
m

i=1

�
i

|y
i

� f(x
i

)|, (28.13)

(3.) Exponential loss
l(y, f) =

m

i=1

�
i

exp (�y
i

f(x
i

)) , (28.14)

(4.) Negative binomial log-likelihood (logistic loss)

l(y, f) =
m

i=1

�
i

ln 1 + e�2yif(xi) .

Note we introduced local weighting �
i

(> 0) for each data point x
i

to be applicable
for more general settings such as cost sensitive learning. Additionally, there are many
possible strategies for optimizing the loss function that e↵ect how to optimize w for
creating the weak hypotheses and the step size c. Following OrthoAnyBoost, w is
determined by maximizing the inner product between the latent feature determined
by w and the negative gradient. The step size or hypothesis weight c is optimized
by an exact line search or one iteration of a Newton method, ensuring the full model
can eventually be obtained.

28.6.1 Least Absolute Deviation

The least absolute deviation loss is more robust to outlying points that the squared
loss function. Here a Least Absolute Deviation (LAD) loss function is used for re-
gression problems. Support Vector Machines (SVM) for regression is one example of
a method that uses a more robust loss function than ordinary least squares (Drucker
et al., 1997). The LAD loss can be seen as a special case of the ✏-insensitive loss
(Drucker et al., 1997) in which ✏ is set to zero. In principle, it is possible to use the
✏-insensitive loss for BLF and it may make the model more tolerant to noise. We
leave this to future work.

The LAD loss function is defined as

l(y, f) =
m

i=1

�
i

|y
i

� f(x
i

)|, (28.15)

where f(x
i

) is the sum of weak hypotheses: f(x
i

) = N

j=1 f j(x
i

), and f is a vec-
tor representation of the function f . The �

i

> 0 are fixed error weights for each



560 Michinari Momma and Kristin P. Bennett

point. The LAD loss function is not di↵erentiable at every point, but an appropriate
subgradient does exist. For BLF, the LAD subgradient is defined as:3

rl(y, f) = � [�1sign(y1 � f1), . . . , �m

sign(y
m

� f
m

)]T , (28.16)

where f
i

is the ith element of the vector f , sign(⌘) = 1 if ⌘ > 0, sign(⌘) = �1 if
⌘ < 0, and sign(⌘) = 0 if ⌘ = 0. Note all convergence and orthogonality properties
are maintained and the algorithm performs quite well.

The first step in BLF is to optimize a constant hypothesis. The solution of
the hypothesis weight problem argmin

µy

m

i=1 �i

|y
i

� µ
y

|is the weighted median of
{y

i

}m

i=1 with weights {�
i

}m

i=1, see for example (Hoaglin et al., 1982). Once µ
y

is
obtained, the negative gradient u is computed. Thus, u1 at the first iteration is
written by

u1 = [�1sign(y1 � µ
y

), . . . , �
m

sign(y
m

� µ
y

)]T (28.17)

There are two options for optimizing the function coe�cients c. We can optimize
one ci associated with ti then fix the value of ci for later iterations. Or we can refit,
e.g. re-optimize all the regression coe�cients [µ

y

c] = µ
y

, c1, . . . , ci associated with
the weak hypotheses selected so far:

(µ
y

, c) = arg min kdiag(�)(y �
i

j=1

tjcj � µ
y

)k1, (28.18)

where � is a vector representation of {�
i

}m

i=1. In general, this problem can be solved
using linear programming. Since (µ

y

, c) are incrementally optimized, column gener-
ation methods can be used to e�ciently update the solution at each iteration. Note
that if reoptimization/refitting is not chosen, a closed-form solution can be utilized.
See (Friedman, 2001) for more detail. Once the regression coe�cients are solved, the
negative gradient, or pseudo response, is updated:

ui+1 = �1sign(y1 � µ
y

�
i

j=1

tj

1c
j), . . . , �

m

sign(y
m

� µ
y

�
i

j=1

tj

m

cj)

T

, (28.19)

where ti

j

is the jth element of the ith weak hypothesis ti. In summary, the steps in
Algorithm 12 for LAD loss are specified as follows:

• Step 1: µ
y

= median� (y) and u1 = [�1sign(y1 � µ
y

), . . . , �
m

sign(y
m

� µ
y

)]T

• Step 6: LAD loss is minimized by linear program (28.18)

• Step 7: ui+1 = �1sign(y1 � µ
y

� i

j=1 tj

1c
j), . . . , �

m

sign(y
m

� µ
y

� i

j=1 tj

m

cj)
T

28.6.2 Exponential Loss

The exponential loss function was used in AdaBoost (Freund and Shapire, 1997) for
binary classification problems. AdaBoost changes the weights on the data points at
each iteration; more di�cult instances are given larger weights. The algorithm can
be understood as minimizing the exponential loss functional (Friedman et al., 2000,
La↵erty, 1999):

3In a slight abuse of notation, we use r to denote the subgradient whenever the
gradient does not exist.
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l(y, f) =
m

i=1

�
i

exp (�y
i

f(x
i

)) , (28.20)

where the responses are given in binary coding: y
i

2 {+1,�1}, i = 1, . . . , m.

Computing Descent Directions in BLF

Let’s discuss how to formulate the exponential loss in BLF. At first a constant weak
hypothesis is added to the additive model. Then the regression coe�cient µ

y

on the
constant hypothesis is determined by optimizing

min
µy

l(y, µ
y

e) = min
µy

m

i=1

�
i

exp (�y
i

µ
y

)

= min
µy

e�µy

i2C+

�
i

+ eµy

i2C�
�

i

, (28.21)

where C+ is a set of positive data points and C� is a set of negative data points.

With this simplification, it is now easy to solve the optimality condition
@l(y,µy)

@µy
= 0,

to compute the solution:

µ
y

=
1
2

ln i2C+ �i

i2C� �i

. (28.22)

The next step computes the negative gradient of the loss function:

ui+1
k

= �rl(y, µ
y

+
i

j=1

tjcj)

k

= �
k

e�yk(µy+ i
j=1 t

j
kc

j)y
k

. (28.23)

As seen in Equation (28.23), the weak hypotheses in previous iterations are absorbed

in the “weight” defined as �
k

e�yk(µy+ i
j=1 t

j
kc

j). This weighted response becomes a
new response variable to fit in creating a new weak hypothesis, which corresponds
to the weight updates on each of the data points in the AdaBoost algorithm.

Solving for Function Coe�cients

At every iteration i, BLF computes the function coe�cients c when a new weak
hypothesis or latent feature is added to the model. Refitting for exponential loss
minimizes the following loss function with respect to µ

y

and c:

l(y,
i

j=1

tjcj) =
m

k=1

�
k

exp �y
k

(µ
y

+
i

j=1

tj

k

cj) . (28.24)

It is convenient to define a matrix notation. Let

d = �1 exp �y1(µy

+
i

j=1

tj

1c
j) , . . . , �

m

exp �y
m

(µ
y

+
i

j=1

tj

m

cj)

T

(28.25)

Then the loss function is simply expressed by
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l(y, µ
y

+
i

j=1

tjcj) = eT d. (28.26)

The gradient with respect to (µ
y

, c) is given by

r(µy,c)l(y, µ
y

+
i

j=1

tjcj) =

� m

k=1 �k

e�yk(µy+ i
j=1 t

j
kc

j)y
k

� m

k=1 �k

e�yk(µy+ i
j=1 t

j
kc

j)y
k

t1
k

...

� m

k=1 �k

e�yk(µy+ i
j=1 t

j
kc

j)y
k

ti

k

(28.27)

= �[e T ]T diag(d)y.

The Hessian is given as follows:

r2
(µy,c)l(y, µ

y

+
i

j=1

tjcj) = [e T ]T diag(y)diag(d)diag(y)[e T ] (28.28)

Since y
i

2 {+1,�1} for binary classification, the Hessian can be written as

r2
(µy,c)l = [e T ]T diag(d)[e T ]. (28.29)

Thus the Newton step is given by:

µ
y

c
= [e T ]T diag(d)[e T ]

�1
[e T ]T diag(d)y, (28.30)

which is just a weighted least squares problem with the vector d determining the
weights on data points. Since µ

y

and c are incrementally optimized, the Newton
step can be started from the previously optimized value to reduce the number of
iterations to converge. In practice, a few iterations are su�cient to get a good fit
to the response variable. In summary, the steps in Algorithm 12 for the exponential
loss are specified as follows:

• Step 1: µ
y

= 1
2 ln i2C+ �i

i2C� �i

• Step 1 and 7:

ui+1
k

= �
k

e�yk(µy+ i
j=1 t

j
kc

j)y
k

• Steps 6: the step size (µ
y

, c) optimized by the Newton step

28.6.3 The Negative Binomial Log-likelihood

The binomial likelihood is parameterized by

p(y = 1|x) =
ef(x)

ef(x) + e�f(x)
=

ef(x)

2 cosh (f(x))

p(y = �1|x) =
e�f(x)

ef(x) + e�f(x)
=

e�f(x)

2 cosh (f(x))
. (28.31)

Equivalently, f(x) is expressed by p(y = 1|x) and p(y = �1|x):
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f(x) =
1
2

ln
p(y = 1|x)

p(y = �1|x)
. (28.32)

The negative log-likelihood loss, including local weighting �
i

, is given by

l(y, f) = �
i2C+

�
i

ln (p(y = 1|x
i

))�
i2C�

�
i

ln (p(y = �1|x
i

))

= �
m

i=1

�
i

[y
i

f(x
i

)� ln (2 cosh f(x
i

))] (28.33)

=
m

i=1

�
i

ln 1 + e�2yif(xi) .

Note that this loss function is used for additive logistic regression (Friedman et al.,
2000, La↵erty, 1999) and is just a factor of 2 di↵erent from the loss in logistic re-
gression. It is also known that negative binomial loss is equivalent to the exponential
loss up to the second order (Friedman et al., 2000, La↵erty, 1999).

Computing the Descent Directions in the Negative Binomial
Log-likelihood

In Step 1, a constant hypothesis is added to the model:

min l(y, µ
y

e) =
m

i=1

�
i

ln 1 + e�2yiµy

= ln 1 + e�2µy

i2C+

�
i

+ ln 1 + e2µy

i2C�
�

i

. (28.34)

Solving
@l(y,µye)

@µy
= 0 yields

µ
y

=
1
2

ln i2C+ �i

i2C� �i

. (28.35)

The next step computes the negative gradient of the loss function.

ui+1
k

= �rl(y, µ
y

e +
i

j=1

tjcj)

k

= �
k

y
k

� tanh µ
y

+
i

j=1

tj

k

cj . (28.36)

This equation means that the new pseudo response is given by the residual between
y and the hyperbolic tangent of the linear combination of the weak hypotheses, just
like in neural networks.

Solving for Function Coe�cients

Refitting re-optimizes the function coe�cients c at each iteration. The loss function
is written by
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l(y, µ
y

e +
i

j=1

tjcj) =

�
m

k=1

�
k

y
k

(µ
y

+
i

j=1

tj

k

cj)� ln 2 cosh µ
y

+
i

j=1

tj

k

cj . (28.37)

The gradient with respect to (µ
y

, c) is

r(µy,c)l(y, µ
y

e +
i

j=1

tjcj)

=

� m

k=1 �k

y
k

� tanh(µ
y

+ i

j=1 tj

k

cj)

� m

k=1 �k

t1
k

y
k

� tanh(µ
y

+ i

j=1 tj

k

cj)

...

� m

k=1 �k

ti

k

y
k

� tanh(µ
y

+ i

j=1 tj

k

cj)

(28.38)

= �[e T ]T r,

where r
k

= �
k

y
k

� tanh(µ
y

+ i

j=1 tj

k

cj) . Furthermore, the Hessian is given by

r2
(µy,c)l = [e T ]T diag(d)[e T ], (28.39)

where d is defined as follows:

d = �1 cosh�2(µ
y

+
i

j=1

tj

1c
j), . . . , �

m

cosh�2(µ
y

+
i

j=1

tj

m

cj)

T

. (28.40)

Thus the Newton step is given by

µ
y

c
= [e T ]T diag (d) [e T ]

�1
[e T ]T r. (28.41)

This optimization is done in the same fashion as for exponential loss.
The Newton step may not always lead to a decrease in the objective function,

leading to a condition that can be readily detected while training. A modified Newton
step, which adds a multiple of the identity matrix to the Hessian before computing
the Newton step, can be used. The following heuristic for a Modified Newton step
was found to work well in practice based on the parameter 0  �  1, Hessian
H = r2

(µy,c)l, and iteration number i:

H = (1� �)H +
� trace(H)

i + 1
I (28.42)

Then H is used to compute a modified Newton step in Step 6 instead of the original
Newton step.

In summary, the steps in Algorithm 12 for the negative binomial log-likelihood
loss are specified as follows:

• Step 1: µ
y

= 1
2 ln j2C+ �j

j2C� �j
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• Steps 1 and 7:

ui+1
k

= �
k

y
k

� tanh µ
y

+
i

j=1

tj

k

cj

• Step 6: the step size (µ
y

, c) optimized by the modified Newton step

28.7 Kernel BLF

The kernel extension of BLF is similar to that of kernel PLS (Rosipal and Trejo,
2001). BLF is expressed in terms of inner products of data points, or equivalently
in terms of the Gram matrix XXT . We then transform the input space into the
kernel-defined feature space: XXT 7! K . With this basic rule in mind, we can
modify the BLF algorithm (Algorithm 12). In Step 1, the deflation of the data

matrix should be replaced by centering the kernel matrix. That is, K1 = K =
I � 1

m

eeT K I � 1
m

eeT . Steps 3 and 4 are combined to avoid expressing w.

Namely, the latent feature is computed by ti 2 {t|uiT K it > 0}. Step 5 is replaced

by the kernel deflation: K i+1 = I � titi

T

K i I � titi

T

.

The step computing the function coe�cients associated with the original data
matrix X is now computed using the dual function coe�cients, �. The formula in
Step 9 in Algorithm 12 is expressed in terms of dual variables t, u, and the kernel K .
As shown in Section 3, the properties P = XT T and W = XT U hold. Thus the for-

mula g = W P T W
�1

c can be rewritten by g = XT U T T XXT UT

�1
c, which

gives the formula for the kernel PLS regression coe�cients: � = U T T KUT

�1
c.

The first property P = XT T results from deflation. However, as shown in Corollary
2, W = XT U only holds if the step sizes are refitted. Thus, early termination of
the Newton iteration to determine ci or fixing the step size for earlier iterations will
violate Equation (28.9). Therefore, we need to find a matrix A such that W = XT A
in order to express the inference functions in terms of the original data. Using the
deflation formula, we can readily find a formula for an ith column of the matrix A:

ai = ui �
i�1

j=1

(tj

T

ui)tj . (28.43)

Using the matrix A, we can write the formula for the function coe�cients as follows:

� = A T T KA
�1

c. (28.44)

Using the dual regression coe�cient �, the final prediction is written by

f(x) =
m

i=1

K̃(x,x
i

)�̃
i

+ µ
y

, (28.45)

where the centered test kernel is denoted by k ⌘ [K̃(x,x1), . . . , K̃(x,x
m

)]T . The
formula for the un-centered test kernel is easily derived first by considering a linear
kernel, then extending to general kernels:
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kT = x� 1
m

XT e
T

XT I � 1
m

eeT

= xT XT � 1
m

eT XXT I � 1
m

eeT

7! kT � µT

K

I � 1
m

eeT , (28.46)

where µ
K

is a mean vector of the kernel matrix: µ
K

= 1
m

Ke. Thus, by putting

� = I � 1
m

eeT �̃ and µ
K

= µT

K

�, the final regression function is simply expressed
by

f(x) =
m

i=1

K(x,x
i

)�
i

� µ
K

+ µ
y

. (28.47)

With Equation (28.47), prediction can be done using the uncentered kernel, modified
dual regression coe�cient � and a constant bias term (�µ

K

+ µ
y

).

Algorithm 14: Kernel Boosted Latent Features
Input: K , y, N .

(1.) Compute µ
y

= arg min
µy l(y, µ

y

e).
Deflate K1 = I � 1

m

eeT K I � 1
m

eeT . u1 = �rl(y, µ
y

e), T = [ ].
(2.) For i = 1 to N
(3.) Compute latent features:

ti = K iui, ti  ti/ktik, T = [T t]

(4.) Deflate: K i+1 = I � titi

T

K i I � titi

T

(5.) Compute the function:
(µ

y

, c) = arg min(µy,c) l(y, µ
y

e + T c)

(6.) Compute: ui+1 = �rl(y, T c)
(7.) end
(8.) For i = 1 to N

(9.) ai = ui � i�1
j=1(t

j

T

ui)tj

(10.) end

(11.) Final features: T (x) = K1(x, X)A T T K1A
�1

, where A has ai as its
columns.

(12.) Compute the coe�cients and bias:

� = I � 1
m

eeT A T T K1A
�1

c, µ
K

= µT

K

�.
(13.) Final prediction function is:

f(x) = m

i=1 K(x,x
i

)� � µ
K

+ µ
y

.

28.8 Computational Results

This section presents computational results for linear and kernel BLF. Recall BLF
can be used both to construct orthogonal features targeted to a particular loss



28 Constructing Orthogonal Latent Features for Arbitrary Loss 567

function and to create predictive models for a loss function. Figure 28.2 illustrates
the value of orthogonal features targeted to a specific loss. The Cancer data set
from the UCI machine learning repository (Blake and Merz, 1998) is used. The first
two features of the nine dimensional Cancer data constructed by PCA, BLF with
least squares (BLF-LS) loss, which is equivalent to PLS, and BLF with logistic loss
(BLF-LOG) are shown. The PCA plot does not use information from the response
and does not capture the class structure as well. The PCA plot looks rather noisy
since the outliers have more influence; outliers account for the high variance. BLF-
LS and BLF-LOG discriminate the two classes more clearly and could be used as
input another modeling method or the BLF function could be used for classification.
BLF-LOG constructs a nice Gaussian blob for each class.
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Fig. 28.2. The first two components of PCA (upper�left), BLF-LS (PLS) (upper�
right) and BLF-LOG (lower). The positive examples are dots and the negative
examples are circles.

The next two subsections are devoted to quantitative studies of BLF. The first set
of experiments illustrates BLF’s competitive performance as a predictive modeling
tool on standard machine learning test beds using common cost functions. In the
second case study, we investigate the use of kernel BLF on a very high dimensional
unbalanced classification problem, Thrombin, from the KDD cup 2001 (also known
as the Dorothea dataset in the NIPS 2003 Feature Selection Challenge).

28.8.1 The Benchmark Data Sets

In this subsection, real world data sets, Boston Housing, Cancer, Diabetes, Liver, and
Wisconsin Breast Cancer (WBC) from the UCI machine learning repository (Blake
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and Merz, 1998), and Albumin (a drug discovery dataset) (Bennett et al., 2000),
are examined. Boston Housing and Albumin are regression data sets. All others are
binary classification problems. We report both the mean and the standard deviation
of the mean squared error in case of regression or accuracy in percentages in case of
classification. Except for Boston Housing, all the experiments are repeated 100 times.
For Boston Housing, 10-fold cross validation (CV) is adopted. Uniform weighting of
data is always used.

For each of the trials, 10% of the data are held out as a test set and the rest are
used for training. Every experiment uses the same splits of training and test sets.
The number of latent features N is determined by 10-fold CV inside the training set.
N is selected to be the number of latent features that minimizes a moving average
error curve, thus N is di↵erent among the di↵erent train-test splits. Since the error
curve is based on random splits of the 10-fold training data CV, the error for a given
latent feature i is averaged with the next smaller i� 1 and next larger i + 1 results
for all the experiments.

For kernel BLF, the radial basis function (RBF) kernel,

k (x
i

,x
j

) = exp(�kxi

� x
j

k2
�2

),

is used. The kernel parameter � is determined so that the value of � creates reason-
ably good models for all the loss functions by 10-fold cross-validation runs over all
the data points. Five to ten di↵erent �s are tried depending on the data set.

Refitting the step size is used with in all of the loss functions except least squares.
But least squares, not refitting is mathematically equivalent to refitting. LAD refit
was solved exactly by linear programming. For exponential and logistic loss, the
Newton step is iterated only once for computational e�ciency. The modified Newton
step in Equation (28.42) with � = 0.1 is used. For the RBF kernel, the kernel matrix
has full rank m, and without the regularization provided by the single modified
Newton Step the model overfits the training set quickly. We leave a more formal
treatment of regularization within BLF to future work.

As a reference, we also perform the same experiments with SVMs (Boser et al.,
1992). The experimental settings are the same as other BLF models except for a
selection of trade-o↵ parameter C. Depending on the data set, a wide range of values
of C (about 10) is examined by 10-fold CV inside the training data and the one that
minimizes the CV error is chosen. SVMlight (Joachims, 1999) is used for all the SVM
experiments.

The paired student t-test is used to test significance. Since the baseline method is
BLF-LS (PLS), the t-test is performed against the results of BLF-LS. Bold numbers
indicate the method was significantly better than BLF-LS with quadratic loss using
a significance level of 0.05. Note that SVM models are not compared in the t-test.

As shown in Table 28.1, BLF works well for all of the loss functions. For re-
gression, BLF with LAD loss (BLF-LAD) and BLF-LS achieve results for Boston
Housing that are not significantly di↵erent. Note that only 10 trials were performed
for Boston Housing, which might be why the di↵erence is not significant by the
t-test. For Albumin, the results for the LAD loss show significantly better perfor-
mance. For classification (Table 28.2), BLF-LOG performs better than BLF-LS on
all of the data sets except for Liver. The exponential loss (BLF-EXP) is not as good
as BLF-LOG for all of the data sets. Figure 28.3 shows accuracy versus number of
latent features for BLF-LOG and BLF-LS on the cancer data. BLF-LS’s quadratic
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Quadratic LAD SVM

Train Test Train Test Train Test

Boston Housing Mean 21.8173 23.4910 24.6214 25.6909 22.5446 24.1008

(506 ⇥ 13) STD 1.1102 10.1094 1.4260 14.0496 1.1150 11.6537

LF 8 (0) 6.8 (1.40) —

Albumin Mean 0.1586 0.4044 0.1245 0.3201 0.0937 0.4331

(94 ⇥ 524) STD 0.0999 0.2165 0.0243 0.2037 0.0443 0.2012

LF 3.39 (1.39) 4.95 (0.77) —

Table 28.1. Regression results for linear models for the quadratic and least absolute
deviation (LAD) loss functions. SVM results provided for reference. Data sizes (m⇥
n) are also shown.

loss function penalizes points that are classified“too well”, which serves as a form
of capacity control for BLF-LS. BLF-LS does not always fit training and test sets
well but the behavior is stable. BLF-LOG, however, does not have such penalization
via the loss function, so BLF-LOG can fit the training data better than BLF-LS.
Eventually BLF-LOG ovefits. Selecting the number of latent features in BLF serves
as regularization, and the experiments show that the tuning number of latent fea-
tures by CV succeeds in avoiding over-fitting – an advantage over regular logistic
regression.
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Fig. 28.3. Testing accuracy for Wisconsin Breast Cancer for logistic and least
squares loss.
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Quadratic Exponential Logistic SVM

Train Test Train Test Train Test Train Test

Cancer Mean 95.97 96.00 96.57 96.22 96.91 96.74 97.03 96.72

(699 ⇥ 9) STD 0.30 0.24 0.30 2.25 0.22 2.13 0.24 1.95

LF 4.08 (1.03) 5.84 (0.85) 5.41 (1.08) —

Diabetes Mean 78.08 76.01 77.62 75.80 78.26 76.33 77.93 76.04

(768 ⇥ 8) STD 0.51 4.03 0.58 3.90 0.52 4.02 0.62 4.08

LF 5.20 (0.70) 5.15 (0.78) 5.39 (0.71) —

Ionosphere Mean 90.18 85.86 91.64 85.97 93.47 86.83 93.12 86.06

(351 ⇥ 34) STD 1.04 5.86 1.30 5.90 1.31 5.86 1.74 5.54

LF 5.69 (1.62) 7.40 (1.26) 7.11 (1.27) —

Liver Mean 69.93 69.24 69.40 68.53 96.98 69.00 70.93 69.15

(345 ⇥ 6) STD 1.33 8.15 1.45 8.76 1.37 8.92 1.27 7.62

LF 4 (0) 4 (0) 4 (0) —

WBC Mean 96.64 95.91 98.10 97.14 98.65 97.80 98.50 97.52

(569 ⇥ 30) STD 0.31 2.33 0.33 1.93 0.22 1.85 0.34 1.88

LF 6.16 (0.75) 5.34 (0.54) 5.38 (0.49) —

Table 28.2. Classification results for linear models for the quadratic, exponential
and logistic loss functions. SVM results provided for reference. Data sizes (m ⇥ n)
are also shown.

The kernel version of BLF is also examined for the same data sets. The RBF
kernel is used with parameters, �, as follows: 50 for Albumin, 4.24 for Boston Hous-
ing, 5 for Cancer, 5 for Diabetes, 3 for Ionosphere, 6 for Liver and 9 for WBC. In
kernel models, especially with the RBF kernel, regularization plays a key role for
capacity control, and capacity control is much more important for nonlinear models.
As mentioned in linear models, BLF-LS has a natural penalization for overfitting,
but the classification loss functions do not have such penalization except for early
stopping. As seen in Table 28.4, the advantage observed in linear models seems to be
reduced and the di↵erences between the models are less significant. This observation
suggests that the kernel BLF with explicit regularization in the objective function
may be better to exploit the logistic and other loss function without overfitting.

Comparison with PCA

To evaluate the e↵ectiveness of BLF at feature construction, we repeated the kernel
classification experiments using principal components instead of latent features. The
results show that much fewer latent features than PCA latent features are required
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Quadratic LAD SVM

Train Test Train Test Train Test

Boston Housing Mean 3.5723 9.8334 4.8788 10.4530 3.8194 10.1425

(506 ⇥ 13) STD 0.4464 4.3849 0.9215 7.6215 0.5040 7.3367

LF 19.2 (1.81) 29.6 (4.97) —

Albumin Mean 0.0854 0.3764 0.0992 0.3266 0.1017 0.4190

(94 ⇥ 524) STD 0.0098 0.2054 0.0228 0.1983 0.0460 0.1894

LF 4.14 (1.15) 4.95 (0.70) —

Table 28.3. Regression results for kernel models for quadratic and least absolute
deviation (LAD) loss functions. SVM results are also shown as a reference. Data
sizes (m⇥ n) are also shown.

to achieve comparable accuracies. The experiments for kernel models in Table 28.4
are repeated using the principal component from PCA instead of the latent features
from BLF. For the least squares loss, this becomes the standard principal compo-
nent regression algorithm. In terms of generalization error, the methods with PCA
and BLF features were very similar: the paired t-test resulted in 2 wins (significantly
better results) for BLF, 2 wins for PCA, and 8 ties for Cancer, Diabetes, Ionosphere,
and Liver. For Wisconsin Breast Cancer, BLF wins for all the loss functions. Sig-
nificantly fewer boosted latent features than principal components were required to
achieve similar/slightly better performance. Figure 28.4 plots the number of latent
features used for BLF and PCA. PCA always required more features.

28.8.2 Case Study on High Dimensional Data

We use a very high dimensional data set, Thrombin from KDD Cup 2001, to illus-
trate BLF as a feature construction method. Thrombin is a classification problem to
predict a compound’s binding activity (active/inactive) to Thrombin. The original
training/test split for the 2001 KDD Cup is very challenging: 42 active and 1867
inactive compounds (actives to inactives ratio is about 2.25%) with 139,351 binary
features. However the test set is more balanced: 150 actives and 484 inactives (31%).
In order to slightly reduce the di�culty in the training set, the original training and
test sets are merged and randomly divided so that the new training/test split is
100 actives and 330 inactives. This gives the active/inactive ratio 4.55% in the new
training split and 30% in the new test split. We repeat the experiment 100 times to
compare models. Note that all 100 experiments use the same traininig/test splits.
Because of the unbalanced class distribution, we adopt a local weighting �

i

for each
data point x

i

: �
i

= 1/|C+|, 8i 2 C+. �
i

= 1/|C�|, 8i 2 C�. This weighting has been
previously used in (Bennett and Mangasarian, 1992). For numerical stability in the
weighted logistic loss function, the modified Newton step in equation (28.42) with
� = 0.1 was used to optimize the function coe�cients in Step 6 of Algorithm 12.
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Quadratic Exponential Logistic SVM

Train Test Train Test Train Test Train Test

Cancer Mean 96.95 96.46 96.87 96.51 96.70 96.71 96.16 96.87

(699 ⇥ 9) STD 0.47 1.99 0.35 2.15 0.28 1.98 0.27 1.82

LF 2.94 (3.72) 3.98 (0.32) 1.17 (0.45) —

Diabetes Mean 79.60 75.76 78.67 75.01 79.58 76.36 79.06 76.03

(768 ⇥ 8) STD 0.66 4.63 1.55 4.68 0.62 4.64 0.82 4.01

LF 4.17 (0.57) 3.28 (1.34) 4.14 (0.38) —

Ionosphere Mean 99.18 94.11 99.45 94.80 98.99 94.66 97.94 94.14

(351 ⇥ 34) STD 0.45 3.49 0.51 3.60 0.53 3.51 0.88 3.50

LF 8.73 (2.56) 8.02 (3.71) 5.85 (1.42) —

Liver Mean 76.45 72.62 76.03 72.26 76.54 72.94 75.90 73.26

(345 ⇥ 6) STD 1.22 7.09 1.10 6.06 0.90 6.74 1.03 6.92

LF 5.56 (1.48) 5.76 (1.13) 5.62 (0.65) —

WBC Mean 98.80 97.88 99.45 97.37 98.87 97.70 98.67 97.95

(569 ⇥ 30) STD 0.20 1.81 0.53 2.07 0.30 1.90 0.21 1.78

LF 10.53 (2.05) 8.89 (4.35) 5.87 (0.92) —

Table 28.4. Classification results for kernel models for quadratic, exponential, and
logistic loss functions. Data sizes (m⇥ n) are also shown.

In order to compare the quality of the orthogonal latent features created by
di↵erent loss functions in BLF, SVM models are created using the BLF features. The
quality of the features is evaluated by the performance of SVM on the test set. BLF
with logistic loss and squared loss (BLF-LS) are used for constructing the features.
Since our goal is to show BLF is an e↵ective feature construction method, the full
139,351 binary features, without any preprocessing, are used for the input space of
the BLF models. Figure 28.5 shows the area under ROC curve (AUC) for BLF-LOG
and BLF-LS, as a function of the number of latent features. As seen in the previous
section, logistic loss fits the data faster than squared loss: the “peak” appears at a
smaller number of latent features in logistic loss than for squared loss. We pick 5
and 15 as the number of orthogonal features that are used in the next stage of SVM
experiments. Obviously, five features is before the peak and the dimensionality may
have been reduced too much to have good predictive ability. But for the case with 15
latent features, the curves for both squared loss and logistic loss seem to be stabilized
and we can expect better predictability. We use the nonlinear orthogonal features,
T diag(c) as in Equation (28.7), as the input data to a classic linear SVM (Cortes
and Vapnik, 1995). Since features in T are normalized to have length one, we need
to use feature weighting diag(c) for better performance especially for the relatively
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sification models. Quadratic (Q), exponential (E), and logistic (L) loss functions
are used for both BLF and PCA. PCA requires more dimensions to obtain similar
performance to BLF.

small dimensional space used here. Figure 28.6 illustrates the AUC for SVM models
with a wide spectrum of the cost parameter C in the SVM. As baseline cases, results
of SVM models trained with the full data set are also shown in the figure. SVM is
given a better metric space trained by BLF so it can overfit as the value C gets large.
However, the SVM models that use the original features stay at almost the same
value of AUC within the value of C shown in Figure 28.6. As seen in Figure 28.5,
at LF=5 and 15, BLF-LOG and BLF-LS have very similar performance. However,
after training by SVM, the features from BLF-LOG are slightly better than those
from BLF-LS. Overall, with a reasonably good choice of parameter C, SVM using
reduced features by BLF can improve models with the original features. Further,
features created by logistic loss perform slightly better than those constructed using
the squared loss over a wide range of C.

28.9 Conclusion

In this chapter, a framework for constructing orthogonal features by boosting, Or-
thoAnyBoost, was proposed. Using techniques from spectral methods such as PCA
and PLS, OrthoAnyboost can be very e�ciently implemented in linear hypothe-
sis spaces. The resulting method, BLF, was demonstrated to both construct valu-
able orthogonal features and to be a competitive predictive method by itself for
a variety of loss functions. BLF performs feature construction based on a given
(sub)di↵erentiable loss function. For the least squares loss, BLF reduces to PLS and
preserves all the attractive properties of that algorithm. As in PCA and PLS, the
resulting nonlinear features are valuable for visualization, dimensionality reduction,
improving generalization, and use in other learning algorithms, but now these fea-
tures can be targeted to a specific inference task. The data matrix is factorized by
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Fig. 28.5. Median of area under ROC curve with respect to the number of latent
features for BLF with logistic loss and squared loss. The error bars correspond
to 1/4-th and 3/4-th order statistics. The statistics are based on 100 randomized
experiments.

the extracted features. The low-rank approximation of the data matrix provides e�-
ciency and stability in computation. The orthogonality properties of BLF guarantee
that it converges to the optimal solution of the full model in a finite number of it-
erations. Empirically, orthogonality makes BLF converge much faster than gradient
boosting. The predictive model is constructed in a reduced dimensionality space thus
providing capacity control leading to good generalization. The method is generalized
to nonlinear hypotheses using kernels.

Computational results demonstrate how BLF can be applied to a wide range
of commonly used loss functions. The results illustrate di↵erences in loss functions.
As always, the best loss function depends on the data and inference task. The least
absolute deviation is more robust than the squared loss and the version of BLF using
the LAD loss showed some improvements for drug discovery data where attributes
are inter-correlated and noisy. Classification loss functions such as exponential loss
and logistic loss are more natural for classification problems and the loss functions
can be weighted to handle problems with unbalanced data or unequal misclassifica-
tion costs. Future work is need to investigate the theoretical properties of BLF from
both optimization and learning points of view and to apply the approach to other
learning tasks/loss functions such as ranking.
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In this paper we introduce a margin based feature selection criterion and apply it to
measure the quality of sets of features. Using margins we devise novel selection algo-
rithms for multi-class categorization problems and provide theoretical generalization
bound. We also study the well known Relief algorithm and show that it resembles
a gradient ascent over our margin criterion. We report promising results on various
datasets.

29.1 Introduction

In many supervised learning tasks the input data are represented by a very large
number of features, but only a few of them are relevant for predicting the label. Even
state-of-the-art classification algorithms (e.g. Support Vector Machine (SVM) (Boser
et al., 1992)) cannot overcome the presence of a large numbers of weakly relevant
and redundant features. This is usually attributed to “the curse of dimensionality”
(Bellman, 1961), or to the fact that irrelevant features decrease the signal-to-noise
ratio. In addition, many algorithms become computationally intractable when the
dimension is high. On the other hand, once a good small set of features has been
chosen, even the most basic classifiers (e.g. 1-Nearest Neighbor (Fix and Hodges,
1951)) can achieve high performance levels. Therefore, feature selection, i.e. the task
of choosing a small subset of features, which is su�cient to predict the target labels,
is crucial for e�cient learning.

In this paper we introduce the idea of measuring the quality of a set of features
by the margin it induces. A margin (Boser et al., 1992, Schapire et al., 1998) is a
geometric measure for evaluating the confidence of a classifier with respect to its
decision. Margins already play a crucial role in current machine learning research.
For instance, SVM (Boser et al., 1992) is a prominent large margin algorithm. The
novelty of this paper is the use of large margin principles for feature selection.

Throughout this paper we will use the 1-NN as the “study-case” predictor, but
most of the results are relevant to other distance based classifiers (e.g. LVQ (Ko-
honen, 1995), SVM-RBF (Boser et al., 1992)) as well. To validate this, we compare
our algorithms to the R2W2 algorithm (Weston et al., 2000), which was specifically
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designed as a feature selection scheme for SVM. We show that even in this setting
our algorithms compare favorably to all the contesters we have used.

The margin for the Nearest-Neighbor was previously defined in (Crammer et al.,
2002). The use of margins allows us to devise new feature selection algorithms as
well as prove a PAC (Probably Approximately Correct) style generalization bound.
The bound is on the generalization accuracy of 1-NN on a selected set of features,
and guarantees good performance for any feature selection scheme which selects a
small set of features while keeping the margin large. On the algorithmic side, we
use a margin based criterion to measure the quality of sets of features. We present
two new feature selection algorithms, G-flip and Simba, based on this criterion. The
merits of these algorithms are demonstrated on various datasets.

Finally, we study the Relief feature selection algorithm ((Kira and Rendell,
1992), see [chapter 3, in part I]) in the large margin context. While Relief does
not explicitly maximize any evaluation function, we show here that implicitly it
maximizes the margin based evaluation function.

29.2 Margins

Margins play a crucial role in modern machine learning research. They measure the
classifier confidence when making its decision. Margins are used both for theoretic
generalization bounds and as guidelines for algorithm design.

29.2.1 Two Types of Margins

As described in (Crammer et al., 2002) there are two natural ways of defining the
margin of an instance with respect to a classification rule. The more common type,
sample-margin, measures the distance between the instance and the decision bound-
ary induced by the classifier. Support Vector Machines (Boser et al., 1992), for ex-
ample, finds the separating hyper-plane with the largest sample-margin. Bartlett
(1998), also discusses the distance between instances and the decision boundary. He
uses the sample-margin to derive generalization bounds.

An alternative definition, the hypothesis-margin, requires the existence of a dis-
tance measure on the hypothesis class. The margin of a hypothesis with respect to an
instance is the distance between the hypothesis and the closest hypothesis that as-
signs an alternative label to the given instance. For example AdaBoost (Freund and
Schapire, 1997) uses this type of margin with the L1-norm as the distance measure
between hypotheses.

Throughout this paper we will be interested in margins for 1-NN. For 1-NN, the
classifier is defined by a set of training points (prototypes) and the decision boundary
is the Voronoi tessellation. The sample margin in this case is the distance between
the instance and the Voronoi tessellation, and therefore it measures the sensitivity
to small changes of the instance position. The hypothesis margin for this case is the
maximal distance ✓ such that the following condition holds: if we draw a ball with
radius ✓ around each prototype, any change of the location of prototypes inside their
✓ ball will not change the assigned label of the instance. Therefore, the hypothesis
margin measures the stability to small changes in the prototypes locations. See
figure 29.1 for illustration. The sample margin for 1-NN can be unstable, as shown
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(a) (b)

Fig. 29.1. The two types of margin for the Nearest Neighbor rule. We consider a
sample of points (the circles) and measure the margin with respect to a new instance
(the square). The sample margin 1(a) is the distance between the new instance and
the decision boundary (the Voronoi tessellation). The hypothesis margin 1(b) is the
largest distance the sample points can travel without altering the label of the new
instance. In this case it is half the di↵erence between the distance to the nearmiss
and the distance to the nearhit.

in (Crammer et al., 2002) and thus the hypothesis margin is preferable in this case.
In the same paper, the following results were proved:

(1.) The hypothesis-margin lower bounds the sample-margin.
(2.) It is easy to compute the hypothesis-margin of an instance x with respect to a

set of points P by the following formula:

✓
P

(x) =
1
2
kx� nearmiss(x)k � kx� nearhit(x)k

where nearhit(x) and nearmiss(x) denote the nearest point to x in P with the
same and di↵erent label, respectively. Note that a chosen set of features a↵ects
the margin through the distance measure.

Therefore in the case of Nearest Neighbor a large hypothesis-margin ensures a large
sample-margin, and a hypothesis-margin is easy to compute.

29.2.2 Margin Based Evaluation Function

A good generalization can be guaranteed if many sample points have a large margin
(see section 29.4). We introduce an evaluation function, which assigns a score to sets
of features according to the margin they induce. First we formulate the margin as a
function of the selected set of features.

Definition 1. Let P be a set of points and x be an instance. Let w be a weight vector
over the feature set, then the margin of x is

✓w
P

(x) =
1
2
kx� nearmiss(x)k

w

� kx� nearhit(x)k
w

(29.1)

where kzk
w

=
i

w2
i

z2
i

.
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Definition 1 extends beyond feature selection and allows weight over the features.
When selecting a set of features F we can use the same definition by identifying F
with its indicating vector. Therefore, we denote by ✓F

P

(x) := ✓IF
P

(x) where I
F

is one
for any feature in F and zero otherwise.

Since ✓�w(x) = |�|✓w(x) for any scalar �, it is natural to introduce some nor-
malization factor. The natural normalization is to require max w2

i

= 1, since it
guarantees that kzk

w

 kzk where the right hand side is the Euclidean norm of z.
Now we turn to defining the evaluation function. The building blocks of this

function are the margins of all the sample points. The margin of each instance x is
calculated with respect to the sample excluding x (“leave-one-out margin”).

Definition 2. Let u(·) be a utility function. Given a training set S and a weight
vector w, the evaluation function is:

e(w) =
x2S

u ✓w
S\x(x) (29.2)

The utility function controls the contribution of each margin term to the overall
score. It is natural to require the utility function to be non-decreasing; thus larger
margin introduce larger utility. We consider three utility functions: linear, zero-one
and sigmoid. The linear utility function is defined as u(✓) = ✓. When the linear
utility function is used, the evaluation function is simply the sum of the margins.
The zero-one utility is equals 1 when the margin is positive and 0 otherwise. When
this utility function is used the utility function is proportional to the leave-one-out
error. The sigmoid utility is u(✓) = 1/(1 + exp(��✓)). The sigmoid utility function
is less sensitive to outliers than the linear utility, but does not ignore the magnitude
of the margin completely as the zero-one utility does. Note also that for � ! 0
or � ! 1 the sigmoid utility function becomes the linear utility function or the
zero-one utility function respectively. In the Simba algorithm we assume that the
utility function is di↵erentiable, and therefore the zero-one utility cannot be used.

It is natural to look at the evaluation function solely for weight vectors w such
that max w2

i

= 1. However, formally, the evaluation function is well defined for any
w, a fact which we make use of in the Simba algorithm. We also use the notation
e(F ), where F is a set of features to denote e(I

F

).

29.3 Algorithms

In this section we present two algorithms, which attempt to maximize the margin
based evaluation function. Both algorithms can cope with multi-class problems. Our
algorithms can be considered as filter methods for general classifiers. They are also
close to wrapper for 1-NN. A Matlab implementation of these algorithms is available
at http://www.cs.huji.ac.il/labs/learning/code/feature_selection/.

29.3.1 Greedy Feature Flip Algorithm (G-flip)

The G-flip (algorithm 15) is a greedy search algorithm for maximizing e(F ), where
F is a set of features. The algorithm repeatedly iterates over the feature set and
updates the set of chosen features. In each iteration it decides to remove or add the

http://www.cs.huji.ac.il/labs/learning/code/feature_selection/
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current feature to the selected set by evaluating the margin term (29.2) with and
without this feature. This algorithm is similar to the zero-temperature Monte-Carlo
(Metropolis) method. It converges to a local maximum of the evaluation function,
as each step increases its value and the number of possible feature sets is finite. The
computational complexity of one pass over all features of a näıve implementation
of G-flip is ⇥ N2m2 where N is the number of features and m is the number
of instances. However the complexity can be reduced to ⇥ Nm2 since updating
the distance matrix can be done e�ciently after each addition/deletion of a feature
from the current active set. Empirically G-flip converges in a few iterations. In all
our experiments it converged after less than 20 epochs, in most of the cases in less
than 10 epochs. A nice property of this algorithm is that once the utility function is
chosen, it is parameter free. There is no need to tune the number of features or any
type of threshold.

Algorithm 15: Greedy Feature Flip (G-flip)
(1.) Initialize the set of chosen features to the empty set: F = �
(2.) for t = 1, 2, . . .

a) pick a random permutation s of {1 . . . N}
b) for i = 1 to N ,

i. evaluate e1 = e (F [ {s(i)}) and e2 = e (F \ {s(i)})
ii. if e1 > e2, F = F [ {s(i)}

else-if e2 > e1, F = F \ {s(i)}
c) if no change made in step (b) then break

29.3.2 Iterative Search Margin Based Algorithm (Simba)

The G-flip algorithm presented in section 29.3.1 tries to find the feature set that
maximizes the margin directly. Here we take another approach. We first find the
weight vector w that maximizes e(w) as defined in (29.2) and then use a threshold
in order to get a feature set. Of course, it is also possible to use the weights directly by
using the induced distance measure instead. Since e(w) is smooth almost everywhere,
whenever the utility function is smooth, we use gradient ascent in order to maximize
it. The gradient of e(w) when evaluated on a sample S is:

(5e(w))
i

=
@e(w)
@w

i

=
x2S

@u(✓(x))
@✓(x)

@✓(x)
@w

i

(29.3)

=
1
2

x2S

@u(✓(x))
@✓(x)

(x
i

� nearmiss(x)
i

)2

kx� nearmiss(x)k
w

� (x
i

� nearhit(x)
i

)2

kx� nearhit(x)k
w

w
i

In Simba (algorithm 16) we use a stochastic gradient ascent over e(w) while
ignoring the constraint kw2k1 = 1. In each step we evaluate only one term in the
sum in (29.3) and add it to the weight vector w. The projection on the constraint
is done only at the end (step 3).
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The computational complexity of Simba is ⇥(TNm) where T is the number of
iterations, N is the number of features and m is the size of the sample S. Note
that when iterating over all training instances, i.e. when T = m, the complexity is
⇥ Nm2 .

Algorithm 16: Simba
(1.) initialize w = (1, 1, . . . , 1)
(2.) for t = 1 . . . T

a) pick randomly an instance x from S
b) calculate nearmiss(x) and nearhit(x) with respect to S \ {x} and

the weight vector w.
c) for i = 1, . . . , N

calculate

4
i

=
1
2
@u(✓(x))
@✓(x)

(x
i

� nearmiss(x)
i

)2

kx� nearmiss(x)k
w

� (x
i

� nearhit(x)
i

)2

kx� nearhit(x)k
w

w
i

d) w = w +4
(3.) w w2/ w2

1 where (w2)
i

:= (w
i

)2.

29.3.3 Comparison to Relief

Relief (Kira and Rendell, 1992) is a feature selection algorithm (see algorithm 17),
which was shown to be very e�cient for estimating feature quality. The algorithm
holds a weight vector over all features and updates this vector according to the
sample points presented. Kira & Rendell proved that under some assumptions, the
expected weight is large for relevant features and small for irrelevant ones. They
also explain how to choose the relevance threshold ⌧ in a way that ensures the
probability that a given irrelevant feature chosen is small. Relief was extended to
deal with multi-class problems, noise and missing data by Kononenko (1994). For
multi-class problems (Kononenko, 1994) also presents a version called Relief-F that
instead of using the distance to the nearest point with an alternative label, looks at
the distances to the nearest instance of any alternative class and takes the average.
In the experiments we made Relief-F was inferior to the standard Relief.

Note that the update rule in a single step of Relief is similar to the one performed
by Simba when the utility function is linear, i.e. u(✓) = ✓ and thus @u(✓)/@✓ = 1.
Indeed, empirical evidence shows that Relief does increase the margin (see sec-
tion 29.5). However, there is a major di↵erence between Relief and Simba: Relief
does not re-evaluate the distances according to the weight vector w and thus it is
inferior to Simba. In particular, Relief has no mechanism for eliminating redundant
features. Simba may also choose correlated features, but only if this contributes to
the overall performance. In terms of computational complexity, Relief and Simba
are equivalent.
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Algorithm 17: RELIEF (Kira and Rendell, 1992)
(1.) initiate the weight vector to zero: w = 0
(2.) for t = 1 . . . T ,

• pick randomly an instance x from S
• for i = 1 . . . N ,

– w
i

= w
i

+ (x
i

� nearmiss(x)
i

)2 � (x
i

� nearhit(x)
i

)2

(3.) the chosen feature set is {i|w
i

> ⌧} where ⌧ is a threshold

29.3.4 Comparison to R2W2

R2W2 (Weston et al., 2000) is the state-of-the-art feature selection algorithm for the
Support Vector Machines (SVM) classifier. This algorithm is a sophisticated wrap-
per for SVM and therefore uses the maximal margin principle for feature selection
indirectly. The goal of the algorithm is to find a weights vector over the features,
which will minimize the objective function of the SVM optimization problem. This
objective function can be written as R2W 2 where R is the radius of a ball containing
all the training data and W is the norm of the linear separator. The optimization
is done using gradient descent. After each gradient step a new SVM optimization
problem is constructed and solved. Thus it becomes cumbersome for large scale data.

The derivation of R2W2 algorithm assumes that the data are linearly separable.
Since this cannot be guaranteed in the general case we use the “ridge” trick of
adding a constant value to the diagonal of the kernel matrix. Note also that R2W2
is designed for binary classification tasks only. There are several ways in which it
can be extended to multi class problems. However, these extensions will make the
algorithm even more demanding than its original version.

As in SVM, R2W2 can be used together with a kernel function. We chose to use
the Radial Basis Function (RBF) kernel. The RBF kernel is defined to be

K(x1,x2) = e�
kx1�x2k

2�2

where � is a predefined parameter. The choice of the RBF kernel is due to the
similarity between SVM with RBF kernel and the nearest-neighbor rule. Our imple-
mentation is based on the one in the Spider package (Weston et al., 2004).

29.4 Theoretical Analysis

In this section we use feature selection and large margin principles to prove finite
sample generalization bound for 1-Nearest Neighbor. (Cover and Hart, 1967), showed
that asymptotically the generalization error of 1-NN can exceed by at most a factor
of 2 the generalization error of the Bayes optimal classification rule. However, on
finite samples nearest neighbor can over-fit and exhibit poor performance. Indeed
1-NN will give zero training error, on almost any sample.

The training error is thus too rough to provide information on the generaliza-
tion performance of 1-NN. We therefore need a more detailed measure in order to
provide meaningful generalization bounds and this is where margins become useful.
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It turns out that in a sense, 1-NN is a maximum margin algorithm. Indeed once our
proper definition of margin is used, i.e. sample-margin, it is easy to verify that 1-NN
generates the classification rule with the largest possible margin.

The combination of a large margin and a small number of features provides
enough evidence to obtain a useful bound on the generalization error. The bound we
provide here is data-dependent (Shawe-Taylor et al., 1998, Bartlett, 1998). Therefore,
the quality of the bound depends on our specific sample. It holds simultaneously for
any possible method to select a set of features. If an algorithm selects a small set
of features with a large margin, the bound guarantees it will generalize well. This is
the motivation for Simba and G-flip.

We use the following notation in our theoretical results:

Definition 3. Let D be a distribution over X ⇥ {±1} and h : X �! {±1} a classi-
fication function. We denote by erD (h) the generalization error of h with respect to
D:

erD (h) = Pr
x,y⇠D

[h(x) 6= y]

For a sample S = {(x
k

, y
k

)}m

k=1 2 (X ⇥ {±1})m and a constant � > 0 we define the
�-sensitive training error to be

êr�

S

(h) =
1
m

(k : h(x
k

) 6= y
k

) or (x
k

has sample-margin < �)

Our main result is the following theorem1:

Theorem 1. Let D be a distribution over RN ⇥ {±1} which is supported on a ball
of radius R in RN . Let � > 0 and let S be a sample of size m such that S ⇠ Dm.
With probability 1 � � over the random choice of S, for any set of features F and
any � 2 (0, 1]

erD (h)  êr�

S

(h) +
2
m

d ln
34em

d
log2 (578m) + ln

8
��

+ (|F |+ 1) ln N

Where h is the nearest neighbor classification rule when distance is measured only
on the features in F and d = (64R/�)|F |.

A few notes about this bound; First the size of the feature space, N , appears
only logarithmically in the bound. Hence, it has a minor e↵ect on the generalization
error of 1-NN. On the other hand, the number of selected features, F , appears in
the exponent. This is another realization of the “curse of dimensionality” (Bellman,
1961). See appendix A for the proof of theorem 1.

A large margin for many sample points will make the first term of the bound
small, while using a small set of features will make the second term of the bound
small. This gives us the motivation to look for small sets of features that induce
large margin, and that is what G-flip and Simba do. As this bound is a worst case
bound, like all the PAC style bounds, it is very loose in most of the cases, and the
empirical results are expected to be much better.

1Note that the theorem holds when sample-margin is replaced by hypothesis-
margin since the later lower bounds the former.
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29.5 Empirical Assessment

We first demonstrate the behavior of Simba on a small synthetic problem. Then we
compare the di↵erent algorithms on image and text classification tasks. The first task
is pixel (feature) selection for discriminating between male and female face images.
The second task is a word (feature) selection for multi-class document categorization.
In order to demonstrate the ability of our algorithms to work with other classifiers
(beside of Nearest Neighbor) we also report results with SVM with RBF kernel (see
section 29.5.4). We also report the results obtained on some of the datasets of the
NIPS-2003 feature selection challenge (Guyon and Gunn, 2003). For these compar-
isons we have used the following feature selection algorithms: Simba with both linear
and sigmoid utility functions (referred as Simba(lin) and Simba(sig) respectively),
G-flip with linear, zero-one and sigmoid utility functions (referred as G-flip(lin),
G-flip(zero-one) and G-flip(sig) respectively), Relief, R2W2 and Infogain2.

29.5.1 The Xor Problem

To demonstrate the quality of the margin based evaluation function and the ability of
the Simba algorithm3 to deal with dependent features we use a synthetic problem.
The problem consisted of 1000 sample points with 10 real valued features. The
target concept is a xor function over the first 3 features. Hence, the first 3 features
are relevant while the other features are irrelevant. Notice that this task is a special
case of parity function learning and is considered hard for many feature selection
algorithms (Guyon and Elissee↵, 2003). Thus for example, any algorithm which
does not consider functional dependencies between features fails on this task. The
simplicity (some might say over-simplicity) of this problem, allows us to demonstrate
some of the interesting properties of the algorithms studied.

Figures 29.2 present the results we obtained on this problem. A few phenomena
are apparent in these results. The value of the margin evaluation function is highly
correlated with the angle between the weight vector and the correct feature vector
(see figures 29.2 and 29.3). This correlation demonstrates that the margins char-
acterize correctly the quality of the weight vector. This is quite remarkable since
our margin evaluation function can be measured empirically on the training data
whereas the angle to the correct feature vector is unknown during learning.

As suggested in section 29.3.3 Relief does increase the margin as well. However,
Simba, which maximizes the margin directly, outperforms Relief quite significantly.
as shown in figure 29.2.

29.5.2 Face Images

We applied the algorithms to the AR face database (Martinez and Benavente, 1998),
which is a collection of digital images of males and females with various facial ex-
pressions, illumination conditions, and occlusions. We selected 1456 images and con-
verted them to gray-scale images of 85 ⇥ 60 pixels, which are taken as our initial

2 Infogain ranks features according to the mutual information between each
feature and the labels (see part I, chapter 3, section 3). Recall that the mutual in-

formation between two random variables X, Y is I(X, Y ) =
x,y

p(x, y) log p(x,y)
p(x)p(y)

3The linear utility function was used in this experiment.
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Fig. 29.2. The results of applying Simba (solid) and Relief (dotted) on the xor
synthetic problem. Top: The margin value, e(w), at each iteration. The dashed line
is the margin of the correct weight vector. Bottom: the angle between the weight
vector and the correct feature vector at each iteration (in Radians).
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Fig. 29.3. The scatter plot shows the angle to the correct feature vector as function
of the value of the margin evaluation function. The values were calculated for the xor
problem using Simba during iterations 150 to 1000. Note the linear relation between
the two quantities.

5100 features. Examples of the images are shown in figure 29.4. The task we tested
is classifying the male vs. the female faces.

In order to improve the statistical significance of the results, the dataset was
partitioned independently 20 times into training data of 1000 images and test data
of 456 images. For each such partitioning (split) Simba4 , G-flip, Relief, R2W2 and
Infogain were applied to select optimal features and the 1-NN algorithm was used
to classify the test data points. We used 10 random starting points for Simba (i.e.
random permutations of the train data) and selected the result of the single run
which reached the highest value of the evaluation function. The average accuracy
versus the number of features chosen, is presented in figure 29.5. G-flip gives only

4Simba was applied with both linear and sigmoid utility functions. We used
� = 0.01 for the sigmoid utility.
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Fig. 29.4. Excerpts from the face images dataset.

one point on this plot, as it chooses the number of features automatically, although
this number changes between di↵erent splits, it does not change significantly.

The features G-flip (zero-one) selected enabled 1-NN to achieve accuracy of
92.2% using about 60 features only, which is better than the accuracy obtained with
the whole feature set (91.5%). G-flip (zero-one) outperformed any other alternative
when only few dozens of features were used. Simba(lin) significantly outperformed
Relief, R2W2 and Infogain, especially in the small number of features regime. If we
define a di↵erence as significant if the one algorithm is better than the other in more
than 90% of the partition, we can see that Simba is significantly better than Relief,
Infogain and R2W2 when fewer than couple of hundreds of features are being used
(see figure 29.6).

Moreover, the 1000 features that Simba selected enabled 1-NN to achieve an
accuracy of 92.8%, which is better than the accuracy obtained with the whole feature
set (91.5%). A closer look on the features selected by Simba and Relief (figure 29.7)
reveals the clear di↵erence between the two algorithms. Relief focused on the hair-
line, especially around the neck, and on other contour areas in a left-right symmetric
fashion. This choice is suboptimal as those features are highly correlated to each
other and therefore a smaller subset is su�cient. Simba on the other hand selected
features in other informative facial locations but mostly on one side (left) of the
face, as the other side is clearly highly correlated and does not contribute new
information to this task. Moreover, this dataset is biased in the sense that more
faces are illuminated from the right. Many of them are saturated and thus Simba
preferred the left side over the less informative right side.

29.5.3 Reuters

We applied the di↵erent algorithms on a multi-class text categorization task. For
these purpose we used a subset of the Reuters-21578 dataset5. We have used the
documents, which are classified to exactly one of the following 4 topics: interest,
trade, crude and grain. The obtained dataset contains 2066 documents, which are
approximately equally distributed between the four classes. Each document was
represented as the vector of counts of the di↵erent words. Stop-words were omitted
and numbers were converted to a predefined special character as a preprocessing.

To improve the statistical significance of our results, the corpus was partitioned
20 times into training set of 1000 documents and test set of 1066 documents. For
each such partitioning, the words that appears less than 3 times in the training

5The dataset can be found at http://www.daviddlewis.com/resources/

http://www.daviddlewis.com/resources/
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Fig. 29.5. Results for AR faces dataset. The accuracy achieved on the AR
faces dataset when using the features chosen by the di↵erent algorithms. The results
were averaged over the 20 splits of the dataset. For the sake of visual clarity, error
bars are presented separately in figure 29.6.
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Fig. 29.6. Error intervals for AR faces dataset. The accuracy achieved on the
AR faces dataset when using the features chosen by the di↵erent algorithms. The
error intervals show the area were 90% of the results (of the 20 repeats) fell, i.e., the
range of the results after eliminating the best and the worse iterations out of the 20
repeats.
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(a) (b) (c) (d) (e) (f)

Fig. 29.7. The features selected (in black) by Simba(lin) and Relief for the face
recognition task. 7(a), 7(b) and 7(c) shows 100, 500 and 1000 features selected by
Simba. 7(d), 7(e) and 7(f) shows 100, 500 and 1000 features selected by Relief.

set were eliminated, which left ⇠4000 words (features). For each partitioning G-
flip, Simba, Relief, Relief-F and Infogain were applied to select an optimal set of
features6 and the 1-NN was used to classify the test documents. Simba and G-
flip were applied with both linear and sigmoid utility functions7 . G-flip was also
applied with the zero-one utility function. We have used 10 random starting points
for Simba and selected the results of the single run that achieved the highest value
for the evaluation function. The average (over the 20 splits) accuracy versus the
number of chosen features is presented in figure 29.8. G-flip gives only one point on
this plot, as it chooses the number of features automatically, although this number
changes between di↵erent splits, it does not change significantly. Another look on the
results is given in figure 29.9. This figure shows error intervals around the average
that allow to appreciate the statistical significance of the di↵erences in the accuracy.
The top ranked twenty features are presented in table 29.1.

The best overall accuracy (i.e. when ignoring the number of features used) was
achieved by G-flip(sig). G-flip(sig) got 94.09% generalization accuracy using ⇠350
features. Infogain and Simba(sig) are just a little behind with 92.86% and 92.41%
, that was achieved using ⇠40 and ⇠30 features only (respectively). Relief is far
behind with 87.92% that was achieved using 250 features.

The advantage of Simba(sig) is very clear when looking on the accuracy versus
the number of features used. Among the algorithms that were tested, Simba(sig)
is the only algorithm that achieved (almost) best accuracy over the whole range.
Indeed, when less than few dozens of features are used, Infogain, achieved similar
accuracy, but when more features are used, it’s accuracy drops dramatically. While
Simba(sig) achieved accuracy above 90% for any number of features between ⇠20
and ⇠3000, the accuracy achieved by Infogain dropped below 90% when more than
⇠400 features are used, and below 85% when more than ⇠1500 are used.

The advantage of Simba(sig) over relief is also very clear. The accuracy achieved
using the features chosen by Simba(sig) is notably and significantly better than
the one achieved using the features chosen by Relief, for any number of selected
features. Using only the top 10 features of Simba(sig) yields accuracy of 89.21%,

6R2W2 was not applied for this problem as it is not defined for multi-class
problems.

7The sigmoid utility function was used with � = 1 for both G-flip and Simba.
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which is about the same as the accuracy that can be achieved by any number of
features chosen by Relief.

Simba(sig) Simba(lin) Relief Infogain

oil rate

wheat bpd

trade days

tonnes crude

corn japanese

bank deficit

rice surplus

grain indonesia

rates interest

ec s

oil corn

## brazil

tonnes wish

trade rebate

wheat water

bank stocks

rice certificates

rates recession

billion got

pct ve

## s

# bank

### rate

oil dlrs

trade barrels

#### rates

billion bpd

opec pct

tonnes barrel

wheat cts

oil trade

tonnes wheat

crude bank

rate agriculture

grain barrels

petroleum rates

pct corn

tari↵s japan

mt deficit

energy bpd

Table 29.1. The first 20 words (features) selected by the di↵erent algorithms for
the Reuters dataset. Note that Simba(sig) is the only algorithm which selected the
titles of all four classes (interest, trade, crude, grain) among the first twenty features

29.5.4 Face Images with Support Vector Machines

In this section we show that our algorithms works well also when using another
distance based classifier, instead of the Nearest Neighbor classifier. We test the
di↵erent algorithms together with SVM with RBF kernel classifier and show that
our algorithms works as good as, and even better than the R2W2 algorithm that was
tailored specifically for this setting and is much more computationally demanding.

We have used the AR face database (Martinez and Benavente, 1998). We have
repeated the same experiment as described in section 29.5.2, the only di↵erence
being that once the features were chosen, we used SVM-RBF to classify the test
data points. The sigma parameter used in the RBF kernel was selected to be 3500,
the same parameter used in the R2W2 feature selection algorithm. The value for
this parameter was tuned using cross-validation. See figure 29.10 for a summary of
the results.

Both Simba and G-flip perform well, especially in the small number of features
regime. The results in the graph are the average over the 20 partitions of the data.
Note that the only winnings which are 90% significant are those of Simba (lin) and
G-flip (zero-one) when only few dozens of features are used.
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Fig. 29.8. Results for Reuters dataset. The accuracy achieved on the Reuters
dataset when using the features chosen by the di↵erent algorithms. The results were
averaged over the 20 splits of the dataset. For the sake of visual clarity, error bars
are presented separately in figure 29.9.

29.5.5 The NIPS-03 Feature Selection Challenge

We applied G-flip(lin) as part of our experiments in the NIPS-03 feature selection
challenge (Guyon and Gunn, 2003). The two datasets for which we have used G-flip
are ARCENE and MADELON.

In ARCENE we first used Principal Component Analysis (PCA) as a prepro-
cessing and then applied G-flip to select the principal components to be used for
classification. G-flip selected only 76 features. These features were fed to a Support
Vector Machine (SVM) with RBF kernel and ended up with 12.66% balanced error
(the best result on this dataset was 10.76% balanced error).

In MADELON we did not apply any preprocessing. G-flip selected only 18 out
of the 500 features in this dataset. Feeding these features to SVM-RBF resulted in
7.61% balanced error, while the best result on this dataset was 6.22% error.

Although G-flip is very simple and näıve algorithm, it ranked as one of the
leading feature selection method on both ARCENE and MADELON. It is interesting
to note that when 1-NN is used as the classification rule, instead of SVM-RBF, the
error degrades only by ⇠1% on both datasets. However, on the other datasets of
the feature selection challenge, we did not use G-flip either due to its computational
requirements or due to poor performance. Note that we tried only the linear utility
function for G-flip. We did not try Simba on any of the challenge datasets.
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Fig. 29.9. Error intervals for Reuters dataset. The accuracy achieved on the
Reuters dataset when using the features chosen by the di↵erent algorithms. The
error intervals show the area were 90% of the results (of the 20 repeats) fell, i.e., the
range of the results after eliminating the best and the worse iterations out of the 20
repeats.

29.6 Discussion and Further Research Directions

A margin-based criterion for measuring the quality of a set of features has been
presented. Using this criterion we derived algorithms that perform feature selec-
tion by searching for the set that maximizes it. We suggested two new methods for
maximizing the margin based-measure, G-flip, which does a näıve local search, and
Simba, which performs a gradient ascent. These are just representatives of the va-
riety of optimization techniques (search methods) which can be used. We have also
showed that the well known Relief algorithm (Kira and Rendell, 1992) approximates
a gradient ascent algorithm that maximizes this measure. The nature of the di↵erent
algorithms presented here was demonstrated on various feature selection tasks. It
was shown that our new algorithm Simba, which is gradient ascent on our margin
based measure, outperforms Relief on all these tasks. One of the main advantages of
the margin based criterion is the high correlation that it exhibits with the features
quality. This was demonstrated in figures 29.2 and 29.3.

The margin based criterion was developed using the 1-Nearest-Neighbor classifier
but we expect it to work well for any distance based classifier. Additionally to the
test we made with 1-NN, we also tested our algorithms with SVM-RBF classifier
and showed that they compete successfully with state-of-the-art algorithm that was
designed specifically for SVM and is much more computationally demanding.
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Fig. 29.10. Results for AR faces dataset with SVM-RBF classifier. The
accuracy achieved on the AR faces dataset when using the features chosen by the
di↵erent algorithms and SVM-RBF classifier. The results were averaged over the 20
splits of the dataset

Our main theoretical result is a new rigorous bound on the finite sample gen-
eralization error of the 1-Nearest Neighbor algorithm. This bound depends on the
margin obtained following the feature selection.

In the experiments we have conducted, the merits of the new algorithms were
demonstrated. However, our algorithms use the Euclidean norm and assume that it
is meaningful as a measure of similarity in the data. When this assumption fails,
our algorithms might not work. Coping with other similarity measures will be an
interesting extension to the work presented here.

The user of G-flip or Simba should chose a utility function to work with. In
this paper we have demonstrated three such functions: linear, zero-one and sigmoid
utility functions. The linear utility function gives equal weight to all points and thus
might be sensitive to outliers. The sigmoid utility function suppress the influence of
such outliers. We have also experimented that G-flip with zero-one utility uses less
features than G-flip with linear utility where the sigmoid utility sits in between. It
is still an open problem how to adapt the right utility for the data being studied.
Never the less, much like the choice of kernel for SVM, using a validation set it is
possible to find a reasonable candidate. A reasonable initial value for the parameter
� of the sigmoid utility is something of the same order of magnitude as one over the
average distance between training instances. As for the choosing between G-flip and
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Simba; G-flip is adequate when the goal is to chose the best feature subset, without
a need to control its precise size. Simba is more adequate when ranking the features
is required.

Several other research directions can be further investigated. One of them is to
utilize a better optimization algorithm for maximizing our margin-based evaluation
function. It is also possible to use the margin based criteria and the Simba algorithm
to learn distance measures.

Another interesting direction is to link the feature selection algorithms to the
Learning Vector Quantization (LVQ) (Kohonen, 1995) algorithm. As was shown in
(Crammer et al., 2002), LVQ can be viewed as a maximization of the very same
margin term. But unlike the feature selection algorithms presented here, LVQ does
so by changing prototypes location and not the subset of the features. This way
LVQ produces a simple but robust hypothesis. Thus, LVQ and our feature selection
algorithms maximize the same margin criterion by controlling di↵erent (dual) pa-
rameters of the problem. In that sense the two algorithms are dual. One can combine
the two by optimizing the set of features and prototypes location together. This may
yield a winning combination.
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A Complementary Proofs

We begin by proving a simple lemma which shows that the class of nearest neighbor
classifiers is a subset of the class of 1-Lipschitz functions. Let nnS

F

(·) be a function
such that the sign of nnS

F

(x) is the label that the nearest neighbor rule assigns to
x, while the magnitude is the sample-margin, i.e. the distance between x and the
decision boundary.

Lemma 1. Let F be a set of features and let S be a labeled sample. Then for any
x1,x2 2 RN :

nn

S

F

(x1)� nn

S

F

(x2)  kF (x1)� F (x2)k

where F (x) is the projection of x on the features in F .

Proof. Let x1,x2 2 X . We split our argument into two cases. First assume that
nnS

F

(x1) and nnS

F

(x2) have the same sign. Let z1, z2 2 R|F | be the points on
the decision boundary of the 1-NN rule which are closest to F (x1) and F (x2)
respectively. From the definition of z1,2 it follows that nnS

F

(x1) = kF (x1)� z1k
and nnS

F

(x2) = kF (x2)� z2k and thus

nnS

F

(x2)  kF (x2)� z1k
 kF (x2)� F (x1)k+ kF (x1)� z1k
= kF (x2)� F (x1)k+ nnS

F

(x1) (29.4)

By repeating the above argument while reversing the roles of x1and x2 we get

nnS

F

(x1)  kF (x2)� F (x1)k+ nnS

F

(x2) (29.5)

Combining (29.4) and (29.5) we obtain

nnS

F

(x2)� nnS

F

(x1)  kF (x2)� F (x1)k

citeseer.nj.nec.com/article/weston01feature.html
citeseer.nj.nec.com/article/weston01feature.html
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The second case is when nnS

F

(x1) and nnS

F

(x2) have alternating signs. Since
nnS

F

(·) is continuous, there is a point z on the line connecting F (x1) and F (x2)
such that z is on the decision boundary. Hence,

nnS

F

(x1)  kF (x1)� zk

nnS

F

(x2)  kF (x2)� zk

and so we obtain

nnS

F

(x2)� nnS

F

(x1) = nnS

F

(x2) + nnS

F

(x1)

 kF (x2)� zk+ kF (x1)� zk
= kF (x2)� F (x1)k

The main tool for proving theorem 1 is the following:

Theorem 2. (Bartlett, 1998) Let H be a class of real valued functions. Let S be a
sample of size m generated i.i.d. from a distribution D over X ⇥ {±1} then with
probability 1 � � over the choices of S, every h 2 H and every � 2 (0, 1] let d =
fatH (�/32):

erD (h)  êr�

S

(h) +
2
m

d ln
34em

d
log2 (578m) + ln

8
��

We now turn to prove theorem 1:

Proof of theorem 1: Let F be a set of features such that |F | = n and let
� > 0. In order to use theorem 2 we need to compute the fat-shattering dimension
of the class of nearest neighbor classification rules which use the set of features F .
As we saw in lemma 1 this class is a subset of the class of 1-Lipschitz functions on
these features. Hence we can bound the fat-shattering dimension of the class of NN
rules by the dimension of Lipschitz functions.

Since D is supported in a ball of radius R and kxk � kF (x)k, we need to
calculate the fat-shattering dimension of Lipschitz functions acting on points in Rn

with norm bounded by R. The fat
�

-dimension of the 1-NN functions on the features
F is thus bounded by the largest � packing of a ball in Rn with radius R, which in
turn is bounded by (2R/�)|F |.

Therefore, for a fixed set of features F we can apply to theorem 2 and use the
bound on the fat-shattering dimension just calculated. Let �

F

> 0 and we have
according to theorem 2 with probability 1� �

F

over sample S of size m that for any
� 2 (0, 1]

erD (nearest-neighbor)  êr�

S

(nearest-neighbor) + (29.6)

2
m

d ln
34em

d
log2 (578m) + ln

8
��

F

for d = (64R/�)|F |. By choosing �F = �/
⇣

N
� N
|F |
�

⌘

we have that
P

F✓[1...N ] �F =
� and so we can apply the union bound to (29.6) and obtain the stated result.
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Summary. To satisfy the ever growing need for e↵ective screening and diagnos-
tic tests, medical practitioners have turned their attention to high resolution, high
throughput methods. One approach is to use mass spectrometry based methods for
disease diagnosis. E↵ective diagnosis is achieved by classifying the mass spectra as
belonging to healthy or diseased individuals. Unfortunately, the high resolution mass
spectrometry data contains a large degree of noisy, redundant and irrelevant infor-
mation, making accurate classification di�cult. To overcome these obstacles, feature
extraction methods are used to select or create small sets of relevant features. This
paper compares existing feature selection methods to a novel wrapper-based feature
selection and centroid-based classification method. A key contribution is the ex-
position of di↵erent feature extraction techniques, which encompass dimensionality
reduction and feature selection methods. The experiments, on two cancer data sets,
indicate that feature selection algorithms tend to both reduce data dimensionality
and increase classification accuracy, while the dimensionality reduction techniques
sacrifice performance as a result of lowering the number of features. In order to eval-
uate the dimensionality reduction and feature selection techniques, we use a simple
classifier, thereby making the approach tractable. In relation to previous research,
the proposed algorithm is very competitive in terms of (i) classification accuracy,
(ii) size of feature sets, (iii) usage of computational resources during both training
and classification phases.
Keywords: feature extraction, classification, mining bio-medical data, mass spec-
trometry, dimensionality reduction.

30.1 Introduction

Early detection of diseases, such as cancer, is critical for improving patient
survival rates and medical care. To satisfy the ever growing need for e↵ective
screening and diagnostic tests, medical practitioners have turned their atten-
tion to mass spectrometry based methods. While other proteomic methods
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exist, such as PAGE⇤, mass spectrometry (MS) based approaches provide
high throughput, are widely applicable, and have the potential to be highly
accurate. This paper examines supervised classification in proteomic appli-
cations. The term proteomics will be restricted to mean the study of protein
spectra, acquired by mass spectrometry techniques, to classify disease and
identify potentially useful protein biomarkers. A biomarker is an identified
protein(s) whose abundance is correlated with the state of a particular dis-
ease or condition. Currently, single biomarkers, such as PSA† used to detect
prostate cancer, are relied on for disease screening and diagnosis. The identi-
fication of each biomarker, tailored for a specific disease, is a time consuming,
costly and tedious process. In addition, for many diseases it is suspected that
no single biomarkers exit, which are capable of producing reliable diagnoses.
The following quote further motivates the use of high resolution MS tech-
niques:

“The ability to distinguish sera from an una↵ected individual or an in-
dividual with [for example] ovarian cancer based upon a single serum
proteomic m/z feature alone is not possible across the entire serum
study set. Accurate histological distinction is only possible when the
key m/z features and their intensities are considered en masse. A lim-
itation of individual cancer biomarkers is the lack of sensitivity and
specificity when applied to large heterogeneous populations.” (Conrads
et al., 2003)

While high-resolution mass spectrometry techniques are thought to have po-
tential for accurate diagnosis due to the vast amount of information captured,
they are problematic for supervised training of classifiers. Specifically, the
many thousands of raw attributes forming the spectra frequently contain a
large amount of redundancy, information irrelevant to a particular disease,
and measurement noise. Therefore, aggressive feature extraction techniques
are crucial for learning high-accuracy classifiers and realizing the full poten-
tial of mass spectrometry based disease diagnosis.

The rest of the paper is organized as follows. We first motivate the task
by presenting two important disease diagnosis problems and recent studies
on them. A novel combination of feature selection and classification methods
is subsequently proposed and empirically evaluated on ovarian and prostate
cancer data sets. The paper is concluded with discussion and future research
directions.

30.1.1 Ovarian Cancer Studies

In (Petricoin et al., 2002a), genetic algorithms together with self-organizing
maps were used to distinguish between healthy women and those a✏icted

⇤The acronym PAGE stands for polyacrylamide gel electrophoresis. It is also
known as 2DE for two dimensional polyacrylamide gel electrophoresis (Patterson
and Aebersold, 2003).

†PSA stands for prostate specific antigen.
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with ovarian cancer. Although cross-validation studies were not conducted,
the approach was able to correctly classify all cancer stricken patients and
95% of healthy women, on a single test set. Motivated by the need for greater
recall and precision, in (Conrads et al., 2003), a low resolution mass spec-
trometry technique was compared with a high resolution technique using the
same ovarian cancer data set. The goal was to determine whether sensitivity
and PPV‡ (i.e., recall and precision) scores would improve by using a higher
resolution spectra provided by the SELDI TOF MS hardware§. Keeping all
other parameters fixed (including the machine learning algorithm), classifica-
tion based on high resolution data achieved 100% specificity and PPV scores
on the ovarian cancer data set. In contrast, none of the models based on the
low resolution mass spectra could achieve perfect precision and recall scores.
The researchers, therefore, concluded that the 60-fold increase in resolution
improved the performance of the pattern recognition method used. Due to the
low prevalence of (ovarian) cancer (Kainz, 1996), a screen test would require
a 99.6% specificity to achieve a clinically acceptable positive predictive value
of 10%. As a result, high resolution mass spectrometry techniques have been
adopted to increase classification accuracy.

Unfortunately, increasing data resolution proliferates “the curse of dimen-
sionality”, and thereby decreases the applicability of supervised classification
techniques. As a result, feature extraction is needed to extract/select salient
features in order to make classification feasible. In addition to making machine
learning algorithms tractable, feature extraction can help identify the set(s)
of proteins (i.e., features) that can be used as potential biomarkers. In turn,
key protein identification can shed light on the nature of the disease and help
develop clinical diagnostic tests and treatments.

Using the same data set, in (Lilien et al., 2003) the researchers used Prin-
ciple Component Analysis (PCA) (Kirby, 2001) for dimensionality reduction
and Linear Discriminant Analysis (LDA) for classification. For each of the var-
ious train/test data splits, 1000 cross-validation runs with re-sampling were
conducted. When training sets were larger than 75% of the total sample size,
perfect (100%) accuracy was achieved. Using only 50% of data for training,
the performance dropped by 0.01%. We conclude that PCA appears to be an
e↵ective way to reduce data dimensionality.

In (Wu et al., 2003), the researchers compared two feature extraction al-
gorithms together with several classification approaches. The T-statistic¶ was
used to rank features in terms of relevance. Then two feature subsets were
greedily selected (respectively having 15 and 25 features each). Support vec-
tor machines (SVM), random forests, LDA, Quadratic Discriminant Analy-
sis, k-nearest neighbors, and bagged/boosted decision trees were subsequently

‡PPV stands for Positive Predictive Value, see glossary for details.
§SELDI TOF MS stands for surface-enhanced laser desorption/ionization time-

of-flight mass spectrometry.
¶The T-statistic is also known as the student-t test (Press et al., 2002).
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used to classify the data. In addition, random forests were also used to select
relevant features with previously mentioned algorithms used for classification.
Again 15 and 25 feature sets were selected and classification algorithms ap-
plied. When the T-statistic was used as a feature extraction technique, SVM,
LDA and random forests classifiers obtained the top three results (accuracy
appears to be about 85%). On the other hand, classification accuracy im-
proved to approximately 92% when random forests were used for both feature
extraction and classification. Similar performance was also achieved using 1-
nearest-neighbor.

The data from (Wu et al., 2003), was subsequently analyzed in (Tibshirani
et al., 2004), using the nearest shrunken centroid algorithm. The ten-fold cross
validated specificity was 74% with a corresponding sensitivity of 71%. Thus
the balanced accuracy (BACC) of this algorithm was 72.5%. Although the
accuracy of this algorithm is less than that of other methods presented, this
approach used only seven featuresk out of 91360.

30.1.2 Prostate Cancer Studies

In (Adam et al., 2002), the researchers used a decision tree algorithm to dif-
ferentiate between healthy individuals and those with prostate cancer. This
study also used the SELDI TOF MS to acquire the mass spectra. Receiver Op-
erating Characteristics (ROC) curves were used to identify informative peaks
which were subsequently used by the decision tree classification algorithm.
The researchers did not perform cross-validation, but on a single test set the
classifier achieved an 81% sensitivity and a 97% specificity, yielding a balanced
accuracy (BACC) of 89%.

In (Qu et al., 2002), the performance was improved from (Adam et al.,
2002) by using ROC curves to identify relevant features. For classification,
the researchers used decision trees together with AdaBoost and its vari-
ant, Boosted Decision Stump Feature Selection (BDSFS) method. AdaBoost
achieved perfect accuracy on the single test set for the prostate cancer data
set. However, a 10-fold cross validation performance yielded average sensitiv-
ity of 98.5% and a specificity of 97.9%, for an overall BACC of 98%. For the
BDSFS, the results were worse, with a sensitivity of 91.1% and a specificity
of 94.3%. The researchers informally report that other classifiers had similar
accuracies but were more di�cult to interpret.

In (Lilien et al., 2003), the researchers again used PCA for dimensionality
reduction and LDA for classification. The data set was obtained from the au-
thors of (Adam et al., 2002). In the same fashion as with the ovarian cancer set,
the researchers conducted a detailed study using various train/test set sizes.
For each train/test data split, 1000 cross-validation runs (with re-sampling)

kIt should be noted that peak extraction and clustering were used to preprocess
the data and produced 192 peaks from which 7 were used by the shrunken centroid
algorithm.
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Comparison of three reports for prostate cancer diagnosis based on SELDI-TOF technology.
Adam et al. (1) Petricoin et al. (12) Qu et al. (29)

Diagnostic sensitivity and
specificity

83%; 97% 95%; 78–83% 97–100%; 97–100%

SELDI-TOF chip type IMAC-Cu Hydrophobic C-16 IMAC-Cu
Distinguishing peaks, m/za 4475, 5074, 5382, 7024,

7820, 8141, 9149,
9507, 9656

2092, 2367, 2582, 3080,
4819, 5439, 18220

Noncancer vs cancer: 3963, 4080,
6542, 6797, 6949, 6991, 7024,
7885, 8067, 8356, 9656, 9720

Healthy individuals vs BPH:b 3486,
4071, 4580, 5298, 6099, 7054,
7820, 7844, 8943

Bioinformatic analysis            Decision tree algorithm Proprietary; based on genetic
algorithms and cluster analysis

Boosted decision tree algorithm

a m/z ratios were rounded to whole numbers for simplicity. m/z ratios in bold font represent those identified by Adam et al. (10) and Qu et al. (12) for differentiating
cancer from noncancer patients. The underlined m/z ratio represents a peak identified by Adam et al. (10) for differentiating cancer from noncancer patients and by
Qu et al. (12) for differentiating healthy individuals from patients with benign prostatic hyperplasia.

b BPH, benign prostatic hyperplasia.
Fig. 30.1. Comparison of classification techniques for prostate cancer diagnosis
(reproduced from (Diamandis, 2003).) Respectively, the accuracies for (Adam et al.,
2002, Petricoin et al., 2002b, Qu et al., 2002) are 89%, 83%, 98%. This comparison
demonstrates the wide classification variance due to di↵erent mass spectrometry and
machine learning approaches.

were conducted. When training sets were larger than 75% of the total sample
size, an average accuracy of 88% was achieved. Using only 50% of data for
training, the performance dropped to 86%. In comparison to ovarian cancer
sets the lower accuracy suggests that this data set is much more di�cult to
classify correctly.

In (Petricoin et al., 2002b, Wulfkuhle et al., 2003), researchers used Genetic
Algorithms (GA’s) for feature extraction and Self Organizing Maps (SOM’s)
for classification of prostate cancer. This approach achieved a 95% specificity
and a 71% sensitivity, for a balanced accuracy of 83%. Although cross valida-
tion was carried out, the results were not presented.

In (Diamandis, 2003), the aforementioned studies on prostate cancer raised
the following question: Why do the features and classification performance
vary so drastically across studies? Indeed, results reproduced in Figure 30.1,
indicate that di↵erent SELDI-TOF approaches combined with di↵erent ma-
chine learning techniques for pattern recognition produce highly variable re-
sults. This observation further motivates the need for comparative studies
done on a regular basis using several mass spectrometry techniques in con-
junction with a number of machine learning approaches. We attempt to carry
out such a study in this paper.

30.2 Existing Feature Extraction and Classification
Methods

Feature extraction is central to the fields of machine learning, pattern recog-
nition and data mining. This section introduces algorithms used in this study.
More details on the algorithms used within this study can be found in Part
1, Chapters 3 and 4.
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30.2.1 Centroid Classification Method

A fast and simple algorithm for classification is the centroid method (Hastie
et al., 2001, Park et al., 2003). This algorithm assumes that the target classes
correspond to individual (single) clusters and uses the cluster means (or cen-
troids) to determine the class of a new sample point. A prototype pattern for
class Cj is defined as the arithmetic mean:

µCj =
1
|Cj |

X

xi2Cj

xi

where xi’s are the training samples labeled as class Cj . Recall that the training
sample is a MS spectra represented as a multi-dimensional vector (denoted
in bold). In a similar fashion, we can obtain a prototypical vector for all the
other classes. During classification, the class label of an unknown sample x is
determined as:

C(x) = arg min
Cj

d(µCj ,x)

where d(x,y) is a distance function or:

C(x) = arg max
Cj

s(µCj ,x)

where s(x,y) is a similarity metric. This simple classifier will form the basis
of our studies. It works with any number of features and its run-time com-
plexity is proportional to the number of features and the complexity of the
distance or similarity metric used. Preliminary experiments were conducted to
establish which similarity/distance metric is most appropriate for the centroid
classification algorithm⇤⇤, and the L1 distance metric was selected. Defined
by:

L1(x,µ) = kx� µk1 (30.1)

with kyk1 =
PN

i |y(i)|, and y(i) being the value of the ith feature. The value
L1(x,µ) has a linear cost in the number of features. In this study, data sets
contain two classes and hence the number of calls to a metric is also two.
Therefore, the centroid classifier, at run-time, is linear in the number of fea-
tures. During training, two prototypes are computed and the cost of computing
each prototype is O(mN), where N is the number of features and m is the
number of training samples which belong to a given class. Note that m only
varies between data sets and not during training or feature selection processes.
Thus, we can view m as a constant and conclude that the centroid classifier
has O(N) cost in the training phase.
⇤⇤Due to space restrictions, the results are not shown. A companion technical

report (Levner, 2004) provides experimental details and supplementary material.
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30.2.2 Nearest Shrunken Centroid

A special purpose feature selection algorithm for the nearest centroid algo-
rithm was developed by Tibshirani et al. and presented in (Hastie et al., 2001,
Tibshirani et al., 2003, 2004). The algorithm, related to the lasso method de-
scribed in Part 1, Chapter 1, Section 4, tries to shrink the class prototypes
(µCj ) towards the overall mean:

µ =
1
m

m
X

i=1

xi (30.2)

Briefly, the algorithm calculates:

d
j

=
µCj � µ

mj(s)
(30.3)

where mj =
q

1
|Cj | � 1

m , s is a vector of pooled within class variances for
each feature and division is done component wise. We can now view the class
centroid as:

µCj = µ + mj(s · dj

) (30.4)

where · denotes component wise multiplication. By decreasing d
j

we can move
the class centroid towards the overall centroid. When a component of the class
centroid is equal to the corresponding component of the overall mean for all
classes, the feature no longer plays a part in classification and is e↵ectively
removed. Hence as d

j

shrinks progressively more features are removed.

30.2.3 Ordered and Sequential Feature Selection

Using the aforementioned centroid method as the base classifier, we can select
features with SFS (Sequential Forward Selection) technique or via an ordered
feature selection approach. Both of these wrapper-based techniques incremen-
tally build a feature set by adding one feature at a time to the active (i.e.,
previously selected) set of features and invoking the nearest centroid classi-
fier using the active feature set. Sequential Forward (respectively Backward)
selection (SFS and SBS) methods start from an empty (respectively full) set
of features and at each step add (respectively remove) a single feature that
produces the greatest increase in performance. In contrast, the ordered fea-
ture selection approach first evaluates each of the N features independently of
all others. The features are then ranked according to the performance of the
base classifier (i.e., the nearest centroid classifier in our case). Once ranked and
sorted, the ordered feature selection approach incrementally adds the topmost
ranked feature to the active set. In total, N feature subsets are tried, where s1

contains a single top ranked feature, s2 contains the two top ranked features,
and so on until sN is tried. In contrast, to the SFS procedure, ordered feature
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selection is linear in the number of calls to the base classifier since at each
stage the top ranked feature is added to the active set and the newly created
active set is evaluated by the base classifier. Since there are only N features
the total number of calls to the base classifier is 2N , N initial calls to rank
individual features, and N times to evaluate the ever larger subsets s1, ..., sN .
Unlike the SFS algorithm, the greedy approach will not stop until all N sets
have been tried. The final stage of the algorithm merely selects the feature set
producing the best classification accuracy on the particular data set.

30.2.4 Univariate Statistical Tests

Instead of ranking features by invoking a classifier, one can use filter ranking
based on statistical tests. In general, univariate statistical tests analyze each
feature independently of others. The student-t (T-test) and the Kolmogorov-
Smirnov (KS-test) (Press et al., 2002) algorithms are common examples. Both
tests compare feature values from samples belonging to class i to feature values
from samples belonging to class j. The goal is to determine if the feature
values for class i come from a di↵erent distribution than those for class j.
The key di↵erence between the two tests are the assumptions they make. The
T-test assumes that both distributions have identical variance, and makes no
assumptions as to whether the two distributions are discrete or continuous. On
the other hand, the KS-test assumes that the two distributions are continuous,
but makes no other assumptions.

In the case of the T-test, the null hypothesis is µA = µB , representing
that the mean of feature value for class A is the same as the mean of the
feature values for class B. In the case of the KS-test, the null hypothesis is
cdf(A) = cdf(B), meaning that feature values from both classes have an iden-
tical cumulative distribution. Both tests determine if the observed di↵erences
are statistically significant and return a score representing the probability that
the null hypothesis is true. Thus, features can be ranked using either of these
statistics according to the significance score of each feature. In addition, the
two tests can be combined together into a composite statistic. While many
possible composition strategies exist, we limit our experiments to a simple
multiplicative composition, whereby the T-test significance score is multiplied
together with the KS-test significance score (referred to as the T*KS-test
henceforth).

Both the benefits and drawbacks of these statistical tests stem from the
assumption that features are independent. On one hand, the independence
assumption makes these approaches very fast. On the other hand, the inde-
pendence assumption may not hold for all data sets. Technical details on these
and other statistical tests can be found in (Hastie et al., 2001, Press et al.,
2002).

Recall that in (Wu et al., 2003), the T-test and random forests were used
for feature extraction teamed with a number of classifiers. The researchers
used the T-test to rank each feature but chose to test classification algorithms
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with 15 and 25 top-ranked features. Their line of research appears more fo-
cused on comparing classifiers rather than the two feature extractors (T-test
and random forests). In contrast, we show that feature ranking coupled with
ordered feature selection can automatically find a feature subset of arbitrary
size that improves performance (with respect to using either a single best
feature or using all features).

30.2.5 Dimensionality Reduction

Recall that feature selection algorithms attempt to select relevant features
with respect to the performance task, or conversely remove redundant or ir-
relevant ones. In contrast, dimensionality reduction algorithms attempt to
extract features capable of reconstructing the original high dimensional data.
For example, PCA (Kirby, 2001) attempts to find a linear combination of
principal components that preserves the data variance. In proteomic pattern
recognition the most common technique is down sampling. This technique fil-
ters the spectra and sub-samples it to reduce the dimensionality. A common
approach is to convolve the spectrum with a uniform filter at regular intervals
(windows). This technique, essentially removes high frequency components.
In order to test the conjecture made in (Conrads et al., 2003), that higher
resolution data tends to improve classification performance, we will use this
approach to test the merit of dimensionality reduction via down sampling.

30.3 Experimental Results

We conducted experiments on the ovarian and prostate data sets, previously
used in (Petricoin et al., 2002a) and (Petricoin et al., 2002b). The ovarian
cancer set includes sera from 91 controls and 162 ovarian cancers patients.
Acquired from (Johann, 2003), each data sample contains 15,156 features.
The prostate cancer data set is composed of 322 samples in total, and was
also acquired from (Johann, 2003). There are 190 serum samples from patients
with benign prostate whose PSA levels are greater than four, 63 samples with
no evidence of disease and PSA level less than one, 26 samples with prostate
cancer with PSA levels four through ten, and 43 samples with prostate cancer
and PSA levels greater than ten. Again, each sample is a histogram with
15,156 bins, with each bin corresponding to a single feature.

For all experiments, each data set was split into three subsets of equal size.
Each test fold used one of the three subsets with the remaining two subsets
used for training. We ran two sets of experiments. The first optimized perfor-
mance directly on the test set. For a given feature selection technique, this
approach produces a single feature set and hence makes feature analysis pos-
sible. The drawback of this approach is that performance estimates are overly
optimistic. To get a better performance estimate, a second set of experiments
was carried out. It optimized performance on the training set. Specifically, we
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used a leave-one-out cross-validation (LOOCV) internal loop based solely on
the training set to select features using a subset of the most promising algo-
rithms. The reported accuracy for all experiments is the average classification
accuracy over the three test folds and the error bars represent one standard de-
viation. Accuracy is taken as the arithmetic mean of sensitivity and specificity.
This measure is related to BER (Balanced Error Rate) and can be analogously
thought of as balanced accuracy (BACC), where BER = 1�BACC.

Dimensionality Reduction

We progressively down-sampled the spectra by averaging each sample spectra
using a uniform filter. In other words, given a window of size w we averaged w
adjacent features (i.e., m/z values) into a single new feature. The window was
then shifted by w features and the process repeated. For each trial we increased
size of the window w. This e↵ectively produces data with progressively lower
resolution and reduced dimensionality. For each down sampled data set we
used the centroid classifier. The results, presented in Figure 30.2, show that
classification performance decreases as the size of the filter increases. However,
the decrease is clearly non-monotonic and, in essence, very noisy. This noise
can be attributed to either the filtering or the sub-sampling stages of the
down-sampling process. To determine which of the two components produced
the oscillations in classification accuracy, another experiment was carried out.

In the second experiment we performed frequency based data filtering.
The procedure first transformed each spectra into the frequency domain via
the Fast Fourier Transform (FFT). Then a low pass filter was applied to
the frequency coe�cients in order to remove the high frequency components.
The final stage transformed the filtered data back to the spatial domain. By
varying the size of the low pass filter, the number of frequency coe�cients
used in reconstructing the MS spectra was varied and, in essence, consid-
ered feature selection in the frequency domain. Clearly the loss in accuracy,
shown on the right side of Figure 30.2, is much more monotonic in compari-
son with the down-sampling method (the left-hand side). This suggests that
the majority of oscillations result from the sub-sampling step rather than the
frequency filtering step. This led us to the conjecture that down-sampling
is in general detrimental to classification performance. To further investigate
this hypothesis, we ran the centroid classifier on each individual feature for the
down-sampled spectra and found the classification performance inferior to the
performance of a single best feature from the non down-sampled spectra. This
further supported the claim that down-sampling appears detrimental to clas-
sification accuracy. The conclusions drawn are in line with those in (Conrads
et al., 2003) where changes in resolution created by di↵erent MS techniques
produced similar results. Because the MS spectra are histograms describing
the ion concentrations based on the mass-to-charge ratios, the low resolution
techniques e↵ectively aggregate distinct ion concentrations into a single bin.
Hence, down-sampling, whether due to low-resolution MS hardware or done
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Fig. 30.2. Classification accuracy on progressively down-sampled data. Top: ovar-
ian cancer data set. Bottom: prostate cancer data set. Left: Down-sampling Perfor-
mance. The down-sample factor indicates the ratio of original number of features to
the number of features after down-sampling. As the down-sample factor increases,
the number of features decreases. Right: Frequency filtering. While all data sets
exhibit oscillations, the performance nevertheless gradually declines as the dimen-
sionality of the data is reduced as indicated by the increasing down-sampling factor
on the x-axis.

deliberately in software to reduce data dimensionality, appears to lower diag-
nosis performance.

30.3.1 Ordered and Sequential Feature Selection

To compute the exact relevance of individual features, the centroid classifier
was ran on individual features. Histogram plots for each data set are shown
in Figure 30.3. Each plot represents the distribution of features with respect
to classification accuracy and shows that a very large number of features
are essentially irrelevant and/or redundant with respect to diagnosis. This
provides further unfavorable evidence for the down-sampling approach, which
in essence, aggregates individual features together. Such an approach would
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Fig. 30.3. Performance using individual features Left: ovarian cancer data set.
Right: prostate cancer data set. The histograms show the number of features with
a specific classification accuracy on a single test fold when individual features are
used.

inevitably merge relevant and irrelevant (or redundant) features together and
decrease the overall performance as evidenced by the experimental results of
the previous section. Interestingly, there are a number of features within each
data set that produce classification accuracies below 50%. These features can
mislead and confuse the classifier.

Once each feature was ranked and the feature set sorted, ordered feature
selection was used. In addition, the SFS procedure was also employed to select
relevant feature sets. The results are presented in Figure 30.4 and are discussed
in the next section.

30.3.2 Performance Comparison

Figure 30.4 presents the best performance for each feature extraction tech-
nique on each data set. Clearly, SFS coupled with the centroid algorithm pro-
duced superior results in comparison to the other algorithms tested in terms
of feature set size and classification accuracy.

On the ovarian cancer data set, classification based on four features se-
lected via SFS had the same accuracy of 98.0%, tieing with a set composed of
48 features created by the ordered feature selection. Previously, PCA coupled
with LDA produced the only perfect cross-validated classification accuracy
(Lilien et al., 2003). On the prostate cancer data set, the SFS classifier in-
creased the base classification accuracy from 69.7% to 94% using only 11 of
15,154 features. In contrast, PCA coupled with LDA produced an accuracy of
88% (Lilien et al., 2003) . In (Qu et al., 2002), the boosted decision stumps
produced an impressive 98% accuracy on the same data set. However, we were
unable to get this set and used the data set from (Petricoin et al., 2002b),
where the accuracy using GA’s combined with SOM’s was only 83%. Overall
the SFS/centroid system appeared competitive with the previous approaches
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Fig. 30.4. Performance of Feature Extraction Algorithms optimized on the test
sets. Top: ovarian cancer data set. Bottom: prostate cancer data set.

in terms of classification accuracy but produced considerably smaller feature
sets. Note that the PCA/LDA approach always uses n features corresponding
to n eigenvectors. Since the rank of the covariance matrix is bounded by the
number of samples, n is necessarily upper bounded by the number of training
samples, and was set to this upper bound in (Lilien et al., 2003). Furthermore,
boosted decision stumps used to classify the prostate cancer data set needed
500 stumps to achieve the aforementioned accuracy. In contrast, the SFS/-
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Table 30.1. Active feature set extracted by the SFS procedure. Top: Ovarian
cancer data set. Bottom: Prostate cancer data set. Column 1 shows the order each
feature was added to the active set. Column 2 contains the feature index. Column 3
shows classification accuracy using just the one feature. Column 4-6 present the rank
of each feature using the T-test, KS-test, and T*KS-test with respect to topmost
ranked feature. The SFS procedure does not appear to select the same features as
any of the ordered FS methods.

Order 
Added 

Feature 
Index

Individual 
Feature 

Accuracy
T-Test KS-Test T*KS -Test

1 1679 0.9258 5003 9289 14129
2 541 0.8303 8185 7502 9272
3 1046 0.62 9012 13276 5997
4 2236 0.9104 4855 5501 7953

Order 
Added 

Feature 
Index

Individual 
Feature 

Accuracy
T-Test KS-Test T*KS -Test

1 2400 0.8147 2106 1880 1499
2 6842 0.6393 7823 14543 11650
3 2667 0.6246 1756 7601 13111
4 6371 0.5776 5600 609 4297
5 2005 0.5262 7128 11984 8482
6 1182 0.5147 12400 6180 890
7 7604 0.6328 7694 12788 5943
8 462 0.4531 11165 14343 11810
9 659 0.5868 13282 11766 11307

10 187 0.4994 14893 1807 5032
11 467 0.6036 12602 8744 2272

centroid method selected only 5 and 11 features for the ovarian and prostate
cancer data sets respectively, while producing comparable classification accu-
racy.

Active Feature Sets

The relationship between the features selected by the SFS procedure and
the corresponding rankings based on statistical tests is illustrated in Table
30.1. Each table examines the features selected by the SFS procedure for the
ovarian and prostate cancer data sets. In both cases, the features added to
the active set are ranked far from first by the statistical tests. In addition,
individual feature performance does not appear to be an e↵ective indicator
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Table 30.2. Active feature set extracted from the prostate cancer data set by the
SFS procedure. Column 1 shows the order each feature was added into the active set.
Column 2 contains the feature index. Column 3 provides the actual mass-to-charge
ratio of each feature. The last three columns present nearby (±500 Da) features
found previously in (Adam et al., 2002, Qu et al., 2002, Petricoin et al., 2002b).
Clearly the SFS procedure found a set of features very di↵erent than the other
algorithms.

Order 
Added 

Feature 
Index M/Z Adam et al. Qu et al. Petricoin et al.

1 2400 500.8
2 6842 4074.8 4475 3963; 4080; 4071
3 2667 618.6
4 6371 3533.0 3486 3080
5 2005 349.4
6 1182 121.3
7 7604 5033.3 5074 5289 4819; 5439
8 462 18.4
9 659 37.6

10 187 3.0
11 467 18.8

of classification performance within a set of features. In fact, the eighth and
tenth features have individual classification accuracies of less than 50% on
the prostate data. Furthermore, not a single feature selected by any of the
ordered feature selection approaches appears in the active set produced by
the SFS procedure. However, the ordered approaches do improve performance
in comparison to the classification accuracy based on the full feature set.
This indicates that there are a number of relevant features related to the
presence/absence of cancer.

To further examine the features extracted by the SFS, we compared the ac-
tive sets extracted by this procedure for the prostate cancer set to the features
selected using other approaches surveyed in the previous research literature
(refer to Figure 30.1). The results are summarized in Table 30.2. Clearly, very
few common features are observed. As hypothesized in (Diamandis, 2003), it
appears that di↵erent algorithms extract di↵erent relevant features based on
their internal machinery and bias. A crucial goal for future research is there-
fore, to determine which, if any, features can serve as potential biomarkers,
and shed light on the nature of cancer, and possibly even its cure.

30.3.3 LOOCV Performance

The previous section presented results with classification performance opti-
mized directly on the test set. While this approach produces feature sets that
can be analyzed easily, algorithm performance may be grossly optimistic. To
produce a more realistic performance estimate we re-ran our experiments with
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Fig. 30.5. Performance of Feature Extraction Algorithms optimized using LOOCV
within the training set. The balanced accuracy is averaged over 3 test folds unseen
during training. Top: ovarian cancer data set. Bottom: prostate cancer data set.

feature selection done using leave-one-out cross-validation (LOOCV) within
the training set. This procedure was also repeated 3 times for each external
test set. Due to the increased cost of the LOOCV procedure, we selected SFS,
KS-test, T-test and also the nearest shrunken centroid algorithm for compari-
son. Results are presented in Figure 30.5. The LOOCV performance estimates
are similar to performance optimized on test sets for the ovarian cancer. How-
ever, for the prostate cancer LOOCV performance is substantially lower.

The running times of each algorithm are presented in Table 30.3. Although
the nearest centroid takes the greatest amount of time, the running time is
dictated by the number of shrunken centroids examined during the LOOCV
stage. Recall that decreasing d

j

shrinks the class centroid (for each class).
Hence the number of times we decrease d

j

directly impacts performance. In
our case we used 200 progressively shrunken centroid sets and picked the best
one using LOOCV.
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Table 30.3. Computational times, in CPU seconds, taken by each algorithm for
the LOOCV feature selection.

CPU Time 
(sec) None KS-test     T-test   SFS Shrunken 

Centroids
Ovarian 0.87 24.55 623.37 2175.75 33115.00
Prostate 1.31 25.4 639.14 3269.37 33115.00

30.4 Conclusion

Mass spectrometry disease diagnosis is an emerging field poised to improve
the quality of medical diagnosis. However, the large dimensionality of the data
requires the use of feature extraction techniques prior to data mining and clas-
sification. This paper analyzed statistical and wrapper-based approaches to
feature selection as well as dimensionality reduction via down-sampling. Ex-
perimental results indicate that down-sampling appears detrimental to classifi-
cation performance, while feature selection techniques, in particular sequential
forward selection coupled with a fast but simple nearest centroid classifier, can
greatly reduce the dimensionality of the data and improve classification accu-
racy. Future research will investigate how the selected features impact classifi-
cation accuracy when used in conjunction with more sophisticated classifiers,
such as Artificial Neural Networks and Support Vector Machines. From a bi-
ological perspective, it is of interest to investigate the nature of the selected
features. As potential biomarkers, these features may shed light on the cause
or even the cure to cancer and other disease.
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Glossary

In this section we define the various measures used. Respectively, TP , TN ,
FP , FN , stand for the number of true positive, true negative, false positive,
false negative samples at classification time.
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Sensitivity TP

TP+FN

is also known as Recall.

Specificity TN

TN+FP

PPV (Positive Predictive Value) TP

TP+FP

. is also known as Precision.

NPV (Negative Predictive Value) TN

TP+FP

Accuracy defined as 1
2 ( TP

TP+FN

+ TN

TN+FP

) in this paper.
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Summary. Protein function prediction, i.e. classification of proteins according to
their biological function, is an important task in bioinformatics. In this chapter, we
illustrate that the presence of sequence motifs – elements that are conserved across
di↵erent proteins – are highly discriminative features for predicting the function of a
protein. This is in agreement with the biological thinking that considers motifs to be
the building blocks of protein sequences. We focus on proteins annotated as enzymes,
and show that despite the fact that motif composition is a very high dimensional
representation of a sequence, that most classes of enzymes can be classified using a
handful of motifs, yielding accurate and interpretable classifiers. The enzyme data
falls into a large number of classes; we find that the one-against-the-rest multi-class
method works better than the one-against-one method on this data.

31.1 Introduction

Advances in DNA sequencing are yielding a wealth of sequenced genomes. And
yet, understanding the function of the proteins coded by a specific genome is
still lagging. The determination of the function of genes and gene products is
performed mainly on the basis of sequence similarity (homology) (Domingues
and Lengauer, 2003). This leaves the function of a large percentage of genes
undetermined: close to 40% of the known human genes do not have a functional
classification by sequence similarity (Lander et al., 2001, Venter et al., 2001).

The most commonly used methods for measuring sequence similarity are
the Smith-Waterman algorithm (Smith and Waterman, 1981), and BLAST
(Altschul et al., 1997). These assign a similarity by aligning a pair of se-
quences. Other commonly used methods measure similarity to a family of
proteins: PSI-BLAST, profiles, or HMM methods (Altschul et al., 1997, Grib-
skov et al., 1987, Sonnhammer et al., 1998). Motif methods on the other hand,
represent short, highly conserved regions of proteins (Falquet et al., 2002,
Nevill-Manning et al., 1998, Huang and Brutlag, 2001). Sequence motifs often
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correspond to functional regions of a protein – catalytic sites, binding sites,
structural motifs etc .(Falquet et al., 2002). The presence of such protein mo-
tifs often reveals important clues to a protein’s role even if it is not globally
similar to any known protein. The motifs for most catalytic sites and binding
sites are conserved over much larger taxonomic distances and evolutionary
time than the rest of the sequence. However, a single motif is often not su�-
cient to determine the function of a protein. The catalytic site or binding site
of a protein might be composed of several regions that are not contiguous in
sequence, but are close in the folded protein structure (for example, the cat-
alytic site in serine proteases requires three conserved regions). In addition, a
motif representing a binding site might be common to several protein families
that bind the same substrate. Therefore, a pattern of motifs is required in
general to classify a protein into a certain family of proteins. Manually con-
structed fingerprints are provided by the PRINTS database (Attwood et al.,
2002). We suggest an automatic method for the construction of such finger-
prints by representing a protein sequence in a feature space of motif counts,
and performing feature selection in this feature space. Our experiments show
that motifs are highly predictive of enzyme function; using feature selection
we find small sets of motifs that characterize each class of enzymes; classi-
fiers trained on those feature sets have reduced error rates compared to SVM
classifiers trained on all the features. Representing protein sequences using a
“bag of motifs” representation is analogous to the bag of words representation
used in text categorization. This type of approach was suggested in the con-
text of remote homology detection (Ben-Hur and Brutlag, 2003) (see also the
unpublished manuscript (Logan et al., 2001)).

Our work should be compared with several other approaches for protein
classification. Leslie and co-authors have focused on various flavors of kernels
that represent sequences in the space of k-mers, allowing gaps and mismatches;
these include the spectrum and mismatch kernels (Leslie et al., 2002a,b). The
k-mers used by these methods are analogous to the discrete motifs used here.
k-mers are less flexible than motifs, but can provide a result in cases when a
sequence does not contain known motifs. When it comes to remote homology
detection, discriminative approaches based on these kernels and kernels based
on HMM models of sequence families (Fisher kernels) (Jaakkola and Haussler,
1999, Jaakkola et al., 1999) yield state of the art performance.

An alternative approach is to represent a sequence by a set of high-level
descriptors such as amino acid counts (1-mers), predicted secondary struc-
ture content, molecular weight, average hydrophobicity, as well as annota-
tions of the sequence that document its cellular location, tissue specificity etc.
(Syed and Yona, 2003, des Jardins et al., 1997). These approaches are com-
plementary to sequence-similarity based approaches such as our motif-based
approach.

SVMs are typically used for multi-class problems with either the one-
against-the-rest or one-against-one methods (Schölkopf and Smola, 2002). The
large number of classes in the data considered in this chapter makes the one-
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against-one method infeasible. Moreover, we find that the accuracy of the
one-against-the rest method is better, which we attribute to the large number
of classes. Other studies of multi-class classification using SVMs (see (Rifkin
and Klautau, 2004) and references therein) have not addressed datasets with
such a large number of classes.

In this chapter we consider the problem of classifying proteins according
to their enzymatic activity using a motif-based representation. In Section 31.2
we introduce the Enzyme Commission (EC) numbering system used to classify
enzymes. In Section 31.3 we describe sequence motifs and the classification
and feature selection methods used in this chapter. Finally, we show results of
these methods, illustrating that SVM-based feature selection methods yield
accurate low dimensional predictors of enzyme function.

31.2 Enzyme Classification

Enzymes represent about a third of the proteins in the Swiss-Prot database
(O’Donovan et al., 2002), and have a well established system of annotation.
The function of an enzyme is specified by a name given to it by the En-
zyme Commission (EC) (of the International Union of Biochemistry and (NC-
IUBMB), 1992). The name corresponds to an EC number, which is of the
form: n1.n2.n3.n4, e.g. 1.1.3.13 for alcohol oxidase. The first number is be-
tween 1 and 6, and indicates the general type of chemical reaction catalyzed by
the enzyme; the main categories are oxidoreductases, transferases, hydrolases,
lyases, isomerases and ligases. The remaining numbers have meanings that are
particular to each category. Consider for example, the oxidoreductases (EC
number starting with 1), which involve reactions in which hydrogen or oxy-
gen atoms or electrons are transferred between molecules. In these enzymes,
n2 specifies the chemical group of the (electron) donor molecule, n3 specifies
the (electron) acceptor, and n4 specifies the substrate. The EC classification
system specifies over 750 enzyme names; a particular protein can have several
enzymatic activities. Therefore, at first glance, this is not a standard multi-
class problem, since each pattern can have more than one class label; this type
of problem is sometimes called a multi-label problem (Elissee↵ and Weston,
2001). In order to reduce this multi-label problem into a multi-class problem
consider the biological scenarios in which an enzyme has multiple functions:

(1.) The enzyme can catalyze di↵erent reactions using the same catalytic site.
(2.) The enzyme is a multi-enzyme, an enzyme with multiple catalytic func-

tions that are contributed by distinct subunits/domains of the protein
(McNaught and Wilkinson, 1997).

In both cases it is reasonable to consider an enzyme that catalyzes more than
one reaction as distinct from enzymes that catalyze only one reaction. This is
clear for multi-enzymes; in the other case, a catalytic site that can catalyze
more than one reaction might have di↵erent sequence characteristics than a
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catalytic site that only catalyzes one of the reactions. We found that this
multi-label problem can be reduced to a regular multi-class problem by con-
sidering a group of enzyme that have several activities as a class by itself; for
example, there are 22 enzymes that have EC numbers 1.1.1.1 and 1.2.1.1,
and these can be perfectly distinguished from enzymes with the single EC
number 1.1.1.1 using a classifier that uses the motif composition of the pro-
teins. When looking at annotations in the Swiss-Prot database we then found
that these two groups are indeed recognized as distinct.

31.3 Methods

We propose to use the motif composition of a protein to define a similar-
ity measure or kernel function that can be used with various kernel based
classification methods such as Support Vector Machines (SVMs).

31.3.1 The discrete motif composition kernel

In this chapter we use discrete sequence motifs extracted using the eMOTIF
method (Nevill-Manning et al., 1998, Huang and Brutlag, 2001), which is
described here briefly. A motif is a simple regular expression specifying the
allowed amino acids in each position of the motif. Consider for example the
motif [as].dkf[filmv]..[filmv]...l[ast]. A sequence matches (or contains) this
motif if it has either an a or an s in some position, followed by any amino
acid, then d, k, f and so on, matching until the end of the motif. A group of
amino acids in brackets is called a substitution group. A formal definition is
as follows:

Definition 1. Denote by A the alphabet of amino acids. A substitution group
S = {s1, . . . , sk} is a subset of A, written as [s1 . . . sk]. Let S̄ be a set of
substitution groups, and let ’.’ denote the wildcard character.
A motif m is a sequence over A [ S̄ [ {.}.
A sequence s = s1s2 . . . s|s| 2 A⇤ is said to contain a motif m at position i if
for j = 1, . . . , |m|, if mj 2 A then si+j�1 = mj; if mj is a substitution group
S then si+j�1 2 S; if mj is the wildcard character, then si+j�1 can be any
character. A sequence s contains a motif m, if s contains m at some position.

Protein sequence motifs are typically extracted from ungapped regions
(blocks) of a multiple sequence alignment (see Figure 31.1 for an illustration of
the process). Each position in the motif represents the variability in a column
of the block. A substitution group such as [filmv] denotes the appearance of
several amino acids in a particular column in a block. Motifs generated by the
eMOTIF method contain only a limited number of substitution groups that
reflect chemical and physical properties of amino acids and their tendency to
co-occur in multiple sequence alignments. If the pattern of amino acids that
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Fig. 31.1. (a) The pipeline from multiple sequence alignment to the construction
of sequence motifs: we use discrete motifs that are simple regular expressions that
represent the variability in conserved columns in ungapped regions of a multiple
sequence alignment. (b) The syntax of a discrete motif: each position in the motif
is either an amino acid, a substitution group (a set of amino acids) or the wildcard
symbol. Our motif databases use only a limited set of substitution groups; substitu-
tion groups are sets of amino acids that tend to substitute for each other in column
of a multiple sequence alignment. Considering a limited set of substitution groups
helps avoid overfitting.

appear in a column of a block does not match any substitution group, then
the motif contains the wildcard symbol, ’.’.

Motifs can often be associated with specific functional sites of a protein:
catalytic sites, DNA binding sites, protein-protein interactions sites, small
molecule binding sites etc. We give a few examples that illustrate this in the
context of the enzyme data.

Example 1. The motif k[kr][iv]a[iv][iv]g.g.sgl..[ilv][kr] appears in
19 out of 19 enzymes belonging to the enzyme class 1.14.13.11. It charac-
terizes a binding site for an FAD molecule.
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Example 2. In many cases a binding site motif is not specific to one class of en-
zymes, but characterizes a similar functional site in several enzyme classes that
constitute a broader family of proteins: The motif dp.f...h.....[ilmv]...[fwy]
has 57 hits in the Swiss-Prot database, and is specific to the EC classes
1.14.18.1, 1.10.3.1 and 5.3.3.12. The histidine residue, represented by
the h in the pattern, binds one of two copper atoms that act as co-factors for
these enzymes.

We are currently undertaking the task of automatically characterizing the
function of motifs in our database based on annotations available in the Swiss-
Prot database.

A sequence s can be represented in a vector space indexed by a set of
motifs M:

�(s) = (�m(s))m2M , (31.1)

where �m(s) is the number of occurrences of the motif m in s. Now define the
motif kernel as:

K(s, s0) = �(s) · �(s0) . (31.2)

Since in most cases a motif appears only once in a sequence, this kernel es-
sentially counts the number of motifs that are common to both sequences.
The computation of the kernel can be performed e�ciently by representing
the motif database in a TRIE structure: Let m be a motif over the alphabet
A [ S̄ [ {.}. Every prefix of m has a node; let m1 and m2 be prefixes of m;
there is an edge from m1 to m2 if |m2| = |m1| + 1. The motifs are stored in
the leaf nodes of the TRIE. To find all motifs that are contained in a sequence
x at a certain position, traverse the TRIE using DFS and record all the leaf
nodes encountered during the traversal (see Figure 31.2 for an illustration).

To find all motifs that are contained in a sequence s at any position,
this search is started at each position of s. Thus the computation time of
the motif content of a sequence is linear in its length. Unlike a standard
TRIE searching the motif TRIE has a complexity that depends on the size of
the database; this is the result of the presence of wildcards and substitution
groups. A trivial upper bound is linear in the size of the database; numerical
experiments indicate that the complexity is sub-linear in practice.

The motif kernel is analogous to the “bag of words” representation that
is commonly used in information retrieval, where a document is represented
as a vector of (weighted) counts of the number of occurrences of each word
in the document (Joachims, 2002, 1998). In a recent study we found that
this “bag of motifs” representation of a protein sequence provides state of the
art performance in detecting remote homologs (Ben-Hur and Brutlag, 2003).
Like the bag of words representation, our motif composition vector is both
high dimensional and sparse: the eBlocks database of motifs (Su et al., 2004)
used in this work contains close to 500,000 motifs, while a sequence typically
contains only a handful of conserved regions. Motifs are often very specific as
features: We found that using feature selection we could reduce the number
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Fig. 31.2. Motifs are stored in the leaves of a TRIE. The figure shows a TRIE
storing the motifs k.[as]v, k[ilmv]v[kr], k[ilmv].h and k[ilmv].r. To find the motif
content, the tree is traversed, matching at each position a letter from the sequence
with the same letter, a substitution group containing the letter, or the wildcard sym-
bol. Traversing the tree shows that the sequence kiqh contains the motif k[ilmv].h.

of motifs to a few tens at the most, while maintaining classification accuracy
(see Section 31.4 for details).

31.3.2 The PSSM kernel

An alternative way of representing the pattern of conservation in the columns
of an ungapped block from a multiple sequence alignment is by Position Spe-
cific Scoring Matrices (PSSMs). A PSSM is a matrix with a column for each
column of the block, and a row for each amino acid. A column in the PSSM
represents the frequency of each amino acid in a column in the block. The raw
score of a sequence with respect to a PSSM is the product of the entries that
correspond to the sequence. The raw score can then be converted to a p-value
or an E-value that reflects how likely that score to arise by chance, or to be
observed in a database of a given size. Given a database of PSSMs we can
represent a protein sequence by a vector where each component is the score
with respect to a given scoring matrix. The score we used is the negative of
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the logarithm of the p-value, keeping only entries whose p-value is better than
10�6. This keeps the representation sparse, as for the motif kernel.

While PSSMs capture more information than a given motif about the
sequence variability in a block, it is much more time consuming to compute the
PSSM composition vector, since each scoring matrix needs to be considered,
whereas in the case of the discrete motifs, the computation time is sub-linear
in the number of motifs because of the way they are represented in a TRIE. In
our experiments we use PSSMs constructed using the eMATRIX method, that
also provide an e�cient method for scoring a PSSM, by avoiding scanning the
complete PSSM if its score is unlikely to exceed the significance threshold.

31.3.3 Classification methods

In what follows, we assume that our data are vectors xi representing the motif
content of the input sequences. In this chapter, we report results using two
classification methods: SVMs and k-Nearest-Neighbors (kNN). A linear SVM
is a two-class classifiers with a decision function of the form

f(x) = w · x + b , (31.3)

where w is a weight vector, and b is a constant, and a pattern x is classified
according to the sign of f(x). The vector w and the bias, b, are chosen to
maximize the margin between the decision surface (hyperplane) and the pos-
itive examples on one side, and negative examples on the other side, in the
case of linearly separable data; in the case of non-separable data some slack
is introduced (Boser et al., 1992, Schölkopf and Smola, 2002, Cristianini and
Shawe-Taylor, 2000). As a consequence of the optimization process, the weight
vector can be expressed as a weighted sum of the Support Vectors (SV):

w =
X

i2SV

�ixi . (31.4)

The decision function is now written as:

f(x) =
X

i2SV

�ixi · x + b . (31.5)

To extend the usefulness of SVMs to include nonlinear decision functions, and
non-vector data one proceeds by mapping the data into a feature space, typ-
ically high dimensional, using a map �, and then considering a linear SVM
in the high dimensional feature space (Schölkopf and Smola, 2002, Cristianini
and Shawe-Taylor, 2000). Since the SVM optimization problem can be ex-
pressed in terms of dot products, this approach is practical if the so called
kernel function, K(x,x0) = �(x) ·�(x0), can be computed e�ciently. In terms
of the kernel function, the decision function is expressed as:

f(x) =
X

i2SV

�iK(xi,x) + b . (31.6)
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A kNN classifier classifies a pattern according to the class label of the
training set patterns that are most similar to it. We use a kNN classifier with
a continuous valued decision function that assigns a score for class j defined
by:

fj(x) =
X

i2kNNj(x)

K(xi,x) , (31.7)

where kNNj(x) is the set of k nearest neighbors of x in class j; a pattern x is
classified to the highest scoring class.

31.3.4 Feature Scoring and Selection

In order to show that motifs are highly predictive of the class of an enzyme we
compute for each motif feature the following statistics. The Positive-Predictive
Value (PPV) of a feature is the fraction of the predictions made on the basis
of a motif m that are correct, namely

ppv(m) =
count(m|C)
count(m)

, (31.8)

where count(m) (count(m|C)) is the number of occurrences of the motif m
(in class C). Note that this is referred to as precision in information retrieval.
A motif has PPV which is equal to 1 in a class C if it occurs only in proteins
from class C. On the other end of the spectrum we consider the sensitivity
(or recall in information retrieval terms) of a motif m in picking members of
a class C:

sens(m) =
count(m|C)

|C| , (31.9)

where |C| is the size (number of members) of class C.
The motifs in the database we use are often highly redundant in their

pattern of occurrence in a group of proteins. Feature selection methods that
are based on ranking individual features do not handle redundancy, and are
therefore not suitable for producing a small subset of features without an
additional filter for redundancy.

In this chapter we focus on SVM-based feature selection methods and show
their e↵ectiveness. Recall that the weight vector of an SVM, w, is a weighted
sum of a subset of the motif composition vectors (the support vectors). In
most cases the number of support-vectors was rather small when training a
classifier to distinguish one enzyme class from all the others, so the weight
vector is typically very sparse; discarding features that are not represented
in the weight vector already yields a significant reduction in the number of
features, without modifying the decision function. The idea of using the mag-
nitude of the weight vector to perform feature selection is implemented in
the Recursive Feature Elimination (RFE) method (Guyon et al., 2002), which
alternates between training an SVM and discarding a subset of the features
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with small components of the weight vector. A backward selection method
such as RFE requires a halting condition. A halting condition based on cross-
validation is expensive to compute; furthermore, using a validation set is not
always practical for our data, since many classes have few positive examples
(not more than 10). Therefore we use a halting condition that is based on a
simple bound on classifier error, namely the number of support vectors. We
observe the following behavior of the number of support vectors in successive
iterations of RFE: initially, most of the features removed are noise; when these
are eliminated the data is simpler to describe, requiring less support vectors.
At a later stage essential features are removed, making the features insu�-
cient to describe the data, so many data points will be misclassified, making
them bounded support vectors. We choose the smallest number of features for
which the number of support vectors is minimal.

A related method to RFE is the zero-norm method of Weston et al. (We-
ston et al., 2003). They formulate the feature selection problem as a search for
the smallest set of features such that a dataset is still linearly separable (with
slack variables added for the case of data that is not linearly separable). In
other words, minimizing the zero norm of the weight vector of a linear decision
boundary, subject to the constraints that the decision boundary separates the
two classes (the zero norm of a vector is its number of nonzero coe�cients).
They show that this di�cult combinatorial problem can be relaxed into a
problem that is solved by an algorithm similar to RFE: alternate between
training an SVM and multiplying the data by the absolute value of the weight
vector (feature i of each pattern is multiplied by |wi|). This is iterated until
convergence.

In general, minimizing the zero norm might not be an optimal strategy:
the method minimizes the number of variables that separate the two classes,
without considering the margin of the separation. However, the data underly-
ing the motif kernel is discrete; therefore, if a set of motifs separates the data,
it does so with large margin. This can explain the good performance obtained
with this method on the motif data: the accuracy of classifiers trained on fea-
tures selected using the zero-norm method is higher than that of classifiers
trained on all the features. For comparison we tested the zero-norm method
on the problem of predicting protein function on the basis of gene expression
data (we used the data analyzed in (Brown et al., 2000) and considered the
five functional classes shown to be predictable using SVMs). In this case of
continuous data in 79 dimensions, SVMs trained on all features outperformed
SVMs trained using the zero-norm method (data not shown).

31.3.5 Multi-class classification

Protein function prediction is a classification problem with a large number of
classes (hundreds of classes in the EC classification scheme alone). This poses
a computational challenge when using a two-class classifier such as SVM. The
two standard approaches for using a two-class classifier for multi-class data
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are the one-against-one method and one-against-the-rest method (Schölkopf
and Smola, 2002). The one-against-the-rest method trains c classifiers, where
c is the number of classes in the data, and classifier i is trained on class i
against the rest of the data. A test example is then classified to the class
that receives the highest value of the decision function. The one-against-one
method requires training c(c�1)/2 classifiers on all pairs of classes; an unseen
pattern is tested by all these classifiers and is classified to the class that
receives the highest number of votes. In our case this amounts to training 651 *
650/2 = 2,111,575 classifiers, which makes this too computationally intensive.
Moreover, the data in Table 31.3 shows that the one-against-the-rest method
works better on the enzyme function prediction task. It can be argued that the
large number of “irrelevant” tests performed by the one-against-one method
may be the cause of this.

A recent paper by Rifkin and Klautau (Rifkin and Klautau, 2004) argues
that the one-against-the-rest method should work as well as other multi-class
methods, and presents experimental results to support their arguments, in-
cluding a critical analysis of previous studies. The datasets they considered
are UCI datasets that have a small number of classes compared to the enzyme
data. Yeang et al. (Yeang et al., 2001) studied a gene expression dataset with
14 classes corresponding to patients with various types of cancer; they also
obtained higher accuracy with one-against-the-rest than with one-against-one.
Our results further support their findings in the case of a multi-class problem
with a much larger number of classes.

31.3.6 Assessing classifier performance

In some of our analyses we will consider two-class problems that are highly
unbalanced, i.e. one class is much larger than the other; in such cases the
standard error rate is not a good measure of classifier performance. Therefore
we consider two alternative metrics for assessing the performance of a classi-
fier: the area under the Receiver Operator Characteristic (ROC) curve (Egan,
1975), and the balanced success rate. The balanced success rate is:

1�
X

i

P (err|Ci) , (31.10)

where P (err|C) is a shorthand for a classifier’s error on patterns that belong
to class C. The ROC curve describes the trade-o↵ between sensitivity and
specificity; it is a plot of the true positive rate as a function of the false positive
rate for varying classification thresholds (Egan, 1975). The area under the
ROC curve (AUC) is commonly used to summarize the ROC curve. The AUC
is a measure of how well the classifier works at ranking patterns: it quantifies
the extent to which positive examples are ranked above the negative examples.
The AUC is a useful metric for assessing a classifier used in the context of
protein classification: a user will typically be interested in the most promising
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patterns, i.e. patterns that are most likely to belong to a class of interest. The
AUC score however, can be problematic for highly unbalanced data: one can
obtain a very high AUC even when the ranking produced by the classifier is
almost useless from the point of view of the user if for example 500 out of
30,000 patterns from the negative class are ranked above the real members of
the class. Therefore we consider the ROC50 curve, which counts true positives
only up to the first 50 false positives (Leslie et al., 2002b). A classifier that
correctly classifies all the data has an ROC50 score (AUC50) equal to 1, while
if the top 50 values of the decision function are false positives, the AUC50 is
0.

31.4 Results

We extracted protein sequences annotated with EC numbers from the Swiss-
Prot database Release 40.0 (O’Donovan et al., 2002). EC numbers were taken
from the description lines; we removed sequence fragments, and sequences
where the assigned EC number was designated as “putative” or assigned by
homology. Sequences with an incompletely specified EC number were dis-
carded as well. Enzyme classes with a small number of representatives (less
than 10) were not considered in our analysis. The resulting dataset has 31117
enzymes in 651 classes. In some cases we focus on oxidoreductases – enzymes
that have an EC number starting with 1. The statistics of the two datasets
are summarized in Table 1.

number of sequences number of classes number of motifs

Oxidoreductases 5911 129 59783

All enzymes 31117 651 178450

Table 31.1. The enzyme sequence data; oxidoreductases are enzymes with EC
number that starts with 1.

In order to illustrate that the eBLOCKS database (Su et al., 2004) contains
many motifs that are predictive of enzyme function we consider their positive
predictive value (PPV) and sensitivity in picking members of each enzyme
class. Out of the 651 enzyme classes, 600 classes had a motif that was perfectly
specific to that class, i.e. had a PPV equal to 1. To see the sensitivity of such
perfectly specific motifs, for each class we find the set of motifs with maximum
PPV and find the one with maximum sensitivity. The distribution of the
sensitivity of these motifs is shown in Figure 31.3. We observe that 89 enzyme
classes have a motif that covers all its proteins and has no hits outside the
class. In general we do not expect to find motifs that cover all members of an
enzyme class, since it might be heterogeneous, composed of several clusters in
sequence space. We considered aggregating motifs with perfect PPV to form



31 Sequence motifs: highly predictive features of protein function 629

0 0.2 0.4 0.6 0.8 1

sensitivity
0

10

20

30

40

50

60

70

80

90

co
un
t

Fig. 31.3. The motif database contains motifs whose occurrences are highly corre-
lated with the EC classes. For each class we computed the highest PPV, and the
highest sensitivity of a motif with that value of PPV. 600 out of 651 classes had
a motif with PPV equal to 1. The distribution of the sensitivity of these motifs is
shown. There are 89 EC classes that have a “perfect motif”: a motif that cover all
enzymes of the class, and appears only in that class, i.e. the class can be predicted
on the basis of a single motif.

predictors of EC classes, but only a limited number of classes had sets of
motifs that cover the entire class, so a less strict form of feature selection is
required.

Next, we report experiments using discrete motifs and PSSMs as features
for predicting the EC number of an enzyme. In these experiments we used
the PyML package (see section 31.4.3). We used a linear kernel in motif space
in view of its high dimensionality. SVM performance was not a↵ected by
normalizing the patterns to unit vectors, but was critical for the kNN classifier.
On other datasets we observed that classification accuracy did not vary much
when changing the SVM soft margin constant, so we kept it at its default
value. All the reported results are obtained using 5-fold cross-validation, with
the same split used in all cases. In order to reduce the computational e↵ort
in comparing multiple approaches we focus on enzymes whose EC number
starts with 1 (oxidoreductases); this yields a dataset with 129 classes and
5911 enzymes. We compare classifiers trained on all 129 one-against-the-rest
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problems. Results are found in Figure 31.4 that shows the number of classes
which have a given level of performance for two metrics: the AUC50 (area
under ROC50 curve) and the balanced success rate.

The results in Figure 31.4 show that in most cases feature selection with
RFE or the zero-norm method lead to performance that is at least as good as
that of an SVM that uses all features for both the motif and PSSM kernels.
For the motif kernel we see a significant improvement with respect to the bal-
anced success rate under feature selection, but a degradation in performance
performance with respect to the AUC50 metric. This may be explained by
the fact that the feature selection process is governed by the objective of the
underlying SVM, which is good performance under the balanced success rate
(since we account for the class imbalance by introducing a misclassification
cost that is inversely proportional to the class size); optimizing the balanced
success rate can then come at the expense of the AUC50. The merit of the RFE
feature selection halting condition based on the number of support vectors is
illustrated in Figure 31.5, that shows the typical behavior of performance as
features are eliminated. We note that the RFE method performed better than
the zero-norm method. We attribute this to the di↵erence in the halting con-
ditions used, and the resulting number of features — the zero-norm method
yielded 10 features on average, whereas RFE yielded 77 features on average
over the 129 classes. Using a polynomial kernel after the feature selection stage
using RFE yielded worse results than using a linear kernel (data not shown).

The kNN classifier works well, outperforming the motif-SVM with respect
to the balanced success rate. The fact that kNN works so well despite the high
dimensionality of the data is the result of the presence of highly informative
features, coupled with the sparsity of the data and the discreteness of the
representation. When using the PSSM kernel kNN no longer performs as well
as the SVM method; in this case the data is still highly sparse, but the mag-
nitude of the feature plays an important part. The SVM’s better performance
with respect to the AUC50 metric can be explained by the fact that SVM
training explicitly optimizes the decision function while for the kNN classi-
fier a continuous valued decision function is an after-thought, rather than an
integral part of the design.

We also ran an experiment with a filter method that ranks a feature m

according to abs
⇣count(m|C)

|C| � count(m|C̄)
|C̄|

⌘

, where C̄ is the set of patterns
outside of class C. Features whose score was less two standard deviations above
the average score obtained on randomly labeled datasets were discarded. Due
to the high redundancy of the motif features, the method is not successful
in reducing the dimensionality in a significant way – over 5000 features on
average over the 129 enzyme classes were chosen, and the performance was
almost identical to an SVM trained on all the features.
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Method success rate balanced success rate

motif-kNN-L1 0.94 0.92

motif-SVM 0.96 0.94

pssm-SVM 0.84 0.70

pssm-Platt-SVM 0.89 0.82

BLAST 0.96 0.93

Table 31.2. Success rate in Multi-class classification of the enzyme data, estimated
by 5-fold CV. The standard deviation in 10 repeats of the experiment was 0.002 and
below. The kernel used with the kNN classifier was normalized by dividing each
motif composition vector by its L1 norm. The pssm-Platt-SVM method converts
the SVM decision function values into probabilities

Number of classes one-against-rest one-against-one

10 0.99 0.97

20 0.98 0.96

40 0.98 0.96

60 0.98 0.94

80 0.98 0.95

Table 31.3. Success rate in multi-class classification measured using 5-fold cross-
validation for the motif-SVM method when varying the number of classes.

31.4.1 Enzymes with multiple functions

In our analysis we considered a set of enzymes with multiple functionalities
as a unique class; for example enzymes with EC numbers 1.1.1.1 and 1.2.1.1
were considered a distinct class. The data contains 27 classes with multi-
ple functionalities. In order to quantify the degree of success in predicting a
class with multiple functionalities, for each class with multiple functionalities
we assessed the accuracy of a classifier trained to distinguish between the
multiple-functionality class and the classes with which it shares a function.
The average balanced success rate in this experiment was 0.95, and the aver-
age AUC50 was 0.95. These results support our reduction of the multi-label
problem to a multi-class problem.

31.4.2 Multi-class classification

The results of multi-class experiments appear in Table 31.2. The BLAST
method assigns the class label according to the class of the enzyme with which
an input sequence has the best BLAST E-value (a nearest neighbor BLAST).
The one-against-the-rest motif-SVM method worked slightly better than the
BLAST-based method and better than the nearest-neighbor motif method.
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When using the nearest neighbor motif method normalization of the kernel
was critical: normalizing the kernel by dividing each pattern by its L1-norm
improved the results significantly. Most of the misclassifications in the case
of the non-normalized kernel occurred by classifying a pattern into a class of
large proteins that contain many motifs; such classes “attract” members of
other classes. It is interesting to note that the PSSM based kernel performed
poorly when used for the multi-class classification, despite being better for
individual two-class problems. We attribute that to the fact the PSSM kernel
is sensitive to the value of a variable as opposed to the motif kernel that is
discrete. This results in decision functions that are incommensurate across
classes; this is supported by the observation that normalizing the output of
each classifier into a probability using Platt’s method (Platt, 1999) provided
big improvement, although it is still worse than the motif kernel.

A comparison of the performance of multi-class methods that use the motif
kernel is provided in Table 31.3 for an increasing number of classes. It shows an
advantage for the one-against-the-rest method that increases as the number of
classes increases. The better performance of the one-against-the-rest method
may be explained by the large number of “irrelevant” comparisons made by
the one-against-one method.

31.4.3 Data and Software

A license for the motif database used in this work is freely available for
academic users; see http://motif.stanford.edu. The machine learning ex-
periments were performed using PyML, which is an object oriented envi-
ronment for performing machine learning experiments, available at http:
//pyml.sourceforge.net.

31.5 Discussion

Several databases of conserved regions reviewed in the introduction are con-
structed by experts who use known annotations to group protein sequences
that are then modeled by motifs, profiles, or HMMs, namely PROSITE,
BLOCKS+ and Pfam (Falquet et al., 2002, Heniko↵ et al., 1999, Sonnham-
mer et al., 1998). The use of such patterns as features to train classifiers
that predict protein function can lead to biased results since knowledge about
function is often incorporated by the experts in the course of developing these
databases. The only way to avoid bias in evaluating classifier performance is
to use as testing examples proteins that were not used in the development of
the database, which can be di�cult to achieve. The eBLOCKs database used
in this study, on the other hand, is constructed in an unsupervised way by
aligning clusters of similar sequences in Swiss-Prot (Su et al., 2004), so our
results are free from such bias.

http://motif.stanford.edu
http://pyml.sourceforge.net
http://pyml.sourceforge.net
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Although results of classification using motifs did not o↵er a significant
advantage over BLAST in terms of accuracy, our examples suggest that mo-
tifs can o↵er greater interpretability. Since manually curating the function of
motifs is infeasible, we are working on automating the process to produce an-
notations for as many motifs as possible using sequence annotations available
in the Swiss-Prot database.

SVM-based multi-class methods for protein function prediction are expen-
sive to train in view of the large number of classes. The data is very sparse
in sequence space: most classes are well separated. One can take advantage
of this property in many ways. We performed experiments using a method
that uses one-class SVMs to filter a small number of “candidate” classes, and
then deciding among that smaller number of classes using a one-against-one
approach. Since the number of classes that are not well separated is small, this
resulted in the need to train only a small number of classifiers, with accuracy
similar to the one-against-the-rest method.

In this work we represented conserved regions by either discrete motifs or
PSSMs. There was no clear winner in terms of accuracy: PSSMs gave better
performance with respect to the balanced success rate whereas motifs gave
better AUC50 scores. So although PSSMs o↵er greater flexibility in describ-
ing a pattern of conservation, the fact that the eMOTIF method generates
multiple motifs out of a conserved sequence block, compensates for the loss
in expressive power of a single motif. The advantage of using discrete motifs
over PSSMs is the e�cient search methods for computing motif hits. Using a
hybrid approach – choosing a small number of features, be it PSSMs or motifs,
one can avoid the computational burden.

31.6 Conclusion

In this chapter we have illustrated that the motif composition of a sequence is
a very“clean”representation of a protein; since a motif compactly captures the
features from a sequence that are essential for its function, we could obtain
accurate classifiers for predicting enzyme function using a small number of
motifs. We plan to develop the motif-based classifiers as a useful resource that
can help in understanding protein function.
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ceedings of the European Conference on Machine Learning, pages 137–142,
Berlin, 1998. Springer. URL http://www-ai.cs.uni-dortmund.de/DOKUMENTE/
joachims_98a.ps.gz.

T. Joachims. Learning to Classify Text using Support Vector Machines. Kluwer
Academic Publishers, 2002.

E.S. Lander, L.M. Linton, and B. Birren. Initial sequencing and analysis of the
human genome. Nature, 409(6822):860–921, 2001.

http://www.clopinet.com/isabelle/Papers/colt92.ps
http://www.clopinet.com/isabelle/Papers/colt92.ps
http://www.cse.ucsc.edu/research/ml/papers/Jaakola.ps
http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_98a.ps.gz
http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_98a.ps.gz


31 Sequence motifs: highly predictive features of protein function 635

C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: A string kernel for SVM
protein classification. In Proceedings of the Pacific Symposium on Biocomputing,
pages 564–575. World Scientific, 2002a.

C. Leslie, E. Eskin, J. Weston, and W. Sta↵ord Noble. Mismatch string kernels
for svm protein classification. In Advances in Neural Information Processing
Systems, 2002b.

B. Logan, P. Moreno, B. Suzek, Z. Weng, and S. Kasif. A study of remote homology
detection. Technical report, Cambridge Research Laboratory, June 2001.

A.D. McNaught and A. Wilkinson. IUPAC Compendium of Chemical Terminology.
Royal Society of Chemistry, Cambridge, UK, 1997.

C.G. Nevill-Manning, T.D. Wu, and D.L. Brutlag. Highly specific protein sequence
motifs for genome analysis. Proc. Natl. Acad. Sci. USA, 95(11):5865–5871, 1998.

C. O’Donovan, M.J. Martin, A. Gattiker, E. Gasteiger, A. Bairoch A., and R. Ap-
weiler. High-quality protein knowledge resource: SWISS-PROT and TrEMBL.
Brief. Bioinform., 3:275–284, 2002.

Nomenclature Committee of the International Union of Biochemistry and Molecu-
lar Biology (NC-IUBMB). Enzyme Nomenclature. Recommendations 1992. Aca-
demic Press, 1992.

J. C. Platt. Probabilities for support vector machines. In A. Smola, P. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers,
pages 61–74. MIT Press, 1999.

R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine
Learning Research, 5:101–141, 2004.

B. Schölkopf and A.J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond. MIT Press, Cambridge, MA, 2002.

T. Smith and M. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981.

E.L. Sonnhammer, S.R. Eddy, and E. Birney. Pfam: multiple sequence alignments
and hmm-profiles of protein domains. Nucleic Acids Research, 26(1):320–322,
1998.

Q. Su, S. Saxonov, L. Liu, and D.L. Brutlag. eBLOCKS: Automated database of
protein conserved regions maximizing sensitivity and specificity. Nucleic Acids
Research, 33:In Press, 2004.

U. Syed and G. Yona. Using a mixture of probabilistic decision trees for direct
prediction of protein function. In RECOMB, 2003.

J.C. Venter, M.D. Adams, E.W. Myers, and P.W. Li. The sequence of the human
genome. Science, 2901(16):1304–1351, 2001.

J. Weston, A. Elissee↵, M. Tipping, and B. Schölkopf. Use of the zero-norm with
linear models and kernel methods. Journal of Machine Learning Research, 3
(7-8):1439–1461, 2003. URL http://www.ai.mit.edu/projects/jmlr/papers/
volume3/weston03a/abstract.html.

C.H. Yeang, S. Ramaswamy, P. Tamayo, S. Mukherjee, R. Rifkin, M. Angelo, M. Re-
ich, E. Lander, J. Mesirov, and T. Golub. Molecular classification of multiple
tumor types. In Proceedings, eleventh international conference on intelligent
systems for molecular biology, volume 17 suppl 1 of Bioinformatics, pages S316–
S322, 2001.

http://www.ai.mit.edu/projects/jmlr/papers/volume3/weston03a/abstract.html
http://www.ai.mit.edu/projects/jmlr/papers/volume3/weston03a/abstract.html


636 Asa Ben-Hur and Douglas Brutlag

0 . 7 0 . 8 0 . 9 1 . 0
AU C 5 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

N
u

m
b

er
 o

f 
cl

as
se

s 
w

it
h 

a 
gi

ve
n 

p
er

fo
rm

an
ce

p ss m-RF E
pss m-SVM
pss m-KN N
m otif-KN N
m otif-MU
m otif-RF E
m otif-SVM

0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
b a la nc e d succ ess r a t e

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

N
u

m
b

er
 o

f 
cl

as
se

s 
w

it
h 

a 
gi

ve
n 

p
er

fo
rm

an
ce

p ss m-RF E
pss m-SVM
pss m-KN N
m otif-KN N
m otif-MU
m otif-RF E
m otif-SVM

Fig. 31.4. Performance in 5 fold cross-validation for the 129 enzyme classes in the
oxidoreductase data. The number of classes with a given level of performance is
plotted for the various methods: Top: Area under ROC50 curve (AUC50). Bottom:
balanced success rate.
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Fig. 31.5. Performance as a function of the number of features with RFE feature
selection. We illustrate the dependence of the balanced success rate on the number
of features in two typical runs of the method on the classes 1.9.3.1 (top) and 1.6.5.3
(bottom). Red X’s denote the number of features chosen according to the number of
support vectors. In each case 70% of the members of the class were used for training
and 30% were used for testing.
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Laboratoire d’Électronique (CNRS UMR 7084), 10 rue Vauquelin, 75005 Paris -
FRANCE Gerard.Dreyfus@espci.fr

Statistics is the art of dealing quantitatively with uncertainty and fluctua-
tions. Random variables are the central concept of statistics: a quantity whose
value cannot be predicted with absolute certainty can be considered as the
realization of a random variable. That does not mean that the phenomenon
that produces the value of interest is random, i.e. is not subject to the usual
determinism of macroscopic physics; it means that the observer is not aware
of all the factors that control the result, hence cannot control them. Typi-
cally, the outcome of throwing a die can be considered as a (discrete) random
variable; however, a good mechanical engineer could design a die-throwing
machine that would produce any desired outcome, repeatedly and on request.
That is a feasible task, provided the initial conditions (position, angular and
linear velocity of the die) and the subsequent factors (friction on the table,
elasticity of the latter, etc.) are carefully controlled. Similarly, statistical stud-
ies can predict the outcome of elections within some accuracy by considering
votes as random variables, although each individual citizen does not cast a
random vote.

There is a wealth of textbooks on statistics, among which the novice reader
can find his own favorite. Some of the notations used in the present appendix
are borrowed from (Mood et al., 1974).

1 Basic principles

We first start with some definitions and the basic concepts of random variables
and distributions.

1.1 What is a random variable?

Definition 1. A random variable is fully defined by its probability density or
probability distribution function (pdf). A random variable Y has a probability



642 Gérard Dreyfus

density pY (y) if the probability that a realization y of the random variable Y
lies in an interval [y, y + dy] is equal to pY (y)dy.

Alternatively, a random variable can be defined by its cumulative distri-
bution function FY (y), which is the probability that a realization z of Y be
smaller than or equal to y: FY (y) = Pr(z  y). Therefore, the probability den-
sity is the derivative of the cumulative distribution function: PY (y) = dFy(y)

dy .
As a consequence, if y is a real variable, one has FY (+1) = 1, FY (�1) = 0
and

R +1
�1 pY (y) dy = 1.

1.2 Examples of probability distributions

(1.) Uniform distribution: a random variable Y has a uniform distribution if
its density probability is pY (y) = 1/(b� a) on a given interval [a, b], and
is zero elsewhere.

(2.) Gaussian distribution: pY (y) = 1p
2⇡�2 exp

⇣

� (y�µ)2

2 �2

⌘

where µ is the mean
of the distribution and � its standard deviation. As a particular case, a
standard normal variable has a Gaussian distribution with µ = 0 and
� = 1.

What is a random variable? 

Definition 

A random variable is fully defined by its probability density or probability distribution function (pdf). 
A random variable Y has a probability density pY(y) if the probability that a realization y of the random 
variable Y lies in an interval [y, y+dy] is equal to pY(y) dy. 

Alternatively, a random variable can be defined by its cumulative distribution function FY(y), which 
is the probability that a realization z of Y be smaller than or equal to y: 
FY(y) = Probability(z � y). 
Therefore, the probability density is the derivative of the cumulative distribution function: 

pY y� � dFY y� �
dy

. 

As a consequence, if y is a real variable, one has FY(+�) = 1, FY(-�) = 0 and py y� �dy  1
�f

�f

³ . 

Examples of probability distributions 

1. Uniform distribution: a random variable Y has a uniform distribution if its density probability is 
pY(y) = 1/(b–a) on a given interval [a, b], and is zero elsewhere. 
 

2. Gaussian distribution: pY y� � 1
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¹
¸  where P is the mean of the distribution 

and V its standard deviation. As a particular case, a standard normal variable has a Gaussian 
distribution with P = 0 and V = 1. 

 
Fig. 5. Probability distribution of a standard normal random variable (Gaussian distribution with P = 0 and 
V = 1). Approximately 68% of the distribution lies between –1 and +1, and approximately 96% of the 
distribution lies between –2 and +2. 

3. The probability distribution of a certain variable of value y0 is a Dirac delta distribution G(y-y0). 
 
Additional useful probability distributions will be defined below. 

Joint distribution – Independent variables 

Denoting by pX,Y(x, y) the joint density of two random variables, the probability of a realization of X 
lying between x and x+dx and of a realization of Y lying between y and y+dy is pX,Y(x, y) dx dy. 
 

Two random variables X and Y are independent if the probability of a realization of one variable 
taking some value is independent of the value of the realization of the other variable. Then one has: 
pX,Y(x, y) = pX(x) pY(y). 

Fig. 1. Probability distribution of a standard normal random variable (Gaussian
distribution with = 0 and = 1). Approximately 68% of the distribution lies between
-1 and +1, and approximately 96% of the distribution lies between -2 and +2.

(3.) The probability distribution of a certain variable of value y0 is a Dirac
delta distribution �(y � y0).

Additional useful probability distributions will be defined below.
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1.3 Joint distribution - Independent variables

Denoting by pX,Y (x, y) the joint density of two random variables, the proba-
bility of a realization of X lying between x and x + dx and of a realization of
Y lying between y and y + dy is pX,Y (x, y)dxdy.

Two random variables X and Y are independent if the probability of a
realization of one variable taking some value is independent of the value of
the realization of the other variable. Then one has: pX,Y (x, y) = pX(x)pY (y).

1.4 Expectation value of a random variable

Definition 2. The expectation value of a random variable Y is defined as:
R +1
�1 pY (y) dy = 1. Therefore, it is the first moment of the pdf.

1.5 Properties

(1.) The expectation value of the sum of random variables is the sum of the
expectation values of the random variables.

(2.) The expectation value of a uniformly distributed variable Y in interval
[a, b] is (a + b)/2.

(3.) The expectation value of a Gaussian distribution of mean µ is µ.
(4.) The expectation value of a certain variable of value y0 is y0.

2 Estimating and learning

2.1 The simplest machine learning problem

In machine learning, it is desired to learn from data. Consider the following
simple problem: data is available from measurements of a quantity that we
know to be constant (i.e. an object has been weighed on di↵erent scales,
ranging from a 19th century Roberval scale to a fancy digital one). We want
to learn the “true” weight from the data.

We first postulate a model whereby the result of each measurement is the
sum of the “true” weight and of an unpredictable noise. Therefore, our statis-
tical model is the following: the results of the measurements are realizations
of a random variable Y , which is the sum

• of a certain variable (with probability distribution PY (y) = �(y�✓), which
we want to learn from data,

• and of a random variable N with zero expectation value (e.g. Gaussian
distributed with zero mean and standard deviation �).
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Then the expectation value of Y is given by: EY = E✓ + EN = ✓ since the
expectation value of N is equal to zero.

Therefore, our machine learning problem is: how can we estimate the single
parameter ✓ of our model

g(✓) = ✓ (1)

from the available data? In other words, what learning algorithm should we
use? To this end, the concept of estimator is useful.

2.2 Estimators

As mentioned in the previous section, when measurements of a quantity of
interest are modeled as realizations of a random variable Y , one is primarily
concerned with estimating the expectation value of the quantity of interest
from the experimental results. Therefore, we would like to find a quantity that
can be computed from the measurements, and that is “as close as possible” to
the (unknown) true value; that quantity itself can be regarded as a random
variable, function of the observable random variable Y .

Definition 3. An estimator is a random variable, which is a function one or
more observable random variables.

2.3 Unbiased estimator of a certain variable

An estimator of a certain variable is unbiased if its expectation value is equal
to the value of the certain variable. Therefore, learning algorithms that es-
timate the parameters of a model from data actually try to find unbiased
estimators of those parameters, the latter being considered as certain vari-
ables. That view of parameter estimation is called the frequentist approach.
By contrast, the Bayesian approach considers the parameters themselves as
random variables that are not certain. The frequentist approach is the sim-
plest and most popular, although Bayesian approaches may provide excellent
results, as exemplified in the results of the feature selection competition (Neal
and Zhang, 2005).

2.4 The mean is an unbiased estimator of the expectation value

If m examples that are to be used for training are results of measurements
that were performed independently of each other, under conditions that are
assumed to be identical, each measured value yi can be viewed as a realization
of a random variable Yi. Since the experiments were performed independently
under identical conditions, those random variables are independent and have
the same probability distribution, hence the same expectation value EY (they
are said to be “i.i.d.”, which stands for independent identically distributed).
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The random variable “mean” is defined as M = 1
m

Pm
i=1 Yi. Since the ex-

pectation value of the sum is the sum of the expectation values, one has
EM = 1

m

Pm
i=1 EY = EY : the expectation value of the mean is equal to the

certain variable EY , hence the mean is an unbiased estimator of the expecta-
tion value of Y . Therefore, the realization µ of the estimator M , which can be
computed as µ = 1

m

Pm
i=1 yi, is an estimate of the “true” value of the quantity

of interest.
Therefore, the training algorithm for finding the single parameter of the

model described in the previous section is: compute the mean value µ of the
data, and set the estimated value of ✓ equal to µ.

However, the fact that an unbiased estimate of the “true” value of the
quantity of interest can be computed does not say anything about the accuracy
of that estimate, which depends both on the “amount of noise” present in the
data, and on the number of observations. In that context, the variance is
another quantity of interest.

2.5 Variance of a random variable

The variance of a random variable Y is the quantity varY = �2 =
R +1
�1 (y �

EY )2p(y) dy. Therefore, it is the centered, second moment of the probability
density pY .

2.6 Properties

(1.) varY = EY 2 � E2
Y

(2.) varaY = a2varY

(3.) The variance of a uniformly distributed random variable in [a, b] is (b �
a)2/12.

(4.) The variance of a Gaussian distributed random variable of standard devi-
ation � is equal to �2.

2.7 Unbiased estimator of the variance

If the m measurements of the quantity of interest are performed indepen-
dently and under identical conditions, each measurement can be considered
as a realization of a random variable Yi, all variables Yi having the same
distribution, hence the same variance. Then, it can be shown that the ran-
dom variable S2 = 1

m�1

Pm
i=1 (Yi �M)2, where M is the estimator of the

expectation value of Y , is an unbiased estimator of the variance of Y .
Therefore, given m experimental observations yi, an estimate of the vari-

ance of the quantity of interest can be obtained by

• computing the mean µ = 1
m

Pm
i=1 yi

• and computing the estimate of the variance as s2 = 1
m�1

Pm
i=1 (yi � µ)2
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Thus, the computed quantity s2 provides a quantitative assessment of how
the measured values are“scattered”around the mean value. That is interesting
information, because it gives an idea of the amount of “noise” present in the
measurements. Still, it does not tell us how close the mean is to the “true”
value.

In order to get a better insight into that question, one should keep in
mind that the mean is just a single realization of the random variable M ,
which has a variance. That variance can be estimated by performing m0 sets
of m experiments: that would provide m0 realizations µj of the mean. Then the
mean µ0 of the means µj can be computed, and an estimate of the variance of
the mean can be computed as s2

µ = 1
m0�1

Pm0

j=1 (µj � µ0)2 . That computation
requires a relatively heavy procedure. A more elegant way of assessing the
quality of an estimate will be provided in Section 4.

3 Some additional useful probability distributions

Before investigating further the problem of assessing the acceptability of using
the mean as an estimate of the expectation value, we define three additional
probability distributions of interest in the book.

3.1 The �2 (Pearson) distribution

If a random variable X is the sum of the squares of m random independent
Gaussian variables, then it has a �2 (or Pearson) distribution with m degrees
of freedom. It can be shown that E(X) = m and that var(X) = 2m.

3.2 Student distribution

If Y1 is a normal variable, and if Y2 is a random variable, which is independent
of Y1 and which has a (Pearson) distribution with m degrees of freedom, then
the random variable Z = Y1p

Y2/m
has a Student distribution with m degrees of

freedom.

3.3 Fisher distribution

If Y1 is a Pearson variable with m1 degrees of freedom, and if Y2 is a Pearson
variable with m2 degrees of freedom, then the random variable Z = Y1/m1

Y2/m2

has a Fisher distribution with m1 and m2 degrees of freedom.
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4 Confidence intervals

In the previous sections, we have shown that the accuracy of the estimation
of the “true” value by the mean value computed from a set of experiments
depends both on the number of experiments and on the noise present in the
data. Confidence intervals are an elegant way of combining size of the exper-
iment and variability, in order to assess whether the discrepancy between the
mean and the expectation value is “acceptable”.

Definition 4. A confidence interval, with confidence threshold 1 � ↵ around
the mean of a random variable Y , contains the value of the expectation of Y
with probability 1� ↵.

For instance, assume that a confidence interval with confidence threshold
0.95 (↵ = 0.05) is computed; if 100 di↵erent sets of experiments are per-
formed, 100 means, 100 variance estimates, and 100 confidence intervals with
confidence threshold 95 % can be computed; for 95% of those data sets, the
confidence interval will contain the mean. Of course, for a particular data set,
there is no way to guarantee that the true value is within the specific confi-
dence interval computed from that specific data set: the risk of getting wrong
by chance cannot be altogether eliminated.

4.1 How to design a confidence interval

In order to design a confidence interval for a random variable Y , one seeks
an appropriate random variable Z, function of Y , whose distribution pZ(z)
is known and independent of Y . Since the distribution pZ(z) is known, the
equation Pr(z1 < z < z2) =

R z2

z1
pZ(z) dz = 1 � ↵ can be solved easily:

one just has to invert the cumulative distribution function of Z, i.e. compute
the value of z1 such that Pr(z < z1) = ↵/2, and the value of z2 such that
Pr(z > z2) = ↵/2. When z1 and z2 are found, function Z(Y ) is inverted in
order to find the values of a and b such that Pr(a < y < b) = 1� ↵.

4.2 An example: a confidence interval for the parameter of the
model described by Equation 1

Confidence intervals can be applied to the modeling problem that has been
described above, i.e. the validity of the estimation of the expectation value
by the mean value. As before, we assume that m experiments have been per-
formed, that the result yi of each experiment is a realization of a random
variable Yi, and that the experiments are designed in such a way that the m
random variables are independent and identically distributed. In addition, we
assume that distribution to be Gaussian with mean µ and standard deviation
�.

The sum of independent Gaussian variables is Gaussian distributed, with
mean equal to the sum of the means and variance equal to the sum of the
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variances. In the present case, the m variables are identically distributed:
their sum is Gaussian distributed with mean mµ and variance m�2. Therefore,
their mean M is Gaussian distributed with mean µ0 and variance �2/m, hence
the random variable M�µ0

�/
p

m
has zero mean and unit variance. The probability

distribution of that variable is known and independent of M as required, but
it contains the two unknowns µ0 and �, so that it cannot be used for designing
a confidence interval.

Instead, consider the random variable
Pm

i=1
(Yi�M)2

�2 ; being a sum of Gaus-
sian variables, it is a Pearson variable with m�1 degrees of freedom (there are
only m�1 independent variables in the sum since M depends on the variables
Yi).

Therefore, from the definition provided in Section 3, the variable Z =
M�µ0
�/
p

m
/
Pm

i=1
(Yi�M)2

�2(m�1) = M�µ0p
S2/m

, where S2 is the estimator of the variance,

has a Student distribution with m � 1 degrees of freedom. By inverting the
cumulative distribution function of the Student distribution, two numbers z1

and z2 can be computed, such that a realization z of Z lies between those two
values with probability 1� ↵. Since the Student distribution is symmetrical,
one can choose z1 and z2 such that |z1| = |z2| = z0, e.g. z1 = �z0 and z2 = z0.
The set of experiments provides a realization of variable Z: z = µ�µ0p

s2/m
with

µ = 1
m

Pm
i=1 yi and s =

q

1
m�1

Pm
i=1 (yi � µ)2. The two linear inequalities

z1 < z < z2 can easily be solved to provide the two required boundary values
a and b for µ0: a = µ�

q

s2

m z0 and b = µ+
q

s2

m z0, where µ, s, and m depend
on the experiments, and z0 depends on the confidence threshold 1� ↵ only.

As expected, the width 2
q

s2

m z0 of the confidence interval depends both
on the number of experiments m and on the noise (through the estimated
variance s). The larger the number of experiments, the smaller the confidence
interval, hence the more reliable the estimation of the expectation value µ0 by
the mean µ. Conversely, the larger the variability of the results, as expressed
by s, the larger the confidence interval, hence the less reliable the estimation of
the expectation value µ0 by the mean µ. If a maximum value of the confidence
interval is specified in the requirements of the problem, then a large variability
must be compensated for by a large number of experiments.

Therefore, a confidence interval for the single parameter of model Equa-
tion 1 has been derived here. Similarly, confidence intervals can be derived
both for the parameters of models trained from data, and for the predictions
of such models. If the model is assumed to be true, e.g. a model based on
physical knowledge, containing parameters that have a physical significance,
it is very important to have confidence intervals on those parameters. On the
other hand, when black-box models are designed (e.g. SVM’s, neural nets,
etc.), the parameters have no specific significance, so that confidence intervals
on their values are not very useful; by contrast, confidence intervals on the
prediction of the models are absolutely necessary, and may also be very useful
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for experimental planning. Section 6 relates PAC learning to the confidence
interval on the error rate for classification.

5 Hypothesis testing

On the basis of the observed data, one can make an assumption and test
it, i.e. assess whether that assumption - called the null hypothesis - is true,
or whether the fact that the data seems to support that assumption is just a
matter of chance, due to the small size of the data set and/or to the variability
of the data. Statisticians have derived a very wide variety of statistical tests,
for use in many di↵erent situations, see for instance (Lehmann, 1993).

5.1 Definitions: Test statistic, risk, p-value

In order to test a hypothesis (termed traditionally the “null” hypothesis),
one must find a random variable Z (termed test “statistic”), whose distri-
bution (termed the “null” distribution) is known if that hypothesis is true,
and a realization z of which can be computed from the available data. If the
probability of that realization lying in a given interval is “too low” (in a sense
to be defined below), the probability of the null hypothesis being true is too
low, hence that hypothesis should be rejected.

In addition to defining the null hypothesis, a threshold probability must
be chosen, which depends on the risk that is deemed admissible of rejecting
the null hypothesis although it is actually true (that is called a Type-I error).
That threshold probability is usually denoted as ↵.

The results of hypothesis tests may also be analyzed in terms of the p-
value of the realization z of Z: the p-value of z is the probability of a real-
ization of Z being further from the mean of the pdf of Z than z, if the null
hypothesis is true. Therefore, a small p-value sheds doubt on the validity of
the null hypothesis and ↵ can be viewed as an upper bound of the p-value of
z.

In a two-tailed test, the risk is split on either side of the pdf while in a
one-tailed test, the risk is blocked on one side (see example below.)

The probability of making a Type-II error (i.e. accepting the null hypoth-
esis while it is actually wrong) is unknown; making such an error based on a
given test means that the available data has led us to miss some small dif-
ference, either because data are too sparse, or because the variance of the
examples is too large. That issue is related to the power of the test.

In most hypothesis tests, the acceptance or rejection criterion was defined
with respect to a threshold ↵ that is an upper bound of the probability of a
Type-I error. If a quantity � is defined as the probability of a Type-II error,
then the power of the test is 1 � � . Therefore, among all possible values of
↵, one should choose the value that provides the best tradeo↵ between the
probability of the two types of errors, i.e. the smallest ↵ and the highest power.
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5.2 Example: the Student T-test

As a first illustration, assume that a model predicts that a quantity y is equal
to µ0. A set of m examples is available for testing the validity of the model, and
we wish to assess whether the examples support the prediction of the model.
We make the assumption that the examples have been gathered in such a way
that they can be modeled as realizations of m random independent variables
with the same probability distribution. We further assume that distribution
to be Gaussian with expectation value EY and standard deviation �. Then
the null hypothesis (denoted traditionally as H0) is: H0: EY = µ0, which is
to be tested against the alternative hypothesis H1: EY 6= µ0.

If the null hypothesis is true, then the random variable Z = M�µ0p
S2/m

, where

M is the estimator of the expectation value, S2 is the estimator of the variance,
and m is the number of examples, has a Student distribution with m�1 degrees
of freedom. A realization z of that variable can be computed from the examples
as z = µ�µ0p

s2/m
where µ = 1

m

PN
i=1 yi (the mean) and s =

q

1
m�1

PN
i=1(yi � µ)2

(the estimator of the variance). Since the Student distribution is known, the
probability of a realization of that variable being smaller than or equal to
z if the null hypothesis is true can be computed. Furthermore, by inverting
the cumulative distribution function of the Student variable, one can find
z1 such that the probability of z being smaller than z1 is ↵/2, and z2 such
that the probability of z being larger than z2 is ↵/2. Therefore, if the value
of z, computed from the experiments, lies between z1 and z2, then one can
conclude that, with probability 1 � ↵, the null hypothesis is supported by
the experiments. Conversely, if the realization of Z lies outside that interval,
the null hypothesis will be rejected (although it may be true), because we
consider that the experiments do not provide conclusive evidence that the
null hypothesis is true. Therefore, ↵ is an upper bound on the probability of a
Type-I error, subject to the Gaussian assumption for the examples (Figure 2).
It is traditionally taken equal to 0.05.

As an illustration, assume that one has 100 examples with mean value
µ = 2 while the prediction of the model is µ0 = 1. Then µ � µ0 = 1. If the
examples have a large variance, i.e. are very much scattered around the mean,
e.g. s = 10, then z = 1. From the Student distribution, one can compute that
the probability of the magnitude of z being larger than or equal to 1 is equal
to 0.32. If the value ↵ = 0.05 has been chosen, one can safely conclude that
the null hypothesis is true: the di↵erence found between the mean and its
theoretical value supports the hypothesis that the theoretical mean is indeed
equal to 1, given the scatter of the data, and the amount of data available.
Conversely, if the same di↵erence between the mean and its predicted value
is found, but with data that are much less scattered, e.g. s = 3, then z = 3.3,
and the probability of the magnitude of z being larger than or equal to 3.3 is
8⇥ 10�3, so that the null hypothesis is rejected by the test: given the scatter
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Fig. 2. The hatched area is the probability of z lying outside the interval [z1, z2] if the null hypothesis is true; it is 
equal to the risk Dҏ�� rejecting the null hypothesis although it is true. 
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Fig. 2. The hatched area is the probability of z lying outside the interval [z1, z2]
if the null hypothesis is true; it is equal to the risk ↵ rejecting the null hypothesis
although it is true.

of the data and the number of examples, it cannot be concluded safely that
the predicted value of 1 is correct.

We can also analyze the test in terms of p-value. In the present case, the
p-value is called a two-tail p-value since its definition involves two inequalities
(z < z1 or z > z2). If the realization of z, computed from the examples, is
further from the mean than z1 or z2, i.e. if the p-value of z is smaller than
↵, the null hypothesis is rejected. In the above example, the two-tail p-value
of z = 1 is 0.32, whereas the p-value of z = 3.3 is 8 ⇥ 10�3. There are many
hypothesis tests where the validity of the null hypothesis is questioned if a
realization of the random variable obeys a single inequality (e.g. it is larger
than a given value z0); then ↵ is the upper bound of the one-tail p-value of
z (i.e. the probability of z being larger than z0 if the null hypothesis is true,
where the p-value of z0 is ↵) (Figure 3).

5.3 Parametric vs. nonparametric tests

In the above example, the underlying assumption was that the examples were
Gaussian distributed. That assumption is not necessarily true, especially when
data are sparse. Non-parametric tests do not rely on any assumption about
the distribution of the examples, but the price to pay is a smaller power than
parametric tests. The Wilcoxon rank sum test presented in the text is an
example of non-parametric test that may be substituted to the T-test to test
the equality of the mean of two populations when the Gaussian assumption
cannot be relied upon.
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6 Probably Approximately Correct (PAC) Learning and
guaranteed estimators

This section briefly introduces the new branch of statistics known as learning
theory, stemming from the work of Vapnik, Valiant, and others.

6.1 Confidence Intervals on the Error Rate

Probably Approximately Correct (PAC) learning is a general framework for
the problem of learning classification tasks from examples, i.e. tasks in which
a mapping from a set of real numbers to the set of binary variables {0, 1} is
sought (Valiant, 1984). More specifically, given a training set of m examples,
and a test set drawn from the same probability distribution, a set of classifiers
{g} is said to be PAC learnable if there is a learning algorithm such that the
following relation holds for all classifiers of that set:

Pr [Pr(classification error) > "] < ↵ (2)

where " and ↵ are predefined goals. Clearly, the smaller " and ↵, the better the
classifiers found by the training algorithm. {g} is said to be e�ciently PAC
learnable if there exists a learning algorithm, polynomial in ", ↵ and ln(m),
such that all classifiers of {g} comply with Equation 2. The complexity of that
learning algorithm is defined as the smallest training set size that makes {g}
learnable.

Now assume that, for a given family a classifiers {g}, we would like to
know how far the error rate eV computed on the validation set (an estimate
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of the “empirical risk”) is from the unknown generalization error (“true risk”)
e. A confidence interval " with confidence level 1� ↵ is such that

Pr [(eV � e) > "] < ↵ (3)

Formally, there is a clear similarity between Equation 2 and Equation 3,
but they do not provide the same information. An analytic expression of "
involves the Vapnik-Chervonenkis dimension of the class of classifiers {g},
the number m of examples, and ↵ (Vapnik, 1982). Note, however, that most
present feature selection procedures do not make use of the bounds derived
by either approach.

6.2 Guaranteed estimators

The issue of the number of observations required in order to get a statistically
significant result is essential in experimental planning. Assume that we have
an estimator Z of a quantity of interest w, e.g. the mean as an estimator
of the expectation value of the unknown distribution of an observed variable
X. How many observations should we gather in order to be sure that, with
probability (1 � ↵), the di↵erence between the realization z of the estimator
and the “true” value w of the quantity of interest does not exceed a given
"? In other words, we want to find the number of examples m such that the
following inequality holds:

Pr [|z � w| � "]  ↵ (4)

In order to solve that problem, one must resort to distribution-independent
inequalities if the distribution of the observed variable is unknown, or to
tighter distribution-dependent equalities if the distribution is known.

The simplest distribution-independent inequality is the Chebyshev in-
equality (see for instance Mood et al. (1974)): for a random variable Y

Pr [|y � EY | � r varY ]  1
r2

(5)

As an example, assume that it is desired to design an experiment such that
the probability of the di↵erence between the mean of a variable X and the
expectation of the quantity of interest being larger than " is smaller than
a given value ↵. Then the estimator Z is the mean M . Since the mean is
an unbiased estimator of the expectation value, one has EM = EX . Since
M = 1

m

Pm
i=1 Xi, the variance of the mean is varM = (1/m2)

Pm
i=1 varx =

(1/m)varx. Then the Chebyshev inequality Equation 5 can be written as
Pr [|µ� EX | � "]  �

varM
"

�2 =
�

varX
m"

�2 where µ is a realization of M , i.e. the
value of the mean computed from the observations.

Therefore, one has from Equation 4: ↵ =
�

varX
m"

�2, hence m = varX

"
p

↵
.

In order to make use of that relation, an estimate of the variance must be
available, e.g. from preliminary experiments.
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The above bound is distribution-independent. If the distribution is known,
tighter bounds can be derived. If the variable X is known to be Gaussian dis-
tributed with expectation value EX and standard deviation �, M is Gaussian
distributed with mean EX and standard deviation �p

m
. Therefore, the variable

Y = M�µ
�/
p

m
obeys a standard normal law (Gaussian with µ = 0 and � = 1).

Therefore, Equation 4 can be written as:

Pr



|y| � "

p
m

�

�

 ↵,

from which a threshold value y↵ is derived by inverting the cdf of the nor-
mal distribution, as shown on Figure 2. Therefore, the required number of
examples is given by m =

�y↵�
"

�2.
As an illustration, the number of examples required in a test set in order

to have a statistically significant assessment of the classification error was
derived in (Guyon et al., 1998).
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Appendix B

Feature Selection Challenge Datasets





Experimental design

Isabelle Guyon1

ClopiNet, 955 Creston Rd., Berkeley, CA 94708, USA. isabelle@clopinet.com

Background

Results published in the field of feature or variable selection (see e.g. the spe-
cial issue of JMLR on variable and feature selection: http://www.jmlr.org/
papers/special/feature.html) are for the most part on di↵erent data sets
or used di↵erent data splits, which make them hard to compare. We format-
ted a number of datasets for the purpose of benchmarking variable selection
algorithms in a controlled manner⇤. The data sets were chosen to span a vari-
ety of domains (cancer prediction from mass-spectrometry data, handwritten
digit recognition, text classification, and prediction of molecular activity). One
dataset is artificial. We chose data sets that had su�ciently many examples
to create a large enough test set to obtain statistically significant results. The
input variables are continuous or binary, sparse or dense. All problems are
two-class classification problems. The similarity of the tasks allows partici-
pants to enter results on all data sets. Other problems will be added in the
future.

Method

Preparing the data included the following steps:

• Preprocessing data to obtain features in the same numerical range (0 to
999 for continuous data and 0/1 for binary data).

• Adding “random” features distributed similarly to the real features. In
what follows we refer to such features as probes to distinguish them from
the real features. This will allow us to rank algorithms according to their
ability to filter out irrelevant features.
⇤In this document, we do not make a distinction between features and variables.

The benchmark addresses the problem of selecting input variables. Those may ac-
tually be features derived from the original variables using a preprocessing.

http://www.jmlr.org/papers/special/feature.html
http://www.jmlr.org/papers/special/feature.html
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• Randomizing the order of the patterns and the features to homogenize the
data.

• Training and testing on various data splits using simple feature selection
and classification methods to obtain baseline performances.

• Determining the approximate number of test examples needed for the test
set to obtain statistically significant benchmark results using the rule-of-
thumb ntest = 100/p, where p is the test set error rate (see What size test
set gives good error rate estimates? I. Guyon, J. Makhoul, R. Schwartz,
and V. Vapnik. PAMI, 20 (1), pages 52–64, IEEE. 1998, http://www.
clopinet.com/isabelle/Papers/test-size.ps.Z). Since the test error
rate of the classifiers of the benchmark is unknown, we used the results of
the baseline method and added a few more examples.

• Splitting the data into training, validation and test set. The size of the
validation set is usually smaller than that of the test set to keep as much
training data as possible.

Both validation and test set truth-values (labels) are withheld during the
benchmark. The validation set serves as development test set. During the
time allotted to the participants to try methods on the data, participants are
allowed to send the validation set results (in the form of classifier outputs)
and obtain result scores. Such score are made available to all participants to
stimulate research. At the end of the benchmark, the participants send their
test set results. The scores on the test set results are disclosed simultaneously
to all participants after the benchmark is over.

Data formats

All the data sets are in the same format and include 8 files in ASCII format:

dataname.param Parameters and statistics about the data.
dataname.feat Identities of the features (in the order the features are found

in the data).
dataname train.data Training set (a sparse or a regular matrix, patterns in

lines, features in columns).
dataname valid.data Validation set.
dataname test.data Test set.
dataname train.labels Labels (truth values of the classes) for training exam-

ples.
dataname valid.labels Validation set labels (withheld during the benchmark).
dataname test.labels Test set labels (withheld during the benchmark).

The matrix data formats used are:

Regular Matrices a space delimited file with a new-line character at the end
of each line.

http://www.clopinet.com/isabelle/Papers/test-size.ps.Z
http://www.clopinet.com/isabelle/Papers/test-size.ps.Z
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Sparse Binary Matrices for each line of the matrix, a space delimited list of
indices of the non-zero values. A new-line character at the end of each
line.

Sparse Non-Binary Matrices for each line of the matrix, a space delimited
list of indices of the non-zero values followed by the value itself, separated
from it index by a colon. A new-line character at the end of each line.

The results on each dataset should be formatted in 7 ASCII files:

dataname train.resu ±1 classifier outputs for training examples (mandatory
for final submissions).

dataname valid.resu ±1 classifier outputs for validation examples (mandatory
for development and final submissions).

dataname test.resu ±1 classifier outputs for test examples (mandatory for
final submissions).

dataname train.conf confidence values for training examples (optional).
dataname valid.conf confidence values for validation examples (optional).
dataname test.conf confidence values for test examples (optional).
dataname.feat list of features selected (one integer feature number per line,

starting from one, ordered from the most important to the least important
if such order exists). If no list of features is provided, it will be assumed
that all the features were used.

Format for classifier outputs:

.resu files should have one ±1 integer value per line indicating the prediction
for the various patterns.

.conf files should have one decimal positive numeric value per line indicat-
ing classification confidence. The confidence values can be the absolute
discriminant values. They do not need to be normalized to look like prob-
abilities. They will be used to compute ROC curves and Area Under such
Curve (AUC).

Result rating

The classification results are rated with the balanced error rate (the average of
the error rate on training examples and on test examples). The area under the
ROC curve is also be computed, if the participants provide classification con-
fidence scores in addition to class label predictions. But the relative strength
of classifiers is judged only on the balanced error rate. The participants are
invited to provide the list of features used. For methods having performance
di↵erences that are not statistically significant, the method using the small-
est number of features wins. If no feature set is provided, it is assumed that
all the features were used. The organizers may then provide the participants
with one or several test sets containing only the features selected to verify the
accuracy of the classifier when it uses those features only. The proportion of
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random probes in the feature set is also be computed. It is used to assess the
relative strength of method with non-statistically significantly di↵erent error
rates and a relative di↵erence in number of features that is less than 5%. In
that case, the method with smallest number of random probes in the feature
set wins.

Datasets

The following sections describe the five datatsets provided for the challenge in
detail. These datasets were prepared for the NIPS 2003 variable and feature
selection benchmark in August 2003.



Arcene

The task of Arcene is to distinguish cancer versus normal patterns from
mass-spectrometric data. This is a two-class classification problem with con-
tinuous input variables.

Original owners

The data were obtained from two sources: The National Cancer Institute
(NCI) and the Eastern Virginia Medical School (EVMS). All the data con-
sist of mass-spectra obtained with the SELDI technique. The samples include
patients with cancer (ovarian or prostate cancer), and healthy or control pa-
tients.

NCI ovarian data: The data were originally obtained from http://
clinical proteomics.steem.com/download-ovar.php. We use the 8/7/02
data set:
http://clinical proteomics.steem.com/Ovarian_Dataset_8-7-02.zip.
The data includes 253 spectra, including 91 controls and 162 cancer spectra.
Number of features: 15154. NCI prostate cancer data: The data were orig-
inally obtained from http://clinical proteomics.steem.com/JNCI_Data_
7-3-02.zip on the web page http://clinical proteomics.steem.com/
download-prost.php. There are a total of 322 samples: 63 samples with no
evidence of disease and PSA level less than 1; 190 samples with benign prostate
with PSA levels greater than 4; 26 samples with prostate cancer with PSA
levels 4 through 10; 43 samples with prostate cancer with PSA levels greater
than 10. Therefore, there are 253 normal samples and 69 disease samples. The
original training set is composed of 56 samples:

• 25 samples with no evidence of disease and PSA level less than 1 ng/ml.
• 31 biopsy-proven prostate cancer with PSA level larger than 4 ng/ml.

But the exact split is not given in the paper or on the web site. The original test
set contains the remaining 266 samples (38 cancer and 228 normal). Number
of features: 15154.

http://clinical
http://clinical
proteomics.steem.com/download-ovar.php
http://clinical
proteomics.steem.com/Ovarian_Dataset_8-7-02.zip
http://clinical
proteomics.steem.com/JNCI_Data_7-3-02.zip
proteomics.steem.com/JNCI_Data_7-3-02.zip
http://clinical
proteomics.steem.com/download-prost.php
proteomics.steem.com/download-prost.php
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EVMS prostate cancer data: The data are downloadable from: http:
//www.evms.edu/vpc/seldi/. The training data data includes 652 spectra
from 326 patients (spectra are in duplicate) and includes 318 controls and 334
cancer spectra. Study population: 167 prostate cancer (84 state 1 and 2; 83
stage 3 and 4), 77 benign prostate hyperplasia, and 82 age-matched normals.
The test data includes 60 additional patients. The labels for the test set are
not provided with the data, so the test spectra are not used for the benchmark.
Number of features: 48538.

Past usage

NCI ovarian cancer original paper:“Use of proteomic patterns in serum to
identify ovarian cancer Emanuel F Petricoin III, Ali M Ardekani, Ben A Hitt,
Peter J Levine, Vincent A Fusaro, Seth M Steinberg, Gordon B Mills, Charles
Simone, David A Fishman, Elise C Kohn, Lance A Liotta. THE LANCET,
Vol. 359, February 16, 2002, www.thelancet.com” are so far not reproducible.
Note: The data used is a newer set of spectra obtained after the publication
of the paper and of better quality. 100% accuracy is easily achieved on the
test set using various data splits on this version of the data.

NCI prostate cancer original paper: Serum proteomic patterns for
detection of prostate cancer. Petricoin et al. Journal of the NCI, Vol. 94,
No. 20, Oct. 16, 2002. The test results of the paper are shown in Table 1.
EVMS prostate cancer original paper: Serum Protein Fingerprinting

FP FN TP TN Error 1-error Specificity Sensitivity

51 2 36 177 20.30% 79.70% 77.63% 94.74%

Table 1. Results of Petricoin et al. on the NCI prostate cancer data.
Fp=false positive, FN=false negative, TP=true positive, TN=true nega-
tive. Error=(FP+FN)/(FP+FN+TP+TN), Specificity=TN/(TN+FP), Sensitiv-
ity=TP/(TP+FN).

Coupled with a Pattern-matching Algorithm Distinguishes Prostate Cancer
from Benign Prostate Hyperplasia and Healthy Men, Bao-Ling Adam, et al.,
CANCER RESEARCH 62, 3609-3614, July 1, 2002. In the following excerpt
from the original paper some baseline results are reported:

Surface enhanced laser desorption/ionization mass spectrometry pro-
tein profiles of serum from 167 PCA patients, 77 patients with be-
nign prostate hyperplasia, and 82 age-matched una↵ected healthy men
were used to train and develop a decision tree classification algorithm
that used a nine-protein mass pattern that correctly classified 96% of
the samples. A blinded test set, separated from the training set by a
stratified random sampling before the analysis, was used to determine
the sensitivity and specificity of the classification system. A sensitivity

http://www.evms.edu/vpc/seldi/
http://www.evms.edu/vpc/seldi/
www.thelancet.com
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of 83%, a specificity of 97%, and a positive predictive value of 96%
for the study population and 91% for the general population were ob-
tained when comparing the PCA versus noncancer (benign prostate
hyperplasia/healthy men) groups.

Experimental design

We merged the datasets from the three di↵erent sources (253 + 322 + 326
= 901 samples). We obtained 91 + 253 + 159 = 503 control samples (neg-
ative class) and 162 + 69 + 167 = 398 cancer samples (positive class). The
motivations for merging datasets include:

• Obtaining enough data to be able to cut a su�cient size test set.
• Creating a problem where possibly non-linear classifiers and non-linear

feature selection methods might outperform linear methods. The reason is
that there will be in each class di↵erent clusters corresponding di↵erences
in disease, gender, and sample preparation.

• Finding out whether there are features that are generic of the separation
cancer vs. normal across various cancers.

We designed a preprocessing that is suitable for mass-spec data and applied
it to all the data sets to reduce the disparity between data sources. The pre-
processing consists of the following steps:

Limiting the mass range We eliminated small masses under m/z=200 that
include usually chemical noise specific to the MALDI/SELDI process (in-
fluence of the ”matrix”). We also eliminated large masses over m/z=10000
because few features are usually relevant in that domain and we needed
to compress the data.

Averaging the technical repeats In the EVMS data, two technical re-
peats were available. We averaged them because we wanted to have ex-
amples in the test set that are independent so that we can apply simple
statistical tests.

Removing the baseline We subtracted in a window the median of the 20%
smallest values. An example of baseline detection is shown in Figure 1.

Smoothing The spectra were slightly smoothed with an exponential kernel
in a window of size 9.

Re-scaling The spectra were divided by the median of the 5% top values.
Taking the square root The square root of the all values was taken.
Aligning the spectra We slightly shifted the spectra collections of the three

datasets so that the peaks of the average spectrum would be better aligned
(Figure 2). As a result, the mass-over-charge (m/z) values that identify
the features in the aligned data are imprecise. We took the NCI prostate
cancer m/z as reference.

Limiting more the mass range To eliminate border e↵ects, the spectra
border were cut.
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Fig. 1. Example of baseline detection (EVMS data).

(a) Before alignment (b) After alignment

Fig. 2. Central part of the spectra. (We show in red the average NCI ovarian spectra,
in blue the average NCI prostate spectra, and in green the average EVMS prostate
spectra.)

Soft thresholding the values After examining the distribution of values
in the data matrix, we subtracted a threshold and equaled to zero all
the resulting values that were negative. In this way, we kept only about
50% of non-zero value, which represents significant data compression (see
Figure 3).

Quantizing We quantized the values to 1000 levels.

The resulting data set including all training and test data merged from the
three sources has 901 patterns from 2 classes and 9500 features. We remove
one pattern to obtain the round number 900. At every step, we checked that
the change in performance of a linear SVM classifier trained and tested on
a random split of the data was not significant. On that basis, we have some
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Fig. 3. Distributions of the values in the Arcene data after preprocessing.

Fig. 4. Heat map of the training set of the Arcene data. We represent the data
matrix (patients in line and features in columns). The values are clipped at 500 to
increase the contrast. The values are then mapped to colors according to the color-
map on the right. The stripe beyond the 10000 feature index indicated the class
labels: +1=red, -1=green.
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confidence that our preprocessing did not alter significantly the information
content of the data. We further manipulated the data to add random ”probes”:

• We identified the region of the spectra with least information content using
an interval search for the region that gave worst prediction performance of
a linear SVM (indices 2250-4750). We replaced the features in that region
by ”random probes” obtained by randomly permuting the values in the
columns of the data matrix.

• We identified another region of low information content: 6500-7000. We
added 500 random probes that are permutations of those features.

After such manipulations, the data had 10000 features, including 7000 real
features and 3000 random probes. The reason for not adding more probes
is purely practical: non-sparse data cannot be compressed su�ciently to be
stored and transferred easily in the context of a benchmark.

Data statistics

Statistics about the data are presented in Tables 2 and 3.

Positive ex. Negative ex. Total Check sum

Training set 44 56 100 70726744

Validation set 44 56 100 71410108

Test set 310 390 700 493023349

All 398 502 900 635160201

Table 2. Arcene Datasets: Number of examples and class distribution.

Real variables Random probes Total

7000 3000 10000

Table 3. Arcene variable statistics.

All variables are integer quantized on 1000 levels. There are no missing
values. The data are not very sparse, but for data compression reasons, we
thresholded the values. Approximately 50% of the entries are non zero. The
data was saved as a non-sparse matrix.

Results of the run of the lambda method and linear SVM

Before the benchmark, we ran some simple methods to determine what an
appropriate number of examples should be. The ”lambda” method (provided
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with the sample code) had approximately a 30% test error rate ans a lin-
ear SVM trained on all features a 15% error rate. The rule of thumb num-
ber of test examples = 100/test errate = 100/.15=667 led us to keep 700
examples for testing. The best benchmark error rates are of the order 15%,
which confirms that our estimate was correct.





Gisette

The task of Gisette is to discriminate between to confusable handwritten
digits: the four and the nine. This is a two-class classification problem with
sparse continuous input variables.

Original owners

The data set was constructed from the MNIST data that is made available
by Yann LeCun of the NEC Research Institute at http://yann.lecun.com/
exdb/mnist/. The digits have been size-normalized and centered in a fixed-
size image of dimension 28 ⇥ 28. We show examples of digits in Figure 1.

(a) Four example (b) Nine Example

Fig. 1. Two examples of digits from the MNIST database. We used only examples
of fours and nines to prepare our dataset.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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Past usage

Many methods have been tried on the MNIST database. An abbreviated list
from http://yann.lecun.com/exdb/mnist/ is shown in Table 1.

Method Test Error Rate (%)

linear classifier (1-layer NN) 12.0

linear classifier (1-layer NN) [deskewing] 8.4

pairwise linear classifier 7.6

K-nearest-neighbors, Euclidean 5.0

K-nearest-neighbors, Euclidean, deskewed 2.4

40 PCA + quadratic classifier 3.3

1000 RBF + linear classifier 3.6

K-NN, Tangent Distance, 16⇥ 16 1.1

SVM deg 4 polynomial 1.1

Reduced Set SVM deg 5 polynomial 1.0

Virtual SVM deg 9 poly [distortions] 0.8

2-layer NN, 300 hidden units 4.7

2-layer NN, 300 HU, [distortions] 3.6

2-layer NN, 300 HU, [deskewing] 1.6

2-layer NN, 1000 hidden units 4.5

2-layer NN, 1000 HU, [distortions] 3.8

3-layer NN, 300+100 hidden units 3.05

3-layer NN, 300+100 HU [distortions] 2.5

3-layer NN, 500+150 hidden units 2.95

3-layer NN, 500+150 HU [distortions] 2.45

LeNet-1 [with 16⇥ 16 input] 1.7

LeNet-4 1.1

LeNet-4 with K-NN instead of last layer 1.1

LeNet-4 with local learning instead of ll 1.1

LeNet-5, [no distortions] 0.95

LeNet-5, [huge distortions] 0.85

LeNet-5, [distortions] 0.8

Boosted LeNet-4, [distortions] 0.7

K-NN, shape context matching 0.67

Table 1. Previous results on MNIST database.

Reference: Y. LeCun, L. Bottou, Y. Bengio, and P. Ha↵ner. ”Gradient-
based learning applied to document recognition.” Proceedings of the IEEE,

http://yann.lecun.com/exdb/mnist/
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86(11):2278-2324, November 1998. http://yann.lecun.com/exdb/publis/
index.html#lecun-98

Experimental design

To construct the dataset, we performed the following steps:

• We selected a random subset of the ”four” and ”nine” patterns from the
training and test sets of the MNIST.

• We normalized the database so that the pixel values would be in the range
[0, 1]. We thresholded values below 0.5 to increase data sparsity.

• We constructed a feature set, which consists of the original variables (nor-
malized pixels) plus a randomly selected subset of products of pairs of
variables. The pairs were sampled such that each pair member is normally
distributed in a region of the image slightly biased upwards. The rationale
beyond this choice is that pixels that are discriminative of the ”four/nine”
separation are more likely to fall in that region (See Figure 2).

Fig. 2. Example of a randomly selected subset of pixels in the region of interest.
Pairs of pixels used as features in dataset B use pixels drawn randomly according
to such a distribution.

• We eliminated all features that had only zero values.
• Of the remaining features, we selected all the original pixels and comple-

mented them with pairs to attain the number of 2500 features.
• Another 2500 pairs were used to construct ”probes”: the values of the fea-

tures were individually permuted across patterns (column randomization).
In this way we obtained probes that are similarly distributed to the other
features.

• We randomized the order of the features.

http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
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• We quantized the data to 1000 levels.
• The data set was split into training, validation, and test set, by putting

an equal amount of patterns of each class in every set.

In spite of the fact that the data are rather sparse (about 13% of the values
are non-zero), we saved the data as a non-sparse matrix because we found
that it can be compressed better in this way.

Data statistics

Statistics about the data are presented in Tables 2 and 3.

Positive ex. Negative ex. Total Check sum

Training set 3000 3000 6000 3197297133

Validation set 500 500 1000 529310977

Test set 3250 3250 6500 3404549076

All 6750 6750 13500 7131157186

Table 2. Gisette Datasets: Number of examples and class distribution.

Real variables Random probes Total

2500 2500 5000

Table 3. Gisette variable statistics.

All variables are integer quantized on 1000 levels. There are no missing
values. The data are rather sparse. Approximately 13% of the entries are non
zero. The data was saved as a non-sparse matrix, because it compresses better
in that format.

Results of the run of the lambda method and linear SVM

Before the benchmark, we ran some simple methods to determine what an
appropriate number of examples should be. The ”lambda” method (provided
with the sample code) had approximately a 30% test error rate and a lin-
ear SVM trained on all features a 3.5% error rate. The rule of thumb num-
ber of test examples = 100/test errate = 100/0.035=2857. However, other
explorations we made with on-linear SVMs and the examination of previous
performances obtained on the entire MNIST dataset indicate that the best
error rates could be below 2%. A test set of 6500 example should allow er-
ror rates as low as 1.5%. This motivated our test set size choice. The best
benchmark error rates confirmed that our estimate was just right.



Dexter

The task of Dexter is to filter texts about ”corporate acquisitions”. This is
a two-class classification problem with sparse continuous input variables.

Original owners

The original data set we used is a subset of the well-known Reuters text catego-
rization benchmark. The data was originally collected and labeled by Carnegie
Group, Inc. and Reuters, Ltd. in the course of developing the CONSTRUE
text categorization system. It is hosted by the UCI KDD repository: http:
//kdd.ics.uci.edu/databases/reuters21578/reuters21578.html. David
D. Lewis is hosting valuable resources about this data (see http://www.
daviddlewis.com/resources/testcollections/reuters21578/). We used
the ”corporate acquisition” text classification class pre-processed by Thorsten
Joachims <thorsten@joachims.org>. The data are one of the examples of the
software package SVM-Light., see http://svmlight.joachims.org/. The ex-
ample can be downloaded from ftp://ftp-ai.cs.uni-dortmund.de/pub/
Users/thorsten/svm_light/examples/example1.tar.gz.

Past usage

Hundreds of articles have appeared on this data. For a list see: http://kdd.
ics.uci.edu/databases/reuters21578/README.txt Also, 446 citations in-
cluding ”Reuters” were found on CiteSeer: http://citeseer.nj.nec.com.

Experimental design

The original data formatted by Thorsten Joachims is in the ag-of-words rep-
resentation. There are 9947 features (of which 2562 are always zeros for all
the examples) that represent frequencies of occurrence of word stems in text.
Some normalizations have been applied that are not detailed by Thorsten

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://svmlight.joachims.org/
ftp://ftp-ai.cs.uni-dortmund.de/pub/Users/thorsten/svm_light/examples/example1.tar.gz
ftp://ftp-ai.cs.uni-dortmund.de/pub/Users/thorsten/svm_light/examples/example1.tar.gz
http://kdd.ics.uci.edu/databases/reuters21578/README.txt
http://kdd.ics.uci.edu/databases/reuters21578/README.txt
http://citeseer.nj.nec.com
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Joachims in his documentation. The task is to learn which Reuters articles
are about corporate acquisitions.

The frequency of appearance of words in text is known to follow approx-
imately Zipf’s law (for details, see e.g. http://linkage.rockefeller.edu/
wli/zipf/). According to that law, the frequency of occurrence of words,
as a function of the rank k when the rank is determined by the frequency
of occurrence, is a power-law function Pk ⇠ 1/ka with the exponent a close
to unity. We estimated that a = 0.9 gives us a reasonable approximation of
the distribution of the data (see Figure 1). The following steps were taken to

(a) (b)

Fig. 1. Comparison of the real data and the random probe data distributions. We
plot as a function of the rank of the feature: (a) the number of non-zero values of
a given feature and (b) the sum of non-zero values of a given feature. The rank is
given by the number of non-zero features. Red: real data. Blue: simulated data.

prepare our version of the dataset:

• We concatenated the original training set (2000 examples, class balanced)
and test set (600 examples, class balanced).

• We added to the original 9947 features, 10053 features drawn at random
according to Zipf law, to obtain a total of 20000 features. Fraction of non-
zero values in the real data: 0.46%. Fraction of non-zero values in the
simulated data: 0.5%.

• The feature values were quantized to 1000 levels.
• The order of the features and the order of the patterns were randomized.
• The data was split into training, validation, and test sets, with balanced

numbers of examples of each class in each set.

Data statistics

Statistics about the data are presented in Tables 1 and 2.

http://linkage.rockefeller.edu/wli/zipf/
http://linkage.rockefeller.edu/wli/zipf/
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Positive ex. Negative ex. Total Check sum

Training set 150 150 300 2885106

Validation set 150 150 300 2887313

Test set 1000 1000 2000 18992356

All 1300 1300 2600 24764775

Table 1. Dexter Datasets: Number of examples and class distribution.

Real variables Random probes Total

9947 10053 20000

Table 2. Dexter variable statistics.

All variables are integer quantized on 1000 levels. There are no missing
values. The data are very sparse. Approximately 0.5% of the entries are non
zero. The data was saved as a sparse-integer matrix.

Results of the run of the lambda method and linear SVM

Before the benchmark, we ran some simple methods to determine what an
appropriate number of examples should be. The ”lambda” method (provided
with the sample code) had approximately a 20% test error rate and a lin-
ear SVM trained on all features a 5.8% error rate. The rule of thumb num-
ber of test examples = 100/test errate = 100/0.058= 1724 made it likely that
2000 test examples will be su�cient to obtains statistically significant results.
The benchmark test results confirmed that this estimate was correct.





Dorothea

The task of Dorothea is to predict which compounds bind to Thrombin.
This is a two-class classification problem with sparse binary input variables.

Original owners

The dataset with which Dorothea was created is one of the KDD (Knowl-
edge Discovery in Data Mining) Cup 2001. The original dataset and papers of
the winners of the competition are available at: http://www.cs.wisc.edu/
~dpage/kddcup2001/. DuPont Pharmaceuticals graciously provided this data
set for the KDD Cup 2001 competition. All publications referring to analy-
sis of this data set should acknowledge DuPont Pharmaceuticals Research
Laboratories and KDD Cup 2001.

Past usage

There were 114 participants to the competition that turned in results. The
winner of the competition was Jie Cheng (Canadian Imperial Bank of Com-
merce). His presentation is available at: http://www.cs.wisc.edu/~dpage/
kddcup2001/Hayashi.pdf. The data was also studied by Weston and collabo-
rators: J. Weston, F. Perez-Cruz, O. Bousquet, O. Chapelle, A. Elissee↵ and B.
Schoelkopf. ”Feature Selection and Transduction for Prediction of Molecular
Bioactivity for Drug Design”. Bioinformatics. A lot of information is available
from Jason Weston’s web page, including valuable statistics about the data:
http://www.kyb.tuebingen.mpg.de/bs/people/weston/kdd/kdd.html.

One binary attribute (active A or inactive I) must be predicted. Drugs
are typically small organic molecules that achieve their desired activity by
binding to a target site on a receptor. The first step in the discovery of a
new drug is usually to identify and isolate the receptor to which it should
bind, followed by testing many small molecules for their ability to bind to
the target site. This leaves researchers with the task of determining what

http://www.cs.wisc.edu/~dpage/kddcup2001/
http://www.cs.wisc.edu/~dpage/kddcup2001/
http://www.cs.wisc.edu/~dpage/kddcup2001/Hayashi.pdf
http://www.cs.wisc.edu/~dpage/kddcup2001/Hayashi.pdf
http://www.kyb.tuebingen.mpg.de/bs/people/weston/kdd/kdd.html
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separates the active (binding) compounds from the inactive (non-binding)
ones. Such a determination can then be used in the design of new compounds
that not only bind, but also have all the other properties required for a drug
(solubility, oral absorption, lack of side e↵ects, appropriate duration of action,
toxicity, etc.). The original training data set consisted of 1909 compounds
tested for their ability to bind to a target site on thrombin, a key receptor in
blood clotting. The chemical structures of these compounds are not necessary
for our analysis and were not included. Of the training compounds, 42 are
active (bind well) and the others are inactive. To simulate the real-world drug
design environment, the test set contained 634 additional compounds that
were in fact generated based on the assay results recorded for the training
set. Of the test compounds, 150 bind well and the others are inactive. The
compounds in the test set were made after chemists saw the activity results
for the training set, so the test set had a higher fraction of actives than did
the training set in the original data split. Each compound is described by a
single feature vector comprised of a class value (A for active, I for inactive)
and 139,351 binary features, which describe three-dimensional properties of
the molecule. The definitions of the individual bits are not included we only
know that they were generated in an internally consistent manner for all 1909
compounds. Biological activity in general, and receptor binding a�nity in
particular, correlate with various structural and physical properties of small
organic molecules. The task is to determine which of these properties are
critical in this case and to learn to accurately predict the class value. In
evaluating the accuracy, a di↵erential cost model was used, so that the sum of
the costs of the actives will be equal to the sum of the costs of the inactives.

To outperform these results, the paper of Weston et al., 2002, utilizes
the combination of an e�cient feature selection method and a classification
strategy that capitalizes on the di↵erences in the distribution of the training
and the test set. First they select a small number of relevant features (less
than 40) using an unbalanced correlation score:

fj =
X

yi=1

Xi,j � �
X

yi=�1

Xi,j

where the score for feature j is fj , the training data are a matrix X where the
columns are the features and the examples are the rows, and a larger score is
assigned to a higher rank. The coe�cient � is a positive constant. The authors
suggest to take � > 3 to select features that have non-zero entries only for
positive examples. This score encodes the prior information that the data are
unbalanced and that only positive correlations are likely to be useful. The
score has an information theoretic motivation, see the paper for details.

Experimental design

The original data set was modified for the purpose of the feature and variable
selection benchmark:
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• The original training and test sets were merged.
• The features were sorted according to the fj criterion with � = 3, com-

puted using the original test set (which is richer is positive examples).
• Only the top ranking 100000 original features were kept.
• The all zero patterns were removed, except one that was given label -1.
• For the second half lowest ranked features, the order of the patterns was

individually randomly permuted (in order to create ”random probes”).
• The order of the patterns and the order of the features were globally ran-

domly permuted to mix the original training and the test patterns and
remove the feature order.

• The data was split into training, validation, and test set while respecting
the same proportion of examples of the positive and negative class in each
set.

We are aware that out design biases the data in favor of the selection criterion
fj . It remains to be seen however whether other criteria can perform better,
even with that bias.

Data statistics

Statistics about the data are presented in Tables 1 and 2.

Positive ex. Negative ex. Total Check sum

Training set 78 722 800 713978

Validation set 34 316 350 330556

Test set 78 722 800 731829

All 190 1760 1950 1776363

Table 1. Dorothea Datasets: Number of examples and class distribution.

We mapped Active compounds to the target value +1 (positive examples)
and Inactive compounds to the target value -1 (negative examples). We pro-
vide in the last column the total number of non-zero values in the data sets.

Real variables Random probes Total

50000 50000 100000

Table 2. Dorothea variable statistics.

All variables are binary. There are no missing values. The data are very
sparse. Less than 1% of the entries are non zero (1776363/(1950*100000)).
The data was saved as a sparse-binary matrix.
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The following table summarizes the number of non-zero features in various
categories of examples in the entire data set.

Type Min Max Median

Positive examples 687 11475 846

Negative examples 653 3185 783

All 653 11475 787

Table 3. Dorothea Non-zero features.

Results of the run of the lambda method and linear SVM

Before the benchmark, we ran some simple methods to determine what an
appropriate number of examples should be. The ”lambda” method (provided
with the sample code) had a 21% test error rate. We chose this method be-
cause it outperformed methods used in the KDD benchmark on this dataset,
according to the paper of Weston et al and we could not outperform it with the
linear SVM. The rule of thumb number of test examples = 100/test errate =
100/0.21 = 476 made it likely that 800 test examples will be su�cient to
obtains statistically significant results. This was slightly underestimated: the
best benchmark results are around 11% error, thus 900-1000 test examples
would have been better.



Madelon

Summary. The task of Madelon is to classify random data. This is a two-class
classification problem with sparse binary input variables.

Original owners

The data are synthetic. It was generated by the Matlab program hypercube data.m,
which is appended.

Past usage

None, although the idea of the program is inspired by: Grafting: Fast, Incre-
mental Feature Selection by Gradient Descent in Function Space Simon Perkins,
Kevin Lacker, James Theiler; JMLR, 3(Mar):1333-1356, 2003. http://www.jmlr.
org/papers/volume3/perkins03a/perkins03a.pdf

Experimental design

To draw random data, the program takes the following steps:

• Each class is composed of a number of Gaussian clusters. N(0,1) is used to draw
for each cluster num useful feat examples of independent features.

• Some covariance is added by multiplying by a random matrix A, with uniformly
distributed random numbers between -1 and 1.

• The clusters are then placed at random on the vertices of a hypercube in a
num useful feat dimensional space. The hypercube vertices are placed at values
class sep.

• Redundant features are added. They are obtained by multiplying the useful
features by a random matrix B, with uniformly distributed random numbers
between -1 and 1.

• Some of the previously drawn features are repeated by drawing randomly from
useful and redundant features.

• Useless features (random probes) are added using N(0,1).

http://www.jmlr.org/papers/volume3/perkins03a/perkins03a.pdf
http://www.jmlr.org/papers/volume3/perkins03a/perkins03a.pdf


684

• All the features are then shifted and rescaled randomly to span 3 orders of
magnitude.

• Random noise is then added to the features according to N(0,0.1).
• A fraction flip y of labels are randomly exchanged.

To illustrate how the program works, we show a small example generating a XOR-
type problem. There are only 2 relevant features, 2 redundant features, and 2 re-
peated features. Another 14 random probes were added. A total of 100 examples
were drawn (25 per cluster). Ten percent of the labels were flipped.

In Figure 1, we show all the scatter plots of pairs of features, for the useful and
redundant features. For the two first features, we recognize a XOR-type pattern. For
the last feature, we see that after rotation, we get a feature that alone separates the
data pretty well. In Figure 2, we show the heat map of the data matrix. In Figure 3,

Fig. 1. Scatter plots of the XOR-type example data for pairs of useful and redundant
features. Histograms of the examples for the corresponding features are shown on
the diagonal.

we show the same matrix after random permutations of the rows and columns and
grouping of the examples per class. We notice that the data looks pretty much like
white noise to the eye.

We then drew the data used for the benchmark with the following choice of
parameters:

num class =2; % Number of c l a s s e s .
num pat per c lus te r =250; % Number of pat t e rns per c l u s t e r .
num use fu l f ea t =5; % Number of u s e f u l f e a t u r e s .
num c lu s t p e r c l a s s =16; % Number of c l u s t e r per c l a s s .
num redundant feat=5; % Number of redundant f e a t u r e s .
num repeat feat =10; % Number of repeated f e a t u r e s .
num use l e s s f e a t =480; % Number of u s e l e s s f e a t u r e s .
c l a s s s e p =2; % Clus te r s epa ra t i on s c a l i n g f a c t o r .
f l i p y = 0 . 0 1 ; % Fract ion of f l i p p e d l a b e l s .
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Fig. 2. Heat map of the XOR-type example data. We show all the coe�cients of
the data matrix. The intensity indicates the magnitude of the coe�cients. The color
indicates the sign. In lines, we show the 100 examples drawn (25 per cluster). I
columns, we show the 20 features. Only the first 6 ones are relevant: 2 useful, 2
redundant, 2 repeated. The data have been shifted and scaled by column to look
”more natural”. The last column shows the target values, with some ”flipped” labels.

Fig. 3. Heat map of the XOR-type example data. This is the same matrix as the
one shown in Figure 2. However, the examples have been randomly permuted and
grouped per class. The features have also been randomly permuted. Consequently,
after normalization, the data looks very uninformative to the eye.
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Figure 4 and Figure 5 show the appearance of the data.

Fig. 4. Scatter plots of the benchmark data for pairs of useful and redundant
features. We can see that the two classes overlap completely in all pairs of features.
This is normal because 5 dimensions are needed to separate the data.

Fig. 5. Heat map of the benchmark data for the relevant features (useful, redundant,
and repeated). We see the clustered structure of the data.

Data statistics

Statistics about the data are presented in Tables 1 and 2.
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Positive ex. Negative ex. Total Check sum

Training set 1000 1000 2000 488026911

Validation set 300 300 600 146425645

Test set 900 900 1800 439236341

All 2200 2200 4400 1073688897

Table 1. Madelon Datasets: Number of examples and class distribution.

Two additional test sets of the same size were drawn similarly and reserved to be
able to test the features selected by the benchmark participants, in case it becomes
important to make sure they trained only on those features.

Real variables Random probes Total

20 480 500

Table 2. Madelon variable statistics.

All variables are integer. There are no missing values. The data are not sparse.
The data was saved as a non-sparse matrix.

Results of the run of the lambda method and linear SVM

Before the benchmark, we ran some simple methods to determine what an appropri-
ate number of examples should be. The ”lambda”method (provided with the sample
code) performs rather poorly on this highly non-linear problem (41% error). We used
the K-nearest neighbor method, with K=3, with only the 5 useful features. With the
2000 training examples and 2000 test examples, we obtained 10% error. The rule of
thumb number of test examples = 100/test errate = 100/0.1 = 1000 makes it likely
that 1800 test examples will be su�cient to obtains statistically significant results.
The benchmark results confirmed that this was a good (conservative) estimate.





Matlab code of the lambda method

function idx=lambda_feat_select(X, Y, num)
%idx=lambda_feat_select(X, Y, num)
% Feature selection method that ranks according to the dot
% product with the target vector. Note that this criterion
% may not deliver good results if the features are not
% centered and normalized with respect to the example distribution.

% Isabelle Guyon -- August 2003 -- isabelle@clopinet.com

fval=Y’*X; [sval, si]=sort(-fval); idx=si(1:num);

function [W,b]=lambda_classifier(X, Y)
%[W,b]=lambda_classifier(X, Y)
% This simple but efficient two-class linear classifier
% of the type Y_hat=X*W’+b
% was invented by Golub et al.
% Inputs:
% X -- Data matrix of dim (num examples, num features)
% Y -- Output matrix of dim (num examples, 1)
% Returns:
% W -- Weight vector of dim (1, num features)
% b -- Bias value.

% Isabelle Guyon -- August 2003 -- isabelle@clopinet.com

Posidx=find(Y>0); Negidx=find(Y<0); Mu1=mean(X(Posidx,:));
Mu2=mean(X(Negidx,:)); Sigma1=std(X(Posidx,:),1);
Sigma2=std(X(Negidx,:),1); W=(Mu1-Mu2)./(Sigma1+Sigma2);
B=(Mu1+Mu2)/2; b=-W*B’;





Matlab code used to generate Madelon

function [XP,YP,ixrp,iyrp, xrp,yrp,all_C,A,B,rf,shift,scale ] =
hypercube_data(num_class, num_useful_feat, num_clust_per_class,
num_pat_per_cluster, num_redundant_feat, num_repeat_feat,
num_useless_feat, class_sep, flip_y, num_repeat_val, rnd, debug,
xrp, yrp,all_C,A,B,rf,shift,scale)
%[XP,YP,ixrp,iyrp, xrp,yrp,all_C,A,B,rf,shift,scale ] =
hypercube_data(num_class, num_useful_feat, num_clust_per_class,
num_pat_per_cluster, num_redundant_feat, num_repeat_feat,
num_useless_feat, class_sep, flip_y, num_repeat_val, rnd, debug,
xrp, yrp,all_C,A,B,rf,shift,scale)
% Draws a pattern recognition problem at random, for a
% num_class-class problem.
% Useful features:
% Each class is composed of a number of Gaussian clusters that
% are on the vertices of a hypercube in a subspace of dimension
% num_useful_feat. N(0,1) is used to draw the examples of
% independent features for each cluster.
% Some covariance is added by multiplying by a random matrix A,
% with uniformly distributed random numbers between -1 and 1.
% The clusters are then placed on the hypercube vertices.
% The hypercube vertices are placed at values +-class_sep.
% Redundant features:
% Useful features are multiplied by a random matrix B,
% with uniformly distributed random numbers between -1 and 1.
% Repeated features:
% Drawn randomly from useful and redundant features.
% Useless features:
% Additional features drawn at random not related to the concept.
% Features are then shifted and rescaled randomly to span 3 orders
% of magnitude. Random noise is then added to the features according
% to N(0,.1) to create several replicates. If flip_y is provided, a
% random fraction flip_y of labels are randomly exchanged.
% Aknowledgement: The idea is inspired by the work of Simon Perkins.
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% Inputs:
% num_class -- Number of classes
% num_useful_feat -- Number of features initially drawn to
% explain the concept
% num_clust_per_class -- Number of cluster per class
% num_pat_per_cluster -- Number of patterns per cluster (all
% balanced for now, can be generalized to
% imbalanced classes by taking a subset of
% samples of each class)
% num_redundant_feat -- Number of features linearly dependent
% upon the useful features
% num_repeat_feat -- Number of features repeating the
% previous ones (drawn at random)
% num_useless_feat -- Number of features dran at random
% regardless of class label information
% class_sep -- Factor multiplying the hypercube
% dimension
% flip_y -- Fraction of y labels to be randomly
% exchanged
% num_repeat_val -- number of times each entry is repeated
% (modulo some noise)
% rnd -- Flag to enable or disable random
% permutations
% debug -- 0/1 flag.
% Returns:
% XP -- Matrix (num_pat, num_feat,
% num_repeat_val) of randomly permuted
% features
% YP -- Vector of 0,1...num_class target class
% labels (in random order, to be used
% eventually for clustering)
% ixrp -- permutation matrix to be used to
% restore the original feature order
% iyrp -- permutation matrix to be used to restore
% the original pattern order (class labels
% of the same class are consecutive and
% there are the same number of example
% per class, before label corruption)
% Y=YP(iyrp); X=XP(iyrp,ixrp);
% all_C -- A matrix (2^num_useful_feat,
% num_useful_feat) of hypercube vertices
% where to place the cluter centers.
% A -- Matrix used to correlate the useful
% features.
% B -- Matrix used to create dependent
% (redundant) features.
% rf -- Indices of repeated features.
% shift -- Shift applied.
% scale -- Scale applied.
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% Isabelle Guyon -- July 2003 -- isabelle@clopinet.com

if nargin<8, class_sep=1; end
if nargin<9, flip_y=0; end
if nargin<10, num_repeat_val=1; end
if nargin<11, rnd=0; end % disable random permutation
if nargin<12, debug=0; end
if nargin<13, xrp=[]; end
if nargin<14, yrp=[]; end
if nargin<15, all_C=[]; end
if nargin<16, A={}; end
if nargin<17, B=[]; end
if nargin<18, rf=[]; end
if nargin<19, shift=[]; end
if nargin<20, scale=[]; end

% Count features and patterns
num_feat=num_useful_feat + num_repeat_feat + ...

num_redundant_feat + num_useless_feat;
num_pat_per_class=num_pat_per_cluster*num_clust_per_class;
num_pat=num_pat_per_class*num_class;
X=zeros(num_pat, num_feat);

% Attribute class labels
y=0:num_class-1;
Y=repmat(y, num_pat_per_class, 1);
Y=Y(:);

% Hypercube design
is_XOR=0;
if num_useful_feat==2 & num_class==2 & num_clust_per_class==2,

is_XOR=1;
all_C=[-1 -1; 1 1; 1 -1; -1 1]; % XOR

else
if isempty(all_C)

fprintf(’New C\n’);
all_C=2*ff2n(num_useful_feat)-1;
rndidx=randperm(size(all_C,1));
all_C=all_C(rndidx,:);

end
end

% Draw A
if isempty(A)

fprintf(’New A\n’);
for k=1:num_class*num_clust_per_class

A{k} = 2*rand(num_useful_feat, num_useful_feat)-1;
end
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end
% Loop over all clusters
for k=1:num_class*num_clust_per_class

% define the range of patterns of that cluster
kmin=(k-1)*num_pat_per_cluster+1;
kmax=kmin+num_pat_per_cluster-1;
kidx=kmin:kmax;
% Draw n features independently at random
X(kidx,1:num_useful_feat)= ...
random(’norm’, 0, 1, num_pat_per_cluster, num_useful_feat);
% Multiply by a random matrix to add feature co-variance
X(kidx,1:num_useful_feat)=X(kidx,1:num_useful_feat)*A{k};
% Shift the center off zero to separate the clusters
C=all_C(k,:)*class_sep;
X(kidx,1:num_useful_feat) = ...
X(kidx,1:num_useful_feat) + repmat(C, num_pat_per_cluster, 1);

end

% Create redundant features by multiplying by a random matrix
if isempty(B),

fprintf(’New B\n’);
B = 2*rand(num_useful_feat, num_redundant_feat)-1;

end
X(:,num_useful_feat+1:num_useful_feat+num_redundant_feat)= ...
X(:,1:num_useful_feat)*B;

% Repeat num_repeat_feat features, chosen at random among
% useful and redundant feat
nf=num_useful_feat+num_redundant_feat;
if isempty(rf)

fprintf(’New rf\n’);
rf=round(1+rand(num_repeat_feat,1)*(nf-1));

end
X(:,nf+1:nf+num_repeat_feat)=X(:,rf);

% Add useless features : these are uncorrelated with one another,
% but could be correlated :=)
X(:,num_feat-num_useless_feat+1:num_feat)= ...
random(’norm’, 0, 1,num_pat, num_useless_feat);

% Add random y label errors
num_err_pat = round(num_pat*flip_y);
rp=randperm(num_pat);
fi=rp(1:num_err_pat);
Y(fi)=mod(Y(fi)+round(rand(num_err_pat,1)*(num_class-1)),num_class);

% Randomly shift and scale
if isempty(shift)

fprintf(’New shift\n’);
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shift=rand(num_feat,1);
end
if isempty(scale)

fprintf(’New scale\n’);
scale=1+100*rand(num_feat,1);

end
X=X+repmat(shift’,num_pat,1); X=X.*repmat(scale’,num_pat,1);

% Randomly permute the features and patterns
if isempty(xrp)

fprintf(’New xrp, yrp\n’);
if rnd

xrp=randperm(num_feat);
yrp=randperm(num_pat);

else
xrp=1:num_feat;
yrp=1:num_pat;

end
end
XP0=X(yrp,xrp); YP=Y(yrp);

% Create inverse random indices
ixrp(xrp)=1:num_feat;
iyrp(yrp)=1:num_pat;

% Create several replicates by adding a little bit of random noise
XP=zeros(num_pat, num_feat, num_repeat_val);
for k=1:num_repeat_val

N=random(’norm’, 0, .1*sqrt(num_repeat_val), num_pat, num_feat);
XP(:,:,k)=XP0.*(1+N);

end
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Fact Sheet for Chapter 10

High Dimensional Classification with
Bayesian Neural Networks and
Dirichlet Di↵usion Trees

Radford M. Neal1 and Jianguo Zhang2

1 Dept. of Statistics and Dept. of Computer Science, University of Toronto
radford@stat.utoronto.ca, http://www.cs.utoronto.ca/⇠radford/

2 Dept. of Statistics, University of Toronto
jianguo@stat.utoronto.ca

Methods

For BayesNN-DFT-combo, dimensionality was reduced to no more than about a thou-
sand by Principal Component Analysis or by feature selection based on univariate
significance tests, sometimes after transforming the original features to increase cor-
relation with the class. Classification was then done by either a Bayesian neural
network or by a method based on Dirichlet di↵usion trees, using Automatic Rele-
vance Determination priors to adjust the influence of the features or principal com-
ponents (and sometimes to further prune the set of features to be used). Results
on the validation set were used to make some model choices (eg, whether to use
a neural network or Dirichlet di↵usion tree model, and whether to use a feature
subset or principal components). There was also a considerable element of human
judgement involved. For three of the datasets, the method used was the same as for
BayesNN-large, and for one dataset, it was also the same as BayesNN-small.
For BayesNN-small, a subset of no more than about a thousand features was cho-
sen based on univariate significance tests, sometimes after transforming the original
features to increase correlation with the class. Classification was then done by a
Bayesian neural network, using Automatic Relevance Determination priors to ad-
just the influence of the features (and sometimes to further prune the set of features
to be used). Results on the validation set were used to make some model choices (eg,
among di↵erent size feature sets). There was also a considerable element of human
judgement involved.
For BayesNN-large dimensionality was reduced to no more than about a thousand
by Principal Component Analysis or by feature selection based on univariate signifi-
cance tests, sometimes after transforming the original features to increase correlation
with the class. Classification was then done by a Bayesian neural network, using Au-
tomatic Relevance Determination priors to adjust the influence of the features or
principal components (and sometimes to further prune the set of features to be used).
Results on the validation set were used to make some model choices (eg, whether
to use a feature subset or principal components). There was also a considerable ele-
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ment of human judgement involved. For two of the datasets, the method used was
the same as for BayesNN-small.

Results

BayesNN-DFT-combo was the winning entry, among both the December 1st and De-
cember 8th entries. Its performance was the best or close to the best for all datasets.
BayesNN-small was the second-place entry, among both the December 1st and De-
cember 8th entries. Its overall balanced error rate was very close to that of the
third-place entry, BayesNN-large, but it used many fewer features (only 4.74%).
None of the other original entries using such a small number of features had perfor-
mance comparable to BayesNN-small.
BayesNN-large was the third-place entry, among both the December 1st and De-
cember 8th entries. It’s overall balanced error rate was very close to that of the
second-place entry, BayesNN-small.

Code

The Bayesian neural network and Dirichlet di↵usion tree programs are part of the
Software for Flexible Bayesian Modeling available from http://www.cs.utoronto.
ca/~radford/. Preprocessing scripts are not available, but those for the neural net-
work methods were similar (albeit more complex and ad hoc) to those for the ”New-
Bayes” methods, which are available from the same web site.

Keywords

Significance tests, Principal Components Analysis, Bayesian learning, Neural net-
works, Dirichlet di↵usion trees, Automatic Relevance Determination.

http://www.cs.utoronto.ca/~radford/
http://www.cs.utoronto.ca/~radford/
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Ensembles of Regularized Least Squares
Classifiers for High-Dimensional Problems

Kari Torkkola1 and Eugene Tuv2

1 Motorola, Intelligent Systems Lab, Tempe, AZ, USA,
Kari.Torkkola@motorola.com

2 Intel, Analysis and Control Technology, Chandler, AZ, USA,
eugene.tuv@intel.com

Method

Centering was used as preprocessing for all data, and standardization was used in
those cases where it improved the cross-validation (CV) results. For one data set,
we used mutual information to weigh the variables. For feature selection, we used
feature ranking using importances from a Random Forest. The number of features
was selected with 10-fold CV. We used ensembles of RLSCs (Regularized Least
Squares Classifier) with Gaussian kernels for classification. All hyperparameters are
adjusted after feature selection, using again 10-fold CV with the same training data.

Results

In the challenge, for the December 1st submissions, our best entry is the 5th, using
the criterion of the organizers. We also conducted comparison experiments with
single RLSC as classifier and found that ensemble techniques reduce the amount of
hyperparameters.

Code

Random Forest experiments were run using Intel’s IDEAL (not available). RLSC
was written using MATLAB (one-liner), and all cross-validation experimentation
was done using MATLAB (code not available).

Keywords

standardization, embedded feature selection, Random Forest, feature ranking, L2
norm regularization, RLSC, bagging, 10-fold cross-validation, ensemble method.
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Combining SVMs with Various Feature
Selection Strategies

Yi-Wei Chen and Chih-Jen Lin

Department of Computer Science, National Taiwan University, Taipei 106, Taiwan

Method

We linearly scale each feature to [0, 1] as preprocessing. No other preprocessing is
conducted. For feature selection, we use 1) no selection, 2) F-score, and 3) random
forest. After ranking the features using the whole training data set, we select the
number of features by either human eye or 5-fold cross-validation (CV). For classi-
fication, we use support vector machines (SVM). All hyperparameters are adjusted
after feature selection, using again 5-fold CV with the same training data. In ad-
dition to these filter-type approaches, we also consider radius-margin-bound based
SVM, which is a selection method optimizing directly the prediction performance.

Results

For the December 1st submissions, we rank 3rd as a group as our best entry is the
6st, using the criterion of the organizers. In addition, we rank 1st on Gisette. For
the December 8st submissions, we rank 2nd as a group and our best entry is the 4th.
Besides good performance, our strategies are simple and easy to implement.

Code

For SVM we use the package LIBSVM, which is available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm/. The random forest implementation is available through
the R software: http://www.r-project.org/. The radius-margin bound SVM is
available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/. Our scripts re-
producing the competition results are available at http://www.csie.ntu.edu.tw/
~b88052/NIPS03/.

Keywords

linear scaling, filter, F-score, Random Forest, radius-margin bound, feature ranking,
SVM, grid-search, K-fold cross-validation.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.r-project.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://www.csie.ntu.edu.tw/~b88052/NIPS03/
http://www.csie.ntu.edu.tw/~b88052/NIPS03/
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Feature Selection with Transductive Support
Vector Machines

Zhili Wu1 and Chunhung Li2

1 Department of Computer Science, Hong Kong Baptist University
vincent@comp.hkbu.edu.hk

2 Department of Computer Science, Hong Kong Baptist University
chli@comp.hkbu.edu.hk

Method

We mainly normalize features to be with zero mean and unit standard deviation,
and PCA is used to generate features for the Arcene dataset. For the Dorothea
and Dexter datasets we divide each data matrix entry by the square root of the
product of row sum and column sum. For feature selection, our first approach is to
use filtering scores like Fisher scores or odds-ratio, and through iterative backward
search to select a number of features which are ranked high by the scores. The quality
of the selected feature subset is indicated by the (five / ten / leave-one-out) cross-
validation (CV) accuracy of training data. The wrapper we used is a transductive
SVM trained upon all available data including the validation and testing datasets
as unlabeled data. We also implement the recursive-feature-elimination (RFE) in
conjugation with TSVMs. At each iteration, we use feature weights approximated
from the TSVM model at last iteration, to pruning some features with small scores.
The number of features is also specified by CV accuracy of TSVM models. Another
method we use is the multiplicative updates (MU) with TSVMs. The feature weights
for multiplicative updates are obtained by using the technique of RFE. And at
the beginning the filtering scores can also be used as feature weights for MU. All
hyperparameters are adjusted after feature pruning/deactivation at each iteration,
using again CV with the whole data/ only training dataset, guided by grid search
on the hyperprameter space. And the final classifiers are mainly TSVMs and SVMs.

Results

For the challenge due on the December 1st, we rank 4th as a group and our best entry
is the 7th using the criterion of the organizers. We further submit post-challenge
submissions of the Dexter data and demonstrate the TSVM-RFE for Dexter ranks
2nd.
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Other datasets

In addition to the challenge datasets, we used a toy dataset (30 training examples
in each of 50 trials, 500 fixed testing examples. 100 features with 94 random probes,
continuous, 2 classes).

Code

Our implementation was done in Matlab, together with function calls to SVMs
(SVMLight and LibSVM). The python tool for model selection provided by Libsvm
is also used. Our scripts are available at http://www.comp.hkbu.edu.hk/vincent/
nipsTransFS.htm.

Keywords

centering, scaling, standardization, PCA, filter, wrapper, embedded feature se-
lection, correlation coe�cient, SVM, feature ranking, ordered feature selection,
backward elimination, multiplicative updates, leave-one-out, K-fold cross-validation,
transductive SVM, grid-search, cross-validation, K-fold.
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Variable Selection using Correlation and SVC
Methods: Applications

Amir Reza Sa↵ari Azar Alamdari

Electrical Engineering Department, Sahand University of Technology, Mellat
Blvd., Tabriz, Iran amir@ymer.org

Method

• First of all, constant variables, which their values do not change over the training
set, are detected and removed from the dataset.

• The variables are normalized to have zero mean values and also to fit in the
[�1, 1] range, except the Dorothea (in Dorothea only zero values are converted
to -1).

• For each dataset, using a k-fold cross-validation (k depends on the dataset), a
MLP neural network with one hidden layer is trained to estimate the number of
neurons in the hidden layer.

• The correlation and SVC values are calculated and sorted for each variable in
the dataset.

• The first estimation for the number of good variables in each dataset is computed
using a simple cross-validation method for the MLP predictor in step 2. Since an
online validation test was provided through the challenge website, these numbers
were optimized in next steps to be consistent with the actual preprocessing and
also predictors.

• 25 MLP networks with di↵erent randomly chosen initial weights are trained on
the selected subset using SCG algorithm. The transfer function of each neuron is
selected to be tangent sigmoid for all predictors. The number of neurons in the
hidden layer is selected on the basis of the experimental results of the variable
selection step, but is tuned manually according to the online validation tests.

• After the training, those networks with acceptable training error performances
are selected as committee members (because in some cases the networks are
stuck to the local minima during the training sessions). This selection procedure
is carried out by filtering out low performance networks using a threshold on the
training error.

• For validation/test class prediction, the output values of the committee networks
are averaged to give the overall confidence about the class labels. The sign of
this confidence value gives the final predicted class label.

• The necessity of a linear PCA preprocessing method usage is also determined for
each dataset by applying the PCA to the selected subset of variables and then
comparing the validation classification results to the non-preprocessing system.
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• These procedures are applied for both correlation and SVC ranking methods in
each dataset, and then one with higher validation performance (lower classifica-
tion error) and also lower number of variables is selected as the basic algorithm
for the variable selection in that dataset.

• Using online validation utility, the number of variables and also the number of
neurons in the hidden layer of MLPs are tuned manually to give the best result.

Results

• In the challenge, for the December 1st submissions, the Collection2 entry ranked
5th as a group and the 14rd as the best entry, using the criterion of the organizers.

• The correlation and SVC variable ranking methods are very simple, easy to im-
plement, and computational time e�cient algorithms which have relatively good
performance compared to other complex methods. These methods are very useful
when the variable space dimension is large and other methods using exhaustive
search in subset of possible variables need much more computations.

• Another point is the benefits of using a simple ensemble averaging method over
single predictors, especially in situations where generalization is not satisfactory,
due to the complexity of the problem, or low number of training examples.

Code

• Our implementation was done in MATLAB 6.5 software http://www.mathworks.
com

• Some useful programs are available at http://www.ymer.org/research/variable.
htm

Keywords

Normalization, PCA, Filter Methods, Correlation, Single Variable Classifier (SVC),
Ranking, K-fold Cross-Validation, MLP Neural Networks, Ensemble Averaging, Vot-
ing System.

http://www.mathworks.com
http://www.mathworks.com
http://www.ymer.org/research/variable.htm
http://www.ymer.org/research/variable.htm
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Tree-Based Ensembles with Dynamic Soft
Feature Selection

Alexander Borisov, Victor Eruhimov and Eugene Tuv

Intel, {alexander.borisov,victor.eruhimov,eugene.tuv}@intel.com

Method

MART-WS: stage-wise stochastic boosting of shallow random trees built on a small
intelligently sampled subset of variables. The variable sampling distribution is mod-
ified at every iteration to up-weight more relevant features based on dynamically
learned importances. The same method was used for all datasets. No preprocess-
ing/normalization was done. All parameters (number of experts, regularization pa-
rameter, number of variables sampled, fixed tree depth, etc) were selected using test
portion of training data.

Results

7th group, 16th entry. We also compared MART-WS with Freidman’s MART (gra-
dient tree boosting) on 3 out of 5 challenge datasets (where it was feasible to run
standard MART), UCI datasets, artificial data. In all cases MART-WS showed a
substantial reduction in computational complexity without loss of accuracy (it often
outperformed MART). For the challenge data MART-WS was up to 100 times faster
than MART, and more accurate.

Other datasets

In addition to challenge data, we used UCI data, and simulated artificial data.

Code

All experiments were run using Intel’s IDEAL (not available).

Keywords

tree based ensemble, gradient tree boosting, random forest, variable importance,
embedded feature selection, dynamic feature selection.





Fact Sheet for Chapter 16

Sparse, Flexible and E�cient Modeling using
L1 Regularization

Saharon Rosset1 and Ji Zhu2

1 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
srosset@us.ibm.com

2 Department of Statistics, University of Michigan, Ann Arbor, MI 48109-1092
jizhu@umich.edu

Method

As preprocessing, for each input variable, we computed the fraction ⌧ of non-zero
entries and p-value of the univariate t-statistic, then we selected the variable only if
the corresponding ⌧ is big enough or p is small enough. For the Arcene dataset and
Dorothea dataset, we also computed the principal components (PCA) as features
after the pre-selection.

We then applied the regularized optimization scheme, i.e. equation (1) in the
chapter by Rosset and Zhu, via di↵erent (loss L, penalty J) pairs for di↵erent
datasets:

• Arcene: L is the Huberized hinge loss, and J is the L2-norm penalty, i.e the
linear support vector machine.

• Dexter: L is the Huberized hinge loss, and J is the L1-norm penalty.
• Dorothea: L is the Huberized hinge loss, and J is the L1-norm penalty.
• Gisette: L is the exponential loss, J is the L1-norm penalty, i.e. the AdaBoost.
• Madelon: L is the hinge loss, and J is the L2-norm penalty, i.e. the support

vector machine (using the radial basis kernel).

All hyper-parameters (including the number of features) were selected using 5-fold
cross-validation.

Results

In the challenge, for the December 1st submissions, we rank 6th as a group and
our best entry is the 16th, using the criterion of the organizers. For three of the
five datasets, we used the L1-norm regularization, which does a kind of automatic
continuous variable/feature selection. We also exploited various characteristics of the
(loss L, penalty J) pairs so that we could compute the whole solution path e�ciently.
As we mentioned in the chapter, for most of the datasets, we are simply using the
original input variables as the basis functions. Hence the classification boundaries
are simply linear hyper-planes, which are obviously not flexible enough. This may
help explain why our results are not so satisfactory. One of our future work will be
on how to generalize the L1 regularization to non-parametric settings.
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Code

Our implementation was done in R. Our scripts reproducing the results are available
at http://www.stat.lsa.umich.edu/~jizhu/Feature.

Keywords

PCA, cross-validation, automatic feature selection, L1-norm regularization, L2-norm
regularization, SVM.

http://www.stat.lsa.umich.edu/~jizhu/Feature
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Margin Based Feature Selection and Infogain
with Standard Classifiers

Ran Gilad-Bachrach and Amir Navot

The Hebrew University, Jerusalem, Israel
ranb@cs.huji.ac.il,anavot@cs.huji.ac.il

Method

We used a mixture of known methods and one new margin based selection method.
For each dataset we chose the combination of methods that we found to be best
for this dataset. We did not perform any exhaustive tuning for parameters. The
parameters were roughly tuned manually.

No preprocessing was done on some of the datasets; for others we used simple
normalization. For one dataset (Arcene) the data were converted using PCA. For
feature selection we used two variants of Infogain and a novel margin-based selection
algorithm. For classification we used SVM, transductive SVM, Näıve Bayes (with
Good-Turing zero correction) and Aggressive Perceptron.

Results

In the challenge, using the average balance error rate criterion (BER) , which was
the criterion during the challenge, we ranked 2ed as a team both for December 1st

and 8th, and our best entry was 6th for December 1st and 4th for December 8th.
Using the criterion of the organizers, for the December 1st submissions, we ranked
8th as a team and our best entry was 20th. For December 8th, we ranked 7th as a
team and our best entry was 15th.

Other datasets

Aside from the challenge data, we used publicly available AR face dataset (http:
//rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html) and Reuters-21578 (can be
found at http://www.daviddlewis.com/resources/) to test our new margin-based
feature selection algorithms

http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html
http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html
http://www.daviddlewis.com/resources/


714 Ran Gilad-Bachrach and Amir Navot

Code

Our implementation was done in Matlab. A Matlab code for a mature version of our
novel margin-based feature selection method is available at http://www.cs.huji.
ac.il/labs/learning/code/feature_selection/ For SVM, We used the SVM
tool-box by Gavin Cawley see http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/
for code and details. We made some minor changes in this code to make it
faster for sparse data. Other Matlab scripts that we have used can be found at
www.cs.huji.ac.il/labs/learning/code/fsc.

Keywords

PCA, filter, mutual information, margin, SVM, perceptron, optimal Bayes, Good-
Turing zero correction, transduction

http://www.cs.huji.ac.il/labs/learning/code/feature_selection/
http://www.cs.huji.ac.il/labs/learning/code/feature_selection/
http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/
www.cs.huji.ac.il/labs/learning/code/fsc
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Bayesian Support Vector Machines
for Feature Ranking and Selection

Wei Chu1, S. Sathiya Keerthi2, Chong Jin Ong3, and Zoubin Ghahramani1

1 Gatsby Computational Neuroscience Unit, University College London, London,
WC1N 3AR, UK. chuwei@gatsby.ucl.ac.uk, zoubin@gatsby.ucl.ac.uk

2 Yahoo! Research Lab., Pasadena, CA 91105, USA.
sathiya.keerthi@overture.com

3 Department of Mechanical Engineering, National University of Singapore,
Singapore, 119260. mpeongcj@nus.edu.sg

Method

The feature vectors were normalized to have zero mean and unit variance coordinate-
wise. An ARD (automatic relevance determination) Gaussian kernel was employed
in Bayesian support vector machines. The ARD parameters were optimized by max-
imizing the model evidence in the Bayesian framework, and then the features were
ranked in descending order using the optimal ARD values. For feature selection, sup-
port vector machines with L� 1 loss function and Gaussian kernel was used as the
learning algorithm. A forward selection was carried out to determine the minimal
subset of relevant features. The top-ranked features were added into the subset one
by one, and the validation error of support vector machines was calculated by 5-fold
cross validation. This procedure was repeated as long as adding the next top-ranked
feature into the subset did not increase the validation error significantly. This feature
subset was then used along with all the training data for modelling.

Results

In the challenge, for the December 1st submissions, we rank 8th as a group and
our best entry is the 22rd, using the criterion of the organizers. On the Madelon
dataset, our entry was assigned the highest score by the organizers, as we selected
a very compact subset of relevant features and yielded very competitive predictive
results. The AUC performance of our entries is also very close to the winning entries.
We carried out the forward feature selection using Fisher score in feature ranking
for comparison purpose. Our approach using ARD variables for feature ranking
achieved a more compact feature set than Fisher score ranking, along with better
generalization performance.
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Code

Our implementation of Bayesian support vector machines was done in ANSI C,
which can be downloaded at http://guppy.mpe.nus.edu.sg/~chuwei/btsvc.htm.

Keywords

Bayesian support vector machines, Gaussian processes, automatic relevance deter-
mination, relevance variable, feature ranking, forward feature selection, K-fold cross-
validation.

http://guppy.mpe.nus.edu.sg/~chuwei/btsvc.htm
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Nonlinear Feature Selection with the Potential
Support Vector Machine

Sepp Hochreiter and Klaus Obermayer

Technische Universität Berlin
Fakultät für Elektrotechnik und Informatik
Franklinstraße 28/29, 10587 Berlin, Germany
{hochreit,oby}@cs.tu-berlin.de

Method

We applied the following protocol.

1. Feature pre-selection (“present call”). We removed features which contained more
than 70 % constant values across the training set.

2. Kernel choice. We checked whether an RBF-kernel or a linear kernel should be
used. For the RBF-kernel we used k

�
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2 kxi
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k2 . For the
kernel check we use a ⌫-SVM with fixed ⌫ = 0.3 and 3 di↵erent � values for the
RBF-kernel: �1 = “average distance of data points”, �2 = 0.1 �1, �3 = 10.0 �1

on simple centered and rescaled data (standardization). If one of these � values
for the RBF-kernel outperformed the linear kernel on cross-validation runs (see
next step), we switched to the RBF-kernel. Only for Madelon we used an RBF-
kernel.

3. P-SVM feature selection combined with s-fold cross-validation hyperparameter
optimization. As classifier we used the ⌫-SVM with zero o↵set value and a linear
kernel, except for Madelon, where we used an RBF-kernel. In this step we
determine (1) a feature ranking, (2) the number of top ranked features to use
for classification, and (3) the ⌫.
We performed s-fold cross validation on the training set, where for each cross-
validation run we determined a feature ranking with the P-SVM. Using this
fold-specific feature ranking, we performed a ⌫-SVM classification, where we
used the highest ranked 10, 100, 500, and 1000 features and ⌫-values from
{0.1, 0.2, 0.3, 0.5}. The combination of feature number and ⌫ which performed
best in the s-fold cross validation procedure is considered as optimal.
In a second phase the number of features was refined with previously chosen
optimal ⌫ by testing 4 feature numbers which are equidistant between the two
feature numbers with lowest cross-validation error of the first phase. For s we
choose
– s = 10 for Arcene and Dexter,
– s = 8 for Dorothea, and
– s = 3 for Gisette and Madelon.
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Note, that the cross validation is a simplified version of the protocol described
in (Hochreiter and Obermayer, 2004).

4. Feature ranking and model selection. The features are finally ranked according
to the s-fold cross-validation runs. To rank the features we first sorted them
according to how often they were selected in a fold. Equally scoring features
are sorted according to their average ranking position in the folds. Still equally
scoring features are sorted according to their maximal relevance value. Note, that
this feature ranking reintroduces redundancies among features because di↵erent
P-SVM runs may select di↵erent features. The optimal number of features and
the optimal value of ⌫ was determined in Step 3. With these parameters a final
model is selected and applied to the validation and the test set.

Results

For the December 1st submissions, we rank 10th as a group and our best entry is
the 26th, using the criterion of the organizers. We further analyzed the results of
the challenge with other objectives and demonstrated that our method is one of the
best methods for compact feature subsets (<10% of the features and non-negative
score). We conducted other experiments on gene expression data showing that our
method yields features sets considerably more compact that others reported in the
literature, for similar to better performances (Hochreiter and Obermayer, 2004).

Other datasets

In addition to challenge data, we used the Weston benchmark dataset, another data
set from http://www.kyb.tuebingen.mpg.de/bs/people/weston/l0, and publicly
available gene expression data sets (see Hochreiter and Obermayer, 2004).

Code

We used for the ⌫-SVM and the C-SVM the “libsvm” software from http://www.
csie.ntu.edu.tw/~cjlin/libsvm/ and the SPIDER software from http://www.
kyb.tuebingen.mpg.de/bs/people/spider/ for the di↵erent feature selection tech-
niques (R2W2, Fisher, etc.). Our implementation of the P-SVM was done in C.

Keywords

P-SVM, Potential Support Vector machine, redundancy reduction, compact feature
sets, K-fold cross-validation, neural networks.

References

S. Hochreiter and K. Obermayer. Gene selection for microarray data. In B. Schölkopf,
K. Tsuda, and J.-P. Vert, editors, Kernel Methods in Computational Biology, pages
319–355. MIT Press, 2004.

http://www.kyb.tuebingen.mpg.de/bs/people/weston/l0
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://www.kyb.tuebingen.mpg.de/bs/people/spider/


Fact Sheet for Chapter 20

Combining a Filter Method with SVMs

Thomas Navin Lal, Olivier Chapelle, and Bernhard Schölkopf

Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
navin@tuebingen.mpg.de, olivier.chapelle@tuebingen.mpg.de,
bs@tuebingen.mpg.de

Method

In a first step all data was normalized for numerical reasons. Classification was
done using support vector machines. For each data set the kernel function as well as
SVM parameters were chosen using heuristics as well as cross-validation prior to fea-
ture selection. The obtained parameters were not changed afterwards. Features were
ranked with correlation coe�cients. The number of features used for classification
was obtained in a cross-validation scheme.

Results

For the December 1st data sets, our method was ranked 28th and our group was
14th. We were ranked 11th for the December 8 submission; as a group we were ranked
fifths. On the Dexter data set of December 8 we were ranked first.

Code

All calculations were done with the machine learning toolbox Spider, which is devel-
oped at the Max-Planck-Institute for Biological Cybernetics in Tübingen Germany.
It is written in Matlabr and C++ and is available at http://www.kyb.tuebingen.
mpg.de/bs/people/spider/.

Keywords

filter, correlation coe�cient, support vector machines, feature ranking, K-fold cross-
validation.

http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
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Feature Selection via Sensitivity Analysis with
Direct Kernel PLS

Mark J. Embrechts1, Robert A. Bress1, and Robert H. Kewley2

1 Department of Decision Sciences and Engineering Systems Rensselaer
Polytechnic Institute, Troy, NY, embrem@rpi.edu

2 Center for Army Analysis, Washington D.C.

Method

• Arcene: The preprocessing of the data was based on centering and retaining
the 2000 most correlated features. The modeling method is kernel partial least
squares (K-PLS) with 5 latent variables and s = 1600, based on cross-validation.
Feature selection was based on a repetitive sensitivity analysis, were during each
step 10% of the features were dropped (based on 100 bootstrap models with
leave 10% out) using K-PLS with s = 1600 for all steps. 514 or 5.14% of the
original features were retained based on cross-validation.

• Dexter: The Dexter data used the original inputs as features, and the inputs
that had more than 1% nonzero entries were retained. In a next phase the 1000
most correlated inputs were retained. Feature selection was based on a repetitive
sensitivity analysis, were during each step 10% of the features were dropped
(based on 100 bootstrap models with leave 10% out) using K-PLS with 5 latent
variables and s = 900. 205 or 1.57% of the original features were retained based
on multiple bootstrap cross-validation.

• Dorothea: The Dorothea data used the original inputs as features, and the
inputs that had more than 3% nonzero entries were retained. The data were cen-
tered and in a next phase feature selection was based on a repetitive sensitivity
analysis, were during each step 10% of the features were dropped (based on 100
bootstrap models with leave 10% out) using K-PLS with 5 latent variables and
s = 15. 540 or 0.54% of the original features were retained based on multiple
bootstrap cross-validation.

• Gisette: The data were centered and the 2000 most correlated inputs were re-
tained as features. Feature selection was based on a repetitive sensitivity analysis,
were during each step 10% of the features were dropped (based on 10 bootstrap
models with leave 10% out) using K-PLS with 5 latent variables and s = 20.
1300 or 26% of the original features were retained based on multiple bootstrap
cross-validation.

• Madelon: The data were centered and the 2000 most correlated inputs were
retained as features. Feature selection was based on a repetitive sensitivity anal-
ysis, were during each step 10% of the features were dropped (based on 100
bootstrap models with leave 10% out) using K-PLS with 7 latent variables and s
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= 100. 13 or 2.6% of the original features were retained based on bootstrap cross-
validation. A classification cut-o↵ was determined based on cross-validation.

Results

We entered results only for the December 1st submission.

• Arcene: We ranked 4th as a group, with an overall ranking of 12th.
• Dexter: We ranked 10th as a group, with an overall ranking of 27th.
• Dorothea: We ranked 13rd as a group, with an overall raking of 40th.
• Gisette:We ranked 9th as a group, with an overall raking of 25th .
• Madelon: We ranked 13th as a group, with an overall raking of 33th.

Code

The K-PLS methodology for feature selection was standard procedure with the An-
alyze/StripMiner code (www.drugmining.com).

Keywords

Centering, multiple-bootstrap cross-validation, K-PLS, sensitivity analysis, feature
ranking.

www.drugmining.com
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Information Gain, Correlation and Support
Vector Machines

Danny Roobaert, Grigoris Karakoulas, and Nitesh V. Chawla

Customer Behavior Analytics
Retail Risk Management
Canadian Imperial Bank of Commerce (CIBC)
Toronto, Canada
{danny.roobaert,grigoris.karakoulas,nitesh.chawla}@cibc.ca

Method

As part of preprocessing we rescaled all feature values between 0 and 1. Also, a fea-
ture that had a constant value over the dataset was removed. In all datasets, except
Madelon, we used information gain to quantify the relevance of each feature relative
to the target. Only features with a non-zero information gain value were selected to
be relevant. For the Madelon dataset, the correlation matrix was calculated of all
the features and the target. We selected those features that had an average absolute
column correlation exceeding about 10 times the global absolute correlation level.
For classification, a Support Vector Machine (SVM) was trained using an enhanced
SMO algorithm. For all datasets, except Madelon, a linear kernel was used. For the
dataset Madelon, an RBF kernel was used. For the imbalanced dataset Dorothea,
we used asymmetrical regularization by over-weighting the minority class with a fac-
tor equal to the number of data-elements in the majority class over the number of
data-elements in the minority class. For SVM hyperparameter optimization we used
pattern search as proposed by Momma and Bennett. For performance evaluation,
BER was estimated using random 10 fold cross validation. It should be pointed out
that this is the method that yielded the Dec. 8th results. This method was still under
development on Dec 1st. The method of the submission on Dec. 1st was abandoned
after that submission.

Results

For the December 8th submissions, we rank 6th as a group and our best entry on
Arcene and Madelon was not statistically di↵erent from the winner. In terms of
number of features used, we rank 2nd (within the top 20 submissions), using only
12.78% features on average. We rank 1st overall in identifying probes across all
datasets. We also conducted experiments with learning SVM with all the original
feature sets. Our results show that feature selection improves SVM performance on
all the challenge datasets.



724 Danny Roobaert, Grigoris Karakoulas, and Nitesh V. Chawla

Code

Our implementation was done in Matlab and we used the LIBSVM software package
for training SVMs http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Keywords

scaling, filter, information gain, correlation coe�cient, feature relevance, K-fold
cross-validation, Support Vector Machines, pattern search.

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Fact Sheet for Chapter 23

Mining for Complex Models Comprising
Feature Selection and Classification

Krzysztof Grabczewski and Norbert Jankowski

Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
kgrabcze@phys.uni.torun.pl, norbert@phys.uni.torun.pl

Method

Di↵erent classification tasks require di↵erent learning schemes to be satisfactorily
solved. Most real-world datasets can be modeled only by complex structures result-
ing from deep data exploration with a number of di↵erent classification and data
transformation methods. The search through the space of complex structures must
be augmented with reliable validation strategies. All these techniques were neces-
sary to build accurate models for the five high-dimensional datasets of the NIPS
2003 Feature Selection Challenge. Several feature selection algorithms (e.g. based
on variance, correlation coe�cient, decision trees) and several classification schemes
(e.g. nearest neighbors, Normalized RBF, Support Vector Machines) were used to
build complex models which transform the data and then classify. Committees of
feature selection models and ensemble classifiers were also very helpful to construct
models of high generalization abilities.

Results

The models were submitted to the second part of the contest (December 8th). We
assessed the second stage as more important. Thus, for real, we did not take part in
the stage of December 1st. In the final contest we reached the group rank of 3 and
best entry rank of 7. All our computations have been run on personal computers
including notebooks - thanks to the algorithms no supercomputers or clusters are
necessary to obtain interesting results in data mining.

Code

Our implementation was done in Borland C++ Builder 6. We hope that the system
with all described methods will be available in one year, please browse the http:
//www.phys.uni.torun.pl/kis/DataMining.html.

http://www.phys.uni.torun.pl/kis/DataMining.html
http://www.phys.uni.torun.pl/kis/DataMining.html
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Keywords

centering, scaling, standardization, PCA, filter, wrapper, embedded feature selec-
tion, feature selection wrapper, correlation coe�cient, mutual information, miscel-
laneous classifiers, including neural network, decision trees, machine learning, SVM,
kernel-method, SSV, kNN, NRBF, LVQ, feature ranking, forward selection, training
error, balanced error rate, K-fold cross-validation, regularization, ensemble method,
committee, grid-search, quadratic programming, complex models, meta-learning.
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Combining Information-Based Supervised and
Unsupervised Feature Selection

Sang-Kyun Lee, Seung-Joon Yi, and Byoung-Tak Zhang

Biointelligence Laboratory
School of Computer Science and Engineering
Seoul National University
Seoul 151-742, Korea
sklee@bi.snu.ac.kr,sjlee@bi.snu.ac.kr,btzhang@bi.snu.ac.kr

Method

We preprocess the data by converting continuous values to binary ones (discretiza-
tion) and filtering out uninformative features w.r.t. the threshold defined as the
average mutual information value of randomly permutated feature vectors (for each
dataset).

For feature selection, we adopted a filter method using information theoretic
ranking criteria but divided it into two steps: supervised and unsupervised. In the
supervised step we approximately find the Markov blanket of the class variable by
selecting relevant and independent features with a heuristic multi-objective opti-
mization process. To compensate the possible biases due to misleading casual rela-
tionships estimated in the supervised stage, we generate another feature set in un-
supervised way using a hierarchical agglomerative clustering. Finally we combined
the two subsets by the union-set operation.

We use näıve Bayes classifier and support vector machine (SVM) with linear
kernel for classification with 10-fold cross validation. To investigate the pure perfor-
mance gain acquired by the feature selection, we intentionally omit hyper-parameter
tuning and use the default parameters of WEKA v3.4 for the SVM (C=10).

Results

In the challenge, for the December 1st submissions, we rank 15th as a group and
our best entry is the 40th, using the criterion of the organizers. For compact feature
subsets (<5% of the total number of features) we rank 6th. Note that we did not
perform parameter tuning which can a↵ect classification performance greatly. The
performance using the combined feature subset is significantly better than using only
the supervised feature subset, in case of näıve Bayes classifier (p-value = 0.0214).
But in case of SVM there is little evidence of performance gain (p-value = 0.2398),
although we can observe improvements in a part of datasets. Considering the com-
putational e�ciency (feature selection for all dataset took less than two hours in the
2.4GHz Pentium 4 PC), simplicity (our method consist of linear procedures) and no
hyper-parameter tuning, our method showed noteworthy result.
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METHOD DESCRIPTION: 
 

Discretization by an EM algorithm using a 
univariate mixture model with two components

Raw data

Prefiltering using mutual information

Supervised step:
Feature selection using 

conditional mutual 
information

Unsupervised step:
Feature selection using 

mutual information

Naïve Bayes & SVM classifier

Preprocessed 
data

Combined subset 
MIXED

Feature subset 
S

Feature subset 
US+

 

Fig. 24.1. Method Description

Code

We implemented preprocessing and feature selection in C++. For classification we
used the open source data mining software WEKA ver. 3.4 (available at http:
//www.cs.waikato.ac.nz/ml/weka/html)

Keywords

discretization, expectation-maximization, filter, conditional mutual information, for-
ward selection, training error, näıve Bayes, SVM.

http://www.cs.waikato.ac.nz/ml/weka/html
http://www.cs.waikato.ac.nz/ml/weka/html
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An Enhanced Selective Näıve Bayes Method
with Optimal Discretization

Marc Boullé

France Telecom R&D, 2 avenue Pierre Marzin, 22307 Lannion Cedex, France
marc.boulle@francetelecom.com

Method

Our method is the Enhanced Selected Näıve Bayes (ESNB) method, an extension of
the wrapper approach applied to the Näıve Bayes predictor. It is also use as a filter
for multi-layer perceptron (ESNB+NN).
Preprocessing

• new Bayes optimal discretization method called MODL

Feature selection

• sequential forward selection using the Näıve Bayes classifier enclosed in a wrapper
approach

• the feature subset selection is the area under the lift curve (a variant of the ROC
curve)

• the selection process stops when this area does not increase anymore

Classification

• ESNB: Näıve Bayes classifier, with a correction of the predicted output labels
probabilities

• ESNB+NN: use of the feature set selected by the ESNB method; non-linear
multi-layer perceptron with a hidden layer containing 1, 5, 10, 25 or 50 neurons;
the hyper-parameter is chosen based on the validation set

Results

In the challenge, for the December 1st submissions, we rank 17th as a group and
our best entry is 52 th, using the criterion of the organizers. For the December 8th,
we got an average 18% BER (balanced error rate) with our ESNB submission and
12% with the ESNB+NN submission (the best challenge result is 6%). The ESNB
method is very fast, simple and does not require any parameter. It produces very
compact feature sets (on average 1% of the input features): no other challenge entry
had better results with fewer selected features. The MODL discretization method
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is very e�cient at detecting probes (only 1 probe among the total 321 selected fea-
tures in our December 8th submission). The ESNB methods compute the posterior
probability of the output labels. The MODL discretization method is a very e�cient
univariate selection method, with strong theoretical foundations: it produces Bayes
optimal discretizations. (http://www.nipsfsc.ecs.soton.ac.uk/datasets/).

Code

The implementation is not available. The MODL discretization method is patented
(contact the author for conditions of use).

Keywords

discretization, näıve bayes, wrapper, forward feature selection, lift curve area selec-
tion criterion, multi-layer perceptron.

http://www.nipsfsc.ecs.soton.ac.uk/datasets/
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An Input Variable Importance Definition based
on Empirical Data Probability Distribution

V. Lemaire and F. Clérot

Statistical Information Processing group
France Telecom Research and Development
FTR&D/SUSI/TSI
2 Avenue Pierre Marzin
22307 Lannion cedex FRANCE
vincent.lemaire@rd.francetelecom.com,fabrice.clerot@rd.francetelecom.com

Method

The method can be qualified as a variable ranking method ‘in the context of other
variables’. The method consists in replacing a variable value by another value ob-
tained by randomly choosing among other values of that variable in the training set.
The impact of this change on the output is measured and averaged over all training
examples and changes of that variable for a given training example. As a search
strategy, backward elimination is used.

The preprocessing used is only a zero-mean, unit-variance standardization. The
variables importance is measured using only the training set.

As we wish to investigated the performance of our variable importance mea-
surement, we chose to use a single learning machine for all datasets (no bootstrap
method): a MLP neural network with 1 hidden layer, tangent hyperbolic activation
function and stochastic back-propagation of the squared error as training algorithm.
We added a regularization term active only on directions in weight space, which are
orthogonal to the training update.

As usual, for each dataset we split the training set in two sets: a training (70%)
and a validation set (30%). The training set is used to train and the validation set
is used to stop training (early stopping method).
Results:
What we expect from a variable selection technique is to adapt itself in such situation
by removing as many features as possible. Therefore, what we can expect from the
combination of our simple model and our selection technique is to keep a BER
reasonably close to the average while using significantly less features on all datasets.

The results obtained show that restricting ourselves to a simple model with
no bootstrap techniques cannot allow us to reach very good BER, particularly on
databases as ARCENE where the number of examples is quite small. Several meth-
ods obtain a better error rate, up to twice better than our method, but at the expense
of a significantly higher number of selected variables. Although admittedly not the
most adapted for accuracy on some datasets, this simple model indeed reaches a
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‘reasonable’ BER. The proposed method, combined with backward elimination us-
ing only one neural network, selects very few variables compared with the other
methods. The proposed variable selection technique exhibits the expected behavior
by both keeping the BER to a reasonable level and dramatically reducing the num-
ber of features on all datasets. The number of selected probes decreases when the
number of the training examples increases.

Other challengers conducted comparison experiments with single neural networks
as classifiers and found that ensemble techniques significantly improve the resultsĚ

Code

Our implementation was done in C the code is only a development code not available.

Keywords

Standardization, wrapper, feature ranking, backward elimination, neural networks.
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Result Tables of the NIPS2003 Challenge

Isabelle Guyon1 and Steve Gunn2

1 ClopiNet, 955 Creston Rd., Berkeley, CA 94708, USA. isabelle@clopinet.com
2 School of Electronics and Computer Science, University of Southampton,

Southampton, United Kingdom. s.r.gunn@ecs.soton.ac.uk

In each of the following tables, we show the BER in %, the AUC times 100, the
percentage of features used (Ffeat), the percentage of probes in the features selected
(Fprob), and whether the BER di↵ers significantly from the best BER (Sig). The
significance of the di↵erence is obtained by the McNemar paired test, with risk 5%.





Arcene



738

Table 1. December 1st 2003 challenge results for ARCENE.

Method People Score BER AUC Ffeat Fprob Sig

BayesNN-DF Radford Neal an 98.18 13.30 (1) 93.48 (1) 100.00 30.00 0
BayesNN-DF Radford Neal + 98.18 13.30 (2) 93.48 (2) 100.00 30.00 0
inf5 Amir Reza Sa↵a 85.45 17.30 (17) 82.70 (38) 5.00 0.00 1
RF+RLSC Kari Torkkola + 81.82 15.14 (3) 84.86 (32) 100.00 30.00 0
KPLS Mark J. Embrech 81.82 16.71 (12) 83.67 (34) 5.14 8.56 1
BayesNN-sm Radford Neal 78.18 16.59 (10) 91.15 (8) 10.70 1.03 1
Bayesian S Chu Wei 78.18 15.17 (4) 91.52 (6) 100.00 30.00 0
final 2 Yi-Wei Chen 74.55 15.27 (5) 84.73 (33) 100.00 30.00 0
Bayesian + Chu Wei 70.91 15.55 (6) 91.25 (7) 100.00 30.00 0
multi23 Sang-Kyun Lee 67.27 18.41 (20) 81.59 (40) 1.85 0.00 1
svm linear Ran Bachrach 60.00 15.97 (7) 91.57 (4) 100.00 30.00 1
svm linear Ran Bachrach 60.00 15.97 (8) 91.57 (5) 100.00 30.00 1
inf2 Amir Reza Sa↵a 60.00 18.99 (21) 81.01 (42) 2.00 0.00 1
svm linear Ran Bachrach 60.00 15.97 (9) 91.58 (3) 100.00 30.00 1
cbamethod3 CBAGroup 41.82 16.62 (11) 90.87 (10) 100.00 30.00 1
Modified R Vivian Ng; Leo 34.55 19.64 (32) 86.72 (25) 3.60 8.06 1
GhostMiner GhostMiner Team 27.27 16.94 (13) 83.06 (35) 100.00 30.00 1
Collection Amir Reza Sa↵a 25.45 19.24 (26) 80.76 (43) 20.18 2.92 1
Collection Amir Reza Sa↵a 25.45 19.24 (27) 80.76 (44) 20.18 2.92 1
GhostMiner GhostMiner Team 23.64 17.07 (14) 82.93 (36) 100.00 30.00 1
mixed Sang-Kyun Lee 21.82 20.65 (41) 79.35 (46) 4.17 0.72 1
multi33 Sang-Kyun Lee 21.82 20.65 (42) 79.35 (47) 4.17 0.72 1
The Best o Amir Navot + Ra 18.18 17.20 (15) 90.13 (12) 100.00 30.00 1
greatest h Amir Navot + Ra 18.18 17.20 (16) 90.13 (13) 100.00 30.00 1
P-SVM (pre Sepp Hochreiter 16.36 20.55 (39) 87.75 (21) 7.00 61.00 1
BayesNN-E Radford Neal 16.36 18.11 (18) 90.21 (11) 96.56 29.70 1
final 1 Yi-Wei Chen 16.36 20.59 (40) 79.41 (45) 6.61 0.61 1
FS + SVM Thomas Navin La 12.73 18.20 (19) 81.80 (39) 47.00 13.55 1
Depends I Saharon Rosset 0.00 19.62 (28) 88.91 (15) 30.00 5.70 1
Depends II Saharon Rosset 0.00 19.62 (29) 88.91 (16) 30.00 5.70 1
Depends IV Saharon Rosset 0.00 19.62 (30) 88.91 (17) 30.00 5.70 1
Depends V Saharon Rosset 0.00 19.62 (31) 88.91 (18) 30.00 5.70 1
BayesNN-la Radford Neal -5.45 19.19 (25) 89.88 (14) 96.56 29.70 1
Depends II Saharon Rosset -9.09 19.78 (33) 88.79 (19) 30.00 5.70 1
IDEAL BorisovEruhimov -27.27 19.12 (22) 87.33 (22) 100.00 30.00 1
IDEAL Borisov Eruhimo -27.27 19.12 (23) 87.33 (23) 100.00 30.00 1
IDEAL BorisovEruhimov -27.27 19.12 (24) 87.33 (24) 100.00 30.00 1
transSVMba wu zhili -41.82 20.01 (34) 85.97 (27) 100.00 30.00 1
SVMbased3 wu zhili + C.H. -41.82 20.01 (35) 85.97 (28) 100.00 30.00 1
myBestVali wu zhili -41.82 20.01 (36) 85.97 (29) 100.00 30.00 1
TransSVMba wu zhili -41.82 20.01 (37) 85.97 (30) 100.00 30.00 1
svmBased4 wuzhili+C.H.Li -41.82 20.01 (38) 85.97 (31) 100.00 30.00 1
IDEAL BorisovEruhimov -52.73 20.82 (43) 88.45 (20) 100.00 30.00 1
CBAMethod1 cba -56.36 23.95 (45) 76.61 (49) 0.99 1.01 1
DIMACS Alexander Genki -63.64 27.46 (49) 78.16 (48) 0.86 29.07 1
P-SVM (pre Sepp Hochreiter -63.64 23.45 (44) 86.44 (26) 3.00 60.33 1
P-SVM (pre Sepp Hochreiter -67.27 25.77 (46) 82.73 (37) 1.35 62.22 1
SVCR-n-m Amir Reza Sa↵a -70.91 26.24 (48) 73.76 (52) 2.00 2.00 1
P-SVM / nu Sepp Hochreiter -70.91 26.05 (47) 81.37 (41) 1.70 64.12 1
Enhanced S M. B. -78.18 31.25 (52) 75.93 (50) 0.05 40.00 1
ROBELON Vincent Lemaire -85.45 29.65 (51) 70.35 (54) 1.50 60.00 1
multi32 Sang-Kyun Lee -85.45 27.50 (50) 72.50 (53) 4.17 0.72 1
P-SVM (few Sepp Hochreiter -85.45 31.27 (53) 75.85 (51) 0.20 60.00 1
multi31 Sang-Kyun Lee -92.73 32.05 (54) 67.95 (55) 4.17 0.72 1
CBAMethod1 cba -96.36 33.50 (55) 90.91 (9) 100.00 30.00 1
Final Fan Li -100.00 34.45 (56) 65.55 (56) 100.00 30.00 1
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Table 2. December 8th 2003 challenge results for ARCENE.

Method People Score BER AUC Ffeat Fprob Sig

BayesNN-sm Radford Neal 94.29 11.86 (7) 95.47 (1) 10.70 1.03 0
RF with fe Vivian Ng + Leo 88.57 12.63 (10) 93.79 (6) 3.80 0.79 1
CBAMethod3 CBAGroup 85.71 11.12 (4) 94.89 (2) 28.25 0.28 0
CBAMethod3 CBAGroup 85.71 11.12 (5) 94.89 (3) 28.25 0.28 0
RF+RLSC Kari Torkkola + 71.43 11.12 (3) 88.88 (18) 99.20 29.96 0
final2-2 Yi-Wei Chen 68.57 10.73 (1) 90.63 (12) 100.00 30.00 0
final 2-3 Yi-Wei Chen 68.57 10.73 (2) 90.63 (13) 100.00 30.00 0
FS+SVM Thomas Navin La 65.71 12.76 (12) 87.24 (22) 47.00 5.89 1
RF+RLSC Kari Torkkola + 65.71 11.60 (6) 88.40 (19) 99.20 29.96 0
BayesNN-DF Radford Neal + 48.57 12.25 (8) 93.01 (9) 100.00 30.00 0
Bayesian + Chu Wei 42.86 12.47 (9) 93.65 (7) 100.00 30.00 1
Nameless - Amir Navot + Ra 37.14 12.66 (11) 93.37 (8) 100.00 30.00 1
IDEAL BorisovEruhimov 28.57 13.04 (13) 94.81 (4) 100.00 30.00 1
IDEAL BorisovEruhimov 28.57 13.04 (14) 94.81 (5) 100.00 30.00 1
GhostMiner GhostMiner Team 14.29 13.53 (15) 86.47 (23) 100.00 30.00 1
GhostMiner GhostMiner Team 8.57 13.76 (16) 86.24 (24) 100.00 30.00 1
GhostMiner GhostMiner Team 2.86 14.05 (17) 85.95 (26) 100.00 30.00 1
A shot in Amir + Ran -2.86 15.82 (19) 84.18 (29) 44.00 12.48 1
BayesNN-la Radford Neal -8.57 15.88 (20) 92.34 (10) 96.56 29.70 1
test Yi-Wei Chen -14.29 15.27 (18) 84.73 (28) 100.00 30.00 1
P-SVM / nu Sepp Hochreiter -17.14 19.69 (27) 88.32 (20) 3.00 67.33 1
P-SVM / nu Sepp Hochreiter -17.14 19.69 (28) 88.32 (21) 3.00 67.33 1
P-SVM / nu Sepp Hochreiter -25.71 18.24 (24) 89.14 (14) 7.00 64.43 1
MyFinal Amir Reza Sa↵a -25.71 17.29 (21) 82.71 (31) 20.18 2.92 1
P-SVM / nu Sepp Hochreiter -25.71 18.24 (25) 89.14 (15) 7.00 64.43 1
P-SVM / nu Sepp Hochreiter -25.71 18.24 (26) 89.14 (16) 7.00 64.43 1
BayesNN-la Radford Neal -48.57 17.94 (22) 91.47 (11) 96.56 29.70 1
METHOD2 CBA -54.29 17.94 (23) 88.97 (17) 100.00 30.00 1
ESNB+NN Marc Boulle + V -60.00 22.92 (32) 83.78 (30) 0.14 7.14 1
originalFi wu zhili -65.71 20.01 (29) 85.97 (25) 100.00 30.00 1
ESNB Marc Boulle -71.43 23.14 (33) 84.83 (27) 0.14 7.14 1
METHOD1 CBA -80.00 21.48 (30) 78.52 (32) 100.00 30.00 1
METHOD3 CBA -80.00 21.48 (31) 78.52 (33) 100.00 30.00 1
Sparse Bay DIMACS -88.57 26.99 (34) 72.78 (34) 1.17 68.38 1
ntmce D. C. Martins J -94.29 30.41 (36) 69.59 (36) 0.07 28.57 1
ROBELON Vincent Lemaire -100.00 29.65 (35) 70.35 (35) 1.50 60.00 1
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Table 1. December 1st 2003 challenge results for DEXTER.

Method People Score BER AUC Ffeat Fprob Sig

BayesNN-DF Radford Neal an 96.36 3.90 (1) 99.01 (2) 1.52 12.87 0
BayesNN-la Radford Neal 96.36 3.90 (2) 99.01 (3) 1.52 12.87 0
BayesNN-DF Radford Neal + 96.36 3.90 (3) 99.01 (4) 1.52 12.87 0
BayesNN-sm Radford Neal 89.09 4.00 (4) 99.03 (1) 1.52 12.87 0
FS + SVM Thomas Navin La 85.45 4.20 (5) 95.80 (34) 18.57 49.78 0
transSVMba wu zhili 70.91 4.40 (6) 97.92 (15) 29.47 59.71 0
SVMbased3 wu zhili + C.H. 70.91 4.40 (7) 97.92 (16) 29.47 59.71 0
myBestVali wu zhili 70.91 4.40 (8) 97.92 (17) 29.47 59.71 0
TransSVMba wu zhili 70.91 4.40 (9) 97.92 (18) 29.47 59.71 0
svmBased4 wuzhili+C.H.Li 70.91 4.40 (10) 97.92 (19) 29.47 59.71 0
Collection Amir Reza Sa↵a 63.64 4.95 (11) 95.05 (35) 5.01 36.86 1
IDEAL BorisovEruhimov 58.18 5.50 (18) 98.35 (10) 1.00 25.50 1
IDEAL BorisovEruhimov 58.18 5.50 (19) 98.35 (11) 1.00 25.50 1
IDEAL Borisov Eruhimo 58.18 5.50 (20) 98.35 (12) 1.00 25.50 1
IDEAL BorisovEruhimov 58.18 5.50 (21) 98.35 (13) 1.00 25.50 1
RF+RLSC Kari Torkkola + 49.09 5.40 (16) 94.60 (38) 2.50 28.40 1
The Best o Amir Navot + Ra 40.00 5.25 (12) 98.80 (5) 7.00 43.71 1
greatest h Amir Navot + Ra 40.00 5.25 (13) 98.80 (6) 7.00 43.71 1
Collection Amir Reza Sa↵a 34.55 5.40 (15) 94.60 (37) 38.76 61.30 1
BayesNN-E Radford Neal 30.91 5.45 (17) 98.54 (9) 87.18 57.65 1
Final Fan Li 27.27 5.40 (14) 94.60 (36) 100.00 50.27 1
P-SVM (few Sepp Hochreiter 23.64 7.40 (36) 97.26 (24) 0.10 0.00 1
Depends II Saharon Rosset 12.73 6.90 (28) 96.28 (29) 0.56 44.64 1
Depends I Saharon Rosset 12.73 6.90 (29) 96.28 (30) 0.56 44.64 1
Depends II Saharon Rosset 12.73 6.90 (30) 96.28 (31) 0.56 44.64 1
Depends IV Saharon Rosset 12.73 6.90 (31) 96.28 (32) 0.56 44.64 1
Depends V Saharon Rosset 12.73 6.90 (32) 96.28 (33) 0.56 44.64 1
final 2 Yi-Wei Chen 0.00 6.50 (24) 93.50 (39) 1.04 10.53 1
final 1 Yi-Wei Chen 0.00 6.50 (26) 93.50 (41) 1.04 10.53 1
KPLS Mark J. Embrech -5.45 6.80 (27) 93.47 (42) 1.57 28.12 1
SVCR-n-m Amir Reza Sa↵a -12.73 6.50 (25) 93.50 (40) 2.00 21.50 1
Modified R Vivian Ng; Leo -20.00 7.35 (35) 97.97 (14) 1.70 20.29 1
P-SVM (pre Sepp Hochreiter -20.00 7.10 (33) 97.82 (20) 4.00 51.63 1
Bayesian S Chu Wei -21.82 6.35 (22) 98.57 (7) 36.04 60.15 1
Bayesian + Chu Wei -21.82 6.35 (23) 98.57 (8) 36.04 60.15 1
inf5 Amir Reza Sa↵a -23.64 7.10 (34) 92.90 (43) 5.00 42.10 1
DIMACS Alexander Genki -30.91 8.00 (37) 91.53 (44) 0.64 9.45 1
cbamethod3 CBAGroup -34.55 8.70 (38) 91.04 (46) 0.38 0.00 1
CBAMethod1 cba -34.55 8.70 (39) 91.04 (47) 0.38 0.00 1
CBAMethod1 cba -34.55 8.70 (43) 91.04 (48) 0.38 0.00 1
Enhanced S M. B. -45.45 9.80 (48) 96.42 (25) 0.17 0.00 1
ROBELON Vincent Lemaire -49.09 9.70 (47) 90.30 (49) 0.61 29.51 1
inf2 Amir Reza Sa↵a -52.73 8.85 (44) 91.15 (45) 2.00 39.50 1
P-SVM (pre Sepp Hochreiter -60.00 8.70 (40) 96.39 (26) 2.50 46.60 1
P-SVM (pre Sepp Hochreiter -60.00 8.70 (41) 96.39 (27) 2.50 46.60 1
P-SVM / nu Sepp Hochreiter -60.00 8.70 (42) 96.39 (28) 2.50 46.60 1
svm linear Ran Bachrach -67.27 9.55 (45) 97.37 (23) 100.00 50.27 1
svm linear Ran Bachrach -70.91 9.65 (46) 97.39 (22) 100.00 50.27 1
GhostMiner GhostMiner Team -74.55 10.95 (49) 89.05 (50) 100.00 50.27 1
GhostMiner GhostMiner Team -78.18 11.20 (50) 88.80 (51) 100.00 50.27 1
multi32 Sang-Kyun Lee -81.82 14.60 (52) 85.40 (52) 5.09 37.46 1
mixed Sang-Kyun Lee -87.27 14.85 (53) 85.15 (53) 5.09 37.46 1
multi31 Sang-Kyun Lee -87.27 14.85 (54) 85.15 (54) 5.09 37.46 1
svm linear Ran Bachrach -92.73 13.65 (51) 97.49 (21) 100.00 50.27 1
multi33 Sang-Kyun Lee -96.36 15.40 (55) 84.60 (55) 5.09 37.46 1
multi23 Sang-Kyun Lee -100.00 17.60 (56) 82.40 (56) 4.14 32.29 1
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Table 2. December 8th 2003 challenge results for DEXTER.

Method People Score BER AUC Ffeat Fprob Sig

FS+SVM Thomas Navin La 100.00 3.30 (1) 96.70 (23) 18.57 42.14 0
BayesNN-DF Radford Neal + 85.71 4.05 (5) 99.09 (1) 1.52 12.87 1
BayesNN-la Radford Neal 85.71 4.05 (6) 99.09 (2) 1.52 12.87 1
BayesNN-sm Radford Neal 85.71 4.05 (7) 99.09 (3) 1.52 12.87 1
BayesNN-la Radford Neal 85.71 4.05 (8) 99.09 (4) 1.52 12.87 1
GhostMiner GhostMiner Team 71.43 3.50 (2) 96.50 (24) 100.00 50.27 0
GhostMiner GhostMiner Team 65.71 3.60 (3) 96.40 (25) 100.00 50.27 1
GhostMiner GhostMiner Team 54.29 3.80 (4) 96.20 (26) 100.00 50.27 1
Sparse Bay DIMACS 54.29 5.05 (14) 94.37 (29) 0.93 6.49 1
RF+RLSC Kari Torkkola + 48.57 4.65 (10) 95.35 (27) 2.50 28.40 1
RF+RLSC Kari Torkkola + 31.43 4.85 (11) 95.15 (28) 2.50 28.40 1
originalFi wu zhili 31.43 4.40 (9) 97.92 (15) 29.47 59.71 1
final2-2 Yi-Wei Chen 22.86 5.35 (15) 96.86 (21) 1.21 2.90 1
final 2-3 Yi-Wei Chen 22.86 5.35 (16) 96.86 (22) 1.21 2.90 1
A shot in Amir + Ran 11.43 5.00 (12) 98.65 (7) 7.00 37.14 1
Nameless - Amir Navot + Ra 11.43 5.00 (13) 98.65 (8) 7.00 37.14 1
CBAMethod3 CBAGroup 0.00 6.00 (20) 98.47 (11) 0.60 0.00 1
CBAMethod3 CBAGroup 0.00 6.00 (21) 98.47 (12) 0.60 0.00 1
IDEAL BorisovEruhimov -5.71 6.25 (23) 98.70 (5) 0.50 6.00 1
IDEAL BorisovEruhimov -5.71 6.25 (24) 98.70 (6) 0.50 6.00 1
ESNB Marc Boulle -8.57 6.50 (28) 97.90 (19) 0.33 0.00 1
P-SVM / nu Sepp Hochreiter -11.43 5.40 (17) 98.47 (13) 4.50 53.56 1
P-SVM / nu Sepp Hochreiter -11.43 5.40 (18) 98.47 (14) 4.50 53.56 1
RF with fe Vivian Ng + Leo -25.71 6.25 (22) 98.49 (10) 1.00 5.00 1
ESNB+NN Marc Boulle + V -25.71 7.20 (30) 97.49 (20) 0.33 0.00 1
Bayesian + Chu Wei -48.57 5.45 (19) 98.54 (9) 36.04 60.15 1
test Yi-Wei Chen -48.57 6.50 (29) 93.50 (30) 1.04 10.53 1
P-SVM / nu Sepp Hochreiter -54.29 6.40 (25) 97.91 (16) 1.50 36.33 1
P-SVM / nu Sepp Hochreiter -54.29 6.40 (26) 97.91 (17) 1.50 36.33 1
P-SVM / nu Sepp Hochreiter -54.29 6.40 (27) 97.91 (18) 1.50 36.33 1
METHOD2 CBA -77.14 7.75 (31) 92.25 (31) 100.00 50.27 1
METHOD1 CBA -77.14 7.75 (32) 92.25 (32) 100.00 50.27 1
METHOD3 CBA -77.14 7.75 (33) 92.25 (33) 100.00 50.27 1
ROBELON Vincent Lemaire -88.57 9.70 (34) 90.30 (34) 0.61 29.51 1
MyFinal Amir Reza Sa↵a -94.29 12.60 (35) 87.40 (35) 5.33 38.65 1
ntmce D. C. Martins J -100.00 15.80 (36) 84.20 (36) 0.04 0.00 1
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Table 1. December 1st 2003 challenge results for DOROTHEA.

Method People Score BER AUC Ffeat Fprob Sig

BayesNN-DF Radford Neal an 98.18 8.54 (1) 95.92 (2) 100.00 50.00 0
BayesNN-la Radford Neal 98.18 8.54 (2) 95.92 (3) 100.00 50.00 0
BayesNN-E Radford Neal 92.73 8.61 (3) 95.98 (1) 100.00 50.00 0
BayesNN-DF Radford Neal + 89.09 8.68 (4) 95.86 (4) 100.00 50.00 0
greatest h Amir Navot + Ra 85.45 10.86 (6) 92.19 (13) 0.30 0.00 1
BayesNN-sm Radford Neal 81.82 10.63 (5) 93.50 (5) 0.50 0.40 1
SVMbased3 wu zhili + C.H. 78.18 11.52 (11) 88.48 (20) 0.50 18.88 1
svmBased4 wuzhili+C.H.Li 74.55 12.45 (12) 87.55 (24) 0.50 18.88 1
IDEAL BorisovEruhimov 65.45 10.98 (7) 93.26 (9) 100.00 50.00 1
IDEAL BorisovEruhimov 65.45 10.98 (8) 93.26 (10) 100.00 50.00 1
IDEAL Borisov Eruhimo 65.45 10.98 (9) 93.26 (11) 100.00 50.00 1
IDEAL BorisovEruhimov 65.45 10.98 (10) 93.26 (12) 100.00 50.00 1
Modified R Vivian Ng; Leo 56.36 13.72 (16) 91.67 (16) 0.40 20.75 1
transSVMba wu zhili 49.09 13.46 (13) 86.54 (25) 0.50 18.88 1
myBestVali wu zhili 49.09 13.46 (14) 86.54 (26) 0.50 18.88 1
TransSVMba wu zhili 49.09 13.46 (15) 86.54 (27) 0.50 18.88 1
P-SVM (pre Sepp Hochreiter 34.55 17.06 (36) 90.56 (17) 0.14 60.00 1
Collection Amir Reza Sa↵a 32.73 13.93 (17) 86.07 (28) 1.25 13.22 1
Collection Amir Reza Sa↵a 32.73 13.93 (18) 86.07 (29) 1.25 13.22 1
P-SVM (pre Sepp Hochreiter 29.09 16.21 (27) 88.00 (22) 0.24 29.58 1
P-SVM (pre Sepp Hochreiter 29.09 16.21 (28) 88.00 (23) 0.24 29.58 1
RF+RLSC Kari Torkkola + 23.64 16.23 (29) 83.77 (37) 0.28 29.23 1
cbamethod3 CBAGroup 16.36 16.61 (31) 75.57 (47) 0.30 0.00 1
CBAMethod1 cba 16.36 16.61 (32) 75.57 (48) 0.30 0.00 1
CBAMethod1 cba 16.36 16.61 (33) 75.57 (49) 0.30 0.00 1
mixed Sang-Kyun Lee 10.91 15.26 (19) 84.74 (30) 0.77 27.68 1
multi31 Sang-Kyun Lee 10.91 15.26 (20) 84.74 (31) 0.77 27.68 1
The Best o Amir Navot + Ra 9.09 16.33 (30) 88.20 (21) 0.30 8.67 1
final 2 Yi-Wei Chen -3.64 16.82 (34) 83.18 (38) 0.45 2.70 1
final 1 Yi-Wei Chen -3.64 16.82 (35) 83.18 (39) 0.45 2.70 1
Depends II Saharon Rosset -14.55 15.69 (23) 84.51 (32) 5.21 76.99 1
Depends I Saharon Rosset -14.55 15.69 (24) 84.51 (33) 5.21 76.99 1
Depends IV Saharon Rosset -14.55 15.69 (25) 84.51 (34) 5.21 76.99 1
Depends V Saharon Rosset -14.55 15.69 (26) 84.51 (35) 5.21 76.99 1
Bayesian S Chu Wei -25.45 15.47 (21) 92.06 (14) 100.00 50.00 1
Bayesian + Chu Wei -25.45 15.47 (22) 92.06 (15) 100.00 50.00 1
KPLS Mark J. Embrech -34.55 19.18 (40) 82.10 (40) 0.54 92.04 1
P-SVM / nu Sepp Hochreiter -38.18 18.10 (37) 90.38 (18) 1.50 91.07 1
FS + SVM Thomas Navin La -41.82 19.68 (41) 80.32 (42) 1.00 8.90 1
Depends II Saharon Rosset -41.82 18.31 (38) 84.16 (36) 5.21 76.99 1
Final Fan Li -45.45 18.47 (39) 81.53 (41) 100.00 50.00 1
Enhanced S M. B. -45.45 21.03 (42) 89.43 (19) 0.05 1.89 1
P-SVM (few Sepp Hochreiter -49.09 22.61 (45) 78.29 (44) 0.01 0.00 1
ROBELON Vincent Lemaire -56.36 22.24 (44) 77.76 (45) 0.07 12.31 1
multi32 Sang-Kyun Lee -56.36 21.50 (43) 78.50 (43) 0.77 27.68 1
multi23 Sang-Kyun Lee -63.64 24.69 (47) 75.31 (50) 0.24 0.00 1
inf2 Amir Reza Sa↵a -67.27 25.03 (48) 74.97 (51) 2.00 3.55 1
GhostMiner GhostMiner Team -70.91 24.08 (46) 75.92 (46) 100.00 50.00 1
SVCR-n-m Amir Reza Sa↵a -74.55 29.11 (49) 70.89 (52) 2.00 1.05 1
inf5 Amir Reza Sa↵a -78.18 30.53 (51) 69.47 (54) 5.00 10.44 1
GhostMiner GhostMiner Team -81.82 30.32 (50) 69.68 (53) 100.00 50.00 1
multi33 Sang-Kyun Lee -85.45 34.10 (52) 65.90 (55) 0.77 27.68 1
svm linear Ran Bachrach -92.73 39.38 (53) 93.42 (8) 100.00 50.00 1
svm linear Ran Bachrach -92.73 39.38 (54) 93.43 (6) 100.00 50.00 1
svm linear Ran Bachrach -92.73 39.38 (55) 93.42 (7) 100.00 50.00 1
DIMACS Alexander Genki -100.00 45.46 (56) 57.38 (56) 6.06 49.45 1
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Table 2. December 8th 2003 challenge results for DOROTHEA.

Method People Score BER AUC Ffeat Fprob Sig

BayesNN-DF Radford Neal + 97.14 8.61 (1) 95.92 (2) 100.00 50.00 0
BayesNN-la Radford Neal 97.14 8.61 (2) 95.92 (3) 100.00 50.00 0
IDEAL BorisovEruhimov 85.71 8.92 (3) 94.80 (4) 100.00 50.00 0
IDEAL BorisovEruhimov 85.71 8.92 (4) 94.80 (5) 100.00 50.00 0
BayesNN-la Radford Neal 77.14 9.11 (5) 95.98 (1) 100.00 50.00 0
A shot in Amir + Ran 68.57 11.40 (7) 93.10 (7) 0.40 0.00 1
Nameless - Amir Navot + Ra 68.57 11.40 (8) 93.10 (8) 0.40 0.00 1
BayesNN-sm Radford Neal 60.00 11.07 (6) 93.42 (6) 0.50 0.40 1
ESNB+NN Marc Boulle + V 54.29 14.59 (17) 91.50 (13) 0.07 0.00 1
RF with fe Vivian Ng + Leo 42.86 14.24 (16) 91.40 (14) 0.32 4.38 1
originalFi wu zhili 42.86 13.46 (14) 86.54 (22) 0.50 18.88 1
P-SVM / nu Sepp Hochreiter 31.43 12.54 (9) 90.84 (15) 0.80 62.50 1
P-SVM / nu Sepp Hochreiter 31.43 12.54 (10) 90.84 (16) 0.80 62.50 1
P-SVM / nu Sepp Hochreiter 31.43 12.54 (11) 90.84 (17) 0.80 62.50 1
GhostMiner GhostMiner Team 17.14 13.11 (12) 86.89 (20) 100.00 50.00 1
GhostMiner GhostMiner Team 17.14 13.11 (13) 86.89 (21) 100.00 50.00 1
final 2-3 Yi-Wei Chen 8.57 15.61 (20) 77.56 (34) 0.20 0.00 1
P-SVM / nu Sepp Hochreiter -5.71 16.45 (25) 89.21 (18) 0.27 74.07 1
P-SVM / nu Sepp Hochreiter -5.71 16.45 (26) 89.21 (19) 0.27 74.07 1
GhostMiner GhostMiner Team -8.57 14.08 (15) 85.92 (23) 100.00 50.00 1
RF+RLSC Kari Torkkola + -14.29 15.66 (21) 84.34 (24) 0.28 29.23 1
RF+RLSC Kari Torkkola + -20.00 16.28 (23) 83.72 (26) 0.28 29.23 1
test Yi-Wei Chen -25.71 16.82 (28) 83.18 (28) 0.45 2.70 1
CBAMethod3 CBAGroup -28.57 15.26 (18) 92.34 (10) 0.57 0.00 1
CBAMethod3 CBAGroup -28.57 15.26 (19) 92.34 (11) 0.57 0.00 1
MyFinal Amir Reza Sa↵a -42.86 15.75 (22) 84.25 (25) 1.25 13.22 1
FS+SVM Thomas Navin La -42.86 16.34 (24) 83.66 (27) 1.00 3.20 1
Bayesian + Chu Wei -54.29 16.68 (27) 93.03 (9) 100.00 50.00 1
final2-2 Yi-Wei Chen -60.00 19.47 (29) 70.10 (35) 0.39 0.51 1
ntmce D. C. Martins J -65.71 22.17 (33) 77.83 (32) 0.01 0.00 1
ROBELON Vincent Lemaire -71.43 22.24 (34) 77.76 (33) 0.07 12.31 1
ESNB Marc Boulle -77.14 23.75 (35) 92.32 (12) 0.07 0.00 1
METHOD2 CBA -88.57 21.97 (30) 78.03 (29) 100.00 50.00 1
METHOD1 CBA -88.57 21.97 (31) 78.03 (30) 100.00 50.00 1
METHOD3 CBA -88.57 21.97 (32) 78.03 (31) 100.00 50.00 1
Sparse Bay DIMACS -100.00 27.03 (36) 56.86 (36) 0.16 16.67 1
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Table 1. December 1st 2003 challenge results for GISETTE.

Method People Score BER AUC Ffeat Fprob Sig

final 2 Yi-Wei Chen 98.18 1.37 (8) 98.63 (31) 18.26 0.00 0
final 1 Yi-Wei Chen 98.18 1.37 (9) 98.63 (32) 18.26 0.00 0
Depends II Saharon Rosset 87.27 1.34 (4) 98.26 (34) 30.00 0.00 0
Depends I Saharon Rosset 87.27 1.34 (5) 98.26 (35) 30.00 0.00 0
Depends II Saharon Rosset 87.27 1.34 (6) 98.26 (36) 30.00 0.00 0
Depends V Saharon Rosset 87.27 1.34 (7) 98.26 (37) 30.00 0.00 0
BayesNN-DF Radford Neal an 70.91 1.29 (1) 99.90 (1) 100.00 50.00 0
BayesNN-la Radford Neal 70.91 1.29 (2) 99.90 (2) 100.00 50.00 0
BayesNN-DF Radford Neal + 70.91 1.29 (3) 99.90 (3) 100.00 50.00 0
transSVMba wu zhili 56.36 1.58 (11) 99.84 (9) 15.00 0.00 1
SVMbased3 wu zhili + C.H. 56.36 1.58 (12) 99.84 (10) 15.00 0.00 1
myBestVali wu zhili 56.36 1.58 (13) 99.84 (11) 15.00 0.00 1
Depends IV Saharon Rosset 56.36 1.48 (10) 98.26 (38) 30.00 0.00 0
TransSVMba wu zhili 56.36 1.58 (14) 99.84 (12) 15.00 0.00 1
svmBased4 wuzhili+C.H.Li 56.36 1.58 (15) 99.84 (13) 15.00 0.00 1
FS + SVM Thomas Navin La 49.09 1.69 (16) 98.31 (33) 14.00 0.00 1
RF+RLSC Kari Torkkola + 45.45 1.89 (19) 98.11 (39) 6.14 0.00 1
BayesNN-sm Radford Neal 38.18 2.03 (26) 99.79 (14) 7.58 0.26 1
IDEAL BorisovEruhimov 32.73 1.89 (17) 99.85 (5) 12.00 0.00 1
IDEAL BorisovEruhimov 32.73 1.89 (18) 99.85 (6) 12.00 0.00 1
IDEAL Borisov Eruhimo 32.73 1.89 (20) 99.85 (7) 12.00 0.00 1
IDEAL BorisovEruhimov 32.73 1.89 (21) 99.85 (8) 12.00 0.00 1
P-SVM (pre Sepp Hochreiter 18.18 2.06 (27) 99.76 (16) 12.00 36.50 1
P-SVM (pre Sepp Hochreiter 18.18 2.06 (28) 99.76 (17) 12.00 36.50 1
P-SVM (few Sepp Hochreiter 10.91 1.98 (23) 99.74 (18) 16.00 41.88 1
P-SVM / nu Sepp Hochreiter 10.91 1.98 (24) 99.74 (19) 16.00 41.88 1
KPLS Mark J. Embrech 5.45 2.02 (25) 97.92 (40) 26.00 0.00 1
P-SVM (pre Sepp Hochreiter 1.82 2.12 (29) 99.71 (21) 30.00 54.40 1
BayesNN-E Radford Neal -1.82 1.91 (22) 99.86 (4) 100.00 50.00 1
The Best o Amir Navot + Ra -12.73 2.31 (34) 99.76 (15) 50.00 15.20 1
GhostMiner GhostMiner Team -14.55 2.12 (30) 97.88 (41) 100.00 50.00 1
GhostMiner GhostMiner Team -14.55 2.12 (31) 97.88 (42) 100.00 50.00 1
DIMACS Alexander Genki -16.36 2.42 (36) 97.32 (46) 11.48 52.44 1
Final Fan Li -23.64 2.29 (32) 97.71 (43) 100.00 50.00 1
Collection Amir Reza Sa↵a -23.64 2.58 (37) 97.42 (45) 10.10 0.00 1
cbamethod3 CBAGroup -27.27 2.38 (35) 99.73 (20) 100.00 50.00 1
Collection Amir Reza Sa↵a -30.91 2.31 (33) 97.69 (44) 99.10 50.07 1
mixed Sang-Kyun Lee -40.00 2.74 (43) 97.26 (47) 9.30 0.00 1
multi33 Sang-Kyun Lee -40.00 2.74 (44) 97.26 (48) 9.30 0.00 1
Bayesian S Chu Wei -47.27 2.62 (38) 99.67 (23) 100.00 50.00 1
Bayesian + Chu Wei -47.27 2.62 (39) 99.67 (24) 100.00 50.00 1
CBAMethod1 cba -49.09 3.00 (47) 96.63 (51) 5.98 0.00 1
Modified R Vivian Ng; Leo -52.73 2.89 (45) 99.59 (29) 9.60 0.00 1
Enhanced S M. B. -56.36 3.12 (49) 99.49 (30) 3.02 0.00 1
svm linear Ran Bachrach -60.00 2.63 (40) 99.67 (26) 100.00 50.00 1
svm linear Ran Bachrach -60.00 2.63 (41) 99.67 (27) 100.00 50.00 1
inf5 Amir Reza Sa↵a -60.00 3.12 (50) 96.88 (50) 5.00 0.00 1
svm linear Ran Bachrach -60.00 2.63 (42) 99.67 (25) 100.00 50.00 1
ROBELON Vincent Lemaire -70.91 3.48 (52) 96.52 (52) 1.80 5.56 1
multi23 Sang-Kyun Lee -74.55 3.11 (48) 96.89 (49) 7.24 0.00 1
greatest h Amir Navot + Ra -78.18 3.00 (46) 99.63 (28) 100.00 50.00 1
SVCR-n-m Amir Reza Sa↵a -85.45 3.68 (53) 96.32 (53) 2.00 0.00 1
CBAMethod1 cba -89.09 3.29 (51) 99.69 (22) 100.00 50.00 1
inf2 Amir Reza Sa↵a -92.73 4.82 (54) 95.18 (54) 2.00 0.00 1
multi32 Sang-Kyun Lee -96.36 6.29 (55) 93.71 (55) 9.30 0.00 1
multi31 Sang-Kyun Lee -100.00 8.51 (56) 91.49 (56) 9.30 0.00 1



Gisette 751

Table 2. December 8th 2003 challenge results for GISETTE.

Method People Score BER AUC Ffeat Fprob Sig

final2-2 Yi-Wei Chen 97.14 1.35 (7) 98.71 (22) 18.32 0.00 0
final 2-3 Yi-Wei Chen 97.14 1.35 (8) 98.71 (23) 18.32 0.00 0
test Yi-Wei Chen 88.57 1.37 (9) 98.63 (27) 18.26 0.00 0
FS+SVM Thomas Navin La 82.86 1.31 (6) 98.69 (26) 34.00 0.18 0
BayesNN-DF Radford Neal + 71.43 1.26 (1) 99.92 (1) 100.00 50.00 0
BayesNN-la Radford Neal 71.43 1.26 (2) 99.92 (2) 100.00 50.00 0
BayesNN-la Radford Neal 71.43 1.26 (3) 99.92 (3) 100.00 50.00 0
GhostMiner GhostMiner Team 57.14 1.31 (4) 98.69 (24) 100.00 50.00 0
GhostMiner GhostMiner Team 57.14 1.31 (5) 98.69 (25) 100.00 50.00 0
P-SVM / nu Sepp Hochreiter 37.14 1.82 (19) 99.79 (10) 4.00 0.50 1
P-SVM / nu Sepp Hochreiter 37.14 1.82 (20) 99.79 (11) 4.00 0.50 1
P-SVM / nu Sepp Hochreiter 37.14 1.82 (21) 99.79 (12) 4.00 0.50 1
GhostMiner GhostMiner Team 25.71 1.42 (10) 98.58 (28) 100.00 50.00 0
RF+RLSC Kari Torkkola + 22.86 1.77 (17) 98.23 (29) 6.14 0.00 1
RF+RLSC Kari Torkkola + 22.86 1.77 (18) 98.23 (30) 6.14 0.00 1
P-SVM / nu Sepp Hochreiter 11.43 1.75 (15) 99.79 (13) 9.90 19.19 1
P-SVM / nu Sepp Hochreiter 11.43 1.75 (16) 99.79 (14) 9.90 19.19 1
originalFi wu zhili 8.57 1.58 (11) 99.84 (9) 15.00 0.00 1
CBAMethod3 CBAGroup -2.86 1.60 (12) 99.85 (4) 30.46 0.00 1
METHOD2 CBA -2.86 1.60 (13) 99.85 (6) 30.46 0.00 1
CBAMethod3 CBAGroup -2.86 1.60 (14) 99.85 (5) 30.46 0.00 1
BayesNN-sm Radford Neal -20.00 2.09 (25) 99.78 (17) 7.58 0.26 1
MyFinal Amir Reza Sa↵a -25.71 2.08 (24) 97.92 (31) 10.10 0.00 1
IDEAL BorisovEruhimov -34.29 1.89 (22) 99.85 (7) 12.00 0.00 1
IDEAL BorisovEruhimov -34.29 1.89 (23) 99.85 (8) 12.00 0.00 1
ESNB+NN Marc Boulle + V -42.86 2.46 (29) 99.64 (19) 3.26 0.00 1
RF with fe Vivian Ng + Leo -54.29 2.51 (30) 99.62 (20) 9.60 0.00 1
ESNB Marc Boulle -60.00 2.68 (32) 99.52 (21) 3.26 0.00 1
Sparse Bay DIMACS -60.00 2.46 (28) 97.64 (32) 13.48 48.37 1
A shot in Amir + Ran -62.86 2.23 (26) 99.79 (15) 50.00 13.96 1
Nameless - Amir Navot + Ra -62.86 2.23 (27) 99.79 (16) 50.00 13.96 1
Bayesian + Chu Wei -77.14 2.58 (31) 99.67 (18) 100.00 50.00 1
ROBELON Vincent Lemaire -82.86 3.48 (33) 96.52 (33) 1.80 5.56 1
ntmce D. C. Martins J -88.57 6.43 (36) 93.57 (36) 0.20 0.00 1
METHOD1 CBA -97.14 6.15 (34) 93.85 (34) 100.00 50.00 1
METHOD3 CBA -97.14 6.15 (35) 93.85 (35) 100.00 50.00 1
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Table 1. December 1st 2003 challenge results for MADELON.

Method People Score BER AUC Ffeat Fprob Sig

Bayesian + Chu Wei 100.00 7.17 (5) 96.95 (7) 1.60 0.00 0
RF+RLSC Kari Torkkola + 96.36 6.67 (3) 93.33 (33) 3.80 0.00 0
final 2 Yi-Wei Chen 90.91 6.61 (1) 93.39 (31) 4.80 16.67 0
final 1 Yi-Wei Chen 90.91 6.61 (2) 93.39 (32) 4.80 16.67 0
BayesNN-DF Radford Neal an 76.36 7.17 (4) 97.82 (1) 100.00 96.00 0
P-SVM (pre Sepp Hochreiter 76.36 8.67 (20) 96.46 (12) 1.40 0.00 1
BayesNN-DF Radford Neal + 76.36 7.17 (6) 97.82 (2) 100.00 96.00 0
P-SVM (pre Sepp Hochreiter 76.36 8.67 (21) 96.46 (13) 1.40 0.00 1
Bayesian S Chu Wei 74.55 7.89 (8) 96.93 (8) 1.60 0.00 1
P-SVM (pre Sepp Hochreiter 67.27 8.89 (24) 96.39 (14) 1.40 0.00 1
BayesNN-sm Radford Neal 56.36 7.72 (7) 97.11 (4) 3.40 0.00 1
transSVMba wu zhili 45.45 8.56 (13) 95.78 (20) 2.60 0.00 1
SVMbased3 wu zhili + C.H. 45.45 8.56 (14) 95.78 (21) 2.60 0.00 1
myBestVali wu zhili 45.45 8.56 (15) 95.78 (22) 2.60 0.00 1
TransSVMba wu zhili 45.45 8.56 (16) 95.78 (23) 2.60 0.00 1
svmBased4 wuzhili+C.H.Li 45.45 8.56 (17) 95.78 (24) 2.60 0.00 1
Collection Amir Reza Sa↵a 41.82 9.44 (30) 90.56 (36) 2.00 0.00 1
SVCR-n-m Amir Reza Sa↵a 41.82 9.44 (31) 90.56 (37) 2.00 0.00 1
Collection Amir Reza Sa↵a 41.82 9.44 (32) 90.56 (38) 2.00 0.00 1
BayesNN-la Radford Neal 38.18 8.11 (10) 97.12 (3) 3.40 0.00 1
cbamethod3 CBAGroup 30.91 8.83 (23) 96.53 (11) 2.60 0.00 1
The Best o Amir Navot + Ra 21.82 8.61 (18) 96.97 (5) 3.60 0.00 1
greatest h Amir Navot + Ra 21.82 8.61 (19) 96.97 (6) 3.60 0.00 1
Modified R Vivian Ng; Leo 16.36 8.72 (22) 96.93 (9) 4.00 0.00 1
BayesNN-E Radford Neal 9.09 8.06 (9) 96.90 (10) 100.00 96.00 1
Depends II Saharon Rosset 3.64 9.06 (25) 96.05 (16) 4.20 9.52 1
Depends I Saharon Rosset 3.64 9.06 (26) 96.05 (17) 4.20 9.52 1
Depends II Saharon Rosset 3.64 9.06 (27) 96.05 (18) 4.20 9.52 1
Depends IV Saharon Rosset 3.64 9.06 (28) 96.05 (19) 4.20 9.52 1
KPLS Mark J. Embrech 1.82 9.83 (33) 90.16 (39) 2.60 0.00 1
GhostMiner GhostMiner Team 0.00 8.28 (11) 91.72 (34) 100.00 96.00 1
GhostMiner GhostMiner Team 0.00 8.28 (12) 91.72 (35) 100.00 96.00 1
Depends V Saharon Rosset -9.09 9.28 (29) 96.07 (15) 4.20 9.52 1
P-SVM (few Sepp Hochreiter -21.82 11.00 (34) 95.12 (25) 2.40 0.00 1
P-SVM / nu Sepp Hochreiter -21.82 11.00 (35) 95.12 (26) 2.40 0.00 1
IDEAL BorisovEruhimov -32.73 12.56 (36) 94.73 (27) 100.00 96.00 1
IDEAL BorisovEruhimov -32.73 12.56 (37) 94.73 (28) 100.00 96.00 1
IDEAL Borisov Eruhimo -32.73 12.56 (38) 94.73 (29) 100.00 96.00 1
IDEAL BorisovEruhimov -32.73 12.56 (39) 94.73 (30) 100.00 96.00 1
FS + SVM Thomas Navin La -41.82 14.06 (40) 85.94 (40) 4.00 35.00 1
inf5 Amir Reza Sa↵a -45.45 14.83 (41) 85.17 (41) 5.00 44.00 1
ROBELON Vincent Lemaire -49.09 16.78 (42) 83.22 (42) 1.60 0.00 1
CBAMethod1 cba -54.55 18.00 (43) 82.58 (43) 2.60 0.00 1
CBAMethod1 cba -54.55 18.00 (44) 82.58 (44) 2.60 0.00 1
inf2 Amir Reza Sa↵a -60.00 21.06 (45) 78.94 (45) 2.00 0.00 1
Enhanced S M. B. -63.64 34.06 (46) 68.51 (46) 1.80 11.11 1
mixed Sang-Kyun Lee -67.27 38.50 (50) 61.50 (51) 2.40 91.67 1
multi33 Sang-Kyun Lee -70.91 38.39 (48) 61.61 (50) 7.60 78.95 1
svm linear Ran Bachrach -78.18 38.33 (47) 62.90 (48) 100.00 96.00 1
multi32 Sang-Kyun Lee -80.00 40.56 (54) 59.44 (55) 7.60 78.95 1
multi23 Sang-Kyun Lee -81.82 39.28 (52) 60.72 (52) 7.80 82.05 1
svm linear Ran Bachrach -85.45 38.50 (49) 62.92 (47) 100.00 96.00 1
multi31 Sang-Kyun Lee -87.27 40.56 (55) 59.44 (56) 7.60 78.95 1
svm linear Ran Bachrach -89.09 38.83 (51) 62.64 (49) 100.00 96.00 1
Final Fan Li -96.36 39.89 (53) 60.11 (53) 100.00 96.00 1
DIMACS Alexander Genki -100.00 41.06 (56) 59.62 (54) 100.00 96.00 1
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Table 2. December 8th 2003 challenge results for MADELON.

Method People Score BER AUC Ffeat Fprob Sig

Bayesian + Chu Wei 94.29 7.11 (13) 96.95 (10) 1.60 0.00 1
BayesNN-la Radford Neal 85.71 6.56 (3) 97.62 (2) 3.40 0.00 0
BayesNN-sm Radford Neal 85.71 6.56 (4) 97.62 (3) 3.40 0.00 0
final2-2 Yi-Wei Chen 71.43 7.11 (12) 92.89 (25) 3.20 0.00 1
RF+RLSC Kari Torkkola + 71.43 6.67 (6) 93.33 (22) 3.80 0.00 0
GhostMiner GhostMiner Team 65.71 7.44 (14) 92.56 (26) 3.00 0.00 1
BayesNN-la Radford Neal 60.00 6.78 (9) 97.46 (6) 3.40 0.00 1
BayesNN-DF Radford Neal + 54.29 6.22 (1) 98.07 (1) 100.00 96.00 0
CBAMethod3 CBAGroup 51.43 6.72 (7) 97.57 (4) 4.00 0.00 0
CBAMethod3 CBAGroup 51.43 6.72 (8) 97.57 (5) 4.00 0.00 0
final 2-3 Yi-Wei Chen 48.57 6.50 (2) 93.50 (20) 4.80 16.67 0
RF+RLSC Kari Torkkola + 48.57 7.00 (11) 93.00 (24) 3.80 0.00 1
METHOD2 CBA 42.86 6.83 (10) 97.23 (9) 4.00 0.00 0
GhostMiner GhostMiner Team 37.14 7.67 (17) 92.33 (27) 3.00 0.00 1
test Yi-Wei Chen 31.43 6.61 (5) 93.39 (21) 4.80 16.67 0
GhostMiner GhostMiner Team 8.57 8.28 (18) 91.72 (28) 3.00 0.00 1
A shot in Amir + Ran 5.71 7.61 (15) 97.25 (7) 4.00 0.00 1
Nameless - Amir Navot + Ra 5.71 7.61 (16) 97.25 (8) 4.00 0.00 1
originalFi wu zhili -2.86 8.56 (19) 95.78 (17) 2.60 0.00 1
P-SVM / nu Sepp Hochreiter -20.00 9.67 (21) 96.31 (12) 1.40 0.00 1
P-SVM / nu Sepp Hochreiter -20.00 9.67 (22) 96.31 (13) 1.40 0.00 1
P-SVM / nu Sepp Hochreiter -20.00 9.67 (24) 96.31 (14) 1.40 0.00 1
P-SVM / nu Sepp Hochreiter -20.00 9.67 (25) 96.31 (15) 1.40 0.00 1
P-SVM / nu Sepp Hochreiter -20.00 9.67 (26) 96.31 (16) 1.40 0.00 1
MyFinal Amir Reza Sa↵a -31.43 9.44 (20) 90.56 (29) 2.00 0.00 1
RF with fe Vivian Ng + Leo -42.86 9.67 (23) 96.76 (11) 4.00 0.00 1
FS+SVM Thomas Navin La -48.57 11.22 (27) 88.78 (30) 4.00 35.00 1
IDEAL BorisovEruhimov -57.14 12.56 (28) 94.73 (18) 100.00 96.00 1
IDEAL BorisovEruhimov -57.14 12.56 (29) 94.73 (19) 100.00 96.00 1
ESNB+NN Marc Boulle + V -65.71 14.94 (30) 93.22 (23) 1.40 0.00 1
ROBELON Vincent Lemaire -71.43 16.78 (33) 83.22 (33) 1.60 0.00 1
METHOD1 CBA -80.00 16.06 (31) 83.94 (31) 100.00 96.00 1
METHOD3 CBA -80.00 16.06 (32) 83.94 (32) 100.00 96.00 1
ntmce D. C. Martins J -88.57 24.44 (34) 75.56 (34) 2.20 45.45 1
ESNB Marc Boulle -94.29 35.17 (35) 68.56 (35) 1.40 0.00 1
Sparse Bay DIMACS -100.00 38.00 (36) 62.75 (36) 0.60 0.00 1
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Table 1. December 1st 2003 overall challenge results.

Method People Score BER AUC Ffeat Fprob Sig

BayesNN-DF Radford Neal an 88.00 6.84 (1) 97.22 (1) 80.30 47.77 0.00
BayesNN-DF Radford Neal + 86.18 6.87 (2) 97.21 (2) 80.30 47.77 0.00
BayesNN-sm Radford Neal 68.73 8.20 (3) 96.12 (5) 4.74 2.91 0.80
BayesNN-la Radford Neal 59.64 8.21 (4) 96.36 (3) 60.30 28.51 0.40
RF+RLSC Kari Torkkola + 59.27 9.07 (7) 90.93 (29) 22.54 17.53 0.60
final 2 Yi-Wei Chen 52.00 9.31 (9) 90.69 (31) 24.91 11.98 0.40
SVMbased3 wu zhili + C.H. 41.82 9.21 (8) 93.60 (16) 29.51 21.72 0.80
svmBased4 wuzhili+C.H.Li 41.09 9.40 (10) 93.41 (18) 29.51 21.72 0.80
final 1 Yi-Wei Chen 40.36 10.38 (23) 89.62 (34) 6.23 6.10 0.60
transSVMba wu zhili 36.00 9.60 (13) 93.21 (20) 29.51 21.72 0.80
myBestVali wu zhili 36.00 9.60 (14) 93.21 (21) 29.51 21.72 0.80
TransSVMba wu zhili 36.00 9.60 (15) 93.21 (22) 29.51 21.72 0.80
BayesNN-E Radford Neal 29.45 8.43 (5) 96.30 (4) 96.75 56.67 0.80
Collection Amir Reza Sa↵a 28.00 10.03 (20) 89.97 (32) 7.71 10.60 1.00
Collection Amir Reza Sa↵a 20.73 10.06 (21) 89.94 (33) 32.26 25.50 1.00
IDEAL BorisovEruhimov 19.27 10.01 (17) 94.71 (11) 62.60 40.30 1.00
IDEAL Borisov Eruhimo 19.27 10.01 (18) 94.71 (12) 62.60 40.30 1.00
IDEAL BorisovEruhimov 19.27 10.01 (19) 94.71 (13) 62.60 40.30 1.00
Depends I Saharon Rosset 17.82 10.52 (25) 92.80 (24) 13.99 27.37 0.80
greatest h Amir Navot + Ra 17.45 8.99 (6) 95.54 (8) 42.18 24.74 1.00
Depends II Saharon Rosset 16.00 10.55 (27) 92.78 (26) 13.99 27.37 0.80
Bayesian + Chu Wei 15.27 9.43 (11) 95.70 (7) 67.53 38.03 0.60
The Best o Amir Navot + Ra 15.27 9.94 (16) 94.77 (10) 32.18 19.52 1.00
Depends V Saharon Rosset 15.27 10.57 (28) 92.81 (23) 13.99 27.37 0.80
IDEAL BorisovEruhimov 14.18 10.35 (22) 94.93 (9) 62.60 40.30 1.00
P-SVM (pre Sepp Hochreiter 14.18 11.28 (32) 93.66 (15) 4.63 34.74 1.00
FS + SVM Thomas Navin La 12.73 11.56 (33) 88.44 (40) 16.91 21.45 0.80
Depends II Saharon Rosset 12.36 11.04 (31) 92.73 (27) 13.99 27.37 0.80
Bayesian S Chu Wei 11.64 9.50 (12) 95.75 (6) 67.53 38.03 0.80
Depends IV Saharon Rosset 11.64 10.55 (26) 92.80 (25) 13.99 27.37 0.80
KPLS Mark J. Embrech 9.82 10.91 (30) 89.46 (35) 7.17 25.74 1.00
Modified R Vivian Ng; Leo 6.91 10.46 (24) 94.58 (14) 3.86 9.82 1.00
cbamethod3 CBAGroup 5.45 10.63 (29) 90.75 (30) 40.65 16.00 1.00
P-SVM (pre Sepp Hochreiter 5.09 12.14 (35) 93.46 (17) 7.38 45.65 1.00
P-SVM (pre Sepp Hochreiter 0.00 11.82 (34) 93.41 (19) 3.83 34.60 1.00
P-SVM (few Sepp Hochreiter -24.36 14.85 (41) 89.25 (36) 3.74 20.38 1.00
inf5 Amir Reza Sa↵a -24.36 14.58 (40) 85.42 (45) 5.00 19.31 1.00
GhostMiner GhostMiner Team -26.55 12.47 (36) 87.53 (42) 100.00 55.25 1.00
GhostMiner GhostMiner Team -30.18 13.80 (38) 86.20 (43) 100.00 55.25 1.00
mixed Sang-Kyun Lee -32.36 18.40 (46) 81.60 (50) 4.34 31.51 1.00
CBAMethod1 cba -35.64 14.05 (39) 84.49 (47) 2.05 0.20 1.00
P-SVM / nu Sepp Hochreiter -36.00 13.17 (37) 92.60 (28) 4.82 48.73 1.00
SVCR-n-m Amir Reza Sa↵a -40.36 14.99 (42) 85.01 (46) 2.00 4.91 1.00
inf2 Amir Reza Sa↵a -42.55 15.75 (43) 84.25 (48) 2.00 8.61 1.00
Final Fan Li -47.64 20.10 (48) 79.90 (51) 100.00 55.25 1.00
svm linear Ran Bachrach -48.36 21.19 (50) 88.99 (37) 100.00 55.25 1.00
svm linear Ran Bachrach -49.09 21.21 (51) 88.99 (38) 100.00 55.25 1.00
multi23 Sang-Kyun Lee -50.55 20.62 (49) 79.38 (52) 4.25 22.87 1.00
CBAMethod1 cba -51.64 16.02 (44) 87.96 (41) 40.65 16.00 1.00
multi33 Sang-Kyun Lee -54.18 22.26 (55) 77.74 (55) 5.38 28.96 1.00
svm linear Ran Bachrach -54.91 22.09 (53) 88.96 (39) 100.00 55.25 1.00
Enhanced S M. B. -57.82 19.85 (47) 85.96 (44) 1.02 10.60 1.00
ROBELON Vincent Lemaire -62.18 16.37 (45) 83.63 (49) 1.12 21.47 1.00
DIMACS Alexander Genki -62.18 24.88 (56) 76.80 (56) 23.81 47.28 1.00
multi31 Sang-Kyun Lee -71.27 22.25 (54) 77.75 (54) 5.38 28.96 1.00
multi32 Sang-Kyun Lee -80.00 22.09 (52) 77.91 (53) 5.38 28.96 1.00
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Table 2. December 8st 2003 overall challenge results.

Method People Score BER AUC Ffeat Fprob Sig

BayesNN-DF Radford Neal + 71.43 6.48 (1) 97.20 (1) 80.30 47.77 0.20
BayesNN-la Radford Neal 66.29 7.27 (3) 96.98 (3) 60.30 28.51 0.40
BayesNN-sm Radford Neal 61.14 7.13 (2) 97.08 (2) 4.74 2.91 0.60
final 2-3 Yi-Wei Chen 49.14 7.91 (8) 91.45 (25) 24.91 9.91 0.40
BayesNN-la Radford Neal 49.14 7.83 (5) 96.78 (4) 60.30 28.51 0.60
final2-2 Yi-Wei Chen 40.00 8.80 (17) 89.84 (29) 24.62 6.68 0.60
GhostMiner GhostMiner Team 37.14 7.89 (7) 92.11 (21) 80.60 36.05 0.80
RF+RLSC Kari Torkkola + 35.43 8.04 (9) 91.96 (22) 22.38 17.52 0.80
GhostMiner GhostMiner Team 35.43 7.86 (6) 92.14 (20) 80.60 36.05 0.80
RF+RLSC Kari Torkkola + 34.29 8.23 (12) 91.77 (23) 22.38 17.52 0.60
FS+SVM Thomas Navin La 31.43 8.99 (19) 91.01 (27) 20.91 17.28 0.60
GhostMiner GhostMiner Team 26.29 8.24 (13) 91.76 (24) 80.60 36.05 0.60
CBAMethod3 CBAGroup 21.14 8.14 (10) 96.62 (5) 12.78 0.06 0.60
CBAMethod3 CBAGroup 21.14 8.14 (11) 96.62 (6) 12.78 0.06 0.60
Nameless - Amir Navot + Ra 12.00 7.78 (4) 96.43 (9) 32.28 16.22 1.00
test Yi-Wei Chen 6.29 9.31 (21) 90.69 (28) 24.91 11.98 0.60
A shot in Amir + Ran 4.00 8.41 (14) 94.59 (15) 21.08 12.72 1.00
IDEAL BorisovEruhimov 3.43 8.53 (15) 96.58 (7) 62.50 36.40 0.80
IDEAL BorisovEruhimov 3.43 8.53 (16) 96.58 (8) 62.50 36.40 0.80
originalFi wu zhili 2.86 9.60 (23) 93.21 (18) 29.51 21.72 1.00
RF with fe Vivian Ng + Leo 1.71 9.06 (20) 96.01 (11) 3.74 2.03 1.00
P-SVM / nu Sepp Hochreiter -2.86 9.52 (22) 94.91 (12) 4.72 39.94 1.00
P-SVM / nu Sepp Hochreiter -4.57 10.02 (25) 94.63 (14) 2.14 33.33 1.00
P-SVM / nu Sepp Hochreiter -6.29 9.73 (24) 94.80 (13) 2.94 32.75 1.00
Bayesian + Chu Wei -8.57 8.86 (18) 96.37 (10) 67.53 38.03 1.00
P-SVM / nu Sepp Hochreiter -10.29 10.30 (26) 94.58 (16) 4.61 42.25 1.00
P-SVM / nu Sepp Hochreiter -12.00 10.80 (27) 94.31 (17) 2.03 35.65 1.00
ESNB+NN Marc Boulle + V -28.00 12.42 (30) 93.12 (19) 1.04 1.43 1.00
METHOD2 CBA -36.00 11.22 (28) 91.27 (26) 66.89 26.05 0.80
MyFinal Amir Reza Sa↵a -44.00 11.43 (29) 88.57 (31) 7.77 10.96 1.00
Sparse Bay DIMACS -58.86 19.90 (36) 76.88 (36) 3.27 27.98 1.00
ESNB Marc Boulle -62.29 18.25 (34) 88.63 (30) 1.04 1.43 1.00
ROBELON Vincent Lemaire -82.86 16.37 (33) 83.63 (34) 1.12 21.47 1.00
METHOD1 CBA -84.57 14.68 (31) 85.32 (32) 100.00 55.25 1.00
METHOD3 CBA -84.57 14.68 (32) 85.32 (33) 100.00 55.25 1.00
ntmce D. C. Martins J -87.43 19.85 (35) 80.15 (35) 0.50 14.81 1.00
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conditional, 172
di↵erential, 172
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exhaustive search, 120
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50
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feature, 2
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G-flip, 582
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Gaussian function, 46
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generalization, 2, 32, 37
genetic algorithms, 128
geodesic

distance, 527
Gini index, 52, 177
Good-Turing zero correction, 716
gradient descent, 35, 40
gradient tree boosting, 364, 711

learning rate, 364
grafting, 145
Gram-Schmidt orthogonalization, 13,

146
grid-search, 705, 708, 728

heterogeneous, 35
heterogenous committees, 57
HFNN, 227
hierarchical mixture of experts, 57
hill climbing, 51, 54
homogeneous, 35
human thinking, 209
hybrid fuzzy neural network, 227, 229

ID3, 51
ill-posed problem, 32
impurity reduction, 52
inclusion, 212
IncNet, 48
indicator variables, 139
induction, 521
infogain, 400
information bottleneck, 183
information gain, 52, 176, 726

ratio, 177
information theory, 171, 482
inner product, 46
insensitive error function, 44
intersection, 212
Isomap, 527

joint classifier and feature optimization,
157

K nearest neighbors, 48
K-fold cross-validation, 37, 703, 705,

708, 710, 718, 720, 721, 726, 728
k-means clustering, 48
K-PLS, 724
kernel

method, 728
PCA, 524
supervised, 315
trick, 424, 524

kNN, 48, 400, 477, 728
Kullback-Leibler divergence, 172

L1 norm regularization, 714
L2 norm regularization, 703, 714
Laplace correction, 38
Laplacian

eigenmaps, 526
operator, 526

lasso regression, 55, 56, 381
learning

algorithm, 35
from data, 29
instance based, 48
machine, 2, 29
problem, 29
similarity based, 48
supervised, 30
unsupervised, 30
with noise, 56

least absolute shrinkage and selection
operator, 162

Least Mean Square, 40
leave-one-out, 37, 708
LIBSVM, 324
lift curve area selection criterion, 732
linear discriminant, 38, 56
linear machine, 39
Linear Machine Decision Trees, 54
linear scaling, 705
linear threshold unit, 46
linearly inseparable, 39
linguistic variable, 211, 216
local ridge regression, 55
Locally Linear Embedding, 528
logistic function, 46
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logistic regression, 56
penalized, 56

loss
✏-insensitive, 31
function, 31, 302

LVQ, 728

m-estimate, 38
machine learning, 1, 29, 728
manifold, 519, 540
MAP, 33
margin, 399, 400, 580, 716

hypothesis-margin, 580
sample-margin, 580

marginalization, 32
Markov blanket, 180
MART, 306
mathematical programming, 35
Matlab, 402
max–min fuzzy neuron, 225
Maximum A Posteriori, 33
maximum entropy discrimination, 157
maximum likelihood, 33

relation to conditional entropy, 176
MDL, 33
mean squared error, 31
mentation, 209
meta-learning, 57, 728
MIFS, 179
min–max fuzzy neuron, 223
Minimum Description Length, 33
mixture

of Gaussians, 529
mixture of local experts, 57
ML, 33
MLP, 46, 436
MLP2LN, 56
model selection, 37
monotonicity, 222
MSE, 31
Multi-Dimensional Scaling, 525
Multi-layer Perceptron, 436
multi-layer perceptron, 46, 732
multiple imputation, 58
multiple-bootstrap, 724
multiplicative update, 161, 708
multivariate, 9
mutual information, 172, 400, 716, 728

estimation, 178

näıve Bayes, 38, 401, 501, 730, 732
selective, 501

natural language, 211
NBC, 38
nesting e↵ect, 124
Neural Network, 29, 45, 436, 702, 710,

720, 728, 734
neurons, 45
Newton descent algorithm, 40
normal fuzzy set, 212
normalization, 425, 710
NRBF, 476, 728
Nyström formula, 523

OBD, 436
objective function, 42
OBS, 431, 436
OC1, 54
Ockham’s razor, 34, 37
on-line, 40
ontogenic, 56
Optimal Brain Damage, 47, 149, 436
Optimal Brain Surgeon, 47, 431, 436
optimal hyperplane, 42
optimal strategy, 120
option decision trees, 54
ordered feature selection, 708
orthogonal least squares, 48
oscillating search, 126
output function, 45
overfitting, 9, 32, 129
overweighting, 367

P-SVM, 423, 426, 720
pattern search, 726
PCA, 399, 482, 708, 710, 714, 716, 728
Pearson correlation coe�cient, 9
penalized logistic regression, 55
penalty, 380
perception, 209
Perceptron, 46, 149, 402, 716

Aggressive, 402
piecewise linear penalty, 391
piecewise linear solution paths, 387
piecewise quadratic loss, 390
posterior probability, 32
Potential Support Vector Machine, 423,

426, 720
predictor, 2
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preprocessing, 3
Principal Components Analysis, 482,

702
prior probability, 32
probe, 7
product–sum fuzzy neuron, 224
pruning, 53
pruning techniques, 47
purity gain, 52

quadratic programming, 728
QUEST, 51
Quick, Unbiased, E�cient, Statistical

Tree, 51
Quickprop, 47

R2W2, 433, 585
Radial Basis Function, 47
radius-margin bound, 323, 705
RAN, 48
Random Forest, 305, 322, 703, 705, 711
rate-distortion theorem, 174
RBF, 47
Recursive Feature Elimination, 14, 147,

433
redundancy, 12, 424, 428
redundancy reduction, 720
regression, 30
regular fuzzy neural network, 226
regularization, 32, 54, 303, 379, 397, 728

regularized linear regression, 381
Regularized Least-Squares Classifica-

tion, 302
regularized optimization, 380
regularized solution path, 387
regularizer, 32
relevance, 17

approximately irrelevant feature, 17
index, 5
individual, 9
individually irrelevant feature, 18
probably approximately irrelevant

feature, 18
surely irrelevant feature, 17
variable, 718

Relief, 11, 579, 584
representation

sparse, 424
Reproducing Kernel Hilbert Space, 303

RFE, 14, 147, 433
RFNN, 226
ridge regression, 55, 56, 304, 381

local, 56
risk

empirical, 31
expected, 30, 139
minimization, 30, 357

RKHS, 303
RLSC, 302, 703

ensembles of, 304
parameters, 308
parameters of ensembles of, 309

robustness, 393, 397
rough sets theory, 35

S operator, 222
saturating function, 232
scaling, 708, 726, 728
scaling factors, 141, 152
scaling invariant, 425
search strategy, 6, 35, 119
sensitivity analysis, 724
separability, 478
separability measures, 171
Separability of Split Value, 50, 478
Sequential Minimal Optimization, 424
sequential selection, 121
significance tests, 702
Simba, 583
simulated annealing, 127
single variable classifier, 348
slack variables, 43
SMO, 424
soft computing, 29
soft margin, 31, 43
sparseness, 383, 427
spectral clustering, 525
split, 478
split information, 52
squared loss, 31
SSV, 51, 478, 480, 728
stability, 5, 37
stacking, 57
standardization, 703, 708, 728, 734
stochastic search, 127
stopping criteria, 53
su�ciency, 19
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approximately su�cient feature
subset, 20

minimal approximately su�cient
feature subset, 20

surely su�cient feature subset, 19
sum squared error, 31
sup–star composition, 218
Support Vector Machine, 41, 152, 320,

424, 441, 721, 726
bounds, 151
L1 norm, 159

Support Vector machine, 43
support vectors, 42
surrogate splits, 54
SVM, 14, 41, 43, 320, 401, 424, 441,

474, 705, 708, 714, 716, 721, 728,
730

for regression, 56
RBF, 401
transduction, 401

T operator, 222
t-conorm, 210, 222
t-norm, 210, 222
test error, 32
testing, 37
threshold, 39
threshold function, 46
Tikhonov regularization, 32
time series prediction, 30

Top-Down Decision Trees, 54
training, 2
training error, 130, 728, 730
transduction, 401, 521, 716
transductive SVM, 708
transfer function, 45
tree ensemble, 364, 711

dynamic feature selection, 365, 366,
369

MART, 364
parallel, 364
serial, 364
variable importance, 365

twoing, 53

union, 212
univariate, 9
unseen data, 32

variable importance, 711
variance, 34
Voronoi tesselation, 49
voting, 351, 710

weight decay, 47, 55, 56
weight elimination, 55, 56
weight pruning, 431
weight vector, 39
wrapper, 5, 481, 708, 728, 732, 734

XOR problem, 11
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