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Foreword

Welcome to the revolution.

The essays in this volume represent recent (circa 2007) contributions to the extraordinary
changes in our understanding of the possibilities for causal inference that began in the
1980s and that continue to advance. That revolution concerns both how to discover
causal relations and how to predict with them, and papers in this collection address
both aspects.

Twenty-five years ago a distinguished statistician, Terry Speed (who was in part
responsible for the revolution, although he did not welcome it) remarked to me that
regression may be an unreliable method to search observational data for causal relations,
but no other method should be used. Notwithstanding, in recent years new methods in
the family of procedures to which many of the present contributions belong have been
applied in economics, epidemiology, molecular biology, mineralogy, neuropsychology,
space physics, and many other domains, in several cases with experimental confirmation
of learned structures, and in many other cases outperforming “conventional” statistical
methods for forecasting and prediction. At about the same time, I asked another
distinguished statistician, my colleague, Stephen Fienberg, if he had available any “large”
datasets — meaning a dozen variables, give or take — that could be used for testing
search algorithms. He told me there was no point in assembling such data sets because
12 variables was too big to allow analysis. Recent work has made experimentally
confirmed causal inferences from observational data sets with tens of thousands of
variables. The capacities for scientific discovery and prediction have changed radically,
and they continue to.

The revolution is beginning to enter into advanced statistical textbooks and mono-
graphs, and into scientific practice, notably in neuroscience and genomics, where the
discovery of causal relations in high dimensional data presents complexity problems
that would have been insuperable anytime in the last century. Textbook traditions carry
big inertia, but I hope the time is not far off when modern causal inference is taught to
undergraduates as part and parcel of statistical estimation and prediction, and textbook
slogans (“correlation is not causation” — true but misleading; “no causes in, no causes
out” — false and misleading) are dispensed with. Meanwhile, the fundamental research
exemplified in this volume marches on, with new, astonishing revelations tumbling
over one another, year after year, from every direction on the planet, only the poles
excepted. Heaps of important open problems remain. The challenges are as exciting as
the accomplishments.

I have the guilty pleasure of disciplinary jingoism in noting the direct and indirect
contributions of professionally trained philosophers to the work described here. Peter
Spirtes’ foundational work is well known, and Jiji Zhang, Thomas Richardson and Chris
Meek are important contemporary investigators, but it is a pleasant surprise to find
that work on defeasible reasoning by the late John Pollock has found an indirect causal
path to the effort. Steven Weinberg, the Nobelist in physics, has written that at its best
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philosophy of science is only “a pleasing gloss” on the history of science. Clearly, some
introductions are needed.

Clark Glymour
Pittsburgh, July, 2014
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Preface

Introduction
Learning valid causal mechanisms from non-experimental data and performing success-
ful inference from such models about the expected effects of manipulating the model
system (or even counterfactual inferences about interventions that could have happened
but did not), has been for a long time considered an impossibility with an almost taboo
status. “Correlation is not causation”, the famous warning by R.A. Fisher, would often
signal the end of the discussion with otherwise sophisticated and well-intentioned
researchers.

As often happens in science, many insurmountable obstacles end up being overcome
by ingenuity, inspiration, hard work, and even a little bit of luck. With regards to
the latter, Nature often lends a helping hand by providing data generating functions
and distributions that are relatively friendly to many types of discovery techniques,
including causal ones.

Today we (computer scientists, philosophers of science, applied mathematicians,
engineers, statisticians, econometricians, psychometricians, actuarialists, financial quan-
titative analysts, and all other “tribes” of data scientists) are well aware and have
embraced a panoply of methods and practical tools that allow discovery of high quality
qualitative causal models from data, and parameterization of those to derive quanti-
tative causal models, and inference to predict the effects of manipulations of certain
modelled variables. In short, not all correlation is causation but certain correlations are
causal, and tools that allow us to make the distinction are now available, and indeed
widely used.

How did we get here? And where do the contributions in the present volume stand
between the foundations of successful non-experimental causal discovery analysis and
practically deployed methods of today and of the future?

We can summarize the trajectory of discovery and innovation in this area and as it
relates to these questions comprising the triptych:
h Foundations, Translation to practice (from theory to practical algorithms and

applications), New possibilities i.

Foundations
With the benefit of decades of historical hindsight we can point to the work of the Nobel
Laureate Herb Simon in the 1950s, of the Turing Award winner Judea Pearl (in the
1980s and onward) (a contributor to the present volume), of P. Spirtes (a contributor
and co-editor of the present volume), Clark Glymour and Richard Scheines in the 1980s
and onward, of G.F. Cooper (another co-editor of the volume) (1980s and onward),
and of the Nobel Laureate Clive Granger (from the 1960s and onward) and their col-
laborators, students, and many others as truly essential. Together this community of
multi-disciplinary researchers established a range of rigorous methods that under broad
distributional assumptions can learn high quality causal models from observational data
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or mixtures of observational and experimental data, (even identifying the presence of
hidden variables that confound correlations in the data), overcoming the limitations that
had been noted by R.A. Fisher regarding the perils of over-interpreting all correlations
as causative.

The resulting innovations include important causal discovery algorithms and proce-
dures — indicatively we mention the IC*, PC, FCI, K2, algorithms, the BDe and BDeu
scoring metrics, the Granger test for causality in time series, the Do-Calculous (and the
Front-Door and Back-Door criteria for conditioning and inference with causal models),
and numerous extensions and refinements. Collectively they provide the basis for
learning accurate causal models from data even in the absence of experiments, and for
predicting the effects of manipulations on the data “in silico”.

Peter Spirtes’ contribution to the present volume (“Introduction to Causal Inference”)
provides a concise introduction to core ideas and methods about the Foundations and
prepares the reader for new material in the present volume and beyond.

Translation to practice (from theory to practical algorithms and
applications)
The contributions by Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos,
Subramani Mani, and Xenofon D. Koutsoukos (“Local Causal and Markov Blanket In-
duction for Causal Discovery and Feature Selection for Classification Part I: Algorithms
and Empirical Evaluation” and “Part II: Analysis and Extensions”) set out to describe
an ambitious agenda of algorithmic and applied research at the bridge of the world of
predictive modeling and of causal discovery. Their paper summarizes prior key work
and provides generalized algorithmic frameworks for learning local and global causal
models, and optimal predictor sets (Markov Blankets and Boundaries). The paper also
compares representative algorithms from these frameworks to general machine learning
and statistics methods, in terms of causal and predictive modeling performance across
dozens of real and synthetic datasets.

Complementary to, and mutually reinforcing with the above effort, is the contri-
bution of Jean-Philippe Pellet, André Elisseeff (“Using Markov Blankets for Causal
Structure Learning”) who also set out to answer causal questions using hybrid causal/
predictive (Markov Blanket) techniques with promising practical results in terms of
scalability and quality of discovery.

The paper by Raanan Yehezkel, Boaz Lerner (“Bayesian Network Structure Learning
by Recursive Autonomy Identification”) addresses the problem of learning high quality
causal graphs efficiently via the novel recursive autonomy identification (RAI) algo-
rithm. The algorithm learns causal structure by sequential application of conditional
independence (CI) tests, edge direction and structure decomposition into autonomous
sub-structures combining edge discovery and direction “from the outset and along the
procedure”. A large experimental evaluation shows strong results in the datasets used
and in direct comparison against many of the top comparator algorithms.

Yang-Bo He, and Zhi Geng’s paper (“Active Learning of Causal Networks with
Intervention Experiments and Optimal Designs”) deals with the very practical and
experimental-science-relevant situation where causal induction has specified an equiva-
lence class and experiments or quasi-experiments can then be deployed to refine the
equivalence class. The paper proposes exact and approximate designs for sequential or
batch experimentation to accomplish these goals.
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New possibilities: pushing the frontier of what is feasible
The contribution by Tyler J. VanderWeele, and James M. Robins (“Properties of Mono-
tonic Effects on Directed Acyclic Graphs”) develops a number of probabilistic properties
concerning monotonic effects and weak monotonic effects. These properties give rise to
certain inequality constraints that provide new ways to test for the presence of hidden
or unmeasured confounding variables that go beyond those already available in the
literature.

The paper by Facundo Bromberg, and Dimitris Margaritis (“Improving the Relia-
bility of Causal Discovery from Small Data Sets Using Argumentation”) deals with a
common weakness of modern constrain-based causal learning algorithms, that is the of-
ten low statistical power of employed conditional independence tests (CITs). The paper
proposes enhancing the quality of CITs by using argumentation logics and introduces a
new “argumentative independence test” with promising initial empirical results.

The contribution by Changsung Kang, Jin Tian (“Markov Properties for Linear
Causal Models with Correlated Errors”) introduces new theoretical results related to
testing linear structural equation models with correlated errors. The results have direct
implications for improving the state of the art in the identification of such models from
data.

The contribution by Ilya Shpitser, and Judea Pearl (“Complete Identification Methods
for the Causal Hierarchy”) provides a framework for going from simpler (predict effects
of prior interventions or natural occurrences) to intermediate (predict effects of possible
interventions) to harder (counterfactually estimate effects of hypothesized past actions,
different than the ones actually taken or observed). These layers provide a hierarchy of
causal inference that maps cleanly to common questions in science and everyday life.
Both theoretical and algorithmic results are provided to solve the identification problem
for causal effects by providing a graphical characterization for non-identifiable effects,
and algorithms for computing identifiable effects.

The paper by Jiji Zhang (“Causal Reasoning with Ancestral Graphs”) introduces
new mathematical results that extend prior results by Pear et al and Spirtes et al and
open the door for causal intervention inference with partial ancestral graphs (PAGs).
Given that in many practical situations the ability to learn causal graphs is confined
within an equivalence class of the generative function and that PAGs can represent
such classes, the work promises to address a vexing problem, that of inference within a
data-consistent equivalence class approximation of the true causal generative function.

Conclusion
Perhaps, the causal discovery field resonates well today because “everything is possible”
in the era of Big Data Science. Or perhaps it is the incredible success and potential of
fields like causal discovery that makes data scientists feel that “everything is possible”.
Either way we hope that the readers will find the works presented in the present tome
illuminating, inspiring and ultimately useful for their own work.

October 2014
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Editor: Lawrence Saul

Abstract
The goal of many sciences is to understand the mechanisms by which variables came
to take on the values they have (that is, to find a generative model), and to predict
what the values of those variables would be if the naturally occurring mechanisms
were subject to outside manipulations. The past 30 years has seen a number of concep-
tual developments that are partial solutions to the problem of causal inference from
observational sample data or a mixture of observational sample and experimental data,
particularly in the area of graphical causal modeling. However, in many domains, prob-
lems such as the large numbers of variables, small samples sizes, and possible presence
of unmeasured causes, remain serious impediments to practical applications of these
developments. The articles in the Special Topic on Causality address these and other
problems in applying graphical causal modeling algorithms. This introduction to the
Special Topic on Causality provides a brief introduction to graphical causal modeling,
places the articles in a broader context, and describes the differences between causal
inference and ordinary machine learning classification and prediction problems.
Keywords: Bayesian networks, causation, causal inference

1. Introduction
The goal of many sciences is to understand the mechanisms by which variables came
to take on the values they have (that is, to find a generative model), and to predict
what the values of those variables would be if the naturally occurring mechanisms
were subject to outside manipulations. For example, a randomized experiment is
one kind of manipulation that substitutes the outcome of a randomizing device to set
the value of a variable (for example, whether or not a particular new medication is
given to a patient who has agreed to participate in a drug trial) in place of the naturally
occurring mechanism that determines the variable’s value. In non-experimental settings,
biologists gather data about the gene activation levels in normally functioning systems
in order to understand which genes affect the activation levels of which other genes,
and to predict what the effects of manipulating the system to turn some genes on or
off would be. Epidemiologists gather data about dietary habits and life expectancy in
the general population and seek to find what dietary factors affect life expectancy and
predict the effects of advising people to change their diets. Finding answers to questions
about the mechanisms by which variables come to take on values, or predicting the
value of a variable after some other variable has been manipulated, is characteristic of
causal inference. If only non-experimental data are available, predicting the effects of
manipulations typically involves drawing samples from one probability density (in the
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SPIRTES

unmanipulated population) and making inferences about the values of a variable in a
population that has a different probability density (in the manipulated population).

The rapid spread of interest in the last three decades in principled methods of search
or estimation of causal relations has been driven in part by technological developments,
especially the changing nature of modern data collection and storage techniques, and
the increases in the processing power and storage capacities of computers. Statistics
books from 30 years ago often presented examples with fewer than 10 variables, in
domains where some background knowledge was plausible. In contrast, in new do-
mains such as climate research (where satellite data now provide daily quantities of
data unthinkable a few decades ago), fMRI brain imaging, and microarray measure-
ments of gene expression, the number of variables can range into the tens of thousands,
and there is often limited background knowledge to reduce the space of alternative
causal hypotheses. Even when experimental interventions are possible, performing the
many thousands of experiments that would be required to discover causal relationships
between thousands or tens of thousands of variables is often not practical. In such
domains, non-automated causal discovery techniques from sample data, or sample
data together with a limited number of experiments, appears to be hopeless, while
the availability of computers with increased processing power and storage capacity
allow for the practical implementation of computationally intensive automated search
algorithms over large search spaces.

The past 30 years has also seen a number of conceptual developments that are partial
solutions to these causal inference problems, particularly in the area of graphical causal
modeling. Sections 3 and 4 of this paper describe some of these developments: a variety
of well defined mathematical objects to represent causal relations (for example, directed
acyclic graphs); well defined connections between aspects of these objects and sample
data (for example, the Causal Markov and Causal Faithfulness Assumptions); ways to
compute those connections (for example, d-separation); and a theory of representation
and calculation of the effects of manipulations (for example, by breaking edges in a
graph); and search algorithms (for example, the PC algorithm). However, in many
domains, problems such as the large numbers of variables, small samples sizes, and
possible presence of unmeasured causes, remain serious impediments to practical
applications of these developments.

The articles in the Special Topic on Causality (containing articles from 2007 to 2009)
address these and other problems in making causal inferences. Although there are some
superficial similarities between traditional supervised machine learning problems and
causal inference (for example, both employ model search and feature selection, the
kinds of models employed overlap, some model scores can be used for both purposes),
these similarities can mask some very important differences between the two kinds
of problems. This introduction to the Special Topic on Causality provides a brief
introduction to graphical causal modeling, places the articles in a broader context,
and describes the differences between causal inference and ordinary machine learning
classification or prediction problems; it is not intended to provide a broad overview or
a tutorial surveying all methods of causal inference.

Section 2 describes the problem of causal inference in more detail, and differentiates
it from the typical machine learning supervised classification or prediction problem;
Section 3 describes several different kinds of causal models; Section 4 describes some
problems associated with search for causal models, and why algorithms appropriate for
the discovery of good classification or prediction models in machine learning are not
always appropriate for the discovery of good causal models; and Section 5 describes
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some major open problems in the field. The various articles in the Special Topic on
Causality are described throughout this article, depending upon which topic they
address.

2. Manipulating Versus Conditioning
This section will describe three different kinds of problems (one typical machine learning
or statistical problem, and two kinds of causal problems), and three different kinds of
probability densities (conditional, manipulated, and counterfactual) that are useful for
solving the problems.

2.1. Conditional Probabilities

Suppose that there is a population of individuals with the following random variables
at time t: rwt is the average number of glasses of red wine consumed per day in the 5
years prior to t, bmit is the body mass index of a person at time t, sext is the person’s
sex (0 = male, 1 = female) at time t, and hat is whether or not an individual had a heart
attack in the 5 years prior to t. Since sext is rarely time-dependent, it will be replaced
simply by sex.

Suppose an insurance company at time t wants to determine what rates to charge
an individual for health insurance who has rwt = 1, bmit = 25, and sex = 0, and that
this rate is partly based on the probability of the individual having a heart attack in
the next 5 years. This can be estimated by using the rate of heart attacks among the
subpopulation matching the subject, that is rwt = 1, bmit = 25, sex = 0. It is impossible
to measure the values of hat+5 at time t, because they haven’t occurred yet, but if the
probability density is stable across time, the density of hat+5 among the subset of the
population with rwt = 1, bmit = 25, and sex = 0 will be the same as the density of hat
among the subpopulation for which rwt–5 = 1, bmit–5 = 25, and sex = 0. The density in a
subpopulation is a conditional density, in this case P(hat | rwt–5 = 1, bmit–5 = 25, sex = 0).

Conditioning maps a given joint density, and a given subpopulation (typically
specified by a set of values for random variables) into a new density. The conditional
density is a function of the joint density over the random variables, and a set of values
for a set of random variables.1 The estimation of a conditional probability is often non-
trivial because the number of people with rwt–5 = 1, bmit–5 = 25, sex = 0 might be small.
A large part of statistics and machine learning is devoted to estimating conditional
probabilities from realistic sample sizes under a variety of assumptions.

If the insurance company is not attempting to change anyone’s behavior then the
question of whether drinking the right amount of red wine prevents heart attacks is
irrelevant to their concerns; the only relevant question is whether the amount of red
wine that someone drinks predicts heart attack rates. It is possible that people who drink
an average of between 1 and 2 glasses of red wine per day for 5 years have lowered
rates of heart attacks because of socio-economic factors that both cause average daily
consumption of red wine and other life-style factors that prevent heart attacks. But
even if moderate red wine consumption does not prevent heart attacks, the insurance
company can still use the conditional probability to help determine the rates to charge.

If X is a set of measured variables, the conditional probability density P(Y| X) is
not only useful for predicting future values of Y, it is also useful for predicting current
unmeasured values of Y, and for classifying individuals in cases where Y is categorical.

1. In order to avoid technicalities, I will assume that the set of values conditioned on do not have measure 0.
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2.2. Manipulated Probabilities

In contrast to the previous case, suppose that an epidemiologist is deciding whether
or not to recommend providing very strong incentives for adults to drink an average
of 1 to 2 glasses of red wine per day in order to prevent heart attacks. Suppose further
that if adopted the incentives will be very widely effective. The density of heart attacks
observationally conditional on drinking an average of 1 to 2 glasses of red wine per day
is not the density relevant to answering this question, and the question of whether
drinking red wine prevents heart attacks is crucial. Suppose drinking red wine does
not prevent heart attacks, but the heart attack rate is lower among moderate red wine
drinkers because some socio-economic variable causes both moderate red wine drinking
and other healthy life-styles choices that prevent heart attacks. In that case, after the
incentives to drink red wine are in place, the density of socioeconomic status among
red wine drinkers will be different than prior to the incentives, and the conditional
density of heart attacks among moderate red wine drinkers will not be the same after
the incentives were adopted as prior to their adoption. Thus, using observational
conditional densities to predict heart attacks after the incentives are in place will lead to
incorrect predictions.

The density that is relevant to determining whether or not to recommend drinking
a moderate amount of red wine is not the density of heart attacks among people who
have chosen to drink red wine (choice being the mechanism for determining red wine
consumption in the unmanipulated population), but the density of heart attacks among
people who would drink red wine after the incentives are in place. If the incentives
are very effective, the density of heart attacks among people who would drink red
wine after the incentives are in place is approximately equal to the density of heart
attacks among people who are assigned to drink moderate amounts of red wine in an
experimental study.

The density of heart attacks among people who have been assigned to drink red wine
(as opposed to those who have chosen to drink red wine, as is currently the case) is a
manipulated density, that results from taking action on a given population - it may or may
not be equal to any observational conditional density, depending upon what the causal
relations between variables are. Manipulated probability densities are the appropriate
probability densities to use when making predictions about the effects of taking actions
(“manipulating” or “doing”) on a given population (for example, assigning red wine
drinking), rather than observing (“seeing”) the values of given variables. Manipulated
probabilities are the probabilities that are implicitly used in decision theory, where the
different actions under consideration are manipulations.2

A simple form of manipulation specifies what new density P’ is assigned to some
variable in a population at a given time. For example, forcing everyone in an (adult)
population to drink an average of 1 glass of red wine daily from t–10 to t–5, assigns
P’(rwt–5 = 1) = 1. (Since rwt–5 measures red wine drinking for the past 5 years, an
intervention on rwt–5 begins at t–10.) After this density has been assigned, there is a
resulting joint density for the random variables at time t, denoted by P(sex, bmit-5, hat-5,
rwt-5, bmit, hat, rwt || P’(rwt–5 = 1) = 1), where the double bar indicates the density
that has been assigned to rwt–5, in this case that everyone has been assigned the value

2. The use of manipulated probability densities in decision theory is often not explicit. The assumption that
the density of states of nature are independent of the actions taken (act-state independence) is one way to
ensure that the manipulated densities that are needed are equal to observed conditional densities that
can be measured.
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rwt–5 = 1.3 This is in contrast to the conditional density P(sex, bmit-5, hat-5, rwt-5, bmit,
hat, rwt | rwt–5 = 1), which is the density of the variables in the subpopulation where
rwt–5 = 1 because people have been observed to drink that amount of red wine, as in the
unmanipulated population.

P(sex, bmit-5, hat-5, rwt-5, bmit, hat, rwt || P’(rwt–5 = 1) = 1) is a density, so it is possible
to form marginal and conditional probability densities from it. For example, P(hat |
bmit–5 = 25 || P’(rwt–5 = 1) = 1) is the probability of having had a heart attack between
t–5 and t among people who have a bmi of 25 at t–5, everyone having been assigned
to drink an average of 1 glass of red wine daily between t–10 and t–5. In this paper, in
order to simplify the exposition, it will be assumed that all attempted manipulations
are successful; that is, if P’(rwt–5 = 1) = x then P(rwt–5 = 1 || P’(rwt–5 = 1) = x) = x (that
is, if rwt–5 is manipulated to have value 1 with probability x, then in the manipulated
population, rwt–5 has value 1 with probability x.) For example, if it is assumed that
P’(rwt–5 = 1) = 1 then P(rwt–5 = 1 || P’(rwt–5 = 1) = 1) = 1, that is if everyone has been
assigned to drink an average of 1 glass of red wine per day for 5 years (denoted P’(rwt–5
= 1) = 1), that everyone has done so.

In a randomized trial, a manipulation could set P’(rwt–5 = 1) = 0.5 and P’(rwt–5 = 0)
= 0.5, in which case the resulting density is P(sex, bmit-5, hat-5, rwt-5, bmit, hat, rwt ||
{P’(rwt–5 = 1) = 0.5, P’(rwt–5 = 0) = 0.5}).

In more complex manipulations, different probabilities can be assigned to different
subpopulations. For example, the amount of red wine someone is assigned to drink
could be based on sex: P’(rwt–5 = 0 | sex = 0) = 0.25, P’(rwt–5 = 1 | sex = 0) = 0.75, P’(rwt–5
= 0 | sex = 1) = 0. 5, P’(rwt-5 = 2 | sex = 1) = 0.5. The resulting density is P(sex, bmit-5, hat-5,
rwt-5, bmit, hat, rwt || {P’(rwt–5 = 0 | sex = 0) = 0.25, P’(rwt–5 = 1 | sex = 0) = 0.75, P’(rwt–5
= 0 | sex = 1) = 0.5, P’(rwt-5 = 2 | sex = 1) = 0.5}). In general, which manipulations are
performed on which subpopulations can be a function both of the values of various
random variables, and of what other past manipulations have been performed.

In many cases the values of some variables in the pre-manipulation density are stable,
and the temporal indices on those variables are omitted. Similarly, if it is assumed that
variables in the post-manipulation population eventually stabilize to fixed values, the
time indices of those variables are omitted in the post-manipulation density, and the
time-independent variables refer to the stable values. Both of these kinds of omissions
of time indices are illustrated by the use of sex in the example.

In contrast to conditional probabilities, which can be estimated from samples from
a population, typically the gold standard for estimating manipulated densities is an
experiment, often a randomized trial. However, in many cases experiments are too
expensive, too difficult, or not ethical to carry out. This raises the question of what can
be determined about manipulated probability densities from samples from a population,
possibly in combination with a limited number of randomized trials. The problem is
even more difficult because the inference is made from a set of measured random
variables O from samples that might not contain variables that are causes of multiple
variables in O.

With causal inference, as with statistical inference, it is generally the case that in
order to make inference tractable both computationally and statistically, simplifying
assumptions are made. One kind of simplifying assumption common to both statistical
and causal inference is the assumption that the population distribution lies in some
parametric family (for example, Gaussian) or that relationships between variables are

3. There is no completely standard notation for denoting a manipulated density. This notation is adapted
from Lauritzen (1999).
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exactly linear. An example of a simplifying assumption unique to causal inference is
that multiple causal mechanisms relating variables do not exactly cancel (Section 3). So,
although the goal of Problem 2 is stated as finding a consistent estimate of a manipulated
density, it is more realistic to state the goal as finding a sufficiently good estimate of a
manipulated density when the sample size is large enough.

Problem 2 is usually broken into two parts: finding a set of causal models from
sample data, some manipulations (experiments) and background assumptions (Sec-
tions 3 and 4), and predicting the effects of a manipulation from a set of causal models
(Section 3). Here, a “causal model” (Section 3) specifies for each possible manipulation
that can be performed on the population (including the manipulation that does nothing
to a population) a post-manipulation density over a given set of variables. In some cases,
the inferred causal models may contain unmeasured variables as well as measured
variables.

In analogy to the goals of statistical modeling, it would be more accurate but much
more vague to state that the goal in Problem 3 is to find a useful (for example, sufficiently
simple, sufficiently accurate, etc.) causal model, rather than a true causal model.

The reason that the stated goal for the output of Problem 3 is a set of causal models,
is that it is generally not possible to reliably find a true causal model given the inputs.
Furthermore, in contrast to predictive models, even if a true causal model can be inferred
from a sample from the unmanipulated population, it generally cannot be validated
on a sample from the unmanipulated population, because a causal model contains
predictions about a manipulated population that might not actually exist. This has been
a serious impediment to the improvement of algorithms for constructing causal models,
because it makes evaluating the performance of such algorithms difficult. It is possible
to evaluate causal inference algorithms on simulated data, to employ background
knowledge to check the performance of algorithms, and to conduct limited (due to
expense, time, and ethical constraints) experiments, but these serve as only partial
checks how algorithms perform on real data in a wide variety of domains. For examples,
see the Causality Challenge (http://www.causality.inf.ethz.ch/challenge.
php).

In the Special Topic on Causality in this journal, Shpitser and Pearl (2008) and Zhang
(2008) address Problem 4. Bromberg and Margaritis (2009), Pellet and Elisseeff (2008),
He and Geng (2009), and (indirectly) Kang and Tian (2009), Aliferis et al. (2010a), and
Aliferis et al. (2010b) address Problem 3. Both the problems and the papers will be
described in more detail in subsequent sections.

2.3. Effects of Counterfactual Manipulations

There are cases in ethics, the law, and epidemiology in which there are questions about
applying a manipulation to a subpopulation whose membership cannot be measured
at the time that the manipulation is applied. For example, epidemiologists sometimes
want to know what would the effect on heart attacks have been, if a manipulation such
as assigning moderate drinking of red wine from t–10 to t–5, had been applied to the
subpopulation which has not moderately drunk red wine from t–10 to t–5. When the
manipulation under consideration assigns a value to a random variable to a subpopula-
tion with a different actual value of the random variable, the probability in question is a
counterfactual probability. If the subpopulation that did not moderately drink red wine
between t–10 and t–5 differs systematically from the rest of the population with respect
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to causes of heart attacks, the subpopulations’ response to being assigned to drink red
wine would be different than the rest of the population.

Questions about counterfactual probabilities arise naturally in assigning blame in
ethics or in the law. For example, the question of whether tobacco companies were
negligent in the case of someone who smoked and developed lung cancer depends
upon the probability that person would not have gotten lung cancer if they had not
smoked.

A counterfactual probability cannot be estimated directly from a randomized ex-
periment, because it is impossible to perform a randomized experiment that assigns
moderate red wine drinking between t–10 to t–5 to a group of people who already have
not been moderate wine drinkers between t–10 and t–5. This raises the question of how
counterfactual probabilities can be estimated. One general approach is to assume that
the value of red wine drinking between t–10 and t–5 contains information about hidden
causes of red wine drinking that are also causes of heart attacks.

In the Special Topic on Causality in this journal, Shpitser and Pearl (2008) describes
a solution to Problem 5 in the case where the causal graph is known, but may contain
unmeasured common causes.

3. Causal Models
This section describes several different kinds of commonly used causal models, and
how to use them to calculate the effects of manipulations. The next section describes
search algorithms for discovering causal models.

A (parametric) statistical model (with free parameters) is a set of probability densities
that can be mapped into a single density by specifying the values of the free parameters
(for example, a family of multivariate Gaussian densities).4 For example, a Hidden
Markov Model with a fixed structure but free parameters is a statistical model that
represents a certain set of probability densities. A causal model with free parameters also
specifies a set of probability densities over a given set of variables; however, in addition,
for each manipulation that can be performed on the population it also specifies a set of
post-manipulation probability densities over a given set of variables. A causal model
with free parameters together with the values of the free parameters is a causal model
with fixed parameters; a causal model with fixed parameters is mapped to a single density
given a specification of a manipulation.

Often, a causal model is specified in two parts: a statistical model, and a causal
graph that describes the causal relations between variables. The most frequently used
causal models belong to two broad families: (1) causal Bayesian networks, (2) structural
equation models. Causal Bayesian networks (and related models), specify a density
for a variable as a function of the values of its causes. Structural equation models
(SEMs) specify the value of a variable as a function of the values of its causes (typically
including some unmeasured noise terms.) However, not surprisingly, the two kinds of
models are closely linked, as explained in Section 3.2.

The statistical setup for both causal Bayesian networks and structural equation
models is a standard one. There is a population of units, where depending upon the
problem, the units could be people, cities, cells, genes, etc. It is assumed that there is
a density over the population, which assigns probabilities to each measurable subset

4. In the nomenclature of machine learning, what this article calls a “model (with free parameters)” is often
called a “model family” or “learning machine” and a “model (with fixed parameter values)” is often
called a “model instance” or “model”.
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Problem 1: Predictive Modeling
Input: Samples from a density P(O) (where O is a set of observed random variables),
and two sets of variables X, Y ✓ O.
Output: A consistent, efficient estimate of P(Y | X).

Problem 2: Causal Predictive Modeling
Input: Samples from a population with density P(O), and a (possibly empty) set of
manipulated densities P(O || M1), . . . P(O || Mn), a manipulation M, and sets X, Y ✓
O.
Output: A consistent, efficient estimate of P(Y | X || M) if possible, and an output of
“not possible” otherwise.

Problem 3: Constructing Causal Models from Sample Data
Input: Samples from a population with density P(O), a (possibly empty) set of manipu-
lated densities P(O||M1), . . . P(O||Mn), and background assumptions.
Output: A set of causal models that is as small as possible, and contains a true causal
model that contains at least the variables in O.

Problem 4: Predicting the Effects of Manipulations from Causal Models
Input: An unmanipulated density P(O), a set C of causal models that contain at least
the variables in O, a manipulation M, and sets X, Y ✓ O.
Output: A function g such that P(Y | X || M) = g(P(O), C, M, X, Y) if one exists, and an
output of “no function” otherwise.

Problem 5: Counterfactual predictive modeling
Input: An unmanipulated density P(O), a set C of causal models that contain at least
the variables in O, a counterfactual manipulation M, and sets X, Y ✓ O.
Output: A function g such that P(Y | X || M) = g(P(O), C, M, X, Y) if one exists, and an
output of “no function” otherwise.
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(event) of the population. Each unit also has a set of properties at a time, where the
properties are represented by random variables, which are functions from the units to
real numbers. The following sections describe the causal part of the model.

3.1. Causal Bayesian Networks

A Bayesian network is a pair hG, Pi, where G is a directed acyclic graph (DAG) whose
vertices are random variables, and P is a density such that each variable V in G is
independent of variables that are neither descendants nor parents of V in G,5 conditional
on the parents of V in G. In this case P is said to satisfy the local directed Markov condition
for G.

There are two conditions that are equivalent to the local directed Markov condi-
tion described below that are useful in causal inference: the global directed Markov
condition, and factorization according to G, both of which are described next.

The conditional independence relations specified by satisfying the local directed
Markov condition for DAG G might also entail other conditional independence rela-
tions. There is a fast algorithm for determining from G whether a given conditional
independence relation is entailed by satisfying the local directed Markov condition for
G, that uses the d-separation relation, a relation among the vertices of G. A variable
B is a collider (v-structure) on a path U if and only if U contains a subpath A! B C.
For disjoint sets of vertices X, Y, and Z in a DAG G, X is d-connected to Y given Z if and
only if there is an acyclic path U between some member X of X, and some member Y
of Y, such that every collider on U is either a member of Z or an ancestor of a member
of Z, and every non-collider on U is not in Z.6 For disjoint sets of vertices, X, Y, and
Z, X is d-separated from Y given Z if and only if X is not d-connected to Y given Z. X
is d-separated from Y conditional on Z in DAG G if and only if X is independent of Y
conditional on Z in every density that satisfies the local directed Markov condition for G
(Pearl, 1988). If X is independent of Y conditional on Z in P whenever X is d-separated
from Y conditional on Z in G, then P satisfies the global directed Markov condition for G.

For the set of random variables V in G, a density P(V) factors according to DAG G iff

P(V) = ’
V2V

P(V | Parents(V, G))

where Parents(V,G) is the set of parents of V in G.
The local directed Markov condition, the global directed Markov condition, and

factorization according to a DAG G are all equivalent under mild regularity assumptions
(Lauritzen et al., 1990).

A DAG can also be used to represent causal relations between variables. A is a
direct cause of B relative to a set of variables V in a population when there exist two
manipulations of V\{B} (that is, all the variables in V, except B, are manipulated to
specific values) that differ only in the values assigned to A and that produce different
probability densities of B. A causal DAG G for a population contains an edge A! B iff
A is a direct cause of B in the specified population.

In order to use samples from probability densities to make causal inferences, some
assumptions relating causal relations to probability densities need to be made. The

5. X is a parent of Y if the graph contains the edge X! Y. Y is a descendant of X if there is a directed path
from X to Y.

6. For both the d-separation relation and the independence relation, if X contains a single vertex X, then
X will be written instead of {X}, and similarly for Y and Z. D-connection can also be defined for cyclic
graphs and graphs with double-headed arrows (Spirtes, 1995; Koster, 1999; Cox and Wermuth, 1996).
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following Causal Markov Assumption is commonly made, if only implicitly. A set of
variables V is causally sufficient iff there is no variable C not in V that is a direct cause of
more than one variable in V (relative to V [ {C}).

Causal Markov Assumption: For a causally sufficient set of variables V in a popu-
lation N with density P(V), P(V) satisfies the local directed Markov condition for the
causal DAG of N.

Under the Causal Markov Assumption, in a causal Bayesian network a manipulation
of X to P’(X | Y) (where Y is assumed to contain only non-descendants of X in a causal
DAG G) simply replaces the term P(X | Parents(X,G)) in the factorization of the joint
density by the manipulated density P’(X | Y):

P(V||P0(X | Y)) = P0(X | Y) ’
V2V\{X}

P(V | Parents(V, G)).

This is called the manipulation rule. The importance of the manipulation rule is that
if the causal DAG is known, and the unmanipulated density can be estimated from a
sample, it allows the prediction of the effect of an unobserved manipulation. Hence the
manipulation rule is the solution to Problem 4, in the special case where the observed
variables are causally sufficient, and the unique correct causal DAG is known.

The solution to Problem 4 is more difficult when the set of observed variables is
not causally sufficient. There are sufficient and (almost) necessary rules for determin-
ing which manipulated conditional probability densities are invariant under a given
manipulation (that is, which densities are the same in the unmanipulated population
and the manipulated population) and rules for how to express some non-invariant
conditional densities as functions of observed densities (Spirtes et al., 1993). Pearl’s
do-calculus extended the sufficient and (almost) necessary conditions for determining
which conditional densities were invariant from single manipulations to sequences
of manipulations, and showed how a broader range of non-invariant manipulated
densities could be expressed in terms of observed densities (Pearl, 1995). In the Special
Topic on Causality of this journal, Shpitser and Pearl (2008) describe an algorithm that
has recently been developed and show that it is a complete solution to Problem 4 in the
special case where a unique causal DAG is known (Shpitser and Pearl, 2006a,b; Huang
and Valtorta, 2006).

Calculation of the effect of a counterfactual manipulation when causal sufficiency
does not hold among the observed variables is a complex operation that requires several
copies of the causal graph in order to keep track both of the actual value of the variable
being manipulated, and the counterfactual value of the variable being manipulated. In
the Special Topic on Causality, Shpitser and Pearl (2008) describe for the first time an
algorithm that is a complete solution to Problem 5 in the special case where a unique
causal DAG is known, even if the set of observed variables is not causally sufficient.

3.2. Structural Equation Models (SEMs)

Structural equation models are widely used in the social sciences (Bollen, 1989) and
in some natural sciences. The set of random variables in a structural equation model
(SEM) can be divided into two subsets, the “error variables” or “error terms,” and the
substantive variables (for which there is no standard terminology in the literature).
The substantive variables are the variables of interest, but they are not necessarily all
observed. Which variables are substantive, and which variables are error terms can
vary with the analysis of the problem. Each substantive variable is a function of other
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substantive variables and a unique error term. The joint density over the substantive
variables is a function of the density over the error terms and of the functions relating
each variable to its causes. There is an edge A! B in the graph (“path diagram”) of
a SEM when A is a non-trivial argument in the function for B. A manipulation of a
variable B to a constant c is represented in a SEM by replacing the equation for B with B
= c.

In general, the graph of a SEM may have cycles (that is, directed paths from a
variable to itself), and may explicitly include error terms with double-headed arrows
between them to represent that the error terms are dependent (for example, #A $ #B);
if no such double-headed edge exists in the graph, the error terms are assumed to be
independent of each other. An error term is not explicitly included in the graph unless
it is the endpoint of a double-headed arrow; otherwise, an error term occurs in the
SEM model, but is not shown in the graph. If the graph has no directed cycles and no
double-headed arrows, then the graph is a DAG and the SEM is said to be recursive;
otherwise it is said to be non-recursive.

In a recursive SEM, if the marginal density over the substantive variables is P(V),
then hG, P(V)i is a Bayesian network (Spirtes et al., 2001; Pearl, 2000); for short, say that
a SEM with an associated graph that is a DAG is a Bayesian network (although the SEM
contains some extra structure in that it entails that any non-determinism among the
substantive variables is only due to the marginalization of the error terms.)

Non-recursive SEMs are of interest because they allow for the representation of
feedback (with cycles) or unmeasured common causes (represented by double-headed
arrows.) In the case of linear non-recursive SEMs, it is still possible to deduce the
conditional independencies (or more generally the zero partial correlations) entailed for
all Gaussian SEMs (or more generally linear SEMs) from the graph G of a non-recursive
linear SEM using a minor modification of the d-separation relation (Koster, 1999; Spirtes,
1995).

For both theoretical interest and for the purposes of efficient (constraint-based)
search of the space of linear non-recursive SEMs without cycles (Section 4.2), it is of
interest to find some proper subset of the set of all conditional independence relations
entailed by the (modified) d-separation which entail all the rest, that is, a modified
form of the local directed Markov condition. (In contrast to the recursive case, where
such a subset is given by the independencies entailed by the local directed Markov
condition, in the non-recursive case SEMs do not generally satisfy the local directed
Markov condition). One such subset of conditional independencies was described by
Richardson (2003). In this special issue, the paper by Kang and Tian (2009) describes
another such subset, which is often smaller than the one described by Richardson, and
hence might be more useful for the purposes of search.

4. Model Search
Traditionally, there have been a number of different approaches to causal discovery. The
gold standard of causal discovery has typically been to perform planned or randomized
experiments (Fisher, 1971). There are obvious practical and ethical considerations that
limit the application of experiments in many instances, particularly on human beings.
Moreover, recent data collection techniques and causal inference problems raise several
practical difficulties regarding the number of experiments that need to be performed in
order to answer all of the outstanding questions.
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In the absence of experiments, in practice (particularly in the social sciences) search
for causal models is often informal, and based on a combination of background as-
sumptions about causal relations together with statistical tests of the causal models. If
a model is rejected by a statistical test, the researcher looks for a modification of the
original hypothesized model that will pass a statistical test. The search typically halts
when a model that is compatible with background knowledge does not fail a statistical
test (Rodgers and Maranto, 1989). Often, the final model is presented, and the search
itself is not described. Informal searches of this kind fail to account for multiple testing
problems, and can potentially lead to severe overfitting problems. The reliability of
such a search depends upon the correctness of the background assumptions, and the
extent to which the space of alternatives compatible with the background assumptions
was searched. Furthermore, unless the background assumptions are very extensive, or
the number of variables is tiny, it is not feasible to estimate and test all of the models
compatible with background assumptions. This is further complicated by the fact that,
as explained below, for reliable causal inference it is not sufficient to find one model
that passes a statistical test; instead it is necessary to find all such models. Recent
developments in automated model search have attempted to address these problems
with traditional methods of search.

There are several major differences between model search in the case of predicting
the unmanipulated value of Y, and model search in the case of predicting the post-
manipulation value of Y, based on the different uses of statistical models and causal
models described in the following section.

4.1. Underdetermination of Causal Models by Data

Causal model (with fixed parameter) search is often broken into two parts: search for a
causal graph, and estimation of the free parameters from sample data and the causal
graph. (In some cases, the prediction of the effects of manipulations does not require
estimating all of the free parameters, but does require estimating functionals of the
free parameters.) Generally, the estimation of the free parameters employs standard
statistical methods. For example, in a linear SEM with a recursive DAG, no unmeasured
variables, and Gaussian errors, the maximum likelihood estimate of the edge coefficients
is given by regressing each variable on its parents in the DAG. This section concentrates
on the search for causal graphs, because the search for causal graphs is significantly
different than the search for graphs that are to be used only as statistical models.

In causal model search based on unmanipulated data, if no preference for simpler
models over more complex models is made, then the causal models are underdeter-
mined to such an extent that useful causal inference is impossible for many important
parametric families (for example, Gaussian or multinomial) or unrestricted probability
densities. There are a variety of simplicity assumptions that select simpler models over
more complex models that can be made. In the case of search based upon maximizing
some model score given sample data (such as the Bayesian Information Criterion), the
simplicity assumption is a penalty for complexity built into the score (Chickering, 2002).
For search that is not based upon model scores, the following simplicity assumption is
often, if implicitly made:

Causal Faithfulness Assumption: For a causally sufficient set of variables V in a
population N, every conditional independence relation true in the density over V is
entailed by the local directed Markov condition for the causal DAG of N.

12



INTRODUCTION TO CAUSAL INFERENCE

There are several other versions of the assumption that are considerably weaker
than the one stated here (and more intuitively justifiable) but still permit reliable causal
inference, at the cost of requiring more complicated algorithms with more complex and
somewhat less informative output (Ramsey et al., 2006).

However, even given the Causal Markov and Faithfulness Assumptions and the
assumption that the observed variables are causally sufficient, the true causal model is
underdetermined by the available evidence and background assumptions, because of
the hierarchy of equivalence relations described below.

Two different DAGs G and G’ that have the same set of d-separation relations are
said to be Markov (conditional independence, d-separation) equivalent.

For each DAG G, there is a set P of probability densities that satisfy the local directed
Markov condition for G, denoted P(G) that are said to be represented by G. In many cases,
some subset of P that belongs to a parametric or semi-parametric family F is of interest;
for example, the Gaussian subset of P. Two DAGs G and G’ are statistically equivalent
with respect to F iff P(G) \ F = P(G’) \ F. Two DAGs that are statistically equivalent with
respect to F are the same statistical model with respect to F.

Two DAGs are causally equivalent (with respect to a family of densities F) iff they
represent the same set of probability densities (in family F) for every manipulation
(including the null manipulation.) It is easy to see that no pair of DAGs that differ in
their structure can be causally equivalent.

As an example, A! B C D and A! B C! D are Markov equivalent, but
not causally equivalent. They are statistically equivalent with respect to Gaussian SEMs,
but they are not statistically equivalent with respect to linear SEMs with at most one
Gaussian error term, and no determinism among the substantive variables (Shimizu
et al., 2006).7

In the absence of further information (for example, samples from manipulated
densities or background domain knowledge) all of the DAGs in a statistical equivalence
class fit the data and the background assumptions equally well, and are equally simple.
Hence standard scores such as Bayesian Information Criterion, Minimum Description
Length, chi-squared statistics, etc. all produce equal scores for the alternative DAGs in
a statistical equivalence class for all data sets -- in general, there is no one DAG with the
highest score, but rather, there is a set of DAGs with equally high scores. Furthermore,
for computational and statistical reasons, it is sometimes easier to search for the Markov
equivalence class of DAGs, even if it is known that the statistical equivalence class is a
proper subset of the Markov equivalence class.

If the DAG is to be used to estimate observational (not manipulated) conditional
densities, this is not a problem, because all of the statistically equivalent models will
produce the same estimate. However, if the DAG is to be used to predict the effects of
manipulations, then the different models will make different predictions about at least
some manipulations. So in the case of causal modeling, unlike observational statistical
modeling, it is not enough to simply output one arbitrarily selected DAG from a set
of highest scoring DAGs -- it is important to output the entire set, so that all of the
different answers given by the different models can be taken into account. Once the set
of highest scoring DAGs is found, the problem of dealing with the underdetermination
of the effects of manipulations must also be dealt with. These problems are described in
more detail in the next two subsections.

7. In a linear SEM it is assumed that each variable is a linear function of its causal parents and a unique
error term; in a Gaussian SEM it is assumed in addition that the errors term are Gaussian.

13



SPIRTES

If the assumption of causal sufficiency of the observed variables is not made, all three
kinds of equivalence classes have corresponding equivalence classes over the set of
observed variables, and the problem of causal underdetermination becomes much more
severe. For example, for a given set of observed variables O, the Markov equivalence
class relative to O consists of the set of all DAGs (possibly containing variables not in
O) that have the same set of d-separation relations among the variables in O; this might
be much larger than the Markov equivalence class that consists of the set of DAGs
(containing only variables in O) that have the same set of d-separation relations among
the variables in O.

4.2. Constraint-based Search

First, the problem where only sample data from the unmanipulated population density
is available will be considered. The number of DAGs grows super-exponentially with
the number of vertices, so even for modest numbers of variables it is not possible to
examine each DAG to determine whether it is compatible with the population density
given the Causal Markov and Faithfulness Assumptions. Constraint based search algo-
rithms, given as input an oracle that returns answers about conditional independence in
the population and optional background knowledge about orientations of edges, return
a representation of a Markov equivalence class (or if there is background knowledge, a
subset of a Markov equivalence class) on the basis of oracle queries. One example of
a constraint-based algorithm is the PC algorithm (Spirtes and Glymour, 1991). If the
oracle always gives correct answers, and the Causal Markov and Causal Faithfulness
Assumptions hold, then the PC algorithm always outputs a Markov equivalence class
that contains the true causal model, even though the algorithm does not check each
directed acyclic graph. In the worse case, it is exponential in the number of variables,
but for sparse graphs it can run on hundreds of variables in an acceptable amount of
time (Spirtes and Glymour, 1991; Spirtes et al., 1993; Meek, 1995). Kalisch and Buhlmann
(2007) showed that under a strengthened version of the Causal Faithfulness Assumption,
the PC algorithm is uniformly consistent for very high-dimensional, sparse DAGs where
the number of nodes is allowed to quickly grow with sample size n, as fast as O(na) for
any 0 < a < •. In practice, the judgments about conditional independence are made by
performing (fallible) statistical tests. A number of other variants of constraint-based
algorithms have been proposed that improve on either the accuracy or speed of the PC
algorithm, or to weaken the assumptions under which it is guaranteed to be correct.

There are both advantages and disadvantages of constraint based searches as com-
pared to either a Bayesian approach to the problem of causal discovery (Heckerman
and Geiger, 1995), or an approach based upon assigning a score to each causal model
for a given data set (for example, Bayesian information criterion) and searching for the
set of causal models that maximize the score (Chickering, 2002).

The disadvantages of constraint-based search include that the output of constraint-
based searches give no indication of how much better the best set of output models
is compared to the next best set of models; at small sample sizes tests of conditional
independence have low power, particularly when many variables are conditioned on;
mistakes made early in a constraint based searches can lead to later mistakes; and if
the only constraints used are conditional independence constraints, as is often but not
always the case, then at best the search outputs a Markov equivalence class, rather
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than a statistical equivalence class.8 In addition, constraint-based methods have the
problem of multiple testing. If no control is made for multiple testing, the models may
overfit the data. However, adjustments to control for overfitting, such as the Bonferroni
correction, are often too conservative and as a result the corrected statistical tests are
not very powerful. The issue of multiple testing appears in Bayesian approaches to
causal discovery as multiple causal model scoring. The issue is handled automatically
by Bayesian methods by their use of prior probabilities (Heckerman et al., 1999).

The advantages of constraint-based algorithms are that they are easier to generalize
to the case where the observed variables are not causally sufficient, they are generally
fast, and given recent developments of non-parametric conditional independence tests,
they are applicable without parametric assumptions (Tillman et al., 2009).

In the Special Topic on Causation, Bromberg and Margaritis (2009) models the
problem of low power of statistical tests as a knowledge base containing a set of
independence facts related through conditional independence axioms that may contain
errors due to errors in the tests of conditional independence. The inconsistencies are
resolved through the use of a defeasible logic called argumentation that is augmented
with a preference function. The logic is used to reason about and possibly correct errors
in these tests. Experimental evaluation shows significant improvements in the accuracy
of argumentative over purely statistical tests, and improvements on the accuracy of
causal structure discovery from sampled data from randomly generated causal models
and on real-world data sets.

The contributions to the Special Topic on Causality by Aliferis et al. (2010a) and
Aliferis et al. (2010b) show that a general framework for localized causal membership
structure learning is very accurate even in small sample situations and can thus be used
as a first step for efficient global structure learning, as well as accurate prediction and
feature selection. It also provides extensive empirical comparisons of state of the art
causal learning methods with non-causal methods for the above tasks. In addition, they
show that unexpectedly some constraint-based methods are self-correcting with respect
to multiple testing, and this may constitute a new methodology for control of multiple
statistical testing.

Another problem with constraint-based algorithms is to make them feasible for even
higher dimensional data sets. In the Special Topic on Causality, Pellet and Elisseeff
(2008) link the causal model search problem to a classic machine learning prediction
problem. They show how a generic feature-selection algorithm returning strongly
relevant variables can be turned into a causal model search algorithm. Under the Causal
Markov and Causal Faithfulness Assumptions, the smallest set of features relevant to
predicting a vertex V is the set of parents, children, and parents of children of V. Ideally,
the variables returned by a feature-selection algorithm identify those features of the
causal graph. Then further processing removes the extra edges (between V and those
variables that are parents of children of V but that are neither parents nor children of V)
and provides as many orientations as possible. This algorithm is more accurate than PC
and other constraint-based algorithms, and has the advantage that it can use arbitrary
feature-selection techniques developed for high-dimensional data sets under different
assumptions to provide causal model learning algorithms for high-dimensional data
under those assumptions.

8. For searches that use non-conditional independence constraints see Silva et al. (2006) and Shpitser et al.
(2009).
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4.3. Dealing with Underdetermination

One possibility for dealing with the underdetermination of causal models by observa-
tional data is to strengthen the available information by sampling from manipulated
densities, or in other words, performing experiments.

In the Special Topic on Causality, He and Geng (2009) propose an algorithm for
distinguishing between members of a Markov equivalence class by a set of optimally
designed experiments. They consider several kinds of experiments, and both a batch-
design and a sequential design to minimize the required number of manipulations
using both minimax and maximum entropy criteria.

If some members of the Markov equivalence class cannot be eliminated through
experimentation, there are several different approaches to using the entire Markov
equivalence class to predict the effects of manipulations. (This is Problem 4 in the case
where the predictions are made from a set of causal models C rather than a single causal
model, and the set of observed variables may not be causally sufficient.) One possibility
is to predict an interval for the potential effects of the manipulated quantity, instead of a
point value. Theoretically, an interval could be obtained by calculating the manipulated
quantity for each DAG G in the Markov equivalence class, and taking the lower and
upper limits. Depending upon how many different SEMs there are in the output, this is
sometimes computationally feasible (Maathuis et al., 2009).

A second possibility is to use a Bayesian approach, and perform model averaging.
That is, a prior probability is placed over each causal DAG G, and a posterior probability
for each G is calculated. Then the manipulated quantity is calculated for each G in the
output of the search, and the results are averaged together. This requires putting a prior
probability over each graph; in addition, if there are many graphs in the output, then
this may not be computationally feasible (Hoeting et al., 1999).

A third alternative is to have an algorithm that determines whether each DAG in
the Markov equivalence class predicts the same effect of a given manipulation. For
example, if the Markov equivalence class contains A! B C! D and A! B C
 D, then the two causal DAGs disagree about the effect of manipulating D on C, but
agree about the effect of manipulating A on B. Even when the observed variables are
not causally sufficient there is an algorithm (the Prediction Algorithm) for determining
when all of the DAGs in a Markov equivalence class relative to the observed variables
agree about the effect of a particular manipulation, and returns the common value of
the predicted manipulation when they do all agree (Spirtes et al., 1993). However, this
algorithm is known to be correct but incomplete (that is, it sometimes returns “don’t
know” even when all models in the equivalence class agree on the effect of a particular
manipulation). In this special issue, Zhang (2008) provides a modified version of Pearl’s
do-calculus that is more complete than the Prediction algorithm.

5. Open Questions
The following is an overview of important problems that remain in the domain of causal
modeling.

1. Matching causal models and search algorithms to causal problems. There are a
wide variety of causal models that have been employed in different disciplines.
What new models and search algorithms are appropriate for different domains
such as feedback or reversible systems (Richardson, 1996)? What search algorithms
are appropriate for different combinations of kinds of data, such as experimental
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and observational data (Eberhardt et al., 2005; Cooper and Yoo, 1999; Yoo and
Cooper, 2004; He and Geng, 2009)? What search algorithms are appropriate for
different kinds of background knowledge, and different families of probability
densities?

2. Model selection, and prior knowledge. What kind of scores can be used to best
evaluate causal models from various kinds of data? In a related vein, what
are good families of prior densities that capture various kinds of background
knowledge?

3. Improve efficiency and efficacy of search algorithms. How can search algorithms
be improved to incorporate different kinds of background knowledge, search over
different classes of causal models, run faster, handle more variables and larger
sample sizes, be more reliable at small sample sizes, and produce output that is as
informative as possible?

4. Characterization of search algorithms. For causal search algorithms, what are their
semantic and syntactic properties (for example, soundness, consistency, maximum
informativeness)? What are their statistical properties (pointwise consistency,
uniform consistency, sample efficiency)?9 What are their computational properties
(computational complexity)?

5. Adding or relaxing simplifying assumptions. What plausible alternatives are there
to the Causal Markov and Faithfulness Assumptions? Are there other assumptions
that might be weaker and hold in more domains and applications without much
loss about what can be reliably inferred? Are there stronger assumptions that
are plausible for some domains that might allow for stronger causal inferences?
How often are these assumptions violated, and how much do violations of these
assumptions lead to incorrect inferences? Can various statistical assumptions be
relaxed? For example, what if the sample selection process is not i.i.d., but may be
causally affected by variables of interest?

6. Derivation of consequences from causal graph and unmanipulated densities. Sh-
pitser and Pearl have given complete algorithms for deriving the consequences of
various causal models with hidden common causes in terms of the unmanipulated
density and the given manipulation (Shpitser and Pearl, 2008). Partial extensions
of these results to deriving consequences from sets of causal models have been
given (Zhang, 2008); are there further extensions to derivations from sets of causal
models?

7. New constraints for structure learning. The Causal Markov and Causal Faithful-
ness Assumptions, in addition to entailing conditional independence constraints
on densities, also entail other constraints on densities. For example, in a linear
SEM, if an unobserved variable T causes observed variables X1, X2, X3, X4, and
there are no other causal relations among these variables, then there are no entailed
conditional independence relations among just the observed variables X1, X2, X3,

9. Intuitively, an estimator is pointwise consistent when as the sample size increases without limit, regardless
of the true value, with probability 1 the absolute value of the difference between the estimator and the
true value approaches zero. An estimator is uniformly consistent if for any given e and d, there is a
single sample size such that in the worst case, the probability is less than e that the absolute value of the
difference between the estimator and the true value is greater than d. For precise definitions in the causal
context, see Robins et al. (2003).
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X4. However, the SEM entails cov(X1,X2) cov(X3,X4) = cov(X1,X3) cov(X2,X4)
= cov(X1,X4) cov(X2,X3) regardless of the values of the free parameters. This
information is useful in finding causal structure with unmeasured variables. In
addition, there are sometimes constraints that are not conditional independence
constraints on the density of the observed variables that do not depend upon any
parametric assumptions (Shpitser et al., 2009). How can these non-parametric
constraints be incorporated into search algorithms?

8. Find variable definitions. In many domains, such as fMRI research, there are
thousands of variables, but the measured variables do not correspond to func-
tional units of the brain. How is it possible to define new variables that are
functions of the measured variables, but more useful for causal inference and
more meaningful?

9. Find new applications of causal inference. Applications of causal inference algo-
rithms in many domains (Cooper and Glymour, 1999) help test and improve causal
inference algorithms, suggest new problems, and produce domain knowledge.

10. Creating good benchmarks. What are the most appropriate performance measures
for causal inference algorithms? What benchmarks can be established? What is
the best research design for testing causal inference algorithms?

11. Formal connections between different causal modeling approaches. Many differ-
ent fields have studied causal discovery including Artificial Intelligence, Econo-
metrics, Operations Research, Control Theory, and Statistics. What are the formal
connections between the different models, assumptions, and algorithms used in
each of these fields? What can each of these domains learn from the others?
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Abstract
We show how a generic feature-selection algorithm returning strongly relevant variables
can be turned into a causal structure-learning algorithm. We prove this under the
Faithfulness assumption for the data distribution. In a causal graph, the strongly
relevant variables for a node X are its parents, children, and children’s parents (or
spouses), also known as the Markov blanket of X. Identifying the spouses leads to
the detection of the V-structure patterns and thus to causal orientations. Repeating
the task for all variables yields a valid partially oriented causal graph. We first show
an efficient way to identify the spouse links. We then perform several experiments
in the continuous domain using the Recursive Feature Elimination feature-selection
algorithm with Support Vector Regression and empirically verify the intuition of this
direct (but computationally expensive) approach. Within the same framework, we then
devise a fast and consistent algorithm, Total Conditioning (TC), and a variant, TCbw,
with an explicit backward feature-selection heuristics, for Gaussian data. After running
a series of comparative experiments on five artificial networks, we argue that Markov
blanket algorithms such as TC/TCbw or Grow-Shrink scale better than the reference
PC algorithm and provides higher structural accuracy.
Keywords: causal structure learning, feature selection, Markov blanket, partial correla-
tion, statistical test of conditional independence

1. Introduction
In this paper, we are interested in using concepts from the feature-selection field to help
causal structure learning. Causal structure learning (Pearl, 2000; Spirtes et al., 2001) is a
multivariate data-analysis approach that aims to build a directed acyclic graph (DAG)
showing direct causal relations among the variables of interest of a given system. These
so-called causal graphs can be used together with dedicated rules called do-calculus
(Pearl, 1995) to predict the effect of interventions, that is, of structural changes in the
data-generating process. In this sense, it differs significantly from traditional machine-
learning techniques: given a set of interventions, we can predict the behavior of a set of
variables whose joint probability distribution has changed since the model was trained.

Building the causal graph is a difficult task, subject to a series of assumptions, and
provably correct algorithms have an exponential worst-case complexity. Identifying
the exact causal graph is in general impossible. By means of non-interventional data,
causal graphs can only be identified up to observational equivalence: only adjacencies
and so-called V-structures (two independent causes leading to the same effect) can be
specified exactly (Pearl, 2000, p. 19). Typical structure-learning algorithms thus return

© 2008 J.-P. Pellet & A. Elisseeff.
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partially directed acyclic graphs (PDAGs). These algorithms can be roughly classified
into two categories: the score-based algorithms associate a score function with a DAG
or PDAG given a training data set and perform, for instance, a greedy search in the
space of DAGs or PDAGs (e.g., the GES algorithm, Chickering, 2002); the constraint-
based algorithms look for dependencies and conditional dependencies in the data and
build the causal graph accordingly. Well-known examples are the PC (Spirtes et al.,
2001) or the IC (Pearl and Verma, 1991) algorithms. In an effort to get the best of both
worlds, other algorithms use both conditional-independence tests and scores to build
the network; MMHC (Tsamardinos et al., 2006) is such an example.

The range of data sets that the typical algorithms can deal with is restricted: not
any probability distribution can be faithfully represented by a DAG. Faithfulness of the
distribution is a well-defined condition: it guarantees the existence of a DAG, called
a perfect map, where there is a one-to-one mapping between the graphical criterion of
d-separation and conditional independence in the data.1 Nilsson et al. (2007) discuss
faithful distributions and other types of distributions with respect to properties of
conditional independence. In the literature, Faithfulness is a precondition to prove
correctness of the algorithms.

In practice, both existing score-based and constraint-based techniques deal primarily
with discrete data sets. Score-based approaches for continuous variables are compu-
tationally expensive;2 as for the constraint-based approaches, only the multivariate
Gaussian case has been dealt with efficiently (Scheines et al., 1995). Margaritis (2005)
proposed a distribution-free test of conditional independence, which is very compu-
tationally expensive and cannot be readily used with the current constraint-based
algorithms for all but very small networks.

Coming from the machine-learning community, feature selection (John et al., 1994;
Guyon and Elisseeff, 2003) is a common technique that aims at reducing the number of
variables or features used for building more efficient or more robust models. Techniques
have evolved to be able to handle nonlinear relationships between variables, redundant
variables, in both discrete and continuous domains. Feature selection and causal
structure learning are related by a common concept: the Markov blanket of a variable X
is the smallest set Mb(X) containing all variables carrying information about X that
cannot be obtained from any other variable.3 In feature selection, this is the set of
strongly relevant features; that is, of features which carry information about the target
that cannot be obtained from any other variable (Kohavi and John, 1997). In a causal
graph, this is the set of all parents, children, and spouses of X. The feature-selection
task and the causal graph construction task can both be stated to some extent as Markov
blanket identification tasks.

Relating feature selection and causal structure learning is not new. Several algo-
rithms identifying the Markov blanket of a single variable with techniques inspired
from causal structure learning have been proposed as the optimal solution to the
feature-selection problem in the case of a faithful distribution. Tsamardinos and Alif-
eris (2003) show that for faithful distributions, the Markov blanket of a variable Y is
exactly the set of strongly relevant features, and prove its uniqueness. They propose
the Incremental Association Markov Blanket (IAMB) algorithm to determine it. With
the same Faithfulness assumption, the Min-Max Markov Blanket algorithm (MMMB)

1. Conditional independence and d-separation are defined formally in Section 2.
2. Computationally tractable methods to learn Bayesian networks from continuous data exist (Fu, 2005),

like Bach and Jordan (2003), but do not offer the causality-related theoretical correctness guarantees.
3. Some authors write “Markov blanket” without the notion of minimality, and use “Markov boundary” to

note the smallest Markov blanket Mb(X). Even if defined as minimal, Mb(X) is generally not unique.
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(Tsamardinos et al., 2003) identifies the Markov blanket of a variable Y by calling a
subroutine Min-Max Parents and Children (MMPC). This subroutine finds the direct
parents and children of Y with association measures and conditional-independence
tests. MMPC is again called on each of these nodes to find potential spouses of Y. False
positives are then discarded with conditional-independence tests. MMMB was further
discussed by Peña et al. (2005), who propose AlgorithmMB, a similar approach based
on scores and conditional-independence tests to retrieve Mb(Y). The HITON_MB
algorithm (Aliferis et al., 2003) is similar in its main steps, and selects an optimal subset
of the Markov blanket of a target variable given the Faithfulness assumption. Nilsson
et al. (2007) also propose a theoretical algorithm for consistent identification of strongly
relevant features in polynomial time for the class of strictly positive distributions. They
also argue that some common backward feature-elimination algorithms like Recursive
Feature Elimination (Guyon et al., 2002) are actually consistent, in the sense that they
return the set of strongly relevant features in the large sample limit.4

These are examples of using causal structure learning or similar constraint-based
techniques to help feature selection (see Guyon et al., 2007, for a review of those
techniques). In this paper, we propose a framework to do the converse. We present a
generic approach using the outcome of a consistent feature-selection algorithm FS to
build an approximate structure of the true causal graph. If we assume that FS returns
the Markov blanket of the variables, we can show how to turn this approximate result,
called moral graph (Lauritzen and Spiegelhalter, 1988), into a provably correct PDAG
depicting the causal structure. This approach is also used in the Grow-Shrink algorithm
(Margaritis and Thrun, 1999), which also builds a moral graph before adjusting the local
structure.

This paper contributes a generic algorithm to build a causal graph which clearly
separates the Markov blanket identification and the needed local adjustments, an
efficient algorithm to perform those adjustments, and two fast instances of the generic
algorithm for multivariate Gaussian data sets. This is presented as follows: in Section 2,
we first review the needed terms and definitions from feature selection and causality. In
Section 3, we make the link from the outcome of a feature-selection algorithm to a causal
graph by detailing the needed local adjustments and detail an efficient way to perform
them. We directly apply it in Section 4, where we describe how we can build causal
graphs using the RFE feature-selection algorithm. As this direct application is very
computationally intensive, we then show our more efficient instantiations of the generic
algorithm optimized for the multivariate Gaussian case, the TC and TCbw algorithms.
We list our experimental results in Section 5, showing through empirical evaluation that
Markov blanket algorithms are more scalable and more accurate than the reference PC
algorithm. We finally conclude in Section 6 and list proofs in Appendix A.

1.1. Notation

Boldface capitals designate either matrices or sets of random variables or nodes in a
graph, depending on the context. V is the set of all variables in the analysis. Italicized
capitals like X, Y, Z are random variables or nodes and elements of V. Vectors are set
in boldface lowercase, as b or w; scalars in italics, as the number of samples n or the
number of variables (the problem dimension) d. We indiscriminately write “variable”
or “feature” to refer to any variable in the causal analysis or any node in a causal graph,

4. Actually, their definition of consistency has to do with returning the set of features relevant to the Bayes
classifier, which is slightly stronger than strong relevance as used here.
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and write “predictor” to designate a variable used as input for a given classifier or
regression model.

2. Background
We formalize the feature-selection task suited for our needs and provide relevant
definitions. We do the same for the causal structure-learning task and prepare the
needed basis for drawing the parallels between the two in the next section.

2.1. Feature Selection

We are given a data set of n samples D = {(xi, yi), 1  i  n}. Each data point (xi, yi)
has d� 1 inputs, modeled as a vector xi 2 Rd�1, and an output, or target, yi 2 R (we
use d� 1 and not d for the size of xi for consistency with the rest of the paper). The
data points are assumed to be drawn i.i.d. from a joint probability distribution over
the random variables V = X [ {Y}. The result of the feature-selection task we are
interested in is a set of retained variables F ✓ X. How many variables to retain and
which variables to retain depends on the particular algorithm, and usually maximizes
some tradeoff between efficiency and classification/regression error of a given learning
task.

John et al. (1994) propose a classification of the input variables X with respect to
their relevance to the target Y in terms of conditional independence.

Definition 1 (Conditional independence) In a variable set V, two random variables X, Y
are conditionally independent given Z ✓ V \ {X, Y}, noted

�

X ?? Y | Z
�

, if:

8x, y, z : P(X = x |Y = y, Z = z) = P(X = x |Z = z),

provided that 8z : P(Z = z) > 0.

Conditional independence is a generalization of the traditional notion of statistical
independence. If two variables X and Y are independent, then the joint distribution
is the product of the marginals: P(X = x, Y = y) = P(X = x)P(Y = y). If they are
dependent given some conditioning set Z, then we can write P(X = x, Y = y |Z =
z) = P(X = x |Z = z)P(Y = y |Z = z). Conditional independence is a key concept in
Bayesian networks (Pearl, 1988) because of the factorizations of the joint probability
distribution it allows.

In feature selection, relevance of predictors to the target as proposed by John et al.
(1994) is expressed in terms of conditional independence. In the following definitions,
we write Xi to note the ith input variable, and X\i to note all input variables but the ith
one.

Definition 2 (Strong relevance) A variable Xi is strongly relevant to the target Y if

P(Y |X\i) 6= P(Y |X\i, Xi).

A variable is strongly relevant to the target if it carries information about Y that no
other variable carries. This is expressed in the definition by a change in the probability
distribution of the target between conditioning on all other variables, X\i, and also
including Xi in the conditioning set. If Xi carries no exclusive information about Y, the
two distributions will be identical.
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Definition 3 (Weak relevance) A variable Xi is weakly relevant to the target Y if it is not
strongly relevant and

9S ✓ X\i : P(Y | S) 6= P(Y | S, Xi).

We speak of weak relevance of a variable Xi when there exists a certain context S in
which it carries information about the target. However, this is not necessarily exclusive
information, as it may be possible to obtain it from other variables.

Corollary 4 (Irrelevance) A variable Xi is irrelevant to the target Y if it is neither strongly
nor weakly relevant, that is, if

8S ✓ X\i : P(Y | S) = P(Y | S, Xi).

A variable is irrelevant if carries no information about the target at all, no matter what
the context is.

For our purposes, we assume that the feature-selection algorithm returns the set
of all strongly relevant variables, and only those.5 (In Section 5, we discuss with
experiments whether this is a reasonable assumption with the RFE algorithm.) Put in
terms of conditional independence, the result FY of the feature-selection task with target
Y is, with V = X [ {Y}:

FY =
�

X
�

� (X 6?? Y | V \ {X, Y} )  . (1)

That is the set of the variables that are dependent on the target Y, conditioned on all
others. We need this property in Section 3 to use the output of the feature-selection task
to build a causal graph. Note that if we repeat the feature-selection task using as target
another variable X 2 V yielding a result FX , we have:

X 2 FY () Y 2 FX . (2)

This follows as a direct consequence of (1) due to the symmetry of the conditional-
independence relation

�

X ?? Y | Z
�

with respect to X and Y.

2.2. Causal Structure Learning

In causal structure learning, we are interested in representing graphically conditional
dependencies found in the data. Under a set of assumptions, they have a causal
interpretation. For this task, we have a data set of n samples D = {vi, 1  i  n}. We
do not designate a specific target variable in V as we are interested in learning the full
structure of the network.

The graphical representation of choice for causal models is directed acyclic graphs
(DAGs) (Pearl, 2000). In a causal graph represented by a DAG, we want to represent
direct causal relations with arcs between pairs of variables. Choosing DAGs for this task
implies restrictions, an obvious one of which is that causal feedback loops are excluded
from the analysis. More formally, the joint probability distribution has to be faithful (or
DAG-isomorphic, Pearl, 1988, p. 128); that is, there must exist a DAG that represents all
(conditional) dependencies and independencies entailed by the distribution. Such a
graph is called a perfect map of the distribution if there is a one-to-one mapping between
the conditional-independence relation defined on variables and the d-separation criterion
defined on the graphical nodes.

5. In the general case, this set can be empty without excluding the existence of other weakly relevant
variables (Tsamardinos and Aliferis, 2003). In the next subsection, we detail the Faithfulness hypothesis,
which allows us to exclude this particular case.
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Definition 5 (d-separation) In a DAG G, two nodes X, Y are d-separated by Z ✓ V \
{X, Y}, written (X $| Y | Z ), if every path from X to Y is blocked by Z. A path is blocked if
at least one diverging or serially connected node is in Z or if at least one converging node and
all its descendants are not in Z. If X and Y are not d-separated by Z, they are d-connected:
(X $ Y | Z ).

Determining whether two nodes in a graph are d-separated given some conditioning
set is not visually immediate. It may for instance be unintuitive that whereas condi-
tioning on a node W on a directed path X ! W ! Y blocks the path from X to Y,
conditioning on a common child Z of two variables X, Y in X ! Z  Y connects them.
In the latter case, this common child is called a collider. If, furthermore, two parents X, Y
of a node Z are nonadjacent in the full graph, then Z is called an unshielded collider for
the pair (X, Y).

The definition of d-separation was worked out by Pearl (1988) to match as closely as
possible the complicated nature of the conditional-independence relation with a graphi-
cal criterion, so that the class of faithful distributions, which can be represented by a
perfect map, is as large as possible, while still keeping a natural graphical representation.

Definition 6 (Perfect map) A DAG G is a directed perfect map of a joint probability dis-
tribution P(V) if there is bijection between d-separation in G and conditional independence in
P:

8X, Y 2 V, 8Z ✓ V \ {X, Y} :
�

(X $| Y | Z ) () �

X ?? Y | Z
��

. (3)

If we take apart the perfect-map equivalence, we distinguish two important concepts,
known as the Causal Markov condition and the Faithfulness condition (Spirtes et al.,
2001, p. 29).

The Causal Markov condition is said to hold for a graph G = hV, Ei and a prob-
ability distribution P(V) if every variable is statistically independent of its graphical
non-descendants (intuitively, of its non-effects, direct or indirect) conditional on its
graphical parents (intuitively, its direct causes) in P. Pairs hG, Pi that satisfy the Causal
Markov condition satisfy the implication

8X, Y 2 V, 8Z ✓ V \ {X, Y} :
�

(X $| Y | Z ) =) �

X ?? Y | Z
��

.

This is called I-map property by Pearl (1988).
The Faithfulness condition can be interpreted as the converse of the Causal Markov

condition, and states that the only conditional independencies to hold are those specified
by the Causal Markov condition:

8X, Y 2 V, 8Z ✓ V \ {X, Y} :
�

(X $ Y | Z ) =) (X 6?? Y | Z )
�

.

If the Causal Markov and Faithfulness conditions hold together for a pair hG, Pi, then
we find again the equivalence (3), and G is a perfect map of P.

In practice, the Causal Markov condition is used by the so-called constraint-based
algorithms to perform conditional-independence tests on the data and build the graph
accordingly, and Faithfulness is assumed to prove that the graph is correct. Hausman
and Woodward (1999) discuss and explain in more detail the Causal Markov condition,
and Steel (2005) discusses the Faithfulness condition and its motivations, pointing out
cases where it can be violated. While the former is in general not violated simply
by construction of the causal graph, violation of the latter occurs if the probability
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distribution is not faithful. A simple example is the n-bit parity problem where the
prior probability of each bit is uniform, of which the XOR problem is a special case: each
variable is unconditionally independent of every other, but any variable pair becomes
dependent conditioned on all other variables. On this problem, current constraint-based
algorithms yield an empty graph because of the pairwise unconditional independencies,
although it is not true that the data shows no dependency at all since one variable is a
well-defined function of all others.

From this point on and for all proofs, we assume that the working data set D has
a distribution that does not violate Faithfulness, and that it can thus be represented
by a perfect map. In such a context, however, it is still not clear that causation can
be inferred from conditional independence. We now proceed to explain the relation
between causation and conditional independence.

Assuming Faithfulness, direct causation between X and Y, noted X _ Y, implies
that X and Y are dependent given any conditioning set (Pearl and Verma, 1991, see
definitions of potential and genuine causes):

X _ Y =) �8S ✓ V \ {X, Y} : (X 6?? Y | S )
�

.

We denote the absence of direct causation by X 6_ Y. The exact converse of this
implication does not hold. If we make the Causal Sufficiency assumption (Spirtes
et al., 2001), that is, assume that no hidden common cause of two variables exists, we
can write:

�8S ✓ V \ {X, Y} : (X 6?? Y | S )
�

=) X _ Y or Y _ X. (4)

Using (4), we can theoretically determine all adjacencies of the causal graph with
conditional-independence tests, but we cannot orient the edges. But there is a special
causation pattern where conditional-independence tests can reveal the direction of
causation. It is known as a V-structure (Pearl, 2000): two common causes X, Y, ini-
tially independent,6 become dependent when conditioned on a common effect Z, then
acting as a collider. This is noted X _ Z ^ Y, where we also require X 6_ Y and,
symmetrically, Y 6_ X. Formally, we have:

X _ Z ^ Y and X 6_ Y and Y 6_ X

=) �9S ✓ V \ {X, Y, Z} :
�

X ?? Y | S
�

and (X 6?? Y | S [ {Z} ) �.
The exact converse does not hold either. But using (4), we can find an equivalence
relation defining a V-structure, still assuming Causal Sufficiency: first, we certify the
existence of a link between X and Z and between Y and Z. Z is then identified as an
unshielded collider if conditioning on it creates a dependency between X and Y:

X _ Z ^ Y ()
⇣

�9S ✓ V \ {X, Y, Z} :
�

X ?? Y | S
�

and (X 6?? Y | S [ {Z} ) �

and
�8S ✓ V \ {X, Z} : (X 6?? Z | S )

�

and
�8S ✓ V \ {Y, Z} : (Y 6?? Z | S )

�

⌘

. (5)

6. The two causes X and Y actually do not need to be unconditionally independent, but there must exist
a (possibly empty) separating set SXY ✓ V \ {X, Y} such that

�

X ?? Y | SXY
�

for the collider to be
identifiable. This implies that no direct causation X _ Y or Y _ X may exist: the collider must be
unshielded.
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Actually, typical algorithms first establish the existence of a link between two variables
by seeking a certificate equivalent to, or implicating the premise of, (4), and then
look for orientation possibilities. Note that there is no guarantee that all links can be
oriented into causal arcs, and that in general we therefore cannot recover the full causal
structure with conditional-independence tests. This is the problem known as causal
underdetermination (Spirtes et al., 2001, p. 62): for the structure-learning task given
observational data, a correct graph is specified by its adjacencies and its V-structures
only. Partially oriented graphs returned by structure-learning algorithms represent
observationally equivalent classes of causal graphs (Pearl, 2000, p. 19). This means that
for a given joint probability distribution P(V), the set of all conditional-independence
statements that hold in P does not yield a unique perfect map in general.

Formally, if we combine (3), (4) and (5), we find, for a perfect causal map G (using
the symbol “_” to denote direct causation and “!” to denote an arc in the graph):

X, Y adjacent in G () X _ Y or Y _ X
X ! Z  Y () X _ Z ^ Y. (6)

It is sometimes possible to orient further arcs in a graph by looking at already-oriented
arcs and propagating constraints, preventing acyclicity and the creation of additional V-
structures other than those already detected. The graph after this constraint-
propagation step is called completed PDAG, maximally oriented PDAG (CPDAG), or
essential graph, depending on the author.

3. Causal Network Construction Based on Feature Selection
We have looked at the ideal outcome of feature selection in (1) and how to read a causal
graph in (6). We now turn to showing how feature selection can be used to build a
causal graph. From now on and for the rest of this paper, we assume that the joint
probability distribution over all variables V is faithful.

3.1. Identifying the Markov Blankets

In the context of directed graphical models, the Markov blanket of a node X, noted
Mb(X), is the set of parents, children, and children’s parents (spouses) of X. As an easy
property, note that we have:

X 2 Mb(Y) () Y 2 Mb(X).

The following statement is a key property of Markov blankets.

Property 7 (Total conditioning) In the context of a faithful causal graph G, we have:

8X, Y 2 V :
�

X 2 Mb(Y) () (X 6?? Y | V \ {X, Y} ) �.
(See Appendix A for the proof.) This property says that the Markov blanket of each node
is the set of all variables that are dependent on it, conditioned on all other variables. In
other words, in a causal graph, the parents, children, and spouses of Y store information
about Y that cannot be obtained from any other variable. Note that Mb(Y) then has
exactly the property of the output of feature selection, FY, as characterized in (1). This
links feature selection and causal structure learning in the sense that

FY = Mb(Y),
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the Faithfulness assumption guaranteeing the unicity of Mb(Y). However, Markov
blankets alone do not fully specify a causal graph. Thus, feature selection, even if
guaranteed to find only strongly relevant features, cannot be directly used to construct
the graph as we want it to be. The problem is that spouses of Y, even if not directly
linked in the original graph, would be linked in FY and Mb(Y). An additional step is
needed to transform the Markov blankets into parents, children, and spouses.

3.2. Recovering the Local Structure

The result of feature selection can be graphically shown by an undirected graph G =
hV, Ei where (X, Y) 2 E , X 2 FY. This graph is close to the original causal graph
in that it contains all arcs as undirected links, and additionally links spouses together,
and is called the moral graph of the original directed graph (Lauritzen and Spiegelhalter,
1988, p. 166). The extra step needed to transform this graph into a causal PDAG is
the deletion of the spouse links and the orientation of the arcs, a task which we call
“resolving the Markov blankets.”

An existing algorithm can resolve the Markov blankets, that is, use Markov blanket
information to infer the local structure around a node: the Grow-Shrink (GS) algorithm,
proposed by Margaritis and Thrun (1999). The full algorithm first finds the Markov
blanket for each variable, and performs further conditional-independence tests around
each variable to infer the structure locally. It then uses a heuristics to remove cycles
possibly introduced by previous steps. We list in Algorithm 1 (using our notation) the
steps of the algorithm responsible for building the local structure using the Markov
blanket information, as this is exactly the task we are trying to solve. In the code, Bd(X)
stands for the boundary of X; that is, the set of its direct neighbors in the graph G. It is
different from Mb(X) in that whereas Mb(X) is passed as input to the algorithm and is
fixed, Bd(X) depends on the graph G , which is modified throughout the algorithm. We
note a conditional-independence test with a subroutine call to CONDINDEP(X, Y, Z):
ideally, this function returns true when

�

X ?? Y | Z
�

holds, and false otherwise. More
will be said about the actual implementation of such tests in Section 4. The command
break is used to break out of the innermost loop, saving unnecessary computations.

The GS algorithm makes two passes over all variables and the members of their
Markov blankets (or direct neighbors in the second pass). It first removes the possible
spouse links between linked variables X and Y by looking for a d-separating set around
X and Y. In a second pass, it orients the arcs whenever it finds that conditioning on a
middle node creates a dependency. While searching for the appropriate conditioning
set, GS selects the smallest base search set (set B in Algorithm 1) for each phase. This has
two very desirable effects. First, it reduces the number of tests, which is useful because
each phase contains a subset search, exponential in time complexity with respect to the
searched set. Second, it reduces the average size of the conditioning set, which increases
the power of the statistical tests, and thus helps reduce the number of Type II errors.

While the GS approach considerably reduces the number of tests to be performed
with respect to a large subset search, it is possible to perform fewer tests while still
identifying correctly the structure and orienting the arcs, and decreasing the average
conditioning set size. A helpful observation is that orientation and removal of the
spouse links can be done together in a single pass. We know, as discussed in the
previous section, that only arcs in V-structures can be oriented: fortunately, V-structures
are exactly spotted when we identify a spouse link to be removed. Two spouses X and
Y that are not directly linked in the original causal graph can be d-separated by some set

31



PELLET ELISSEEFF

Algorithm 1: Resolve the Markov Blankets with the Grow-Shrink Algorithm
procedure RESOLVEMARKOVBLANKS_GROWSHRINK

Input: Mb(·) : the Markov blanket information for each node X 2 V
Output: G : partially oriented DAG

/* Compute graph structure */
1 G  moral graph according to Mb(·)
2 foreach X 2 V and Y 2 Mb(X) do
3 B smallest set of {Bd(X) \ {Y}, Bd(Y) \ {X}}
4 foreach S ✓ B do
5 if CONDINDEP(X, Y, S) then remove link X�Y from G; break
6 end
7 end

/* Orient edges */
8 foreach X 2 V and Y 2 Bd(X) do
9 foreach Z 2 Bd(X) \ Bd(Y) \ {Y} do

10 orient Y ! X /* to be corrected if a test yields
independence */

11 B smallest set of {Mb(Y) \ {Z}, Mb(Z) \ {Y}}
12 foreach S ✓ B do
13 if CONDINDEP(Y, Z, S [ {X}) then
14 remove orientation Y ! X; break
15 end
16 end
17 if Y ! X then break
18 end
19 end
20 return G

end
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of nodes. Thus, if we can find a set SXY that makes X and Y conditionally independent,
we know that the link between them is a spouse link to be removed. Moreover, we
know that any node Z part of the intersection of their Markov blankets not included
in SXY is a collider and thus a common child, and that the triplet (X, Z, Y) is actually
a V-structure X ! Z  Y in the original graph. This follows from the definition of
d-separation. What we need is an efficient search algorithm to find such d-separating
sets.

An approach based on this observation has two main benefits. First, it only searches
the triangles, that is, the cliques of three nodes, in the moral graph. Assuming that the
information about the Markov blanket is correct, only triangles can hide spouse links
and V-structures. Second, for each connected pair X�Y in a triangle, decisions about
possible spouse links and arc orientation are taken together and thus faster.

Pseudocode for the proposed search algorithm is listed in Algorithm 2, where the
notation G\XY denotes the moral graph G where all direct links involving X or Y have
been removed. The algorithm uses the following concept.

Definition 8 (Collider sets) In an undirected graph G = hV, Ei, let Tri(X � Y) (with
X, Y 2 V and (X, Y) 2 E) be the set of vertices forming a triangle with X and Y:

Tri(X�Y) = {Z 2 V | (X, Z) 2 E, (Y, Z) 2 E} .

Suppose that G is the moral graph of the DAG representing the causal structure of a faithful data
set. A set of vertices Z ✓ Tri(X�Y) then has the Collider Set property for the pair (X, Y) if
it is the largest set that fulfills

9SXY ✓ V \ {X, Y} \ Z :
�

X ?? Y | SXY
�

(7)

and 8Zi 2 Z : (X 6?? Y | SXY [ {Zi} ) . (8)

The set SXY is then a d-separating set for X, Y.

Lemma 9 In the context of a faithful causal graph, the set Z that has the Collider Set property
for a given pair (X, Y) exists if and only if X is neither a direct cause nor a direct effect of Y.
This set Z is unique when it exists. (Proof in Appendix A.)

The purpose of Algorithm 2 is thus to find these collider sets (in the pseudocode, the
symbol ( denotes the strict subset relation). The algorithm loops over all triangle links
and performs a collider set search for each of them. Let X�Y be one of these links: if it
is not a spouse link, the search procedure will leave the value of the d-separating set
SXY to its default value, null. Otherwise, SXY will be set to a (possibly empty7) set for
X and Y. The collider set can be inferred by removing the d-separating set from the
triangle nodes Tri(X�Y): as Tri(X�Y) contains nodes on a path of length 2 between
X and Y, finding a d-separating set that does not contain some of these nodes proves
that they can only be colliders according to the definition of d-separation.8 For instance,
if the procedure produces an empty set for a given linked pair X�Y, then X and Y are
unconditionally independent, and therefore all nodes in Tri(X�Y) are colliders.

Two caveats have to be observed during this search, however. First, there might
be other active, d-connecting paths between X and Y that are not going through any

7. Note that returning an empty d-separating set in SXY is different from returning null, signaling the
absence of any such set.

8. The next paragraphs describe patterns where this is not true and show how the algorithm still deals with
them correctly.
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Algorithm 2: Resolve the Markov Blankets with Collider Sets
procedure RESOLVEMARKOVBLANKETS_COLLIDERSETS

Input: Mb(·): the Markov blanket information for each node X 2 V
Output: G : partially oriented DAG

1 G  moral graph according to Mb(·)
2 C {}, an empty list of orientation directives
3 foreach edge X�Y part of a fully connected triangle do

4 SXY  null /* search for d-separating set */
5 B smallest set of {Bd(X) \ Tri(X�Y) \ {Y}, Bd(Y) \ Tri(X�Y) \ {X}}
6 foreach S ( Tri(X�Y) /* subset search */
7 do
8 Z B [ S
9 if CONDINDEP(X, Y, Z) then

10 SXY  Z
11 break to line 24
12 end
13 D B \ �nodes reachable by W in G\XY | W 2 �Tri(X�Y) \ S

� 

14 B0  B \ D
15 foreach S0 ( D /* descendant of collider may be opening a

path */
16 do
17 Z B0 [ S0 [ S
18 if CONDINDEP(X, Y, Z) then
19 SXY  Z
20 break to line 24
21 end
22 end
23 end

24 if SXY 6= null /* save orientation directive */
25 then
26 mark link X�Y as spouse link in G
27 foreach Z 2 �Tri(X�Y) \ SXY

�

do
28 C C [ {(X ! Z  Y)}
29 end
30 end
31 end

32 remove all spouse links (i.e., marked links) from G
33 foreach orientation directive (X ! Z  Y) 2 C /* orient edges */
34 do
35 if edges X� Z and Y� Z still exist in G then
36 orient edges as X ! Z  Y
37 end
38 end
39 return G

end
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node of Tri(X � Y). Those nodes must be blocked by appropriate conditioning on
the boundary of X or Y as determined by the base conditioning set at line 5. Second,
this base conditioning set must be checked not to include any descendant of possible
colliders. If it did, it would open a d-connecting path according to Definition 5. This
check is performed at lines 13 to 21. At line 13, we build a set D that includes all possible
descendants of currently conjectured colliders that intersect our base conditioning set B.
The following loop makes sure none of them was opening a path between X and Y.

Theorem 10 In the large sample limit, for faithful, causally sufficient data sets, the procedure
RESOLVEMARKOVBLANKETS_COLLIDERSETS correctly identifies all V-structures and all
spouse links, assuming consistent statistical tests. (Proof in Appendix A.)
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Figure 1: Sample local causal structure (i) and corresponding moral graph (ii). On
(iii), the spouse link and orientation information that the collider set search
for the linked pair X�Y gives.

This procedure is best understood with a graphical example. Consider the sample
local structure in Figure 1, imagine it is part of a larger network, and suppose we
are performing the search starting at line 4 in Algorithm 2. We are looking for a d-
separating set for X and Y. Looking at the original graph, we see that {W} is the
smallest such set; let us see how the algorithm finds it. We have: Tri(X�Y) = {W, Z},
Bd(X) = {W, Y, Z, V} and Bd(Y) = {W, X, Z, U, T}. The base conditioning set B will
thus be the smallest of

�{V}, {U, T} , thus B = {V}. At this stage, conditioning on V
is justifiable: one cannot exclude situations where X and Y are d-connected given the
empty set through T and V, for instance if T and V both had a common cause farther
away in the network. But actually in this example, all (perfect) tests containing V in
the conditioning set will yield dependence, because it is a descendant of the collider Z
and thus opens a path by definition of d-separation. Eventually, in the iteration where
S = {W}, we will find conditional independence in the nested loop at lines 15 to 21. As
Tri(X�Y) \ S = {Z}, D will be assigned the value {V} and B0 will be empty, so that
we will perform exactly one extra test at line 18 with the conditioning set SXY = {W},
which yields independence. This in turn allows us to identify the link X�Y as a spouse
link and determine (line 27) that the set Tri(X�Y) \ SXY = {Z} is the set of all direct
effects of X and Y; that is, fulfills the Collider Set property.

For some structures, the order in which arcs are removed and oriented must happen
such that all spouse links are removed before proceeding to orientation. Consider
another example, shown in Figure 2, and suppose again that that we are looking for a
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Figure 2: Another sample local causal structure (i) and corresponding moral graph
(ii). On (iii), a wrong result if orientation is done immediately at line 28 of
Algorithm 2. On (iv), the correct (non-)orientation if the condition at line 35
is added.

d-separating set for the pair (X, Y). As X and Y are unconditionally independent, SXY =
∆ is a valid d-separating set. We may thus remove the link X�Y, and considering that
Tri(X�Y) = {W, Z}, we could want to orient X ! Z  X and X !W  X (leaving
the spouse link W � Y to be removed later). This would be wrong, precisely because
W�Y is a spouse link, and thus the orientation X !W  X is not allowed if one of the
links to be oriented does not actually exist in the original graph. This is the reason why
all orientation directives are saved in a list C at line 28 of Algorithm 2. After all spouse
links have been removed, the orientations are done at line 36 only when both links to be
oriented still exist, thus ensuring the existence of the V-structure X ! Z  Y.

We do not claim that our algorithm uses the smallest possible conditioning set for the
tests. There is a tradeoff between obtaining the minimal possible conditioning set and
keeping the total number of tests low in the average case. In the empirical evaluation
of this algorithm, we examine three behavioral criteria: the total number of tests, the
average size of the conditioning set, and the maximum size of the conditioning set.

The complexity of the whole algorithm iterating over all triangle links, in terms of
number of calls to CONDINDEP, is O(d22a), where d is the number of variables and a =
maxX2V |Mb(X)|� 1. In the worst case of a fully connected graph, where Mb(X) =
V \ {Y}, it is exponential in the number of variables due to the subset search. But in
practice, the original graphs are often sparse enough so that the actual run time is not
exponential. Many algorithms (e.g., MMMB, HITON_MB, AlgorithmMB, GS) perform
subset searches in the (possibly augmented) Markov blanket and thus rely on graph
sparseness to be efficient. Although the complexity of RESOLVEMARKOVBLANKETS_
COLLIDERSETS is the same as that of RESOLVEMARKOVBLANKETS_GROWSHRINK, we
show in the experimental results in Section 5 that the former performs fewer tests with
a smaller average conditioning set size, while still providing comparable accuracy in
structure learning.

3.3. A Generic Algorithm Based on Feature Selection

Thanks to the subroutine explained in the previous section, we can now draft a generic
algorithm for structure learning based on feature-selection methods returning strongly
relevant features. Algorithm 3 lists pseudocode for the three main steps of this approach:
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1. Find the conjectured Markov blanket of each variable with feature selection and
build the moral graph;

2. Remove spouse links and orient V-structures using collider sets;
3. Propagate orientation constraints.

For the sake of completeness, the constraint propagation rules of Step 3 have also
been listed, in a separate subroutine (see Algorithm 4). They are common in structure
learning to obtain a completed PDAG (Pearl and Verma, 1991). Meek (1995) proves
that these three rules indeed return the maximally oriented graph when given a PDAG
whose V-structures are oriented.

Algorithm 3: Causal Structure Learning with Feature Selection
procedure GENERICSTRUCTURELEARNING

Input: D: n⇥ d data set with n d-dimensional data points
Output: G : maximally oriented partially directed acyclic graph

/* Step 1: Markov blanket construction */
1 foreach variable X 2 V do
2 FX  FEATURESELECTIONALGORITHM(X, D)
3 end
4 foreach pair (X, Y) such that Y 2 FX and X 2 FY /* symmetry check */
5 do
6 add X to Mb(Y) and Y to Mb(X)
7 end

/* Step 2: Spurious arc removal & V-structure detection */
8 G  RESOLVEMARKOVBLANKETS(Mb(·))

/* Step 3: Constraint propagation */
9 G  COMPLETEPDAG(G)

10 return G
end

The challenge with this approach is twofold. One issue is efficiency: consistent
but slow feature-selection algorithms will not beat existing causal learning algorithms,
as they have to be run as many times as the number of variables d. The second and
biggest issue is that consistent feature-selection algorithms are needed in order to prove
correctness of this generic algorithm, in the sense that the result of feature selection
should be equal to the set of strongly relevant features. This requirement is not always
fulfilled. Hardin et al. (2004) study an SVM classifier and discuss feature selection based
on the w weights: although irrelevant variables are not selected in the large sample
limit, they show that the weights of the weakly relevant variables can be as close as one
wishes to that of the strongly relevant variables due to the large-margin behavior of
SVMs. Forward feature selection has been shown to miss strongly relevant variables
(Guyon and Elisseeff, 2003). Nilsson et al. (2007) also describe forward selection as
inconsistent, but claim that backward feature elimination is actually consistent in the
large-sample limit.9 For finite data sets, Statnikov et al. (2006) further show (among
others) that even the weights of the irrelevant variables can get bigger than that of

9. This is subject to the assumption that the underlying classifier must itself be consistent, in the sense that
it must return the Bayes classifier in the large-sample limit.
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Algorithm 4: Orient a PDAG maximally
procedure COMPLETEPDAG

Input: G : partially directed acyclic graph
Output: G : maximally oriented partially directed acyclic graph

1 while G is changed by some rule /* fixed-point iteration */
2 do
3 foreach X, Y, Z such that X ! Y� Z do
4 orient as X ! Y ! Z /* no new V-structure */
5 end
6 foreach X, Y such that X�Y and 9 directed path from X to Y do
7 orient as X ! Y /* preserve acyclicity */
8 end
9 foreach X, Y s.t. X�Y & 9nonadj. Z, W s.t. X� Z ! Y & X�W ! Y do

10 orient as X ! Y /* three-fork V with married parents */
11 end
12 end
13 return G

end

relevant variables, and that weakly relevant variables can be selected more often than
strongly relevant variables in some cases.

These considerations are taken into account in our approach. In the next section, we
describe an instantiation of the generic algorithm with an existing backward feature-
elimination algorithm. Expecting the feature selection to be too inclusive, that is, to
include features that are not strongly relevant, we add the filtering condition at line 4
of the generic outline in Algorithm 3: in order to link X and Y in the moral graph, we
require the feature selection performed for X to have selected variable Y, and conversely,
we require X to have been selected by the feature selection performed for Y. This does
not theoretically guarantee the absence of “false positives,” however. Further in the
section, we replace the feature-selection step with a provably consistent algorithm in
the multivariate Gaussian case, and analyze its complexity and behavior.

4. Algorithms for Causal Feature Selection
In this section, we show two algorithms (and a variant) as instantiations of the generic
approach previously described. First, we explain an algorithm based on the Recursive
Feature Elimination (RFE) algorithm (Guyon et al., 2002) as a direct application of
existing methods. We then describe Total Conditioning (TC), a fast algorithm that can
be proved correct under the multivariate Gaussian assumption. We also show a variant,
TCbw, that improves accuracy with low sample sizes by using an explicit backward
feature-selection heuristics. In Section 5, we report on experiments including these
algorithms.

4.1. An RFE-Based Approach

To empirically test the soundness of the approach, we propose to use RFE over a
Support Vector Regression (SVR) learner (Smola and Schölkopf, 1998) with a linear
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kernel, assuming for this example that we will deal with multivariate Gaussian data.
RFE is an instance of a backward feature-elimination algorithm. Given some learner (in
this case, SVR), it iteratively trains it, ranks the features according to some criterion, and
remove the feature (or the p features) with the smallest ranking criterion. This criterion
can be the weights w attributed to the features by the learner, or some sensitivity
measure of the features (Guyon et al., 2002). In our case, we used the weights w of SVR
as described in Smola and Schölkopf (1998).

Using RFE, the Markov blanket identification is done in two steps:

1. Use RFE to rank the predictors according to their weights in the trained model
and to provide what can be seen as a relevance ordering of the predictors;

2. Determine the size of the Markov blanket and thus the number of variables to
select from the list returned by RFE.

We do not have a theoretical guarantee that RFE/SVR will return the Markov blanket
variables. Although Nilsson et al. (2007) shows that RFE/SVM as described in Guyon
et al. (2002) is consistent (i.e., returns strongly relevant variables in the large-sample
limit), the limitations of ranking variables on the w weights of an SVM with finite data
sets have also been highlighted (Hardin et al., 2004; Statnikov et al., 2006). For now, we
thus use this feature-selection step as a heuristics.

In order to determine the number of variables to select from the ranked list returned
by RFE, we use the following criterion: starting with the first variable from the list,
accept a new variable in the Markov blanket if the cross-validated training error of the
SVR decreases with the new variable, and stop and return the current list if adding the
next variable increases the error.

Algorithm 5: An RFE-Based Feature-Selection Step
procedure RFEFEATURESELECTION

Input: X: the target variable to perform feature selection for
D: n⇥ d data set with n d-dimensional data points

Output: S: the set of selected variables

1 w weights of V \ X according to RFE(SVR)
2 P predictor variables sorted according to w
3 S ∆
4 erroropt  var[X] /* MSE of constant function */
5 error TRAIN(cross-validated SVR with predictor (P)1))
6 while error < erroropt do
7 erroropt  error
8 S S [ { (P)1 } /* add beneficial predictor */
9 P P \ { (P)1 }

10 error TRAIN(cross-validated SVR with predictors S [ { (P)1 } )
11 end
12 return S

end

The symmetry condition (2), X 2 FY , Y 2 FX , might not be satisfied: we rely on
the check at line 4 of the generic approach of Algorithm 3 to make sure that we do not
select spurious features in the Markov blanket. This conservative approach implies that
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we expect RFE to select at least all strongly relevant variables, plus possibly some others
that we hope to identify with this simple condition.

As a conditional-independence test at lines 9 and 18 of the collider set search in Al-
gorithm 2, we can use the distribution-free Recursive Median (RM) algorithm proposed
by Margaritis (2005) to detect the V-structure and remove the spouse links, or a z-test as
used in Scheines et al. (1995) in the case of Gaussian data.

Although we expect the resulting graph to be accurate in the large sample limit
(see Section 5), we also expect the run time of such an approach to be much higher
compared to existing algorithms. Training the SVR has a cubic complexity in terms of
the number of samples, O(n3). To get an accurate ranking, RFE runs the training d� 1
times. Then, a new SVR learner is trained and cross-validated several times (we used a
5-fold cross-validation) to get the validation error, which is repeated for each variable
in the actual Markov blanket. The complexity for the whole feature-selection step is
then O(d2n3), with a large constant factor. We thus emphasize that this RFE-based
feature selection is not meant as a valid practical instantiation of the generic algorithm,
but rather as a proof of concept to validate the approach. In order to be practical, the
feature-selection step has to be redesigned so that it is done efficiently when run for
all variables. This is what the next algorithm is meant to address in the specific case of
multivariate Gaussian variables.

4.2. The TC Algorithm

We now propose in the procedure TCFEATURESELECTION (Algorithm 6) another in-
stantiation of the feature-selection call at line 2 of the generic approach of Algorithm 3.
The whole algorithm as determined by the feature-selection, collider-identification, and
maximal-orientation steps is equivalent to the TC algorithm described in Pellet and
Elisseeff (2007). (We thus write “TC” to refer to the whole algorithm and not only to the
feature-selection procedure, referred to as TCFEATURESELECTION.)

For a given target variable X, TC estimates the coefficients of a multiple regression
problem, considering all other variables V \ X as predictors. It then returns the signifi-
cant predictors, according to a t-test on the coefficient of each variable. Its short listing
is in Algorithm 6.

Algorithm 6: The Total Conditioning Feature-Selection Step
procedure TCFEATURESELECTION

Input:
X: the target variable to perform feature selection for
D: n⇥ d data set with n d-dimensional data points

Output: S: the set of selected variables

1 b weights of V \ X in the problem of regressing X on V \ X
2 S {predictors whose b weight is significant}
3 return S

end

The conditional-independence tests to be performed at lines 9 and 18 of the collider
set search of Algorithm 2 are done using partial correlation.

Definition 11 (Partial correlation) In a variable set V, the partial correlation between two
random variables X, Y 2 V given Z ✓ V \ {X, Y}, noted rXY·Z, is the correlation of the
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residuals RX and RY resulting from the least-squares linear regression of X on Z and of Y on Z,
respectively.

TC was shown to be correct in the large sample limit (subject to the consistency
of the statistical tests) in Pellet and Elisseeff (2007) under the Faithfulness and Causal
Sufficiency assumptions. For the sake of completeness, we add the proof to Appendix A.
The main points leading to the correctness of TC are the equivalence of a zero regression
weight for some predictor Y while regressing X on all variables V \ X and a zero
partial correlation rXY·V\{X,Y}, and the fact that this is zero if and only if

�

X ?? Y |
V \ {X, Y}� holds in a Gaussian context (Baba et al., 2004). Then, our feature-selection
step (Algorithm 6) gives the Markov blanket for each node, and the collider set search
(Algorithm 2) then takes care of identifying the V-structures and removing the spouse
links.

The other advantage of using linear regression and partial correlation is that it
yields a fast algorithm. Actually, all regression weights and parameters needed for
the feature-selection step of TC can be efficiently computed by inverting the sample
correlation matrix R 2 [�1, 1]d⇥d. Building graphs by inverting the correlation matrix is
typically what is done with Gaussian Markov random fields, a special case of undirected
graphical models (see, e.g., Talih, 2003).

The weight computation and the statistical significance tests are performed as fol-
lows. Let b̂ij be the maximum likelihood estimator of the true regression weight bij
of predictor Xj when Xi is the dependent variable, such that it solves the multiple
regression equation for target Xi in the sense that it minimizes the sum of the squared
residuals

SSR =
n

Â
k=1

 

xik �
d

Â
j=1,j 6=i

b̂ijxjk

!2

where xik is the value of Xi for the kth sample. If we have the inverse correlation
matrix R�1 = (rij), the vector b at line 1 of Algorithm 7 can be found in linear time:
b̂ij = �rij/rii (Raveh, 1985). For instance, the list of weights to predict variable X1 with
all others is

b1 = (b̂12, b̂13, · · · , b̂1d) = �(r12, r13, · · · , r1d)/r11. (9)

The distribution of these weights is known (Judge et al., 1988):

b̂ij � bij

ŝij
⇠ t(n�(d�1)), (10)

where ŝij is the standard error of the jth predictor for variable Xi; that is, that it follows a
t distribution with a number of degrees of freedom d f = number of samples � number
of predictors = n� (d� 1). For our null hypothesis H0 : bij = 0, we need ŝij in addition
to b̂ij to compute the t-statistics b̂ij/ŝij. The estimate of the coefficient error ŝij can be
expressed as

ŝij = ŝi
p

w jj/n,

where ŝi is an estimator of the standard error of the regression for target Xi, and w jj is
the jth diagonal element of the inverse correlation matrix of the predictors (Judge et al.,
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1988, p. 243). (How to obtain the inverse correlation matrix of the predictors from the
R�1 matrix in quadratic time is discussed in the next subsection.) The standard error ŝi
can also be obtained in linear time from R�1 as follows.

Without loss of generality, we assume a zero mean and a unit standard deviation
for all variables. Then s2

i = 1� R2
i , where R2

i is the coefficient of determination of the
regression for target Xi. This coefficient can be expressed as the scalar product of the bi
vector with the vector ri of the pairwise correlation coefficients of the predictors with
the target Xi (Raveh, 1985), which we read directly from the correlation matrix R:

R2
i = bT

i ri.

An unbiased estimator ŝi for si is then

ŝi =

s

n(1� bT
i ri)

n� d
.

To sum up, we have a complexity of O(nd3) to build and invert the correlation ma-
trix, and O(d3) to check for significance. This comes from having to obtain d times the
inverse correlation matrix of d� 1 predictors in O(d2), and then checking their signifi-
cance in linear time. The overall complexity of TC, including the collider identification
and the constraint-propagation steps, is then O(nd3 + d22a).

The weaknesses of this approach are its infeasability when the correlation matrix R
does not have full rank (including the special case n < d, that is, when there are fewer
samples than variables), the low power of the statistical tests with small data sets, and
multicollinearity in the predictors. The symptoms of the last two points are that the
t-tests do not refute the null hypothesis of zero weight because (i) there is not enough
data to support it, or (ii) multicollinearity makes the weights lower than they should be,
such that it becomes harder to interpret them as depicting the independent contribution
of each predictor. We try to deal with this problem in the next section with the TCbw
algorithm.

4.2.1. SIGNIFICANCE TESTS

Independently of low sample sizes or multicollinearity, the statistical tests on the
weights of the linear regression equations are a delicate point in TC. The choice of the
Type I error rate a needs investigating as it significantly influences the result of the
algorithm.

In a network of d nodes, the feature-selection step performs d(d � 1)/2 tests to
determine the undirected skeleton. We will falsely reject the null hypothesis bij = 0
about m · a times on average, where m < d(d� 1)/2 is the difference in the number
of edges between the original DAG G0 and the complete graph. We will thus add on
average m · a wrong edges. We can set the significance level for the individual tests to
be inversely proportional to d(d� 1)/2 to avoid this problem (assuming a large m and
thus rather sparse graphs), and check that it does not affect the Type II error rate too
much, which we do now.

According to (10), the expression (b̂ij � bij)/ŝij follows a t distribution with n �
(d� 1) degrees of freedom. If we call Y(·) the cumulative distribution function of a t
distribution with n� (d� 1) degrees of freedom, we can write the Type II error rate b
for each regression weight:

bij = Y(Y�1(1� a/2)� |bij|/ŝij).
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The values for ŝij can be computed from the inverse correlation matrix R�1 and thus
depend on the particular data set being analyzed, but the true bij are unknown. What
we could do in theory to optimize a is to minimize the average number of extraneous
(Te) and missing (Tm) links:

T = Te + Tm = m · a + Â
(i,j)2E

bij,

where m is the number of edges missing in the original DAG compared to a full graph,
and E is the set of arcs in the original DAG, so that m + |E| = d(d � 1)/2. As m, E
and bij are unknown, we can only find an upper bound for the number of missed
links Tm, provided (i) we can estimate the graph sparseness to approximate m; (ii) we
assume |bij| � d; and (iii) we choose E? such that it maximizes the sum in (11), with
|E?| = d(d� 1)/2�m. Then we have:

Tm  Â
(i,j)2E?

Y(Y�1(1� a/2)� d/ŝij). (11)

Although this bound was found too loose for practical use, we can model the Type I
and Type II error rate as a function of a for artificial problems whose sparseness and
regression weights are known. This is shown in Figure 3 for a specific instance of an
Alarm data set (see Section 5 for details on this network) with two different sample
sizes, n = 50 (left) and n = 250 (right). We did not use this information to tune a in the
experiments, as it cannot be obtained without prior knowledge, but the curves showed
that an a inversely proportional to d(d� 1)/2 has the same order of magnitude as the
optimal a on the data sets we analyzed.

What we also see is that the Type I error curve rapidly goes up, whereas the Type
II error curve is upper-bounded by the total number of links in the original graph. In
terms of pure number of errors, setting a low a will thus be more beneficial than setting
a higher a to get a low b. It is worth discussing, however, depending on the particular
problem to solve, which is more desirable: missing causal links or getting extra causal
links. In terms of Bayesian networks, getting too few links prevents the model from
being able to reconstruct the full joint probability distribution, because we lose the I-map
property; whereas getting too many links implies having to estimate more parameters
from the same data and thus complexifies a subsequent parameter learning task.

4.3. The TCbw Algorithm

Despite correctness of TC, with a low number of samples n it fails to have enough
evidence for rejecting the null hypothesis of zero regression weight, and thus misses
links (see detailed results in Section 5), even for a high a. We now try to address
this particular issue by successively eliminating the most insignificant predictors and
reevaluating the remaining ones. This is actually a backward stepwise-regression
method. Pseudocode for this heuristics is listed in Algorithm 7.

Intuitively, the problem to solve is that the regression weights cannot be high
enough for significance with small sample sizes. By removing the most insignifi-
cant predictors and thus the most likely to be actually zero, we scale down the re-
gression problem and increase the power of the tests. How many insignificant pre-
dictors to remove can be discussed; in our implementation, we compared p = 1 to
p = (number of predictors)/2 and found that the latter yielded results that were just
as good with an important speed gain.
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Figure 3: Expected Type I and II errors as a function of a

This stepwise regression raises some issues; notably, Tibshirani (1994) argues that
the repeated tests on non-changing data are biased and that the remaining b coefficients
are too large. We thus expect TCbw to be biased and to include more false positives than
TC. Ideally, one would need a criterion to predict when the additional false positives
would outweigh the benefits of reducing the false negatives. Whether such a criterion,
which would allow us to know a priori whether TC or TCbw should be used, can be
found, is an open question.

Solving a standard multiple regression problem with d predictors traditionally has
complexity O(nd3). Naïvely solving d� 1 regression problems d times in the case p = 1
would have a complexity of O(nd5). But we can avoid reinverting matrices in the inner
loop of the stepwise regression thanks to the following result.
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Algorithm 7: The Total Conditioning Backward Feature-Selection Step
procedure TCBWFEATURESELECTION

Input:
X: the target variable to perform feature selection for
D: n⇥ d data set with n d-dimensional data points

Output: S: the set of selected variables

1 P V \ X /* all predictors */
2 S ∆ /* significant predictors */
3 while P 6= ∆ and P 6= S do
4 b weights of P in the problem of regressing X on P
5 S S [ {predictors whose b weight is significant}
6 P P \ {the p less significant predictors}
7 end
8 return S

end

Let S = XTX be n times the correlation matrix R, where X is the n ⇥ d matrix
representing a data set where all variables have zero mean and unit standard deviation.
Then we can use S�1 to linearly find the weights of the regression problems and their
standard error, which are needed for the t-tests. Suppose we find that variable X1 is
the weakest predictor, and want to reevaluate the weights of the other predictors at
line 4 of TCbw. Let X\i be the data set where variable Xi has been removed. Then we
need the matrix W�1 to solve the new problem, where W = XT

\1X\1. As a special case of
Strassen’s blockwise matrix inversion formula, we have:

S =



s11 cT

c W

�

=) S�1 =

2

6

4

1
s11 � cTW�1c

� cTW�1

s11 � cTW�1c
� W�1c

s11 � cTW�1c
W�1 + W�1ccTW�1

s11 � cTW�1c

3

7

5

.

Let sij = (S�1)ij and b = W�1c. Then b are the weights of the regression of X1 on
X2, · · · , Xd and can be computed without knowing W�1 (Raveh, 1985), see (9). We have:

s11 = 1/(s11 � cTb)

and, (S�1)\1 being the matrix S�1 where the first row and column have been removed,

(S�1)\1 = W�1 + bbT/(s11 � cTb).

We can thus compute W�1 given S�1 with complexity O(d2) as follows:

W�1 = (S�1)\1 � s11bbT . (12)

This trick is also used in TC to find the inverse correlation matrix of the predictors
from the inverse correlation matrix of the whole variable set.

Equation (12) is implemented in TCbw such that we never need to invert another
matrix again once S�1 has been obtained, and leads to a complexity of O(d2) for
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stepwise elimination of a predictor. In the most computationally expensive case p = 1,
this elimination of row and column of the inverse matrix is repeated at most d� 2 for
each variable, yielding a complexity of O(nd4) for the whole feature-selection step for
all variables. The overall complexity of TCbw is then O(nd4 + d22a). We are only adding
one complexity degree in d with respect to TC with the additional stepwise regression.

5. Experimental Results
In this section, we report on experiments and results on two points separately. First,
we test our procedure described in Algorithm 2 to recover the local structure with the
collider set search given all Markov blankets, and compare it to the relevant steps of
the GS algorithm, which are listed in Algorithm 1, with 5 different network topologies.
For the sake of comparison, we also run the reference PC algorithm (Spirtes et al., 2001),
initialized with the moral graph instead of the fully connected graph.

Second, we conduct experiments to investigate how the whole structure-learning
algorithms behave. We first use the RFE-based approach. We then systematically
compare TC, TCbw and several reference algorithms, varying the data set size and
the network size. Note that results for some algorithms may be sparser due to their
prohibitive run times on some data sets.

5.1. Experimental Setup

In order to test the accuracy of the various algorithms, we chose to sample data from
the following known networks, from the Bayes net repository (Elidan, 2001):

• Alarm network (Beinlich et al., 1989). This network has become a de facto standard
benchmark for structure-learning algorithms: it contains 37 nodes, 46 arcs, 4
undirected in the PDAG of the equivalence class. It was originally designed to
help interpret monitoring data to alert anesthesiologists to various situations in
the operating room. It is depicted in Figure 4.

• Insurance (Binder et al., 1997), 27 nodes, 52 arcs, 18 undirected in its PDAG. It
was designed to evaluate car insurance risks. This network has fewer nodes than
Alarm but is denser, see Figure 5.

• Hailfinder (Abramson et al., 1996), 56 nodes, 66 arcs, 17 undirected in its PDAG. It
is a normative system that forecasts severe summer hail in northeastern Colorado.
See Figure 6.

• Carpo,10 61 nodes, 74 arcs, 24 undirected in its PDAG. It is meant to help diag-
nose the carpal tunnel syndrome. The version we used has three disconnected
subgraphs, one of which is a single variable, and a relatively flat causal structure,
as can be seen in Figure 7.

• A subset of Diabetes (Andreassen et al., 1991) with 104 nodes, 149 arcs, 8 undi-
rected in its PDAG, which was designed as a preliminary model for insulin dose
adjustment. This subset is made of 6 repeating patterns (there are 24 in the original
network) of 17 nodes, plus 2 external nodes linked to every pattern. The first two
of these patterns are shown in Figure 8.

10. Created by Alex Dagum with contributions from Mark Peot, as indicated on its page at the Bayes net
repository. No corresponding publication was found.
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We performed three series of experiments.

1. We compared our algorithm resolving the Markov blanket to the relevant steps of
the Grow-Shrink algorithm, as described in Section 3.2, and to PC;

2. We tested the RFE-based approach and compared it to PC;

3. Finally, we compared TC and TCbw to three reference algorithms and examine
their accuracy, run time, and number of tests while varying the network structure,
the network size, and the sample size.

The chosen reference algorithms are:

1. The PC algorithm. PC is, like TC and TCbw, exponential in the worst case, when
graphs are not sparse enough: we discuss which structural elements make PC or
TC exhibit the exponential behavior;

2. The full Grow-Shrink algorithm, as described in Margaritis and Thrun (1999);

3. A state-of-the-art Bayesian structure-learning algorithm that works with continu-
ous data sets, the Bach-Jordan scoring algorithm (Bach and Jordan, 2003), coupled
with a greedy search in the space of DAGs. Note that Bayesian structure-learning
algorithms are often score-based and return fully oriented DAGs. Maximizing the
chosen score function might not minimize the number of structural errors as we
report in these results.

For all simulation experiments, we generated the data sets by using the 5 graphs as a
structure for a linear structural equations model: the parentless variables were sampled
as Gaussians with zero mean and unit standard deviation; the other variables were
defined as a linear combination of their parents with coefficients randomly distributed
uniformly between 0.2 and 1, similarly to what was done in Scheines et al. (1995) for the
evaluation of PC. The disturbance terms were also normally distributed. We compared
the number of tests, the size of the conditioning sets, and the structural errors in case of
runs with artificial data. A structural error is an arc addition, deletion, or reversal with
respect to the original graph.

We used the implementation of PC proposed by Leray and François (2004) in the
BNT Structure Learning Matlab package. The implementation of TC and TCbw was
also done in Matlab. The statistical tests were done using Fisher’s z-transform of the
partial correlation, unless otherwise stated. For PC and GS, we chose the default value
of a = 0.05; we note though that the optimal value of a is problem dependent and that
especially with low sample sizes, hand tuning a can return better results than those
listed here. For both TC and TCbw, we set a = 2/(d(d� 1)), according to the discussion
at the end of Section 4.2.

5.2. Local Structure Recovery with Markov Blanket Information

In this series of experiments, we compare RESOLVEMARKOVBLANKETS_COLLIDERSETS
(CS) to RESOLVEMARKOVBLANKETS_GROWSHRINK and to a modified version of PC,
where the graph being built is initialized with the moral graph (instead of the full graph
in the original version of PC). This represents exactly the Markov blanket information
available to the two other algorithms and allows a direct comparison. Note that we
observe the PDAG that PC obtains before the constraint-propagation step building the
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maximally oriented PDAG, such that, in all three tested algorithms, we only expect the
V-structures to be oriented.

We tested the three algorithms on each network using two methods to check for
conditional independence: first, using a d-separation oracle with the original graph
(which is equivalent to a perfect test); and second, using Fisher’s z-transform of the
sample partial correlation coefficient as computed on artificial data, with significance
a = 0.05. Using the oracle always yields correct graphs.

Table 1 shows the results of these experiments. We first list the results obtained
when using a d-separation oracle to decide upon conditional independence. For GS, we
ran two versions of Algorithm 1: one, which we name GS(1), where the subset searches
at lines 4 and 12 proceed with decreasing sizes of the chosen subset S, and another,
GS(2), with increasing subset sizes. GS(1) usually leads to fewer tests, but with larger
conditioning sets. The order of the subset searches for our method (lines 6 and 15 in
Algorithm 2) was fixed to decreasing subset sizes, as this always led to fewer tests and
smaller conditioning sets.

Table 1: Number of tests and size of the conditioning sets (noted |Z|) as performed by
various algorithms to recover the local network structure of the networks given
perfect Markov blanket information. The star (?) notes PC results where the
maximum size of the conditioning set has been set to 6 to avoid prohibitive
run times.

Algorithm Alarm Insurance Hailfinder Carpo Diabetes
modified PC

# tests 11331 773572 19543985? 2025250? 93134?
avg. |Z| 4.36 7.65 5.75? 5.47? 4.64?
max |Z| 10 16 6? 6? 6?

GS(1)
# tests 1485 6435 2809 209342 5414
avg. |Z| 2.62 3.63 2.66 7.46 2.73
max |Z| 8 11 7 15 10

GS(2)
# tests 1472 7180 2979 200621 6197
avg. |Z| 2.20 3.05 2.31 7.39 2.39
max |Z| 7 8 7 15 8

CS
# tests 214 1288 593 294 943
avg. |Z| 1.80 2.69 2.30 1.79 2.13
max |Z| 5 6 6 8 7

The results for the modified PC algorithm are only shown for the sake of comparison:
PC is a general-purpose algorithm which is not specialized in such local structure
recognition given the Markov blankets. What the comparison shows, however, is that,
whenever this Markov blanket information is available or cheap to obtain, there are
much more efficient approaches.

GS(1) and GS(2) are close to one another in all scores, and outperform PC (by
several orders of magnitude) in the number of tests and (significantly) in average and
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maximum size of the conditioning sets (except, artificially, for the results marked with a
star), because it uses the Markov blanket information better. Our approach, however, is
one order of magnitude better than GS(1) and GS(2) in terms of number of tests, while
still using smaller average and maximum conditioning set sizes in all tested networks.
Especially striking are the results on the Carpo network: this is an example where CS
saves a lot of time ignoring the numerous links not part of triangles, whereas GS(1) and
GS(2) also checks those, with the often large Markov blankets (Figure 7).

We then performed the same experiments, but using the statistical tests on data
sampled from the networks as described in the previous sections. We used a fixed
sample size n = 500 and averaged over 9 different samplings for each network. We
only compared PC, GS(1) and CS on this series of experiments, preferring GS(1) to GS(2)
because of the lower number of tests it usually performs. The exhaustive results are
listed in Table 2 for the sake of completeness, and the sum of the structural errors is also
shown in Figure 9 for easier visualization.

First, we see that we get similar results as in Table 1 as far as the number of tests
and size of the conditioning sets are concerned: CS is faster and consistently performs
fewer tests with smaller conditioning sets, which leads to an increased power of the
tests. However, that is sometimes balanced out by the fact that CS relies on a single
series of tests both to remove spouse links and to orient (possibly multiple) V-structures
at the same time, thus leading to a greater penalty if the outcome of a test is wrong with
respect to the initial graph.

We see that GS(1) and PC can beat CS on certain arc scores; PC, in particular, is good
at avoiding arc orientation mistakes in these experiments. GS(1), which checks not
only triangle links but all links to try to orient them, makes more orientation mistakes,
especially on the Carpo network. PC tends to miss a few more arcs than CS, which
in turn misses a few more than GS(1). But in total, CS beats GS(1) significantly on
Insurance, Hailfinder, and Carpo, while performing slightly better on Alarm and being
slightly outperformed on Diabetes. Based on these results, we will now use our collider
set search as the method of choice to break up the Markov blankets for the next series of
experiments.

5.3. RFE-Based Approach

In this series of experiments, we tested our RFE-based approach on the Alarm network
with sample sizes n = 100, 200, 300, 400 and 500. Table 3 lists the results and shows the
number of errors as measured at different stages of the algorithm:

1. Right after the Markov blanket identification, without adjustment. This compares
the true Markov blanket of each variable with the identified Markov blanket as
returned by Algorithm 5;

2. After building the moral graph. This notably excludes variables from Markov
blankets if they do not satisfy the symmetry condition (2) due to the symmetry
check performed at line 4 in the generic approach described in Algorithm 3;

3a. After removal of the spouse links using the Recursive Median (RM) algorithm
(Margaritis, 2005) to check for conditional independence in the continuous do-
main;

3b. Alternatively, after removal of the spouse links using a test on Fisher’s z-transform
of partial correlation;
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Table 2: Number of tests, size of the conditioning sets (noted |Z|), and structural errors
as returned by GS(1) and CS to recover the local network structure of the
networks given perfect Markov blanket information. Results are given is the
form “mean ± standard deviation over the 9 data sets.” The best performer
for each type of structural error has been highlighted in bold. All runs of PC
were done with a forced maximum size of the conditioning set of 6. The dagger
(†) notes PC results from a single data set instead of 9 because of the long
completion times. Represented graphically in Figure 9.

Algorithm Alarm Insurance Hailfinder Carpo Diabetes
mod. PC

# tests 2850 ± 285 13461 ± 3247 9681105† 412791 ± 104080 57153 ± 9910
avg. |Z| 2.97 ± 0.17 3.50 ± 0.33 5.54† 5.17 ± 0.15 4.37 ± 0.14
max |Z| 6 6 6† 6 6

arcs:
missing 5.44 ± 0.53 9.56 ± 1.01 6† 14.22 ± 1.64 9.56 ± 1.88
extra 0.33 ± 0.5 0.11 ± 0.33 0† 0.22 ± 0.44 1.11 ± 0.60
reversed 0 0.22 ± 0.67 1† 0.11 ± 0.22 2.00 ± 1.39
TOTAL 5.78 ± 0.72 9.89 ± 1.47 7† 14.56 ± 1.86 12.67 ± 2.69

GS(1)
# tests 1304 ± 60 4544 ± 195 2415 ± 63 129265 ± 17033 5239 ± 46
avg. |Z| 2.66 ± 0.10 3.66 ± 0.04 2.62 ± 0.02 7.49 ± 0.08 2.76 ± 0.01
max |Z| 8 11 7.89 ± 0.33 15 10

arcs:
missing 1.56 ± 0.53 5.44 ± 0.53 3.11 ± 0.33 0 6.11 ± 0.78
extra 0.56 ± 0.73 0.33 ± 0.71 1 ± 0.71 0.22 ± 0.44 2.78 ± 1.64
reversed 1.11 ± 1.05 3.67 ± 2.12 8 ± 2.29 16.78 ± 2.49 2.67 ± 2.00
TOTAL 3.22 ± 1.81 9.44 ± 2.39 12.11 ± 2.74 17 ± 2.62 11.55 ± 3.03

CS
# tests 173 ± 3 782 ± 19 507 ± 18 308 ± 14.39 907 ± 4
avg. |Z| 1.55 ± 0.03 2.36 ± 0.02 2.08 ± 0.03 1.90 ± 0.12 2.17 ± 0.01
max |Z| 5 6 5 8 7

arcs:
missing 1.56 ± 0.73 6.33 ± 0.5 3.44 ± 0.52 0 5.11 ± 1.17
extra 0.44 ± 0.53 0.22 ± 0.44 0.67 ± 0.70 0.33 ± 0.50 1.44 ± 1.51
reversed 0.11 ± 0.33 0.33 ± 0.5 0.11 ± 0.33 0 7.11 ± 1.05
TOTAL 2.11 ± 0.96 6.89 ± 1.03 4.22 ± 1.27 0.33 ± 0.50 13.66 ± 2.20
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4a. After removal of the spouse links using RM and after maximal orientation. This is
actually the result that can be compared to other full structure-learning algorithms;

4b. After removal of the spouse links using partial correlation tests and after maximal
orientation;

5. Finally, we show how PC performs on the same instance for comparison.

Note that the RM test is a Bayesian distribution-free conditional-independence test.
In this case, where we use multivariate Gaussian distributed data, we do not expect it
to perform better than the specialized z-test. We nevertheless include it in this series of
experiments for two reasons. First, it allows the collider set search to be also distribution-
free, in the sense that if “distribution-free feature selection” can be performed efficiently
and consistently in the first phase, applying a subsequent collider set search does not
make more assumptions on the distribution. Second, it allows to evaluate the cost of
using a distribution-free algorithm on Gaussian data.

Detailed results are in Table 3 and the total number of structural errors is shown
graphically in Figure 10. What we can read from the results is that, generally, the
selected Markov blankets contain all variables from the true Markov blanket plus one or
two additional variables. Starting at n = 300, on average, less than two variables were
missed. Many spurious variable are selected, however, even for the larger data sets.
This confirms the expectation the RFE approach also selects weakly relevant features: on
average, the Markov blankets in the Alarm network have a size of 3.5, and on average
5.5 variables are selected per variable.

The symmetry check requiring Y to be part of Mb(X) and X to be part of Mb(Y) to
add a link between X and Y fulfills its purpose, as even in the case n = 200 where on
average about 73 variables enter wrong Markov blankets, only 4 extra links are added in
the moral graph. As a side note, we thus argue that a global analysis can be beneficial to
achieve better results on local tasks: we see here that determining via RFE the Markov
blanket of a single variable is too inclusive, but that validating the selected variables
globally, for instance with our Markov blanket symmetry check, allows to significantly
reduce the number of false positives.

After the collider set search, the number of missing and extra arcs can both either
increase or decrease. If the number of missing links increases, it is because the collider
set search found d-separation too often while variables were actually dependent. If
it decreases, it means that the missing arcs in the moral graph were spouse links, as
their absence is not penalized in the PDAG any more. If the number of extra arcs
increases, then the collider set search failed to identify spouse links; if it decreases, then
the collider set search also removed through appropriate conditioning links that were
not spouse links (which in turn possibly led to wrong orientations). Also, determining
which part of the algorithm is responsible for a missed, extra, or reversed edge in a
PDAG or CPDAG is not evident. As the feature-selection step is not alone responsible
for the extra or missing links, the collider set search is not responsible for all orientation
mistakes. In the collider set search, if a wrong spouse link is removed, it is because a
wrong V-structure has been identified, so that the absence of an arc will be linked to the
wrong orientation of the falsely recognized V-structure. It is also possible to construct
cases where missing a variable in the feature-selection step will lead not only to a
missing arc, but also to the detection of a spurious V-structure, even if all subsequent
tests are perfect.

For the PDAGs obtained using z-tests, the number of missing arcs always decreases
with respect to the moral graph, and so does the number of extra links for n � 200.
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Table 3: Structural errors at various stages of the RFE-based approach, showing the
missing, extra and reversed arcs with respect to the original graph. For Step
1, identification of the Markov blanket, the figures are averages over the 37
variables; that is, the count of the extra or missing variables per Markov blanket,
and thus not directly comparable to the other steps. The sums of the errors for
the CPDAGs are represented in Figure 10.

Stage n = 100 n = 200 n = 300 n = 400 n = 500
1. Mb(·) ident.

missing variables 17.33 ± 3.33 3.33 ± 1.48 0.78 ± 1.11 0.78 ± 1.48 0.33 ± 1.48
extra variables 80.66 ± 15.17 72.89 ± 9.25 74.78 ± 13.69 72.56 ± 9.99 73.33 ± 9.99

2. Moral graph
missing arcs 23.44 ± 3.54 7.89 ± 3.48 4.33 ± 3.91 4.56 ± 3.47 4.33 ± 3.87
extra arcs 4.67 ± 2.24 4.11 ± 1.69 3.78 ± 1.20 3.11 ± 1.62 3.89 ± 2.20
TOTAL 28.11 ± 3.82 12.00 ± 2.55 8.11 ± 4.01 7.67 ± 4.06 8.22 ± 4.38

3a. PDAG/RM
missing arcs 17.44 ± 2.35 10.00 ± 1.80 6.89 ± 2.67 6.33 ± 2.60 4.56 ± 1.51
extra arcs 4.78 ± 2.17 4.22 ± 1.56 3.33 ± 1.12 3.22 ± 1.48 3.44 ± 2.01
reversed arcs 1.22 ± 1.20 2.11 ± 1.27 3.11 ± 0.78 1.78 ± 0.97 0.67 ± 0.60
TOTAL 23.44 ± 1.67 16.33 ± 3.12 13.33 ± 2.65 11.33 ± 2.78 8.67 ± 2.37

3b. PDAG/z-t.
missing arcs 11.89 ± 2.32 3.33 ± 1.32 2.67 ± 1.94 2.11 ± 1.17 2.56 ± 1.51
extra arcs 5.22 ± 2.22 4.00 ± 1.58 3.22 ± 1.20 2.78 ± 1.30 3.44 ± 2.01
reversed arcs 0.33 ± 0.50 0.56 ± 0.73 1.22 ± 0.67 0.78 ± 1.09 0.44 ± 1.13
TOTAL 17.44 ± 3.32 7.89 ± 2.15 7.11 ± 2.98 5.67 ± 2.12 6.44 ± 2.40

4a. CPDAG/RM
missing arcs 17.44 ± 2.35 10.00 ± 1.80 6.89 ± 2.67 6.33 ± 2.60 4.56 ± 1.51
extra arcs 4.78 ± 2.17 4.22 ± 1.56 3.33 ± 1.12 3.22 ± 1.48 3.44 ± 2.01
reversed arcs 6.00 ± 3.87 8.67 ± 2.12 6.11 ± 2.32 6.11 ± 3.59 0.89 ± 0.60
TOTAL 28.22 ± 3.93 22.89 ± 3.02 16.33 ± 3.08 15.67 ± 2.24 8.89 ± 2.37

4b. CPDAG/z-t.
missing arcs 11.89 ± 2.32 3.33 ± 1.32 2.67 ± 1.94 2.11 ± 1.17 2.56 ± 1.51
extra arcs 5.22 ± 2.22 4.00 ± 1.58 3.22 ± 1.20 2.78 ± 1.30 3.44 ± 2.01
reversed arcs 4.89 ± 3.33 4.33 ± 1.73 3.78 ± 1.09 3.00 ± 1.80 2.44 ± 1.13
TOTAL 22.00 ± 4.90 11.67 ± 2.40 9.67 ± 2.87 7.89 ± 2.37 8.44 ± 2.40

5. CPDAG/PC
missing arcs 12.11 ± 2.52 7.44 ± 1.42 4.22 ± 0.97 5.67 ± 1.12 4.78 ± 0.83
extra arcs 4.56 ± 2.19 2.67 ± 1.87 2.78 ± 1.48 2.11 ± 0.93 2.00 ± 1.66
reversed arcs 2.67 ± 1.80 1.44 ± 1.51 1.22 ± 1.09 0.78 ± 1.09 0.67 ± 0.87
TOTAL 19.33 ± 4.66 11.56 ± 3.2 8.22 ± 2.11 8.56 ± 1.59 7.44 ± 2.40
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We find that the more general RM test seems to return independence too often, as for
n � 200 more links are missing in the PDAG than in the moral graph. (On highly
nonlinear data, we would, however, expect RM to perform better than a z-test, which
assumes Gaussianity.)

The CPDAGs do not have a number of adjacency errors different from their PDAGs;
this step can only add directionality errors. We have nevertheless copied the results in
order to improve the readability and to make the comparison with PC easier. Although
the RFE approach can outperform PC in adjacency errors, PC still consistently makes
fewer directionality errors. We remark, however, that the overall performance of
RFE/SVR with z-tests is very comparable to that of PC, as also shown in Figure 10,
which empirically justifies the intuition behind this approach.

5.4. TC and TCbw vs. Competitors

For this series of experiments, we performed more systematic testing of TC, TCbw, PC,
the full GS and the Bach-Jordan method on data sets sampled from Alarm, Insurance,
Hailfinder, Carpo, and Diabetes, varying the sample size. The Bach-Jordan method
consists of a scoring function based on Mercer kernels coupled with a greedy search
in the space of DAGs and was designed to learn Bayesian networks. It does not
guarantee that the formal semantics of a causal graph are respected in the large-sample
limit, but has been included in the experiments for the sake of comparison. Other
possible competitors like SCA (Friedman et al., 2000) or AlgorithmMB (Peña et al., 2005)
were inapplicable because generalizing them to handle continuous variables require
techniques that are too computationally expensive, notably because of score-based
subroutines that are hard to generalize.

The structural errors, like before, are missing, extra, and reversed arcs in the returned
CPDAG with respect to the generating graph. For the Bach-Jordan method, similarly
to what was done in Fu (2005), we converted the returned DAG to its essential graph
first before checking for structural errors to avoid penalizing statistically equivalent
structures. For all experiments, we also compare the run times and the number of tests
performed by TC, TCbw, GS, and PC.

Specific to the Bach-Jordan method is the issue of choosing the appropriate kernel
parameters; that is, in our case, the s width in the Gaussian kernel. Bach and Jordan
(2003) claim that the algorithm is in general robust to the choice of s. We have found,
however, that for varying sample sizes, the number of structural errors is quite sensitive
to s. As the authors do not propose a heuristics to set it, we systematically tested the
algorithm with s = 2, 1, 0.5, and 0.3 for each run, and chose the outcome with the
smallest sum of structural errors. In general, smaller data sets preferred s = 2, while the
larger ones preferred a smaller s. The change of s is not directly visible in the following
plots of the errors, but it often leads to “zigzags” in the Bach-Jordan curves. This is due
to the fact that we only tested a fixed number of values for s and did not perform a full
optimization of this parameter for each run. The results shown are thus not the best
results obtainable with this method.

5.4.1. ALARM

The figures on p. 68 show the structural errors, run times and number of statistical tests
against the number of samples for Alarm. For each sample size, 5 data sets were drawn
from the model; the error bars picture the standard deviation over these 5 runs.
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The numbers of extra and missing links seem to clearly decrease on average for
all algorithms with an increasing number of samples, except for Bach-Jordan, which
sometimes has the tendency to add more links when more data points are available.
Note that Bach-Jordan’s s changes between the last two runs, explaining the abrupt
change in the extra arcs. The number of reversed arcs seems to less satisfactory, in
particular for TC. The explanation is that TC misses many arcs with low sample sizes,
and thus does not actually get the opportunity to make many directionality errors for
these cases. TCbw exhibits a related behavior, although much less stronger. We also
see that Bach-Jordan makes the most directionality errors (this is actually valid for all
networks). GS reaches repeatedly a zero extra arc score for n > 1000, although it misses
some more than the others.

Starting at about 200 samples, TC equals or outperforms PC, GS and Bach-Jordan.
TCbw beats both TC and PC, and the converging curves of TC and TCbw show that
the stepwise regression becomes unnecessary with about 400 samples. On average,
TC was about 20 times faster than the implementation of PC we used, although the
factor tended to decrease with larger sample sizes. TCbw was naturally slower than TC,
although only marginally compared to the speed difference with PC.

Overall, the constraint-based methods seem to perform approximately equally well
for n > 400, and TCbw and GS perform slightly better than PC for low sample sizes.
Note that for low sample sizes, TC is always outperformed by TCbw, PC, and GS, but is
often the one to perform best when the sample size gets larger. The graphs in Figure 12
show that TC and TCbw are fastest, although GS performed fewer tests that TCbw.

5.4.2. INSURANCE

For this network, we find similar behaviors to Alarm, shown in the graphs on p. 69. The
most striking difference is the clear tendency of Bach-Jordan to add more arcs when
more data is available for this more densely connected network. Between the 5th and
6th sample sizes, there is again a change of s. Comparing the curves of the missing
and extra arcs, we see that this changes the tradeoff between false negatives and false
positives.

In this case, too, TCbw outperforms TC with low sample sizes (because it misses
fewer arcs) but is outperformed with bigger data sets (because it adds too many). Both
PC and GS, while being slightly better than TCbw for n < 100, are outperformed starting
at about n = 500. Note the overall good performance of GS in terms of arc orientation
errors. The corresponding curve also decreases more smoothly with larger data sets.
The Bach-Jordan method is unexpectedly fast on this data set, although poorly accurate.
The pattern of the number of statistical tests is very similar to that of Alarm.

5.4.3. HAILFINDER

This network poses a problem to PC: we divided its run time and the number of tests
by 10 in the graphs of Figure 16 on p. 70. Because of its long run times, PC was run
only once for each point in the plots, so that the error bars are missing. PC runs into
trouble because of the node cluster around variable 27 in the network (see Figure 6): it
tries to separate it from the other nodes by doing subset searches on its large number of
neighbors. In order to speed it up, we set the maximum node fan-in parameter to 6, so
that PC would not attempt to conduct conditional-independence tests with conditioning
sets larger than 6 (we see in Figure 16 how this imposes an upper bound on the run
times of PC). TC and TCbw do not run into this problem, because this cluster is correctly
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left alone after the feature-selection step, done in O(d3) operations. Note that TC, TCbw,
and GS would also spend a long time on this cluster if all neighbors of variable 27 were
its parents, because they would contain a lot of extra spouse links to be checked with
an exponential number of combinations. But this example shows that a local lack of
sparseness is fatal to the efficiency of PC, whereas other algorithms can still deal with it
if the density of the connections is caused by children rather than parents.

This network shows more clearly the missing arc problem that TC has with low
sample size, and the benefits of using TCbw rather than TC here, at least for n < 2000.
On this network, GS performs overall well. It is beaten by TC only for n > 2000,
but performs better than all others for n < 200. Bach-Jordan still exhibits the same
tendency to add more arcs when more data is available. For this data set, s changes
twice, between the 4th and 5th, and between the 5th and 6th data set sizes. The 5th
sample size seems to have generated an unfavorable data set for PC, as the number of
extra arcs is particularly high.

Examining the run times designates TC as the fastest. This is important especially
with larger sample sizes, as TC is often both the fastest and most accurate algorithm.

5.4.4. CARPO

The results for this network are shown on p. 71. The structural particularity of this
network is multiple cases of a single variable having many children. PC performs
overall badly on this network. For n < 200, GS is the clear winner: all other algorithms
make many more errors. The plain TC especially misses many arcs. For n > 500,
however, both TC and TCbw slightly but consistently outperform GS. At n = 800, TC
beats TCbw. Bach-Jordan, although fast on this instance, adds again too many extra
links, and makes numerous directionality errors.

5.4.5. DIABETES

This is our largest and final test network. The error patterns are most similar to those of
the Insurance network, with the exception of Bach-Jordan, which performs more poorly
here. We can detect two changes of s: between the 3rd and 4th, and between the 5th
and 6th sample sizes.

Starting at n > 1000, all constraint-based methods seem to yield similar overall
accuracy. GS is better in terms of directionality errors; TC and TCbw are better in terms
of missed links. For n > 4000, TC and TCbw have the same accuracy and slightly beat
GS and PC, while they are beaten significantly for n < 800. We note that the extra links
added by GS seem to allow it to obtain a better directionality accuracy than in our first
series of experiments, where it was given the exact moral graph as input.

5.4.6. DISCUSSION

Both TC and TCbw slightly but consistently beat the other competitors when the sample
size exceeds one or two thousand, depending on the network. They are usually weaker
with low sample sizes because of missed arcs. GS beats TC with small data sets, because
of the way that PC goes through conditioning sets for the statistical tests (Tsamardinos
et al., 2006, discuss in detail this particular issue in the case of tests with discrete
variables). The score-based Bach-Jordan method was found difficult to tune with the
parameter s. For this multivariate Gaussian case, its performance is usually worse
than the other tested algorithms. This also reflects the fact PC, GS, TC and TCbw with
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z-tests are all “tuned” for multivariate Gaussian data. The additional errors made by
Bach-Jordan reflect the price of being more generic.

In terms of run time, PC is slowed down by nodes with a high degree, whereas TC or
GS handle them without the exponential time complexity growth if they are not part of
triangles, as in Hailfinder. In general, TC and TCbw resolve all conditional-independence
relations (up to married parents) in the feature-selection step in O(d3) and O(d4), respec-
tively, whereas all PC can do in O(d2+a) is resolve conditional-independence relations
with conditioning sets of cardinality a. It is then reasonable to expect algorithms like
GS, TC and TCbw to scale better than PC on sparse networks where nodes have a small
number of parents. The exponential growth in PC can be seen in case the nodes have a
high degree, be it parents or children; in TC and GS, it is due to large fully-connected
triangle structures and to spouse links coming from the Markov blanket-construction
step. And whereas these large structures imply a high degree, the converse is not true
(for instance in the Hailfinder network). So, PC will exhibit an exponential behavior on
all problem instances where TC and GS also exhibits this behavior, but the converse is
not true.

It is interesting to investigate what kind of high-degree structure is more likely to
appear. If it is a node with many children (as node 27 in Hailfinder), which we call
an explosion pattern, TC can handle it efficiently. If it is a node with many parents,
an implosion pattern, then none of these algorithms can recognize it in polynomial
time. Explosion patterns correspond to a single cause that has many effects; implosion
patterns correspond to many causes leading to the same effect. It remains open for
discussion to know which one is more likely to occur with real-life data sets.

GS could not be beaten on small sample sizes. It is yet an unsolved challenge for
TC and TCbw to handle problems where the number of variables exceeds the number
of samples, as in gene expression networks, thus leading to an attempt at inverting
a matrix that does not have full rank. Regularizing the covariance matrix might help
make TCbw more robust in this case. Computationally, TCbw does add a degree of
complexity with respect to TC, and the number of tests that TCbw performs is usually
comparable to GS.

TCbw helps solving problems with TC and small data sets, but still cannot operate
below the n = d threshold. The exact sample size where TCbw stops performing better
than TC does not appear to be a simple function of the n or d but depends on the
structure of the network. It would be useful to investigate when the feature-selection
addition of TCbw becomes irrelevant. And as GS is more accurate with small sample
sizes, finding a similarly testable condition predicting the threshold where TC is more
accurate than GS would allow to merge the approaches into a single algorithm that
knows which Markov blanket approach to use in order to achieve better results.

6. Conclusion
Causal discovery and feature selection are closely related: optimal feature selection
discovers Markov blanket as sets of strongly relevant features, and causal discovery
discovers Markov blankets as direct causes, direct effects, and common causes of direct
effects. By performing perfect feature selection on each variable, we get the undirected
moral graph as an approximation of the causal graph. An extra step, the collider
set identification, is needed in order to transform the Markov blankets into parents,
children, and spouses. This step is exponential in the worst case, but is actually efficient
provided the graph is sparse enough—a common assumption of many algorithms. We

57



PELLET ELISSEEFF

proposed an algorithm to do this task and compared it favorably to the similar steps of
the Grow-Shrink algorithm.

Determining the Markov blanket with existing backward feature elimination like
RFE eliminates the irrelevant variables in the large sample limit, but remains too
inclusive. Global corrections have to be made, such as for instance insuring that
a variable in the selected Markov blanket of a target also includes this target in its
own selected Markov blanket. We conducted experiments that confirmed that this
adjustment discards most false positives, and thus provided a hint that the approach is
consistent in the large-sample limit. The main challenge is to perform feature selection
for all variables in an efficient way. This task is tractable with the multivariate Gaussian
assumption. We presented the TC and the TCbw algorithms, which fit into the described
framework, and compared them to PC, GS, and a Bayesian structure-learning method.
For small sample sizes, GS usually makes fewer structural errors, and TC/TCbw are
better for larger samples sizes.

We are convinced of the superiority of the Markov blanket approaches as described
in this paper. We invoke as support for this claim the high run times of PC, and the
good low and high sample size accuracy of GS and TC/TCbw, respectively. Not only
are Markov blanket techniques much more scalable, they can be more accurate; they
are also more easily modifiable to construct only parts the network deemed relevant by
some criterion.

The biggest challenges we face now with causal structure learning include robust
and consistent distribution-free structure learning with continuous and potentially
highly nonlinear data. In the future, we intend to make use of this framework to
develop such techniques and thus try to get rid of the Gaussianity assumption, often
impractical with real-life data sets.
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Appendix A.
For all proofs, we assume the given data set D is faithful.

Lemma 12 In a DAG G, any (undirected) path p of length `(p) > 2 can be blocked by
conditioning on any two consecutive nodes in p.

Proof It follows from Definition 5 that a path p is blocked when either at least one
collider (or one of its descendants) is not in the conditioning set S, or when at least one
non-collider is in S. It therefore suffices to show that conditioning on two consecutive
nodes always includes a non-collider. This is the case because two consecutive colliders
would require bidirected arrows, which is a structural impossibility with simple DAGs.
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Lemma 13 In a DAG G , two nodes X, Y are d-connected given all other nodes S = V \ {X, Y}
if and only if any of the following conditions holds:

(i) There is an arc from X to Y or from Y to X (i.e., X ! Y or X  Y);
(ii) X and Y have a common child Z (i.e., X ! Z  Y).

Proof We prove this by first proving an implication and then its converse.
((=) If (i) holds, then X and Y cannot be d-separated by any set. If (ii) holds, then

Z is included in the conditioning set and d-connects X and Y by Definition 5.
(=)) X and Y are d-connected given a certain conditioning set when at least one

path remains open. Using the conditioning set S, paths of length > 2 are blocked
by Lemma 12 since S contains all nodes on those paths. Paths of length 2 contain a
mediating variable Z between X and Y; by Definition 5, S blocks them unless Z is a
common child of X and Y. Paths of length 1 cannot be blocked by any conditioning set.
So the two possible cases where X and Y will be d-connected are (i) or (ii).

Corollary 14 Two variables X, Y are dependent given all other variables S = V \ {X, Y} if
and only if any of the following conditions holds:

(i) X causes Y or Y causes X;
(ii) X and Y have a common effect Z.

Proof It follows directly from Lemma 13 due to the faithful structure, which ensures
that there exists a DAG where conditional independence and d-separation map one-to-
one. Lemma 13 can then be reread in terms of conditional independence and causation
instead of d-separation and arcs.

Property 7 (Total conditioning) In the context of a faithful causal graph G, we have:

8X, Y 2 V :
�

X 2 Mb(Y) () (X 6?? Y | V \ {X, Y} ) �.

Proof This is a direct consequence of Corollary 14, where points (i) and (ii) lead to the
definition of the Markov blanket of Y as (i) all its causes and effects, and (ii) the other
direct causes of its effects. This is equivalent to Mb(Y) in G.

Lemma 15 When it exists, the subset Z that has the Collider Set property for the pair (X, Y)
is the set of all direct common effects of X and Y.

Proof We prove this using Z and a corresponding SXY that fulfills (7).
(=)) (Zi 2 Z =) X _ Zi ^ Y.) By (7) and (8), we know that each Zi opens a

dependence path between X and Y (which are independent given SXY) by conditioning
on SXY [ {Zi}. By Definition 5, conditioning on Zi opens a path if Zi is either a colliding
node or one of its descendants. As, by definition, Z ✓ Tri(X � Y), we are in the first
case. We conclude that Zi is a direct effect of both X and Y.

((=) (X _ Zi ^ Y =) Zi 2 Z.) Note that (7) and (8) together are implied in
presence of a V-structure X _ Zi ^ Y. Thus, a direct effect is compatible with the
conditions. The fact that Z captures all direct effects follows from the maximization of
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its cardinality.

Lemma 9 In the context of a faithful causal graph, the set Z that has the Collider Set property
for a given pair (X, Y) exists if and only if X is neither a direct cause nor a direct effect of Y,
and is unique when it exists.

Proof The fact that Z exists if and only if X is neither a direct cause nor a direct effect of
Y is a direct consequence of (7), which states that X and Y can be made conditionally
independent. This is in contradiction with direct causation.

We now show unicity, using interchangeably the criteria of d-separation and condi-
tional independence, as allowed by the Faithfulness assumption. Suppose that, for a
pair (X, Y), two sets Z, W have been found that fulfill the Collider Set property, with
the corresponding d-separating sets SZ

XY ✓ V \ {X, Y} \ Z and SW
XY ✓ V \ {X, Y} \ W

fulfilling (7). Let Z? = Z \ W. Due to symmetry, proving that Z? is empty proves that
Z = W.

Suppose that Z? 6= ∆; that is, 9Z 2 Z?. Then, by definition, we have that
�

X ?? Y |
SZ

XY
�

and
�

X 6?? Y
�

� SZ
XY [ {Z} �. We now have two cases: either (i) Z /2 SW

XY, or (ii)
Z 2 SW

XY. In the former case (i), consider the set W0 = W[ {Z}. Then W0 also fulfills the
Collider Set property with the same d-separating set SW

XY: the only additional condition
is
�

X 6?? Y
�

� SW
XY [ {Z} �. This holds because, as shown by Lemma 15, Z is a direct child

of X and Y, and conditioning on it opens a path, no matter what the conditioning set
is. But all this is in contradiction with the definition stating that any set fulfilling this
property must be the largest set to do so, because the cardinality of W0 is greater than
that of W.

In the latter case (ii), the d-separating set SW
XY contains Z. But this is impossible

due to the same reason that Z is a direct child of both X and Y and that thus any set
containing Z cannot d-separate X and Y. We therefore conclude Z? = ∆ and Z = W,
which leads to the uniqueness of the set fulfilling the Collider Set property.

Theorem 10 In the large sample limit, for faithful, causally sufficient data sets, the procedure
RESOLVEMARKOVBLANKETS_COLLIDERSETS correctly identifies all V-structures and all
spouse links, assuming consistent statistical tests.

Proof First, we note that in a moral graph, a node X is connected to its parents, children,
and spouses. Thus, all spouse links to be removed are in the moral graph, and, by the
definition of spouse, each spouse link between X and Y corresponds to at least one
unshielded collider for the pair (X, Y). Additionally, by the definition of unshielded
collider, X and Y are nonadjacent, so that for each spouse link X�Y there is a set SXY
such that

�

X ?? Y | SXY
�

by the contraposition of (4). So, when such a set SXY is found,
the link X�Y is removed, and for each Z such that X� Z�Y and Z /2 SXY, we orient
the triplet as X ! Z  Y for the exact same reason that allows IC (or PC) to do the
same in Step 2 of the algorithm (Pearl, 2000). The proof boils down to proving that the
proposed search procedure always identify a d-separating set SXY when there is one.

If some SXY exists, then the link between X and Y is a spouse link by definition of
a moral graph, which implies that X and Y have a nonempty set of common effects
Z. Each Z 2 Z is linked to both X in Y and is thus in Tri(X� Y) by definition. Let us
assume we can d-separate X and Y by some set: then, by the definition of d-separation,
only conditioning on a common effect or a descendant of a common effect can create a
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dependency. In Algorithm 2, all possible colliders (line 6) and descendants of currently
conjectured colliders (line 13) undergo a subset search, such that there will always be
one iteration where all colliders and their descendants will be left out of the conditioning
set. It is then enough to show that all d-connecting paths between X and Y that are
not due to conditioning on a collider or collider’s descendant go through the base
conditioning set as determined at line 5.

To prove this, we note that the subset search at line 6 will always go through an
iteration where it blocks all such d-connecting paths of length 2, that is, patterns of
the type X ! W ! Y and X  W ! Y. As a direct consequence of the fact that we
are working on the moral graph, all longer dependency paths go both through a node
W in the set of immediate neighbors Bd(X) of X, and through a node in Bd(Y). Let
us look at Bd(X). We have two cases: either (i) W 2 Tri(X � Y) and will eventually
be blocked by the subset search at line 6, or (ii) W 2 Bd(X) \ Tri(X � Y) (and thus
W 2 Bd(X) \ Tri(X�Y) \ {Y} because W 6= Y). This set is exactly the set selected as
base conditioning set at line 5, blocking all such paths, up to some symmetry with Y.
The fact that we may choose the smaller of the two possible base conditioning sets is
due to symmetry reasons.

Theorem 16 If the variables are jointly distributed according to a multivariate Gaussian, TC
returns the maximally oriented PDAG of the Markov equivalence class of the DAG represent-
ing the causal structure of the data-generating process in the large sample limit, assuming
statistically consistent tests.

Proof An edge is added between X and Y in the feature selection if we find that
rXY·V\{X,Y} 6= 0. We conclude (X 6?? Y | V \ {X, Y} ) owing to the multivariate Gaus-
sian distribution. Corollary 14 says that this implies that X causes Y or Y causes X, or
that they share a common child. Therefore, each V-structure is turned into a triangle by
the end of the feature-selection step. The collider set search then examines each link
X�Y part of a triangle, and by Lemma 15, we know that if the search for a set Z that
has the Collider Set property succeeds, there must be no link between X and Y. We
know by the same lemma that this set includes all colliders for the pair (X, Y), so that
all V-structures are correctly identified. Step 3 is the same as in the IC or PC algorithms;
see Pearl and Verma (1991) and Spirtes et al. (2001).
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Figure 11: Differentiated errors on Alarm as a function of the sample size n: (a) extra
arcs; (b) missing arcs; (c) reversed arcs; (d) total sum.
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Figure 12: Alarm: (a) run times and (b) number of statistical tests as a function of the
sample size n.
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Figure 13: Differentiated errors on Insurance as a function of the sample size n: (a)
extra arcs; (b) missing arcs; (c) reversed arcs; (d) total sum.
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Figure 14: Insurance: (a) run times and (b) number of statistical tests as a function of
the sample size n.
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Figure 15: Differentiated errors on Hailfinder as a function of the sample size n: (a)
extra arcs; (b) missing arcs; (c) reversed arcs; (d) total sum.
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Figure 16: Hailfinder: (a) run times and (b) number of statistical tests as a function of
the sample size n.
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Figure 17: Differentiated errors on Carpo as a function of the sample size n: (a) extra
arcs; (b) missing arcs; (c) reversed arcs; (d) total sum.
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Figure 18: Carpo: (a) run times and (b) number of statistical tests as a function of the
sample size n.
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Figure 19: Differentiated errors on Diabetes as a function of the sample size n: (a) extra
arcs; (b) missing arcs; (c) reversed arcs; (d) total sum.
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Figure 20: Diabetes: (a) run times and (b) number of statistical tests as a function of
the sample size n.
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Abstract
Causal reasoning is primarily concerned with what would happen to a system under
external interventions. In particular, we are often interested in predicting the probability
distribution of some random variables that would result if some other variables were
forced to take certain values. One prominent approach to tackling this problem is based
on causal Bayesian networks, using directed acyclic graphs as causal diagrams to relate
post-intervention probabilities to pre-intervention probabilities that are estimable from
observational data. However, such causal diagrams are seldom fully testable given
observational data. In consequence, many causal discovery algorithms based on data-
mining can only output an equivalence class of causal diagrams (rather than a single
one). This paper is concerned with causal reasoning given an equivalence class of
causal diagrams, represented by a (partial) ancestral graph. We present two main results.
The first result extends Pearl (1995)’s celebrated do-calculus to the context of ancestral
graphs. In the second result, we focus on a key component of Pearl’s calculus—the
property of invariance under interventions, and give stronger graphical conditions for
this property than those implied by the first result. The second result also improves the
earlier, similar results due to Spirtes et al. (1993).
Keywords: ancestral graphs, causal Bayesian network, do-calculus, intervention

1. Introduction
Intellectual curiosity aside, an important reason for people to care about causality or
causal explanation is the need—for example, in policy assessment or decision making—
to predict consequences of actions or interventions before actually carrying them out.
Sometimes we can base that prediction on similar past interventions or experiments, in
which case the inference is but an instance of the classical inductive generalization. Other
times, however, we do not have access to sufficient controlled experimental studies
for various reasons, and can only make passive observations before interventions take
place. Under the latter circumstances, we need to reason from pre-intervention or
observational data to a post-intervention setting.

A prominent machinery for causal reasoning of this kind is known as causal Bayesian
network (Spirtes et al., 1993; Pearl, 2000), which we will describe in more detail in the
next section. In this framework, once the causal structure—represented by a directed
acyclic graph (DAG) over a set of attributes or random variables—is fully given, every
query about post-intervention probability can be answered in terms of pre-intervention
probabilities. So, if every variable in the causal structure is (passively) observed, the
observational data can be used to estimate the post-intervention probability of interest.

© 2008 J. Zhang.
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Complications come in at least two ways. First, some variables in the causal DAG
may be unobserved, or worse, unobservable. So even if the causal DAG (with latent
variables) is fully known, we may not be able to predict certain intervention effects
because we only have data from the marginal distribution over the observed variables
instead of the joint distribution over all causally relevant variables. The question is
what post-intervention probability is or is not identifiable given a causal DAG with
latent variables. Much of Pearl’s work (Pearl, 1995, 1998, 2000), and more recently Tian
and Pearl (2004) are paradigmatic attempts to address this problem.

Second, the causal structure is seldom, if ever, fully known. In the situation we are
concerned with in this paper, where no substantial background knowledge or controlled
study is available, we have to rely upon observational data to inform us about causal
structure. The familiar curse is that very rarely can observational data determine a
unique causal structure, and many causal discovery algorithms in the literature output
an equivalence class of causal structures based on observational data (Spirtes et al.,
1993; Meek, 1995a; Spirtes et al., 1999; Chickering, 2002).1 Different causal structures
in the class may or may not give the same answer to a query about post-intervention
probability. For a simple illustration, consider two causal Bayesian networks (see
Section 2 below), X ! Y ! Z and X  Y ! Z, over three variables X, Y and Z. The
two causal structures are indistinguishable (without strong parametric assumptions)
by observational data. Suppose we are interested in the post-intervention probability
distribution of Y given that X is manipulated to take some fixed value x. The structure
X ! Y ! Z entails that the post-intervention distribution of Y is identical to the pre-
intervention distribution of Y conditional on X = x, whereas the structure X  Y ! Z
entails that the post-intervention distribution of Y is identical to the pre-intervention
marginal distribution of Y. So the two structures give different answers to this particular
query. By contrast, if we are interested in the post-intervention distribution of Z under
an intervention on Y, the two structures give the same answer.

The matter becomes formidably involved when both complications are present.
Suppose we observe a set of random variables O, but for all we know, the underlying
causal structure may involve extra latent variables. We will not worry about the
estimation of the pre-intervention distribution of O in this paper, so we may well
assume for simplicity that the pre-intervention distribution of O is known. But we are
interested in queries about post-intervention probability, such as the probability of Y
conditional on Z that would result under an intervention on X (where X, Y, Z ✓ O).
The question is whether and how we can answer such queries from the given pre-
intervention distribution of O.

This problem is naturally divided into two parts. The first part is what some causal
discovery algorithms attempt to achieve, namely, to learn something about the causal
structure—usually features shared by all causal structures in an equivalence class—from
the pre-intervention distribution of O. The second part is to figure out, given the learned
causal information, whether a post-intervention probability is identifiable in terms of
pre-intervention probabilities.

This paper provides some results concerning the second part, assuming the available
causal information is summarized in a (partial) ancestral graph. Ancestral graphical
models (Richardson and Spirtes, 2002, 2003) have proved to be an elegant and useful sur-
rogate for DAG models with latent variables (more details follow in Section 3), not the
least because provably correct algorithms are available for learning an equivalence class

1. The recent work on linear non-Gaussian structural equation models (Shimizu et al., 2006) is an exception.
However, we do not make parametric assumptions in this paper.
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of ancestral graphs represented by a partial ancestral graph from the pre-intervention
distribution of the observed variables—in particular, from the conditional indepen-
dence and dependence relations implied by the distribution (Spirtes et al., 1999; Zhang,
forthcoming).

We have two main results. First, we extend the do-calculus of Pearl (1995) to the
context of ancestral graphs (Section 4), so that the resulting calculus is based on an
equivalence class of causal DAGs with latent variables rather than a single one. Second,
we focus on a key component of Pearl’s calculus—the property of invariance under
interventions studied by Spirtes et al. (1993), and give stronger graphical conditions for
this property than those implied by the first result (Section 5). Our result improves upon
the Spirtes-Glymour-Scheines conditions for invariance formulated with respect to the
so-called inducing path graphs, whose relationship with ancestral graphs is discussed in
Appendix A.

2. Causal Bayesian Network
A Bayesian network for a set of random variables V consists of a pair hG, Pi, where G is
a directed acyclic graph (DAG) with V as the set of vertices, and P is the joint probability
function of V, such that P factorizes according to G as follows:

P(V) = ’
Y2V

P(Y | PaG(Y))

where PaG(Y) denotes the set of parents of Y in G. In a causal Bayesian network, the
DAG G is interpreted causally, as a representation of the causal structure over V. That
is, for X, Y 2 V, an arrow from X to Y (X ! Y) in G means that X has a direct causal
influence on Y relative to V. We refer to a causally interpreted DAG as a causal DAG.
The postulate that the (pre-intervention) joint distribution P factorizes according to the
causal DAG G is known as the causal Markov condition.

What about interventions? For simplicity, let us focus on what Pearl (2000) calls
atomic interventions—interventions that fix the values of the target variables—though
the results in Section 5 also apply to more general types of interventions (such as inter-
ventions that confer a non-degenerate probability distribution on the target variables).
In the framework of causal Bayesian network, an intervention on X ✓ V is supposed to
be effective in the sense that the value of X is completely determined by the intervention,
and local in the sense that the conditional distributions of other variables (variables
not in X) given their respective parents in the causal DAG are not affected by the inter-
vention. Graphically, such an intervention amounts to erasing all arrows into X in the
causal DAG (because variables in X do not depend on their original parents any more),
but otherwise keeping the graph as it is. Call this modified graph the post-intervention
causal graph.

Based on this understanding of interventions, the following postulate has been
proposed by several authors in various forms (Robins, 1986; Spirtes et al., 1993; Pearl,
2000):

Intervention Principle Given a causal DAG G over V and a (pre-intervention)
joint distribution P that factorizes according to G, the post-intervention distribu-
tion PX:=x(V)—that is, the joint distribution of V after X ✓ V are manipulated to
values x by an intervention—takes a similar, truncated form of factorization, as
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follows:

PX:=x(V) =

⇢

’Y2V\X P(Y | PaG(Y)) for values of V consistent with X = x,
0 otherwise.

Note that in the case of a null intervention (when X = ∆), the intervention principle
implies the factorization of the pre-intervention distribution P according to G, which is
just the causal Markov condition. So the intervention principle generalizes the causal
Markov condition: it assumes that the post-intervention distribution also satisfies the
causal Markov condition with the post-intervention causal graph.

By the intervention principle, once the causal DAG is given, the post-intervention
joint distribution can be calculated in terms of pre-intervention probabilities.2 So if every
variable is observed, and hence those pre-intervention probabilities can be estimated,
any post-intervention probability is estimable as well.

It is time to recall the two complications mentioned in the last section. First, the
intervention principle is only plausible when the given set of variables is causally
sufficient. Here is what causal sufficiency means. Given a set of variables V, and two
variables A, B 2 V, a variable C (not necessarily included in V) is called a common direct
cause of A and B relative to V if C has a direct causal influence on A and also a direct
causal influence on B relative to V [ {C}. V is said to be causally sufficient if for every
pair of variables V1, V2 2 V, every common direct cause of V1 and V2 relative to V is
also a member of V. It is well known that the causal Markov condition tends to fail for
a causally insufficient set of variables (Spirtes et al., 1993), and even more so with the
intervention principle. But in most real situations, there is no reason to assume that the
set of observed variables is causally sufficient, so the causal Bayesian network may well
involve latent variables.

Second, the causal DAG is not fully learnable with observational, pre-intervention
data. The causal discovery algorithms in the literature—some of which are provably
correct in the large sample limit assuming the causal Markov condition and its converse,
causal Faithfulness condition—typically return an equivalence class of DAGs that imply
the same conditional independence relations among the observed variables (according
to the Markov condition), with some causal features in common that constitute the
learned causal information. Given such limited causal information, a post-intervention
probability may or may not be uniquely identifiable.

Taking both complications into account, the interesting question is this: what causal
reasoning is warranted given the causal information learnable by algorithms that do not
assume causal sufficiency for the set of observed variables, such as the FCI algorithm
presented in Spirtes et al. (1999)? Before we explore the question, let us make it a little
more precise with the formalism of ancestral graphs.

3. Ancestral Graphical Models
Ancestral graphical models are motivated by the need to represent data generating
processes that may involve latent confounders and/or selection bias,3 without explicitly

2. A technical issue is that some conditional probabilities may be undefined in the pre-intervention distri-
bution. In this paper we ignore that issue by assuming that the pre-intervention distribution is strictly
positive. Otherwise we just need to add the proviso “when all the conditional probabilities involved are
defined” to all our results.

3. Roughly speaking, there is selection bias if the probability of a unit being sampled depends on certain
properties of the unit. The kind of selection bias that is especially troublesome for causal inference is when
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modelling the unobserved variables (Richardson and Spirtes, 2002). We do not deal
with selection bias in this paper, so we use only part of the machinery.

A (directed) mixed graph is a vertex-edge graph that may contain two kinds of edges:
directed edges (!) and bi-directed edges ($). Between any two vertices there is at
most one edge. The two ends of an edge we call marks. Obviously there are two kinds of
marks: arrowhead (>) and tail (�). The marks of a bi-directed edge are both arrowheads,
and a directed edge has one arrowhead and one tail. We say an edge is into (or out of ) a
vertex if the mark of the edge at the vertex is an arrowhead (or tail).

Two vertices are said to be adjacent in a graph if there is an edge (of any kind)
between them. Given a mixed graph G and two adjacent vertices X, Y therein, X is
called a parent of Y and Y a child of X if X ! Y is in G; X is called a spouse of Y (and Y a
spouse of X) if X $ Y is in G. A path in G is a sequence of distinct vertices hV0, ..., Vni
such that for all 0  i  n� 1, Vi and Vi+1 are adjacent in G. A directed path from V0 to
Vn in G is a sequence of distinct vertices hV0, ..., Vni such that for all 0  i  n� 1, Vi is
a parent of Vi+1 in G. X is called an ancestor of Y and Y a descendant of X if X = Y or
there is a directed path from X to Y. We use PaG , ChG , SpG , AnG , DeG to denote the set
of parents, children, spouses, ancestors, and descendants of a vertex in G, respectively.
A directed cycle occurs in G when Y ! X is in G and X 2 AnG(Y). An almost directed
cycle occurs when Y $ X is in G and X 2 AnG(Y).4

Given a path p = hV0, . . . , Vni with n > 1, Vi (1  i  n� 1) is a collider on p if the
two edges incident to Vi are both into Vi, that is, have an arrowhead at Vi; otherwise it is
called a noncollider on p. In Figure 1(a), for example, B is a collider on the path hA, B, Di,
but is a non-collider on the path hC, B, Di. A collider path is a path on which every vertex
except for the endpoints is a collider. For example, in Figure 1(a), the path hC, A, B, Di
is a collider path because both A and B are colliders on the path. Let L be any subset of
vertices in the graph. An inducing path relative to L is a path on which every vertex not in
L (except for the endpoints) is a collider on the path and every collider is an ancestor of
an endpoint of the path. For example, any single-edge path is trivially an inducing path
relative to any set of vertices (because the definition does not constrain the endpoints of
the path). In Figure 1(a), the path hC, B, Di is an inducing path relative to {B}, but not
an inducing path relative to the empty set (because B is not a collider). However, the
path hC, A, B, Di is an inducing path relative to the empty set, because both A and B
are colliders on the path, A is an ancestor of D, and B is an ancestor of C. To simplify
terminology, we will henceforth refer to inducing paths relative to the empty set simply
as inducing paths.5

Definition 1 (MAG) A mixed graph is called a maximal ancestral graph (MAG) if

i. the graph does not contain any directed or almost directed cycles (ancestral); and

ii. there is no inducing path between any two non-adjacent vertices (maximal).

The first condition is obviously an extension of the defining condition for DAGs. It
follows that in an ancestral graph an arrowhead, whether on a directed edge or a bi-
directed edge, implies non-ancestorship. The second condition is a technical one, but the
original motivation is the familiar pairwise Markov property of DAGs: if two vertices

two or more properties of interest affect the probability of being sampled, giving rise to “misleading”
associations in the sample.

4. The terminology of “almost directed cycle” is motivated by the fact that removing the arrowhead at Y on
Y $ X results in a directed cycle.

5. They are called primitive inducing paths by Richardson and Spirtes (2002).
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C D

(a)

C D

(b)

A B A B

Figure 1: (a) an ancestral graph that is not maximal; (b) a maximal ancestral graph.

are not adjacent, then they are d-separated by some set of other vertices. The notion
of d-separation carries over to mixed graphs in a straightforward way, as we will see
shortly. But in general an ancestral graph does not need to satisfy the pairwise Markov
property, or what is called maximality here. A sufficient and necessary condition for
maximality turns out to be precisely the second clause in the above definition, as proved
by Richardson and Spirtes (2002). So although the graph in Figure 1(a) is ancestral, it is
not maximal because there is an inducing path between C and D (i.e., hC, A, B, Di), but
C and D are not adjacent. However, each non-maximal ancestral graph has a unique
supergraph that is ancestral and maximal. For example, Figure 1(b) is the unique MAG
that is also a supergraph of Figure 1(a); the former has an extra bi-directed edge between
C and D.

It is worth noting that both conditions in Definition 1 are obviously met by a DAG.
Hence, syntactically a DAG is also a MAG, one without bi-directed edges.

An important notion in directed graphical models is that of d-separation, which
captures exactly the conditional independence relations entailed by a DAG according
to the Markov condition. It is straightforward to extend the notion to mixed graphs,
which, following Richardson and Spirtes (2002), we call m-separation.

Definition 2 (m-separation) In a mixed graph, a path p between vertices X and Y is active
(or m-connecting) relative to a (possibly empty) set of vertices Z (X, Y /2 Z) if

i. every non-collider on p is not a member of Z;

ii. every collider on p is an ancestor of some member of Z.

X and Y are said to be m-separated by Z if there is no active path between X and Y relative
to Z.

Two disjoint sets of variables X and Y are m-separated by Z if every variable in X is m-
separated from every variable in Y by Z.

In DAGs, obviously, m-separation reduces to d-separation. The (global) Markov prop-
erty of ancestral graphical models is defined by m-separation.

A nice property of MAGs is that they can represent the marginal independence
models of DAGs in the following sense: given any DAG G over V = O [ L—where O
denotes the set of observed variables, and L denotes the set of latent variables—there is
a MAG over O alone such that for any disjoint X, Y, Z ✓ O, X and Y are d-separated by
Z in G (and hence entailed by G to be independent conditional on Z) if and only if they
are m-separated by Z in the MAG (and hence entailed by the MAG to be independent
conditional on Z). The following construction gives us such a MAG:
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Input: a DAG G over hO, Li
Output: a MAG MG over O

1. for each pair of variables A, B 2 O, A and B are adjacent in MG if and only if
there is an inducing path between them relative to L in G;

2. for each pair of adjacent variables A, B in MG , orient the edge as A! B in MG if
A is an ancestor of B in G; orient it as A B in MG if B is an ancestor of A in G;
orient it as A$ B in MG otherwise.

It can be shown that MG is indeed a MAG and represents the marginal independence
model over O (Richardson and Spirtes (2002); also see Lemma 20 below). More im-
portantly, MG also retains the ancestral relationships—and hence causal relationships
under the standard interpretation—among O. So, if G is the causal DAG for hO, Li, it
is fair to call MG the causal MAG for O. Henceforth when we speak of a MAG over
O representing a DAG over hO, Li, we mean that the MAG is the output of the above
construction procedure applied to the DAG.

Different causal DAGs may correspond to the same causal MAG. So essentially
a MAG represents a set of DAGs that have the exact same d-separation structures
and ancestral relationships among the observed variables. A causal MAG thus carries
uncertainty about what the true causal DAG is, but also reveals features that must be
satisfied by the underlying causal DAG.

There is then a natural causal interpretation of the edges in MAGs, derivative from
the causal interpretation of DAGs. A directed edge from A to B in a MAG means that A
is a cause of B (which is a shorthand way of saying that there is a causal pathway from
A to B in the underlying DAG); a bi-directed edge between A and B means that A is
not a cause of B and B is not a cause of A, which implies that there is a latent common
cause of A and B (i.e., there is a latent variable L in the underlying DAG such that there
is a directed path from L to A and a directed path from L to B6).

We borrow a simple example from Spirtes et al. (1993) to illustrate various concepts
and results in this paper. Suppose we are able to observe the following variables: Income
(I), Parents’ smoking habits (PSH), Smoking (S), Genotype (G) and Lung cancer (L). The
data, for all we know, are generated according to an underlying mechanism which
might involve unobserved common causes. Suppose, unknown to us, the structure of
the causal mechanism is the one in Figure 2, where Profession is an unmeasured common
cause of Income and Smoking.7

The causal MAG that corresponds to the causal DAG is depicted in Figure 3(a)—
which syntactically happens to be a DAG in this case. This MAG can represent some
other DAGs as well. For example, it can also represent the DAG with an extra latent
common cause of PSH and S.

In general a MAG is still not fully testable with observational data. Just as differ-
ent DAGs can share the exact same d-separation features and hence entail the exact
same conditional independence constraints, different MAGs can entail the exact same
constraints by the m-separation criterion. This is known as Markov equivalence. Several
characterizations of the Markov equivalence between MAGs are available (Spirtes and
Richardson, 1996; Ali et al., 2004; Zhang and Spirtes, 2005; Zhao et al., 2005). For the

6. Note that a latent common cause is not necessarily a common direct cause as defined on page 76. The
path from L to A, for example, may include other observed variables.

7. This example is used purely for illustrative purposes, so we will not worry why Profession is not observed
but Genotype is. The exact domains of the variables do not matter either.
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Income Smoking Lung Cancer

Genotype

Profession

Parents’ smoking habits

Figure 2: A causal DAG with a latent variable.

S LI

PSH G

S LI

PSH G

(a) (b)

Figure 3: Two Markov Equivalent MAGs.
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purpose of the present paper, it suffices to note that, as is the case with DAGs, all
Markov equivalent MAGs have the same adjacencies and usually some common edge
orientations as well. For example, the two MAGs in Figure 3 are Markov equivalent.

This motivates the following representation of equivalence classes of MAGs. Let
partial mixed graphs denote the class of graphs that can contain four kinds of edges: !,
$, ���� and �!, and hence three kinds of end marks for edges: arrowhead (>), tail (�)
and circle (�).
Definition 3 (PAG) Let [M] be the Markov equivalence class of an arbitrary MAG M. The
partial ancestral graph (PAG) for [M], P[M], is a partial mixed graph such that

i. P[M] has the same adjacencies as M (and any member of [M]) does;

ii. A mark of arrowhead is in P[M] if and only if it is shared by all MAGs in [M]; and

iii. A mark of tail is in P[M] if and only if it is shared by all MAGs in [M].8

Basically a PAG represents an equivalence class of MAGs by displaying all common
edge marks shared by all members in the class and displaying circles for those marks
that are not common, much in the same way that a so-called Pattern (a.k.a. a PDAG
or an essential graph) represents an equivalence class of DAGs (see, e.g., Spirtes et al.
(1993, chap. 5); Chickering (1995); Andersson et al. (1997). For instance, the PAG for our
running example is drawn in Figure 4, which displays all the commonalities among
MAGs that are Markov equivalent to the MAGs in Figure 3.

S LI

PSH G

Figure 4: The PAG in our five-variable example.

Different PAGs, representing different equivalence classes of MAGs, entail different
sets of conditional independence constraints. Hence a PAG is in principle fully testable
by the conditional independence relations among the observed variables. Assuming
the causal Markov condition and its converse, the causal Faithfulness condition,9 there
is a provably correct independence-constraint-based algorithm to learn a PAG from

8. This defines what Zhang (2006, pp. 71) calls complete or maximally oriented PAGs. In this paper, we do
not consider PAGs that fail to display all common edge marks in an equivalence class of MAGs (as, e.g.,
allowed in Spirtes et al., 1999), so we will simply use ‘PAG’ to mean ‘maximally oriented PAG’.

9. We have introduced the causal Markov condition in its factorization form. In terms of d-separation, the
causal Markov condition says that d-separation in a causal DAG implies conditional independence in the
(pre-intervention) population distribution. The causal Faithfulness condition says that d-connection in a
causal DAG implies conditional dependence in the (pre-intervention) population distribution. Given the
exact correspondence between d-separation relations among the observed variables in the causal DAG
and m-separation relations in the causal MAG, the two conditions imply that conditional independence
relations among the observed variables correspond exactly to m-separation in the causal MAG, which
forms the basis of constraint-based learning algorithms.
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an oracle of conditional independence relations (Spirtes et al. (1999); Zhang (2006,
chap. 3)).10 Score-based algorithms for learning PAGs are also under investigation.

Directed paths and ancestors/descendants in a PAG are defined in the same way
as in a MAG. In addition, a path between X and Y, hX = V0, . . . , Vn = Yi, is called a
possibly directed path from X to Y11 if for every 0 < i  n, the edge between Vi�1 and Vi
is not into Vi�1. Call X a possible ancestor of Y (and Y a possible descendant of X) if X = Y
or there is a possibly directed path from X to Y in the PAG.12 For example, in Figure 4,
the path hI, S, Li is a possibly directed path, and I is a possible ancestor of L. We use
PossibleAnP (Y) to denote the set of possible ancestors of Y in P .

In partial mixed graphs two analogues of m-connecting paths will play a role later.
Let p be any path in a partial mixed graph, and W be any (non-endpoint) vertex on p.
Let U and V be the two vertices adjacent to W on p. W is a collider on p if, as before,
both the edge between U and W and the edge between V and W are into W (i.e., have
an arrowhead at W, U⇤! W  ⇤V). W is called a definite non-collider on p if the edge
between U and W or the edge between V and W is out of W (i.e., has a tail at W,
U  W ⇤��⇤V or U ⇤��⇤W ! V), or both edges have a circle mark at W and there is
no edge between U and V (i.e., U ⇤���W ���⇤V, where U and V are not adjacent).13

The first analogue of m-connecting path is the following:

Definition 4 (Definite m-connecting path) In a partial mixed graph, a path p between two
vertices X and Y is a definite m-connecting path relative to a (possibly empty) set of vertices Z
(X, Y /2 Z) if every non-endpoint vertex on p is either a definite non-collider or a collider and

i. every definite non-collider on p is not a member of Z;

ii. every collider on p is an ancestor of some member of Z.

It is not hard to see that if there is a definite m-connecting path between X and Y given
Z in a PAG, then in every MAG represented by the PAG, the corresponding path is
an m-connecting path between X and Y given Z. For example, in Figure 4 the path
hI, S, Gi is definitely m-connecting given L, and this path is m-connecting given L in
every member of the equivalence class. A quite surprising result is that if there is an
m-connecting path between X and Y given Z in a MAG, then there must be a definite
m-connecting path (not necessarily the same path) between X and Y given Z in its PAG,
which we will use in Section 5.

Another analogue of m-connecting path is the following:

10. It is essentially the FCI algorithm (Spirtes et al., 1999), but with slight modifications (Zhang, 2006, chap. 3).
The implemented FCI algorithm in the Tetrad IV package (http://www.phil.cmu.edu/projects/
tetrad/tetrad4.html) is the modified version. By the way, if we also take into account the possibility
of selection bias, then we need to consider a broader class of MAGs which can contain undirected edges,
and the FCI algorithm needs to be augmented with additional edge inference rules (Zhang, 2006, chap. 4;
forthcoming).

11. It is named a potentially directed path in Zhang (2006, pp. 99). The present terminology is more consistent
with the names for other related notions, such as possible ancestor, possibly m-connecting path, etc.

12. The qualifier ’possible/possibly’ is used to indicate that there is some MAG represented by the PAG in
which the corresponding path is directed, and X is an ancestor of Y. This is not hard to establish given the
valid procedure for constructing representative MAGs from a PAG presented in Lemma 4.3.6 of Zhang
(2006) or Theorem 2 of Zhang (forthcoming).

13. ’*’ is used as wildcard that denotes any of the three possible marks: circle, arrowhead, and tail. When
the graph is a PAG for some equivalence class of MAGs, the qualifier ’definite’ is used to indicate that
the vertex is a non-collider on the path in each and every MAG represented by the PAG, even though
the circles may correspond to different marks in different MAGs. The reason why U ⇤���W ���⇤V is a
definite non-collider when U and V are not adjacent is because if it were a collider, it would be shared by
all Markov equivalent MAGs, and hence would be manifest in the PAG.
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Definition 5 (Possibly m-connecting path) In a partial mixed graph, a path p between
vertices X and Y is possibly m-connecting relative to a (possibly empty) set of vertices Z
(X, Y /2 Z) if

i. every definite non-collider on p is not a member of Z;

ii. every collider on p is a possible ancestor of some member of Z.

Obviously a definite m-connecting path is also a possibly m-connecting path, but
not necessarily vice versa. In particular, on a possibly m-connecting path it is not
required that every (non-endpoint) vertex be of a “definite” status. Figure 5 provides an
illustration. The graph on the right is the PAG for the equivalence class that contains
the MAG on the left (in this case, unfortunately, no informative edge mark is revealed
in the PAG). In the PAG, the path hX, Y, Z, Wi is a possibly m-connecting path but not
a definite m-connecting path relative to {Y, Z}, because Y and Z are neither colliders
nor definite non-colliders on the path. Note that in the MAG, hX, Y, Z, Wi is not m-
connecting relative to {Y, Z}. In fact, X and W are m-separated by {Y, Z} in the MAG.
So unlike a definite m-connecting path, a mere possibly m-connecting path in a PAG
does not necessarily correspond to a m-connecting path (or imply the existence of a
m-connecting path) in a representative MAG in the equivalence class.14

ZYZY

WX X W

Figure 5: Difference between possible and definite m-connecting paths: in the PAG on
the right, hX, Y, Z, Wi is a possibly m-connecting path relative to {Y, Z} but
not a definite m-connecting path relative to {Y, Z}. Also note that hX, Y, Z, Wi
is not m-connecting relative to {Y, Z} in the MAG on the left, even though the
MAG is a member of the equivalence class represented by the PAG.

As we will see, the main result in Section 4 is formulated in terms of absence of
possibly m-connecting paths (what we will call, for want of a better term, definite
m-separation), whereas the main result in Section 5 is formulated in terms of absence
of definite m-connecting paths. This is one important aspect in which the result in
Section 5 is better than that in Section 4 (and than the analogous results presented in
Spirtes et al. (1993)) regarding the property of invariance under interventions. We will
come back to this point after we present the PAG-based do-calculus.

14. This case is even more extreme in that in every MAG that belongs to the equivalence class, X and W are
m-separated by Y and Z. So this example can be used to show that the do-calculus developed in Section 4
is not yet complete, though it is not clear how serious the incompleteness is.
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4. Do-Calculus
Pearl (1995) developed an elegant do-calculus for identifying post-intervention probabil-
ities given a single causal DAG with (or without) latent variables. To honor the name of
the calculus, in this section we will use Pearl’s ‘do’ operator to denote post-intervention
probabilities. Basically, the notation we used for the post-intervention probability
function under an intervention on X, PX:=x(•), will be written as P(• | do(X = x)).

The calculus contains three inference rules whose antecedents make reference to
surgeries on the given causal DAG. There are two types of graph manipulations:

Definition 6 (Manipulations of DAGs) Given a DAG G and a set of variables X therein,

• the X-lower-manipulation of G deletes all edges in G that are out of variables in X, and
otherwise keeps G as it is. The resulting graph is denoted as GX.

• the X-upper-manipulation of G deletes all edges in G that are into variables in X, and
otherwise keeps G as it is. The resulting graph is denoted as GX.

The following proposition summarizes Pearl’s do-calculus. (Following Pearl, we use
lower case letters to denote generic value settings for the sets of variables denoted by
the corresponding upper case letters. So for simplicity we write P(x) to mean P(X = x),
and do(x) to mean do(X = x).)

Proposition 7 (Pearl) Let G be the causal DAG for V, and U, X, Y, W be disjoint subsets of
V. The following rules are sound:

1. if Y and X are d-separated by U [W in GU, then

P(y | do(u), x, w) = P(y | do(u), w).

2. if Y and X are d-separated by U [W in GXU, then

P(y | do(u), do(x), w) = P(y | do(u), x, w).

3. if Y and X are d-separated by U [W in GUX0 , then

P(y | do(u), do(x), w) = P(y | do(u), w)

where X0 = X\AnGU
(W) = X\([W2WAnGU

(W)).

The proposition follows from the intervention principle (Pearl, 1995). The first rule
is actually not independent—it can be derived from the other two rules (Huang and
Valtorta, 2006), but it has long been an official part of the calculus. The soundness of
the calculus ensures that any post-intervention probability that can be reduced via the
calculus to an expression that only involves pre-intervention probabilities of observed
variables is identifiable. Recently, the completeness of the calculus was also established,
in the sense that any identifiable post-intervention probability can be so reduced using
the calculus (Huang and Valtorta, 2006; Shpister and Pearl, 2006).

Our goal is to develop a similar calculus when the available causal information
is given in a PAG. A natural idea is to formulate analogous inference rules in terms
of (manipulated) PAGs, to the effect that if a certain rule is applicable given a PAG,
the corresponding rule in Pearl’s calculus will be applicable given the (unknown) true
causal DAG. How to guarantee that? Recall that a PAG represents an equivalence class
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of MAGs; each MAG, in turn, represents a set of causal DAGs. The union of all these
sets is the set of DAGs represented by the PAG—one of them is the true causal DAG. So
a sure way to get what we want is to formulate analogous rules in terms of PAGs such
that if the rule is applicable given a PAG, then for every DAG represented by the PAG,
the corresponding rule in Pearl’s calculus is applicable.

For this purpose, it is natural to develop the desired calculus in two steps. First,
we derive an analogous do-calculus based on MAGs, such that if a rule is applicable
given a MAG, then for every DAG represented by the MAG, the corresponding rule in
Pearl’s calculus is applicable. Second, we extend that to a do-calculus based on PAGs,
such that if a rule is applicable given a PAG, then for every MAG in the equivalence
class represented by the PAG, the corresponding rule in the MAG-based calculus is
applicable.

Before we define appropriate analogues of graph manipulations on MAGs, it is nec-
essary to distinguish two kinds of directed edges in a MAG, according to the following
criterion.

Definition 8 (Visibility) Given a MAG M, a directed edge A! B in M is visible if there
is a vertex C not adjacent to B, such that either there is an edge between C and A that is into
A, or there is a collider path between C and A that is into A and every vertex on the path is a
parent of B. Otherwise A! B is said to be invisible.

A

B

C . . .A

B

C . . .

A

B

CA

B

C

Figure 6: Possible configurations of visibility for A! B.

Figure 6 gives the possible configurations that make a directed edge A! B visible.
The distinction between visible and invisible directed edges is important because of the
following two facts.

Lemma 9 Let G be a DAG over O [ L, and M be the MAG over O that represents the DAG.
For any A, B 2 O, if A 2 AnG(B), and there is an inducing path relative to L between A and
B that is into A in G, then there is a directed edge A! B in M that is invisible.

Proof See Appendix B.

Taking the contrapositive of Lemma 9 gives us the fact that if A! B is visible in a
MAG, then in every DAG represented by the MAG, there is no inducing path between A
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and B relative to the set of latent variables that is also into A. This implies that for every
such DAG G, GA—the graph resulting from eliminating edges out of A in G—will not
contain any inducing path between A and B relative to the set of latent variables, which
means that the MAG that represents GA will not contain any edge between A and B.
So intuitively, deleting edges out of A in the underlying DAG corresponds to deleting
visible arrows out of A in the MAG.

How about invisible arrows? Here is the relevant fact.

Lemma 10 Let M be any MAG over a set of variables O, and A! B be any directed edge in
M. If A! B is invisible in M, then there is a DAG whose MAG is M in which A and B share
a latent parent, that is, there is a latent variable LAB in the DAG such that A LAB ! B is a
subgraph of the DAG.

Proof See Appendix B.

Obviously A LAB ! B is an inducing path between A and B relative to the set of
latent variables. So if A! B in a MAG is invisible, at least for some DAG G represented
by the MAG—and for all we know, this DAG may well be the true causal DAG—GA
contains A LAB ! B, and hence corresponds to a MAG in which A$ B appears.

Finally, for either A $ B or A ! B in a MAG, it is not hard to show that for every
DAG represented by the MAG, there is no inducing path in the DAG between A and
B relative to the set of latent variables that is also out of B (since otherwise B would
be an ancestor of A, violating the definition of ancestral graphs). So deleting edges
into B in the underlying DAG corresponds to deleting edges into B in the MAG. These
considerations motivate the following definition.

Definition 11 (Manipulations of MAGs) Given a MAG M and a set of variables X therein,

• the X-lower-manipulation of M deletes all those edges that are visible in M and are
out of variables in X, replaces all those edges that are out of variables in X but are invisible
in M with bi-directed edges, and otherwise keeps M as it is. The resulting graph is
denoted as MX.

• the X-upper-manipulation of M deletes all those edges in M that are into variables in
X, and otherwise keeps M as it is. The resulting graph is denoted as MX.

We stipulate that lower-manipulation has a higher priority than upper-manipulation, so that
MYX (or MXY) denotes the graph resulting from applying the X-upper-manipulation to the
Y-lower-manipulated graph of M.

A couple of comments are in order. First, unlike the case of DAGs, the lower-
manipulation for MAGs may introduce new edges, that is, replacing invisible directed
edges with bi-directed edges. Again, the reason we do this is that an invisible directed
edge from A to B allows the possibility of a latent common parent of A and B in the
underlying DAG. If so, the A-lower-manipulated DAG will correspond to a MAG in
which there is a bi-directed edge between A and B. Second, because of the possibility
of introducing new bi-directed edges, we need the priority stipulation that lower-
manipulation is to be done before upper-manipulation. The stipulation is not necessary
for DAGs, because no new edges would be introduced in the lower-manipulation of
DAGs, and hence the order does not matter.

Ideally, if M is the MAG of a DAG G, we would like MYX to be the MAG of GYX.
But this is not always possible, as two DAGs represented by the same MAG before a
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manipulation may correspond to different MAGs after the manipulation. But we still
have the following fact:

Lemma 12 Let G be a DAG over O[ L, and M be the MAG of G over O. Let X and Y be two
possibly empty subsets of O, and MGYX

be the MAG of GYX. For any A, B 2 O and C ✓ O
that does not contain A or B, if there is an m-connecting path between A and B given C in
MGYX

, then there is an m-connecting path between A and B given C in MYX.

Proof See Appendix B.

Recall that a graphical model is called an independence map of another if any indepen-
dence implied by the former is also implied by the latter (Chickering, 2002). So another
way of putting Lemma 12 is that MYX is an independence map of MGYX

, which we
write as MGYX

MYX. The diagram in Figure 7 visualizes what is going on.

G mc - M

GYX

gm

?

mc
- MGYX

 MYX

mm

?

Figure 7: Illustration of Lemma 12: mc refers to MAG construction introduced in Sec-
tion 3; gm refers to DAG manipulation; and mm refers to MAG manipulation.

Corollary 13 Let M be a MAG over O, and X and Y be two subsets of O. For any A, B 2 O
and C ✓ O that does not contain A or B, if A and B are m-separated by C in MYX, then A
and B are d-separated by C in GYX for every G represented by M.

Proof By Lemma 12, if A and B are m-separated by C in MYX, they are also m-separated
by C in MGYX

, for every G represented by M, which in turn implies that A and B are
d-separated by C in GYX for every G represented by M, because d-separation relations
among O in a DAG correspond exactly to m-separation relations in its MAG.

The converse of Corollary 13, however, is not true in general. To give the simplest
example, consider the MAG M in Figure 8(a): X  Y ! Z (which happens to be a
DAG syntactically). The two DAGs, G1 in 8(b) and G2 in 8(c), are both represented by
M. By the definition of lower-manipulation, MY is the graph X $ Y $ Z. On the
other hand, G1Y is X  L1 ! Y Z; and G2Y is X Y  L2 ! Z. Obviously, the
MAG of G1Y is X $ Y Z, and the MAG of G2Y is X Y $ Z, both of which are
proper subgraphs of MY. So an m-separation relation in MY—for example, X and Z
are m-separated by the empty set—corresponds to a d-separation relation in both G1Y
and G2Y, in accord with Corollary 13.
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By contrast, the converse of Corollary 13 fails for M. It can be checked that for every
G represented by M, X and Z are d-separated by Y in GY, as evidenced by G1Y and
G2Y. But X and Z are not m-separated by Y in MY.

L1

X Z

(b)

Y X ZY

L2

(c)

X Y Z

(a)

Figure 8: A counterexample to the converse of Corollary 13.

However, Definition 11 is not to be blamed for this limitation. In this simple example,
one can easily enumerate all possible directed mixed graphs over X, Y, Z and see that
for none of them do both Corollary 13 and its converse hold. Intuitively, this is because
the MAG in Figure 8(a) implies that either hX, Yi does not have a common latent parent
or hY, Zi does not have a common latent parent in the underlying DAG. So under
the Y-lower-manipulation of the underlying DAG, for all we know, either hX, Yi or
hY, Zi will become unconnected. But this disjunctive information cannot be precisely
represented by a single graph.

More generally, no matter how we define MYX, as long as it is a single graph, the
converse of Corollary 13 will not hold in general, unless Corollary 13 itself fails. MYX,
as a single graph, can only aim to be a supergraph (up to Markov equivalence) of
MGYX

for every G represented by M (which makes Corollary 13 true). To this end,
Definition 11 is ‘minimal’ in the following sense: two variables are adjacent in MYX
if and only if there exists a DAG G represented by M such that the two variables are
adjacent in MGYX

. In this regard, MYX does not have more edges than necessary. One
can, for example, check this fact for the simple case in Figure 8.

We are now ready to state the intermediate theorem on MAG-based do-calculus.

Theorem 14 (do-calculus given a MAG) Let M be the causal MAG over O, and U, X, Y,
W be disjoint subsets of O. The following rules are valid, in the sense that if the antecedent of
the rule holds, then the consequent holds no matter which DAG represented by M is the true
causal DAG.

1. if Y and X are m-separated by U [W in MU, then

P(y | do(u), x, w) = P(y | do(u), w).

2. if Y and X are m-separated by U [W in MXU, then

P(y | do(u), do(x), w) = P(y | do(u), x, w).
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3. if Y and X are m-separated by U [W in MUX0 , then

P(y | do(u), do(x), w) = P(y | do(u), w)

where X0 = X\AnMU
(W).

Proof This readily follows from Proposition 7, Corollary 13, and the fact that for every
G represented by M, AnGU

(W) \O = AnMU
(W).

As already noted, the true causal MAG is not uniquely recoverable from the pre-
intervention distribution, thanks to Markov equivalence. So the main value of Theo-
rem 14 is to facilitate the development of a PAG-based do-calculus. However, it is worth
noting that when supplemented with some background causal knowledge, such as
knowledge of the form that some variable is not a cause of another variable, it is in
principle possible to determine that the true causal MAG belongs to a proper subset
of the full equivalence class represented by the PAG. Depending on how strong the
background knowledge is, the subset could be as big as the full equivalence class or as
small as a singleton. In this sense, Theorem 14 and Theorem 17 below may be viewed as
two extreme cases of a more general do-calculus based on a subset of Markov equivalent
MAGs.

To extend the calculus to PAGs, we need to define manipulations on PAGs. They
are essentially the same as the manipulations of MAGs. The definition of visibility still
makes sense in PAGs, except that we will call a directed edge in a PAG definitely visible
if it satisfies the condition for visibility in Definition 8, in order to emphasize that this
edge is visible in all MAGs in the equivalence class. Despite the extreme similarity to
manipulations on MAGs, let us still write down the definition of PAG manipulations
for easy reference.

Definition 15 (Manipulations of PAGs) Given a PAG P and a set of variables X therein,

• the X-lower-manipulation of P deletes all those edges that are definitely visible in P
and are out of variables in X, replaces all those edges that are out of variables in X but
are not definitely visible in P with bi-directed edges, and otherwise keeps P as it is. The
resulting graph is denoted as PX.

• the X-upper-manipulation of P deletes all those edges in P that are into variables in X,
and otherwise keeps P as it is. The resulting graph is denoted as PX.

We stipulate that lower-manipulation has a higher priority than upper-manipulation, so that
PYX (or PXY) denotes the graph resulting from applying the X-upper-manipulation to the
Y-lower-manipulated graph of P .

We should emphasize that except in rare situations, PYX is not a PAG any more
(i.e., not a PAG for any Markov equivalence class of MAGs). But from PYX we still
gain information about m-separation in MYX, where M is a MAG that belongs to the
Markov equivalence class represented by P . Here is a simple connection. Given a MAG
M and the PAG P that represents [M], a trivial fact is that a m-connecting path in M
is also a possibly m-connecting path in P . This is also true for MYX and PYX.

Lemma 16 Let M be a MAG over O, and P be the PAG for [M]. Let X and Y be two subsets
of O. For any A, B 2 O and C ✓ O that does not contain A or B, if a path p between A and
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B is m-connecting given C in MYX, then p, the same sequence of variables, forms a possibly
m-connecting path between A and B given C in PYX.15

Proof See Appendix B.

If there is no possibly m-connecting path between A and B given C in a partial mixed
graph, we say that A and B are definitely m-separated by C in the graph. A do-calculus
follows:

Theorem 17 (do-calculus given a PAG) Let P be the causal PAG for O, and U, X, Y, W
be disjoint subsets of O. The following rules are valid:

1. if Y and X are definitely m-separated by U [W in PU, then

P(y | do(u), x, w) = P(y | do(u), w).

2. if Y and X are definitely m-separated by U [W in PXU, then

P(y | do(u), do(x), w) = P(y | do(u), x, w).

3. if Y and X are definitely m-separated by U [W in PUX0 , then

P(y | do(u), do(x), w) = P(y | do(u), w)

where X0 = X\PossibleAnPU
(W).

Proof It follows from Lemma 16 and Theorem 14. The only caveat is that in general
AnMU

(W) 6= PossibleAnPU
(W) for an arbitrary M represented by P . But it is always

the case that AnMU
(W) ✓ PossibleAnPU

(W), which means that X\AnMU
(W) ◆

X\PossibleAnPU
(W) for every M represented by P . So it is possible that for rule (3),

PUX0 leaves more edges in than necessary, but it does not affect the validity of rule (3).

The possibility that PUX0 leaves more edges in than necessary is one of three aspects
in which our do-calculus may be “incomplete” in the following sense: it is possible that
a rule in the PAG-based do-calculus is not applicable, but for every DAG compatible
with the given PAG, the corresponding rule in Pearl’s DAG-based calculus is applicable.
The other two aspects are already noted: (1) the calculus is formulated in terms of the
absence of possibly m-connecting paths (cf. Footnote 14, and more on this in the next
section); and (2) the MAG-based do-calculus is based on Corollary 13 whose converse
does not hold. Therefore, the PAG-based do-calculus as currently formulated may be
further improved.

That said, let us illustrate the utility of the do-calculus with the simple example used
in Section 3. Given the PAG in Figure 4 we can infer that P(L | do(S), G) = P(L | S, G)
by rule 2, because L and S are definitely m-separated by {G} in PS (Figure 9(a)); and

15. For our purpose, what we need is the obvious consequence of the lemma that if there is an m-connecting
path in MYX, then there is a possibly m-connecting path in PYX. We suspect that a stronger result might
hold as well: if there is an m-connecting path in MYX, then there is a definite m-connecting path in PYX.
We can’t prove or disprove the stronger result at the moment.
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S L S L
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PSH PSH

II
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Figure 9: PAG Surgery: PS and PS.

P(G | do(S)) = P(G) by rule 3, because G and S are definitely m-separated in PS
(Figure 9(b)). It follows that

P(L | do(S)) = Â
G

P(L, G | do(S))

= Â
G

P(L | do(S), G)P(G | do(S))

= Â
G

P(L | S, G)P(G).

By contrast, it is not valid in the do-calculus that P(L | do(G), S) = P(L | G, S)
because L and G are not definitely m-separated by {S} in PG, which is depicted in
Figure 10. (Notice the bi-directed edge between L and G.)

S L

G
PSH

I

Figure 10: PAG Surgery: PG.

5. Invariance Under Interventions
We now develop stronger results for a key component of do-calculus, the property of
invariance under interventions, first systematically studied in Spirtes et al. (1993). The idea
is simple. A conditional probability P(Y = y | Z = z) is said to be invariant under an
intervention X := x—or do(X = x)—if PX:=x(y | z) = P(y | z).16 This concept (under

16. Here we allow that X and Z have a non-empty intersection, and assume that the conditioning operation
is applied to the post-intervention population (i.e., intervening comes before conditioning). As a result,
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the name of ‘observability’) plays an important role in some interesting theoretical work
on observational studies (e.g., Pratt and Schlaifer, 1988; for a good review see Winship
and Morgan, 1999), and also forms the basis of the prediction algorithm presented in
Spirtes et al. (1993), which seeks to identify a post-intervention probability by searching
for an expression in terms of invariant probabilities.

It is also the corner stone of Pearl’s do-calculus. To see this, let us take a closer look
at the second and third rules in the do-calculus. The second rule of the calculus gives a
graphical condition for when we can conclude

P(y | do(u), do(x), w) = P(y | do(u), x, w).

If we take U to be the empty set and write the above equation in the subscript notation,
we get

PX:=x(y | w) = P(y | x, w).

Since PX:=x(X = x) = 1, thanks to the supposed effectiveness of the intervention, we
have

PX:=x(y | w) = PX:=x(y | x, w).

So a special case of the second rule is a condition for PX:=x(y | x, w) = P(y | x, w), that
is, for when P(y | x, w) is invariant under the intervention X := x. In fact, the second
rule is nothing but a generalization of this condition to tell when a post-intervention
probability Pu(y | x, w) would be invariant under a further intervention X := x.

The third rule is more obviously about invariance. It is a generalization of the
condition for PX:=x(y | w) = P(y | w), that is, for when P(y | w) is invariant under
the intervention X := x. The difference between rule 2 and rule 3 is that rule 2 is about
invariance of P(y | z) under an intervention on X in case X ✓ Z (= X [W), whereas
rule 3 is about invariance of P(y | z) under an intervention on X in case X and Z (= W)
are disjoint. As we mentioned earlier, the first rule is not essential, so the do-calculus is
in effect a generalization of conditions for invariance.

We now focus on this key component of do-calculus, and present better graphical
conditions for judging invariance given a PAG than those that are implied by the PAG-
based do-calculus presented in the last section. The conditions for invariance implied by
Pearl’s (DAG-based) do-calculus can be equivalently formulated without referring to
manipulated graphs, as given in Spirtes et al. (1993, Theorem 7.1) before the do-calculus
was invented. In this section we develop corresponding conditions in terms of PAGs.
The conditions will be not only sufficient in the sense that if the conditions are satisfied,
then every DAG compatible with the given PAG entails invariance, but also necessary
in the sense that if the conditions fail, then there is at least one DAG compatible with
the given PAG that does not entail invariance. In this aspect, the conditions are also
superior to earlier results on invariance given an equivalence class of DAGs due to
Spirtes et al. (1993, Theorems 7.3 and 7.4).

We first state the conditions for judging invariance given a DAG, originally presented
in Spirtes et al. (1993, Theorem 7.1).

Proposition 18 (Spirtes, Glymour, Scheines) Let G be the causal DAG for O [ L, and
X, Y, Z ✓ O be three sets of variables such that X\ Y = Y\ Z = ∆ (but X and Z can overlap).
P(y | z) is invariant under an intervention on X if

when we speak of PX:=x(y | z), we implicitly assume that x and z are consistent regarding the values for
variables in X \ Z, for otherwise the quantity is undefined.
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(1) for every X 2 X\Z, there is no d-connecting path between X and any member of Y given
Z\{X} that is into X;

(2) for every X 2 X \ (AnG(Z)\Z), there is no d-connecting path between X and any
member of Y given Z; and

(3) for every X 2 X\AnG(Z), there is no d-connecting path between X and any member of
Y given Z that is out of X.17

Remark: Because Z ✓ AnG(Z), X \ Z, X \ (AnG(Z)\Z) and X\AnG(Z) form a parti-
tion of X. So for each member of X, only one of the conditions is relevant.

The proposition is an equivalent formulation of Theorem 7.1 in Spirtes et al. (1993).
It is not hard to check that the proposition follows from rules 2 and 3 in the DAG-based
do-calculus (Proposition 7); the talk of d-separation in manipulated graphs is replaced
by the talk of absence of d-connecting paths of certain orientations in the original
graph. Conversely, the proposition implies the special case of rules 2 and 3 where
the background intervention do(U) is empty. Specifically, clause (1) in the proposition
corresponds to rule 2 in the do-calculus; clauses (2) and (3) correspond to rule 3 in the
do-calculus.

Spirtes et al. (1993, pp. 164–5) argued that these conditions are also “almost necessary”
for invariance. What they meant is that if the conditions are not satisfied, then the
causal structure does not entail the invariance, although there may exist some particular
distribution compatible with the causal structure such that P(y | z) is invariant under
some particular intervention on X. From now on when we speak of invariance entailed
by the causal DAG, we mean that the conditions in Proposition 18 are satisfied—or
equivalently, that the invariance follows from an application of rule 2 or rule 3 in the
DAG-based do-calculus.18 Our purpose is to demonstrate that there are corresponding
graphical conditions relative to a PAG that are sufficient and necessary for the conditions
in Proposition 18 to hold for each and every DAG compatible with the PAG.

Once again, we develop the conditions in two steps: first to MAGs and then to PAGs.
In the first step, our goal is to find sufficient and necessary conditions for invariance
entailed by a MAG, as defined below:

Definition 19 (Invariance entailed by a MAG) Let M be a causal MAG over O, and X,
Y, Z ✓ O be three sets of variables such that X \ Y = Y \ Z = ∆, P(y | z) is entailed to be

17. It is not hard to see that (3) is equivalent to saying that for every X 2 X\AnG (Z), there is no directed path
from X to any member of Y. Lemma 23 below is an immediate corollary of this equivalent formulation.

18. This stipulation is of course not intended to be a definition of the notion of structurally entailed invariance.
A proper definition would be to the effect that for every distribution compatible with the causal structure,
P(y | z) is invariant under any intervention of X. The argument given by Spirtes et al. (1993, pp. 164–5) for
(their equivalent formulation of) Proposition 18 suggests that the conditions are sufficient and necessary
for structurally entailed invariance. Their argument uses the device of what they call policy variables,
extra variables introduced into the causal DAG to represent interventions. Given the causal DAG G, a
policy variable for a variable X is an (extra) parent of X but otherwise not adjacent to any other variables
in G. Interventions can then be simulated by conditioning on the intervention variables, and invariance
can be reformulated as conditional independence involving intervention variables. The conditions in
Proposition 18 are equivalent to saying that the variables in Y are d-separated from the policy variables
for X by Z (in the graph augmented by the policy variables). It thus seems plausible that these conditions
are sufficient and necessary for structurally entailed invariance, given that d-separation is a sufficient
and necessary condition for structurally entailed conditional independence (Geiger et al., 1990; Meek,
1995b). But Spirtes et al. did not give a rigorous proof for necessity. As an anonymous reviewer points
out, the rigorous proof, if any, would need to be carefully made, and in particular, one should be careful
in treating policy variables as random variables. We will not take on this task here.
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invariant under interventions on X given M if for every DAG G(O, L) represented by M,
P(y | z) is entailed to be invariant under interventions on X given G (i.e., the conditions in
Proposition 18 are satisfied).

The question is how to judge invariance entailed by a MAG without doing the intractable
job of checking the conditions in Proposition 18 for each and every compatible DAG. The
next few lemmas, Lemmas 20–23, state useful connections between d-connecting paths
in a DAG and m-connecting paths in the corresponding MAG. Lemma 20 records the
important result due to Richardson and Spirtes (2002) that d-separation relations among
observed variables in a DAG with latent variables correspond exactly to m-separation
relations in its MAG.

Lemma 20 Let G be any DAG over O [ L, and M be the MAG of G over O. For any
A, B 2 O and C ✓ O that does not contain A or B, there is a path d-connecting A and B given
C in G if and only if there is a path m-connecting A and B given C in M.

Proof This is a special case of Lemma 17 and Lemma 18 in Spirtes and Richardson
(1996), and also a special case of Theorem 4.18 in Richardson and Spirtes (2002).

Given Lemma 20, we know how to tell whether clause (2) of Proposition 18 holds in all
DAGs compatible with a given MAG. For the other two conditions in Proposition 18,
we need to take into account the orientations of d-connecting paths.

Lemma 21 Let G be any DAG over O [ L, and M be the MAG of G over O. For any
A, B 2 O and C ✓ O that does not contain A or B, if there is a path d-connecting A and B
given C in G that is into A, then there is a path m-connecting A and B given C in M that is
either into A or contains an invisible edge out of A.

Proof See Appendix B.

Lemma 22 Let M be any MAG over O. For any A, B 2 O and C ✓ O that does not contain
A or B, if there is a path m-connecting A and B given C in M that is either into A or contains
an invisible edge out of A, then there exists a DAG G over O [ L (for some extra variables L)
whose MAG is M, such that in G there is a path d-connecting A and B given C that is into A.

Proof See Appendix B.

Obviously these two lemmas are related to adapting clause (1) in Proposition 18 to
MAGs. The next lemma is related to clause (3).

Lemma 23 Let G be any DAG over O [ L, and M be the MAG of G over O. For any
A, B 2 O and C ✓ O that does not contain B or any descendant of A in G (or in M, since G
and M have the same ancestral relations among variables in O), there is a path d-connecting A
and B given C in G that is out of A if and only if there is a path m-connecting A and B given C
in M that is out of A.

Proof See Appendix B.

Given these lemmas, the conditions in Proposition 18 are readily translated into the
following conditions for invariance given a MAG.
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Theorem 24 Suppose M is the causal MAG over a set of variables O. For any X, Y, Z ✓ O,
X \ Y = Y \ Z = ∆, P(y | z) is entailed to be invariant under interventions on X given M if
and only if

(1) for every X 2 X \ Z, there is no m-connecting path between X and any member of Y
given Z\{X} that is into X or contains an invisible edge out of X;

(2) for every X 2 X \ (AnM(Z)\Z), there is no m-connecting path between X and any
member of Y given Z; and

(3) for every X 2 X\AnM(Z), there is no m-connecting path between X and any member of
Y given Z that is out of X.

Proof Given Lemma 21, if (1) holds, then for every DAG represented by M, the first
condition in Proposition 18 holds. Given Lemma 20 and the fact that M and all DAGs
represented by M have the exact same ancestral relations among O, if (2) holds, the
second condition in Proposition 18 holds for every DAG represented by M. Moreover,
given Lemma 23, if (3) holds, the third condition in Proposition 18 holds for every DAG
represented by M. So (1), (2) and (3) together imply that P(y | z) is invariant under
interventions on X given M.

Conversely, if (1) fails, then by Lemma 22, there is a DAG represented by M in
which the first condition in Proposition 18 fails. Likewise with conditions (2) and (3),
in light of Lemmas 20 and 23 and the fact that M and a DAG represented by M have
the exact same ancestral relations among O. So (1), (2) and (3) are also necessary for
P(y | z) to be entailed to be invariant under interventions on X given M.

For example, given the MAG in Figure 3(a), P(L | G, S) is invariant under inter-
ventions on S, because the only m-connecting path between L and S given G is hL, Si,
which contains a visible directed edge out of L, and so the relevant clause in Theo-
rem 24, clause (1), is satisfied. By contrast, P(L | G, S) is not entailed to be invariant
under interventions on G given the MAG—in the sense that there exists a causal DAG
compatible with the MAG given which P(L | G, S) is not entailed to be invariant under
interventions on G—because clause (1) is not satisfied.

In a similar fashion, we can extend the result to invariance entailed by a PAG.
Definition first:

Definition 25 (Invariance entailed by a PAG) Let P be a PAG over O, and X, Y, Z ✓ O
be three sets of variables such that X \ Y = Y \ Z = ∆, P(y | z) is entailed to be invariant
under interventions on X given P if for every MAG M in the Markov equivalence class
represented by P , P(y | z) is entailed to be invariant under interventions on X given M.

We need a few lemmas that state connections between m-connecting paths in a MAG
and definite m-connecting paths (as opposed to mere possibly m-connecting paths)
in its PAG. By the definition of definite m-connecting paths (Definition 4), definite
m-connection in a PAG implies m-connection in every MAG represented by the PAG.
It is not obvious, however, that m-connection in a MAG will always be revealed as
definite m-connection in its PAG. Fortunately, this turns out to be true. However, the
proof is highly involved, and relies on many results about the properties of PAGs and
the transformation between PAGs and MAGs presented in Zhang (2006, chapters 3–4),
which would take up too much space and might distract readers from the main points
of the present paper. So we will simply state the fact here, and refer interested readers
to Zhang (2006, chap. 5, Lemma 5.1.7) for the proof.
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Lemma 26 Let M be a MAG over O, and P be the PAG that represents [M]. For any
A, B 2 O and C ✓ O that does not contain A or B, if there is a path m-connecting A and B
given C in M, then there is a path definitely m-connecting A and B given C in P . Furthermore,
if there is an m-connecting path in M that is either into A or out of A with an invisible directed
edge, then there is a definite m-connecting path in P that does not start with a definitely visible
edge out of A.

Proof See the proof of Lemma 5.1.7 in Zhang (2006, pp. 207).

The converse to the second part of Lemma 26 is also true.

Lemma 27 Let P be a PAG over O. For any A, B 2 O and C ✓ O that does not contain A
or B, if there is a path definitely m-connecting A and B given C in P that does not start with a
definitely visible edge out of A, then there exists a MAG M in the equivalence class represented
by P in which there is a path m-connecting A and B given C that is either into A or includes
an invisible directed edge out of A.

Proof See Appendix B.

Lemmas 26 and 27 are useful for establishing conditions analogous to clauses (1)
and (2) in Theorem 24. For clause (3), we need two more lemmas.

Lemma 28 Let M be a MAG over O, and P be the PAG that represents [M]. For any
A, B 2 O and C ✓ O that does not contain B or any descendant of A in M, if there is a
path m-connecting A and B given C in M that is out of A, then there is a path definitely
m-connecting A and B given C in P that is not into A (i.e., the edge incident to A on the path
is either A ����, or A�!, or A!).

Proof See Appendix B.

Lemma 29 Let P be a PAG over O. For any A, B 2 O and C ✓ O that does not contain A
or B, if there is a path definitely m-connecting A and B given C in P that is not into A, then
there exists a MAG M represented by P in which there is a path m-connecting A and B given
C that is out of A.

Proof See Appendix B.

The main theorem follows.

Theorem 30 Suppose P is the causal PAG over a set of variables O. For any X, Y, Z ✓ O
such that X \ Y = Y \ Z = ∆, P(y | z) is entailed to be invariant under interventions on X
given P if and only if

(1) for every X 2 X\Z, every definite m-connecting path, if any, between X and any member
of Y given Z\{X} is out of X with a definitely visible edge;

(2) for every X 2 X \ (PossibleAnP (Z)\Z), there is no definite m-connecting path be-
tween X and any member of Y given Z; and

(3) for every X 2 X\PossibleAnP (Z), every definite m-connecting path, if any, between
X and any member of Y given Z is into X.

96



CAUSAL REASONING WITH ANCESTRAL GRAPHS

Proof We show that (1), (2) and (3) are sufficient and necessary for the corresponding
conditions in Theorem 24 to hold for all MAGs represented by P . It follows from
Lemma 26 that if (1) holds, then the first condition in Theorem 24 holds for all MAGs
represented by P . Note moreover that for every MAG M represented by P , AnM(Z) ✓
PossibleAnP (Z). It again follows from Lemma 26 that if (2) holds, then the second
condition in Theorem 24 holds for all MAGs represented by P . Finally, it follows from
Lemma 28 (and Lemma 26) that if (3) holds, the third condition in Theorem 24 holds for
all MAGs represented by P . Hence (1), (2) and (3) are sufficient.

Conversely, if (1) fails, then by Lemma 27, there exists a MAG represented by P for
which the first condition in Theorem 24 fails.

To show the necessity of (2), we need the fact mentioned in Footnote 11 that if X is
a possible ancestor of a vertex Z 2 Z in P , then there exists a MAG represented by P ,
in which X is an ancestor of Z. So if (2) fails, that is, there is a definite m-connecting
path between a variable X 2 X \ (PossibleAnP (Z)\Z) and a member of Y given Z in
P , then there exists a MAG M represented by P in which X 2 X \ (AnM(Z)\Z), and
there is an m-connecting path between X and a member of Y given Z, which violates
clause (2) of Theorem 24.

Lastly, if (3) fails, that is, there is a definite m-connecting path between a variable
X 2 X\PossibleAnP (Z) and a member of Y given Z that is not into X, then it follows
from Lemma 29 that there exists a MAG M represented by P in which there is an m-
connecting path between X and a member of Y given Z that is out of X. Moreover, since
X 2 X\PossibleAnP (Z), X cannot be an ancestor of Z in M, that is, X 2 X\AnM(Z).
So M fails clause (3) of Theorem 24. Therefore, the conditions are also necessary.

For a simple illustration, consider again the PAG in Figure 4. Given the PAG, it
can be inferred that P(L | G, S) is invariant under interventions on I, because there is
no definite m-connecting path between L and I given {G, S}, satisfying the relevant
clause—clause (2)—in Theorem 30. P(L | G, S) is also invariant under interventions
on S because the only definitely m-connecting path between L and S given {G} is
S! L which contains a definitely visible edge out of S, satisfying the relevant clause—
clause (1)—in Theorem 30.

On the other hand, for example, P(S) is not entailed to be invariant under inter-
ventions on I. Note that given the MAG of Figure 3(b), P(S) is indeed entailed to be
invariant under interventions on I, but this invariance is not unanimously implied in the
equivalence class. Given some other MAGs in the class, such as the one in Figure 3(a),
P(S) is not entailed to be invariant under interventions on I.

As briefly noted in the last section, the PAG-based do-calculus in its current form
is not complete. We mentioned three issues that might be responsible for this (cf.
the comments right after Theorem 17), but only one of them we are sure leads to
counterexamples—examples in which a rule in the DAG-based calculus is applicable
for all DAGs compatible with the given PAG, but the corresponding rule in the PAG-
based calculus is not applicable. It is the fact that the calculus is formulated in terms of
absence of possibly m-connecting paths. Consider the example we used to illustrate the
difference between definite and possibly m-connecting paths in Section 3. Given the
PAG in Figure 5, we cannot apply rule 2 of the PAG-based do-calculus to conclude that
P(W | do(X), Y, Z) = P(W | Y, Z), because there is a possibly m-connecting path be-
tween X and W relative to {Y, Z} in the PAG (note that since X 2 PossibleAn({Y, Z}),
the rule does not require manipulating the graph). However, it can be shown that for
every DAG compatible with the PAG, X and W are d-separated by {Y, Z} in either the
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X-upper-manipulation of the DAG or in the DAG itself. So rule 2 of the DAG-based
do-calculus is actually applicable given any DAG compatible with the PAG.

Although we suspect that such counterexamples may not be encountered often
in practice, it is at least theoretically interesting to handle them. Our results in this
section provide an improvement in regard to the important special case of invariance.
That is, the conditions given in Theorem 30 are complete for deriving statements of
invariance, in the following sense: if the conditions therein fail relative to a PAG, then
there exists a DAG represented by the PAG given which the conditions in Proposition 18
do not hold. The example in Figure 5 is not a counterexample to the completeness of
Theorem 30. Unlike the do-calculus presented in Theorem 17, Theorem 30 implies that
P(W | Y, Z) is entailed to be invariant under interventions on X given the PAG (and
hence we can conclude that P(W | do(X), Y, Z) = P(W | Y, Z)), because there is no
definite m-connecting path between X and W relative to {Y, Z} in the PAG. Whether it
is valid to formulate the PAG-based do-calculus in terms of definite m-connecting paths
is an open question at this point (cf. Footnote 15).19

Theorem 30 is in style very similar to Theorems 7.3 and 7.4 in Spirtes et al. (1993).
The latter are formulated with respect to a partially oriented inducing path graph (POIPG).
We include in Appendix A a description of the inducing path graphs (IPGs) as well as
their relationship to ancestral graphs. As shown there, syntactically the class of ancestral
graphs is a proper subclass of the class of inducing path graphs. In consequence a PAG
in general reveals more qualitative causal information than a POIPG. In addition, it
seems MAGs are easier to parameterize than IPGs. (For a linear parametrization of
MAGs, see Richardson and Spirtes (2002).)

Apart from the advantages of working with MAGs and PAGs over IPGs and POIPGs,
our Theorem 30 is superior to Spirtes et al.’s theorems in that our theorem is formulated
in terms of definite m-connecting paths, whereas theirs, like the results in the last section,
are formulated in terms of possibly m-connecting paths. As a result, their conditions
are only sufficient but not necessary. Regarding the case in Figure 5, for example, their
theorems do not imply that P(W | Y, Z) is entailed to be invariant under interventions
on X, due to the presence of the possibly m-connecting path in the graph (which in
this case is also the POIPG). Furthermore, since definite m-connecting paths are special
cases of possibly m-connecting paths, there are more possibly m-connecting paths than
definite m-connecting paths to check in a PAG. This may turn out to be a computational
advantage for our theorem.

6. Conclusion
Causal reasoning about consequences of interventions has received rigorous and in-
teresting treatments in the framework of causal Bayesian networks. Much of the work
assumes that the structure of the causal Bayesian network, represented by a directed
acyclic graph, is fully given. In this paper we have provided some results about causal
reasoning under weaker causal assumptions, represented by a maximal ancestral graph
or a partial ancestral graph, the latter of which is fully testable with observational data
(assuming the causal Faithfulness condition).

19. Here is another way to view the open problem. As explained earlier, do-calculus is essentially a general-
ization of the invariance conditions. Not only does it address the question of when (y | z) is invariant
under an intervention X := x, it also addresses the more general question of when a post-intervention
probability Pu(y | z) would be invariant under a further intervention X := x. Our results in this section do
not cover the latter question. To generalize the results in terms of definite m-connecting paths to address
the latter question is parallel to improving the do-calculus.
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Theorem 17 in Section 4 gives us a do-calculus under testable causal assumptions,
represented by a PAG. The idea is that when any rule in the calculus is applicable given
the PAG, the corresponding rule in Pearl’s original do-calculus is applicable relative to
each and every DAG compatible with the PAG. The converse, however, is not true; it is
not the case that whenever all DAGs compatible with the PAG sanction the application
of a certain rule in the do-calculus, the corresponding rule in the PAG-based calculus is
also applicable. An interesting project is to either improve the calculus, or to investigate
more closely the extent to which the current version is not complete.

As a first step towards improvement, we examined in Section 5 an important special
case of the do-calculus—the graphical conditions for invariance under interventions—
and presented sufficient and necessary conditions for invariance given a PAG. These
conditions are very similar but also superior to the analogous results proved by Spirtes
et al. (1993). In the latter work, there is also an algorithm (named Prediction Algorithm)
for identifying post-intervention probabilities based on the conditions for invariance.
The results in this paper can certainly be used to improve that algorithm.

The search for a syntactic derivation in the do-calculus to identify a post-intervention
probability is no minor computational task. For this reason, it is worth deriving handy
graphical criteria for identifiability from the do-calculus. Since invariant quantities are
the most basic identifiable quantities, the condition for invariance is the most basic
among such graphical criteria. Other graphical criteria in the literature, including the
well known “back door criterion” and “front door criterion”, should be extendible to
PAGs in the same way as we did for invariance. On the other hand, a novel approach
to identification has been developed recently by Tian and Pearl (2004), which proves
computationally attractive. To adapt that approach to ancestral graphs is probably a
worthy project.
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Appendix A. Inducing Path Graphs
The theory of invariance under interventions developed in this paper is largely parallel
to that developed in Spirtes et al. (1993). Their theory is based on a graphical represen-
tation called inducing path graphs. This graphical object is not given an independent
syntactic definition, but defined via a construction relative to a DAG (with latent vari-
ables). It is clear from the construction that this representation is closely related to
MAGs. In this appendix we specify the exact relationship between them. In particular,
we justify an independent syntactic definition of inducing path graphs, which makes it
clear that syntactically the class of MAGs is a subclass of inducing path graphs.

An inducing path graph (IPG) is a directed mixed graph, defined relative to a DAG,
through the following construction:

Input: a DAG G over hO, Li
Output: an IPG IG over O
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1. for each pair of variables A, B 2 O, A and B are adjacent in IG if and only if there
is an inducing path between them relative to L in G;

2. for each pair of adjacent vertices A, B in IG , mark the A-end of the edge as an
arrowhead if there is an inducing path between A and B that is into A, otherwise
mark the A-end of the edge as a tail.

It can be shown that the construction outputs a mixed graph IG in which the set of
m-separation relations matches exactly the set of d-separation relations among O in the
original DAG G (Spirtes and Verma, 1992). Furthermore, IG encodes information about
inducing paths in the original graph, which in turn implies features of the original DAG
that bear causal significance. Specifically, we have two useful facts: (i) if there is an
inducing path between A and B relative to L that is out of A, then A is an ancestor of B
in G; (ii) if there is an inducing path between A and B relative to L that is into both A
and B, then A and B have a common ancestor in L unmediated by any other observed
variable.20 So IG , just like the MAG for G , represents both the conditional independence
relations and (features of) the causal structure among the observed variables O. Since
the above construction produces a unique graph given a DAG G, it is fair to call IG the
IPG for G.

Therefore a directed mixed graph over a set of variables is an IPG if it is the IPG
for some DAG. We now show that a directed mixed graph is an IPG if and only if it is
maximal and does not contain a directed cycle.

Theorem 31 For any directed mixed graph I over a set of variables O, there exists a DAG G
over O and possibly some extra variables L such that I = IG—that is, I is the IPG for G—if
and only if

(i1) There is no directed cycle in I ; and

(i2) I is maximal (i.e., there is no inducing path between two non-adjacent variables).

Proof We first show that the conditions are necessary (only if). Suppose there exists a
DAG G(O, L) whose IPG is I . In other words, I is the output of the IPG construction
procedure given G. If there is any directed cycle in I , say c = hO1, . . . , On, O1i, then
between any pair of adjacent nodes in the cycle, Oi and Oi+1 (1  i  n and On+1 = O1),
there is an inducing path between them in G relative to L, which, by one of the facts
mentioned earlier, implies that Oi is an ancestor of Oi+1 in G. Thus there would be
a directed cycle in G as well, a contradiction. Therefore there is no directed cycle in
I . To show that it is also maximal, consider any two non-adjacent nodes A and B
in I . We show that there is no inducing path in I between A and B. Otherwise let
p = hA, O1, . . . , On, Bi be an inducing path. By the construction, there is an inducing
path relative to L in G between A and O1 that is into O1, and an inducing path relative
to L in G between B and On that is into On, and for every 1  i  i� 1, there is an
inducing path relative to L in G between Oi and Oi+1 that is into both. By Lemma 32 in
Appendix B, it follows that there is an inducing path between A and B relative to L in G ,
and so A and B should be adjacent in I , a contradiction. Therefore I is also maximal.

Next we demonstrate sufficiency (if). If the two conditions hold, construct a DAG G
as follows: retain all the directed edges in I , and for each bi-directed edge A $ B in
I , introduce a latent variable LAB in G and replace A$ B with A LAB ! B.21 It is

20. For more details of the causal interpretation of IPGs, see Spirtes et al. (1993, pp. 130–138).
21. This is named canonical DAG in Richardson and Spirtes (2002).
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easy to see that the resulting graph G is a DAG, as in I there is no directed cycle. We
show that I = IG , the IPG for G. For any pair of variables A and B in I , there are four
cases to consider:

Case 1: A ! B is in I . Then A ! B is also in G, so A and B are adjacent in IG . In
IG , the edge between A and B is not A B, because otherwise B would have to be an
ancestor of A in G, a contradiction. The edge is not A $ B either, because otherwise
there would have to be a latent variable that is a parent of both A and B, which by the
construction of G is not the case. So A! B is also in IG .

Case 2: A B is in I . By the same argument as in Case 1, A B is also in IG .
Case 3: A $ B is in I . Then there is a LAB such that A  LAB ! B is in G. Then

obviously hA, LAB, Bi is an inducing path relative to L in G that is into both A and B,
and hence A$ B is also in IG .

Case 4: A and B are not adjacent in I . We show that they are not adjacent in IG
either. For this, we only need to show that there is no inducing path between A and B
relative to L in G. Suppose otherwise that there is such an inducing path p between A
and B in G. Let hA, O1, . . . , On, Bi be the sub-sequence of p consisting of all observed
variables on p. By the definition of inducing path, all Oi’s (1  i  n) are colliders
on p and are ancestors of either A or B. By the construction of G, it is easy to see that
Oi’s are also ancestors of either A or B in I . It is also easy to see that either A! O1 or
A LAO1 ! O1 appears in G, which implies that there is an edge between A and O1
that is into O1 in I . Likewise, there is an edge between On and B that is into On in I ,
and there is an edge between Oi and Oi+1 that is into both in I for all 1  i  n� 1. So
hA, O1, . . . , On, Bi constitutes an inducing path between A and B in I , which contradicts
the assumption that I is maximal. So there is no inducing path between A and B relative
to L in G, which means that A and B are not adjacent in IG .

Therefore I = IG , the IPG for G.

Given this theorem, it is clear that we can define IPGs in terms of (i1) and (i2). So a
MAG is also an IPG, but an IPG is not necessarily a MAG, as the former may contain an
almost directed cycle. The simplest IPG which is not a MAG is shown in Figure 11.

O1

O3O2

Figure 11: A simplest IPG that is not a MAG

Spirtes et al. (1993) uses partially oriented inducing path graphs (POIPGs) to represent
Markov equivalence classes of IPGs. The idea is exactly the same as PAGs. A (complete)
POIPG displays (all) common marks in a Markov equivalence class of IPGs. An obvious
fact is that given a set of conditional independence facts that admits a faithful represen-
tation by a MAG, the Markov equivalence class of MAGs is included in the Markov
equivalence class of IPGs. It follows that the POIPG cannot contain more informative
marks than the PAG, but may contain fewer. So a PAG usually reveals more qualitative
causal information than a POIPG does.
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Appendix B. Proofs of the Lemmas
In proving some of the lemmas, we will use the following fact, which was proved in,
for example, Spirtes et al. (1999, pp. 243):

Lemma 32 Let G(O, L) be a DAG, and hV0, . . . , Vni be a sequence of distinct variables in
O. If (1) for all 0  i  n� 1, there is an inducing path in G between Vi and Vi+1 relative
to L that is into Vi unless possibly i = 0 and is into Vi+1 unless possibly i = n� 1; and (2)
for all 1  i  n� 1, Vi is an ancestor of either V0 or Vn in G; then there is a subpath s of the
concatenation of those inducing paths that is an inducing path between V0 and Vn relative to L
in G . Furthermore, if the said inducing path between V0 and V1 is into V0, then s is into V0, and
if the said inducing path between Vn�1 and Vn is into Vn, then s is into Vn.

Proof This is a special case of Lemma 10 in Spirtes et al. (1999, pp. 243). See their
paper for a detailed proof. (One may think that the concatenation itself would be an
inducing path between V0 and Vn. This is almost correct, except that the concatenation
may contain the same vertex multiple times. So in general it is a subsequence of the
concatenation that constitutes an inducing path between V0 and Vn.)

Lemma 32 gives a way to argue for the presence of an inducing path between two
variables in a DAG, and hence is very useful for demonstrating that two variables are
adjacent in the corresponding MAG. We will see several applications of this lemma in
the subsequent proofs.

Proof of Lemma 9
Proof Since there is an inducing path between A and B relative to L in G, A and B are
adjacent in M. Furthermore, since A 2 AnG(B), the edge between A and B in M is
A! B. We now show that it is invisible in M. To show this, it suffices to show that for
any C, if in M there is an edge between C and A that is into A or there is a collider path
between C and A that is into A and every vertex on the path is a parent of B, then C is
adjacent to B, which means that the condition for visibility cannot be met.

Let u be an inducing path between A and B relative to L in G that is into A. For any
C, we consider the two possible cases separately:

Case 1: There is an edge between C and A in M that is into A. Then, by the way M
is constructed from G, there must be an inducing path u0 in G between A and C relative
to L. Moreover, u0 is into A, for otherwise A would be an ancestor of C, so that the edge
between A and C in M would be out of A. Given u, u0 and the fact that A 2 AnG(B),
we can apply Lemma 32 to conclude that there is an inducing path between C and B
relative to L in G, which means C and B are adjacent in M.

Case 2: There is a collider path p in M between C and A that is into A and every
non-endpoint vertex on the path is a parent of B. For every pair of adjacent vertices
hVi, Vi+1i on p, the edge is Vi $ Vi+1 if Vi 6= C, and otherwise either C $ Vi+1 or
C ! Vi+1. It follows that there is an inducing path in G between Vi and Vi+1 relative
to L such that the path is into Vi+1, and is into Vi unless possibly Vi = C. Given these
inducing paths and the fact that every variable other than C on p is an ancestor of B,
we can apply Lemma 32 to conclude that there is an inducing path between C and B
relative to L in G, which means C and B are adjacent in M.

Therefore, the edge A! B is invisible in M.

Proof of Lemma 10
Proof Construct a DAG from M as follows:
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1. Leave every directed edge in M as it is. Introduce a latent variable LAB and add
A LAB ! B to the graph.

2. for every bi-directed edge Z $ W in M, delete the bi-directed edge. Introduce a
latent variable LZW and add Z  LZW !W to the graph.

The resulting graph we denote by G, a DAG over (O, L), where L = {LAB} [ {LZW |
Z $ W is in M}. Obviously G is a DAG in which A and B share a latent parent. We
need to show that M = MG , that is, M is the MAG of G. For any pair of variables X
and Y, there are four cases to consider:

Case 1: X ! Y is in M. Since G retains all directed edges in M, X ! Y is also in G,
and hence is also in MG .

Case 2: X  Y is in M. Same as Case 1.
Case 3: X $ Y is in M. Then there is a latent variable LXY in G such that X  

LXY ! Y appears in G. Since X  LXY ! Y is an inducing path between X and Y
relative to L in G, X and Y are adjacent in MG . Furthermore, it is easy to see that the
construction of G does not create any directed path from X to Y or from Y to X. So X is
not an ancestor of Y and Y is not an ancestor of X in G. It follows that in MG the edge
between X and Y is X $ Y.

Case 4: X and Y are not adjacent in M. We show that in G there is no inducing path
between X and Y relative to L. Suppose otherwise that there is one. Let p be an inducing
path between X and Y relative to L in G that includes a minimal number of observed
variables. Let hX, O1, . . . , On, Yi be the sub-sequence of p consisting of all observed
variables on p. By the definition of inducing path, all Oi’s (1  i  n) are colliders on
p and are ancestors of either X or Y in G. Since the construction of G does not create
any new directed path from an observed variable to another observed variable, Oi’s
are also ancestors of either X or Y in M. Since O1 is a collider on p, either X ! O1 or
X  LXO1 ! O1 appears in G. Either way there is an edge between X and O1 that is
into O1 in M. Likewise, there is an edge between On and Y that is into On in M.

Moreover, for all 1  i  n � 1, the path p in G contains Oi  LOiOi+1 ! Oi+1,
because all Oi’s are colliders on p. Thus in M there is an edge between Oi and Oi+1.
Regarding these edges, by construction of the MAG, either all of them are bi-directed, or
one of them is A! B and others are bi-directed. In the former case, hX, O1, . . . , On, Yi
constitutes an inducing path between X and Y in M, which contradicts the maximality
of M. In the latter case, without loss of generality, suppose hA, Bi = hOk, Ok+1i. Then
hX, O1, ..., Ok = Ai is a collider path into A in M. We now show by induction that for
all 1  i  k� 1, Oi is a parent of B in M.

Consider Ok�1 in the base case. Ok�1 is adjacent to B, for otherwise A! B would
be visible in M because there is an edge between Ok�1 and A that is into A. The edge
between Ok�1 and B is not Ok�1  B, for otherwise there would be A ! B ! Ok�1
and yet an edge between Ok�1 and A that is into A in M, which contradicts the fact that
M is ancestral. The edge between them is not Ok�1 $ B, for otherwise there would
be an inducing path between X and Y relative to L in G that includes fewer observed
variables than p does, which contradicts our choice of p. So Ok�1 is a parent of B in M.

In the inductive step, suppose for all 1 < m + 1  j  k� 1, Oj is a parent of B in M,
and we need to show that Om is also a parent of B in M. The argument is essentially
the same as in the base case. Specifically, Om and B are adjacent because otherwise it
follows from the inductive hypothesis that A! B is visible. The edge is not Om  B
on pain of making M non-ancestral; and the edge is not Om $ B on pain of creating
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an inducing path that includes fewer observed variables than p does. So Om is also a
parent of B.

Now we have shown that for all 1  i  k� 1, Oi is a parent of B in M. It follows
that X is adjacent to B, for otherwise A ! B would be visible. Again, the edge is not
X  B on pain of making M non-ancestral. So the edge between X and B in M is into
B, but then there is an inducing path between X and Y relative to L in G that includes
fewer observed variables than p does, which is a contradiction with our choice of p.

So our initial supposition is false. There is no inducing path between X and Y
relative to L in G, and hence X and Y are not adjacent in MG .

Therefore M = MG .

Proof of Lemma 12
Proof Recall the diagram in Figure 7:

G mc - M

GYX

gm

?

mc
- MGYX

 MYX

mm

?

What we need to show is that MYX is an I-map of MGYX
, or in other words, whatever

m-separation relation is true in the former is also true in the latter. To show this, it
suffices to show that MYX is Markov equivalent to a supergraph of MGYX

.
For that purpose, we first establish two facts: (1) every directed edge in MGYX

is also
in MYX; and (2) for every bi-directed edge S$ T in MGYX

, S and T are also adjacent in
MYX; and the edge between S and T is either a bi-directed edge or an invisible directed
edge in MYX.

(1) is relatively easy to show. Note that for any P! Q in MGYX
, P /2 Y, for otherwise

P would not be an ancestor of Q in GYX, and hence would not be a parent of Q in MGYX
;

and likewise Q /2 X, for otherwise Q would not be a descendant of P in GYX, and hence
would not be a child of P in MGYX

. Furthermore, because GYX is a subgraph of G,
any inducing path between P and Q relative to L in GYX is also present in G, and any
directed path from P to Q in the former is also present in the latter. This entails that
P ! Q is also in M, the MAG of G. Since P /2 Y and Q /2 X, P ! Q is also present in
MYX. So (1) is true.

(2) is less obvious. First of all, note that if S$ T is in MGYX
, then there is an inducing

path between S and T relative to L in GYX that is into both S and T. This implies that
S, T /2 X, and moreover there is also an inducing path between S and T relative to L in
G that is into both S and T. Hence there is an edge between S and T in M, the MAG of
G. The edge in M is either S$ T or, by Lemma 9, an invisible directed edge (S T or
S! T).

Because S, T /2 X, if S $ T appears in M, it also appears in MYX. If, on the other
hand, the edge between S and T in M is directed, suppose without loss of generality
that it is S ! T. Either S 2 Y, in which case we have S $ T in MYX, because S ! T
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is invisible in M; or S /2 Y, and S! T remains in MYX. In the latter case we need to
show that S ! T is still invisible in MYX. Suppose for the sake of contradiction that
S ! T is visible in MYX, that there is a vertex R not adjacent to T, such that either
R⇤! S is in MYX or there is a collider path c in MYX between R and S that is into
S on which every collider is a parent of T. We show that S ! T is also visible in M.
Consider the two possible cases separately:

Case 1: R⇤! S is in MYX. If the edge is R! S, it is also in M, because manipulations
of a MAG do not create new directed edges. We now show that R and T are not adjacent
in M. Suppose otherwise. The edge between R and T has to be R! T in M. Note that
R /2 Y for otherwise R! S would be deleted or changed into a bi-directed edge; and
we have already shown that T /2 X. It follows that R! T would be present in MYX as
well, a contradiction. Hence R and T are not adjacent in M, and so the edge S! T is
also visible in M.

Suppose, on the other hand, the edge between R and S in MYX is R$ S. In M the
edge is either (i) R $ S, or (ii) R ! S. (It can’t be R  S because then S 2 Y and the
edge S! T would not remain in MYX.)

If (i) is the case, we argue that R and T are not adjacent in M. Since R$ S! T is
in M, if R and T are adjacent, it has to be R$ T or R! T. In the former case, R$ T
would still be present in MYX (because obviously R, T /2 X), which is a contradiction. In
the latter case, R! T is invisible in M, for otherwise it is easy to see that S! T would
also be visible. So either R ! T remains in MYX (if R /2 Y), or it turns into R $ T (if
R 2 Y). In either case R and T would still be adjacent in MYX, a contradiction. Hence
R and T are not adjacent in M, and so the edge S! T is also visible in M.

If (ii) is the case, then either R and T are not adjacent in M, in which case S ! T
is also visible in M; or R and T are adjacent in M, in which case we now show that
S ! T is still visible. The edge between R and T in M has to be R ! T (in view of
R! S! T). Since R and T are not adjacent in MYX, and R! S is turned into R$ S
in MYX, by the definition of lower-manipulation (Definition 11), R! T is visible but
R ! S is invisible in M. Because R ! T is visible, by definition, there is a vertex Q
not adjacent to T such that Q⇤! R is in M or there is a collider path in M between Q
and R that is into R on which every collider is a parent of T. But R! S is not visible,
from which we can derive that S! T is visible in M. Here is a sketch of the argument.
If Q⇤! R is in M, then Q and S must be adjacent (since otherwise R ! S would be
visible). It is then easy to derive that the edge between Q and S must be into S, which
makes S ! T visible. On the other hand, suppose there is a collider path c into R on
which every collider is a parent of T. Then if there is a collider P on c such that P$ S is
in M, we immediately get a collider path between Q and S that is into S on which every
collider is a parent of T. This path makes S ! T visible. Finally, if no collider on the
path is a spouse of S, it is not hard to show that in order for R! S to be invisible, there
has to be an edge between Q and S that is into S, which again makes S! T visible.

Case 2: There is a collider path c in MYX between R and S that is into S on which
every collider is a parent of T. We claim that every arrowhead on c, except possibly one
at R, is also in M. Because if an arrowhead is added at a vertex Q (which could be S) on
c by the lower-manipulation, then Q 2 Y, but then the edge Q! T would not remain
in MYX, a contradiction. So c is also a collider path in M that is into S. Furthermore,
no new directed edges are introduced by lower-manipulation or upper-manipulation,
so every collider on c is still a parent of T in M.
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It follows that if R and T are not adjacent in M, then S! T is visible in M. On the
other hand, if R and T are adjacent in M, it is either R $ T or R ! T. Note that this
edge is deleted in MYX. This implies that it is not R $ T in M: otherwise, the edge
incident to R on c has to be bi-directed as well (since otherwise M is not ancestral), and
hence if R$ T is deleted, either the edge incident to R on c or the edge S! T should
be deleted in MYX, which is a contradiction. So the edge is R! T in M. Since T /2 X
(for otherwise S! T would be deleted), R 2 Y, and R! T is visible in M. But then it
is easy to see that S! T is also visible in M.

To summarize, we have shown that if S! T is visible in MYX, it is also visible in
M. Since it is not visible in M, it is invisible in MYX as well. Thus the edge between S
and T is either a bi-directed edge or an invisible directed edge in MYX. Hence we have
established (2).

The strategy to complete the proof is to show that MYX can be transformed into a
supergraph of MGYX

via a sequence of equivalence-preserving mark changes (Zhang
and Spirtes, 2005; Tian, 2005). By (1) and (2), if MYX is not yet a supergraph of MGYX

,
it is because some bi-directed edges in MGYX

correspond to directed edges in MYX.
For any such directed edge P ! Q in MYX (with P $ Q in MGYX

), (2) implies that
P ! Q is invisible. It is then not hard to check that conditions in Lemma 1 of Zhang
and Spirtes (2005)22 hold for P ! Q in MYX, and thus it can be changed into P $ Q
while preserving Markov equivalence. Furthermore, making this change will not make
any other such directed edge in MYX visible. It follows that MYX can be transformed
into a Markov equivalent graph that is a supergraph of MGYX

. (We skip the details as
they involve conditions for Markov equivalence we didn’t have enough space to cover.)

Denote the supergraph by I . It follows that if there is an m-connecting path between
A and B given C in MGYX

, the path is also m-connecting in I , the supergraph of MGYX
.

Because MYX and I are Markov equivalent, there is also an m-connecting path between
A and B given C in MYX.

Proof of Lemma 16
Proof It is not hard to check that for any two variables P, Q 2 O, if P and Q are adjacent
in MYX, then they are adjacent in PYX (though the converse is not necessarily true,
because an edge not definitely visible in P may still be visible in M). Furthermore,
when they are adjacent in both MYX and PYX, every non-circle mark on the edge in
PYX is “sound” in that the mark also appears in MYX. The lemma obviously follows.

Proof of Lemma 21
22. Here is the Lemma: Let M be a MAG, and A! B a directed edge in M. Let M0 be the graph identical

to M except that the edge between A and B is A$ B in M0. (In other words, M0 is the result of simply
changing A! B into A$ B in M.) M0 is a MAG and Markov equivalent to M if and only if
(t1) there is no directed path from A to B other than A! B in M;
(t2)] For every C ! A in M, C ! B is also in M; and for every D $ A in M, either D ! B or D $ B is
in M; and
(t3) there is no discriminating path for A on which B is the endpoint adjacent to A in M.
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Proof Spirtes and Richardson (1996), in proving their Lemma 18, gave a construction of
an m-connecting path in M from a d-connecting path in G . We describe the construction
below.23

Let p be a minimal d-connecting path between A and B relative to C in G that is into
A, minimal in the sense that no other d-connecting path between A and B relative to
C that is into A is composed of fewer variables than p is.24 Construct a sequence of
variables in O in three steps.

Step 1: Form a sequence T of variables on p as follows. T[0] = A, and T[n + 1] is
chosen to be the first vertex after T[n] on p that is either in O or a (latent) collider on p,
until B is included in T.

Step 2: Form a sequence S0 of variables in O of the same length as T, which we
assume contains m variables. For each 0  n  m� 1, if T[n] is in O, then S0[n] = T[n];
otherwise T[n] is a (latent) collider on p, which, by the fact that p is d-connecting given
C, implies that there is a directed path from T[n] to a member of C. So in this case, S0[n]
is chosen to be the first observed variable on a directed path from T[n] to a member of
C.

Step 3: Run the following iterative procedure:

k:=0

Repeat

If in Sk there is a triple of vertices hSk[i� 1], Sk[i], Sk[i + 1]i such that (1) there
is an inducing path between Sk[i� 1] and Sk[i] relative to L in G that is into
Sk[i]; (2) there is an inducing path between Sk[i] and Sk[i + 1] relative to L in
G that is into Sk[i]; and (3) Sk[i] is in C and is an ancestor of either Sk[i� 1]
or Sk[i + 1]; then let sequence Sk+1 be Sk with Sk[i] being removed;
k := k+1

Until there is no such triple of vertices in the sequence Sk.

Let SK denote the final outcome of the above three steps. Spirtes and Richardson
(1996), in their Lemma 18, showed that SK constitutes an m-connecting path between
A and B relative to C in M. We refer the reader to their paper for the detailed proof
of this fact. What is left for us to show here is that the path constituted by SK in M is
either into A or out of A with an invisible edge.

In other words, we need to show that if the edge between A = SK[0] and SK[1] in
M is A ! SK[1], then this edge is invisible. Given Lemma 9, it suffices to show that
there is an inducing path between A and SK[1] relative to L in G that is into A. This is
not hard to show. In fact, we can show by induction that for all 0  k  K, there is in G
an inducing path between A and Sk[1] relative to L that is into A.

In the base case, notice that either (i) S0[1] is an observed variable on p such that
every variable between A and S0[1] on p, if any, belongs to L and is a non-collider on p,
or (ii) S0[1] is the first observed variable on a directed path d starting from T[1] such that
T[1] belongs to L, lies on p and every variable between A and T[1] on p, if any, belongs
to L and is a non-collider on p. In case (i), p(A, S0[1]) is an inducing path relative to L,
which is into A, because p is into A. In case (ii), consider p(A, T[1]) and d(T[1], S0[1]).

23. Their lemma addresses the more general case in which there may also be selection variables. The
construction given here is an adaptation of theirs to fit our case.

24. In Spirtes and Richardson (1996), minimality means more than that the d-connecting path is a shortest
one, but for this proof one only need to choose a shortest path.
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Let W be the variable nearest to A on p(A, T[1]) that is also on d(T[1], S0[1]). (W exists
because p(A, T[1]) and d(T[1], S0[1]) at least intersect at T[1].) Then it is easy to see
that a concatenation of p(A, W) and d(W, S0[1]) forms an inducing path between A and
S0[1] relative to L in G, which is into A because p is into A.

Now the inductive step. Suppose there is in G an inducing path between A and
Sk[1] relative to L that is into A. Consider Sk+1[1]. If Sk+1[1] = Sk[1], it is trivial that
there is an inducing path between A and Sk+1[1] that is into A. Otherwise, Sk[1] was
removed in forming Sk+1. But given the three conditions for removing Sk[1] in Step 3
above, we can apply Lemma 32 (together with the inductive hypothesis) to conclude
that there is an inducing path between A and Sk+1[1] = Sk[2] relative to L in G that is
into A. This concludes our argument.

Proof of Lemma 22
Proof This lemma is fairly obvious given Lemma 10. Let u be the path m-connecting A
and B given C in M. Let D (which could be B) be the vertex next to A on u. Construct a
DAG G from M in the usual way: keep all the directed edges, replacing each bi-directed
edge X $ Y with X  LXY ! Y. Furthermore, if the edge between A and D is A! D,
it is invisible, so we can add A LAD ! D to the DAG. Then G is a DAG represented
by M. It is easy to check that there is a d-connecting path in G between A and B given
C that is into A.

Proof of Lemma 23
Proof Note that because A is not an ancestor of any member of C, if there is a path out
of A d-connecting A and B given C in G, the path must be a directed path from A to
B. For otherwise there would be a collider on the path that is also a descendant of A,
which implies that A is an ancestor of some member of C. The sub-sequence of that
path consisting of observed variables then constitutes a directed path from A to B in M,
which is of course out of A and also m-connecting given C in M. The converse is as
easy to show.

Proof of Lemma 27
Proof A path definitely m-connecting A and B given C in P is m-connecting in every
MAG represented by P , which is an immediate consequence of the definition of PAG.
Let D be the vertex next to A on the definite m-connecting path in P between A and B
given C. All we need to show is that if the edge between A and D is not a definitely
visible edge A! D in P , then there exists a MAG represented by P in which the edge
between A and D is not a visible edge out of A.

Obviously if the edge in P is not A ! D, there exists a MAG represented in P in
which the edge is not A! D, which follows from the fact that P , by definition, displays
all edge marks that are shared by all MAGs in the equivalence class.

So we only need to consider the case where the edge in P is A ! D, but it is not
definitely visible. Now we need to use a fact proved in Lemma 3.3.4 of Zhang (2006,
pp. 80): that we can turn P into a MAG by first changing every �! edge in P into
a directed edge!, and then orienting the circle component—the subgraph of P that
consists of ���� edges—into a DAG with no unshielded colliders.25 Moreover, it is not

25. A triple of vertices hX, Y, Zi in a graph is called an unshielded triple if there is an edge between X and
Y, an edge between Y and Z, but no edge between X and Z. It is an unshielded collider if both the edge
between X and Y and the edge between Z and Y are into Y.
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hard to show, using the result in Meek (1995a), that we can orient the circle component—
a chordal graph—into a DAG free of unshielded colliders in which every edge incident
to A is oriented out of A.

Let the resulting MAG be M. We show that A! D is invisible in M. Suppose for
the sake of contradiction that it is visible in M. Then there exists in M a vertex E not
adjacent to D such that either E⇤! A or there is a collider path between E and A that is
into A and every collider on the path is a parent of D. In the former case, since A! D
is not definitely visible in P , the edge between E and A is not into A in P , but then that
edge will not be oriented as into A by our construction of M. So the former case is
impossible.

In the latter case, denote the collider path by hE, E1, ..., Em, Ai. Obviously every edge
on hE1, ..., Em, Ai is bi-directed, and so also occurs in P (because our construction of M
does not introduce extra bi-directed edges). There are then two cases to consider:

Case 1: The edge between E and E1 is also into E1 in P . Then the collider path
appears in P . We don’t have space to go into the details here, but there is an orientation
rule in constructing PAGs that makes use of a construct called “discriminating path”
(e.g., Spirtes et al., 1999; Zhang, forthcoming), which would imply that if the collider
path appears in P , and every Ei (1  i  m) is a parent of D in a representative MAG
M, then every Ei is also a parent of D in P . It follows that A! D is definitely visible
in P , a contradiction.

Case 2: The edge between E and E1 is not into E1 in P , but is oriented as into E1 in
M. This is possible only if the edge is E ����E1 in P . But we also have E1 $ E2 (E2
could be A) in P , which, by Lemma 3.3.1 in Zhang (2006, pp. 77), implies that E$ E2 is
in P . Then hE, E2, . . . , Aimakes A! D definitely visible in P , which is a contradiction.

Proof of Lemma 28
Proof Note that since A does not have a descendant in C, an m-connecting path out of
A given C in M has to be a directed path from A to B such that every vertex on the path
is not in C. Then a shortest such path has to be uncovered,26 and so will correspond
to a definite m-connecting path between A and B given C in P (on which every vertex
is a definite non-collider). This path is not into A in P because P is the PAG for M in
which the path is out of A.

Proof of Lemma 29
Proof Let D be the vertex next to A on the definite m-connecting path in P . Since the
edge between A and D is not into A in P , there exists a MAG represented by P in which
the edge is out of A (which follows from the definition of PAG). Such a MAG obviously
satisfies the lemma.
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Abstract
We consider a hierarchy of queries about causal relationships in graphical models,
where each level in the hierarchy requires more detailed information than the one
below. The hierarchy consists of three levels: associative relationships, derived from a
joint distribution over the observable variables; cause-effect relationships, derived from
distributions resulting from external interventions; and counterfactuals, derived from
distributions that span multiple “parallel worlds” and resulting from simultaneous,
possibly conflicting observations and interventions. We completely characterize cases
where a given causal query can be computed from information lower in the hierar-
chy, and provide algorithms that accomplish this computation. Specifically, we show
when effects of interventions can be computed from observational studies, and when
probabilities of counterfactuals can be computed from experimental studies. We also
provide a graphical characterization of those queries which cannot be computed (by
any method) from queries at a lower layer of the hierarchy.
Keywords: causality, graphical causal models, identification

1. Introduction
The human mind sees the world in terms of causes and effects. Understanding and mas-
tering our environment hinges on answering questions about cause-effect relationships.
In this paper we consider three distinct classes of causal questions forming a hierarchy.

The first class of questions involves associative relationships in domains with un-
certainty, for example, “I took an aspirin after dinner, will I wake up with a headache?”
The tools needed to formalize and answer such questions are the subject of probability
theory and statistics, for they require computing or estimating some aspects of a joint
probability distribution. In our aspirin example, this requires estimating the conditional
probability P(headache | aspirin) in a population that resembles the subject in question,
that is, sharing age, sex, eating habits and any other traits that can be measured. Associ-
ational relationships, as is well known, are insufficient for establishing causation. We
nevertheless place associative questions at the base of our causal hierarchy, because the
probabilistic tools developed in studying such questions are instrumental for computing
more informative causal queries, and serve therefore as an easily available starting point
from which such computations can begin.
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The second class of questions involves responses of outcomes of interest to outside
interventions, for instance, “if I take an aspirin now, will I wake up with a headache?”
Questions of this type are normally referred to as causal effects, sometimes written as
P(headache | do(aspirin)). They differ, of course from the associational counterpart
P(headache | aspirin), because all mechanisms which normally determine aspirin taking
behavior, for example, taste of aspirin, family advice, time pressure, etc. are irrelevant
in evaluating the effect of a new decision.

To estimate effects, scientists normally perform randomized experiments where
a sample of units drawn from the population of interest is subjected to the specified
manipulation directly. In our aspirin example, this might involve treating a group of
subjects with aspirin and comparing their response to untreated subjects, both groups
being selected at random from a population resembling the decision maker in question.
In many cases, however, such a direct approach is not possible due to expense or ethical
considerations. Instead, investigators have to rely on observational studies to infer
effects. A fundamental question in causal analysis is to determine when effects can
be inferred from statistical information, encoded as a joint probability distribution,
obtained under normal, intervention-free behavior. A key point here is that in order
to make causal inferences from statistics, additional causal assumptions are needed.
This is because without any assumptions it is possible to construct multiple “causal
stories” which can disagree wildly on what effect a given intervention can have, but
agree precisely on all observables. For instance, smoking may be highly correlated with
lung cancer either because it causes lung cancer, or because people who are genetically
predisposed to smoke may also have a gene responsible for a higher cancer incidence
rate. In the latter case there will be no effect of smoking on cancer. Distinguishing
between such causal stories requires additional, non-statistical language. In this paper,
the language that we use for this purpose is the language of graphs, and our causal
assumptions will be encoded by a special directed graph called a causal diagram.

The use of directed graphs to represent causality is a natural idea that arose multiple
times independently: in genetics (Wright, 1921), econometrics (Haavelmo, 1943), and
artificial intelligence (Pearl, 1988; Spirtes et al., 1993; Pearl, 2000). A causal diagram
encodes variables of interest as nodes, and possible direct causal influences between two
variables as arrows. Associated with each node in a causal diagram is a stable causal
mechanism which determines its value in terms of the values of its parents. Unlike
Bayesian networks (Pearl, 1988), the relationships between variables are assumed to be
deterministic and uncertainty arises due to the presence of unobserved variables which
have influence on our domain.

The first question we consider is under what conditions the effect of a given in-
tervention can be computed from just the joint distribution over observable variables,
which is obtainable by statistical means, and the causal diagram, which is either pro-
vided by a human expert, or inferred from experimental studies. This identification
problem has received consideration attention in the statistics, epidemiology, and causal
inference communities (Pearl, 1993a; Spirtes et al., 1993; Pearl and Robins, 1995; Pearl,
1995; Kuroki and Miyakawa, 1999; Pearl, 2000). In the subsequent sections, we solve
the identification problem for causal effects by providing a graphical characterization
for all non-identifiable effects, and an algorithm for computing all identifiable effects.
Note that this identification problem actually involves two “worlds:” the original world
where no interventions took place furnishes us with a probability distribution from
which to make inferences about the second, post-intervention world. The crucial feature
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of causal effect queries which distinguishes them from more complex questions in our
hierarchy is that they are restricted to the post-intervention world alone.

The third and final class of queries we consider are counterfactual or “what-if” ques-
tions which arise when we simultaneously ask about multiple hypothetical worlds, with
potentially conflicting interventions or observations. An example of such a question
would be “I took an aspirin, and my headache is gone; would I have had a headache
had I not taken that aspirin?” Unlike questions involving interventions, counterfactuals
contain conflicting information: in one world aspirin was taken, in another it was not.
It is unclear therefore how to set up an effective experimental procedure for evaluating
counterfactuals, let alone how to compute counterfactuals from observations alone. If
everything about our causal domain is known, in other words if we have knowledge of
both the causal mechanisms and the distributions over unobservable variables, it is pos-
sible to compute counterfactual questions directly (Balke and Pearl, 1994b). However,
knowledge of precise causal mechanisms is not generally available, and the very nature
of unobserved variables means their stochastic behavior cannot be estimated directly.
We therefore consider the more practical question of how to compute counterfactual
questions from both experimental studies and the structure of the causal diagram.

It may seem strange, in light of what we said earlier about the difficulty of con-
ducting experimental studies, that we take such studies as given. It is nevertheless
important that we understand when it is that “what-if” questions involving multiple
worlds can be inferred from quantities computable in one world. Our hierarchical
approach to identification allows us to cleanly separate difficulties that arise due to
multiplicity of worlds from those involved in the identification of causal effects. We
provide a complete solution to this version of the identification problem by giving
algorithms which compute identifiable counterfactuals from experimental studies, and
provide graphical conditions for the class of non-identifiable counterfactuals, where
our algorithms fail. Our results can, of course, be combined to give conditions where
counterfactuals can be computed from observational studies.

The paper is organized as follows. Section 2 introduces the notation and math-
ematical machinery needed for causal analysis. Section 3 considers the problem of
identifying causal effects from observational studies. Section 4 considers identification
of counterfactual queries, while Section 5 summarizes the conclusions. Most of the
proofs are deferred to the appendix. This paper consolidates and expands previous
results (Shpitser and Pearl, 2006a,b, 2007). Some of the results found in this paper were
also derived independently elsewhere (Huang and Valtorta, 2006b,a).

2. Notation and Definitions
The primary object of causal inquiry is a probabilistic causal model. We will denote
variables by uppercase letters, and their values by lowercase letters. Similarly, sets of
variables will be denoted by bold uppercase, and sets of values by bold lowercase.

Definition 1 A probabilistic causal model (PCM) is a tuple M = hU, V, F, P(u)i, where

• U is a set of background or exogenous variables, which cannot be observed or experimented
on, but which affect the rest of the model.

• V is a set {V1, . . . , Vn} of observable or endogenous variables. These variables are func-
tionally dependent on some subset of U[ V.
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• F is a set of functions { f1, . . . , fn} such that each fi is a mapping from a subset of
U[ V \ {Vi} to Vi, and such that

S

F is a function from U to V.

• P(u) is a joint probability distribution over U.

The set of functions F in this definition corresponds to the causal mechanisms, while
U represents the background context that influences the observable domain of discourse
V, yet remains outside it. Our ignorance of the background context is represented
by a distribution P(u). This distribution, together with the mechanisms in F, induces
a distribution P(v) over the observable domain. The causal diagram, our vehicle
for expressing causal assumptions, is defined by the causal model as follows. Each
observable variable Vi 2 V corresponds to a vertex in the graph. Any two variables
Vi 2 U [V, Vj 2 V such that Vi appears in the description of f j are connected by a
directed arrow from Vi to Vj. Furthermore, we make two additional assumptions in
this paper. The first is that P(u) = ’ui2u P(ui), and each Ui 2 U is used in at most two
functions in F.1 The second is that all induced graphs must be acyclic. Models in which
these two assumptions hold are called recursive semi-Markovian. A graph defined
as above from a causal model M is said to be a causal diagram induced by M. Graphs
induced by semi-Markovian models are themselves called semi-Markovian. Figures 1
and 2 show some examples of causal diagrams of recursive semi-Markovian models.

The functions in F are assumed to be modular in a sense that changes to one function
do not affect any other. This assumption allows us to model how a PCM would react
to changes imposed from the outside. The simplest change that is possible for causal
mechanisms of a variable set X would be one that removes the mechanisms entirely
and sets X to a specific value x. This change, denoted by do(x) (Pearl, 2000), is called an
intervention. An intervention do(x) applied to a model M results in a submodel Mx. The
effects of interventions will be formulated in several ways. For any given u, the effect of
do(x) on a set of variables Y will be represented by counterfactual variables Yx(u), where
Y 2 Y. As U varies, the counterfactuals Yx(u) will vary as well, and their interventional
distribution, denoted by P(y | do(x)) or Px(y) will be used to define the effect of x on Y.
We will denote the event “variable Y attains value y in Mx” by the shorthand yx.

Interventional distributions are a mathematical formalization of an intuitive notion
of effect of action. We now define joint probabilities on counterfactuals, in multiple
worlds, which will serve as the formalization of counterfactual queries. Consider a con-
junction of events g = y1

x1 ^ . . . ^ yk
xk . If all the subscripts xi are the same and equal to x,

g is simply a set of assignments of values to variables in Mx, and P(g) = Px(y1, . . . , yk).
However, if the actions do(xi) are not the same, and potentially contradictory, a single
submodel is no longer sufficient. Instead, g is really invoking multiple causal worlds,
each represented by a submodel Mxi . We assume each submodel shares the same set
of exogenous variables U, corresponding to the shared causal context or background
history of the hypothetical worlds. Because the submodels are linked by common
context, they can really be considered as one large causal model, with its own induced
graph, and joint distribution over observable variables. P(g) can then be defined as
a marginal distribution in this causal model. Formally, P(g) = Â{u|u|=g} P(u), where
u |= g is taken to mean that each variable assignment in g holds true in the correspond-
ing submodel of M when the exogenous variables U assume values u. In this way, P(u)

1. Our results are generalizable to other P(u) distributions which may not have such a simple form, but
which can be represented by a set of bidirected arcs in such a way that whenever two sets of U variables
are d-separated from each other, they are marginally independent. However, the exact conditions under
which this graphical representation is valid are beyond the scope of this paper.

116



COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

induces a distribution on all possible counterfactual variables in M. In this paper, we
will represent counterfactual utterances by joint distributions such as P(g) or condi-
tional distributions such as P(g | d), where g and d are conjunctions of counterfactual
events. Pearl (2000) discusses counterfactuals, and their probabilistic representation
used in this paper in greater depth.

A fundamental question in causal inference is whether a given causal question, either
interventional or counterfactual in nature, can be uniquely specified by the assumptions
embodied in the causal diagram, and easily available information, usually statistical,
associated with the causal model. To get a handle on this question, we introduce an
important notion of identifiability (Pearl, 2000).

Definition 2 (identifiability) Consider a class of models M with a description T, and objects
f and q computable from each model. We say that f is q-identified in T if f is uniquely
computable from q in any M 2 M. In this case all models in M which agree on q will also agree
on f.

If f is q-identifiable in T, we write T, q `id f. Otherwise, we write T, q 6`id f. The
above definition leads immediately to the following corollary which we will use to
prove non-identifiability results.

Corollary 3 Let T be a description of a class of models M. Assume there exist M1, M2 2 M
that share objects q, while f in M1 is different from f in M2. Then T, q 6`id f.

In our context, the objects f, q are probability distributions derived from the PCM,
where q represents available information, while f represents the quantity of interest.
The description T is a specification of the properties shared all causal models under
consideration, or, in other words, the set of assumptions we wish to impose on those
models. Since we chose causal graphs as a language for specifying assumptions, T
corresponds to a given graph.

Graphs earn their ubiquity as a specification language because they reflect in many
ways the way people store experiential knowledge, especially cause-effect relationships.
The ease with which people embrace graphical metaphors for causal and probabilistic
notions—ancestry, neighborhood, flow, and so on—are proof of this affinity, and help
ensure that the assumptions specified are meaningful and reliable. A consequence of
this is that probabilistic dependencies among variables can be verified by checking if
the flow of influence is blocked along paths linking the variables. By a path we mean a
sequence of distinct nodes where each node is connected to the next in the sequence by
an edge. The precise way in which the flow of dependence can be blocked is defined by
the notion of d-separation (Pearl, 1986; Verma, 1986; Pearl, 1988). Here we generalize
d-separation somewhat to account for the presence of bidirected arcs in causal diagrams.

Definition 4 (d-separation) A path p in G is said to be d-separated by a set Z if and only if
either

1 p contains one of the following three patterns of edges: I ! M ! J, I $ M ! J, or
I  M! J, such that M 2 Z, or

2 p contains one of the following three patterns of edges: I ! M  J, I $ M  J,
I $ M$ J, such that De(M)G \ Z = ∆.
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Two sets X, Y are said to be d-separated given Z in G if all paths from X to Y in G are
d-separated by Z. Paths or sets which are not d-separated are said to be d-connected.
What allows us to connect this notion of blocking of paths in a causal diagram to the
notion of probabilistic independence among variables is that the probability distribution
over V and U in a causal model can be represented as a product of factors, such that
each observable node has a factor corresponding to its conditional distribution given
the values of its parents in the graph. In other words, P(v, u) = ’i P(xi | pa(xi)G).

Whenever the above factor decomposition holds for a distribution P(v, u) and a
graph G, we say G is an I-map of P(v, u). The following theorem links d-separation of
vertex sets in an I-map G with the independence of corresponding variable sets in P.

Theorem 5 If sets X and Y are d-separated by Z in G, then X is independent of Y given Z
in every P for which G is an I-map. Furthermore, the causal diagram induced by any semi-
Markovian PCM M is an I-map of the distribution P(v, u) induced by M.

Note that it’s easy to rephrase the above theorem in terms of ordinary directed
acyclic graphs, since each semi-Markovian graph is really an abbreviation where each
bidirected arc stands for two directed arcs emanating from a hidden common cause.
We will abbreviate this statement of d-separation, and corresponding independence by
(X ?? Y | Z)G, following the notation of Dawid (1979). For example in the graph shown
in Figure 6 (a), X 6?? Y and X ?? Y | Z, while in Figure 6 (b), X ?? Y and X 6?? Y | Z.
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Y
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Figure 1: Causal graphs where P(y | do(x)) is not identifiable

Finally we consider the axioms and inference rules we will need. Since PCMs
contain probability distributions, the inference rules we would use to compute queries
in PCMs would certainly include the standard axioms of probability. They also include
a set of axioms which govern the behavior of counterfactuals, such as Effectiveness,
Composition, etc. (Galles and Pearl, 1998; Halpern, 2000; Pearl, 2000). However, in
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this paper, we will concentrate on a set of three identities applicable to interventional
distributions known as do-calculus (Pearl, 1993b, 2000):

• Rule 1: Px(y | z, w) = Px(y | w) if (Y ?? Z | X, W)Gx

• Rule 2: Px,z(y | w) = Px(y | z, w) if (Y ?? Z | X, W)Gx,z

• Rule 3: Px,z(y | w) = Px(y | w) if (Y ?? Z | X, W)Gx,z(w)

where Z(W) = Z \ An(W)GX
, and Gx,y stands for a directed graph obtained from G

by removing all incoming arrows to X and all outgoing arrows from Y. The rules of
do-calculus provide a way of linking ordinary statistical distributions with distributions
resulting from various manipulations.

In the remainder of this section we will introduce relevant graphs and graph-
theoretic terminology which we will use in the rest of the paper. First, having defined
causal diagrams induced by natural causal models, we consider the graphs induced by
models derived from interventional and counterfactual queries. We note that in a given
submodel Mx, the mechanisms determining X no longer make use of the parents of X to
determine their values, but instead set them independently to constant values x. This
means that the induced graph of Mx derived from a model M inducing graph G can
be obtained from G by removing all arrows incoming to X, in other words Mx induces
Gx. A counterfactual g = y1

x1 ^ . . . ^ yk
xk , as we already discussed invokes multiple

hypothetical causal worlds, each represented by a submodel, where all worlds share
the same background context U. A naive way to graphically represent these worlds
would be to consider all the graphs G

Xi and have them share the U nodes. It turns out
this representation suffers from certain problems. In Section 4 we discuss this issue in
more detail and suggest a more appropriate graphical representation of counterfactual
situations.

We denote Pa(.)G, Ch(.)G, An(.)G, De(.)G as the sets of parents, children, ancestors,
and descendants of a given set in G. We denote GX to be the subgraph of G containing
all vertices in X, and edges between these vertices, while the set of vertices in a given
graph G is given by ver(G). As a shorthand, we denote Gver(G)\ver(G0) as G \ G0 or G \X,
if X = ver(G0), and G0 is a subgraph of G. We will call the set {X 2 G | De(X)G = ∆}
the root set of G. A path connecting X and Y which begins with an arrow pointing to X
is called a back-door path from X, while a path beginning with an arrow pointing away
from X is called a front-door path from X.

The goal of this paper is a complete characterization of causal graphs which permit
the answering of causal queries of a given type. This characterization requires the
introduction of certain key graph structures.

Definition 6 (tree) A graph G such that each vertex has at most one child, and only one vertex
(called the root) has no children is called a tree.

Note that this definition reverses the usual direction of arrows in trees as they are
generally understood in graph theory. If we ignore bidirected arcs, graphs in Figure 1
(a), (b), (d), (e), (f), (g), and (h) are trees.

Definition 7 (forest) A graph G such that each vertex has at most one child is called a forest.

Note that the above two definitions reverse the arrow directionality usual for these
structures.
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Definition 8 (confounded path) A path where all directed arrowheads point at observable
nodes, and never away from observable nodes is called a confounded path.

The graph in Figure 1 (g) contains a confounded path from Z1 to Z2.

Definition 9 (c-component) A graph G where any pair of observable nodes is connected by a
confounded path is called a c-component (confounded component).

Graphs in Figure 1 (a), (d), (e), (f), and (h) are c-components. Some graphs contain
multiple c-components, for example the graph in Figure 1 (b) has two maximal c-
components: {Y}, and {X, Z}. We will denote the set of maximal c-components of a
given graph G by C(G). The importance of c-components stems from the fact that that
the observational distribution P(v) can be expressed as a product of factors Pv\s(s),
where each s is a set of nodes forming a c-component. This important property is known
as c-component factorization, and we will this property extensively in the remainder of
the manuscript to decompose identification problems into smaller subproblems.

In the following sections, we will show how the graph structures we defined in this
section are key for characterizing cases when Px(y) and P(g) can be identified from
available information.

3. Identification of Causal Effects
Like probabilistic dependence, the notion of causal effect of X on Y has an interpretation
in terms of flow. Intuitively, X has an effect on Y if changing X causes Y to change.
Since intervening on X cuts off X from the normal causal influences of its parents in
the graph, we can interpret the causal effect of X on Y as the flow of dependence which
leaves X via outgoing arrows only.
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Y
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Y
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Y
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(b) (c)

Z1
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Figure 2: Causal graphs admitting identifiable effect P(y | do(x))

120



COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

Recall that our ultimate goal is to express distributions of the form P(y | do(x))
in terms of the joint distribution P(v). The interpretation of effect as downward de-
pendence immediately suggests a set of graphs where this is possible. Specifically,
whenever all d-connected paths from X to Y are front-door from X, the causal effect
P(y | do(x)) is equal to P(y | x). In graphs shown in Figure 2 (a) and (b) causal effect
P(y | do(x)) has this property.

In general, we don’t expect acting on X to produce the same effect as observing
X due to the presence of back-door paths between X and Y. However, d-separation
gives us a way to block undesirable paths by conditioning. If we can find a set Z
that blocks all back-door paths from X to Y, we obtain the following: P(y | do(x)) =
Âz P(y | z, do(x))P(z | do(x)). The term P(y | z, do(x)) is reduced to P(y | z, x) since
the influence flow from X to Y is blocked by Z. However, the act of adjusting for Z
introduced a new effect we must compute, corresponding to the term P(z | do(x)). If
it so happens that no variable in Z is a descendant of X, we can reduce this term to
P(z) using the intuitive argument that acting on effects should not influence causes,
or a more formal appeal to rule 3 of do-calculus. Computing effects in this way is
always possible if we can find a set Z blocking all back-door paths which contains no
descendants of X. This is known as the back-door criterion (Pearl, 1993a, 2000). Figs. 2
(c) and (d) show some graphs where the node z satisfies the back-door criterion with
respect to P(y | do(x)), which means P(y | do(x)) is identifiable.

The back-door criterion can fail—a common way involves a confounder that is
unobserved, which prevents adjusting for it. Surprisingly, it is sometimes possible
to identify the effect of X on Y even in the presence of such a confounder. To do so,
we want to find a set Z located downstream of X but upstream of Y, such that the
downward flow of the effect of X on Y can be decomposed into the flow from X to Z,
and the flow from Z to Y. Clearly, in order for this to happen Z must d-separate all
front-door paths from X to Y. However, in order to make sure that the component effects
P(z | do(x)) and P(y | do(z)) are themselves identifiable, and combine appropriately to
form P(y | do(x)), we need two additional assumptions: there are no back-door paths
from X to Z, and all back-door paths from Z to Y are blocked by X. It turns out that
these three conditions imply that P(y | do(x)) = Âz P(y | do(z))P(z | do(x)), and the
latter two conditions further imply that the first term is identifiable by the back-door
criterion and equal to Âz P(y | z, x)P(x), while the second term is equal to P(z | x).
Whenever these three conditions hold, the effect of X on Y is identifiable. This is known
as the front-door criterion (Pearl, 1995, 2000). The front-door criterion holds in the graph
shown in Figure 2 (e).

Unfortunately, in some graphs neither the front-door, nor the back-door criterion
holds. The simplest such graph, known as the bow arc graph due to its shape, is shown
in Figure 1 (a). The back-door criterion fails since the confounder node is unobservable,
while the front-door criterion fails since no intermediate variables between X and Y exist
in the graph. While the failure of these two criteria does not imply non-identification, in
fact the effect P(y | do(x)) is identifiable in Figure 2 (f), (g) despite this failure, a simple
argument shows that P(y | do(x)) is not identifiable in the bow arc graph.

Theorem 10 P(v), G 6`id P(y | do(x)) in G shown in Figure 1 (a).

Since we are interested in completely characterizing graphs where a given causal
effect P(y | do(x)) is identifiable, it would be desirable to list difficult graphs like the
bow arc graph which prevent identification of causal effects, in the hope of eventually
making such a list complete and finding a way to identify effects in all graphs not on the
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list. We start constructing this list by considering graphs which generalize the bow arc
graph since they can contain more than two nodes, but which also inherit its difficult
structure. We call such graphs C-trees.

Definition 11 (C-tree) A graph G which is both a C-component and a tree is called a C-tree.

We call a C-tree with a root node Y Y-rooted. The graphs in Figure 1 (a), (d), (e), (f),
and (h) are Y-rooted C-trees. It turns out that in any Y-rooted C-tree, the effect of any
subset of nodes, other than Y, on the root Y is not identifiable.

Theorem 12 Let G be a Y-rooted C-tree. Let X be any subset of observable nodes in G which
does not contain Y. Then P(v), G 6`id P(y | do(x)).

C-trees play a prominent role in the identification of direct effects. Intuitively, the di-
rect effect of X on Y exists if there is an arrow from X to Y in the graph, and corresponds
to the flow of influence along this arrow. However, simply considering changes in Y
after fixing X is insufficient for isolating direct effect, since X can influence Y along other,
longer front-door paths than the direct arrow. In order to disregard such influences, we
also fix all other parents of Y (which as noted earlier removes all arrows incoming to
these parents and thus to Y). The expression corresponding to the direct effect of X on
Y is then P(y | do(pa(y))). The following theorem links C-trees and direct effects.

Theorem 13 P(v), G 6`id P(y | do(pa(y))) if and only if there exists a subgraph of G which
is a Y-rooted C-tree.

This theorem might suggest that C-trees might play an equally strong role in iden-
tifying arbitrary effects on a single variable, not just direct effects. Unfortunately, this
turns out not to be the case, due to the following lemma.

Lemma 14 (downward extension lemma) Let V be the set of observable nodes in G, and
P(v) the observable distribution of models inducing G. Assume P(v), G 6`id P(y | do(x)).
Let G0 contain all the nodes and edges of G, and an additional node Z which is a child of
all nodes in Y. Then if P(v, z) is the observable distribution of models inducing G0, then
P(v, z), G0 6`id P(z | do(x)).

Proof Let |Z| = ’Yi2Y |Yi| = n. By construction, P(z | do(x)) = Ây P(z | y)P(y |
do(x)). Due to the way we set the arity of Z, P(Z | Y) is an n by n matrix which acts as
a linear map which transforms P(y | do(x)) into P(z | do(x)). Since we can arrange this
linear map to be one to one, any proof of non-identifiability of P(y | do(x)) immediately
extends to the proof of non-identifiability of P(z | do(x)).

What this lemma shows is that identification of effects on a singleton is not any sim-
pler than the general problem of identification of effect on a set. To find difficult graphs
which prevent identification of effects on sets, we consider a multi-root generalization
of C-trees.

Definition 15 (c-forest) A graph G which is both a C-component and a forest is called a
C-forest.
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If a given C-forest has a set of root nodes R, we call it R-rooted. Graphs in Figure 3
(a), (b) are {Y1, Y2}-rooted C-forests. A naive way to generalize Theorem 12 would be to
state that if G is an R-rooted C-forest, then the effect of any set X that does not intersect R
is not identifiable. However, as we later show, this is not true. Specifically, we later prove
that P(y1, y2 | do(x)) in the graph in Figure 3 (a) is identifiable. To formulate the correct
generalization of Theorem 12, we must understand what made C-trees difficult for the
purposes of identifying effects on the root Y. It turned out that for particular function
choices, the effects of ancestors of Y on Y precisely cancelled themselves out so even
though Y itself was dependent on its parents, it was observationally indistinguishable
from a constant function. To get the same canceling of effects with C-forests, we must
define a more complex graphical structure.

(a) (b)

W1
X

Y1

W2 Y2

W1
X

Y1

W2 Y2

Figure 3: (a) A graph hedge-less for P(y | do(x)). (b) A graph containing a hedge for
P(y | do(x)).

Definition 16 (hedge) Let X, Y be sets of variables in G. Let F, F0 be R-rooted C-forests in G
such that F0 is a subgraph of F, X only occur in F, and R 2 An(Y)Gx . Then F and F0 form a
hedge for P(y | do(x)).

The graph in Figure 3 (b) contains a hedge for P(y1, y2 | do(x)). The mental picture
for a hedge is as follows. We start with a C-forest F0. Then, F0 grows new branches,
while retaining the same root set, and becomes F. Finally, we “trim the hedge,” by
performing the action do(x) which has the effect of removing some incoming arrows in
F \ F0 (the subgraph of F consisting of vertices not a part of F0). Note that any Y-rooted
C-tree and its root node Y form a hedge. The right generalization of Theorem 12 can be
stated on hedges.

Theorem 17 Let F, F0 be subgraphs of G which form a hedge for P(y | do(x)). Then
P(v), G 6`id P(y | do(x)).

Proof outline As before, assume binary variables. We let the causal mechanisms of one
of the models consists entirely of bit parity functions. The second model also computes
bit parity for every mechanism, except those nodes in F0 which have parents in F ignore
the values of those parents. It turns out that these two models are observationally
indistinguishable. Furthermore, any intervention in F \ F0 will break the bit parity
circuits of the models. This break will be felt at the root set R of the first model, but not
of the second, by construction.
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function ID(y, x, P, G)
INPUT: x,y value assignments, P a probability distribution, G
a causal diagram.
OUTPUT: Expression for Px(y) in terms of P or FAIL(F,F’).

1 if x = ∆ return Âv\y P(v).

2 if V \ An(Y)G 6= ∆
return ID(y, x\ An(Y)G, Âv\An(Y)G

P, GAn(Y)).

3 let W = (V \ X) \ An(Y)Gx .
if W 6= ∆, return ID(y, x[w, P, G).

4 if C(G \ X) = {S1, . . . , Sk}
return Âv\(y[x) ’i ID(si, v \ si, P, G).

if C(G \ X) = {S}
5 if C(G) = {G}, throw FAIL(G, G \ S).

6 if S 2 C(G) return Âs\y ’{i|Vi2S} P(vi | v(i�1)
p ).

7 if (9S0)S ⇢ S0 2 C(G) return ID(y, x\ S0,
’{i|Vi2S0} P(Vi | V(i�1)

p \ S0, v(i�1)
p \ S0), GS0 ).

Figure 4: A complete identification algorithm. FAIL propagates through recursive calls
like an exception, and returns the hedge which witnesses non-identifiability.
V(i�1)

p is the set of nodes preceding Vi in some topological ordering p in G.

Unlike the bow arc graph, and C-trees, hedges prevent identification of effects on
multiple variables at once. Certainly a complete list of all possible difficult graphs
must contain structures like hedges. But are there other kinds of structures that present
problems? It turns out that the answer is “no,” any time an effect is not identifiable in a
causal model (if we make no restrictions on the type of function that can appear), there
is a hedge structure involved. To prove that this is so, we need an algorithm which can
identify any causal effect lacking a hedge. This algorithm, which we call ID, and which
can be viewed as a simplified version of the identification algorithm due to Tian (2002),
appears in Figure 4.

We will explain why each line of ID makes sense, and conclude by showing the
operation of the algorithm on an example. The formal proof of soundness of ID can
be found in the appendix. The first line merely asserts that if no action has been taken,
the effect on Y is just the marginal of the observational distribution P(v) on Y. The
second line states that if we are interested in the effect on Y, it is sufficient to restrict
our attention on the parts of the model ancestral to Y. One intuitive argument for this is
that descendants of Y can be viewed as ‘noisy versions’ of Y and so any information
they may impart which may be helpful for identification is already present in Y. On the
other hand, variables which are neither ancestors nor descendants of Y lie outside the
relevant causal chain entirely, and have no useful information to contribute.
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Line 3 forces an action on any node where such an action would have no effect on
Y—assuming we already acted on X. Since actions remove incoming arrows, we can
view line 3 as simplifying the causal graph we consider by removing certain arcs from
the graph, without affecting the overall answer. Line 4 is the key line of the algorithm,
it decomposes the problem into a set of smaller problems using the key property of
c-component factorization of causal models. If the entire graph is a single C-component
already, further problem decomposition is impossible, and we must provide base cases.
ID has three base cases. Line 5 fails because it finds two C-components, the graph G
itself, and a subgraph S that does not contain any X nodes. But that is exactly one of
the properties of C-forests that make up a hedge. In fact, it turns out that it is always
possible to recover a hedge from these two c-components. Line 6 asserts that if there
are no bidirected arcs from X to the other nodes in the current subproblem under
consideration, then we can replace acting on X by conditioning, and thus solve the
subproblem. Line 7 is the most complex case where X is partitioned into two sets, W
which contain bidirected arcs into other nodes in the subproblem, and Z which do
not. In this situation, identifying P(y | do(x)) from P(v) is equivalent to identifying
P(y | do(w)) from P(V | do(z)), since P(y | do(x)) = P(y | do(w), do(z)). But the
term P(V | do(z)) is identifiable using the previous base case, so we can consider the
subproblem of identifying P(y | do(w)).

W1
X

Y1

(a) (b)

W1 Y1

Figure 5: Subgraphs of G used for identifying Px(y1, y2).

We give an example of the operation of the algorithm by identifying Px(y1, y2) from
P(v) in the graph shown in in Figure 3 (a). Since G = GAn({Y1,Y2}), C(G \ {X}) = {G},
and W = {W1}, we invoke line 3 and attempt to identify Px,w(y1, y2). Now C(G \
{X, W}) = {Y1, W2 ! Y2}, so we invoke line 4. Thus the original problem reduces
to identifying Âw2 Px,w1,w2,y2(y1)Pw,x,y1(w2, y2). Solving for the second expression, we
trigger line 2, noting that we can ignore nodes which are not ancestors of W2 and
Y2, which means Pw,x,y1(w2, y2) = P(w2, y2). Solving for the first expression, we first
trigger line 2 also, obtaining Px,w1,w2,y2(y1) = Px,w(y1). The corresponding G is shown
in Figure 5 (a). Next, we trigger line 7, reducing the problem to computing Pw(y1) from
P(Y1 | X, W1)P(W1). The corresponding G is shown in Figure 5 (b). Finally, we trigger
line 2, obtaining Pw(y1) = Âw1

P(y1 | x, w1)P(w1). Putting everything together, we
obtain: Px(y1, y2) = Âw2 P(y1, w2)Âw1

P(y1 | x, w1)P(w1).
As mentioned earlier, whenever the algorithm fails at line 5, it is possible to recover

a hedge from the C-components S and G considered for the subproblem where the
failure occurs. In fact, it can be shown that this hedge implies the non-identifiability of
the original query with which the algorithm was invoked, which implies the following
result.

Theorem 18 ID is complete.
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The completeness of ID implies that hedges can be used to characterize all cases
where effects of the form P(y | do(x)) cannot be identified from the observational
distribution P(v).

Theorem 19 (hedge criterion) P(v), G 6`id P(y | do(x)) if and only if G contains a hedge
for some P(y0 | do(x0)), where y0 ✓ y, x0 ✓ x.

We close this section by considering identification of conditional effects of the form
P(y | do(x), z) which are defined to be equal to P(y, z | do(x))/P(z | do(x)). Such
expressions are a formalization of an intuitive notion of “effect of action in the presence
of non-contradictory evidence,” for instance the effect of smoking on lung cancer
incidence rates in a particular age group (as opposed to the effect of smoking on cancer
in the general population). We say that evidence z is non-contradictory since it is
conceivable to consider questions where the evidence z stands in logical contradiction
to the proposed hypothetical action do(x): for instance what is the effect of smoking on
cancer among the non-smokers. Such counterfactual questions will be considered in
the next section. Conditioning can both help and hinder identifiability. P(y | do(x)) is
not identifiable in the graph shown in Figure 6 (a), while it is identifiable in the graph
shown in Figure 6 (b). Conditioning reverses the situation. In Figure 6 (a), conditioning
on Z renders Y independent of any changes to X, making Px(y | z) equal to P(y | z). On
the other hand, in Figure 6 (b), conditioning on Z makes X and Y dependent, resulting
in Px(y | z) becoming non-identifiable.

(a) (b)

X
X

Z
Z

Y

Y

Figure 6: (a) Causal graph with an identifiable conditional effect P(y | do(x), z). (b)
Causal graph with a non-identifiable conditional effect P(y | do(x), z).

We would like to reduce the problem of identifying conditional effects to the familiar
problem of identifying causal effects without evidence for which we already have a
complete algorithm. Fortunately, rule 2 of do-calculus provides us with a convenient
way of converting the unwanted evidence z into actions do(x) which we know how
to handle. The following convenient lemma allows us to remove as many evidence
variables as possible from a conditional effect.

Theorem 20 For any G and any conditional effect Px(y | w) there exists a unique maximal
set Z = {Z 2 W | Px(y | w) = Px,z(y | w \ {z})} such that rule 2 applies to Z in G for
Px(y | w). In other words, Px(y | w) = Px,z(y | w \ z).

Of course Theorem 20 does not guarantee that the entire set z can be handled in this
way. In many cases, even after rule 2 is applied, some set of evidence will remain in the
expression. Fortunately, the following result implies that identification of unconditional
causal effects is all we need.
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Theorem 21 Let Z ✓ W be the maximal set such that Px(y | w) = Px,z(y | w \ z). Then
Px(y | w) is identifiable in G if and only if Px,z(y, w \ z) is identifiable in G.

The previous two theorems suggest a simple addition to ID, which we call IDC,
shown in Figure 7, which handles identification of conditional causal effects.

function IDC(y, x, z, P, G)
INPUT: x,y,z value assignments, P a probability distribution,
G a causal diagram (an I-map of P).
OUTPUT: Expression for Px(y | z) in terms of P or FAIL(F,F’).

1 if (9Z 2 Z)(Y ?? Z | X, Z \ {Z})Gx,z ,
return IDC(y, x[ {z}, z \ {z}, P, G).

2 else let P0 = ID(y[ z, x, P, G).
return P0/ Ây P0.

Figure 7: A complete identification algorithm for conditional effects.

Theorem 22 IDC is sound and complete.

Proof This follows from Theorems 20 and 21.

We conclude this section by showing that our notion of a causal theory as a set of
independencies embodied by the causal graph, together with rules of probability and
do-calculus is complete for computing causal effects, if we also take statistical data
embodied by P(v) as axiomatic.

Theorem 23 The rules of do-calculus are complete for identifying effects of the form P(y |
do(x), z), where x, y, z are arbitrary sets.

Proof The proofs of soundness of ID and IDC in the appendix use do-calculus. This
implies every line of the algorithms we presented can be rephrased as a sequence of
do-calculus manipulations. But ID and IDC are also complete, which implies the con-
clusion.

4. Identification of Counterfactuals
While effects of actions have an intuitive interpretation as downward flow, the in-
terpretation of counterfactuals, or what-if questions is more complex. An informal
counterfactual statement in natural language such as “would I have a headache had I
taken an aspirin” talks about multiple worlds: the actual world, and other, hypothetical
worlds which differ in some small respect from the actual world (e.g., the aspirin was
taken), while in most other respects are the same. In this paper, we represent the actual
world by a causal model in its natural state, devoid of any interventions, while the
alternative worlds are represented by submodels Mx where the action do(x) implements
the hypothetical change from the actual state of affairs considered. People make sense
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of informal statements involving multiple, possibly conflicting worlds because they
expect not only the causal rules to be invariant across these worlds (e.g., aspirin helps
headaches in all worlds), but the worlds themselves to be similar enough where evi-
dence in one world has ramifications in another. For instance, if we find ourselves with a
headache, we expect the usual causes of our headache to also operate in the hypothetical
world, interacting there with the preventative influence of aspirin. In our representation
of counterfactuals, we model this interaction between worlds by assuming that the
world histories or background contexts, represented by the unobserved U variables are
shared across all hypothetical worlds.

(a) (b)

A

H H H*

A=false A*=true

Figure 8: (a) A causal graph for the aspirin/headache domain (b) A corresponding twin
network graph for the query P(H⇤a⇤=true | A = f alse).

We illustrate the representation method for counterfactuals we introduced in Sec-
tion 2 by modeling our example question “would I have a headache had I taken an
aspirin?” The actual world referenced by this query is represented by a causal model
containing two variables, headache and aspirin, with aspirin being a parent of headache,
see Figure 8 (a). In this world, we observe that aspirin has value false. The hypothetical
world is represented by a submodel where the action do(aspirin = true) has been taken.
To distinguish nodes in this world we augment their names with an asterisk. The
two worlds share the background variables U, and so can be represented by a single
causal model with the graph shown in Figure 8 (b). Our query is represented by the
distribution P(H⇤a⇤=true | A = f alse), where H is headache, and A is aspirin. Note that
the nodes A⇤ = true and A = f alse in Figure 8 (b) do not share a bidirected arc. This
is because an intervention do(a⇤ = true) removes all incoming arrows to A⇤, which
removes the bidirected arc between A⇤ and A.

The graphs representing two hypothetical worlds invoked by a counterfactual
query like the one shown in Figure 8 (b) are called twin network graphs, and were
first proposed as a way to represent counterfactuals by Balke and Pearl (1994b) and
Balke and Pearl (1994a). In addition, Balke and Pearl (1994b) proposed a method for
evaluating expressions like P(H⇤a⇤=true | A = f alse) when all parameters of a causal
model are known. This method can be explained as follows. If we forget the causal
and counterfactual meaning behind the twin network graph, and simply view it as a
Bayesian network, the query P(H⇤a⇤=true | A = f alse) can be evaluated using any of
the standard inference algorithms available, provided we have access to all conditional
probability tables generated by F and U of a causal model which gave rise to the twin
network graph. In practice, however, complete knowledge of the model is too much
to ask for; the functional relationships as well as the distribution P(u) are not known
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exactly, though some of their aspects can be inferred from the observable distribution
P(v).

Instead, the typical state of knowledge of a causal domain is the statistical behavior of
the observable variables in the domain, summarized by the distribution P(v), together
with knowledge of causal directionality, obtained either from expert judgment (e.g., we
know that visiting the doctor does not make us sick, though disease and doctor visits
are highly correlated), or direct experimentation (e.g., it’s easy to imagine an experiment
which establishes that wet grass does not cause sprinklers to turn on). We already used
these two sources of knowledge in the previous section as a basis for computing causal
effects. Nevertheless, there are reasons to consider computing counterfactual quantities
from experimental, rather than observational studies. In general, a counterfactual
can posit worlds with features contradictory to what has actually been observed. For
instance, questions resembling the headache/aspirin question we used as an example
are actually frequently asked in epidemiology in the more general form where we are
interested in estimating the effect of a treatment x on the outcome variable Y for the
patients that were not treated (x0). In our notation, this is just our familiar expression
P(Yx | X = x0). The problem with questions such as these is that no experimental
setup exists in which someone is both given and not given treatment. Therefore, it
makes sense to ask under what circumstances we can evaluate such questions even if
we are given as input every experiment that is possible to perform in principle on a
given causal model. In our framework the set of all experiments is denoted as P⇤, and
is formally defined as {Px | x is any set of values of X ✓ V}. The question that we ask
in this section, then, is whether it is possible to identify a query P(g | d), where g, d
are conjunctions of counterfactual events (with d possibly empty), from the graph G
and the set of all experiments P⇤. We can pose the problem in this way without loss of
generality since we already developed complete methods for identifying members of
P⇤ from G and P(v). This means that if for some reason using P⇤ as input is not realistic
we can combine the methods which we will develop in this section with those in the
previous section to obtain identification results for P(g | d) from G and P(v).

Before tackling the problem of identifying counterfactual queries from experiments,
we extend our example in Figure 8 (b) to a general graphical representation for worlds
invoked by a counterfactual query. The twin network graph is a good first attempt
at such a representation. It is essentially a causal diagram for a model encompassing
two potential worlds. Nevertheless, the twin network graph suffers from a number
of problems. Firstly, it can easily come to pass that a counterfactual query of interest
would involve three or more worlds. For instance, we might be interested in how likely
the patient would be to have a symptom Y given a certain dose x of drug X, assuming
we know that the patient has taken dose x0 of drug X, dose d of drug D, and we know
how an intermediate symptom Z responds to treatment d. This would correspond to
the query P(yx | x0, zd, d), which mentions three worlds, the original model M, and
the submodels Md, Mx. This problem is easy to tackle—we simply add more than two
submodel graphs, and have them all share the same U nodes. This simple generalization
of the twin network model was considered by Avin et al. (2005), and was called there
the parallel worlds graph. Figure 9 shows the original causal graph and the parallel
worlds graph for g = yx ^ x0 ^ zd ^ d.

The other problematic feature of the twin network graph, which is inherited by the
parallel worlds graph, is that multiple nodes can sometimes correspond to the same
random variable. For example, in Figure 9 (b), the variables Z and Zx are represented
by distinct nodes, although it’s easy to show that since Z is not a descendant of X,
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Figure 9: Nodes fixed by actions denoted with an overline, signifying that all incoming
arrows are cut. (a) Original causal diagram (b) Parallel worlds graph for
P(yx | x0, zd, d) (the two nodes denoted by U are the same). (c) Counterfactual
graph for P(yx | x0, zd, d). (d) Counterfactual graph for P(yx,z | x0).

Z = Zx. These equality constraints among nodes can make the d-separation criterion
misleading if not used carefully. For instance, Yx ?? Dx | Z even though using d-
separation in the parallel worlds graph suggests the opposite. This sort of problem is
fairly common in causal models which are not faithful (Spirtes et al., 1993) or stable (Pearl,
2000), in other words in models where d-separation statements in a causal diagram
imply independence in a distribution, but not vice versa. However, lack of faithfulness
usually arises due to “numeric coincidences” in the observable distribution. In this case,
the lack of faithfulness is “structural,” in a sense that it is possible to refine parallel
worlds graphs in such a way that the node duplication disappears, and the attendant
independencies not captured by d-separation are captured by d-separation in refined
graphs.

This refinement has two additional beneficial side effects. The first is that by remov-
ing node duplication, we also determine which syntactically distinct counterfactual
variables correspond to the same random variable. By identifying such equivalence
classes of counterfactual variables, we guarantee that syntactically different variables
are in fact different, and this makes it simpler to reason about counterfactuals in order
to identify them. For instance, a counterfactual P(yx, y0) may either be non-identifiable
or inconsistent (and so identifiable to equal 0), depending on whether Yx and Y are
the same variable. The second benefit of this refinement is that resulting graphs are
generally much smaller and less cluttered than parallel worlds graphs, and so are easier
to understand. Compare, for instance, the graphs in Figure 9 (b) and Figure 9 (c). To
rid ourselves of duplicates, we need a formal way of determining when variables from
different submodels are in fact the same. The following lemma does this.

Lemma 24 Let M be a model inducing G containing variables a, b with the following proper-
ties:

• a and b have the same domain of values.

• There is a bijection f from Pa(a) to Pa(b) such that a parent g and f (g) have the same
domain of values.

• The functional mechanisms of a and b are the same (except whenever the function for a
uses the parent g, the corresponding function for b uses f (g)).
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Assume an observable variable set Z was observed to attain values z in Mx, the submodel
obtained from M by forcing another observable variable set X to attain values x. Assume further
that for each g 2 Pa(a), either f (g) = g, or g and f (g) attain the same values (whether
by observation or intervention). Then a and b are the same random variable in Mx with
observations z.

Proof This follows from the fact that variables in a causal model are functionally deter-
mined from their parents.

If two distinct nodes in a causal diagram represent the same random variable, the
diagram contains redundant information, and the nodes must be merged. If two nodes,
say corresponding to Yx, Yz, are established to be the same in G, they are merged into a
single node which inherits all the children of the original two. These two nodes either
share their parents (by induction) or their parents attain the same values. If a given
parent is shared, it becomes the parent of the new node. Otherwise, we pick one of the
parents arbitrarily to become the parent of the new node. This operation is summarized
by the following lemma.

Lemma 25 Let Mx be a submodel derived from M with set Z observed to attain values z, such
that Lemma 24 holds for a, b. Let M0 be a causal model obtained from M by merging a, b into a
new node w, which inherits all parents and the functional mechanism of a. All children of a, b
in M0 become children of w. Then Mx, M0x agree on any distribution consistent with z being
observed.

Proof This is a direct consequence of Lemma 24.

The new node w we obtain from Lemma 25 can be thought of as a new counterfactual
variable. As mentioned in section 2, such variables take the form Yx where Y is the
variable in the original causal model, and x is a subscript specifying the action which
distinguishes the counterfactual. Since we only merge two variables derived from the
same original, specifying Y is simple. But what about the subscript? Intuitively, the
subscript of w contains those fixed variables which are ancestors of w in the graph G0
of M0. Formally the subscript is w, where W = An(w)G0 \ sub(g), where the sub(g)
corresponds to those nodes in G0 which correspond to subscripts in g. Since we replaced
a, b by w, we replace any mention of a, b in our given counterfactual query P(g) by w.
Note that since a, b are the same, their value assignments must be the same (say equal
to y). The new counterfactual w inherits this assignment.

We summarize the inductive applications of Lemma 24, and 25 by the make-cg
algorithm, which takes g and G as arguments, and constructs a version of the parallel
worlds graph without duplicate nodes. We call the resulting structure the counterfactual
graph of g, and denote it by Gg. The algorithm is shown in Figure 10.

There are three additional subtleties in make-cg. The first is that if variables Yx, Yz
were judged to be the same by Lemma 24, but g assigns them different values, this
implies that the original set of counterfactual events g is inconsistent, and so P(g) = 0.
The second is that if we are interested in identifiability of P(g), we can restrict ourselves
to the ancestors of g in G0. We can justify this using the same intuitive argument we
used in Section 3 to justify Line 2 in ID. The formal proof for line 2 we provide in
the appendix applies with little change to make-cg. Finally, because the algorithm can
make an arbitrary choice picking a parent of w each time Lemma 25 is applied, both
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function make-cg(G, g)
INPUT: G a causal diagram, g a conjunction of counterfactual events

OUTPUT: A counterfactual graph Gg, and either a set of events g0 s.t. P(g0) = P(g) or
INCONSISTENT

• Construct a submodel graph Gxi for each action do(xi) mentioned in g. Construct
the parallel worlds graph G0 by having all such submodel graphs share their
corresponding U nodes.

• Let p be a topological ordering of nodes in G0, let g0 := g.

• Apply Lemmas 24 and 25, in order p, to each observable node pair a, b derived
from the same variable in G. For each a, b that are the same, do:

– Let G0 be modified as specified in Lemma 25.
– Modify g0 by renaming all occurrences of b to a.
– If val(a) 6= val(b), return G0, INCONSISTENT.

• return (G0An(g0), g0), where An(g0) is the set of nodes in G0 ancestral to nodes
corresponding to variables mentioned in g0.

Figure 10: An algorithm for constructing counterfactual graphs

the counterfactual graph G0, and the corresponding modified counterfactual g0 are not
unique. This does not present a problem, however, as any such graph is acceptable for
our purposes.

We illustrate the operation of make-cg by showing how the graph in Figure 9 (c)
is derived from the graph in Figure 9 (b). We start the application of Lemma 24 from
the topmost observable nodes, and conclude that the node pairs Dx, D, and Xd, X have
the same functional mechanisms, and the same parent set (in this case the parents are
unobservable nodes Ud for the first pair, and U for the second). We then use Lemma
25 to obtain the graph shown in Figure 11 (a). Since the node pairs are the same, we
pick the name of one of the nodes of the pair to serve as the name of the new node. In
our case, we picked D and X. Note that for this graph, and all subsequent intermediate
graphs we generate, we use the convention that if a merge creates a situation where an
unobservable variable has a single child, that variable is omitted from the graph. For
instance, in Figure 11 (a), the variable Ud, and its corresponding arrow to D omitted.

Next, we apply Lemma 24 for the node pair Wd, W. In this case, the functional
mechanisms are once again the same, while the parents of Wd, W are X and Uw. We
can also apply Lemma 24 twice to conclude that Z, Zx and Zd are in fact the same node,
and so can be merged. The functional mechanisms of these three nodes are the same,
and they share the parent Uz. As far as the parents of this triplet, the Uz parent is
shared by all three, while Z, Zx share the parent D, and Zd has a separate parent d, fixed
by intervention. However, in our counterfactual query, which is P(yx | x0, zd, d), the
variable D happens to be observed to attain the value d, the same as the intervention
value for the parent of Zd. This implies that for the purposes of the Z, Zx, Zd triplet,
their D-derived parents share the same value, which allows us to conclude they are the
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Figure 11: Intermediate graphs obtained by make-cg in constructing the counterfactual
graph for P(yx | x0, zd, d) from Figure 9 (b).

same random variable. The intuition here is that while intervention and observation are
not the same operation, they have the same effect if the relevant U variables happen to
react in the same way to both the given intervention, and the given observation (this
is the essence of the Axiom of Composition discussed by Pearl (2000).) In our case, U
variables react the same way because the parallel worlds share all unobserved variables.

There is one additional subtlety in performing the merge of the triplet Z, Zx, Zd. If
we examine our query P(yx | x0, zd, d), we notice that Zd, or more precisely its value,
appears in it. When we merge nodes, we only use one name out of the original two. It’s
possible that some of the old names appear in the query, which means we must replace
all references to the old, pre-merge nodes with the new post-merge name we picked.
Since we picked the name Z for the newly merged node, we replace the reference to Zd
in our query by the reference to Z, so our modified query is P(yx | x0, z, d). Since the
variables were established to be the same, this is a safe syntactic transformation.

After Wd, W, and the Z, Zx, Zd triplet are merged, we obtain the graph in Figure 11
(b). Finally, we apply Lemma 24 one more time to conclude Y and Yd are the same
variable, using the same reasoning as before. After performing this final merge, we
obtain the graph in Figure 11 (c). It’s easy to see that Lemma 24 no longer applies to
any node pair: W and Wx differ in their X-derived parent, and Y, and Yx differ on
their W-derived parent, which was established inductively. The final operation which
make-cg performs is restricting the graph in Figure 11 (b) to variables actually relevant
for computing the (potentially syntactically modified) query it was given as input,
namely P(yx | x0, z, d). These relevant variables are ancestral to variables in the query
in the final intermediate graph we obtained. In our case, we remove nodes W and Y
(and their adjacent edges) from consideration, to finally obtain the graph in Figure 9 (c),
which is a counterfactual graph for our query.

Having constructed a graphical representation of worlds mentioned in counterfac-
tual queries, we can turn to identification. We construct two algorithms for this task, the
first is called ID* and works for unconditional queries, while the second, IDC*, works
on queries with counterfactual evidence and calls the first as a subroutine. These are
shown in Figure 12.

These algorithms make use of the following notation: sub(.) returns the set of
subscripts, var(.) the set of variables, and ev(.) the set of values (either set or observed)
appearing in a given counterfactual conjunction (or set of counterfactual events), while
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function ID*(G, g)
INPUT: G a causal diagram, g a conjunction of counterfactual
events
OUTPUT: an expression for P(g) in terms of P⇤ or FAIL

1 if g = ∆, return 1

2 if (9xx0 .. 2 g), return 0

3 if (9xx.. 2 g), return ID*(G, g \ {xx..})
4 (G0, g0) = make-cg(G, g)

5 if g0 = INCONSISTENT, return 0

6 if C(G0) = {S1, . . . , Sk},
return ÂV(G0)\g0 ’i ID*(G, si

v(G0)\si )

7 if C(G0) = {S} then,

8 if (9x, x0) s.t. x 6= x0, x 2 sub(S), x0 2 ev(S),
throw FAIL

9 else, let x =
S

sub(S)
return Px(var(S))

function IDC*(G, g, d)
INPUT: G a causal diagram, g, d conjunctions of counterfac-
tual events
OUTPUT: an expression for P(g | d) in terms of P⇤, FAIL, or
UNDEFINED

1 if ID*(G, d) = 0, return UNDEFINED

2 (G0, g0 ^ d0) = make-cg(G, g ^ d)

3 if g0 ^ d0 = INCONSISTENT, return 0

4 if (9yx 2 d0) s.t. (Yx ?? g0)G0yx ,
return IDC*(G, g0yx , d0 \ {yx})

5 else, let P0 = ID*(G, g0 ^ d0). return P0/P0(d)

Figure 12: Counterfactual identification algorithms.

val(.) is the value assigned to a given counterfactual variable. This notation is used to
extract variables and values present in the original causal model from a counterfactual
which refers to parallel worlds. As before, C(G0) is the set of maximal C-components
of G0, except we don’t count nodes in G0 fixed by interventions as part of any C-
component. V(G0) is the set of observable nodes of G0 not fixed by interventions.
Following Pearl (2000), G0yx is the graph obtained from G0 by removing all outgoing
arcs from Yx; g0yx is obtained from g0 by replacing all descendant variables Wz of Yx
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in g0 by Wz,y. A counterfactual sr, where s, r are value assignments to sets of nodes,
represents the event “the node set S attains values s under intervention do(r).” For
instance, the term si

v(g0)\si stands for the event “the node set Si attains values si under

the intervention do(v(g0) \ si),” in other words under the intervention where we fix the
values of all observable nodes in G0 except those in Si. Finally, we take xx.. to mean
some counterfactual variable derived from X where x appears in the subscript (the rest
of the subscript can be arbitrary), which also attains value x.

The notation used in these algorithms is somewhat intricate, so we give an intuitive
description of each line. We start with ID*. The first line states that if g is an empty
conjunction, then its probability is 1, by convention. The second line states that if
g contains a counterfactual which violates the Axiom of Effectiveness (Pearl, 2000),
then g is inconsistent, and we return probability 0. The third line states that if a
counterfactual contains its own value in the subscript, then it is a tautological event,
and it can be removed from g without affecting its probability. Line 4 invokes make-cg
to construct a counterfactual graph G0, and the corresponding relabeled counterfactual
g0. Line 5 returns probability 0 if an inconsistency was found during the construction
of the counterfactual graph, for example, if two variables found to be the same in g
had different value assignments. Line 6 is analogous to Line 4 in the ID algorithm,
it decomposes the problem into a set of subproblems, one for each C-component in
the counterfactual graph. In the ID algorithm, the term corresponding to a given C-
component Si of the causal diagram was the effect of all variables not in Si on variables
in Si, in other words Pv\si

(si), and the outermost summation on line 4 was over values
of variables not in Y, X. Here, the term corresponding to a given C-component Si

of the counterfactual graph G0 is the conjunction of counterfactual variables where
each variable contains in its subscript all variables not in the C-component Si, in other
words v(G0) \ si, and the outermost summation is over observable variables not in g0,
that is over v(G0) \ g0, where we interpret g0 as a set of counterfactuals, rather than
a conjunction. Line 7 is the base case, where our counterfactual graph has a single
C-component. There are two cases, corresponding to line 8 and line 9. Line 8 says that
if g0 contains a “conflict,” that is an inconsistent value assignment where at least one
value is in the subscript, then we fail. Line 9 says if there are no conflicts, then its safe to
take the union of all subscripts in g0, and return the effect of the subscripts in g0 on the
variables in g0.

The IDC*, like its counterpart IDC, is shorter. The first line fails if d is inconsistent.
IDC did not have an equivalent line, since we can assume P(v) is positive. The problem
with counterfactual distributions is there is no simple way to prevent non-positive
distributions spanning multiple worlds from arising, even if the original P(v) was
positive—hence the explicit check. The second line constructs the counterfactual graph,
except since make-cg can only take conjunctions, we provide it with a joint counter-
factual g ^ d. Line 3 returns 0 if an inconsistency was detected. Line 4 of IDC* is the
central line of the algorithm and is analogous to line 1 of IDC. In IDC, we moved a
value assignment Z = z from being observed to being fixed if there were no back-door
paths from Z to the outcome variables Y given the context of the effect of do(x). Here in
IDC*, we move a counterfactual value assignment Yx = y from being observed (that is
being a part of d), to being fixed (that is appearing in every subscript of g0) if there are
no back-door paths from Yx to the counterfactual of interest g0. Finally, line 5 of IDC* is
the analogue of line 2 of IDC, we attempt to identify a joint counterfactual probability,
and then obtain a conditional counterfactual probability from the result.
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We illustrate the operation of these algorithms by considering the identification
of a query P(yx | x0, zd, d) we mentioned earlier. Since P(x0, zd, d) is not inconsistent,
we proceed to construct the counterfactual graph on line 2. Suppose we produce the
graph in Figure 9 (c), where the corresponding modified query is P(yx | x0, z, d). Since
P(yx, x0, z, d) is not inconsistent we proceed to the next line, which moves z, d (with d
being redundant due to graph structure) to the subscript of yx, to obtain P(yx,z | x0),
and calls IDC* with this query recursively. Note that since the subscripts in one of
the variables of our query changed, the counterfactual graph generated will change as
well. In particular, the invocation of make-cg with the joint distribution from which
P(yx,z | x0) is derived, namely P(yx,z, x0), will result in the graph shown in Figure 9
(d). Since X0 has a back-door path to Yx,z in this graph, we can no longer call IDC*
recursively, so we invoke ID* with the query P(yx,z, x0).

The first interesting line in ID* is line 6, which first computes P(yx,z, wx,z, x0) by
C-component factorization, and then computes P(yx,z, x0) from P(yx,z, wx,z, x0) by mar-
ginalizing over Wx,z.2 Since the counterfactual graph for this query (Figure 9 (d)) has
two C-components, {Yx,z, X} and {Wx,z}, P(yx,z, wx,z, x0) = P(yx,z,w, x0w)P(wx,z), which
can be simplified by removing redundant subscripts to P(yz,w, x0)P(wx). Line 6 then re-
cursively calls ID* with P(yx,z,w, x0) and P(wx), multiplies the results and marginalizes
over Wx. The first recursive call reaches line 9 with P(yz,w, x0), which is identifiable as
Pz,w(y, x0) from P⇤. The second term is trivially identifiable as Px(w), which means our
query is identifiable as P0 = Âw Pz,w(y, x0)Px(w), and the conditional query is equal to
P0/P0(x0).

The definitions of ID*, and IDC* reveal their close similarity to algorithms ID
and IDC in the previous section. The major differences lie in the failure and success
base cases, and slightly different subscript notation. This is not a coincidence, since a
counterfactual graph can be thought of as a causal graph for a particular large causal
model which happens to have some distinct nodes share the same causal mechanisms.
This means that all the theorems and definitions used in the previous sections for causal
diagrams transfer over without change to counterfactual graphs. Using this fact, we
will show that ID*, and IDC* are sound and complete for identifying P(g), and P(g | d)
respectively.

Theorem 26 (soundness) If ID* succeeds, the expression it returns is equal to P(g) in a
given causal graph. Furthermore, if IDC* does not output FAIL, the expression it returns is
equal to P(g | d) in a given causal graph, if that expression is defined, and UNDEFINED
otherwise.

Proof outline The first line merely states that the probability of an empty conjunction
is 1, which is true by convention. Lines 2 and 3 follow by the Axiom of Effectiveness
(Galles and Pearl, 1998). The soundness of make-cg has already been established, which
implies the soundness of line 4. Line 6 decomposes the problem using c-component
factorization. The soundness proof for this decomposition, also used in the previous
section, is in the appendix. Line 9 asserts that if a set of counterfactual events does not
contain conflicting value assignments to any variable, obtained either by observation
or intervention, then taking the union of all actions of the events results in a consistent
action. The probability of the set of events can then be computed from a submodel

2. Note that since Wx,z is a counterfactual variable derived from W, it shares its domain with W. Therefore
it makes sense when marginalizing to operate over the values of W, denoted by w in the subscript of the
summation.
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where this consistent action has taken place. A full proof of this is in the appendix.

To show completeness, we follow the same strategy we used in the previous section.
We catalogue all difficult counterfactual graphs which arise from queries which cannot
be identified from P⇤. We then show these graphs arise whenever ID* and IDC* fail.
This, together with the soundness theorem we already proved, implies that these
algorithms are complete.

The simplest difficult counterfactual graph arises from the query P(yx, y0x0) named
“probability of necessity and sufficiency” by Pearl (2000). This graph, shown in Figure 8
(b) with variable relabeling, is called the “w-graph” due to its shape (Avin et al., 2005).
This query is so named because if P(yx, y0x0) is high, this implies that if the variable X
is forced to x, variable Y is likely to be y, while if X is forced to some other value, Y is
likely to not be y. This means that the action do(x) is likely a necessary and sufficient
cause of Y assuming value y, up to noise. The w-graph starts our catalogue of bad
graphs with good reason, as the following lemma shows.

Lemma 27 Assume X is a parent of Y in G. Then P⇤, G 6`id P(yx, y0x0), P(yx, y0) for any
value pair y, y0.

Proof See Avin et al. (2005).

The intuitive explanation for this result is that P(yx, y0x0) is derived from the joint dis-
tribution over the counterfactual variables in the w-graph, while if we restrict ourselves
to P⇤, we only have access to marginal distributions—one marginal for each possible
world. Because counterfactual variables Yx and Yx0 share an unobserved parent U, they
are dependent, and their joint distribution cannot be decomposed into a product of
marginals. This means that the information encoded in the marginals is insufficient
to uniquely determine the joint we are interested in. This intuitive argument can be
generalized to a counterfactual graph with more than two nodes, the so-called “zig-zag
graphs” an example of which is shown in Figure 13 (b).

Lemma 28 Assume G is such that X is a parent of Y and Z, and Y and Z are connected by a
bidirected path with observable nodes W1, . . . , Wk on the path. Then P⇤, G 6`id P(yx, w1, . . . ,
wk, zx0), P(yx, w1, . . . , wk, z) for any value assignments y, w1, . . . , wk, z.

(a)

X

Y ZW W
1 2

(b)

Y ZW W1 2

x x’

Figure 13: (a) Causal diagram (b) Corresponding counterfactual graph for the non-
identifiable query P(Yx, W1, W2, Zx0).
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The w-graph in Figure 8 (b) and the zig-zag graph in Figure 13 (b) have very
special structure, so we don’t expect our characterization to be complete with just
these graphs. In order to continue, we must provide two lemmas which allow us to
transform difficult graphs in various ways by adding nodes and edges, while retaining
the non-identifiability of the underlying counterfactual from P⇤.

Lemma 29 (downward extension lemma) Assume P⇤, G 6`id P(g). Let {y1
x1 , . . . , yn

xm} be
a subset of counterfactual events in g. Let G0 be a graph obtained from G by adding a new child
W of Y1, . . . , Yn, and let P0⇤ be the set of all interventional distributions in models inducing G0.
Let g0 = (g \ {y1

x1 , . . . , yn
xm}) [ {wx1 , . . . , wxm}, where w is an arbitrary value of W. Then

P0⇤, G0 6`id P(g0).

The first result states that non-identification on a set of parents (causes) translates
into non-identification on children (effects). The intuitive explanation for this is that it
is possible to construct a one-to-one function from the space of distributions on causes
to the space of distributions on effects. If a given P(g) cannot be identified from P⇤, this
implies that there exist two models which agree on P⇤, but disagree on P(g), where
g is a set of counterfactual causes. It is then possible to augment these models using
the one-to-one function in question to obtain disagreement on P(d), where d is a set of
counterfactual effects of g. A more detailed argument is found in the appendix.

Lemma 30 (contraction lemma) Assume P⇤, G 6`id P(g). Let G0 be obtained from G by
merging some two nodes X, Y into a new node Z where Z inherits all the parents and children
of X, Y, subject to the following restrictions:

• The merge does not create cycles.

• If (9ws 2 g) where x 2 s, y 62 s, and X 2 An(W)G, then Y 62 An(W)G.

• If (9ys 2 g) where x 2 s, then An(X)G = ∆.

• If (Yw, Xs 2 g), then w and s agree on all variable settings.

Assume |X|⇥ |Y| = |Z| and there’s some isomorphism f assigning value pairs x, y to a
value f (x, y) = z. Let g0 be obtained from g as follows. For any ws 2 g:

• If W 62 {X, Y}, and values x, y occur in s, replace them by f (x, y).

• If W 62 {X, Y}, and the value of one of X, Y occur in s, replace it by some z consistent
with the value of X or Y.

• If X, Y do not occur in g, leave g as is.

• If W = Y and x 2 s, replace ws by f (x, y)s\{x}.

• otherwise, replace every variable pair of the form Yr = y, Xs = x by Zr,s = f (x, y).

Then P⇤, G0 6`id P(g0).

This lemma has a rather complicated statement, but the basic idea is very simple.
If we have a causal model with a graph G where some counterfactual P(g) is not
identifiable, then a coarser, more “near-sighted” view of G which merges two distinct
variables with their own mechanisms into a single variable with a single mechanism
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will not render P(g) identifiable. This is because merging nodes in the graph does not
alter the model, but only our state of knowledge of the model. Therefore, whatever
model pair was used to prove P(g) non-identifiable will remain the same in the new,
coarser graph. The complicated statement of the lemma is due to the fact that we cannot
allow arbitrary node merges, we must satisfy certain coherence conditions. For instance,
the merge cannot create directed cycles in the graph.

It turns out that whenever ID* fails on P(g), the corresponding counterfactual graph
contains a subgraph which can be obtained by a set of applications of the previous two
lemmas to the w-graph and the zig-zag graphs. This allows an argument that shows
P(g) cannot be identified from P⇤.

Theorem 31 (completeness) If ID* or IDC* fail, then the corresponding query is not identi-
fiable from P⇤.

Since ID* is complete for P(g) queries, we can give a graphical characterization of
counterfactual graphs where P(g) cannot be identified from P⇤.

Theorem 32 Let Gg, g0 be obtained from make-cg(G, g). Then P⇤, G 6`id P(g) if and only if
there exists a C-component S ✓ An(g0)Gg where some X 2 Pa(S) is set to x while at the same
time either X is also a parent of another node in S and is set to another value x0, or S contains a
variable derived from X which is observed to be x0.

Proof This follows from Theorem 31 and the construction of ID*.

5. Conclusions
This paper considers a hierarchy of queries about relationships among variables in
graphical causal models: associational relationships which can be obtained from ob-
servational studies, cause-effect relationships obtained by experimental studies, and
counterfactuals, which are derived from parallel worlds resulting from hypothetical
actions, possibly conflicting with available evidence. We consider the identification
problem for this hierarchy, the task of computing a query from the given causal diagram
and available information lower in the hierarchy.

We provide sound and complete algorithms for this identification problem, and
a graphical characterization of non-identifiable queries where these algorithms must
fail. Specifically, we provide complete algorithms for identifying causal effects and
conditional causal effects from observational studies, and show that a graphical structure
called a hedge completely characterizes all cases where causal effects are non-identifiable.
As a corollary, we show that the three rules of do-calculus are complete for identifying
effects. We also provide complete algorithms for identifying counterfactual queries
(possibly conditional) from experimental studies. If we view the structure of the causal
graph as experimentally testable, as is often the case in practice, this result can be
viewed as giving a full characterization of testable counterfactuals assuming structural
semantics.

These results settle important questions in causal inference, and pave the way for
computing more intricate causal queries which involve nested counterfactuals, such
as those defining direct and indirect effects (Pearl, 2001), and path-specific effects
(Avin et al., 2005). The characterization of non-identifiable queries we provide defines
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precisely the situations when such queries cannot be computed precisely, and must
instead by approximated using methods such as bounding (Balke and Pearl, 1994a),
instrumental variables (Pearl, 2000), or additional assumptions, such as linearity, which
can make identification simpler.
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Appendix A.
Here, we augment the intuitive proof outlines we gave in the main body of the paper
with more formal arguments. We start with a set of results which were used to classify
graphs with non-identifiable effects. In the proofs presented here, we will construct the
distributions which make up our set of premises to be positive. This is because non-
positive distributions present a number of technical difficulties, for instance d-separation
and independence are not related in a straightforward way in such distributions, and
conditional distributions may not be defined. We should mention, however, that
distributions which span multiple hypothetical worlds which we discussed in Section 4
may be non-positive by definition.

Theorem 5 If sets X and Y are d-separated by Z in G, then X is independent of Y given
Z in every P for which G is an I-map. Furthermore, the causal diagram induced by any
semi-Markovian PCM M is a semi-Markovian I-map of the distribution P(v, u) induced by M.

Proof It is not difficult to see that if we restrict d-separation queries to a subset of
variables W in some graph G, the corresponding independencies in P(w) will only hold
whenever the d-separation statements hold. Furthermore, if we replace G by a latent
projection L (Pearl, 2000), where we view variables V \ W as hidden, independencies in
P(w) will only hold whenever the corresponding d-separation statement (extended to
include bidirected arcs) holds in L.

Theorem 10 P(v), G 6`id P(y | do(x)) in G shown in Figure 1 (a).

Proof We construct two causal models M1 and M2 such that P1(X, Y) = P2(X, Y), and
P1

x (Y) 6= P2
x (Y). The two models agree on the following: all 3 variables are boolean,

U is a fair coin, and fX(u) = u. Let � denote the exclusive or (XOR) function. Then
the value of Y is determined by the function u � x in M1, while Y is set to 0 in M2.
Then P1(Y = 0) = P2(Y = 0) = 1, P1(X = 0) = P2(X = 0) = 0.5. Therefore,
P1(X, Y) = P2(X, Y), while P2

x (Y = 0) = 1 6= P1
x (Y = 0) = 0.5. Note that while P is

non-positive, it is straightforward to modify the proof for the positive case by letting fY
functions in both models return 1 half the time, and the values outlined above half the
time.
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Theorem 12 Let G be a Y-rooted C-tree. Let X be any subset of observable nodes in G which
does not contain Y. Then P(v), G 6`id P(y | do(x)).

Proof We generalize the proof for the bow arc graph. We can assume without loss
of generality that each unobservable U in G has exactly two observable children. We
construct two models with binary nodes. In the first model, the value of all observable
nodes is set to the bit parity (sum modulo 2) of the parent values. In the second model,
the same is true for all nodes except Y, with the latter being set to 0 explicitly. All U
nodes in both models are fair coins. Since G is a tree, and since every U 2 U has exactly
two children in G, every U 2 U has exactly two distinct downward paths to Y in G. It’s
then easy to establish that Y counts the bit parity of every node in U twice in the first
model. But this implies P1(Y = 1) = 0.

Because bidirected arcs form a spanning tree over observable nodes in G, for any
set of nodes X such that Y 62 X, there exists U 2 U with one child in An(X)G and one
child in G \ An(X)G. Thus P1

x (Y = 1) > 0, but P2
x (Y = 1) = 0. It is straightforward to

generalize this proof for the positive P(v) in the same way as in Theorem 10.

Theorem 13 P(v), G 6`id P(y | do(pa(y))) if and only if there exists a subgraph of G which
is a Y-rooted C-tree.

Proof From Tian (2002), we know that whenever there is no subgraph G0 of G, such
that all nodes in G0 are ancestors of Y, and G0 is a C-component, Ppa(Y)(Y) is identifiable.
From Theorem 12, we know that if there is a Y-rooted C-tree containing a non-empty
subset S of parents of Y, then Ps(Y) is not identifiable. But it is always possible to extend
the counterexamples which prove non-identification of Ps(Y) with additional variables
which are independent.

Theorem 17 Let F, F0 be subgraphs of G which form a hedge for P(y | do(x)). Then
P(v), G 6`id P(y | do(x)).

Proof We first show Px(r) is not identifiable in F. As before, we assume each U has two
observable children. We construct two models with binary nodes. In M1 every variable
in F is equal to the bit parity of its parents. In M2 the same is true, except all nodes in F0
disregard the parent values in F \ F0. All U are fair coins in both models.

As was the case with C-trees, for any C-forest F, every U 2 U \ F has exactly two
downward paths to R. It is now easy to establish that in M1, R counts the bit parity of
every node in U1 twice, while in M2, R counts the bit parity of every node in U2 \ F0
twice. Thus, in both models with no interventions, the bit parity of R is even.

Next, fix two distinct instantiations of U that differ by values of U⇤. Consider the
topmost node W 2 F with an odd number of parents in U⇤ (which exists because
bidirected edges in F form a spanning tree). Then flipping the values of U⇤ once will
flip the value W once. Thus the function from U to V induced by a C-forest F in M1 and
M2 is one to one.

The above results, coupled with the fact that in a C-forest, |U|+ 1 = |V| implies that
any assignment where Â r (mod 2) = 0 is equally likely, and all other node assignments
are impossible in both F and F0. Since the two models agree on all functions and
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distributions in F \ F0, Â f 0 P1 = Â f 0 P2. It follows that the observational distributions
are the same in both models.

As before, we can find U 2 U with one child in An(X)F, and one child in F \ An(X)F,
which implies the probability of odd bit parity of R is 0.5 in M1, and 0 in M2.

Next, we note that the construction so far results in a non-positive distribution P.
To rid our proof of non-positivity, we “soften” our two models with new unobservable
binary UR for every R 2 R which assumes value 1 with very small probability p.
Whenever UR is 1, the node R flips its value, otherwise it keeps the value as defined
above. Note that P(v) will remain the same in both models because our augmentation
is the same, and the previous unsoftened models agreed on P(v). It’s easy to see that
the bit parity of R in both models will be odd only when an odd number of UR assume
values of 1. Because p is arbitrarily small, the probability of an odd parity is far smaller
than the probability of even parity. Now consider what happens after do(x). In M2,
the probability of odd bit parity stays the same. In M1 before the addition of UR, the
probability was 0.5. But it’s easy to see that UR nodes change the bit parity of R in a
completely symmetric way, so the probability of even parity remains 0.5.

This implies Px(r) is not identifiable. Finally, to see that Px(y) is not identifiable, aug-
ment our counterexample by nodes in I = An(Y) \ De(R). Without loss of generality,
assume every node in I has at most one child. Let each node I in I be equal to the bit
parity of its parents. Moreover, each I has an exogenous parent UI independent of the
rest of U which, with small probability p causes it to flip it’s value. Then the bit parity of
Y is even if and only if an odd number of UI turn on. Moreover, it’s easy to see P(I | R)
is positive by construction. We can now repeat the previous argument.

Next, we provide the proof of soundness of ID and IDC using do-calculus. This both
simplifies the proofs and allows us to infer do-calculus is complete from completeness
of our algorithms. We will invoke do-calculus rules by just using their number, for
instance “by rule 2.” First, we prove that a joint distribution in a causal model can
be represented as a product of interventional distributions corresponding to the set of
c-component in the graph induced by the model.

Lemma 33 (c-component factorization) Let M be a causal model with graph G. Let y, x be
value assignments. Let C(G \ X) = {S1, . . . , Sk}. Then Px(y) = Âv\(y[x) ’i Pv\si

(si).

Proof A proof of this was derived by Tian (2002). Nevertheless, we reprove this result
using do-calculus to help with our subsequent completeness results. Assume X = ∆,
Y = V, C(G) = {S1, . . . , Sk}, and let Ai = An(Si)G \ Si. Then

’
i

Pv\si
(si) = ’

i
Pai (si) = ’

i
’

Vj2Si

Pai (vj | v(j�1)
p \ ai)

= ’
i

’
Vj2Si

P(vj | v(j�1)
p ) = ’

i
P(vi | v(i�1)

p ) = P(v).

The first identity is by rule 3, the second is by chain rule of probability. To prove
the third identity, we consider two cases. If A 2 Ai \ V(j�1)

p , we can eliminate the
intervention on A from the expression Pai (vj | v(j�1)

p ) by rule 3, since (Vj ?? A |
V(j�1)

p )Gai
.
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If A 2 Ai \V(j�1)
p , consider any back-door path from Ai to Vj. Any such path with

a node not in V(j�1)
p will be d-separated because, due to recursiveness, it must contain a

blocked collider. Further, this path must contain bidirected arcs only, since all nodes on
this path are conditioned or fixed. Because Ai \ Si = ∆, all such paths are d-separated.
The identity now follows from rule 2. The last two identities are just grouping of terms,
and application of chain rule.

Having proven that c-component factorization holds for P(v), we want to extend
the result to Px(y). First, let’s consider Px(v \ x). This is just the distribution of the
submodel Mx. But Mx is just an ordinary causal model inducing G \ X, so we can apply
the same reasoning to obtain Px(v \ x) = ’i Pv\si

(si), where C(G \ X) = {S1, . . . , Sk}.
As a last step, it’s easy to verify that Px(y) = Âv\(x[y) Px(v \ x).

Lemma 34 Let X0 = X \ An(Y)G. Then Px(y) obtained from P in G is equal to P0x0(y)
obtained from P0 = P(An(Y)) in An(Y)G.

Proof Let W = V \ An(Y)G. Then the submodel Mw induces the graph G \ W =
An(Y)G, and its distribution is P0 = Pw(An(Y)) = P(An(Y)) by rule 3. Now Px(y) =
Px0(y) = Px0 ,w(y) = P0x0(y) by rule 3.

Lemma 35 Let W = (V \ X) \ An(Y)Gx . Then Px(y) = Px,w(y), where w are arbitrary
values of W.

Proof Note that by assumption, Y ??W | X in Gx,w. The conclusion follows by rule 3.

Lemma 36 When the conditions of line 6 are satisfied, Px(y) = Âs\y ’Vi2S P(vi | v(i�1)
p ).

Proof If line 6 preconditions are met, then G local to that recursive call is partitioned
into S and X, and there are no bidirected arcs from X to S. The conclusion now follows
from the proof of Lemma 33.

Lemma 37 Whenever the conditions of the last recursive call of ID are satisfied, Px obtained
from P in the graph G is equal to P0x\S0 obtained from P0 = ’Vi2S0 P(Vi | V(i�1)

p \ S0, v(i�1)
p \

S0) in the graph S0.

Proof It is easy to see that when the last recursive call executes, X and S partition G, and
X ⇢ An(S)G. This implies that the submodel Mx\S0 induces the graph G \ (X \ S0) = S0.
The distribution Px\S0 of Mx\S0 is equal to P0 by the proof of Lemma 33. It now follows
that Px = Px\S0 ,x\S0 = P0x\S0 .

Theorem 38 (soundness) Whenever ID returns an expression for Px(y), it is correct.
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Proof If x = ∆, the desired effect can be obtained from P by marginalization, thus this
base case is clearly correct. The soundness of all other lines except the failing line 5 has
already been established.

Having established soundness, we show that whenever ID fails, we can recover
a hedge for an effect involving a subset of variables involved in the original effect
expression P(y | do(x)). This in turn implies completeness.

Theorem 39 Assume ID fails to identify Px(y) (executes line 5). Then there exist X0 ✓ X,
Y0 ✓ Y such that the graph pair G, S returned by the fail condition of ID contain as edge
subgraphs C-forests F, F0 that form a hedge for Px0(y0).

Proof Consider line 5, and G and y local to that recursive call. Let R be the root set of G.
Since G is a single C-component, it is possible to remove a set of directed arrows from G
while preserving the root set R such that the resulting graph F is an R-rooted C-forest.

Moreover, since F0 = F \ S is closed under descendants, and since only single di-
rected arrows were removed from S to obtain F0, F0 is also a C-forest. F0 \ X = ∆, and
F \ X 6= ∆ by construction. R ✓ An(Y)Gx by lines 2 and 3 of the algorithm. It’s also
clear that y, x local to the recursive call in question are subsets of the original input.

Theorem 18 ID is complete.

Proof By the previous theorem, if ID fails, then Px0(y0) is not identifiable in a subgraph
H = GAn(Y)\De(F) of G. Moreover, X\ H = X0, by construction of H. As such, it is easy
to extend the counterexamples in Theorem 39 with variables independent of H, with
the resulting models inducing G, and witnessing the non-identifiability of Px(y).

Next, we prove the results necessary to establish completeness of IDC.

Lemma 40 If rule 2 of do-calculus applies to a set Z in G for Px(y | w) then there are
no d-connected paths to Y that pass through Z in neither G1 = G \ X given Z, W nor in
G2 = G \ (X[ Z) given W.

Proof Clearly, there are no d-connected paths through Z in G2 given W. Consider a
d-connected path through Z 2 Z to Y in G1, given Z, W. Note that this path must either
form a collider at Z or a collider which is an ancestor of Z. But this must mean there is a
back-door path from Z to Y, which is impossible, since rule 2 is applicable to Z in G for
Px(y | w). Contradiction.

Theorem 20 For any G and any conditional effect Px(y | w) there exists a unique maximal
set Z = {Z 2 W | Px(y | w) = Px,z(y | w \ {z})} such that rule 2 applies to Z in G for
Px(y | w). In other words, Px(y | w) = Px,z(y | w \ z).

Proof Fix two maximal sets Z1, Z2 ✓ W such that rule 2 applies to Z1, Z2 in G for
Px(y | w). If Z1 6= Z2, fix Z 2 Z1 \ Z2. By Lemma 40, rule 2 applies for {Z} [ Z2 in G
for Px(y | w), contradicting our assumption.
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Thus if we fix G and Px(y | w), any set to which rule 2 applies must be a subset of
the unique maximal set Z. It follows that Z = {Z 2W | Px(y | w) = Px,z(y | w \ {z})}.

Lemma 41 Let F, F0 form a hedge for Px(y). Then F ✓ F0 [X.

Proof It has been shown that ID fails on Px(y) in G and returns a hedge if and only
if Px(y) is not identifiable in G. In particular, edge subgraphs of the graphs G and S
returned by line 5 of ID form the C-forests of the hedge in question. It is easy to check
that a subset of X and S partition G.

We rephrase the statement of Theorem 21 somewhat, to reduce “algebraic clutter.”

Theorem 21 Let Px(y | w) be such that every W 2 W has a back-door path to Y in G \ X
given W \ {W}. Then Px(y | w) is identifiable in G if and only if Px(y, w) is identifiable in G.

Proof If Px(y, w) is identifiable in G, then we can certainly identify Px(y | w) by
marginalization and division. The difficult part is to prove that if Px(y, w) is not
identifiable then neither is Px(y | w).

Y’

Y

H

(a)

W W’

Y’

H

(b)

W W’

Y

p
p

X X

Figure 14: Inductive cases for proving non-identifiability of Px(y | w, w0).

Assume Px(w) is identifiable. Then if Px(y | w) were identifiable, we would be able
to compute Px(y, w) by the chain rule. Thus our conclusion follows.

Assume Px(w) is not identifiable. We also know that every W 2 W contains a
back-door path to some Y 2 Y in G \ X given W \ {W}. Fix such W and Y, along with a
subgraph p of G which forms the witnessing back-door path. Consider also the hedge
F, F0 which witnesses the non-identifiability of Px0(w0), where X0 ✓ X, W0 ✓W.

Let H = GDe(F)[An(W0)G
x0

. We will attempt to show that Px0(Y | w) is not identifiable

in H [ p. Without loss of generality, we make the following three assumptions. First,
we restrict our attention to W00 ✓W that occurs in H [ p. Second, we assume p is a path
segment which starts at H and ends at Y, and does not intersect H. Third, we assume
all observable nodes in H have at most one child.

Consider the models M1, M2 from the proof of Theorem 17 which induce H. We
extend the models by adding to them binary variables in p. Each variable X 2 p is equal
to the bit parity of its parents, if it has any. If not, X behaves as a fair coin. If Y 2 H has
a parent X 2 p, the value of X is added to the bit parity computation Y makes.
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Call the resulting models M1⇤, M2⇤. Because M1, M2 agreed on P(H), and variables
and functions in p are the same in both models, P1⇤ = P2⇤ . We will assume w00 assigns 0
to every variable in W00. What remains to be shown is that P1⇤x(y | w00) 6= P2⇤x(y | w00).
We will prove this by induction on the path structure of p. We handle the inductive
cases first. In all these cases, we fix a node Y0 that is between Y and H on the path p,
and prove that if Px0(y0 | w00) is not identifiable, then neither is Px0(y | w00).

Assume neither Y nor Y0 have descendants in W00. If Y0 is a parent of Y as in Figure 14
(a), then Px0(y | w00) = Ây0 P(y | y0)Px0(y0 | w00). If Y is a parent of Y0, as in Figure 14
(b) then the next node in p must be a child of Y0. Therefore, Px0(y | w00) = Ây0 P(y |
y0)Px0(y0 | w00). In either case, by construction P(Y | Y0) is a 2 by 2 identity matrix. This
implies that the mapping from Px0(y0 | w00) to Px0(y | w00) is one to one. If Y0 and Y share
a hidden common parent U as in Figure 15 (b), then our result follows by combining
the previous two cases.

Y

H

(a)

W W’

Y’

C

p

Y

H

(b)

W W’

Y’ p

X X

Figure 15: Inductive cases for proving non-identifiability of Px(y | w, w0).

The next case is if Y and Y have a common child C which is either in W00 or has a
descendant in W00, as in Figure 15 (a). Now Px0(y | w00) = Ây0 P(y | y0, c)Px0(y0 | w00).
Because all nodes in W00 were observed to be 0, P(y | y0, c) is again a 2 by 2 identity
matrix.

Finally, we handle the base cases of our induction. In all such cases, Y is the first
node not in H on the path p. Let Y0 be the last node in H on the path p.

Y

H

(a)

W W’

Y’

(c)

W W’

Y’

Y

H
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Y

(b)

W

Y’
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X
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Figure 16: Base cases for proving non-identifiability of Px(y | w, w0).

Assume Y is a parent of Y0, as shown in Figure 16 (a). By Lemma 41, we can
assume Y 62 An(F \ F0)H . By construction, (Â W00 = Y + 2 ⇤Â U) (mod 2) in M1⇤, and
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(Â W00 = Y + 2 ⇤ Â(U \ F0)) (mod 2) in M2⇤. If every variable in W00 is observed to
be 0, then Y = (2 ⇤Â U) (mod 2) in M1⇤, and Y = (2 ⇤Â(U \ F0)) (mod 2) in M2⇤. If
an intervention do(x) is performed, (Â W00 = Y + 2 ⇤Â(U \ F0)) (mod 2) in M2⇤x, by
construction. Thus if W00 are all observed to be zero, Y = 0 with probability 1. Note
that in M1

x as constructed in the proof of Theorem 17, (Â w00 = x + Â U0) (mod 2),
where U0 ✓ U consists of unobservable nodes with one child in An(X)F and one child
in F \ An(X)F.

Because Y 62 An(F \ F0)H , we can conclude that if W00 are observed to be 0, Y =
(x + Â U0) (mod 2) in M1

⇤x0 . Thus, Y = 0 with probability 0.5. Therefore, P1
⇤x0(y |

w00) 6= P2
⇤x0(y | w00) in this case.

Assume Y is a child of Y0. Now consider a graph G0 which is obtained from H [ p
by removing the (unique) outgoing arrow from Y0 in H. If Px0(Y | w00) is not identifiable
in G0, we are done. Assume Px0(Y | w00) is identifiable in G0. If Y0 2 F, and R is the
root set of F, then removing the Y0-outgoing directed arrow from F results in a new
C-forest, with a root set R [ {Y0}. Because Y is a child of Y0, the new C-forests form
a hedge for Px0(y, w00). If Y0 2 H \ F, then removing the Y0-outgoing directed arrow
results in substituting Y for W 2 W00 \ De(Y0)H . Thus in G0, F, F0 form a hedge for
Px0(y, w00 \ {w}). In either case, Px0(y, w00) is not identifiable in G0.

If Px0(w00) is identifiable in G0, we are done. If not, consider a smaller hedge H0 ⇢ H
witnessing this fact. Now consider the segment p0 of p between Y and H0. We can repeat
the inductive argument for H0, p0 and Y. See Figure 16 (b).

If Px0(w00) is identifiable in G0, we are done. If not, consider a smaller hedge H0 ⇢ H
witnessing this fact. Now consider the segment p0 of p between Y and H0. We can repeat
the inductive argument for H0, p0 and Y. See Figure 16 (b). If Y and Y0 have a hidden
common parent, as is the case in Figure 16 (c), we can combine the first inductive case,
and the first base case to prove our result.

We conclude the proof by introducing a slight change to rid us of non-positivity
in the distributions P1, P2 in our counterexamples. Specifically, for every node I in
p [ (De(R) \ An(Y)), add a new binary exogenous parent UI which is independent of
other nodes in U, and has an arbitrarily small probability of assuming the value 1, and
causing its child to flip its current value. We let Podd be the probability an odd number of
UI nodes assume the value 1. Because P(UI = 1) is vanishingly small for every I, Podd is
much smaller than 0.5. It’s easy to see that P is positive in counterexamples augmented
in this way. In the base case when Y is a parent of Y0, we modify our equations to account
for the addition of UI . Specifically, (Â W00 = Y + 2 ⇤Â U + Â UI) (mod 2) in M1⇤, and
(Â W00 = Y + 2 ⇤ Â(U \ F0) + Â UI) (mod 2) in M2⇤, where UU is the set of nodes
added. If every variable in W00 is observed to be 0, then Y = (2 ⇤Â U + Â UI) (mod 2)
in M1⇤, and Y = (2 ⇤ Â(U \ F0) + Â UI) (mod 2) in M2⇤. So prior to the intervention,
P(Y = 1 | w00) = Podd. But because P1

x0(Y = 1 | w00) = 0.5, adding UI nodes to the
model does not change this probability. Because P2(Y = 1 | w00) = P2

x (Y = 1 | w00), our
conclusion follows.

In the inductive cases above, we showed that Px(Y0 = Y | W00) = 1 in our coun-
terexamples. It’s easy to see that with the addition of UI , Px(Y0 = Y | W00) = Podd. This
implies that if P1

x (Y0 | W00) 6= P2
x (Y0 | W00), then P1

x (Y | W00) 6= P2
x (Y | W00).

This completes the proof.

What remains for us to show are the theorems which imply the soundness and
completeness results in Section 4. The most important point in these proofs is that
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counterfactual graphs are generally no different from causal diagrams discussed in
Sections 2 and 3, with their only special feature being that by construction, some nodes
in the graph happen to share functions. This means that a lot of results we already
proved for Section 3 can be reused without change.

Lemma 42 If the preconditions of line 7 are met, P(S) = Px(var(S)), where x =
S

sub(S).

Proof Let x =
S

sub(S). Since the preconditions are met, x does not contain conflicting
assignments to the same variable, which means do(x) is a sound action in the original
causal model. Note that for any variable Yw in S, any variable in (Pa(S) \ S)\ An(Yw)S
is already in w, while any variable in (Pa(S) \ S) \ An(Yw)S can be added to the sub-
script of Yw without changing the variable. Since Y \ X = ∆ by assumption, Yw = Yx.
Since Yw was arbitrary, our result follows.

For convenience, we show the soundness of ID* and IDC* asserted in Theorem 26
separately.

Theorem 26 (a) If ID* succeeds, the expression it returns is equal to P(g) in a given causal
graph.

Proof The proof outline in Section 3 is sufficient for everything except the base cases.
In particular, line 6 follows by Lemma 33. For soundness, we only need to handle the
positive base case, which follows from Lemma 42.

The soundness of IDC* is also fairly straightforward.

Theorem 26 (b) If IDC* does not output FAIL, the expression it returns is equal to P(g | d)
in a given causal graph, if that expression is defined, and UNDEFINED otherwise.

Proof Theorem 20 shows how an operation similar to line 4 is sound by rule 2 of
do-calculus (Pearl, 1995) when applied in a causal diagram. But we know that the
counterfactual graph is just a causal diagram for a model where some nodes share
functions, so the same reasoning applies. The rest is straightforward.

To show completeness of ID* and IDC*, we first prove a utility lemma which will
make it easier to construct counterexamples which agree on P⇤ but disagree on a given
counterfactual query.

Lemma 43 Let G be a causal graph partitioned into a set {S1, . . . , Sk} of C-components. Then
two models M1, M2 which induce G agree on P⇤ if and only if their submodels M1

v\si
, M2

v\si
agree on P⇤ for every C-component Si, and value assignment v \ si.

Proof This follows from C-component factorization: P(v) = ’i Pv\si
(si). This implies

that for every do(x), Px(v) can be expressed as a product of terms Pv\(si\x)(si \ x), which
implies the result.

The next result generalizes Lemma 27 to a wider set of counterfactual graphs which
result from non-identifiable queries.

148



COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

Lemma 28 Assume G is such that X is a parent of Y and Z, and Y and Z are connected by a
bidirected path with observable nodes W1, . . . , Wk on the path. Then P⇤, G 6`id P(yx, w1, . . . ,
wk, zx0), P(yx, w1, . . . , wk, z) for any value assignments y, w1, . . . , wk, z.

Proof We construct two models with graph G as follows. In both models, all variables
are binary, and P(u) is uniform. In M1, each variable is set to the bit parity of its parents.
In M2, the same is true except Y and Z ignore the values of X. To prove that the two
models agree on P⇤, we use Lemma 43. Clearly the two models agree on P(X). To show
that the models also agree on Px(V \ X) for all values of x, note that in M2 each value
assignment over V \ X with even bit parity is equally likely, while no assignment with
odd bit parity is possible. But the same is true in M1 because any value of x contributes
to the bit parity of V \ X exactly twice. The agreement of M1

x, M2
x on P⇤ follows by the

graph structure of G.
To see that the result is true, we note firstly that P(SiWi + Yx + Zx0 (mod 2) =

1) = P(SiWi + Yx + Z (mod 2) = 1) = 0 in M2, while the same probabilities are
positive in M1, and secondly that in both models distributions P(yx, w1, . . . , wk, zx0)
and P(yx, w1, .., wk, z) assign equal probabilities to outcomes with positive probabilities,
while we just established that the set of these possible outcomes differs in M1 and M2.
Note that the proof is easy to generalize for positive P⇤ by adding a small probability
for Y to flip its normal value.

To obtain a full characterization of non-identifiable counterfactual graphs, we aug-
ment the difficult graphs we obtained from the previous two results using certain graph
transformation rules which preserve non-identifiability. These rules are given in the
following two lemmas.

Lemma 29 Assume P⇤, G 6`id P(g). Let {y1
x1 , . . . , yn

xm} be a subset of counterfactual events in
g. Let G0 be a graph obtained from G by adding a new child W of Y1, . . . , Yn, and let P0⇤ be the
set of all interventional distributions in models inducing G0. Let g0 = (g \ {y1

x1 , . . . , yn
xm}) [

{wx1 , . . . , wxm}, where w is an arbitrary value of W. Then P0⇤, G0 6`id P(g0).

Proof Let M1, M2 witness P⇤, G 6`id P(g). We will extend these models to witness
P0⇤, G0 6`id P(g0). Since the function of a newly added W will be shared, and M1, M2

agree on P⇤ in G, the extensions will agree on P0⇤ by Lemma 43. We have two cases.
Assume there is a variable Yi such that yi

xj , yi
xk are in g. By Lemma 27, P⇤, G 6`id

P(yi
xj , yi

xk ). Then let W be a child of just Yi, and assume |W| = |Yi| = c. Let W be set
to the value of Yi with probability 1� e, and otherwise it is set to a uniformly chosen
random value of Yi among the other c� 1 values. Since e is arbitrarily small, and since
Wxj and Wxk pay attention to the same U variable, it is possible to set e in such a way
that if P1(Yi

xj , Yi
xk ) 6= P2(Yi

xj , Yi
xk ), however minutely, then P1(Wxj , Wxk ) 6= P2(Wxj , Wxk ).

Otherwise, let |W| = ’i |Yi|, and let P(W | Y1, . . . , Yn) be an invertible stochastic
matrix. Our result follows.

Lemma 30 Assume P⇤, G 6`id P(g). Let G0 be obtained from G by merging some two nodes
X, Y into a new node Z where Z inherits all the parents and children of X, Y, subject to the
following restrictions:
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• The merge does not create cycles.

• If (9ws 2 g) where x 2 s, y 62 s, and X 2 An(W)G, then Y 62 An(W)G.

• If (9ys 2 g) where x 2 s, then An(X)G = ∆.

• If (Yw, Xs 2 g), then w and s agree on all variable settings.

Assume |X|⇥ |Y| = |Z| and there’s some isomorphism f assigning value pairs x, y to a
value f (x, y) = z. Let g0 be obtained from g as follows. For any ws 2 g:

• If W 62 {X, Y}, and values x, y occur in s, replace them by f (x, y).

• If W 62 {X, Y}, and the value of one of X, Y occur in s, replace it by some z consistent
with the value of X or Y.

• If X, Y do not occur in g, leave g as is.

• If W = Y and x 2 s, replace ws by f (x, y)s\{x}.

• otherwise, replace every variable pair of the form Yr = y, Xs = x by Zr,s = f (x, y).

Then P⇤, G0 6`id P(g0).

Proof Let Z be the Cartesian product of X, Y, and fix f . We want to show that the proof
of non-identification of P(g) in G carries over to P(g0) in G0.

We have five modification conditions which can apply to a variable ws 2 g. However,
since g is left alone if X, Y do not occur in g (the third condition), only the remaining
four of these conditions result in an actual modification of a counterfactual variable in
g.

We go through these remaining conditions one by one. The first clearly results in
the same counterfactual variable. For the second, due to the restrictions we imposed,
wz = wz,y,x, which means we can apply the first modification.

For the fourth, we have P(g) = P(d, yx,z). By our restrictions, and rule 2 of do-
calculus (Pearl, 1995), this is equal to P(d, yz | xz). Since this is not identifiable, then
neither is P(d, yz, xz). Now it’s clear that our modification is equivalent to one applied
after the fifth condition.

The fifth modification is simply a merge of events consistent with a single causal
world into a conjunctive event, which does not change the overall expression.

We are now ready to show the main completeness results for counterfactual iden-
tification algorithms. Again, we prove this results separately for ID* and IDC* for
convenience.

Theorem 31 (a) ID* is complete.

Proof We want to show that if line 8 fails, the original P(g) cannot be identified. There
are two broad cases to consider. If Gg contains the w-graph, the result follows by
Lemmas 27 and 29. If not, we argue as follows.

Fix some X which witnesses the precondition on line 8. We can assume X is a parent
of some nodes in S. Assume no other node in sub(S) affects S (effectively we delete all
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edges from parents of S to S except from X). Because the w-graph is not a part of Gg,
this has no ramifications on edges in S. Further, we assume X has two values in S.

If X 62 S, fix Y, W 2 S \ Ch(X). Assume S has no directed edges at all. Then
P⇤, G 6`id P(S) by Lemma 28. The result now follows by Lemma 29, and by construction
of Gg, which implies all nodes in S have some descendant in g.

If S has directed edges, we want to show P⇤, G 6`id P(R(S)), where R(S) is the
subset of S with no children in S. We can recover this from the previous case as follows.
Assume S has no edges as before. For a node Y 2 S, fix a set of childless nodes X 2 S
which are to be their parents. Add a virtual node Y0 which is a child of all nodes in
X. Then P⇤, G 6`id P((S \ X) [ Y0) by Lemma 29. Then P⇤, G 6`id P(R(S0)), where S0 is
obtained from S by adding edges from X to Y by Lemma 30, which applies because no
w-graph exists in Gg. We can apply this step inductively to obtain the desired forest (all
nodes have at most one child) S while making sure P⇤, G 6`id P(R(S)).

If S is not a forest, we can simply disregard extra edges so effectively it is a forest.
Since the w-graph is not in Gg this does not affect edges from X to S.

If X 2 S, fix Y 2 S \ Ch(X). If S has no directed edges at all, replace X by a new
virtual node Y, and make X be the parent of Y. By Lemma 28, P⇤, G 6`id P((S \ x) [ yx).
We now repeat the same steps as before, to obtain that P⇤, G 6`id P((R(S) \ x) [ yx)
for general S. Now we use Lemma 30 to obtain P⇤, G 6`id P(R(S)). Having shown
P⇤, G 6`id P(R(S)), we conclude our result by inductively applying Lemma 29.

Theorem 31 (b) IDC* is complete.

Proof The difficult step is to show that after line 5 is reached, if P⇤, G 6`id P(g, d) then
P⇤, G 6`id P(g | d). If P⇤, G `id P(d), this is obvious. Assume P⇤, G 6`id P(d). Fix the S
which witnesses that for d0 ✓ d, P⇤, G 6`id P(d0). Fix some Y such that a back-door, that
is, starting with an incoming arrow, path exists from d0 to Y in Gg,d. We want to show
that P⇤, G 6`id P(Y | d0). Let G0 = GAn(d0)\De(S).

Assume Y is a parent of a node D 2 d0, and D 2 G0. Augment the counterexample
models which induce counterfactual graph G0 with an additional binary node for Y,
and let the value of D be set as the old value plus Y modulo |D|. Let Y attain value 1
with vanishing probability e. That the new models agree on P⇤ is easy to establish. To
see that P⇤, G 6`id P(d0) in the new model, note that P(d0) in the new model is equal
to P(d0 \ D, D = d) ⇤ (1 � e) + P(d0 \ D, D = (d � 1) (mod |D|)) ⇤ e. Because e is
arbitrarily small, this implies our result. To show that P⇤, G 6`id P(Y = 1 | d0), we
must show that the models disagree on P(d0 | Y = 1)/P(d0). But to do this, we must
simply find two consecutive values of D, d, d + 1 (mod |D|) such that P(d0 \ D, d + 1
(mod |D|))/P(d0 \ D, d) is different in the two models. But this follows from non-
identification of P(d0).

If Y is not a parent of D 2 G0, then either it is further along on the back-door path or
it’s a child of some node in G0. In case 1, we must construct the distributions along the
back-door path in such a way that if P⇤, G 6`id P(Y0 | d0) then P⇤, G 6`id P(Y | d0), where
Y0 is a node preceding Y on the path. The proof follows closely the one in Theorem 21.
In case 2, we duplicate the nodes in G0 which lead from Y to d0, and note that we can
show non-identification in the resulting graph using reasoning in case 1. We obtain our
result by applying Lemma 30.
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Abstract
The causal discovery from data is important for various scientific investigations. Be-
cause we cannot distinguish the different directed acyclic graphs (DAGs) in a Markov
equivalence class learned from observational data, we have to collect further infor-
mation on causal structures from experiments with external interventions. In this
paper, we propose an active learning approach for discovering causal structures in
which we first find a Markov equivalence class from observational data, and then
we orient undirected edges in every chain component via intervention experiments
separately. In the experiments, some variables are manipulated through external inter-
ventions. We discuss two kinds of intervention experiments, randomized experiment
and quasi-experiment. Furthermore, we give two optimal designs of experiments, a
batch-intervention design and a sequential-intervention design, to minimize the num-
ber of manipulated variables and the set of candidate structures based on the minimax
and the maximum entropy criteria. We show theoretically that structural learning can
be done locally in subgraphs of chain components without need of checking illegal
v-structures and cycles in the whole network and that a Markov equivalence subclass
obtained after each intervention can still be depicted as a chain graph.
Keywords: active learning, causal networks, directed acyclic graphs, intervention,
Markov equivalence class, optimal design, structural learning

1. Introduction
A directed acyclic graph (DAG) (also called a Bayesian network) is a powerful tool to
describe a large complex system in various scientific investigations, such as bioinfor-
matics, epidemiology, sociology and business (Pearl, 1988; Lauritzen, 1996; Whittaker,
1990; Aliferis et al., 2003; Jansen et al., 2003; Friedman, 2004). A DAG is also used to
describe causal relationships among variables. It is crucial to discover the structure of a
DAG for understanding a large complex system or for doing uncertainty inference on
it (Cooper and Yoo, 1999; Pearl, 2000). There are many methods of structural learning,
and the main methods are Bayesian methods (Cooper and Yoo, 1999; Heckerman, 1997)
and constraint-based methods (Spirtes et al., 2000). From data obtained in observational
studies, we may not have enough information to discover causal structures completely,
but we can obtain only a Markov equivalence class. Thus we have to collect further in-
formation of causal structures via experiments with external interventions. Heckerman
et al. (1995) discussed structural learning of Bayesian networks from a combination
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of prior knowledge and statistical data. Cooper and Yoo (1999) presented a method
of causal discovery from a mixture of experimental and observational data. Tian and
Pearl (2001a,b) proposed a method of discovering causal structures based on dynamic
environment. Tong and Koller (2001) and Murphy (2001) discussed active learning of
Bayesian network structures with posterior distributions of structures based on deci-
sion theory. In these methods, causal structures are discovered by using additional
information from domain experts or experimental data.

Chain graphs were introduced as a natural generalization of DAGs to admit more
flexible causal interpretation (Lauritzen and Richardson, 2002). A chain graph con-
tains both directed and undirected edges. A chain component of a chain graph is a
connected undirected graph obtained by removing all directed edges from the chain
graph. Andersson et al. (1997) showed that DAGs in a Markov equivalence class can
be represented by a chain graph. He et al. (2005) presented an approach of structural
learning in which a Markov equivalence class of DAGs is sequentially refined into some
smaller subclasses via domain knowledge and randomized experiments.

In this paper, we discuss randomized experiments and quasi-experiments of external
interventions. We propose a method of local orientations in every chain component,
and we show theoretically that the method of local orientations does not create any new
v-structure or cycle in the whole DAG provided that neither v-structure nor cycle is
created in any chain component. Thus structural learning can be done locally in every
chain component without need of checking illegal v-structures and cycles in the whole
network. Then we propose the optimal designs of interventional experiments based on
the minimax and maximum entropy criteria. These results greatly extend the approach
proposed by He et al. (2005). In active learning, we first find a Markov equivalence class
from observational data, which can be represented by a chain graph, and then we orient
undirected edges via intervention experiments. Two kinds of intervention experiments
can be used for orientations. One is randomized experiment, in which an individual is
randomly assigned to some level combination of the manipulated variables at a given
probability. Randomization can disconnect the manipulated variables from their parent
variables in the DAG. Although randomized experiments are most powerful for learning
causality, they may be inhibitive in practice. The other is quasi-experiment, in which the
pre-intervention distributions of some variables are changed via external interventions,
but we cannot ensure that the manipulated variables can be disconnected from their
parent variables in the DAG, and thus the post-intervention distributions of manipulated
variables may still depend on their parent variables. For example, the pre-intervention
distribution of whether patients take a vaccine or not may depend on some variables,
and the distribution may be changed by encouraging patients with some benefit in the
quasi-experiment, but it may still depend on these variables. Furthermore, we discuss
the optimal designs by which the number of manipulated variables is minimized or
the uncertainty of candidate structures is minimized at each experiment step based
on the minimax and the maximum entropy criteria. We propose two kinds of optimal
designs: a batch-intervention experiment and a sequential intervention experiment.
For the former, we try to find the minimum set of variables to be manipulated in a
batch such that undirected edges are all oriented after the interventions. For the latter,
we first choose a variable to be manipulated such that the Markov equivalence class
can be reduced by manipulating the variable into a subclass as small as possible, and
then according to the current subclass, we repeatedly choose a next variable to be
manipulated until all undirected edges are oriented.
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In Section 2, we introduce notation and definitions and then show some theoretical
results on Markov equivalence classes. In Section 3, we present active learning of causal
structures via external interventions and discuss randomized experiments and quasi-
experiments. In Section 4, we propose two optimal designs of intervention experiments,
a batch-intervention design and a sequential intervention design. In Section 5, we show
simulation results to evaluate the performances of intervention designs proposed in this
paper. Conclusions are given in Section 6. Proofs of theorems are given in Appendix A.

2. Causal DAGs and Markov Equivalence Class
A graph G can be defined to be a pair G = (V, E), where V = {V1, · · · , Vn} denotes
the node set and E denotes the edge set which is a subset of the set V⇥V of ordered
pairs of nodes. If both ordered pairs (Vi, Vj) and (Vj, Vi) are in E, we say that there is an
undirected edge between Vi and Vj, denoted as Vi �Vj. If (Vi, Vj) 2 E and (Vj, Vi) /2 E,
we call it a directed edge, denoted as Vi ! Vj. We say that Vi is a neighbor of Vj if there
is an undirected or directed edge between Vi and Vj. A graph is directed if all edges of
the graph are directed. A graph is undirected if all edges of the graph are undirected.

A sequence (V1, V2, · · · , Vk) is called a partially directed path from V1 to Vk if either
Vi ! Vi+1 or Vi � Vi+1 is in G for all i = 1, . . . , k � 1. A partially directed path is a
directed path if there is not any undirected edge in the path. A node Vi is an ancestor of
Vj and Vj is a descendant of Vi if there is a directed path from Vi to Vj. A directed cycle is
a directed path from a node to itself, and a partially directed cycle is a partially directed
path from a node to itself.

A graph with both directed and undirected edges is a chain graph if there is not
any partially directed cycle. Figure 1 shows a chain graph with five nodes. A chain
component is a node set whose nodes are connected in an undirected graph obtained
by removing all directed edges from the chain graph. An undirected graph is chordal if
every cycle of length larger than or equal to 4 possesses a chord.
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⌘
⌘⌘

Q
QQ

?

Q
Q
Q
Q
Q
QQs

Figure 1: A chain graph G⇤ depicts the essential graph of G, G1, G2 and G3.

A directed acyclic graph (DAG) is a directed graph which does not contain any
directed cycle. A causal DAG is a DAG which is used to describe the causal relationships
among variables V1, · · · , Vn. In the causal DAG, a directed edge Vi ! Vj is interpreted
as that the parent node Vi is a cause of the child node Vj, and that Vj is an effect of Vi. Let
pa(Vi) denote the set of all parents of Vi and ch(Vi) denote the set of all children of Vi.
Let t be a node subset of V. The subgraph Gt = (t, Et) induced by the subset t has the
node set t and the edge set Et = E \ (t ⇥ t) which contains all edges falling into t.
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Two graphs have the same skeleton if they have the same set of nodes and the same set of
edges regardless of their directions. A head-to-head structure is called a v-structure if
the parents are not adjacent, such as V1 ! V2  V3.

Figure 2 shows four different causal structures of five nodes. The causal graph G in
Figure 2 depicts that V1 is a cause of V3, which in turn is a cause of V5.
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Figure 2: The equivalence class [G].

A joint distribution P satisfies Markov property with respect to a graph G if any
variable of G is independent of all its non-descendants in G given its parents with
respect to the joint distribution P. Furthermore, the distribution P can be factored as
follows

P(v1, v2, · · · , vn) =
n

’
i=1

P(vi | pa(vi)),

where vi denotes a value of variable Vi, and pa(vi) denotes a value of the parent set
pa(Vi) (Pearl, 1988; Lauritzen, 1996; Spirtes et al., 2000). In this paper, we assume that
any conditional independence relations in P are entailed by the Markov property, which
is called the faithfulness assumption (Spirtes et al., 2000). We also assume that there
are no latent variables (that is, no unmeasured variables) in causal DAGs. Different
DAGs may encode the same Markov properties. A Markov equivalence class is a set
of DAGs that have the same Markov properties. Let G1 ⇠ G2 denote that two DAGs
G1 and G2 are Markov equivalent, and let [G] denote the equivalence class of a DAG
G, that is, [G] = {G0 : G0 ⇠ G}. The four DAGs G, G1, G2 and G3 in Figure 2 form a
Markov equivalence class [G]. Below we review two results about Markov equivalence
of DAGs given by Verma and Pearl (1990) and Andersson et al. (1997).

Lemma 1 (Verma and Pearl, 1990) Two DAGs are Markov equivalent if and only if they have
the same skeleton and the same v-structures.

Andersson et al. (1997) used an essential graph G⇤ to represent the equivalence class
[G].

Definition 2 The essential graph G⇤ = (V, E⇤) of G has the same node set and the same
skeleton as G, whose one edge is directed if and only if it has the same orientation in every DAG
in [G] and whose other edges are undirected.

For example, G⇤ in Figure 1 is the essential graph of G in Figure 2. The edges
V2 ! V5 and V3 ! V5 in G⇤ are directed since they have the same orientation for all
DAGs of [G] in Figure 2, and other edges are undirected.
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Lemma 3 (Andersson et al., 1997) Let G⇤ be the essential graph of G = (V, E). Then G⇤ has
the following properties:

(i) G⇤ is a chain graph,

(ii) G⇤t is chordal for every chain component t, and

(iii) Vi ! Vj �Vk does not occur as an induced subgraph of G⇤.

Suppose that G is an unknown underlying causal graph and that its essential graph
G⇤ = (V, E) has been obtained from observational data, and has k chain components
{t1, · · · , tk}. Its edge set E can be partitioned into the set E1 of directed edges and the
set E2 of undirected edges. Let G⇤t denote a subgraph of the essential G⇤ induced by
a chain component t of G⇤. Any subgraph of the essential graph induced by a chain
component is undirected. Since all v-structures can be discovered from observational
data, any subgraph G0t of G0 should not have any v-structure for G0 2 [G]. For example,
the essential graph G⇤ in Figure 1 has one chain component t = {V1, V2, V3, V4}. It can
been seen that G0t has no v-structure for G0 2 {G, G1, G2, G3}.

Given an essential graph G⇤, we need to orient all undirected edges in each chain
component to discover the whole causal graph G. Below we show that the orientation
can be done separately in every chain component. We also show that there are neither
new v-structures nor cycles in the whole graph as long as there are neither v-structures
nor cycles in any chain component. Thus in the orientation process, we only need to
ensure neither v-structures nor cycles in any component, and we need not check new
v-structures and cycles for the whole graph.

Theorem 4 Let t be a chain component of an essential graph G⇤. For each undirected edge
V �U in G⇤t , neither orientation V ! U nor V  U can create a v-structure with any node
W outside t, that is, neither V ! U  W nor W ! V  U can occur for any W /2 t.

Theorem 4 means that there is not any node W outside the component t which can
build a v-structure with two nodes in t.

Theorem 5 Let t be a chain component of G⇤. If orientation of undirected edges in the
subgraph G⇤t does not create any directed cycle in the subgraph, then the orientation does not
create any directed cycle in the whole DAG.

According to Theorems 4 and 5, we find that the undirected edges can be oriented
separately in each chain component regardless of directed and undirected edges in other
part of the essential graph as long as neither cycles nor v-structures are constructed in
any chain component. Thus the orientation for one chain component does not affect the
orientations for other components. The orientation approach and its correctness will be
discussed in Section 3.

3. Active Learning of Causal Structures via External Interventions
To discover causal structures further from a Markov equivalence class obtained from
observational data, we have to perform external interventions on some variables. In
this section, we consider two kinds of external interventions. One is the randomized
experiment, in which the post-intervention distribution of the manipulated variable Vi
is independent of its parent variables. The other is the quasi-experiment, in which the
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distribution of the manipulated variable Vi conditional on its parents pa(Vi) is changed
by manipulating Vi. For example, the distribution of whether patients take a vaccine or
not is changed by randomly encouraging patients at a discount.

3.1. Interventions by Randomized Experiments

In this subsection, we conduct interventions as randomized experiments, in which some
variables are manipulated from external interventions by assigning individuals to some
levels of these variables in a probabilistic way. For example, in a clinical trial, every
patient is randomly assigned to a treatment group of Vi = vi at a probability P0(vi).
The randomized manipulation disconnects the node Vi from its parents pa(Vi) in the
DAG. Thus the pre-intervention conditional probability P(vi | pa(vi)) of Vi = vi given
pa(Vi) = pa(vi) is replaced by the post-intervention probability P0(vi) while all other
conditional probabilities P(vj | pa(vj)) for j 6= i are kept unchanged in the randomized
experiment. Then the post-intervention joint distribution is

PVi (v1, v2, · · · , vn) = P0(vi)’
j 6=i

P(vj | pa(vj)),

(Pearl, 1993). From this post-intervention distribution, we have PVi (vi | pa(vi)) =
PVi (vi), that is, the manipulated variable Vi is independent of its parents pa(Vi) in the
post-intervention distribution. Under the faithfulness assumption, it is obvious that
an undirected edge between Vi and its neighbor Vj can be oriented as Vi  Vj if the
post-intervention distribution has Vi Vj, otherwise it is oriented as Vi ! Vj, where
Vi Vj denotes that Vi is independent of Vj. The orientation only needs an independence
test for the marginal distribution of variables Vi and Vj. Notice that the independence is
tested by using only the experimental data without use of the previous observational
data.

Let e(Vi) denote the orientation of edges which is determined by manipulating node
Vi. If Vi belongs to a chain component t (that is, it connects at least one undirected
edge), then the Markov equivalence class [G] can be reduced by manipulating Vi to the
post-intervention Markov equivalence class [G]e(Vi)

[G]e(Vi) = {G0 2 [G] | G0 has the same orientation as e(Vi)}.

A Markov equivalence class is split into several subclasses by manipulating Vi, each of
which has different orientations e(Vi). Let G⇤e(Vi)

denote the post-intervention essential
graph which depicts the post-intervention Markov equivalence class [G]e(Vi). We show
below that G⇤e(Vi)

also has the properties of essential graphs.

Theorem 6 Let t be a chain component of the pre-intervention essential graph G⇤ and Vi be
a node in the component t. The post-intervention graph G⇤e(Vi)

is also a chain graph, that is,
G⇤e(Vi)

has the following properties:

(i) G⇤e(Vi)
is a chain graph,

(ii) G⇤e(Vi)
is chordal, and

(iii) Vj ! Vk �Vl does not occur as an induced subgraph of G⇤e(Vi)
.
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By Theorem 6, the pre-intervention chain graph is changed by manipulating a
variable to another chain graph which has less undirected edges. Thus variables in
chain components can be manipulated repeatedly until the Markov equivalence subclass
is reduced to a subclass with a single DAG, and properties of chain graphs are not lost
in this intervention process.

According to the above results, we first learn an essential graph from observational
data, which is a chain graph (Andersson et al., 1997) and depicts a Markov equivalence
class (Heckerman et al., 1995; Verma and Pearl, 1990; Castelo and Perlman, 2002). Next
we choose a variable Vi to be manipulated from a chain component, and we can orient
the undirected edges connecting Vi and some other undirected edges whose reverse
orientations create v-structures or cycles. Repeating this process, we choose a next
variable to be manipulated until all undirected edges are oriented. Below we give an
example to illustrate the intervention process.

Example 1 Consider an essential graph in Figure 3, which depicts a Markov equivalence
class with 12 DAGs in Figure 4. After obtaining the essential graph from observational
data, we manipulate some variables in randomized experiments to identify a causal
structure in the 12 DAGs. For example, Table 1 gives four possible orientations and
Markov equivalence subclasses obtained by manipulating V1. A class with 12 DAGs is
split into four subclasses by manipulating V1. The post-intervention subclasses (ii) and
(iv) have only a single DAG separately. Notice that undirected edges not connecting
V1 can also be oriented by manipulating V1. The subclasses (i) and (iii) are depicted
by post-intervention essential graphs (a) and (b) in Table 1 respectively, both of which
are chain graphs. In Table 2, the first column gives four possible independence sets
obtained by manipulating V1. For the set with V1 V2 and V1 / V3, the causal structure
is the DAG (3) in Figure 4, and thus we need not further manipulate other variables.
For the third set with V1 / V2 and V1 / V3, we manipulate the next variable V2. If V2 V3,
then the causal structure is the DAG (1), otherwise it is the DAG (2). For the fourth set
with V1 V2 and V1 V3, we may need further to manipulate variables V2, V3 and V4 to
identify a causal DAG.

r
r
r

r rV1

V2

V3

V4

V5�
��

@
@@

@
@@

�
��

Figure 3: An essential graph of DAGs

3.2. Interventions by Quasi-experiments

In the previous subsection we discussed interventions by randomized experiments.
Although randomized experiments are powerful tools to discover causal structures,
it may be inhibitive or impractical. In this subsection we consider quasi-experiments.
In a quasi-experiment, individuals may choose treatments non-randomly, but their
behaviors of treatment choices are influenced by experimenters. For example, some
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Figure 4: All DAGs in the equivalence class given in Figure 3.

Table 1: The post-intervention subclasses and essential graphs obtained by manipulat-
ing V1.

No of subclass e(V1)
DAGs

in a subclass
post-intervention
essential graphs

(i) V2  V1 ! V3 (1, 2) q q
q q q

(a)
V1
��✓
@@R

@@R
��✓
-

(ii) V2 ! V1 ! V3 (3)

(iii) V2 ! V1  V3
(4, 5,

7� 12)
q q

q q qV1
(b)@@I

�� @@
��

(iv) V2  V1  V3 (6)
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patients may not comply with the treatment assignment from a doctor, but some of
them may comply, which is also called an indirect experiment in Pearl (1995).

If we perform an external intervention on Vi such that Vi has a conditional distribu-
tion P0(vi | pa(vi)) different from the pre-intervention distribution P(vi | pa(vi)) in (1)
and other distributions are kept unchanged, then we have the post-intervention joint
distribution

PVi (v1, v2, · · · , vn) = P0(vi | pa(vi))’
j 6=i

P(vj | pa(vj)).

In the external intervention, we may not be able to manipulate Vi, but we only need to
change its conditional distribution, which may still depend on its parent variables. We
call such an experiment a quasi-experiment. Below we discuss how to orient undirected
edges via such quasi-experiments. Let t be a chain component of the essential graph G⇤,
ne(Vk) be the neighbor set of Vk, C be the children of Vk outside t (that is, C = ch(Vk) \ t),
and B be the set of all potential parents of Vk, that is, B = ne(Vk) \ C is the neighbor set
of Vk minus the children of Vk which have been identified in the chain graph. Let Vi �Vk
be an undirected edge in a chain component t, and we want to orient the undirected
edge by manipulating Vi. Since B is the neighbor set of Vk, we have Vi 2 B and thus
B 6= ∆. Below we show a result which can be used to identify the direction of the
undirected edge Vi �Vk via a quasi-experiment of intervention on Vi.

Theorem 7 For a quasi-experiment of intervention on Vi, we have the following properties

1. PVi (vk | B) = P(vk | B) for all vk and B if Vi is a parent of Vk, and

2. PVi (vk) = P(vk) for all vk if Vi is a child of Vk.

According to Theorem 7, we can orient the undirected edge Vi �Vk as

1. Vi  Vk if PVi (vk | B) 6= P(vk | B) for some vk and B, or

2. Vi ! Vk if PVi (vk) 6= P(vk) for some vk.

The nonequivalence of pre- and post-intervention distributions is tested by using both
experimental data and observational data, which is different from that of randomized
experiments.

Example 1 (continued). Consider again the essential graph in Figure 3. We use a
quasi-experiment of manipulating V1 in order to orient the undirected edges connecting
V1 (V3 � V1 � V2). We may test separately four null hypotheses PV1(v2) = P(v2),
PV1(v3) = P(v3), PV1(v2 | v1, v3, v4) = P(v2 | v1, v3, v4) and PV1(v3 | v1, v2, v4) = P(v3 |
v1, v2, v4) with both observational and experimental data. We orient V1�V2 as V1 ! V2
if PV1(v2) 6= P(v2), otherwise as V1  V2 (or further check whether there is a stronger
evidence of PV1(v2 | v1, v3, v4) 6= P(v2 | v1, v3, v4)). Similarly we can orient V1 � V3.
Finally we obtain four possible orientations as shown in Table 1.

If both PVi (vk) = P(vk) and PVi (vk | B) = P(vk | B) for all vk and B hold for
a quasi-experiment, then we cannot identify the direction of edge Vi � Vk from the
intervention. For example, suppose that there are only two variables V1 and V2, V1 has
three levels and V1 is the parent of V2. If the true conditional distribution of V2 given
V1 is: p(v2 | V1 = 1) = p(v2 | V1 = 2) 6= p(v2 | V1 = 3), then the undirected edge
V1 �V2 cannot be oriented with the intervention on V1 with pV1(V1 = v) 6= p(V1 = v)
for v = 1 and 2 but pV1(V1 = 3) = p(V1 = 3) because we have that pV1(v2) = p(v2)
for all v2 and that pV1(v2 | B) = p(v2 | B) where B = {V1}. In a quasi-experiment, an
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experimenter may not be able to manipulate V1, and thus this phenomenon can occur.
If V1 can be manipulated, then the experimenter can choose the distribution of V2 to
avoid this phenomenon.

4. Optimal Designs of Intervention Experiments
In this section, we discuss the optimal designs of intervention experiments which are
used to minimize the number of manipulated variables or to minimize the uncertainty
of candidate structures after an intervention experiment based on some criteria. Since
the orientation for one chain component is unrelated to the orientations for other
components, we can design an intervention experiment for each chain component
separately. As shown in Section 2, given a chain component t, we orient the subgraph
over t into a DAG Gt without any v-structure or cycle via experiments of interventions
in variables in t. For simplicity, we omit the subscript t in this section. In the following
subsections, we discuss intervention designs for only one chain component. We first
introduce the concept of sufficient interventions and discuss their properties of sufficient
interventions, then we present the optimal design of batch interventions, and finally we
give the optimal design of sequential interventions. For optimizing quasi-experiments
of interventions, we assume that intervention on a variable Vi will change the marginal
distribution of its child Vj, that is, there is a level vj such that PVi (vj) 6= P(vj) for Vi ! Vj.
Under this assumption, all undirected edges connecting a node Vi can be oriented via a
quasi-experiment of intervention on variable Vi. Without the assumption, there may be
some undirected edge which cannot be oriented even if we perform interventions in
both of its two nodes.

4.1. Sufficient Interventions

It is obvious that we can identify a DAG in a Markov equivalence class if we can manip-
ulate all variables which connect undirected edges. However, it may be unnecessary
to manipulate all of these variables. Let S = (V1, V2, · · · , Vk) denote a sequence of
manipulated variables. We say that a sequence of manipulated variables is sufficient
for a Markov equivalence class [G] if we can identify one DAG from all possible DAGs
in [G] after these variables in the sequence are manipulated. That is, we can orient all
undirected edges of the essential graph G⇤ no matter which G in [G] is the true DAG.
There may be several sufficient sequences for a Markov equivalence class [G].

Let g denote the number of nodes in the chain component, and h the number of
undirected edges within the component. Then there are at most 2h possible orientation
of these undirected edges, and thus there are at most 2h DAGs over the component
in the Markov equivalence class. Given a permutation of nodes in the component, a
DAG can be obtained by orienting all undirected edges backwards in the direction of
the permutation, and thus there are at most min{2h, g!} DAGs in the class.

Theorem 8 If a sequence S = (V1, V2, · · · , Vk) of manipulated variables is sufficient, then
any permutation of S is also sufficient.

According to Theorem 8, we can ignore the order of variables in an intervention
sequence and treat the sequence as a variable set. Thus, if S is a sufficient set, then S 0
which contains S is also sufficient. Manipulating Vi, we obtain a class E(Vi) = {e(Vi)}
of orientations (see Table 1 as an example). Given an orientation e(Vi), we can obtain the
class [G]e(Vi) by (3). We say that e(V1, . . . , Vk) = {e(V1), . . . , e(Vk)} is a legal combination
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of orientations if there is not any v-structure or cycle formed and there is not any
undirected edge oriented in two different directions by these orientations. For a set
S = (V1, . . . , Vk) of manipulated variables, the Markov equivalence class is reduced
into a class

[G]e(V1,...,Vk)
= [G]e(V1) \ . . . \ [G]e(Vk)

for a legal combination e(V1, . . . , Vk) of orientations. If [G]e(V1,...,Vk)
has only one DAG

for all possible legal combinations e(V1, . . . , Vk) 2 E(V1)⇥ . . .⇥ E(Vk), then the set S is
a sufficient set for identifying any DAG in [G]. Let S denote the class of all sufficient sets,
that is, S = {S : S is sufficient}. We say that a sequence S is minimum if any subset of
S is not sufficient.

Theorem 9 The intersection of all sufficient sets is an empty set, that is,
T

S2S S = ?. In
addition, the intersection of all minimum sufficient sets is also an empty set.

From Theorem 9, we can see that there is not any variable that must be manipulated
to identify a causal structure. Especially, any undirected edge can be oriented by
manipulating either of its two nodes.

4.2. Optimization for Batch Interventions

We say that an intervention experiment is a batch-intervention experiment if all vari-
ables in a sufficient set S are manipulated in a batch to orient all undirected edges
of an essential graph. Let |S| denote the number of variables in S . We say that a
batch intervention design is optimal if its sufficient set So has the smallest number of
manipulated variables, that is, |So| = min{|S| : S 2 S}. Given a Markov equivalence
class [G], we try to find a sufficient set S which has the smallest number of manipulated
variables for identifying all possible DAGs in the class [G]. Below we give an algorithm
to find the optimal design for batch interventions, in which we first try all sets with a
single manipulated variable, then try all sets with two variables, and so on, until each
post-intervention Markov equivalence class has a single DAG.

Given a Markov equivalence class [G], we manipulate a node V and obtain an
orientation of some edges, denoted by e(V). The class [G] is split into several subclasses,
denoted by [G]e(V) for all possible orientations e(V). Let [G]e(V1,V2) denote a subclass
with an orientation obtained by manipulating V1 and V2. The following algorithm 1
performs exhaustive search for the optimal design of batch interventions. Before calling
Algorithm 1, we need to enumerate all DAGs in the class [G], and then we can easily
find [G]e(Vi) according to (3). There are at most min{g!, 2h} DAGs in the class [G], and
thus the upper bound of the complexity for enumerating all {[G]e(Vi)} is min{g!, 2h}.
We may be able to have an efficient method to find all {[G]e(Vi)} using the structure of
the chain component.

Algorithm 1 exhaustively searches all combinations of manipulated variables to find
the minimum sufficient sets, and its complexity is O(g!), although Algorithm 1 may
stop whenever it finds some minimum sets. The calculations in Algorithm 1 are only
simple set operations

[G]e(S) = [G]e(Vi1 )
\ . . . \ [G]e(Vik

),

where all [G]e(Vi) have been found before calling Algorithm 1. Notice that a single
chain component usually has a size g much less than the total number n of variables.
Algorithm 1 is feasible for a mild size g. A more efficient algorithm or a greedy method
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Table 2: The intervention process to identify a causal structure from the essential graph
in Figure 3, where ⇤means that the intervention is unnecessary.

V1 V2 V3 V4 DAG in Fig. 4
V1 V2 and V1 / V3 * * * (3)
V1 / V2 and V1 V3 * * * (6)

V1 / V2 and V1 / V3
V2 V3 * * (1)
V2 / V3 * * (2)

V1 V2 and V1 V3

V2 V3 and V2 / V4 * * (7)

V2 / V3 and V2 / V4
V3 / V4 * (4)
V3 V4 * (5)

V2 V3 and V2 V4

V3 / V4 * (8)

V3 V4
V4 / V5 (9)
V4 V5 (11)

V2 / V3 and V2 V4 *
V4 / V5 (10)
V4 V5 (12)

Algorithm 1: Algorithm for finding the optimal designs of batch interventions
Input: A chain graph G induced by a chain component t = {V1, . . . , Vg}, and [G]e(Vi)

for all e(Vi) and i.
Output: All optimal designs of batch interventions.

Initialize the size k of the minimum intervention set as k = 0.
repeat

Set k = k + 1.
for all possible variable subsets S = {Vi1 , . . . , Vik} do

if |[G]e(S)| = 1 for all possible legal combination e(S) of orientations then
return the minimum sufficient set S

end if
end for

until find some sufficient sets
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is needed for a large g and h. In this case, there are too many DAGs to enumerate. We
can first take a random sample of DAGs from the class [G] with the simulation method
proposed in the next subsection, and then we use the sample approximately to find an
optimal design.

A possible greedy approach is to select a node to be first manipulated from the chain
component which has the largest number of neighbors such that the largest number of
undirected edges are oriented by manipulating it, and then delete these oriented edges.
Repeat this process until there is not any undirected edge left. But there are cases where
the sufficient set obtained from the greedy method is not minimum.

Example 1 (continued). Consider the essential graph in Figure 3, which depicts a
Markov equivalence class with 12 DAGs in Figure 4. From Algorithm 1, we can find
that {1, 2, 4}, {1, 3, 4}, {2, 3, 4} and {2, 3, 5} are all the minimum sufficient sets. The
greedy method can obtain the same minimum sufficient sets for this example.

4.3. Optimization for Sequential Interventions

The optimal design of batch interventions presented in the previous subsection tries
to find a minimum sufficient set S before any variable is manipulated, and thus it
cannot use orientation results obtained by manipulating the previous variables during
the intervention process. In this subsection, we propose an experiment of sequential
interventions, in which variables are manipulated sequentially. Let S (t) denote the set
of variables that have been manipulated before step t and S (0) = ∆. At step t of the
sequential experiment, according to the current Markov equivalence class [G]e(S (t�1))

obtained by manipulating the previous variables in S (t�1), we choose a variable V to be
manipulated based on some criterion. We consider two criteria for choosing a variable.
One is the minimax criterion based on which we choose a variable V such that the
maximum size of subclasses [G]e(S (t)) for all possible orientations e(S (t)) is minimized.
The other is the maximum entropy criterion based on which we choose a variable V
such that the following entropy is maximized for any V in the chain component t

HV = �
M

Â
i=1

li
L

log
li
L

,

where li denotes the number of possible DAGs of the chain component with the ith
orientation e(V)i obtained by manipulating V, L = Âi li and M is the number of all
possible orientations e(V)1, . . . , e(V)M obtained by manipulating V. Based on the maxi-
mum entropy criterion, the post-intervention subclasses have sizes as small as possible
and they have sizes as equal as possible, which means uncertainty for identifying a
causal DAG from the Markov equivalence class is minimized by manipulating V. Below
we give two examples to illustrate how to choose variables to be manipulated in the
optimal design of sequential interventions based on the two criteria.

Example 1 (continued). Consider again the essential graph in Figure 3, which
depicts a Markov equivalence class with 12 DAGs in Figure 4. Tables 3 to 6 show the
results for manipulating one of variables V1, V2 (symmetry to V3), V4 and V5 respectively
in order to distinguish the possible DAGs in Figure 4. The first row in these tables gives
possible orientations obtained by manipulating the corresponding variable. The second
row gives DAGs obtained by the orientation, where numbers are used to index DAGs in
Figure 4. The third row gives the number li of DAGs of this chain component for the ith
orientation. The entropies for manipulating V1, . . . , V5 are 0.9831, 1.7046, 1.7046, 1.3480,
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0.4506, respectively. Based on the maximum entropy criterion, we choose variable V2 or
V3 to be manipulated first. The maximum numbers li of DAGs for manipulating one of
V1, . . . , V5 are 8, 3, 3, 6, 10, respectively. Based on the minimax criterion, we also choose
variable V2 or V3 to be manipulated first.

Table 3: Manipulating V1

Orientation V2  V1 ! V3 V2 ! V1 ! V3 V2 ! V1  V3 V2  V1  V3
DAGs {1, 2} {3} {4, 5, 7, 8, 9, 10, 11, 12} {6}

li 2 1 8 1
Entropy is 0.9831 and maximum li is 8

Table 4: Manipulating V2

Orientation
q q

q q
@@I?�� 

q q
q q
@@I
6
�� 

q q
q q
@@I
6
��✓

q q
q q

@@R
6
��✓

q q
q q

@@R?��✓
q q

q q
@@I?��✓

DAGs {8, 9, 11} {10, 12} {3, 4, 5} {2} {1, 6} {7}
li 3 2 3 1 2 1

Entropy is 1.7046 and maximum li is 3

Table 5: Manipulating V4

Orientation q
q q q@@R
��✓
- q

q q q@@I
��✓
- q

q q q@@R
�� 
- q

q q q@@I
�� 
- q

q q q@@I
�� 
�

DAGs {1, 2, 3, 4, 6, 7} {5} {8} {9, 10} {11, 12}
li 6 1 1 2 2

Entropy is 1.3480 and maximum li is 6

Although the same variable V2 or V3 is chosen to be manipulated first in the above
example, in general, the choice may be different based on the two criteria. The minimax
criterion tends to be more conservative, and the entropy criterion tends to be more uni-
form. For example, consider two interventions for an equivalence class with 10 DAGs:
one splits the class into 8 subclasses with the numbers (l1, . . . , l8) = (1, 1, 1, 1, 1, 1, 1, 3) of
DAGs, the other splits it into 5 subclasses with the numbers of DAGs equal to (2,2,2,2,2).
Then the minimax criterion chooses the second intervention, while the maximum en-
tropy criterion chooses the first intervention.

To find the number (li for i = 1, · · · , M), we need to enumerate all DAGs in the
class [G] and then count the number li of DAGs with the same orientations as e(V)i.
As discussed in Section 4.2, the upper bound of the complexity for calculating all li is
O(min{g!, 2h}). Generally the size g of a chain component is much less than the number
n of the full variable set and the number h of undirected edges in a chain component is
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Table 6: Manipulating V5

Orientation V4 ! V5 V4  V5
DAGs {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} {11, 12}

li 10 2
Entropy is 0.4506 and maximum li is 10

not very large. In the following example, we show a special case with a tree structure,
where the calculation is easy.

Example 2 In this example, we consider a special case that a chain component has a
tree structure. It does not mean that a DAG is a tree, and it is not uncommon in a chain
component (see Figure 1). Since there are no v-structures in any chain component, all
undirected edges in a subtree can be oriented as long as we find its root. Manipulating
a node V in a tree, we can determinate all orientations of edges connecting V, and
thus all subtrees that are emitted from V can be oriented, but only one subtree with V
as a terminal cannot be oriented. Suppose that node V connects M undirected edges,
and let li denote the number of nodes in the ith subtree connecting V for i = 1, . . . , M.
Since each node in the ith subtree may be the root of this subtree, there are li possible
orientations for the ith subtree. Thus we have the entropy for manipulating V

HV = �
M

Â
i=1

li
L

log
li
L

.

Consider the chain component t = {V1, . . . , V4} of the chain graph G⇤ in Figure 1,
which has a tree structure. In Table 7, the first column gives variables to be manipulated,
the second column gives possible orientations via the intervention, the third column
gives the equivalence subclasses (see Figure 2) for each orientation, the fourth column
gives the number li of possible DAGs for the ith orientation and the last column gives
the entropy for each intervention. From Table 7, we can see that manipulating V1 or V2
has the maximum entropy and the minimax size.

Table 7: Manipulating variables in a chain component with a tree structure.

Intervention Orientation Subclass of DAGs li HV
V1 V2  V1 ! V3 G 1 1.0397

V2 ! V1 ! V3 G1, G2 2
V2  V1  V3 G3 1

V2 V4  V2  V1 G, G3 2 1.0397
V4  V2 ! V1 G1 1
V4 ! V2 ! V1 G2 1

V3 V1 ! V3 G, G1, G2 3 0.5623
V1  V3 G3 1

V4 V4  V2 G, G1, G3 3 0.5623
V4 ! V2 G2 1

An efficient algorithm or an approximate algorithm is necessary when both g and h
are very large. A simulation algorithm can be used to estimate li/L. In this simulation
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method, we randomly take a sample of DAGs without any v-structure from the class
[G]. To draw such a DAG, we randomly generate a permutation of all nodes in the
class, orient all edges backwards in the direction of the permutation, and keep only the
DAG without any v-structure. There may be some DAGs in the sample which are the
same, and we keep only one of them. Then we count the number l0i of DAGs in the
sample which have the same orientation as e(V)i. We can use l0i /L0 to estimate li/L,
where L0 = Âi l0i . When the sample size tends to infinite, all DAGs in the class can be
drawn, and then the estimate l0i /L0 tends to li/L. Another way to draw a DAG is that
we randomly orient each undirected edge of the essential graph, but we need to check
whether there is any cycle besides v-structure.

5. Simulation
In this section, we use two experiments to evaluate the active learning approach and the
optimal designs via simulations. In the first experiment, we evaluate a whole process
of structural learning and orientation in which we first find an essential graph using
the PC algorithm and then orient the undirected edges using the approaches proposed
in this paper. In the second experiment, we compare various designs for orientations
starting with the same underlying essential graph. For both experiments, the DAG (1)
in Figure 4 is used as the underlying DAG and all variables are binary. Its essential
graph is given in Figure 3 and there are other 11 DAGs which are Markov equivalent to
the underlying DAG (1), as shown in Figure 4. This essential graph can also be seen as a
chain component of a large essential graph. All conditional probabilities P(vj | pa(vj))
are generated from the uniform distribution U(0, 1). We repeat 1000 simulations with
the sample size n = 1000.

In each simulation of the first experiment, we first use the PC algorithm to find an
essential graph with the significance level a = 0.15 with which the most number of true
essential graphs were obtained among various significance levels in our simulations.
Then we use the intervention approach proposed in Section 3 to orient undirected
edges of the essential graph. To compare the performances of orientations for different
significance levels and sample sizes used in intervention experiments, we run simula-
tions for various combinations of significance levels aI = 0.01, 0.05, 0.10, 0.15, 0.20, 0.30
and sample sizes nI = 50, 100, 200, 500 in intervention experiments. To compare the
performance of the experiment designs, we further give the numbers of manipulated
variables that are necessary to orient all undirected edges of the same essential graphs
in various intervention designs. We run the simulations using R 2.6.0 on an Intel(R)
Pentium(R) M Processor with 2.0 GHz and 512MB RAM and MS XP. It takes averagely
0.4 second of the processor time for a simulation, and each simulation needs to finish the
following works: (1) generate a joint distribution and then generate a random sample
of size n = 1000, (2) find an essential graph using the PC algorithm, (3) find an optimal
design, and (4) repeatedly generate experimental data of size nI until identifying a
DAG.

To make the post-intervention distribution P0(vi | pa(vi)) different from the pre-
intervention P(vi | pa(vi)), we use the post-intervention distribution of the manipulated
variable Vi as follows

P0(vi | pa(vi)) = P0(vi) =

⇢

1, P(vi)  0.5;
0, otherwise.
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To orient an undirected edge Vi �Vj, we implemented both the independence test of
the manipulated Vi and its each neighbor variable Vj for randomized experiments and
the equivalence test of pre- and post-intervention distributions (i.e., PVi (vj) = P(vj)
for all vj) in our simulations. Both tests have the similar results and the independence
test is little more efficient than the equivalence test. To save space, we only show the
simulation results of orientations obtained by the equivalence test and the optimal
design based on the maximum entropy criterion in Table 8, and other designs have the
similar results of orientations.

To evaluate the performance of orientation, we define the percentage of correct
orientations as the ratio of the number of correctly oriented edges to the number of
edges that are obtained from the PC algorithm and belong to the DAG (1) in Figure 4.
The third column l in Table 8 shows the average percentages of correctly oriented
edges of the DAG (1) in 1000 simulations. To separate the false orientations due to
the PC algorithm from those due to intervention experiments, we further check the
cases that the essential graph in Figure 3 is correctly obtained from the PC algorithm.
The fourth column m shows the number of correct essential graphs obtained from the
PC algorithm in 1000 simulations. In the fifth column, we show the percentage l0 of
correct orientations for the correct essential graph. Both l and l0 increase as nI increases.
Comparing l and l0, it can be seen that there are more edges oriented correctly when
the essential graph is correctly obtained from the PC algorithm. From the sixth to eleven
columns, we give the cumulative distributions of the number of edges oriented correctly
when the essential graph is correctly obtained. The column labeled ‘� i’ means that we
correctly oriented more than or equal to i of 6 edges of the essential graph in Figure 3,
and the values in this column denote the percents of DAGs with more than or equal to i
edges correctly oriented in those simulations. For example, the column ‘� 5’ means that
more than or equal to 5 edges are oriented correctly (i.e., the DAGs (1), (2) and (6) in
Figure 4), and 0.511 in the first line means that 51.1% of m = 409 correct essential graphs
were oriented with ‘� 5’ correct edges. The column ‘6’ means that the underlying DAG
(1) is obtained correctly. From this column, it can be seen that more and more DAGs
are identified correctly as the size nI increases. The cumulative distribution for � 0 is
equal to one and is omitted. From these columns, it can be seen that more and more
edges are correctly oriented as the size nI increases. From l and l0, we can see that a
larger aI is preferable for a smaller size nI , and a smaller aI is preferable for a larger
nI . For example, aI = 0.20 is the best for nI = 50, aI = 0.10 for nI = 100, aI = 0.05 for
nI = 200, aI = 0.01 for nI = 500.

In the second experiment, we compare the numbers of manipulated variables to
orient the same underlying essential graph for different experimental designs. In the
following simulations, we set nI = 100 and aI = 0.1, and all orientations start with the
true essential graph in Figure 3. As shown in Section 4.2, the optimal batch design and
the design by the greedy method always need three variables to be manipulated for
orientation of the essential graph. For the optimal sequential designs, the frequencies of
the numbers of manipulated variables in 1000 simulations are given in Table 9. In the
random design labeled ‘Random’, we randomly select a variable to be manipulated at
each sequential step, only one variable is manipulated for orientations in 268 of 1000
simulations, and four variables are manipulated in 55 of 1000 simulations. In the middle
of Table 9, we show the simulation results of the optimal sequential designs based on
the minimax criterion and its approximate designs obtained by drawing a sample of
DAGs. The minimax design needs only one or two variables to be manipulated in all
1000 simulations. We show three approximate designs which draw h, h⇥ 5 and h⇥ 10
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Table 8: The simulation results

The number of edges oriented correctly
nI aI l m l0 6 � 5 � 4 � 3 � 2 � 1
50 .01 .672 409 .758 0.401 0.511 0.868 0.870 0.927 0.973

.05 .699 409 .782 0.496 0.616 0.829 0.839 0.934 0.976

.10 .735 418 .808 0.538 0.646 0.833 0.868 0.969 0.993

.15 .745 407 .821 0.516 0.690 0.855 0.909 0.966 0.990

.20 .756 404 .826 0.564 0.723 0.832 0.899 0.963 0.978

.30 .741 373 .819 0.501 0.729 0.823 0.920 0.965 0.979
100 .01 .761 401 .850 0.586 0.706 0.910 0.925 0.975 0.995

.05 .774 408 .846 0.588 0.721 0.885 0.919 0.973 0.993

.10 .806 425 .878 0.668 0.814 0.896 0.925 0.974 0.993

.15 .794 410 .868 0.624 0.790 0.878 0.932 0.985 1.000

.20 .788 382 .875 0.626 0.812 0.890 0.948 0.982 0.992

.30 .798 417 .861 0.583 0.777 0.856 0.959 0.988 1.000
200 .01 .822 421 .901 0.724 0.808 0.945 0.948 0.988 0.995

.05 .836 402 .911 0.701 0.853 0.950 0.973 0.995 0.995

.10 .833 408 .900 0.686 0.863 0.917 0.949 0.993 0.995

.15 .823 382 .901 0.696 0.851 0.911 0.955 0.995 1.000

.20 .826 395 .886 0.658 0.820 0.889 0.962 0.990 0.997

.30 .822 402 .887 0.614 0.828 0.905 0.975 0.998 1.000
500 .01 .870 369 .966 0.878 0.943 0.984 0.992 1.000 1.000

.05 .869 388 .940 0.802 0.920 0.951 0.977 0.995 0.997

.10 .863 399 .936 0.762 0.905 0.952 0.995 1.000 1.000

.15 .859 433 .926 0.723 0.898 0.956 0.986 0.995 1.000

.20 .846 390 .923 0.703 0.890 0.956 0.990 0.997 1.000

.30 .834 389 .893 0.599 0.820 0.949 0.992 1.000 1.000
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DAGs from a chain component with h undirected edges respectively. For example,
the sample sizes of DAGs from the initial essential graph [G] with h = 6 undirected
edges are 6, 30 and 60, respectively. As the sample size increases, the distribution of the
manipulated variable numbers tends to the distribution for the exact minimax design.
The optimal sequential design based on the maximum entropy criterion has a very
similar performance as that based on the minimax criterion, as shown in the bottom
of Table 9. According to Table 9, all of the sequential intervention designs (Random,
Minimax, Entropy and their approximations) are more efficient than the batch design,
and the optimal designs based on the minimax and the maximum entropy criteria are
more efficient than the random design.

Table 9: The frequencies of the numbers of interventions

m⇤
Design 1 2 3 4
Random 268 475 202 55
Minimax 437 563 0 0
Approx. (h) 372 469 159 0
Approx. (h⇥ 5) 413 573 14 0
Approx. (h⇥ 10) 426 574 0 0
Entropy 441 559 0 0
Approx. (h) 375 454 171 0
Approx. (h⇥ 5) 435 547 18 0
Approx. (h⇥ 10) 425 574 1 0

m⇤ denotes the number of manipulated variables

6. Conclusions
In this paper, we proposed a framework for active learning of causal structures via inter-
vention experiments, and further we proposed optimal designs of batch and sequential
interventions based on the minimax and the maximum entropy criteria. A Markov
equivalence class can be split into subclasses by manipulating a variable, and a causal
structure can be identified by manipulating variables repeatedly. We discussed two
kinds of external intervention experiments, the randomized experiment and the quasi-
experiment. In a randomized experiment, the distribution of a manipulated variable
does not depend on its parent variables, while in a quasi-experiment, it may depend on
its parents. For a randomized experiment, the orientations of an undirected edge can be
determined by testing the independence of the manipulated variable and its neighbor
variable only with experimental data. For a quasi-experiment, the orientations can be
determined by testing the equivalence of pre- and post-intervention distributions with
both experimental and observational data. We discussed two optimal designs of batch
and sequential interventions. For the optimal batch design, a smallest set of variables to
be manipulated is found before interventions, which is sufficient to orient all undirected
edges of an essential graph. But the optimal batch design does not use orientation re-
sults obtained by manipulating the previous variables during the intervention process,
and thus it may be less efficient than the optimal sequential designs. For the optimal
sequential design, we choose a variable to be manipulated sequentially such that the
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current Markov equivalence class can be reduced to a subclass with potential causal
DAGs as little as possible. We discussed two criteria for optimal sequential designs,
the minimax and the maximum entropy criteria. The exact, approximate and greedy
methods are presented for finding the optimal designs.

The scalability of the optimal designs proposed in this paper depends only on
the sizes of chain components but does not depend on the size of a DAG since the
optimal designs are performed separately within every chain component. As discussed
in Section 4, the optimal designs need to find the number of possible DAGs in a
chain component, which has a upper bound min{2h, g!}. When both the number h of
undirected edges and the number g of nodes in a chain component are very large, instead
of using the optimal designs, we may use the approximate designs via sampling DAGs.
We checked several standard graphs found at the Bayesian Network Repository (http:
//compbio.cs.huji.ac.il/Repository/). We extracted their chain components
and found that most of their chain components have tree structures and their sizes are
not large. For example, ALARM with 37 nodes has 4 chain components with only two
nodes in each component, HailFinder with 56 nodes has only one component with 18
nodes, Carpo with 60 nodes has 9 components with at most 7 nodes in each component,
Diabets with 413 nodes has 25 components with at most 3 nodes, and Mumin 2 to
Mumin 4 with over 1000 nodes have at most 21 components with at most 35 nodes.
Moreover, all of those largest chain components have tree structures, and thus we can
easily carry out optimal designs as discussed in Example 2.

In this paper, we assume that there are no latent variables. Though the algorithm
can orient the edges of an essential graph and output a DAG based on a set of either
batch or sequential interventions, the application of the method for learning causality in
the real word is pretty limited because latent or hidden variables are typically present
in real-world data sets.
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Appendix A. Proofs of Theorems
Before proving Theorems 4 and 5, we first give a lemma which will be used in their
proofs.

Lemma 10 If a node V 2 V is a parent of a node U in a chain component t of G⇤ (i.e.,
(V ! U) 2 G⇤ , U 2 t, V 2 V and V /2 t), then V is a parent of all nodes in t (i.e.,
(V !W) 2 G for any W 2 t).

Proof By (iii) of Lemma 3, V ! U W does not occur in any induced subgraph of G⇤.
Thus for any neighbor of U in the chain component t, W and V must be adjacent in G⇤.
Because V /2 t, the edge between V and W is directed. There are two alternatives as
shown in Figures 5 and 6 for the subgraph induced by {V, U, W}.

If it is the subgraph in Figure 6 (i.e., the V ! W 2 G0 for any G0 2 [G]), then
W ! U must be in G0 for any G0 2 [G] in order to avoid a directed cycle, as shown in
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Figure 7. So W ! U must be in G⇤. It is contrary to the fact that {U, W} 2 t is in a
chain component of G⇤. So V must also be a parent of W. Because all variables in t
are connected by undirected edges in G⇤t , V must be a parent of all other variables in t.

Proof of Theorem 4. According to Lemma 10, if a node W outside a component t
points at a node V in t, then W must point at each node U in t. Thus W, V and U
cannot form a v-structure.

Proof of Theorem 5. Suppose that Theorem 5 does not hold, that is, there is a di-
rected path V1 ! · · · ! Vk in Gt which is not a directed cycle, but W1 ! · · · !
Wi ! V1 ! · · · ! Vk ! Wi+1 ! · · · ! W1 is a directed cycle, where Wi /2 t. We
denote this cycle as DC. From Lemma 10, Wi must also be a parent of Vk, and thus
W1 ! · · · ! Wi ! Vk ! Wi+1 ! · · · ! W1 is also a directed cycle, denoted as DC0.
Now, every edge of DC0 is out of Gt . Similarly, we can remove all edges in other chain
components from DC0 and keep the path being a directed cycle. Finally, we can get
a directed cycle in the directed subgraph of G⇤. It contradicts the fact that G⇤ is an
essential graph of a DAG. So we proved Theorem 5.

To prove Theorem 6, we first present an algorithm for finding the post-intervention
essential graph G⇤e(V) via the orientation e(V), then we show the correctness of the
algorithm using several lemmas, and finally we give the proof of Theorem 6 with
G⇤e(V) obtained by the algorithm. In order to prove that G⇤e(V) is also a chain graph, we
introduce an algorithm (similar to Step D of SGS and the PC algorithm in Spirtes et al.
(2000)) for constructing a graph, in which some undirected edges of the initial essential
graph are oriented with the information of e(V). Let t be a chain graph of G⇤, V 2 t
and e(V) be an orientation of undirected edges connecting V.

Algorithm 2: Find the post-intervention essential graph via orientation e(V)

Input: The essential graph G⇤ and e(V)
Output: The graph H

Orient the undirected edges connecting V in the essential graph G⇤ according to e(V)
and denote the graph as H.
Repeat the following two rules to orient some other undirected edges until no rules
can be applied:
(i) if V1 ! V2 �V3 2 H and V1 and V3 are not adjacent in H, then orient V2 �V3 as
V2 ! V3 and update H;
(ii) if V1 ! V2 ! V3 2 H and V1 � V3 2 H, then orient V1 � V3 as V1 ! V3 and
update H.
return the graph H

It can be shown that H constructed by Algorithm 2 is a chain graph and H is equal
to the post-intervention essential graph G⇤e(V). We show those results with the following
three Lemmas.

Lemma 11 Let G⇤ be the essential graph of DAG G, t be a chain component of G⇤ and I be a
DAG over t. Then there is a DAG G0 2 [G] such that I = G0t if and only if I is a DAG with
the same skeleton as G⇤t and without v-structures.
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Proof If there is a DAG G0 2 [G] such that I = G0t , we have from Lemma 1 that I is a
DAG with the same skeleton as G⇤t and without v-structures.

Let I be a DAG with the same skeleton as G⇤t and without v-structures, and G0 be any
DAG in the equivalence class [G]. We construct a new DAG I0 from G0 by substituting
the subgraph G0t of G0 with I. I0 has the same skeleton as G0. From Theorems 4 and 5, I0
has the same v-structures as G0. Thus I0 is equivalent to G0 and I0 2 [G].

Lemma 12 Let H be a graph constructed by Algorithm 2. Then H is a chain graph.

Proof If H is not a chain graph, there must be a directed cycle in subgraph Ht for some
chain component of G⇤. Moreover, G⇤t is chordal and H ⇢ G⇤, and thus Ht is chordal
too. So we can get a three-edge directed cycle in Ht as given in Figure 8 or 9.

If Figure 9 is a subgraph of H obtained at some step of Algorithm 2, then the
undirected edge b c is oriented as b c according to Algorithm 2. Thus only Figure 8
can be a subgraph of H.

According to Lemma 10, we have that the directed edge d ! b is not in G⇤. Since
all edges connecting a have been oriented in Step 1 of Algorithm 2, d ! b is not an
edge connecting a. So d! b must be identified at step 2 of Algorithm 2. There are two
situations, one is to avoid a v-structure as shown in Figure 10, the other is to avoid a
directed cycle as Figure 13.

We can arrange all directed edges in Ht in order of orientations performed at Step 2
of Algorithm 2. First, we prove that the directed edge d! b in Figure 8 is not the first
edge oriented at Step 2 of Algorithm 2.

In the first case as Figure 10, if d! b is the first edge oriented at Step 2 of Algorithm 2,
we have d1 = a. Because b and a are not adjacent, and d c is an undirected edge in H,
we have that d1 ! c must be in H as Figure 11, where d1 = a. Now we consider the
subgraph b c  d1. According to the rules (i) and (ii) in Algorithm 2, we have that
b c is in G⇤e(a) as Figure 12, which contradicts the assumption that b c 2 H.

In the second case as Figure 13, if d ! b is the first edge oriented at Step 2 of
Algorithm 2, we have d1 = a.

Considering the structure d1 ! b c and that d c is an undirected edge in H, we
have that d1 ! c must be in H as Figure 14. Now we consider the subgraph of {d, d1, c}.
By Algorithm 2, d ! c is in H as Figure 15, which contradicts the assumption that
d c 2 H. Thus we have that the first edge oriented at Step 2 of Algorithm 2 is not in
any directed cycle. Suppose that the first k oriented edges at Step 2 of Algorithm 2 are
not in any directed cycle. Then we want to prove that the (k + 1)th oriented edge is also
not in a directed cycle.

Let d! b be the (k + 1)th oriented edge at Step 2 of Algorithm 2, and Figure 8 be a
subgraph of H. There are also two cases as Figures 10 and 13 for orienting d! b.

In the case of Figure 10, since d1 ! d is in the first k oriented edges and d c 2 H,
we have that d1 ! c must be in H. We also get that b  c must be in H as Figure 12,
which contradicts the assumption that b c 2 H.

In the case of Figure 10, since d1 ! b and d ! d1 are in the first k oriented edges
and b c 2 H, we have that d1 ! c must be in H. We also get that d c must be in H
as Figure 15, which contradicts the assumption that d c 2 H. So the (k + 1)th oriented
edge is also not in any directed cycle. Now we can get that every directed edge in Ht is
not in any directed cycle. It implies that there are no directed cycles in Ht , and thus H
is a chain graph.
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Lemma 13 Let G⇤e(V) be the post intervention essential graph with the orientation e(V) and
H be the graph constructed by Algorithm 2. We have G⇤e(V) = H.

Proof We first prove G⇤e(a) ✓ H. We just need to prove that all directed edges in H must
be in G⇤e(a). We use induction to finish the proof.

After Step 1 of Algorithm 2, all directed edges in H are in G⇤e(a). We now prove
that the first directed edge oriented at Step 2 of Algorithm 2, such as b c, is in G⇤e(a).
Because b  c must be oriented by the rule (i) of Algorithm 2, there must be a node
d /2 t such that b c  d is the subgraph of H. So b  c  d must be a subgraph in
each G0 2 G⇤e(a). Otherwise, b! c d forms a v-structure such that G0 /2 [G]. Thus we
have b c 2 G⇤e(a).

Suppose that the first k oriented edges at Step 2 of Algorithm 2 are in G⇤e(a). We now
prove that the (k + 1)th oriented edge at Step 2 of Algorithm 2 is also in G⇤e(a). Denoting
the (k + 1)th oriented edge as l  h, according to the rules in Algorithm 2, there are
two cases to orient l  h as shown in Figures 16 and 17.

In Figure 16, because f ! h is in every DAG G0 2 G⇤e(a), in order to avoid a new
v-structure, we have that l  h must be in every DAG G0 2 G⇤e(a). Thus we have
l  h 2 G⇤e(a). In Figure 17, because l ! f and f ! h are in every DAG G0 2 G⇤e(a), in
order to avoid a directed cycle, we have that h  l must be in every DAG G0 2 G⇤e(a).
Thus we have h l 2 G⇤e(a). Now we get that the (k + 1)th oriented edge at Step 2 of
Algorithm 2 is also in G⇤e(a). Thus all directed edges in H are also in G⇤e(a) and then we
have G⇤e(a) ✓ H.

Because H is a chain graph by Lemma 12, we also have H ✓ G⇤. By Lemma 11, for
any undirect edge a b of Ht where t is a chain component of H, there exist G1 and
G2 2 G⇤e(a) such that a! b occurs in G1 and a b occurs in G2. It means that a b also
occurs in G⇤e(a). So we have H ✓ G⇤e(a), and then G⇤e(a) = H.

Proof of Theorem 6. By definition of G⇤e(V), we have that G⇤e(V) has the same skeleton
as the essential graph G⇤ and contains all directed edges of G⇤. That is, all directed
edges in G⇤ are also directed in G⇤e(V). So property 2 of Theorem 6 holds. Property 3 of
Theorem 6 also holds because all DAGs represented by G⇤e(V) are Markov equivalent.
From Lemmas 12 and 13, we can get that G⇤e(V) is a chain graph.

Proof of Theorem 7. We first prove property 1. Let C = ch(Vk) \ t. Then B = ne(Vk) \C
contains all parents of Vk and the children of Vk in t. Let A = An({B, Vk}) be the
ancestor set of all nodes in {B, Vk}. Since Vi is a parent of Vk for property 1, we have
Vi 2 A. The post-intervention joint distribution of A is

PVi (A) = P0(vi | pa(vi)) ’
vj2A\Vi

P(vj | pa(vj)). (1)
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Let U = A\{B, Vk}. Then we have from the post-intervention joint distribution (1)

PVi (vk|B) =
ÂU P0(vi|pa(vi))’vj2A\Vi

P(vj|pa(vj)))

ÂU,Vk
P0(vi|pa(vi))’Vj2A\Vi

P(vj|pa(vj))

=
ÂU P0(vi|pa(vi))’vj2A\{ch(Vk)\t,Vk} P(vj|pa(vj))’vj2{ch(Vk)\t,Vk} P(vj|pa(vj))

ÂU,Vk
P0(vi|pa(vi))’vj2A\{ch(Vk)\t,Vk} P(vj|pa(vj))’vj2{ch(Vk)\t,Vk} P(vj|pa(vj))

,

where ÂU denotes a summation over all variables in the set U.
Below we want to factorize the denominator into a production of summation over

U and summation over Vk. First we show that the factor

P0(vi | pa(vi)) ’
vj2A\{ch(Vk)\t,Vk}

P(vj | pa(vj))

does not contain Vk because Vk appears only in the conditional probabilities of ch(Vk)
and the conditional probability of Vk. Next we show that ’vj2{ch(Vk)\t,Vk} P(vj | pa(vj))

does not contain any variable in U. From definition of B, we have B ◆ (ch(Vk) \ t).
Then from definition of U, we have that Vj in {ch(Vk) \ t, Vk} is not in U. Now we just
need to show that any parent of any node Vj in {ch(Vk) \ t, Vk} is also not in U:

1. By definitions of B and U, the parents of Vk is not in U.

2. Consider parents of nodes in {ch(Vk)\ t}. Let W is such a parent, that is, W ! Vj
for Vj 2 {ch(Vk) \ t}. There is a head to head path (W ! Vj  Vk). We show
that W is not in U separately for two cases: W 2 t and W /2 t. For the first
case of W 2 t, there is an undirected edge between W and Vk in G⇤t since there
is no v-structure in the subgraph G0t for any G0 2 [G]. Then from definition of
B, we have W 2 B. For the second case of W /2 t, W must be a parent of Vk by
Lemma 10, and then W is in B. Thus we obtain W /2 U.

We showed that the factor ’Vj2{ch(Vk)\t,Vk} P(vj | pa(vj)) does not contain any variable
in U. Thus the numerator and the summations over U and Vk in the denominator can
be factorized as follows

PVi (vk|B)

=
’vj2{ch(Vk)\t,Vk} P(vj|pa(vj))ÂU P0(vi|pa(vi))’vj2A\{ch(Vk)\t,Vk} P(vj|pa(vj))

ÂVk ’vj2{ch(Vk)\t,Vk} P(vj|pa(vj))ÂU P0(vi|pa(vi))’vj2A\{ch(Vk)\t,Vk} P(vj|pa(vj))

=
’vj2{ch(Vk)\t,Vk} P(vj|pa(vj))

ÂVk ’vj2{ch(Vk)\t,Vk} P(vj|pa(vj))
= P(vk|B).

Thus we proved property 1.
Property 2 is obvious since manipulating Vi does not change the distribution of its

parent Vk. Formally, let an(Vk) be the ancestor set of Vk. If Vk 2 pa(Vi), then we have
PVi (an(vk), vk) = P(an(vk), vk) and thus PVi (Vk) = P(Vk).

Proof of Theorem 8. Manipulating a node Vi will orient all of undirected edges con-
necting Vi. Thus the orientations of undirected edges do not depend on the order in
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which the variables are manipulated. If a sequence S is sufficient, then its permutation
is also sufficient.

Proof of Theorem 9. Suppose that S = (V1, . . . , VK) is a sufficient set. We delete a node,
say Vi, from S , and define S 0[i] = mathS \ {Vi}. If the set S 0[i] is no longer sufficient,
then we can add other variables to S 0[i] without adding Vi such that S 0[i] becomes to be
sufficient. This is feasible since any undirected edge can be oriented by manipulating
either of its two nodes. Thus we have

TK
i=1 S 0[i] = ?. Since all S 0[i] belong to S, we proved

T

S2S S = ?.
Similarly, for each minimum sequence S , we can define S 0[i] such that it does not

contain Vi and it is a minimum sufficient set. Thus the intersection of all minimum
sufficient sets is empty.
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Abstract
A linear causal model with correlated errors, represented by a DAG with bi-directed
edges, can be tested by the set of conditional independence relations implied by the
model. A global Markov property specifies, by the d-separation criterion, the set of
all conditional independence relations holding in any model associated with a graph.
A local Markov property specifies a much smaller set of conditional independence
relations which will imply all other conditional independence relations which hold
under the global Markov property. For DAGs with bi-directed edges associated with
arbitrary probability distributions, a local Markov property is given in Richardson
(2003) which may invoke an exponential number of conditional independencies. In this
paper, we show that for a class of linear structural equation models with correlated
errors, there is a local Markov property which will invoke only a linear number of
conditional independence relations. For general linear models, we provide a local
Markov property that often invokes far fewer conditional independencies than that in
Richardson (2003). The results have applications in testing linear structural equation
models with correlated errors.
Keywords: Markov properties, linear causal models, linear structural equation models,
graphical models

1. Introduction
Linear causal models called structural equation models (SEMs) are widely used for
causal reasoning in social sciences, economics, and artificial intelligence (Goldberger,
1972; Bollen, 1989; Spirtes et al., 2001; Pearl, 2000). One important problem in the
applications of linear causal models is testing a hypothesized model against the given
data. While the conventional method involves maximum likelihood estimation of the
covariance matrix, an alternative approach has been proposed recently which involves
testing for the conditional independence relationships implied by the model (Spirtes
et al., 1998; Pearl, 1998; Pearl and Meshkat, 1999; Pearl, 2000; Shipley, 2000, 2003). The
advantages of using this new test method instead of the traditional global fitting test
have been discussed in Pearl (1998), Shipley (2000), McDonald (2002) and Shipley (2003).
The method can be applied in small data samples and it can test “local” features of the
model.

To apply this test method, one needs to be able to identify the conditional inde-
pendence relationships implied by an SEM. This can be achieved by representing the
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SEM with a graph called a path diagram (Wright, 1934) and then reading independence
relations from the path diagram. For a linear SEM without correlated errors, the cor-
responding path diagram is a directed acyclic graph (DAG). The set of all conditional
independence relations holding in any model associated with a DAG, often called a
global Markov property for the DAG, can be read by the d-separation criterion (Pearl,
1988). However, it is not necessary to test for all the independencies implied by the
model as a subset of those independencies may imply all others. A local Markov prop-
erty specifies a much smaller set of conditional independence relations which will imply
(using the laws of probability) all other conditional independence relations that hold
under the global Markov property. A well-known local Markov property for DAGs is
that each variable is conditionally independent of its non-descendants given its parents
(Lauritzen et al., 1990; Lauritzen, 1996). Based on this local Markov property, Pearl and
Meshkat (1999) and Shipley (2000) proposed testing methods for linear SEMs without
correlated errors that involve at most one conditional independence test for each pair of
variables.

On the other hand, the path diagrams for linear SEMs with correlated errors are
DAGs with bi-directed edges ($) where bi-directed edges are used to represent cor-
related errors. A DAG with bi-directed edges is called an acyclic directed mixed graph
(ADMG) in Richardson (2003). The set of all conditional independence relations encoded
in an ADMG can still be read by (a natural extension of) the d-separation criterion (called
m-separation in Richardson, 2003) which provides the global Markov property for
ADMGs (Spirtes et al., 1998; Koster, 1999; Richardson, 2003). A local Markov property
for ADMGs is given in Richardson (2003), which, in the worst case, may invoke an
exponential number of conditional independence relations, a sharp difference with the
local Markov property for DAGs, where only one conditional independence relation
is associated with each variable. Shipley (2003) suggested a method for testing linear
SEMs with correlated errors but the method may or may not, depending on the actual
models, be able to find a subset of conditional independence relations that imply all
others.

In this paper, we seek to improve the local Markov property given in Richardson
(2003) for linear SEMs with correlated errors. The local Markov property in Richardson
(2003) is applicable for ADMGs associated with arbitrary probability distributions.
Specifically, only semi-graphoid axioms which must hold in all probability distributions
(Pearl, 1988) are used in showing that the set of conditional independence relations
specified by the local Markov property will imply all those specified by the global
Markov property. On the other hand, in linear SEMs, variables are assumed to have
normal distributions, and it is known that normal distributions also satisfy the so-called
composition axiom. Therefore, in this paper, we look for local Markov properties for
ADMGs associated with probability distributions that satisfy the composition axiom.
We will show that for a class of ADMGs, the local Markov property will invoke only
one conditional independence relation for each variable, and therefore testing for the
corresponding linear SEMs will involve at most one conditional independence test for
each pair of variables. For general ADMGs, we provide a procedure that reduces the
number of conditional independencies invoked by the local Markov property given in
Richardson (2003), and therefore reduces the complexity of testing linear SEMs with
correlated errors.

In the test of conditional independence relations, the efficiency of the test is influ-
enced by the size of the conditioning set (that is, the number of conditioning variables)
with a small conditioning set having advantage over a large one. The conditional
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independence relations invoked by the standard local Markov property for DAGs use
a parent set as the conditioning set. Pearl and Meshkat (1999) have shown for linear
SEMs without correlated errors how to find a set of conditional independence relations
that may involve fewer conditioning variables. In this paper, we also generalize this
result to linear SEMs with correlated errors.

The paper is organized as follows. In Section 2, we introduce linear SEMs, give
basic notation and definitions, and present the local Markov property developed in
Richardson (2003). In Section 3, we show that for a class of ADMGs, there is a local
Markov property for probability distributions satisfying the composition axiom that
invokes only a linear number of conditional independence relations. We also show a
local Markov property that may involve fewer conditioning variables. In Section 4, we
consider general ADMGs (for probability distributions satisfying the composition ax-
iom) and show a local Markov property that invokes fewer conditional independencies
than that in Richardson (2003). Section 5 concludes the paper.

2. Preliminaries and Motivation
In this section, we give basic definitions and introduce some relevant concepts.

2.1. Linear Causal Models

The SEM technique was developed by geneticists (Wright, 1934) and economists
(Haavelmo, 1943) for assessing cause-effect relationships from a combination of statis-
tical data and qualitative causal assumptions. It is an important causal analysis tool
widely used in social sciences, economics, and artificial intelligence (Goldberger, 1972;
Duncan, 1975; Bollen, 1989; Spirtes et al., 2001). For a review of SEMs and causality we
refer to Pearl (1998).

In an SEM, the causal relationships among a set of variables are often assumed to be
linear and expressed by linear equations. Each equation describes the dependence of
one variable in terms of the others. For example, an equation

Y = aX + e (1)

represents that X may have a direct causal influence on Y and that no other variables
have (direct) causal influences on Y except those factors (represented by the error term
e traditionally assumed to have normal distribution) that are omitted from the model.
The parameter a quantifies the (direct) causal effect of X on Y. An equation like (1) with
a causal interpretation represents an autonomous causal mechanism and is said to be
structural.

As an example, consider the following model from Pearl (2000) that concerns the
relations between smoking (X) and lung cancer (Y), mediated by the amount of tar (Z)
deposited in a person’s lungs:

X = e1,
Z = aX + e2,
Y = bZ + e3.

The model assumes that the amount of tar deposited in the lungs depends on the level
of smoking (and external factors) and that the production of lung cancer depends on the
amount of tar in the lungs but smoking has no effect on lung cancer except as mediated
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through tar deposits. To fully specify the model, we also need to decide whether those
omitted factors (e1, e2, e3) are correlated or not. We may assume that no other factor
that affects tar deposit is correlated with the omitted factors that affect smoking or lung
cancer (Cov(e1, e2) = Cov(e2, e3) = 0). However, there might be unobserved factors
(say some unknown carcinogenic genotype) that affect both smoking and lung cancer
(Cov(e1, e3) 6= 0), but the genotype nevertheless has no effect on the amount of tar
in the lungs except indirectly (through smoking). Often, it is illustrative to express
our qualitative causal assumptions in terms of a graphical representation, as shown in
Figure 1.

We now formally define the model that we will consider in this paper. A linear causal
model (or linear SEM) over a set of random variables V = {V1, . . . , Vn} is given by a set
of structural equations of the form

Vj = Â
i

cjiVi + ej, j = 1, . . . , n, (2)

where the summation is over the variables in V judged to be immediate causes of Vj. cji,
called a path coefficient, quantifies the direct causal influence of Vi on Vj. ej’s represent
“error” terms due to omitted factors and are assumed to have normal distribution. We
consider recursive models and assume that the summation in (2) is for i < j, that is,
cji = 0 for i � j.

We denote the covariances between observed variables sij = Cov(Vi, Vj), and be-
tween error terms yij = Cov(ei, ej). We denote the following matrices, S = [sij],
Y = [yij], and C = [cij]. The parameters of the model are the non-zero entries in the
matrices C and Y. A parameterization of the model assigns a value to each parameter
in the model, which then determines a unique covariance matrix S given by (see, for
example, Bollen, 1989)

S = (I � C)�1Y((I � C)t)
�1.

The structural assumptions encoded in the model are the zero path coefficients
and zero error covariances. The model structure can be represented by a DAG G with
(dashed) bi-directed edges (an ADMG), called a causal diagram (or path diagram), as
follows: the nodes of G are the variables V1, . . . , Vn; there is a directed edge from Vi to Vj
in G if Vi appears in the structural equation for Vj, that is, cji 6= 0; there is a bi-directed
edge between Vi and Vj if the error terms ei and ej have non-zero correlation. For
example, the smoking-and-lung-cancer SEM is represented by the causal diagram in
Figure 1, in which each directed edge is annotated by the corresponding path coefficient.

X

Smoking

Z

Tar in lungs

Y

Cancer

a b

Figure 1: Causal diagram illustrating the effect of smoking on lung cancer

We note that linear SEMs are often used without explicit causal interpretation.
A linear SEM in which error terms are uncorrelated consists of a set of regression
equations. Note that an equation as given by (2) is a regression equation if and only
if ej is uncorrelated with each Vi (Cov(Vi, ej) = 0). Hence, an equation in an SEM
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with correlated errors may not be a regression equation. Linear SEMs provide a more
powerful way to model data than the regression models taking into account correlated
error terms.

2.2. Model Testing and Markov Properties

One important task in the applications of linear SEMs is to test a model against data.
One approach for this task is to test for the conditional independence relationships
implied by the model, which can be read from the causal diagram by the d-separation
criterion as defined in the following.1 A path between two vertices Vi and Vj in an
ADMG consists of a sequence of consecutive edges of any type (directed or bi-directed).
A vertex Vi is said to be an ancestor of a vertex Vj if there is a path Vi ! · · · ! Vj. A
non-endpoint vertex W on a path is called a collider if two arrowheads on the path meet
at W, that is,! W  ,$ W $,$ W  ,! W $; all other non-endpoint vertices on a
path are non-colliders, that is, W !, W  ,! W !,$ W !, W $. A path
between vertices Vi and Vj in an ADMG is said to be d-connecting given a set of vertices
Z if

1. every non-collider on the path is not in Z, and

2. every collider on the path is an ancestor of a vertex in Z.

If there is no path d-connecting Vi and Vj given Z, then Vi and Vj are said to be d-separated
given Z. Sets X and Y are said to be d-separated given Z, if for every pair Vi, Vj, with
Vi 2 X and Vj 2 Y, Vi and Vj are d-separated given Z. Let I(X, Z, Y) denote that X is
conditionally independent of Y given Z. The set of all the conditional independence
relations encoded by a causal diagram G is specified by the following global Markov
property.

Definition 1 (The Global Markov Property (GMP)) A probability distribution P is said
to satisfy the global Markov property for G if for arbitrary disjoint sets X, Y, Z with X and Y
being nonempty,

(GMP) X is d-separated from Y given Z in G =) I(X, Z, Y).

The global Markov property typically involves a vast number of conditional indepen-
dence relations and it is possible to test for a subset of those independencies that will
imply all others. A local Markov property specifies a much smaller set of conditional
independence relations which will imply by the laws of probability all other conditional
independence relations that hold under the global Markov property. For example,
a well-known local Markov property for DAGs is that each variable is conditionally
independent of its non-descendants given its parents. The causal diagram for a linear
SEM with correlated errors is an ADMG and a local Markov property for ADMGs is
given in Richardson (2003).

Note that in linear SEMs, the conditional independence relations will correspond to
zero partial correlations (Lauritzen, 1996):

rViVj .Z = 0() I({Vi}, Z, {Vj}).
1. The d-separation criterion was originally defined for DAGs (Pearl, 1988) but can be naturally extended

for ADMGs and is called m-separation in Richardson (2003).

187



KANG TIAN

V
5

V
6

V
7

V
3

V
4

V
1

V
2

Figure 2: A causal diagram

As an example, for the linear SEM with the causal diagram in Figure 2, if we use the
local Markov property in Richardson (2003), then we need to test for the vanishing of
the following set of partial correlations (for ease of notation, we write rij.Z to denote
rViVj .Z):

{r21, r32.1, r43.2, r41.2, r54.3, r52.3, r51.3, r64.53, r62.53, r61.53, r64.3, r62.3, r61.3, r72.6543,
r71.6543, r72.643, r71.643, r75.4, r73.4, r72.4, r71.4}. (3)

The local Markov property in Richardson (2003) is valid for any probability distribu-
tions. In fact, the equivalence of the global and local Markov properties is proved using
the following so-called semi-graphoid axioms (Pearl, 1988) that probabilistic conditional
independencies must satisfy:

• Symmetry
I(X, Z, Y)() I(Y, Z, X).

• Decomposition

I(X, Z, Y [W) =) I(X, Z, Y) & I(X, Z, W).

• Weak Union
I(X, Z, Y [W) =) I(X, Z [W, Y).

• Contraction

I(X, Z, Y) & I(X, Z [Y, W) =) I(X, Z, Y [W).

where X, Y, Z, and W are disjoint sets of variables.
On the other hand, in linear SEMs the variables are assumed to have normal distri-

butions, and normal distributions also satisfy the following composition axiom:

• Composition
I(X, Z, Y) & I(X, Z, W) =) I(X, Z, Y [W).

Therefore, we expect a local Markov property for linear SEMs to invoke fewer condi-
tional independence relations than that for arbitrary distributions. In this paper, we
will derive reduced local Markov properties for linear SEMs by making use of the
composition axiom. As an example, for the linear SEM in Figure 2, a local Markov
property which we will present in this paper (see Section 3.3) says that we only need to
test for the vanishing of the following set of partial correlations:

{r21, r32, r43, r41, r54, r52, r51.3, r64, r62, r61.3, r75, r73, r71, r72.4}.
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Figure 3: An ADMG and its compressed graph

The number of tests needed and the size of the conditioning set Z are both substantially
reduced compared with (3), thus leading to a more economical way of testing the given
model.

2.3. A Local Markov Property for ADMGs

In this section, we describe the local Markov property for ADMGs associated with
arbitrary probability distributions presented in Richardson (2003). In this paper, this
Markov property will be used as an important tool to prove the equivalence of our local
Markov properties and the global Markov property.

First, we define some graphical notations. For a vertex X in an ADMG G, paG(X) ⌘
{Y|Y ! X in G} is the set of parents of X. spG(X) ⌘ {Y|Y $ X in G} is the set of
spouses of X. anG(X) ⌘ {Y|Y ! · · · ! X in G or Y = X} is the set of ancestors of
X. And deG(X) ⌘ {Y|Y  · · ·  X in G or Y = X} is the set of descendants of X.
These definitions will be applied to sets of vertices, so that, for example, paG(A) ⌘
[X2ApaG(X), spG(A) ⌘ [X2AspG(X), etc.

Definition 2 (C-component) A c-component of G is a maximal set of vertices in G such that
any two vertices in the set are connected by a path on which every edge is of the form$; a vertex
that is not connected to any bi-directed edge forms a c-component by itself.

For example, the ADMG in Figure 3 (a) is composed of 6 c-components {V1}, {V2},
{V3}, {V4}, {V5, V6, V7} and {V8, V9}. The district of X in G is the c-component of G that
includes X. Thus,

disG(X) ⌘ {Y|Y $ · · ·$ X in G or Y = X}.

For example, in Figure 3 (a), we have disG(V5) = {V5, V6, V7} and disG(V8) = {V8, V9}.
A set A is said to be ancestral if it is closed under the ancestor relation, that is, if
anG(A) = A. Let GA denote the induced subgraph of G on the vertex set A, formed
by removing from G all vertices that are not in A, and all edges that do not have both
endpoints in A.

Definition 3 (Markov Blanket)2 If A is an ancestral set in an ADMG G, and X is a vertex
in A that has no children in A then the Markov blanket of vertex X with respect to the

2. The definition of Markov blanket here follows that in Richardson (2003) and is compatible with that in
Pearl (1988).
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induced subgraph on A, denoted mb(X, A) is defined to be

mb(X, A) ⌘ paGA

�

disGA(X)
� [ �disGA(X) \ {X}� .

For example, for an ancestral set A = anG({V5, V6}) = {V1, V2, V3, V4, V5, V6} in Figure
3 (a), we have

mb(V5, A) = {V3, V4, V6}.

An ordering (�) on the vertices of G is said to be consistent with G if X � Y ) Y /2
anG(X). Given a consistent ordering �, let preG,�(X) ⌘ {Y|Y � X or Y = X}.

Definition 4 (The Ordered Local Markov Property (LMP,�)) A probability distribution
P satisfies the ordered local Markov property for G with respect to a consistent ordering �, if,
for any X and ancestral set A such that X 2 A ✓ preG,�(X),

(LMP,�) I({X}, mb(X, A), A \ (mb(X, A) [ {X})). (4)

Theorem 5 (Richardson, 2003) If G is an ADMG and � is a consistent ordering, then a
probability distribution P satisfies the ordered local Markov property for G with respect to � if
and only if P satisfies the global Markov property for G.

We will write (GMP)() (LMP,�) to denote the equivalence of the two Markov prop-
erties. Therefore the (smaller) set of conditional independencies specified in the ordered
local Markov property will imply all other conditional independencies which hold
under the global Markov property. It is possible to further reduce the number of
conditional independence relations in the ordered local Markov property. An ances-
tral set A, with X 2 A ✓ preG,�(X) is said to be maximal with respect to the Markov
blanket mb(X, A) if, whenever there is a set B such that A ✓ B ✓ preG,�(X) and
mb(X, A) =mb(X, B), then A = B. For example, suppose that we are given an or-
dering �: V1 � V2 � V3 � V4 � V5 � V6 � V7 � V8 � V9 for the graph G in
Figure 3 (a). While an ancestral set A = anG({V3, V6, V7}) = {V1, V2, V3, V4, V6, V7}
is maximal with respect to the Markov blanket mb(V7, A) = {V4, V6}, an ancestral
set A0 = anG({V6, V7}) = {V2, V4, V6, V7} is not. It was shown that we only need to
consider ancestral sets A which are maximal with respect to mb(X, A) in the ordered
local Markov property (Richardson, 2003). Thus, we will consider only maximal ances-
tral sets A when we discuss (LMP,�) for the rest of this paper. The following lemma
characterizes maximal ancestral sets.

Lemma 6 (Richardson, 2003) Let X be a vertex and A an ancestral set in G with consistent
ordering � such that X 2 A ✓ preG,�(X). The set A is maximal with respect to the Markov
blanket mb(X,A) if and only if

A = preG,�(X) \ deG(h(X, A))

where
h(X, A) ⌘ spG

⇣

disGA(X)
⌘

\
⇣

{X} [mb(X, A)
⌘

.

Even though we only consider maximal ancestral sets, the ordered local Markov
property may still invoke an exponential number of conditional independence relations.
For example, for a vertex X, if disG(X) ✓ preG,�(X) and disG(X) has a clique of n
vertices joined by bi-directed edges, then there are at least O(2n�1) different Markov
blankets.
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It should be noted that only the semi-graphoid axioms were used to prove Theorem 5
on the equivalence of the two Markov properties and no assumptions about probability
distributions were made. Next we will show that the ordered local Markov property can
be further reduced if we use the composition axiom in addition to the semi-graphoid
axioms. The local Markov properties we obtained (in Sections 3 and 4) are not restricted
to linear causal models in that they are actually valid for any probability distributions
that satisfy the composition axiom.

3. Markov Properties for ADMGs without Directed Mixed Cycles

X Y

Z W

Figure 4: Directed mixed cycles

In this section, we introduce three local Markov properties for a class of ADMGs and
show that they are equivalent to the global Markov property. Also, we discuss related
work in maximal ancestral graphs and chain graphs. First, we give some definitions.

Definition 7 (Directed Mixed Cycle) A path is said to be a directed mixed path from X to Y
if it contains at least one directed edge and every edge on the path is either of the form Z $W,
or Z ! W with W between Z and Y. A directed mixed path from X to Y together with an edge
Y ! X or Y $ X is called a directed mixed cycle.

For example, the path X ! Z $ W ! Y $ X in the graph in Figure 4 forms a directed
mixed cycle. In this section, we will consider only ADMGs without directed mixed
cycles.

Definition 8 (Compressed Graph) Let G be an ADMG. The compressed graph of G is
defined to be the graph G0 = (V0, E0), V0 = {VC | C is a c-component of G}, E0 = {VCi !
VCj | there is an edge X ! Y in G such that X 2 Ci, Y 2 Cj}.

Figure 3 shows an ADMG and its compressed graph. If there exists a directed mixed
cycle in an ADMG G, there will be a cycle or a self-loop in the compressed graph of
G. For example, if for two vertices X and Y in a c-component C of G there exists an
edge X ! Y, then the compressed graph of G contains a self-loop y

VC. The following
proposition holds.

Proposition 9 Let G be an ADMG. The compressed graph of G is a DAG if and only if G has
no directed mixed cycles.

3.1. The Reduced Local Markov Property

In this section, we introduce a local Markov property for ADMGs without directed
mixed cycles which only invokes a linear number of conditional independence relations
and show that it is equivalent to the global local Markov property.
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Definition 10 (The Reduced Local Markov Property (RLMP)) Let G be an ADMG with-
out directed mixed cycles. A probability distribution P is said to satisfy the reduced local Markov
property for G if

(RLMP) 8X 2 V, I({X}, paG(X), V \ f(X, G)) (5)

where f(X, G) ⌘ paG(X) [ deG({X} [ spG(X)).

The reduced local Markov property states that a variable is independent of the variables that
are neither its descendants nor its spouses’ descendants given its parents.

Theorem 11 If a probability distribution P satisfies the composition axiom and an ADMG G
has no directed mixed cycles, then

(GMP)() (RLMP).

Proof: (GMP) =) (RLMP)
We need to prove that any variable X is d-separated from V \ f(X, G) given paG(X) in
G with no directed mixed cycle. Consider a vertex a 2 V \ f(X, G). We will show that
there is no path d-connecting X and a given paG(X). There are four possible cases for
any path between X and a.

1. X  b · · · a

2. X ! · · ·! d ⇤ · · · a

3. X $ g ⇤ · · · a

4. X $ g! · · ·! d ⇤ · · · a

A symbol ⇤ serves as a wildcard for an end of an edge. For example, ⇤ represents
both and$. In case 1, b 2 paG(X). In case 2, the collider d is not an ancestor of a
vertex in paG(X) (otherwise, there would be a cycle). In cases 3 and 4, neither g nor d is
an ancestor of a vertex in paG(X) (otherwise, there would be directed mixed cycles). In
any case, the path is not d-connecting given paG(X). ⌅

Proof: (RLMP) =) (GMP)
We will show that for some consistent ordering �, (RLMP) =) (LMP,�). Then, by
Theorem 5, we have (RLMP) =) (GMP).

We construct a consistent ordering with the desired property as follows.

1. Construct the compressed graph G0 of G.

2. Let �0 be any consistent ordering on G0. Construct a consistent ordering � from
�0 by replacing each VC (corresponding to each c-component C of G) in �0 with
the vertices in C (the ordering of the vertices in C is arbitrary).

We now prove that (RLMP) =) (LMP,�). Assume that a probability distribution P
satisfies (RLMP). Consider the set of conditional independence relations invoked by
(LMP,�) for each variable X given in (4). First, observe that for any vertex Y in disGA(X),
we have

A \ (paG(Y) [ {Y} [ spG(Y)) ✓ V \ f(Y, G),
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since

A \ (paG(Y) [ {Y} [ spG(Y))

= A \
✓

⇣

paG(Y) [ {Y} [ spG(Y)
⌘

[
⇣

deG({Y} [ spG(Y)) \ ({Y} [ spG(Y))
⌘

◆

(6)

= A \ f(Y, G).

The equality (6) holds since the vertices in deG({Y} [ spG(Y)) \ ({Y} [ spG(Y)) do not
appear in A (because of the way � is constructed, no descendant of disGA(X) is in A).
Thus, by (5), for all Y in disGA(X), we have

I({Y}, paG(Y), A \ (paG(Y) [ {Y} [ spGA
(Y))).

Let S1 = paG(disGA(X)) \ paG(Y) and S2 = A \ (mb(X, A) [ {X}). It follows that

S1 ✓ A \ (paG(Y) [ {Y} [ spG(Y)) and
S2 ✓ A \ (paG(Y) [ {Y} [ spG(Y)).

Also, we have

S1 \ S2 = ∆,

since S1 ✓ mb(X, A). Therefore, for Y 2 disGA(X),

I({Y}, paG(Y), S1 [ S2) by decomposition
I({Y}, paG(Y) [ S1, S2) by weak union
I(disGA(X), paG(disGA(X)), A \ (mb(X, A) [ {X})) by composition
I({X}, paG(disGA(X)) [ (disGA(X) \ {X}),

A \ (mb(X, A) [ {X})) by weak union.

Thus, we have

I({X}, mb(X, A), A \ (mb(X, A) [ {X}))
by the definition of the Markov blanket of X with respect to A. ⌅

As an example, consider the ADMG G in Figure 3 (a) which has no directed mixed
cycles. The graph in Figure 3 (b) is the compressed graph G0 of G described in the
proof. From the ordering �0: V1 � V2 � V3 � V4 � V567 � V89, we obtain the ordering
�: V1 � V2 � V3 � V4 � V5 � V6 � V7 � V8 � V9. The ordered local Markov property
(LMP,�) involves the following conditional independence relations:

I({V2}, ∆, {V1}), I({V3}, {V1}, {V2}),
I({V4}, {V2}, {V1, V3}), I({V5}, {V3}, {V1, V2, V4}),
I({V6}, {V3, V4, V5}, {V1, V2}), I({V6}, {V4}, {V1, V2, V3}),
I({V7}, {V3, V4, V5, V6}, {V1, V2}), I({V7}, {V4, V6}, {V1, V2, V3}),
I({V7}, {V4}, {V1, V2, V3, V5}), I({V8}, {V6}, {V1, V2, V3, V4, V5, V7}),
I({V9}, {V2, V6, V7, V8}, {V1, V3, V4, V5}), I({V9}, {V2, V7}, {V1, V3, V4, V5, V6}). (7)
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(RLMP) invokes the following conditional independence relations:

I({V1}, ∆, {V2, V4, V6, V7, V8, V9}), I({V2}, ∆, {V1, V3, V5}),
I({V3}, {V1}, {V2, V4, V6, V7, V8, V9}), I({V4}, {V2}, {V1, V3, V5}),
I({V5}, {V3}, {V1, V2, V4, V7, V9}), I({V6}, {V4}, {V1, V2, V3}),
I({V7}, {V4}, {V1, V2, V3, V5}), I({V8}, {V6}, {V1, V2, V3, V4, V5, V7}),
I({V9}, {V2, V7}, {V1, V3, V4, V5, V6}) (8)

which, by Theorem 11, imply all the conditional independence relations in (7).
For the special case of graphs containing only bi-directed edges,3 Kauermann (1996)

provides a local Markov property for probability distributions obeying the composition
axiom as follows:

8X 2 V, I({X}, ∆, V \ ({X} [ spG(X))). (9)

Since a graph containing only bi-directed edges is a special case of ADMGs without
directed mixed cycles, the reduced local Markov property (RLMP) is applicable, and
it turns out that (RLMP) reduces to (9) for graphs containing only bi-directed edges.
Therefore (RLMP) includes the local Markov property given in Kauermann (1996) as a
special case.

3.2. The Ordered Reduced Local Markov Property

The set of zero partial correlations corresponding to a conditional independence relation
I(X, Z, Y) is

{rViVj .Z = 0 | Vi 2 X, Vj 2 Y}.

Although (RLMP) gives only a linear number of conditional independence relations,
the number of zero partial correlations may be larger than that invoked by (LMP,�) in
some cases. For example, 12 conditional independence relations in (7) involve 37 zero
partial correlations while 9 conditional independence relations in (8) involve 41 zero
partial correlations. In this section, we will show an ordered local Markov property
such that at most one zero partial correlation is invoked for each pair of variables.

Definition 12 (C-ordering) Let G be an ADMG. A consistent ordering � on the vertices of
G is said to be a c-ordering if all the vertices in each c-component of G are consecutively ordered
in �.

For example, the ordering V1 � V2 � V3 � V4 � V5 � V6 � V7 � V8 � V9 is a
c-ordering on the vertices of G in Figure 3 (a). The following holds.

Proposition 13 There exists a c-ordering on the vertices of G if G does not have directed mixed
cycles.

We can easily construct a c-ordering from the compressed graph of G. We introduce the
following Markov property.

3. Kauermann (1996) actually used undirected graphs with dashed edges which are Markov equivalent to
graphs with only bi-directed edges (see Richardson, 2003, for discussions).
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Definition 14 (The Ordered Reduced Local Markov Property (RLMP,�c)) Let G be an
ADMG without directed mixed cycles and �c be a c-ordering on the vertices of G. A probability
distribution P is said to satisfy the ordered reduced local Markov property for G with respect to
�c if

(RLMP,�c) 8X 2 V, I({X}, paG(X), preG,�c
(X) \ ({X} [ paG(X) [ spG(X))). (10)

The ordered reduced local Markov property states that a variable is independent of its
predecessors, excluding its spouses, in a c-ordering given its parents. We now establish the
equivalence of (GMP) and (RLMP,�c).

Theorem 15 If a probability distribution P satisfies the composition axiom and an ADMG G
has no directed mixed cycles, then for a c-ordering �c on the vertices of G,

(GMP)() (RLMP,�c).

Proof: (GMP) =) (RLMP,�c)
The set preG,�c

(X) does not include any descendant of disG(X) since �c is a c-ordering.
We have

preG,�c
(X) \ ({X} [ paG(X) [ spG(X))

= preG,�c
(X) \

✓

⇣

{X} [ paG(X) [ spG(X)
⌘

[
⇣

deG({X} [ spG(X)) \ ({X} [ spG(X))
⌘

◆

= preG,�c
(X) \ f(X, G)

✓ V \ f(X, G).

Hence, (RLMP,�c) follows from (RLMP). ⌅

Proof: (RLMP,�c) =) (GMP)
We will show that (RLMP,�c) =) (LMP,�c). Assume that a probability distribution
P satisfies (RLMP,�c). Let g(Y) = preG,�c

(Y) \ ({Y} [ paG(Y) [ spG(Y)). Consider
the set of conditional independence relations invoked by (LMP,�c) for each variable X
given in (4) where A is maximal. By (10), for all Y in disGA(X), we have

I(Y, paG(Y), g(Y)). (11)

Let S1 = paG(disGA(X)) \ paG(Y) and S2 = A \ (mb(X, A) [ {X}). We have that

S1 ✓ g(Y).

Note that S2 \ g(Y) may be non-empty. Let S3 = S2 \ g(Y). It suffices to show that

I(Y, paG(Y), S3),

which implies I(Y, paG(Y), S2) by composition. Then, the rest of the proof would be
identical to that of Theorem 11.

We first characterize the vertices in S3. We will show that

S3 = (preG,�c
(X) \ preG,�c

(Y)) \ spG(disGA(X)). (12)
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By Lemma 6, we have

S2 = preG,�c
(X) \

⇣

deG(h(X, A)) [mb(X, A) [ {X}
⌘

.

Since �c is a c-ordering, no descendant of disG(X) will appear in A. Hence,

S2 = preG,�c
(X) \

⇣

spG(disGA(X)) [ paG(disGA(X))
⌘

.

To identify some common elements of S2 and g(Y), we will reformulate S2 and g(Y) as
follows.

S2 =
⇣

B \ paG(disGA(X))
⌘

[
⇣

(disG(X) \ preG,�c
(X)) \ spG(disGA(X))

⌘

,

g(Y) =
⇣

B \ paG(Y)
⌘

[
⇣

(disG(X) \ preG,�c
(Y)) \ ({Y} [ spG(Y))

⌘

where B = preG,�c
(X) \ disG(X). This can be verified by noting that A1 = A2 \ (A3 [

A4) = (A11 \ A2) [ (A12 \ A3) if A1 = A11 [ A12, A11 \ A12 = ∆, A2 ✓ A11, A3 ✓ A12.
From paG(Y) ✓ paG(disGA(X)), it follows that B \ paG(disGA(X)) ✓ B \ paG(Y) and

S3 =S2 \ g(Y)

=
⇣

(disG(X) \ preG,�c
(X)) \ spG(disGA(X))

⌘

\
⇣

(disG(X) \ preG,�c
(Y)) \ ({Y} [ spG(Y))

⌘

.

We can rewrite the first part of this expression as follows.

(disG(X) \ preG,�c
(X)) \ spG(disGA(X))

=
⇣

(disG(X) \ preG,�c
(Y)) \ spG(disGA(X))

⌘

[
⇣

(preG,�c
(X) \ preG,�c

(Y)) \ spG(disGA(X))
⌘

.

From (disG(X) \ preG,�c
(Y)) \ spG(disGA(X)) ✓ (disG(X) \ preG,�c

(Y)) \ ({Y} [
spG(Y)), (12) follows. Thus, the vertices in S3 are those in the set preG,�c

(X) \preG,�c
(Y)

and not in the set spG(disGA(X)).
Now we are ready to prove I(Y, paG(Y), S3). For any Z 2 S3, we have Y � Z and

Z /2 spG(Y). Hence,

I({Z}, paG(Z), g(Z)),
I({Z}, paG(Z), {Y} [ (paG(Y) \ paG(Z))) by decomposition,
I({Z}, paG(Z) [ paG(Y), {Y}) by weak union,
I({Y}, paG(Y), paG(Z) \ paG(Y)) by paG(Z) \ paG(Y)) ✓ g(Y), (11)

and decomposition,
I({Y}, paG(Y), {Z}) by contraction and decomposition.

Therefore, by composition, I(Y, paG(Y), S3) holds. ⌅
(RLMP,�c) invokes one zero partial correlation for each pair of nonadjacent variables.

For example, for the ADMG G in Figure 3 (a) and a c-ordering�c: V1 � V2 � V3 � V4 �
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V5 � V6 � V7 � V8 � V9, (RLMP,�c) invokes the following conditional independence
relations:

I({V2}, ∆, {V1}), I({V3}, {V1}, {V2}),
I({V4}, {V2}, {V1, V3}), I({V5}, {V3}, {V1, V2, V4}),
I({V6}, {V4}, {V1, V2, V3}), I({V7}, {V4}, {V1, V2, V3, V5}),
I({V8}, {V6}, {V1, V2, V3, V4, V5, V7}), I({V9}, {V2, V7}, {V1, V3, V4, V5, V6}) (13)

which involve 25 zero partial correlations while (7) involve 37 zero partial correlations.

3.3. The Pairwise Markov Property

In this section, we give a pairwise Markov property which specifies conditional in-
dependence relations between pairs of variables and show that it is equivalent to the
global Markov property. In previous sections, we focused on minimizing the number
of zero partial correlations. We now take into account the size of the conditioning set
Z in each zero partial correlation rXY.Z. When the size of paG(X) for a vertex X in
(RLMP,�c) is large, it might be advantageous to use a different conditioning set with
smaller size (if the equivalence of the Markov properties still holds). Pearl and Meshkat
(1999) introduced a pairwise Markov property for DAGs (without bi-directed edges)
which may involve fewer conditioning variables and thus lead to more economical tests.
The result can be easily generalized to ADMGs with no directed mixed cycles.

Let d(X, Y) denote the shortest distance between two vertices X and Y, that is, the
number of edges in the shortest path between X and Y. Two vertices X and Y are
nonadjacent if X and Y are not connected by a directed nor a bi-directed edge.

Definition 16 (The Pairwise Markov Property (PMP,�c)) Let G be an ADMG without
directed mixed cycles and �c be a c-ordering on the vertices of G. A probability distribution P is
said to satisfy the pairwise Markov property for G with respect to �c if for any two nonadjacent
vertices Vi, Vj, Vj �c Vi

(PMP,�c) I({Vi}, Zij, {Vj})
where Zij is any set of vertices such that Zij d-separates Vi from Vj and 8Z 2 Zij, d(Vi, Z) <
d(Vi, Vj).

Note that, in ADMGs with no directed mixed cycles, there always exists such a Zij for
any two nonadjacent vertices. For example, the parent set of Vi always satisfies the
condition for Zij. If the empty set d-separates Vi from Vj, then the empty set is defined
to satisfy the condition for Zij. Therefore we can always choose a Zij with the smallest
size, providing a more economical way to test zero partial correlations.

Theorem 17 If a probability distribution P satisfies the composition axiom and an ADMG G
has no directed mixed cycles, then

(GMP)() (PMP,�c).

Proof: Noting that two vertices X and Y are adjacent if X  Y, X ! Y or X $ Y, the
proof of Theorem 1 by Pearl and Meshkat (1999) is directly applicable to ADMGs and it
effectively proves that (RLMP,�c)() (PMP,�c). We do not reproduce the proof here.
⌅
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As an example, for the ADMG G in Figure 3 (a) and a c-ordering�c: V1 � V2 � V3 �
V4 � V5 � V6 � V7 � V8 � V9, the following conditional independence relations (for
convenience, we combine the relations for each vertex that have the same conditioning
set) can be given by (PMP,�c):

I({V2}, ∆, {V1}), I({V3}, ∆, {V2}),
I({V4}, ∆, {V3, V1}), I({V5}, ∆, {V4, V2}),
I({V5}, {V3}, {V1}), I({V6}, ∆, {V3, V1}),
I({V6}, {V4}, {V2}), I({V7}, ∆, {V5, V3, V1}),
I({V7}, {V4}, {V2}), I({V8}, {V6}, {V7, V5, V4, V2}),
I({V8}, ∆, {V3, V1}), I({V9}, {V2, V7}, {V6, V4}),
I({V9}, ∆, {V5, V3, V1})

which involve the same number of zero partial correlations as (13) but involve smaller
conditioning sets than those in (13).

3.4. Relation to Other Work

In this section, we contrast the class of ADMGs without directed mixed cycles to
maximal ancestral graphs and chain graphs in terms of Markov properties.

3.4.1. MAXIMAL ANCESTRAL GRAPHS

It is easy to see that an ADMG without directed mixed cycles is a maximal ancestral graph
(MAG) (Richardson and Spirtes, 2002). An ADMG is said to be ancestral if, for any edge
X $ Y, X is not an ancestor of Y (and vice versa). Note that an edge X $ Y and a
directed path from X to Y (or Y to X) form a directed mixed cycle. Hence, an ADMG
without directed mixed cycles is ancestral. An ancestral graph is said to be maximal
if, for any pair of nonadjacent vertices X and Y, there exists a set Z ✓ V \ {X, Y} that
d-separates X from Y. From Theorem 17, it follows that an ADMG without directed
mixed cycles is maximal. On the other hand, there exist MAGs which have directed
mixed cycles (see Figure 4). Thus, the class of ADMGs without directed mixed cycles is
a strict subclass of MAGs.

Richardson and Spirtes (2002, p.979) showed the following pairwise Markov prop-
erty for a MAG G:

I({Vi}, anG({Vi, Vj}) \ {Vi, Vj}, {Vj})
for any two nonadjacent vertices Vi and Vj. Richardson and Spirtes (2002) proved
that this pairwise Markov property implies the global Markov property assuming a
Gaussian parametrization. This does not trivially imply our results in Section 3.3 and
our results cannot be considered as a special case of the results on MAGs. The two
pairwise Markov properties involve two different forms of conditioning sets. The
pairwise Markov property for MAGs involves considerably larger conditioning sets
than our pairwise Markov property: the conditioning set includes all ancestors of Vi
and Vj, which is undesirable for our purpose of using the zero partial correlations to
test a model.

Also, it should be stressed that our results do not depend on a specific parameteri-
zation. We only require the composition axiom to be satisfied. In contrast, Richardson
and Spirtes (2002) consider only Gaussian parameterizations. It requires further study
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whether the pairwise Markov property for MAGs can be generalized to the class of
distributions satisfying the composition axiom.

In the next section, we consider general ADMGs and try to eliminate redundant
conditional independence relations from (LMP,�). The class of MAGs is clearly a (strict)
subclass of ADMGs. Hence, given a MAG, we have two options: either we use the
result in the next section or the pairwise Markov property for MAGs. Although the
pairwise Markov property for MAGs gives fewer zero partial correlations (one for each
nonadjacent pair of vertices), it is possible that in some cases we are better off using the
result in the next section (because of the cost incurred by the large conditioning sets in
the pairwise Markov property for MAGs). An example of this situation will be given in
the next section.

Richardson and Spirtes (2002) also proved that for a Gaussian distribution encoded
by a MAG all the constraints on the distribution (that is, on the covariance matrix)
are implied by the vanishing partial correlations given by the global Markov property.
Hence, this also holds in a linear SEM represented by an ADMG without directed mixed
cycles which is a special type of MAG.

3.4.2. CHAIN GRAPHS

The graph that results from replacing bi-directed edges with undirected edges in an
ADMG without directed mixed cycles is a chain graph. The class of chain graphs has
been studied extensively (see Lauritzen, 1996, for a review).

Some Markov properties have been proposed for chain graphs. The first Markov
property for chain graphs has been proposed by Lauritzen and Wermuth (1989) and
Frydenberg (1990). Andersson et al. (2001) have introduced another Markov property.
These two Markov properties do not correspond to the Markov property for ADMGs.
Let G be an ADMG without directed mixed cycles and G0 be the chain graph obtained
by replacing bi-directed edges with undirected edges. In general, the set of conditional
independence relations given by the Markov property for G is not equivalent to that
given by either of the two Markov properties for chain graphs. However, there are
other Markov properties for chain graphs that correspond to the Markov property for
ADMGs without directed mixed cycles (Cox and Wermuth, 1993; Wermuth and Cox,
2001, 2004).4

4. Markov Properties for General ADMGs
When an ADMG G has directed mixed cycles, (RLMP), (RLMP,�c), and (PMP,�c) are
no longer equivalent to (GMP) while (LMP,�) still is. In this section, we show that
the number of conditional independence relations given by (LMP,�) for an arbitrary
ADMG that might have directed mixed cycles can still be reduced. We introduce a
procedure to reduce (LMP,�). We then give an example to illustrate the procedure.

4.1. Reducing the Ordered Local Markov Property

First, we introduce a lemma that gives a condition by which a conditional independence
relation renders another conditional independence relation redundant.

4. In their terminology, ADMGs without directed mixed cycles correspond to chain graphs with dashed
arrows and dashed edges.
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Figure 5: The relationship between A and A0 that satisfy the conditions in Lemma 18.
The induced subgraph GA is shown. The vertices of GA are decomposed into
two disjoint subsets deGA(T) and A0.

Lemma 18 Given an ADMG G, a consistent ordering � on the vertices of G and a vertex X,
assume that a probability distribution P satisfies the global Markov property for GpreG,�(X)\{X}.
Let A = preG,�(X) and A0 be a maximal ancestral set with respect to mb(X, A0) such that
X 2 A0 ⇢ A, A0 \ disGA(X) = disGA0 (X) and paG(disGA(X) \ disGA0 (X)) ✓mb(X, A0).
Then,

I({X}, mb(X, A), A \ (mb(X, A) [ {X})) (14)
implies

I({X}, mb(X, A0), A0 \ (mb(X, A0) [ {X})).
We define rdG,�(X) to be the set of all A0 satisfying this condition.

Proof: First, we show the relationships among A, disGA(X), mb(X, A) and A0, disGA0 (X),
mb(X, A0). By Lemma 6, we have

A0 = A \ deGA(h(X, A0)) (15)

where
h(X, A0) ⌘ spGA

⇣

disGA0 (X)
⌘

\
⇣

{X} [mb(X, A0)
⌘

.

disGA0 (X) and h(X, A0) are subsets of disGA(X). Since disGA0 (X) ✓ {X} [mb(X, A0)
(by the definition of the Markov blanket), disGA0 (X) \ h(X, A0) = ∆. Thus, we can
decompose the set disGA(X) into 3 disjoint subsets as follows.

disGA(X) = disGA0 (X) [ h(X, A0) [ B (16)

where
B ⌘ disGA(X) \

⇣

disGA0 (X) [ h(X, A0)
⌘

.

We have

A0 \ disGA(X) = A0 \
⇣

disGA0 (X) [ h(X, A0) [ B
⌘

= disGA0 (X) [ B
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Figure 6: (a) An ADMG with directed mixed cycles (b) Illustration of the procedure
GetOrdering. The modified graph after the first step is shown.

since disGA0 (X) ✓ A0, B ✓ A0 and A0 \ h(X, A0) = ∆. From the assumption in Lemma
18 that A0 \ disGA(X) = disGA0 (X), it follows that B = ∆. Thus, from (16), we have

disGA(X) \ disGA0 (X) = h(X, A0). (17)

Let T = disGA(X) \ disGA0 (X) = h(X, A0). Then,

mb(X, A) = mb(X, A0) [ T [ paG(T)
= mb(X, A0) [ T (18)

since paG(T) ✓ mb(X, A0) by our assumption. Thus A decomposes into

A = A0 [ deGA(T) (19)

since deGA(T) ✓ A and (15).
The key relationships among A, disGA(X), mb(X, A) and A0, disGA0 (X), mb(X, A0)

are given by (17)–(19). Figure 5 shows these relationships. We are now ready to prove
that I({X}, mb(X, A0), A0 \ (mb(X, A0) [ {X})) can be derived from I({X}, mb(X, A),
A \ (mb(X, A) [ {X})). From (18) and (19), it follows that

A \ (mb(X, A) [ {X}) = (A0 [ deGA(T)) \ (mb(X, A0) [ {X} [ T).

Since A0 \ deGA(T) = ∆, (mb(X, A0) [ {X}) \ T = ∆, mb(X, A0) [ {X} ✓ A0 and
T ✓ deGA(T), we have

A \ (mb(X, A) [ {X}) =
⇣

A0 \ (mb(X, A0) [ {X})
⌘

[
⇣

deGA(T) \ T
⌘

. (20)

Plugging (18) and (20) into (14), we get

I
⇣

{X}, mb(X, A0) [ T,
⇣

A0 \ (mb(X, A0) [ {X})
⌘

[
⇣

deGA(T) \ T
⌘⌘

.

From the decomposition axiom, it follows that

I({X}, mb(X, A0) [ T, A0 \ (mb(X, A0) [ {X})). (21)
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The last step is to remove T from the conditioning set to obtain I({X}, mb(X, A0),
A0 \ (mb(X, A0) [ {X})). We claim that

I(T, mb(X, A0), A0 \ (mb(X, A0) [ {X})). (22)

We first argue that T is d-separated from A0 \ (mb(X, A0) [ {X}) given mb(X, A0).
Consider a vertex t 2 T and a vertex a 2 A0 \ (mb(X, A0) [ {X}). Note that for any
bi-directed edge t$ b in GA, b is either in T or disGA0 (X). There are only four possible
cases for any path in GA from t to a.

1. t g · · · a

2. t! · · ·! g ⇤ · · · a

3. t$$ · · ·$ d g · · · a

4. t$$ · · ·$ d! · · ·! g ⇤ · · · a

In case 1, g 2 mb(X, A0) since paG(T) ✓ mb(X, A0). Thus, the path is not d-connecting.
In case 2, g is a descendant of t. Since mb(X, A0) does not contain any descendant of t,
the path is not d-connecting. Case 3 is similar to case 1, but there are one or more bi-
directed edges after t. d is either in T or disGA0 (X). It follows that g 2 mb(X, A0), so the
path is not d-connecting. Case 4 is similar to case 2, but there are one or more bi-directed
edges after t. If d is in T, the argument for case 2 can be applied. If d is in disGA0 (X), then
d 2 mb(X, A0), which implies that the path is not d-connecting. This establishes that T
is d-separated from A0 \ (mb(X, A0)[ {X}) given mb(X, A0). By the assumption that P
satisfies the global Markov property for GpreG,�(X)\{X}, (22) holds. Finally, from (21),(22)
and the contraction axiom, it follows that I({X}, mb(X, A0), A0 \ (mb(X, A0) [ {X})).
⌅

For example, consider the ADMG G in Figure 2 and a consistent ordering V1 �
V2 � V3 � V4 � V5 � V6 � V7. Assume that the global Markov property for GpreG,�(V6)

is satisfied. Let A = {V1, V2, V3, V4, V5, V6, V7} and A0 = {V1, V2, V3, V4, V6, V7}. Then,
disGA(V7) = {V5, V6, V7}, disGA0 (V7) = {V6, V7}, A0 \ disGA(V7) = {V6, V7} =
disGA0 (V7) and paG(disGA(V7) \ disGA0 (V7)) = {V3} ✓ {V3, V4, V6} = mb(V7, A0). Thus,
I({V7}, {V3, V4, V6}, {V1, V2}) follows from I({V7}, {V3, V4, V5, V6}, {V1, V2}). Note
that in the proof of Lemma 18, the composition axiom is not used. Thus, Lemma 18
can be used to reduce the ordered local Markov property for ADMGs associated with
an arbitrary probability distribution. Also, note that the condition that P satisfies the
global Markov property for GpreG,�(X)\{X} is always satisfied in a recursive application
of this lemma in Theorem 21.

We now introduce a key concept in eliminating redundant conditional independence
relations from (LMP,�).

Definition 19 (C-ordered Vertex) Given a consistent ordering� on the vertices of an ADMG
G, a vertex X is said to be c-ordered in � if

1. all vertices in disG(X) \ preG,�(X) are consecutive in � and

2. for any two vertices Y and Z in disG(X) \ preG,�(X), there is no directed edge between
Y and Z.
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procedure ReduceMarkov
INPUT: An ADMG G and a consistent ordering � on the vertices of G
OUTPUT: A set of conditional independence relations S
S ∆
for i = 1, . . . , n do

Ii  ∆
if Vi is c-ordered in � then

for nonadjacent Vj � Vi do
Ii  Ii [ I({Vi}, Zij, {Vj}) where Zij is any set of vertices such that Zij d-separates
Vi from Vj and 8Z 2 Zij, d(Vi, Z) < d(Vi, Vj)

end for
else

for all maximal ancestral sets A with respect to mb(Vi, A) such that
Vi 2 A ✓ preG,�(Vi), A /2 rdG,�(Vi) do

Ii  Ii [ I({Vi}, mb(Vi, A), A \ (mb(Vi, A) [ {Vi}))
end for

end if
S S [ Ii

end for

Figure 7: A procedure to generate a reduced set of conditional independence relations
for an ADMG G and a consistent ordering �

If no bi-directed edge is connected to X, then X is defined to be c-ordered. For example,
consider the ADMG G in Figure 6 (a). �: V1 � V2 � V3 � V4 � V5 � V6 � V7 � V8 �
V9 is a consistent ordering on the vertices of G. V1, V2, . . . , V8 are c-ordered in � but V9
is not since V5 and V9 are not consecutive in �.

The key observation, which will be proved, is that c-ordered vertices contribute to
eliminating many redundant conditional independence relations invoked by the ordered
local Markov property (LMP,�). We provide two procedures. The first procedure
ReduceMarkov in Figure 7 constructs a list of conditional independence relations
in which some redundant conditional independence relations from (LMP,�) are not
included (all the conditional independence relations identified by Lemma 18 are not
included). ReduceMarkov takes as input a fixed ordering �. The second procedure
GetOrdering in Figure 9 gives a good ordering that might have many c-ordered vertices.

We first describe the procedure ReduceMarkov. Given an ADMG G and a consistent
ordering �, ReduceMarkov gives a set of conditional independence relations which
will be shown to be equivalent to the global Markov property for G. For each vertex
Vi, ReduceMarkov generates a set of conditional independence relations. If Vi is c-
ordered, the relations that correspond to the pairwise Markov property are generated.
Otherwise, the relations that correspond to the ordered local Markov property are
generated, and Lemma 18 is used to remove some redundant relations. The output
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S = ReduceMarkov(G,�) can be described as follows:

S =
[

X:X is c-ordered in �

⇣

[

Y:Y�X
I
�{X}, ZXY, {Y}�

⌘

[

[

X:X is not c-ordered in �

⇣

[

all maximal
sets A with respect

to mb(X,A):
X2A✓preG,�(X),

A/2rdG,�(X)

I
�{X}, mb(X, A), A \ (mb(X, A) [ {X})�

⌘

(23)

where ZXY is any set of vertices such that ZXY d-separates X from Y and 8Z 2 ZXY,
d(X, Z) < d(X, Y).

If a vertex X is c-ordered, O(n) conditional independence relations (or zero partial
correlations) are added to S. Otherwise, O(2n) conditional independence relations may
be added to S and O(n2n) zero partial correlations may be invoked. Furthermore, a
c-ordered vertex typically involves a smaller conditioning set. I({X}, ZXY, {Y}) has the
conditioning set |ZXY|  |paG(X)| while I({X}, mb(X, A), A \ (mb(X, A) [ {X})) has
the conditioning set |mb(X, A)| � |paG(X)|.

We now prove that the conditional independence relations produced by Reduce-
Markov can derive all the conditional independence relations invoked by the global
Markov property.

Definition 20 (S-Markov Property (S-MP,�)) Let G be an ADMG and � be a consistent
ordering on the vertices of G. Let S be the set of conditional independence relations given by
ReduceMarkov(G,�). A probability distribution P is said to satisfy the S-Markov property for
G with respect to �, if

(S-MP,�) P satisfies all the conditional independence relations in S.

Theorem 21 Let G be an ADMG and � be a consistent ordering on the vertices of G. Let S be
the set of conditional independence relations given by ReduceMarkov(G,�). If a probability
distribution P satisfies the composition axiom, then

(GMP)() (S-MP,�).

Proof: (GMP) =) (S-MP,�) since every conditional independence relation in (S-MP,�)
corresponds to a valid d-separation. We show (S-MP,�) =) (GMP). Without any loss
of generality, let �: V1 � . . . � Vn. The proof is by induction on the sequence of
ordered vertices. Suppose that (S-MP,�) =) (GMP) holds for V1, . . . Vi�1. Let Si�1 =
I1 [ . . . [ Ii�1. Then, by the induction hypothesis, Si�1 contains all the conditional
independence relations invoked by (LMP,�) for V1, . . . Vi�1. If Vi is not c-ordered,
Ii = I({Vi}, mb(Vi, A), A \ (mb(Vi, A) [ {Vi})) for all maximal ancestral sets A such
that Vi 2 A ✓ preG,�(Vi), A /2 rdG,�(Vi). The conditional independence relations
invoked by (LMP,�) with respect to Vi and any A 2 rdG,�(Vi) can be derived from
other conditional independence relations by Lemma 18. Thus, Si = Si�1 [ Ii contains all
the conditional independence relations invoked by (LMP,�) for V1, . . . Vi, which implies
(GMP). If Vi is c-ordered, applying the arguments in the proof of (GMP)() (PMP,�c),
we have

I({Vi}, paG(Vi), preG,�(Vi) \ ({Vi} [ paG(Vi) [ spG(Vi))).
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By the induction hypothesis and the definition of a c-ordered vertex, we have for all
Vj 2 disG(Vi) \ preG,�(Vi)

I({Vj}, paG(Vj), preG,�(Vj) \ ({Vj} [ paG(Vj) [ spG(Vj))).

By the arguments in the proof of (GMP) () (RLMP,�c), we have for all maximal
ancestral sets A such that Vi 2 A ✓ preG,�(Vi)

I({Vi}, mb(Vi, A), A \ (mb(Vi, A) [ {Vi})).
Therefore, Si = Si�1 [ Ii derives all the conditional independence relations invoked by
(GMP). ⌅

V
1

V
2

V
3

V
4

W

Figure 8: The c-component {V1, V2, V3, V4} has the root set {V1, V2}

As we have seen earlier, the number of zero partial correlations critically depends
on the number of c-ordered vertices in a given ordering. This motivates us to find the
ordering with the most c-ordered vertices. An obvious way of finding this ordering is to
explore the space of all the consistent orderings. However, this exhaustive search may
become infeasible as the number of vertices grows. We propose a greedy algorithm to
get an ordering that has a large number of c-ordered vertices. The basic idea is to first
find a large c-component in which many vertices can be c-ordered and place the vertices
consecutively in the ordering, then repeating this until we cannot find a set of vertices
that can be c-ordered. To describe the algorithm, we define the following notion, which
identifies the largest subset of a c-component that can be c-ordered.

Definition 22 (Root Set) The root set of a c-component C, denoted rt(C) is defined to be the
set {Vi 2 C | there is no Vj 2 C such that a directed path Vj ! . . .! Vi exists in G}.

For example, the c-component {V1, V2, V3, V4} in Figure 8 has the root set {V1, V2}. V3
and V4 are not in the root set since there are paths V2 ! V3 and V1 !W ! V4. The root
set has the following properties.

Proposition 23 Let � be a consistent ordering on the vertices of an ADMG G and C be a
c-component of G. If the vertices in rt(C) are consecutive in �, then all the vertices in rt(C) are
c-ordered in �.

Proof: Assume that the vertices in rt(C) are consecutive in �. Then, for X 2 rt(C),
disG(X) \ preG,�(X) ✓ rt(C). Thus, there is no directed edge between any two vertices
in disG(X) \ preG,�(X). ⌅

Proposition 24 Let � be a consistent ordering on the vertices of an ADMG G and C be a
c-component of G. If a vertex X in C is c-ordered in �, then X 2 rt(C).

Proof: Assume that X is c-ordered in �. Suppose for a contradiction that X /2 rt(C).
Then, there exists an ancestor Y of X in C. If there exists a vertex Z such that Z /2 C,

205



KANG TIAN

procedure GetOrdering
INPUT: An ADMG G
OUTPUT: A consistent ordering � on V
Step 1:
G0  G (V0 is the set of vertices of G)
while (there is a c-component C of G0 such that |rt(C)| > 1) do

M ∆
for each c-component C of G0 do

if |rt(C)| > |M| then
M rt(C)

end if
end for
Add a vertex VM to G0V0\M
Draw an edge VM  X (respectively VM ! X, VM $ X) if there is
Y  X (respectively Y ! X, Y $ X) in G0 such that Y 2 M, X 2 V0 \ M
Let G0 be the resulting graph

end while
Step 2:
Let �0 be any consistent ordering on V0. Construct a consistent ordering � from �0 by
replacing each VS 2 V0 \ V with the vertices in S (the ordering of the vertices in S is
arbitrary)

Figure 9: A greedy algorithm to generate a good consistent ordering on the vertices of
an ADMG G

Y ! · · · ! Z ! · · · ! X. Then, the first condition of a c-ordered vertex is violated.
Otherwise, the second condition is violated. ⌅

Proposition 23 and 24 imply that the root set of a c-component is the largest subset
of the c-component that can be c-ordered in a consistent ordering. If G does not have
directed mixed cycles, rt(C) = C for every c-component C.

The procedure GetOrdering in Figure 9 is our proposed greedy algorithm that
generates a good consistent ordering for G. In Step 1, it searches for the largest root set
M and then merges all the vertices in M to one vertex VM modifying edges accordingly.
Then, it repeats the same operation for the modified graph until there is no root set
that contains more than one vertex. Since the vertices in a root set are merged at each
iteration, the modified graph is acyclic as otherwise there would be a directed path
between two vertices in the root set, which contradicts the condition of a root set.
After Step 1, we can easily obtain a consistent ordering for the original graph from the
modified graph.

4.2. An Example

We show the application of the procedures ReduceMarkov and GetOrdering by con-
sidering the ADMG G in Figure 6 (a). First, we apply GetOrdering to get a consistent
ordering on the vertices V of G. In Step 1, we first look for the largest root set. The
c-component {V6, V7, V8} has the largest root set {V6, V7, V8}. Then, the vertices in
{V6, V7, V8} are merged into a vertex V678. Figure 6 (b) shows the modified graph G0
after the first iteration of the while loop. In the next iteration, we find that every c-

206



MARKOV PROPERTIES FOR LINEAR CAUSAL MODELS WITH CORRELATED ERRORS

component has the root set of size 1. Note that for C = {V5, V9}, rt(C) = {V5, V9} in G
but rt(C) = {V5} in G0. Thus, Step 1 ends. In Step 2, from G0 in Figure 6 (b), we can
obtain an ordering �0: V1 � V2 � V3 � V4 � V5 � V678 � V9. This is converted to a
consistent ordering �: V1 � V2 � V3 � V4 � V5 � V6 � V7 � V8 � V9 for G.

With the ordering �, we now apply ReduceMarkov to obtain a set of conditional
independence relations that can derive those invoked by the global Markov property.
It is easy to see that the vertices V1, . . . , V8 are c-ordered in �. Thus, the following
conditional independence relations corresponding to the pairwise Markov property are
added to the set S (initially empty).

I({V2}, ∆, {V1}), I({V3}, ∆, {V2}),
I({V4}, ∆, {V3, V1}), I({V5}, ∆, {V4, V3, V2, V1}),
I({V6}, ∆, {V5, V4, V2}), I({V6}, {V3}, {V1}),
I({V7}, ∆, {V5, V4, V2}), I({V7}, {V3}, {V1}),
I({V8}, ∆, {V6, V3, V1}), I({V8}, {V4}, {V2}). (24)

V9 is not c-ordered in � since V5 is not adjacent in �. Thus, we use the ordered local
Markov property (LMP,�) for V9. The maximal ancestral sets that we need to consider
are

A1 = anG({V6, V8, V9}) = {V1, V2, V3, V4, V5, V6, V7, V8, V9} and
A2 = anG({V4, V6, V9}) = {V1, V2, V3, V4, V6, V7, V9}.

The corresponding conditional independence relations are

I({V9}, {V7, V5}, {V8, V6, V4, V3, V2, V1}), (25)
I({V9}, {V7}, {V6, V4, V3, V2, V1}). (26)

However, it turns out that A2 2 rdG,�(V9) and (26) is not added to S. We check the
condition of Lemma 18. The global Markov property for GpreG,�(V8) is satisfied by (24).
Also,

disGA1
(V9) = {V5, V9},

disGA2
(V9) = {V9},

A2 \ disGA1
(V9) = {V9} = disGA2

(V9),

paG(disGA1
(V9) \ disGA2

(V9)) = ∆ ✓ {V7} = mb(V9, A2).

Therefore, the condition of Lemma 18 is satisfied and it follows that (26) is redundant.
To see how much we reduced the testing requirements, the conditional independence
relations invoked by (LMP,�) are shown below.

I({V2}, ∆, {V1}), I({V3}, {V1}, {V2}),
I({V4}, {V2}, {V3, V1}), I({V5}, ∆, {V4, V3, V2, V1}),
I({V6}, {V3}, {V5, V4, V2, V1}), I({V7}, {V3}, {V5, V4, V2, V1}),
I({V7}, {V6, V3}, {V5, V4, V2, V1}), I({V8}, {V5, V4}, {V6, V3, V2, V1}),
I({V8}, {V7, V5, V4, V3}, {V2, V1}), I({V8}, {V7, V6, V5, V4, V3}, {V2, V1}),
I({V9}, {V7}, {V6, V4, V3, V2, V1}), I({V9}, {V7, V5}, {V8, V6, V4, V3, V2, V1}). (27)
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S invokes 26 zero partial correlations while (LMP,�) invokes 39. Also, S involves much
smaller conditioning sets. We have at most one vertex in each conditioning set in (24)
and two vertices in (25) while 23 zero partial correlations in (27) involve more than 2
vertices in the conditioning set.

The ADMG G in this example turns out to be a MAG. As we discussed in Section
3.4.1, we have two options: either we use the constraints in (24) and (25) or the con-
straints given by the pairwise Markov property for MAGs. In this example, both sets of
constraints involve the same number of zero partial correlations. However, the pairwise
Markov property for MAGs involves much larger conditioning sets. For example, the
pairwise Markov property for MAGs gives the following conditional independence
relation for the pair V6 and V8: I({V8}, {V5, V4, V3, V2, V1}, {V6}). Our method uses an
empty set as the conditioning set for the pair. Hence, in this example, we are better off
using the constraints in (24) and (25).

4.3. Comparison of (LMP,�) and (S-MP,�)

From (23), it is clear that (S-MP,�) invokes fewer conditional independence relations
than (LMP,�) if there are c-ordered vertices in �. But how much more economical is
(S-MP,�) than (LMP,�) and for what type of graphs is the reduction large?

For simplicity, we will compare the number of conditional independence relations
rather than zero partial correlations and ignore the reduction done by Lemma 18. For
now assume

S =
[

X:X is c-ordered in �
I({X}, paG(X), preG,�(X) \ ({X} [ paG(X) [ spG(X)))

[

[

X:X is not c-ordered in �

⇣

[

all maximal
sets A

with respect
to mb(X,A):

X2A✓preG,�(X)

I
�{X}, mb(X, A), A \ (mb(X, A) [ {X})�

⌘

.

Let M(X,�) be the number of different Markov blankets of a vertex X, that is,
M(X,�) =

�

�

�

{disGA(X) | A is an ancestral set such that X 2 A ✓ preG,�(X)}
�

�

�

, and
C(�) be the set of vertices that are c-ordered in �. Then, (LMP,�) lists ÂX2V M(X,�)
conditional independence relations and (S-MP,�) lists |C(�)|+ ÂX/2C(�) M(X,�) con-
ditional independence relations. Hence, the difference in the number of conditional
independence relations between (LMP,�) and (S-MP,�) is

Â
X2C(�)

⇣

M(X,�)� 1
⌘

.

This difference is large when |C(�)| or M(X,�) for each X is large.
The size of C(�) depends on the number of directed mixed cycles. From Definition

19, it follows that C(�) is large if there are a small number of directed mixed cycles.
Note that a directed mixed cycle such as that in Figure 4 induces the violation of the
first condition in Definition 19 and a directed mixed cycle of the form a $! b induces the
violation of the second condition in Definition 19.

M(X,�) depends on the structure of disG(X) \ preG,�(X). We will reformulate
M(X,�) to show the properties that affect M(X,�). Let G$,dis(X,�) = (V0, E0) where
V0 = disG(X) \ preG,�(X) and E0 = {Vi $ Vj | Vi $ Vj in GV0}. For example, for an
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ADMG G in Figure 8 and an ordering V1 � V2 � V3 � V4, G$,dis(V3,�) is V1 $ V2 $
V3. Let G$,dis(X,�)S be the induced subgraph of G$,dis(X,�) on a set S ✓ disG(X) \
preG,�(X). Then, M(X,�) =

�

�

�

{S | S ✓ disG(X) \ preG,�(X) such that G$,dis(X,�)S is

a connected component of G$,dis(X,�)S [ (anG(S) \ disG(X) \ preG,�(X))}
�

�

�

that is, M(X,�)
corresponds to a set of subsets S of disG(X) \ preG,�(X) satisfying two conditions: (i)

G$,dis(X,�)S is connected; and (ii) for all Y 2
⇣

anG(S) \ disG(X) \ preG,�(X)
⌘

\ S,
there is no path from Y to any vertices in S. The condition (i) implies that M(X,�) will
be large if the vertices in disG(X)\ preG,�(X) are connected by many bi-directed edges.
The condition (ii) implies that M(X,�) will be large if there are few directed mixed
cycles. Note that for ADMGs without directed mixed cycles, (ii) trivially holds since
⇣

anG(S) \ disG(X) \ preG,�(X)
⌘

\ S = ∆. For example, consider a subset of vertices
{V1, . . . , Vk} in an ADMG with edges Vi $ Vk, i = 1, . . . , k� 1, which has no directed
mixed cycles. Then, for an ordering V1 � . . . � Vk, M(Vk,�) = 2k�1. Also, consider a
subset of vertices {V1, . . . , Vk} in an ADMG with edges V1

$! V2
$! · · · $! Vk, which has

k� 1 directed mixed cycles. Then, M(Vk,�) = 1. Hence, it is clear that M(X,�) is large
if

1. the set disG(X) \ preG,�(X) is large,

2. there are many bi-directed edges connecting vertices in disG(X) \ preG,�(X), and

3. there are few directed mixed cycles.

Thus, (LMP,�) will invoke a large number of conditional independence relations
for an ADMG with few directed mixed cycles and large c-components with many
bi-directed edges. For such an ADMG, ÂX2C(�)

⇣

M(X,�)� 1
⌘

, the reduction made
by (S-MP,�), is also large. An extreme case is an ADMG that has no directed mixed
cycles and each c-component of which is a clique joined by bi-directed edges. An
example of such an ADMG is given in Figure 10. For this ADMG and an ordering
W � V � X � Y � Z, (LMP,�) invokes M(W,�) + M(V,�) + M(X,�) + M(Y,�
) + M(Z,�) = 1 + 1 + 1 + 2 + 4 = 9 conditional independence relations while (S-
MP,�) invokes |C(�)| = n = 5 conditional independence relations. If we enlarge the
clique joined by bi-directed edges such that it contains k vertices, then (LMP,�) invokes
2 + Âk�1

i=0 2i = 1 + 2k conditional independence relations while (S-MP,�) invokes k + 2.
In general, although (S-MP,�) greatly reduces (LMP,�), it may still invoke an ex-

ponential number of conditional independence relations if there exist directed mixed
cycles.

5. Conclusion and Discussion
We present local Markov properties for ADMGs representing linear SEMs with corre-
lated errors. The results have applications in testing linear SEMs against the data by
testing for zero partial correlations implied by the model. For general linear SEMs with
correlated errors, we provide a procedure that lists a subset of zero partial correlations
that will imply all other zero partial correlations implied by the model. In particular, for
a class of models whose corresponding path diagrams contain no directed mixed cycles,
this subset invokes one zero partial correlation for each pair of variables.
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Figure 10: An example ADMG for which using (S-MP,�) is most beneficial. There is no
directed mixed cycle and each c-component is a clique joined by bi-directed
edges.

In general, our procedure may invoke an exponential number of zero partial cor-
relations if the path diagram G satisfies all of the following properties: (i) G has large
c-components; (ii) the vertices in each c-component are heavily connected by bi-directed
edges; and (iii) G has directed mixed cycles. If one of these properties is not satisfied,
then the number of zero partial correlations derived by our method is typically not
exponential.

For the class of MAGs, which is a strict superclass of ADMGs without directed mixed
cycles, one might use the pairwise Markov property for MAGs given in Richardson and
Spirtes (2002) instead of our results in Section 4. However, when the two approaches
give a similar number of constraints, it may be better to use our approach since it may
use smaller conditioning sets as shown in the example in Section 4.2.

The potential advantages of testing linear SEMs based on vanishing partial corre-
lations over the classical test method based on maximum likelihood estimation of the
covariance matrix have been discussed in Pearl (1998), Shipley (2000), McDonald (2002)
and Shipley (2003). The results presented in this paper provide a theoretical foundation
for the practical applications of this test method in linear SEMs with correlated errors.
How to implement this test method in practice still needs further study as it requires
multiple testing of hypotheses about zero partial correlations (Shipley, 2000; Drton
and Perlman, 2007). We also note that, in linear SEMs without correlated errors, all
the constraints on the covariance matrix are implied by vanishing partial correlations.
This also holds in linear SEMs with correlated errors that are represented by ADMGs
without directed mixed cycles. However, it is possible that linear SEMs with correlated
errors represented by ADMGs with directed mixed cycles may imply constraints on the
covariance matrix that are not implied by zero partial correlations.

Although the intended application is in linear SEMs, the local Markov properties
presented in the paper are valid for ADMGs associated with any probability distribu-
tions that satisfy the composition axiom. For example, any probability distribution that
is faithful5 to some DAG or undirected graph (and the marginals of the distribution)
satisfies the composition axiom.

Model debugging for ADMGs using vanishing partial correlations is another area of
current research. In this model debugging problem, the goal is to modify a graph based

5. A probability distribution P is said to be faithful to a graph G if all the conditional independence relations
embedded in P are encoded in G (via the global Markov property).
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on the pattern of rejected hypotheses. The properties of ADMGs presented in this paper
may facilitate the development of a new model debugging method.
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Abstract
We address the problem of improving the reliability of independence-based causal
discovery algorithms that results from the execution of statistical independence tests
on small data sets, which typically have low reliability. We model the problem as a
knowledge base containing a set of independence facts that are related through Pearl’s
well-known axioms. Statistical tests on finite data sets may result in errors in these
tests and inconsistencies in the knowledge base. We resolve these inconsistencies
through the use of an instance of the class of defeasible logics called argumentation,
augmented with a preference function, that is used to reason about and possibly cor-
rect errors in these tests. This results in a more robust conditional independence test,
called an argumentative independence test. Our experimental evaluation shows clear
positive improvements in the accuracy of argumentative over purely statistical tests.
We also demonstrate significant improvements on the accuracy of causal structure dis-
covery from the outcomes of independence tests both on sampled data from randomly
generated causal models and on real-world data sets.
Keywords: independence-based causal discovery, causal Bayesian networks, structure
learning, argumentation, reliability improvement

1. Introduction and Motivation
Directed graphical models, also called Bayesian networks, can be used to represent the
probability distribution of a domain. This makes them a useful and important tool for
machine learning where a common task is inference, that is, predicting the probability
distribution of a variable of interest given some other knowledge, usually in the form of
values of other variables in the domain. An additional use of Bayesian networks comes
by augmenting them with causal semantics that represent cause and effect relationships
in the domain. The resulting networks are called causal. An important problem is
inferring the structure of these networks, a process that is sometimes called causal
discovery, which can provide insights into the underlying data generation process.

Two major classes of algorithms exist for learning the structure of Bayesian net-
works. One class contains so-called score-based methods, which learn the structure by
conducting a search in the space of all structures in an attempt to find the structure
of maximum score. This score is usually penalized log-likelihood, for example, the
Bayesian Information Criterion (BIC) or the (equivalent) Minimum Description Length
(MDL). A second class of algorithms works by exploiting the fact that a causal Bayesian
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network implies the existence of a set of conditional independence statements between
sets of domain variables. Algorithms in this class use the outcomes of a number of
conditional independences to constrain the set of possible structures consistent with
these to a singleton (if possible) and infer that structure as the only possible one. As
such they are called constraint-based or independence-based algorithms. In this paper we
address open problems related to the latter class of algorithms.

It is well-known that independence-based algorithms have several shortcomings. A
major one has to do with the effect that unreliable independence information has on
the their output. In general such independence information comes from two sources:
(a) a domain expert that can provide his or her opinion on the validity of certain
conditional independences among some of the variables, sometimes with a degree of
confidence attached to them, and/or (b) statistical tests of independence, conducted
on data gathered from the domain. As expert information is often costly and difficult
to obtain, (b) is the most commonly used option in practice. A problem that occurs
frequently however is that the data set available may be small. This may happen for
various reasons: lack of subjects to observe (e.g., in medical domains), an expensive
data-gathering process, privacy concerns and others. Unfortunately, the reliability of
statistical tests significantly diminishes on small data sets. For example, Cochran (1954)
recommends that Pearson’s c2 independence test be deemed unreliable if more than
20% of the cells of the test’s contingency table have an expected count of less than 5 data
points. Unreliable tests, besides producing errors in the resulting causal model structure,
may also produce cascading errors due to the way that independence-based algorithms
work: their operation, including which test to evaluate next, typically depends on the
outcomes of previous ones. Thus a single error in a statistical test can be propagated
by the subsequent choices of tests to be performed by the algorithm, and finally when
the edges are oriented. Therefore, an error in a previous test may have large (negative)
consequences in the resulting structure, a property that is called instability in Spirtes
et al. (2000). One possible method for addressing the effect of multiple errors in the
construction of a causal model through multiple independence tests is the Bonferroni
correction (Hochberg, 1988; Abdi, 2007), which works by dividing the type I error
probability a of each test by the number of such tests evaluated during the entire
execution of the causal learning algorithm. As a result, the collective type I error
probability (of all tests evaluated) is a, that is, 0.05 typically. However, this may make
the detection of true dependences harder, as now larger data sets would be required to
reach the adjusted confidence threshold of each test. The types of adjustments that may
be appropriate for each case to tests that may be dependent is an open problem and the
subject of current research in statistics (Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001; Storey, 2002).

In this paper we present and evaluate a number of methods for increasing the
reliability of independence tests for small data sets. A result of this is the improvement
in reliability of independence-based causal discovery algorithms that use these data
sets, as we demonstrate in our experiments. We model this setting as a knowledge
base whose contents are propositions representing conditional independences that may
contain errors. Our main insight is to recognize that the outcomes of independence
tests are not themselves independent but are constrained by the outcomes of other tests
through Pearl’s well-known properties of the conditional independence relation (Pearl,
1988; Dawid, 1979). These can therefore be seen as integrity constraints that can correct
certain inconsistent test outcomes, choosing instead the outcome that can be inferred by
tests that do not result in contradictions. We illustrate this by an example.
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Example 1 Consider an independence-based knowledge base that contains the following propo-
sitions, obtained through statistical tests on data.

({0}??{1} | {2}) (1)
({0} 6?? {3} | {2}) (2)
({0}??{3} | {1, 2}) (3)

where (X??Y | Z) denotes conditional independence of the set of variables X with Y conditional
on set Z, and (X 6??Y | Z) denotes conditional dependence. Suppose that (3) is in fact wrong.
Such an error can be avoided if there exists a constraint involving these independence proposi-
tions. For example, suppose that we also know that the following rule holds in the domain (this
is an instance of an application of the Contraction and Decomposition axioms, described later in
Section 2):

({0}??{1} | {2}) ^ ({0} 6?? {3} | {2}) =) ({0} 6?? {3} | {1, 2}). (4)

Rule (4), together with independence proposition (1) and dependence proposition (2), contradict
independence proposition (3), resulting in an inconsistent knowledge base. If Rule (4) and
propositions (1) and (2) are accepted, then proposition (3) must be rejected (and its value
reversed), correcting the error in this case. The framework presented in the rest of the paper
provides a principled approach for resolving such inconsistencies.

The situation described in the previous example, while simple, illustrates the general
idea that we will use in the rest of the paper: the set of independences and dependences
used in a causal discovery algorithm form a potentially inconsistent knowledge base,
and making use of general rules, derived from axioms and theorems that we know
hold in the domain, helps us correct certain outcomes of statistical tests. In this way we
will be able to improve the reliability of causal discovery algorithms that use them to
derive causal models. To accomplish this we use the framework of argumentation, which
provides a sound and elegant way of resolving inconsistencies in such knowledge bases,
including ones that contain independences.

The rest of the paper is organized as follows. The next section introduces our
notation and definitions. Section 3 presents the argumentation framework and its
extension with preferences, and describes our approach for applying it to represent
and reason in knowledge bases containing independence facts that may be inconsistent.
Section 4 introduces the argumentative independence test, implemented by the top-
down algorithm introduced in Section 5. We then present an approximation for the
top-down algorithm in Section 6 that reduces its time complexity to polynomial. We
experimentally evaluate our approach in Section 7, and conclude with a summary and
possible directions of future research in Section 8. Most of the proofs are presented in
detail in Appendices A and B, which contain proofs for the computability (termination)
and the validity (no AIT test can return a dependence and an independence result at the
same time) of AIT, respectively. Note that, as our main goal in this paper is to address
the problem of robust causal learning and not necessarily to advance the theory of
argumentation itself, our exposition in the rest of the paper is geared toward causality
theorists and practitioners. As this community may be unfamiliar with the theory and
methods of the argumentation framework, we have included a self-contained discussion
that covers the basic definitions and theorems of argumentation theory in some detail.
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2. Notation and Preliminaries
In this work we denote random variables with capitals (e.g., X, Y, Z) and sets of variables
with bold capitals (e.g., X, Y, Z). In particular, we denote by V = {1, . . . , n} the set of
all n variables in the domain, naming the variables by their indices in V; for instance,
we refer to the third variable in V simply by 3. We assume that all variables in the
domain are discrete following a multinomial distribution or are continuous following a
Gaussian distribution. We denote the data set by D and its size (number of data points)
by N. We use the notation (X??Y | Z) to denote that the variables in set X are (jointly)
independent of those in Y conditional on the values of the variables in Z, for disjoint
sets of variables X, Y, and Z, while (X 6??Y | Z) denotes conditional dependence. For
the sake of readability, we slightly abuse this notation and use (X??Y | Z) as shorthand
for ({X}??{Y} | {Z}).

A Bayesian network (BN) is a directed graphical model which represents the joint
probability distribution over V. Each node in the graph represents one of the random
variables in the domain. The structure of the network implicitly represents a set of
conditional independences on the domain variables. Given the structure of a BN, the set
of independences implied by it can be identified by a process called d-separation (Pearl,
1988); the latter follows from the local Markov property that states that each node in the
network is conditionally independent of all its non-descendants in the graph given
its parents. All independences identified by d-separation are implied by the model
structure. If, in addition, all remaining triplets (X, Y, Z) correspond to dependencies,
we say that the BN is directed graph-isomorph (abbreviated DAG-isomorph) or simply
causal (as defined by Pearl, 1988). The concept of DAG-isomorphism is equivalent to
a property called Faithfulness in Spirtes et al. (2000). A graph G is said to be faithful
to some distribution if exactly those independences that exist in the distribution and
no others are returned by the process of d-separation on G. In this paper we assume
Faithfulness. For learning the structure of the Bayesian network of a domain we make
use of the PC algorithm (Spirtes et al., 2000), which is only able to correctly identify the
structure under the assumption of causal sufficiency. We therefore also assume causal
sufficiency. A domain is causally sufficient if it does not contain any hidden or latent
variables.

As mentioned above, independence-based algorithms operate by conducting a series
of conditional independence queries. For these we assume that an independence-query
oracle exists that is able to provide such information. This approach can be viewed as an
instance of the statistical query oracle theory of Kearns and Vazirani (1994). In practice
such an oracle does not exist, but can be implemented approximately by a statistical test
evaluated on the data set (for example, this can be Pearson’s conditional independence
c2 (chi-square) test (Agresti, 2002), Wilk’s G2 test, a mutual information test etc.). In this
work we used Wilk’s G2 test (Agresti, 2002). To determine conditional independence
between two variables X and Y given a set Z from data, the statistical test G2 (and
many other independence tests based on hypothesis testing, for example, the c2 test)
uses the values in the contingency table (a table containing the data point counts for
each possible combination of the variables that participate in the test) to compute a test
statistic. For a given value of the test statistic, the test then computes the likelihood of
obtaining that or a more extreme value by chance under the null hypothesis, which in
our case is that the two variables are conditionally independent. This likelihood, called
the p-value of the test, is then returned. The p-value of a test equals the probability of
falsely rejecting the null hypothesis (independence). Assuming that the p-value of a test
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(Symmetry) (X??Y | Z) () (Y??X | Z)
(Decomposition) (X??Y [W | Z) =) (X??Y | Z) ^ (X??W | Z)

(Weak Union) (X??Y [W | Z) =) (X??Y | Z [W) (5)

(Contraction) (X??Y | Z) ^ (X??W | Z [ Y) =) (X??Y [W | Z)
(Intersection) (X??Y | Z [W) ^ (X??W | Z [ Y) =) (X??Y [W | Z)

(Symmetry) (X??Y | Z) () (Y??X | Z)
(Composition) (X??Y | Z) ^ (X??W | Z) =) (X??Y [W | Z)

(Decomposition) (X??Y [W | Z) =) (X??Y | Z) ^ (X??W | Z)
(Intersection) (X??Y | Z [W) ^ (X??W | Z [ Y) =) (X??Y [W | Z)
(Weak Union) (X??Y [W | Z) =) (X??Y | Z [W) (6)

(Contraction) (X??Y | Z) ^ (X??W | Z [ Y) =) (X??Y [W | Z)
(Weak Transitivity) (X??Y | Z) ^ (X??Y | Z [ g) =) (X??g | Z) _ (g??Y | Z)

(Chordality) (a??b | g [ d) ^ (g??d | a [ b) =) (a??b | g) _ (a??b | d)

is p(X, Y | Z), the statistical test concludes independence if and only if p(X, Y | Z) is
greater than a threshold a, that is,

(X??Y | Z) () p(X, Y | Z) > a.

Common values in statistics for a are 0.05 and 0.01, corresponding to confidence thresholds
(1 � a) of 0.95 and 0.99 respectively. The value 0.10 for a is also sometimes used,
depending on the application, while values as low as 0.005 and 0.001 are sometimes
used for structure learning.

The conditional independences and dependences of a domain are connected
through a set of general rules, introduced in Pearl (1988) and shown boxed in Eq. (5).
These can be seen as constraints in a meta-space representing all possible independences
in the domain. More specifically, let us imagine a meta-space of binary variables, each
corresponding to the truth value of the independence of a triplet (X, Y | Z) (e.g., true
for independence and false for dependence). Each point in this space corresponds
to a conditional independence assignment to all possible triplets in the domain. In
this conceptual space not all points are tenable; in particular the set of rules of Eq. (5)
constrain the truth values of independences corresponding to triplets. For domains for
which there exists a faithful Bayesian network a more relaxed set of properties hold,
shown boxed in Eq. (6) where a, b, g and d correspond to single variables. In both sets of
axioms, the property of Intersection holds if the probability distribution of the domain
is positive, meaning that every assignment to all variables in the domain has a non-zero
probability. Eq. (6) were first introduced by Dawid (1979) in a slightly different form
and independently re-discovered by Pearl and Paz (1985).

Note that the axioms of Eq. (5) are necessarily incomplete; Studený (1991) showed
that there is no finite axiomatization of the conditional independence relation in general.
The implication of this is that there may be some inconsistencies involving some set of
independences and dependences that no method can detect and resolve.

In the next section we describe the argumentation framework, which allows one
to make beneficial use of these constraints. This is followed by its application to our
problem of answering independence queries from knowledge bases that contain sets of
potentially inconsistent independence propositions.

217



BROMBERG MARGARITIS

3. The Argumentation Framework
There exist two major approaches for reasoning with information contained in incon-
sistent knowledge bases such as those containing independence statements that were
described in the previous section. These two distinct approaches correspond to two
different attitudes: One is to resolve the inconsistencies by removing a subset of propo-
sitions such that the resulting KB becomes consistent; this is called belief revision in the
literature (Gärdenfors, 1992; Gärdenfors and Rott, 1995; Shapiro, 1998; Martins, 1992).
A potential shortcoming (Shapiro, 1998) of belief revision stems from the fact that it
removes propositions, which discards potentially valuable information. In addition,
an erroneous modification of the KB (such as the removal of a proposition) may have
unintended negative consequences if later more propositions are inserted in the KB. A
second approach to inconsistent KBs is to allow inconsistencies but to use rules that
may be possibly contained in it to deduce which truth value of a proposition query is
“preferred” in some way. One instance of this approach is argumentation (Dung, 1995;
Loui, 1987; Prakken, 1997; Prakken and Vreeswijk, 2002), which is a sound approach
that allows inconsistencies but uses a proof procedure that is able to deduce (if possi-
ble) that one of the truth values of certain propositions is preferred over its negation.
Argumentation is a reasoning model that belongs to the broader class of defeasible
logics (Pollock, 1992; Prakken, 1997). Our approach uses the argumentation framework
of Amgoud and Cayrol (2002) that considers preferences over arguments, extending
Dung’s more fundamental framework (Dung, 1995). Preference relations give an extra
level of specificity for comparing arguments, allowing a more refined form of selection
between conflicting propositions. Preference-based argumentation is presented in more
detail in Section 3.2.

We proceed now to describe the argumentation framework.

Definition 1 An argumentation framework is a pair hA,Ri, where A is a set of arguments
and R is a binary relation representing a defeasibility relationship between arguments, that is,
R ✓ A⇥A. (a, b) 2 R or equivalently “a R b” reads that argument a defeats argument b.
We also say that a and b are in conflict.

An example of the defeat relation R is logical defeat, which occurs when an argument
contradicts another logically.

The elements of the argumentation framework are not propositions but arguments.
Given a potentially inconsistent knowledge base K = hS, Yi with a set of propositions
S and a set of inference rules Y, arguments are defined formally as follows.

Definition 2 An argument over knowledge base hS, Yi is a pair (H, h) where H ✓ S such
that:

• H is consistent,

• H `Y h,

• H is minimal (with respect to set inclusion).

H is called the support and h the conclusion or head of the argument.

In the above definition `Y stands for classical logical inference over the set of
inference rules Y. Intuitively an argument (H, h) can be thought as an “if-then” rule,
that is, “if H then h.” In inconsistent knowledge bases two arguments may contradict or
defeat each other. The defeat relation is defined through the rebut and undercut relations,
defined as follows.
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Algorithm 1: Recursive computation of acceptable arguments: AccR = F (A,R, S)
1: S0  � S [ {a 2 A | a is defended by S}
2: if S = S0 then
3: return S0
4: else
5: return F (A,R, S0)
6: end if

Definition 3 Let (H1, h1), (H2, h2) be two arguments.

• (H1, h1) rebuts (H2, h2) iff h1 ⌘ ¬h2.

• (H1, h1) undercuts (H2, h2) iff 9h 2 H2 such that h ⌘ ¬h1.

If (H1, h1) rebuts or undercuts (H2, h2) we say that (H1, h1) defeats (H2, h2).

(The symbol “⌘” stands for logical equivalence.) In other words, (H1, h1) R (H2, h2) if
and only if (H1, h1) rebuts or undercuts (H2, h2).

The objective of argumentation is to decide on the acceptability of a given argument.
There are three possibilities: an argument can be accepted, rejected, or neither. This
partitions the space of arguments A in three classes:

• The class AccR of acceptable arguments. Intuitively, these are the “good” arguments.
In the case of an inconsistent knowledge base, these will be inferred from the
knowledge base.

• The class RejR of rejected arguments. These are the arguments defeated by accept-
able arguments. When applied to an inconsistent knowledge base, these will not
be inferred from it.

• The class AbR of arguments in abeyance. These arguments are neither accepted nor
rejected.

The semantics of acceptability proposed by Dung (1995) dictates that an argument
should be accepted if it is not defeated, or if it is defended by acceptable arguments, that
is, each of its defeaters is itself defeated by an acceptable argument. This is formalized
in the following definitions.

Definition 4 Let hA,Ri be an argumentation framework, and S ✓ A. An argument a is
defended by S if and only if 8b, if (b R a) then 9c 2 S such that (c R b).

Dung characterizes the set of acceptable arguments by a monotonic function F , that
is, F (S) ✓ F (S [ T) for some S and T. Given a set of arguments S ✓ A as input, F
returns the set of all arguments defended by S:

Definition 5 Let S ✓ A. Then F (S) = {a 2 A | a is defended by S}.

Slightly overloading our notation, we define F (?) to contain the set of arguments
that are not defeated by any argument in the framework.

Definition 6 F (?) = {a 2 A | a is not defeated by any argument in A}.

Dung proved that the set of acceptable arguments is the least fix-point of F , that is,
the smallest set S such that F (S) = S.
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Theorem 1 (Dung 1995) Let hA,Ri be an argumentation framework. The set of acceptable
arguments AccR is the least fix-point of the function F .

Dung also showed that if the argumentation framework hA,Ri is finitary, that
is, for each argument A there are finitely many arguments that defeat A, the least
fix-point of function F can be obtained by iterative application of F to the empty
set. We can understand this intuitively: From our semantics of acceptability it follows
that all arguments in F (?) are accepted. Also, every argument in F (F (?)) must be
acceptable as well since each of its arguments is defended by acceptable arguments.
This reasoning can be applied recursively until a fix-point is reached. This happens
when the arguments in S cannot be used to defend any other argument not in S, that is,
no additional argument is accepted. This suggests a simple algorithm for computing the
set of acceptable arguments. Algorithm 1 shows a recursive procedure for this, based
on the above definition. The algorithm takes as input an argumentation framework
hA,Ri and the set S of arguments found acceptable so far, that is, S = ? initially.

Let us illustrate these ideas with an example.

Example 2 Let hA,Ri be an argumentation framework defined by A = {a, b, c} and R =
{(a, b),
(b, c)}. The only argument that is not defeated is a, and therefore F (?) = {a}. Argu-
ment b is defeated by the acceptable argument a, so b cannot be defended and is therefore rejected,
that is, b 2 RejR. Argument c, though defeated by b, is defended by (acceptable argument) a
which defeats b, so c is acceptable. The set of acceptable arguments is therefore AccR = {a, c}
and the set of rejected arguments is RejR = {b}.

The bottom-up approach of Algorithm 1 has the disadvantage that it requires the
computation of all acceptable arguments to answer the acceptability status of a single
one. In practice, and in particular in the application of argumentation to independence
tests, the entire set of acceptable arguments is rarely needed. An alternative is to
take a top-down approach (Amgoud and Cayrol, 2002; Dung, 1995; Toni and Kakas,
1995; Kakas and Toni, 1999) that evaluate the acceptability of some input argument
by evaluating (recursively) the acceptability of its attackers. Below we present an
alternative algorithm, called the top-down algorithm, for deciding the acceptability of
an input argument. This algorithm is a version of the dialog tree algorithm of Amgoud
and Cayrol (2002), where details unnecessary for the current exposition are not shown.
This algorithm is provably equivalent to Algorithm 1 (whenever it is given the same
input it is guaranteed to produce the same output), but it is considerably more efficient
(as shown later in Section 5.2). We sketch the algorithm here and show a concrete
version using the preference-based argumentation framework in Section 3.2.

Given an input argument a, the top-down algorithm employs a goal-driven ap-
proach for answering whether a is accepted or not. Its operation is guided by the

Algorithm 2: Top-down computation of acceptable arguments: top-down(A,R, a)
1: defeaters set of arguments in A that defeat a according to R.
2: for d 2 defeaters do
3: if top-down(A,R, d) = accepted then
4: return rejected
5: end if
6: end for
7: return accepted
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same acceptability semantics as those used for Algorithm 1. Let us denote the pred-
icates A(a) ⌘ (a 2 AccR), R(a) ⌘ (a 2 RejR), and Ab(a) ⌘ (a 2 AbR). Then, the
acceptability semantics are as follows.

(Acceptance) A node is accepted iff it has no defeaters or all its defeaters are rejected:

A(a) () 8b 2 defeaters(a), R(b).

(Rejection) A node is rejected iff at least one of its defeaters is accepted:

R(a) () 9b 2 defeaters(a), A(b). (7)

(Abeyance) A node is in abeyance iff its not accepted nor rejected:

Ab(a) () ¬A(a) ^ ¬R(a).

The logic of these equations can be easily implemented with a recursive algorithm,
shown in Algorithm 2. The algorithm, given some input argument a, loops over all
defeaters of a and responds rejected if any of its defeaters is accepted (line 4). If
execution reaches the end of the loop at line 7 then that means that none of its defeaters
was accepted, and thus the algorithm accepts the input argument a. We can represent
the execution of the top-down algorithm graphically by a tree that contains a at the root
node, and all the defeaters of a node as its children. A leaf is reached when a node has
no defeaters. In that case the loop contains no iterations and line 7 is reached trivially.

Unfortunately, the top-down algorithm, as shown in Algorithm 2, will fail to ter-
minate when a node is in abeyance. This is clear from the following lemma (proved
formally in Appendix A but reproduced here to aid our intuition).

Lemma 7 For every argument a,

Ab(a) =) 9b 2 attackers(a), Ab(b).

(An attacker is a type of defeater; it is explained in detail in the next section. For
the following discussion the reader can substitute “attacker” with “defeater” in the
lemma above.) From this lemma we can see that, if an argument is in abeyance, its
set of defeaters must contain an argument in abeyance and thus the recursive call of
the top-down algorithm will never terminate, as there will always be another defeater
in abeyance during each call. While there are ways to overcome this difficulty in the
general case, we can prove that using the preference-based argumentation framework
(presented later in the paper) and for the particular preference relation introduced for
deciding on independence tests (c.f. Section 3.3), no argument can be in abeyance and
thus the top-down algorithm always terminates. A formal proof of this is presented
later in Section 5.

We conclude the section by proving that the top-down algorithm is equivalent to the
bottom-up algorithm of Algorithm 1 that is, given the same input as Algorithm 1 it is
guaranteed to produce the same output. The proof assumes no argument is in abeyance.
This assumption is satisfied for argumentation in independence knowledge bases (c.f.
Theorem 5, Section 5).

Theorem 2 Let a be an argument in the argumentation framework hA,Ri, and let F be the
set of acceptable arguments output by Algorithm 1. Assuming a is not in abeyance,

top-down(A,R, a) = accepted () a 2 F (8)
top-down(A,R, a) = rejected () a /2 F . (9)
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Proof According to Theorem 1, the fix point of function F returned by Algorithm
1 contains the set of arguments considered acceptable by the acceptability semantics
of Dung. As the top-down algorithm is a straightforward implementation of Dung’s
acceptability semantics expressed by Eq. (7), the double implication of Eq. (8) must
follow. To prove Eq. (9) we can prove the equivalent expression with both sides negated,
that is,

top-down(A,R, a) 6= rejected () a 2 F .

Since a is not in abeyance, if the top-down algorithm does not return rejected it must
return accepted. The double implication is thus equivalent to Eq. (8), which was
proved true.

3.1. Argumentation in Independence Knowledge Bases

We can now apply the argumentation framework to our problem of answering queries
from knowledge bases that contain a number of potentially inconsistent independences
and dependencies and a set of rules that express relations among them.

Definition 8 An independence knowledge base (IKB) is a knowledge base hS, Yi such
that its set of propositions S contains independence propositions of the form (X??Y | Z) or
(X 6??Y | Z) for X, Y and Z disjoint subsets of V, and its set of inference rules Y is either the
general set of axioms shown in Eq. (5) or the specific set of axioms shown in Eq. (6).

For IKBs, the set of arguments A is obtained in two steps. First, for each proposition
s 2 S (independence or dependence) we add to A the argument ({s}, s). This is a
valid argument according to Definition 2 since its support {s} is (trivially) consistent, it
(trivially) implies the head s, and it is minimal (the pair (?, s) is not a valid argument
since ? is equivalent to the proposition true which does not entail s in general). We
call arguments of the form ({s}, s) propositional arguments since they correspond to
single propositions. The second step in the construction of the set of arguments A
concerns rules. Based on the chosen set of axioms (general or directed) we construct an
alternative, logically equivalent set of rules Y0, each member of which is single-headed,
that is, contains a single proposition as the consequent, and decomposed, that is, each
of its propositions is an independence statement over single variables (the last step is
justified by the fact that typical algorithms for causal learning never produce nor require
the evaluation of independence between sets).

To construct the set of single-headed rules we consider, for each axiom, all possible
contrapositive versions of it that have a single head. To illustrate, consider the Weak
Transitivity axiom

(X??Y | Z) ^ (X??Y | Z [ g) =) (X??g | Z) _ (g??Y | Z)

from which we obtain the following set of single-headed rules:

(X??Y | Z) ^ (X??Y | Z [ g) ^ (X 6?? g | Z) =) (g??Y | Z)
(X??Y | Z) ^ (X??Y | Z [ g) ^ (g 6??Y | Z) =) (X??g | Z)
(X??Y | Z [ g) ^ (g 6??Y | Z) ^ (X 6?? g | Z) =) (X 6??Y | Z)

(X??Y | Z) ^ (g 6??Y | Z) ^ (X 6?? g | Z) =) (X 6??Y | Z [ g).
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To obtain decomposed rules we apply the Decomposition axiom to every single-headed
rule to produce only propositions over singletons. To illustrate, consider the Intersection
axiom:

(X??Y | Z [W) ^ (X??W | Z [ Y) =) (X??Y [W | Z).

In the above the consequent coincides with the antecedent of the Decomposition axiom,
and we thus replace the Intersection axiom with a decomposed version:

(X??Y | Z [W) ^ (X??W | Z [ Y) =) (X??Y | Z) ^ (X??W | Z).

Finally, note that it is easy to show that this rule is equivalent to two single-headed
rules, one implying (X??Y | Z) and the other implying (X??W | Z).

The result of the application of the above procedures is a set of single-headed,
decomposed rules Y0. We construct, for each such rule (F1 ^F2 . . . ^Fn =) j) 2 Y0
and for each subset of S that matches exactly the set of antecedents, that is, each
subset {j1, j2 . . . , jn} of S such that F1 ⌘ j1, F2 ⌘ j2 . . . Fn ⌘ jn, the argument
({j1 ^ j2 ^ . . . ^ jn}, j), and add it to A.1

IKBs can be augmented with a set of preferences that allow one to take into account
the reliability of each test when deciding on the truth value of independence queries.
This is described in the next section.

3.2. Preference-based Argumentation Framework

Following Amgoud and Cayrol (2002), we now refine the argumentation framework of
Dung (1995) for cases where it is possible to define a preference order P over arguments.

Definition 9 A preference-based argumentation framework (PAF) is a triplet hA,R, Pi
where A is a set of arguments, R ✓ A⇥A is a binary relation representing a defeat relationship
between pairs of arguments, and P is a (partial or total) order over A.

For the case of inconsistent knowledge bases, preference P over arguments fol-
lows the preference p over their support, that is, stronger support implies a stronger
argument, which is given as a partial or total order over sets of propositions. Formally:

Definition 10 Let K = hS, Yi be a knowledge base, p be a (partial or total) order on subsets
of S and (H, h), (H0, h0) two arguments over K. Argument (H, h) is p-preferred to (H0, h0)
(denoted (H, h)�p (H0, h0)) if and only if H is preferred to H0 with respect to p.

In what follows we overload our notation by using p to denote either the ordering over
arguments or over their supports.

An important sub-class of preference relations is the strict and transitive preference
relation, defined as follows.

Definition 11 We say that preference relation p over arguments is strict if the order of
arguments induced by it is strict and total, that is, for every pair of arguments a and b,

�

a�p b
� () ¬�b�p a

�

.

1. This is equivalent to propositionalizing the set of rules, which are first-order (the rules of Eqs. (5) and
(6) are universally quantified over all sets of variables, and thus are the rules in Y0). As this may be
expensive (exponential in the number of propositions), in practice it is not implemented in this way;
instead, appropriate rules are matched on the fly during the argumentation inference process.
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Definition 12 We say that preference relation p over arguments is transitive if, for every
three arguments a, b and c,

�

a�p b
� ^ �b�p c

�

=) �

a�p c
�

.

The importance of the properties of strictness and transitivity will become clear later
when we talk about the correctness of the argumentative independence test (defined
later in Section 4).

We now introduce the concept of attack relation, a combination of the concepts of
defeat and preference relation.

Definition 13 Let hA,R, ßi be a PAF, and a, b 2 A be two arguments. We say b attacks a if
and only if b R a and ¬(a�p b).

We can see that the attack relation is a special case of the defeat relation and therefore
the same conclusions apply; in particular Theorem 1, which allows us to compute the
set of acceptable arguments of a PAF using Algorithm 1 or Algorithm 2.

In Sections 3.3 and 4 below, we apply these ideas to construct an approximation to
the independence-query oracle that is more reliable than a statistical independence test.

3.3. Preference-based Argumentation in Independence Knowledge Bases

We now describe how to apply the preference-based argumentation framework of
Section 3.2 to improve the reliability of conditional independence tests conducted on
a (possibly small) data set. A preference-based argumentation framework has three
components. The first two, namely A and R, are identical to the general argumentation
framework. We now describe how to construct the third component, namely the
preference order p over subsets H of S, in IKBs. We define it using a belief estimate
n(H) that all propositions in H are correct,

H �p H0 () n(H) > n(H0) _ ⇥n(H) = n(H0) ^ f (H, H0)
⇤

. (10)

That is, H is preferred over H0 if and only if its belief of correctness is higher than
that of H0 or, in the case that these beliefs are equal, we break the tie using predicate f .
For that we require that

8H, H0 ✓ A, such that H 6= H0, f (H, H0) = ¬ f (H0, H). (11)

In addition, we require that f be transitive, that is, f (H, H0) ^ f (H0, H00) =) f (H, H00).
This implies that the preference relation p is transitive, which is a necessary condition
for proving a number of important theorems in Appendix A. In our implementation we
resolved ties by assuming an arbitrary order of the variables in the domain, determined
at the beginning of the algorithm and maintained fixed during its entire execution. Based
on this ordering, f (H, H0) resolved ties by the lexicographic order of the variables in H
and H0. By this definition, our f is both non-commutative and transitive.

Before we define n(H) we first show that p, as defined by Eqs. (10) and (11) and for
any definition of n(H), satisfies two important properties, namely strictness (Definition
11) and transitivity (Definition 12). We do this in the following two lemmas.

Lemma 14 The preference relation for independence knowledge bases defined by Equations
(10) and (11) is strict.
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Proof

H �p H0

() n(H) > n(H0) _ ⇥n(H) = n(H0) ^ f (H, H0)
⇤

[By Eq. (10)]

() n(H) � n(H0) ^ ⇥n(H) > n(H0) _ f (H, H0)
⇤

[Distributivity of
_ over ^]

() ¬�n(H0) > n(H) _ ⇥n(H0) � n(H) ^ f (H0, H)
⇤ 

[Double negation
and Eq. (11)]

() ¬�⇥n(H0) > n(H) _ n(H0) � n(H)
⇤ ^ ⇥n(H0) > n(H) _ f (H0, H)

⇤ 

() ¬�n(H0) � n(H) ^ ⇥n(H0) > n(H) _ f (H0, H)
⇤ 

() ¬�⇥n(H0) > n(H) _ n(H0) = n(H)
⇤ ^ ⇥n(H0) > n(H) _ f (H0, H)

⇤ 

() ¬�n(H0) > n(H) _ ⇥n(H0) = n(H) ^ f (H0, H)
⇤ 

[Common factor
n(H0) > n(H)]

() ¬(H0 �p H) [Again by Eq. (10)]

Lemma 15 The preference relation defined by Equations (10) and (11) is transitive.

Proof

H �p J ^ J �p K

()
n

n(H) > n(J) _ ⇥n(H) = n(J) ^ f (H, J)
⇤

o

^
n

n(J) > n(K) _ ⇥n(J) = n(K) ^ f (J, K)
⇤

o

[By Eq. (10)]

() ⇥

n(H) > n(J) ^ n(J) > n(K)
⇤

[Case A]

_ ⇥n(H) > n(J) ^ n(J) = n(K) ^ f (J, K)
⇤

[Case B]

_ ⇥n(H) = n(J) ^ f (H, J) ^ n(J) > n(K)
⇤

[Case C]

_ ⇥n(H) = n(J) ^ f (H, J) ^ n(J) = n(K) ^ f (J, K)
⇤

[Case D]

To complete the proof we show that each of the cases A, B, C and D implies H �p K.

(Case A) n(H) > n(J) ^ n(J) > n(K) =) n(H) > n(K) =) H �p K.

(Case B) n(H) > n(J) ^ n(J) = n(K) ^ f (J, K) =) n(H) > n(K) =) H �p K.

(Case C) n(H) = n(J) ^ f (H, J) ^ n(J) > n(K) =) n(H) > n(K) =) H �p K.

(Case D)

n(H) = n(J) ^ f (H, J) ^ n(J) = n(K) ^ f (J, K) =) n(H) = n(K) ^ f (H, K)
=) H �p K,

due to the transitivity of predicate f .
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We now return to the computation of n(H). We estimate the belief n(H) that a set
of propositions H is correct by assuming independence among these propositions.2
Overloading notation and denoting by n(h) the probability of an individual proposition
h being correct, the probability of all elements in H being correct under this assumption
of independence is

n(H) = ’
h2H

n(h). (12)

The belief that a proposition stating independence is correct can be computed in
different ways, depending on the particular choice of independence oracle chosen.
In this paper we use Wilk’s G2 test, but the resulting belief can be easily adapted to
any other independence oracle that produces p-values. We hope that the following
discussion serves as a starting point for others to adapt it to other types of independence
oracles.

As discussed in Section 2, the p-value p(X, Y | Z) computed by this test is the
probability of error in rejecting the null hypothesis (conditional independence in our
case) and assuming that X and Y are dependent. Therefore, the probability of a test
returning dependence of being correct is

nD(X 6??Y | Z) = 1� p(X, Y | Z)

where the subscript D indicates that this expression is valid only for dependencies.
Formally, the error of falsely rejecting the null hypothesis is called a type I error. To
determine the preference of a test returning independence we can, in principle, use
this procedure symmetrically: use the probability of error in falsely accepting the null
hypothesis (again, this is conditional independence), called a type II error, which we
denote by b(X, Y | Z). In this case we can define the preference of independence
(X??Y | Z) as the probability of correctly assuming independence by

nI(X??Y | Z) = 1� b(X, Y | Z)

where again the subscript I indicates that it is valid only for independences. Unfor-
tunately value of b cannot be obtained without assumptions, because it requires the
computation of the probability of the test statistic under the hypothesis of dependence,
and there are typically an infinite number of dependent models. In statistical applica-
tions, the b value is commonly approximated by assuming one particular dependence
model if prior knowledge about that is available. In the absence of such information
however in this paper we estimate it using a heuristic function of the p-value, assuming
the following heuristic constraints on b:

b(X, Y | Z) =

8

<

:

1 if p(X, Y | Z) = 0
a� a

2+|Z| if p(X, Y | Z) = 1
a if p(X, Y | Z) = a.

The first constraint (for p(X, Y | Z) = 0) corresponds to the intuition that when
the p-value of the test is close to 0, the test statistic is very far from its value under the
model that assumes independence, and thus we would give more preference to the

2. The assumption of independence is a heuristic, and is made mainly due to the difficulty of determining
the dependence between two or more statistical tests evaluated on the same data set. Other possible ways
of defining the preference of a set of propositions are possible. The problem of dealing with multiple tests
is an open problem and an area of active research in statistics; see Section 1 for a discussion.
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Figure 1: Preference functions nI(h) and nD(h) for statements of independence and
dependence respectively, as functions of the p-value of test h.

“dependence” decision. The intuition for the second case (p(X, Y | Z) = 1) is reversed—
when the value of the statistic is very close to the expected one under independence
then independence is preferred. The value of the second case is tempered by the number
of variables in the conditioning set. This reflects the practical consideration that, as the
number 2 + |Z| of variables involved in the test increases, given a fixed data set, the
discriminatory power of the test diminishes as |Z|! •. The third case causes the two
functions nI and nD to intersect at p-value a. This is due to fairness: in the absence of
non-propositional arguments (i.e., in the absence of inference rules in our knowledge
base), the independence decisions of the argumentation framework should match those
of the purely statistical tests, that is, “dependence” if and only if (p-value  a). If
instead we chose a different intersection point, then the resulting change in the outcome
of tests may have been simply due to bias in the independence decision that favors
dependence or independence, that is, equivalent to an arbitrary change of the threshold
of the statistical test, and the comparison of the statistical and the new test based on
argumentation would not be a fair one. The remaining values of b are approximated by
linear interpolation among the above points. The result is summarized in Fig. 1, which
depicts preference functions nD and nI with respect to the p-value of the corresponding
statistical test.

Let us illustrate how the preference-based argumentation can be used to resolve the
inconsistencies of Example 1.

Example 3 In example 1 we considered an IKB with the following propositions

(0??1 | 2) (13)
(0 6?? 3 | 2) (14)

(0??3 | {1, 2}) (15)
(0??1 | 2) ^ (0 6?? 3 | 2) =) (0 6?? 3 | {1, 2}). (16)
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Following the IKB construction procedure described in the previous section, propositions
(13), (14) and (15) correspond to the following arguments, respectively:

⇣n

(0??1 | 2)
o

, (0??1 | 2)
⌘

⇣n

(0 6?? 3 | 2)
o

, (0 6?? 3 | 2)
⌘

⇣n

(0??3 | {1, 2})
o

, (0??3 | {1, 2})
⌘

(17)

while rule (16) corresponds to the argument
⇣n

(0??1 | 2), (0 6?? 3 | 2)
o

, (0 6?? 3 | {1, 2})
⌘

. (18)

Let us extend this IKB with the following preference values for its propositions and rule.

Pref [(0??1 | 2)] = 0.8
Pref [(0 6?? 3 | 2)] = 0.7

Pref [(0??3 | {1, 2})] = 0.5.

According to Definition (10), the preference of each argument ({s}, s) is equal to the
preference value of {s} which is equal to the preference of s, as it contains only a single
proposition. Thus,

Pref
h⇣n

(0??1 | 2)
o

, (0??1 | 2)
⌘i

= 0.8

Pref
h⇣n

(0 6?? 3 | 2)
o

, (0 6?? 3 | 2)
⌘i

= 0.7

Pref
h⇣n

(0??3 | {1, 2})
o

, (0??3 | {1, 2})
⌘i

= 0.5.

The preference of argument (18) equals the preference of the set of its antecedents, which,
according to Eq. (12), is equal to the product of their individual preferences, that is,

Pref
h⇣n

(0??1 | 2), (0 6?? 3 | 2)
o

, (0 6?? 3 | {1, 2})
⌘i

= 0.8⇥ 0.7 = 0.56.

Proposition (15) and rule (16) contradict each other logically, that is, their corresponding
arguments (17) and (18) defeat each other. However, argument (18) is not attacked as its
preference is 0.56 which is larger than 0.5, the preference of its defeater argument (17). Since no
other argument defeats (18), it is acceptable, and (17), being attacked by an acceptable argument,
must be rejected. We therefore see that using preferences the inconsistency of Example 1 has been
resolved in favor of rule (16).

Let us now illustrate the defend relation, that is, how an argument can be defended
by some other argument. The example also illustrates an alternative resolution for the
inconsistency of Example 1, this time in favor of the independence proposition (15).

Example 4 Let us extend the IKB of Example 3 with two additional independence propositions
and an additional rule. The new propositions and their preference are:

Pref [(0??4 | {2, 3})] = 0.9
Pref [(0??3 | {2, 4})] = 0.8
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and the new rule is:

(0??4 | {2, 3}) ^ (0??3 | {2, 4}) =) (0??3 | 2).

This rule is an instance of the Intersection axiom followed by Decomposition.
The corresponding arguments and preferences are:

Pref
h⇣n

(0??4 | {2, 3})
o

, (0??4 | {2, 3})
⌘i

= 0.9

Pref
h⇣n

(0??3 | {2, 4})
o

, (0??3 | {2, 4})
⌘i

= 0.8

corresponding to the two propositions, and

Pref
h⇣n

(0??4 | {2, 3}), (0??3 | {2, 4})
o

, (0??3 | 2)
⌘i

= 0.9⇥ 0.8 = 0.72 (19)

corresponding to the rule.
As in Example 3, argument (17) is attacked by argument (18). Let us represent this

graphically using an arrow from argument a to argument b to denote that a attacks b, that is,

Argument (18) �! Argument (17).

If the IKB was as in Example 3, (18) would had been accepted and (17) would have been
rejected. However, the additional argument (19) now defeats (undercuts) (18) by logically
contradicting its antecedent (0 6?? 3 | 2). Since the preference of (19), namely 0.72, is larger
than that of (18), namely 0.56, (19) attacks (18). Therefore, (19) defends all arguments that are
attacked by argument (18), and in particular (17). Graphically,

Argument (19) �! Argument (18) �! Argument (17).

Note this is not sufficient for accepting (17) as it has not been proved that its defender (19) is
itself acceptable. We leave the proof of this as an exercise for the reader.

4. The Argumentative Independence Test (AIT)
The independence-based preference argumentation framework described in the previ-
ous section provides a semantics for the acceptance of arguments consisting of indepen-
dence propositions. However, what we need is a procedure for a test of independence
that, given as input a triplet s = (X, Y | Z) responds whether X is independent or
dependent of Y given Z. In other words, we need a semantics for the acceptance of
propositions, not arguments. Let us consider the two propositions related to the in-
put triplet s = (X, Y | Z), proposition (s = true), abbreviated st, and proposition
(s = false), abbreviated sf, that correspond to independence (X??Y | Z) and depen-
dence (X 6??Y | Z) of s, respectively. The basic idea for deciding on the independence
or dependence of input triplet s is to define a semantics for the acceptance or rejec-
tion of propositions st and sf based on the acceptance or rejection of their respective
propositional arguments ({st}, st) and ({sf}, sf). Formally,

(X 6??Y | Z) is accepted iff ({(X 6??Y | Z)}, (X 6??Y | Z)) is accepted, and
(X??Y | Z) is accepted iff ({(X??Y | Z)}, (X??Y | Z)) is accepted. (20)
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Based on this semantics over propositions, we decide on the dependence or inde-
pendence of triplet s as follows:

st = (X??Y | Z) is accepted =) (X??Y | Z)
sf = (X 6??Y | Z) is accepted =) (X 6??Y | Z). (21)

We call the test that determines independence in this manner the Argumentative
Independence Test or AIT. For the above semantics to be well-defined, a triplet s must
be either independent or dependent, that is, not both or neither. For that, exactly one of
the antecedents of the above implications of Eq. (21) must be true. Formally,

Theorem 3 For any input triplet s = (X, Y | Z), the argumentative independence test (AIT)
defined by Eqs. (20) and (21) produces a non-ambiguous decision, that is, it decides s evaluates
to either independence or dependence, but nor both or neither.

For that to happen, one and only one of its corresponding propositions st or sf
must be accepted. A necessary condition for this is given by the following theorem.

Theorem 4 Given a PAF hA,R, ßi with a strict and transitive preference relation p, every
propositional argument ({st}, st) 2 A and its negation ({sf}, sf) satisfy

({st}, st) is accepted iff ({sf}, sf) is rejected.

The above theorem is not sufficient because the propositions may still be in abeyance,
but this possibility is ruled out for strict preference relations by Theorem 5, presented in
the next section.

The formal proofs of Theorems 3, 4 and 5 are presented in Appendix B. We now
illustrate the use of AIT with an example.

Example 5 We consider an extension of Example 3 to illustrate the use of the AIT to decide
on the independence or dependence of input triplet (0, 3 | {1, 2}). According to Eq. (20) the
decision depends on the status of the two propositional arguments:

({(0 6?? 3 | {1, 2})}, (0 6?? 3 | {1, 2})), and (22)
({(0??3 | {1, 2})}, (0??3 | {1, 2})). (23)

Argument (23) is equal to argument (17) of Example 3 that was proved to be rejected in that
example. Therefore, according to Theorem 4, its negated propositional argument Eq. (22) must
be accepted, and we can conclude that triplet (0, 3 | {1, 2}) corresponds to a dependence, that is,
we conclude that (0 6?? 3 | {1, 2}).

5. The Top-down AIT Algorithm
We now discuss in more detail the top-down algorithm which is used to implement the
argumentative independence test, introduced in Section 3. We start by simplifying the
recursion of Eq. (7) that determines the state (accepted, rejected, or in abeyance) of an
argument a. We then explain the algorithm and analyze its computability (i.e., prove
that its recursive execution is always finite) and its time complexity.

To simplify the recursion Eq. (7) we use the following theorem (proved in Ap-
pendix B).
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Theorem 5 Let hA,R, ßi be a PAF with a strict preference relation p. Then no argument
a 2 A is in abeyance.

This theorem reduces the number of states of each argument to two, that is, an argument
can be either accepted or not accepted (rejected). We will use the name of the argument
a to denote the predicate “a is accepted” and its negation ¬a to denote the predicate “a
is rejected.” With this notation, the above theorem, and the fact that we have extended
the semantics of acceptability from the defeat to the attack relation (using preferences),
the recursion of Eq. (7) can be expressed as follows

a () 8b 2 attackers(a), ¬b
¬a () 9b 2 attackers(a), b

or, equivalently,

a () ^

b2attackers(a)
¬b

¬a () _

b2attackers(a)
b.

Finally, we notice that the second formula is logically equivalent to the first (simply
negating both sides of the double implication recovers the first). Therefore, the Boolean
value of the dialog tree for a can be computed by the simple expression

a () ^

b2attackers(a)
¬b. (24)

To illustrate, consider an attacker b of a. If b is rejected, that is, ¬b, the conjunction
on the right cannot be determined without examining the other attackers of a. Only
when all attackers of a are known to be rejected can the value of a be determined,
that is, accepted. Instead, if b is accepted, that is, b, the state of ¬b is false and the
conjunction can be immediately evaluated to false, that is, a is rejected regardless of
the acceptability of any other attackers.

An iterative version of the top-down algorithm is shown in Algorithm 3. We assume
that the algorithm can access a global PAF hA,R, ßi, with arguments in A defined over
a knowledge base K = hS, Yi. Given as input a triplet t = (X, Y | Z), if the algorithm
returns true (false) then we conclude that t is independent (dependent). It starts
by creating a root node u for the propositional argument U of proposition t = true
(lines 1–6). According to Eqs. (20) and (21), the algorithm then decides true if U is
accepted (line 25). Otherwise, the algorithm returns false (line 26). This is because in
this case, according to Theorem 4, the negation of propositional argument U must be
accepted.

Algorithm 3 is an iterative version of a tree traversal algorithm. It maintains a
queue of the nodes that have not been expanded yet. A node is expanded when its
children are added to the tree. In the algorithm, this is done in the loop of lines 18 to 23,
which uses subroutine getAttackers of Algorithm 5 to obtain all attackers of an argument.
This subroutine finds all attackers of the input argument a in a backward-chaining
fashion, that is, given an argument a = (H, h), it searches for all rules in the knowledge
base K whose consequent matches the negation of some proposition in the support H
(undercutters), or the negation of its head h (rebutters). Every node maintains a three-
valued state variable STATE 2 {nil,accepted,rejected}. The nil state denotes
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Algorithm 3: independent(triplet t).
1: ftrue  proposition (t = true) /* Creates independence proposition (t = true). */
2: Utrue  ({ ftrue}, ftrue)
3: utrue  node for argument Utrue

4: utrue.parent nil
5: u.STATE nil
6: f ringe [u] /* Initialize with u (root). */
7: {Create global rejected node, denoted by r.}
8: r node with no argument and state rejected
9: while f ringe 6= ? do

10: u dequeue( f ringe)
11: attackers getAttackers(u.argument)
12: if (attackers = ?) then
13: u.STATE accepted
14: if sendMsg(r, u) = terminate then break
15: end if
16: attackers sort attackers in decreasing order of preference.
17: {Enqueue attackers after decomposing them.}
18: for each A 2 attackers do
19: a node for argument A
20: a.parent u
21: a.STATE nil
22: enqueue a in f ringe /* See details in text. */
23: end for
24: end while
25: if (u.STATE = accepted) then return true
26: if (u.STATE = rejected) then return false

Algorithm 4: sendMsg(Node c, Node p).
1: {Try to evaluate node p given new information in c.STATE}
2: if p 6= nil then
3: if c.STATE = accepted then p.STATE rejected
4: else if (8 children q of p, q.STATE 6= rejected) then p.STATE accepted
5: {If p was successfully evaluated, try to evaluate its parent by sending message

upward.}
6: if p.STATE 6= nil then
7: return sendMsg(p, p.parent)
8: else
9: return continue

10: end if
11: else
12: return terminate {The root node has been evaluated.}
13: end if

that the value of the node is not yet known, and a node is initialized to this state when
it is added to the tree.

The algorithm recurses down the dialog tree until a node is found that has no
attackers (line 12). Such a node is accepted in line 13, that is, the conjunction of
Eq. (24) is trivially true, and its STATE is propagated upwards toward the root to the
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Algorithm 5: Finds all attackers of input argument a in knowledge base K = hS, Yi:
getAttackers(a = (H, h))
1: attackers ?
2: {Get all undercutters or rebutters of a.}
3: for all propositions j 2 H [ {h} do
4: {Get all defeaters of proposition j.}
5: for all rules (F1 ^F2 . . . ^Fn =) ¬j) 2 Y do
6: {Find all propositionalizations of the rule whose consequent matches ¬j.}
7: for all subsets {j1, j2 . . . , jn} of S s.t. F1 ⌘ j1, F2 ⌘ j2 . . . Fn ⌘ jn do
8: d ({j1 ^ j2 . . . jn},¬j) {Create defeater.}
9: {Is the defeater an attacker?}

10: if ¬(a�p d) then
11: attackers attackers [ {d}
12: end if
13: end for
14: end for
15: end for
16: return attackers

parent using subroutine sendMsg (Algorithm 4). Every time a node receives a message
from a child, if the message is accepted, the node is rejected (line 3 of Algorithm 4),
otherwise the node is accepted if all its children has been evaluated to rejected (line
4 of Algorithm 4). The subroutine sendMsg then proceeds recursively by forwarding
a message to the parent whenever a node has been evaluated (line 7). If the root is
reached and evaluated, the message is sent to its parent, which is nil. In this case,
the subroutine returns the special keyword terminate back to the caller, indicating that
the root has been evaluated and thus the main algorithm (Algorithm 3) can terminate.
The caller can be either the subroutine sendMsg, in which case it pushes the returned
message up the method-calling stack, or the top-down algorithm in line 14, in which
case its “while” loop is terminated.

An important part of the algorithm is yet underspecified, namely the order in which
the attackers of a node are explored in the tree (i.e., the priority with which nodes are
enqueued in line 22). This affects the order of expansion of the nodes in the dialog tree.
Possible orderings are depth-first, breadth-first, iterative deepening, as well as informed
searches such as best-first when a heuristic is available. In our experiments we used
iterative deepening because it combines the benefits of depth-first and breadth-first
search, that is, small memory requirements on the same order as depth-first search
(i.e., on the order of the maximum number of children a node can have) but also the
advantage of finding the shallowest solution like breadth-first search. We also used
a heuristic for enqueuing the children of a node. According to iterative deepening,
the position in the queue of the children of a node is specified relative to other nodes,
but not relative to each other. We therefore specified the relative order of the children
according to the value of the preference function: children with higher preference are
enqueued first (line 16 of the top-down algorithm), and thus, according to iterative
deepening, would be dequeued first.
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5.1. Computability of the Top-Down Algorithm

An open question is whether the top-down algorithm is computable, that is, whether it
always terminates. In this section we prove that it is. To prove this we need to show
that under certain general conditions the acceptability of an argument a can always
be determined, that is, that the algorithm always terminates. This is proved by the
following theorem.

Theorem 6 Given an arbitrary triplet t = (X, Y | Z), and a PAF hA,R, ßi with a strict
preference relation p, Algorithm 3 with input t over hA,R, ßi terminates.

The proof consists on showing that the path from the root a to any leaf is always finite.
For that, the concept of an attack sequence is needed.

Definition 16 An attack sequence is a sequence ha1, a2, . . . , ani of n arguments such that
for every 2  i  n, ai attacks ai�1.

By the manner in which the top-down algorithm constructs the dialog tree it is clear
that any path from the root to a leaf is an attack sequence. It therefore suffices to show
that any such sequence is finite. This is done by the following theorem.

Theorem 7 Every attack sequence ha1, a2, . . . , ani in a PAF hA,R, ßi with strict p and finite
A is finite.

Intuitively, if the preference relation is strict then an element can attack its predeces-
sor in the sequence but not vice versa. Since the set of arguments A is finite, the only
way for an attack sequence to be infinite is to contain a cycle. In that case, an argument
would be attacking at least one of its predecessors, which cannot happen in a PAF with a
strict preference relation. We present formal proofs of Theorems 6 and 7 in Appendix A.

We thus arrived at the important conclusion that, under a strict preference function
and a finite argument set, the state of any argument is computable. As we showed in
Section 3.3, the preference function for independence knowledge bases is strict, and
thus the computability of the top-down algorithm is guaranteed.

5.2. Computational Complexity of the Top-Down Algorithm

Since Algorithm 3 is a tree traversal algorithm, its time complexity can be obtained by
techniques contained in standard algorithmic texts, for example, Cormen et al. (2001).
The actual performance depends on the tree exploration procedure. In our case we
used iterative deepening due to its linear memory requirements in d, where d is the
smallest depth at which the algorithm terminates. Iterative deepening has a worst-time
time complexity of O(bd), where b is an upper bound on the dialog tree branching factor.
Therefore, for a constant b > 1 the execution time is exponential in d in the worst case.
Furthermore, for the case of independence tests, b itself may also be exponential in n
(the number of variables in the domain). This is because the inference rules of Eqs. (5)
and (6) are universally quantified, and therefore their propositionalization (lines 7–13 of
Algorithm 5), may result in an exponential number of rules with the same consequent
(attackers). A tighter bound may be possible but, lacking such a bound, we introduce in
the next section an approximate top-down algorithm, which reduces the running time
to polynomial. As we show in our experiments, the use of this approximation does not
appreciably affect the accuracy improvement due to argumentation.
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6. The Approximate Top-Down AIT Algorithm
As the top-down algorithm has a theoretically exponential running time in the worst
case, we hereby present a practical polynomial-time approximation of the top-down
algorithm. We make use of two approximations: (a) To address the exponential behavior
due to the depth of the dialog tree we apply a cutoff depth d for the process of iterative
deepening. (b) To address the potentially exponential size of the branching factor b
(which equals the maximum number of defeaters of any argument appearing in the
dialog tree) we limit the number of defeaters of each node—thus bounding the number
of its attackers/children—to a polynomial function of n (the domain size) during the
propositionalization process of Algorithm 5 (lines 7–13). Let (H, h) be an argument and
let j 2 H [ {h} be one of its propositions, as in line 3 of Algorithm 5. The set of attackers
Sj of (H, h) consists of all rules {j1 ^ j2 . . . ^ jk =) ¬j} of S, for some constant
upper bound k on the size of their support. If j = (X, Y | Z) and ji = (Xi, Yi | Zi) for
all 1  i  k, then our approximation generates and uses a subset of Sj in the dialog
tree such that

|X|� c  |Xi|  |X|+ c
|Y|� c  |Yi|  |Y|+ c (25)
|Z|� c  |Zi|  |Z|+ c

where | · | denotes set cardinality, and c is a user-specified integer parameter that
defines the approximation. We call this the approximate top-down algorithm. The
computational complexity of the approximate top-down algorithm is polynomial in n,
as shown in the next section.

6.1. Test Complexity of the Approximate Top-Down Algorithm

In this section we prove that the number of statistical tests required by the Approximate
Top-Down algorithm is polynomial in n. As described in the previous section, the
approximate algorithm generates a bounded number of attackers for each proposition
in the argument corresponding to some node in the dialog tree. A bound on the
number of the possible attackers can be defined by the approximation of Eq. (25). These
equations dictate that the size of each possible set Xi in some proposition (Xi, Yi | Zi) of
some attacker of proposition (X, Y | Z) is between |X|+ c and |X|� c (inclusively). As
the number of elements that can be members of Xi is bounded by n (the domain size),
this produces at most n2c+1 possible instantiations for set Xi. Similarly, the number
of possible instantiations for Yi and Zi is also n2c+1. Therefore, an upper bound for
the number of matches to some proposition in the antecedent of an attacking rule is
O(n6c+3) for some constant c. As there are r rules in the rule set and up to k propositions
in each rule for some constants r and k (for example, r = 5 and k = 3 for Eq. (5) and
r = 8 and k = 4 for Eq. (6)), an upper bound on the number of children of a node
in the dialog tree is O(rkn6c+3), and thus an upper bound on the number of nodes in
the dialog tree of depth d is O((rk)dnd(6c+3)). As we demonstrate in our experiments,
this is a rather loose upper bound and the performance of the approximate top-down
algorithm is reasonable in practice, but it does serve to show that the theoretical worst-
case performance is polynomial in n. In the experiments shown in the next section we
used c = 1 and d = 3.
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7. Experimental Results
We conducted experiments on sampled and real-world data sets for the purpose of (a)
evaluating the accuracy improvement of the argumentative test (both the exact and ap-
proximate versions) over its statistical counterpart; (b) demonstrating the performance
improvements that can be achieved by the approximate version compared to the exact
counterpart, without significant reduction in accuracy improvement; and (c) evaluating
the improvements that result by the use of the argumentative framework for causal
discovery. We address these issues below.

7.1. Comparative Evaluation of Bottom-Up, Exact Top-Down, and Approximate
Top-Down Argumentative Tests

In this section we demonstrate that the argumentation approach, implemented either
by the (exact) bottom-up or the exact top-down algorithm (Algorithm 3), improves the
accuracy of independence tests on small data sets. We also show that the approximate
top-down algorithm (see Section 6) has accuracy performance improvements similar to
its exact counterpart but significantly better execution times (orders of magnitude), that
make it more practical and usable for larger domains. As the output of the bottom-up
algorithm is guaranteed to be equal to the exact top-down algorithm as Theorem 2 of
Section 3, we omit accuracy results for the bottom-up algorithm here.

As the exact algorithm is impractical for large domains, for the present comparison
we sampled data sets from two randomly generated Bayesian networks with n = 8
nodes. The networks were generated using BNGenerator (Ide et al., 2002), a publicly
available Java package, with maximum degree per node t equal to 3 and 7 to evaluate
the performance in sparsely as well as densely connected domains. A large data set D
was sampled from each network and our experiments were conducted on subsets of it
containing an increasing number of data points N. This was done in order to assess the
accuracy on varying conditions of reliability, as the reliability of a test varies (typically
increases) with the amount of data available. To reduce variance, each experiment was
repeated for ten data subsets of equal size, obtained by permuting the data points of D
randomly and using the first N of them as input to our algorithms.

We first compare the accuracy of argumentative tests versus their purely statistical
counterparts (i.e., the G2 test) on several data sets sampled from randomly generated
Bayesian networks. Sampled data experiments have the advantage of a more precise
estimation of the accuracy since the underlying model is known. We present exper-
iments for two versions of the exact top-down argumentative test, one using Pearl’s
general axioms of of Eq. (5), denoted AITt-G, and another that uses Pearl’s “directed”
axioms of Eq. (6), denoted AITt-D, as well as two versions of the approximate top-down
argumentative test, denoted dAITt-G and dAITt-D respectively. We abbreviate purely
statistical independence tests as SIT.

We report the estimated accuracy, which, for each data set, is calculated by compar-
ing the result of a number of conditional independence tests (SITs or AITs) on data with
the true value of independence, computed by querying the underlying model for the
conditional independence of the same test using d-separation. Since the number of possi-
ble tests is exponential, we estimated the independence accuracy by randomly sampling
a set T of 1,000 triplets (X, Y, Z), evenly distributed among all possible conditioning
set sizes m 2 {0, . . . , n� 2}, that is, 1000/(n� 1) tests for each m. The independence or
dependence value of the triplets (in the true, underlying model) were not controlled, but
left to be decided randomly. This resulted in a non-uniform distribution of dependencies
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and independences. For instance, in the experiments shown next (n = 8, t = 3, 7), the
average proportion of independences vs. dependencies was 36.6% to 63.4% respectively
for t = 3, and 11.4% to 88.6% respectively for t = 7. Denoting a triplet in T by t, by
Itrue(t) the result of a test on t performed on the underlying model, and by Idata-Y (t) the
results of performing a test on t of type Y on data, for Y equal to SIT, AITt-G, AITt-D,
dAITt-G, or dAITt-D, the estimated accuracy of test type Y is defined as
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Figure 2: Accuracy comparison of statistical tests (SIT) vs. exact and approximate ar-
gumentative tests for domain size n = 8 and maximum degree per node
t = 3, 7. The histograms show the absolute value of the accuracy while the
line curves show the difference between SIT and the argumentative tests. 95%
confidence intervals are also shown for the line graphs. Top row: General
axioms. Bottom row: Directed axioms.

Figure 2 (top row) shows a comparison of the SIT with the exact and approximate
top-down argumentative test over the general axioms for data set with increasing
number of data points. The figure shows two plots for t = 3, 7 of the mean values
(over runs for ten different data sets) of caccdata

SIT , caccdata
AITt-G, and caccdata

dAITt-G
(histograms)

and the difference between the accuracies of the AIT tests and the statistical one (line
graphs) for various data set sizes N. A positive value of the difference corresponds to an
improvement of the argumentative test over SIT. The plots also show the statistical sig-
nificance of this difference with 95% confidence intervals (error bars), that is, the interval
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around the mean value that has a 0.95 probability of containing the true difference. The
figure demonstrates that there exist modest but consistent and statistically significant
improvements in the accuracy of both the exact and approximate argumentative tests
over the statistical test. We can observe improvements over the entire range of data set
sizes in both cases with maximum improvements of up to 9% and 6% for the exact and
approximate cases respectively (at t = 3 and N = 600).

In certain situations where the experimenter knows that the underlying distribution
belongs to the class of Bayesian networks, it is appropriate to use the specific axioms of
Eq. (6) instead of the general axioms of Eq. (5). The bottom row of Figure 2 presents
the same comparison as the top row but for the exact and approximate argumentative
tests AITt-D and dAITt-D that use the directed axioms instead of the general ones. As
in the case for AIT using the general axioms, we can observe statistically significant
improvements over the entire range of data set sizes in both cases. In this case however,
the improvements are larger, with maximum increases in the accuracy of the exact and
approximate test of up to 13% and 9% respectively (again for t = 3 and N = 600).

We also evaluated the accuracy of these tests for increasing conditioning set sizes.
Figures 3 and 4 show a comparison of the SIT with the exact and approximate top-down
argumentative test using the general and directed axioms respectively, for accuracies
over increasing conditioning set size for data sizes N = 160, 900, and 5000 (different
rows). We can observe statistically significant improvements over the entire range of
conditioning set sizes in all twelve graphs. Except in one case (directed axioms, N =
5000, t = 3), all graphs show an upward trend in accuracy for increasing conditioning
set size, representing a positive impact of the argumentative approach that increases
with a decrease in test reliability, that is, increasing conditioning set size.

We also compared the execution times of the bottom-up, exact top-down and ap-
proximate top-down algorithms on the same data sets. To run the bottom-up algorithm
we generated the set of all propositional arguments possible, that is, arguments of the
form ({s}, s), by iterating over all possible triplets (X, Y | Z), and inserted them in the
knowledge base together with their preference, as described in Section 3.1. Similarly,
for the set of axioms that we used in each case, that is, either the general (Eq. (5)) or
the specific ones (Eq. (6)), we iterated over all possible matches of each rule, inserting
the corresponding (single-headed and decomposed) instantiated rule in the knowledge
base again together with its preference. The reason for including all propositional and
rule-based arguments in our IKB is to allow the argumentation framework to consider
all possible arguments in favor of or against an independence query. We compared the
bottom-up algorithm AITb, the exact top-down algorithms AITt, and the approximate
top-down algorithm dAITt. For this, we measured the time it takes to discover the
structure of a Bayesian networks using three versions of the PC algorithm (Spirtes et al.,
2000), each using one of the three argumentative tests AITb, AITt, or dAITt to conduct
the independence tests. As usual, we consider two versions of each test AITb, AITt, and
dAITt, one that uses the general axioms of Eq. (5), that is, AITb-G, AITt-G, and dAITt-G,
respectively, and one that uses the specific axioms of Eq. (6) (applicable to Bayesian
networks), that is, AITb-D, AITt-D, and dAITt-D, respectively. The data sets used are the
same as the ones used in the accuracy comparisons above.

Figure 5 plots the execution time of argumentative tests AITb-G vs. AITt-G vs.
dAITt-G (top row) and AITb-D vs. AITt-D vs. dAITt-D (bottom row) for tests that were
conducted by the PC algorithm while learning the structure. Note that both the x and
y-axes are plotted in log-scale. We can observe improvements in the execution time
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Figure 3: Accuracy comparison of SIT vs. exact (AITt-G) and approximate (dAITt-G)
argumentative tests over the general axioms for increasing conditioning set
sizes. The six plots correspond to maximum degrees per node t = 3, 7, and
data set sizes N = 160, 900 and 5000.

of the exact top-down algorithm over that of the bottom-up algorithm of an order
of magnitude over the entire range of data set sizes in all four plots. We can also
see improvement of a similar order between the exact and approximate top-down
argumentative algorithms. For instance, for the general axioms and t = 3 (top-left plot),
the execution time for N = 5000 is 2749 seconds for the bottom-up against 107 seconds
for the exact top-down and 15 seconds for the approximate top-down algorithm. We see
even more pronounced execution time improvements when using the directed axioms
(bottom row of Fig. 5).
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Figure 4: Same as Figure 3 but for AIT using the directed axioms instead of the general
ones.

The execution-time results demonstrate that the exact top-down algorithm performs
significantly better than the bottom-up algorithm, while producing the exact same
output (according to Theorem 2 of Section 3). This implies a clear advantage of using
the top-down over the bottom-up algorithm. Furthermore, we also saw that the ap-
proximate top-down algorithm performs similarly in terms of accuracy improvement
while having polynomial worst-case execution time and in practice being several orders
of magnitude faster than the exact top-down algorithm, which is exponential in the
worst-case. As in the next two sections we continue our evaluation on domains signifi-
cantly larger than the n = 8 variables that we examined here, it would be difficult or
impractical for the exact algorithms to be employed. For these reasons in the following
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Figure 5: Execution time comparison for the PC algorithm when it uses the bottom-
up and exact top-down and approximate top-down argumentative tests to
learn the structure of a Bayesian network from data sampled from Bayesian
models with domain size n = 8, maximum degrees t = 3, 7. The bars show
the absolute value of the running time using a logarithmic scale. Top row:
general axioms. Bottom row: directed axioms.

experiments we use the more practical approximate algorithm, which can be applied to
larger domains.

7.2. Causal Discovery in Larger Domains

We also conducted experiments that demonstrate the performance of the approximate
top-down algorithm by (a) showing its applicability to large domains, and (b) demon-
strating positive improvements in accuracy of argumentative tests on the learning of the
structure of Bayesian networks, the main problem faced by causal discovery algorithms.
In the following experiments we used the PC algorithm. We compared the true structure
of the underlying model to the resulting structure of the PC algorithm when it uses
SITs as independence tests, denoted PC-SIT, and its output when it uses argumentative
independence tests, denoted PC-dAITt-D, when using the directed axioms.

We evaluated the resulting networks by their ability to accurately represent the true
independences in the domain, calculated by comparing the results (true or false) of
a number of conditional tests conducted using d-separation on the output networks
(PC-SIT or PC-dAITt-D). Denoting by T this set of 2,000 triplets, by t 2 T a triplet, by
Itrue(t) the result of a test performed on the underlying model, and by IPC-Y (t) the result
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Figure 6: Comparison of statistical tests (SIT) vs. approximate argumentative tests on
the directed axioms (dAITt-D) for data sets sampled from Bayesian models for
domain size n = 24 and maximum degrees t = 3, 7.

of performing a d-separation test on the network output by the PC algorithm using the
Y test, Y equal to SIT or dAITt-D, the estimated accuracy is defined as

caccPC
Y =

1
|T |

�

�

�

�

n

t 2 T | IPC-Y (t) = Itrue(t)
o

�

�

�

�

. (26)

We considered data sampled from randomly generated Bayesian networks of sizes
n = 24, and maximum degrees t = 3, 7. For each network we sampled ten data
sets, and, for each data set, we conducted experiments on subsets of D containing an
increasing number of data points. We report the average over the ten data sets of the
estimated accuracy calculated using Eq. (26), for Y = SIT or dAITt-D, as well as the
difference between the average accuracies including the 95% confidence interval for the
difference.

Figure 6 shows a comparison of the argumentative tests dAITt-D using the directed
axioms with the corresponding SIT. The figure shows two plots for different values
of t of the mean values (over runs for ten different data sets) of caccPC

SIT and caccPC
dAITt-D

(histograms), the difference between these averages (line graph), and the 95% confidence
intervals for the difference (error bars), for different data set sizes N. As usual, a
positive value of the difference corresponds to an improvement of dAITt-D over SIT.
As in practically all experiments so far, we have statistically significant improvements
over the entire range of data set sizes, with maximum improvements of up to 20%
for t = 3, N = 25000, and t = 7, N = 900. The corresponding execution times for
the entire PC algorithm are shown in Fig. 7. We can make two observations from this
graph. One, the cost is significantly lower for sparse domains, which benefits real-world
application domains that are sparse. The second observation is that the execution time
scales linearly with the number of data points; this exhibits the same behavior as the
use of a SIT test in PC, as each test needs to scan the data set once to compute the
contingency table and relevant test statistics.

In summary, these results demonstrate that the approximate argumentative test is
practical for larger domains and can result in positive, statistically significant accuracy
improvements when used for causal discovery. However, the cost of AIT for large data
sets, although not prohibitive, can be non-negligible. Therefore the accuracy benefits of

242



IMPROVING THE RELIABILITY OF CAUSAL DISCOVERY USING ARGUMENTATION

 10

 100

 1000

 10000

 100000

 10  100  1000  10000  100000

E
xe

cu
tio

n
 t

im
e

 (
se

co
n

d
s)

Data set size N  (number of data points)

Execution time of the PC algorithm using approximate AIT
n = 24 variables, directed axioms

τ=3
τ=7

Figure 7: Execution times for the PC algorithm using the approximate argumentative
test on the directed axioms (dAITt-D) on data sets sampled from Bayesian
models for domain size n = 24 and maximum degrees t = 3, 7. For the
approximate AIT test we limited the depth of the dialog tree to 3 and its the
branching factor as described in Section 6.

AIT vs. a SIT must be carefully weighed off the ability of the user to expend the extra
computation. Note that the practicality of the approximate algorithm also depends on
the parameters used (the cutoff depth of iterative deepening and the branching factor
limit—see Section 6); different parameter values or alternative ways of limiting the size
of the dialog tree may be needed for even larger domains.

7.3. Real-world and Benchmark Data Experiments

While the sampled data set studies of the previous section have the advantage of a more
controlled and systematic study of the performance of the algorithms, experiments on
real-world data are necessary for a more realistic assessment. In this section we present
experiments on a number of real-world and benchmark data sets obtained from the
UCI machine learning repository (D. J. Newman and Merz, 1998) and the Knowledge
Discovery Data repository (Hettich and Bay, 1999). As in the sampled data case of
the previous section, for each data set D, we conducted experiments on subsets of D
containing an increasing number of data points N to assess the performance of the
independence tests on varying conditions of reliability. Again, to reduce variance we
repeated each experiment ten times, each time choosing a different randomly selected
data subset of equal size.

Because for real-world data sets the underlying model is unknown, we could only
be sure the general axioms of Eq. (5) apply. We therefore only used these axioms in
this section. Also, as mentioned in the previous section, because some of the data sets
have much larger domains (e.g., the alarm data set contains 37 variables), and given
the exponential nature of the exact algorithms we could only perform experiments for
the approximate version of the argumentative test. For these reasons, in the following
experiments we only report the accuracy of dAITt-G, the approximate argumentative
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Figure 8: Difference in the mean value of the accuracy dAITt-G with the mean value
of the accuracy of SIT for a number of real-world data sets. The error bars
denote the 95% confidence interval of the difference.

independence test defined over the general axioms. Unfortunately, for real-world data
the underlying model is typically unknown and therefore it is impossible to know the
true value of any independence. We therefore approximate it by a statistical test on the
entire data set, and limit the size of the data set subsets that we use up to a third of the
size of the entire data set. This corresponds to the hypothetical scenario that a much
smaller data set is available to the researcher, allowing us to evaluate the improvement
of argumentation under these more challenging situations. Again, as in the previous
two sections, for comparison we sampled 2,000 triplets and calculated the accuracy as a
fraction of tests correct, where for the true value of independences and dependences we
used the method just described.
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Data set |car| |cmc| |flare2| |letterRecognition| |nursery| |alarm|
Domain size 7 10 13 17 9 37
Data set size 1730 1475 1067 20002 12962 20003

SIT 80.1 77.8 77.0 47.9 83.3 76.7
N = 40 dAITt-G 80.1 77.5 77.1 47.8 83.8 76.7

dAITt-G� SIT 0.0 ± 0.7 -0.3 ± 0.6 0.1 ± 0.3 -0.1 ± 0.2 0.4 ± 0.1 0.0 ± 0.4
Runtime of dAITt-G (ms) 0.56 1.07 2.61 4.19 0.88 52.06

SIT 86.7 84.1 85.5 50.7 86.1 84.3
N = 240 dAITt-G 88.6 84.7 86.9 51.0 87.2 85.1

dAITt-G� SIT 1.9 ± 0.6 0.5 ± 1.2 1.3 ± 0.8 0.2 ± 0.4 1.1 ± 0.4 0.8 ± 0.3
Runtime of dAITt-G (ms) 1.37 5.19 8.73 90.50 1.84 202.05

SIT 55.8 88.5 88.6
N = 600 dAITt-G 57.3 89.3 89.8

dAITt-G� SIT 1.5 ± 0.5 0.8 ± 0.1 1.2 ± 0.4
Runtime of dAITt-G (ms) 575.53 4.37 547.77

SIT 63.3 89.7 90.8
N = 1200 dAITt-G 64.3 91.2 92.0

dAITt-G� SIT 1.0 ± 0.3 1.5 ± 0.3 1.2 ± 0.4
Runtime of dAITt-G (ms) 2008.76 14.05 1151.05

SIT 73.8 94.1 95.2
N = 3500 dAITt-G 76.5 95.4 96.3

dAITt-G� SIT 2.6 ± 0.7 1.3 ± 0.3 1.1 ± 0.3
Runtime of dAITt-G (ms) 24540.51 76.48 3895.2

Table 1: Average accuracies (in percentage) of SIT and dAITt-G, their differences (de-
noted dAITt-G� SIT in the table), the 95% confidence interval for the difference,
and the average runtime per test (in ms) for dAITt-G for several real-world
and benchmark data sets. For each data set the table shows these quantities
for number of data points N = 40, 240, 600, 1200, 3500. The best performing
algorithm (dAITt-G or SIT, with respect to accuracy) is indicated in bold. Empty
cells correspond to cases where one third of the data set was smaller than the
value of N in that column.

Figure 8 and Table 1 show the result of our comparison between the argumen-
tative test dAITt-G and statistical test SIT for real-world data sets. In the table, the
best-performing method is shown in bold. The figure contains 6 plots, one for each
data set, depicting the difference between the mean value of the accuracy of dAITt-G and
that of SIT, where as usual a positive value denotes an improvement of dAITt-G over SIT.
While in a few cases the average difference is negative (e.g., data set |cmc|,N = 40), in
each case the negative value is not statistically significant as the confidence interval con-
tains a portion of the positive half-plane. The figure demonstrates a clear advantage of
the argumentative approach, with all data sets reaching statistically significant positive
improvements in accuracy of up to 3% and all confidence intervals covering positive
values either partially or completely. The table also shows the average execution time
(in ms) for the dAITt-G tests evaluated.

8. Conclusion
We presented a framework for addressing one of the most important problems of
independence-based structure discovery algorithms, namely the problem of unreliabil-
ity of statistical independence tests. Our main idea was to recognize the existence of
interdependences among the outcomes of conditional independence tests—in the form
of Pearl’s axiomatic characterization of the conditional independence relation—that can
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be seen as integrity constraints and exploited to correct unreliable statistical tests. We
modeled this setting as a knowledge base containing conditional independences that
are potentially inconsistent, and used the preference-based argumentation framework
to reason with and resolve these inconsistencies. We presented in detail how to apply
the argumentation framework to independence knowledge bases and how to compute
the preference among the independence propositions. We also presented a number of
algorithms, both exact and approximate, for implementing statistical testing using this
framework. We analyzed the approximate algorithm and proved that is has polynomial
worst-case execution time. We also experimentally verified that its accuracy improve-
ment is close to the exact one while providing orders of magnitude faster execution,
making possible its use for causal discovery in large domains. Overall, our experimental
evaluation demonstrated statistically significant improvements in the accuracy of causal
discovery for the overwhelming majority of sampled, benchmark and real-world data
sets.

Appendix A. Computability of the Argumentative Independence
Test

In this appendix we prove that the argumentative test terminates, a property that we call
its computability. Some of the theorems and lemmas presented are not original work but
adaptations of well known properties of relations. We include them to allow a complete
exposition of the proof of computability, given by Theorem 6. We first introduce some
notation. We denote independence propositions (e.g., (X??Y | Z)) by s and their
negation (e.g., (X 6??Y | Z)) by ¬s. We abbreviate their corresponding propositional
arguments ({s}, s) and ({¬s},¬s) by as and a¬s, respectively, and we will refer to a¬s

as the negation of as (and vice versa). Also, we use the predicates A(a), R(a), Ab(a) to
denote the fact the argument a is accepted, rejected, or in abeyance, respectively.

For completeness we repeat here the definition of strict and transitive preference
relation.

Definition 11 We say preference relation p over arguments is strict if the ordering of argu-
ments induced by it is strict and total, that is, for every pair of arguments a and b,

a�p b () ¬�b�p a
�

. (27)

Definition 12 We say that preference relation p over arguments is transitive if, for every three
arguments a, b and c,

�

a�p b
� ^ �b�p c

�

=) �

a�p c
�

.

Lemma 17 A strict preference relation p satisfies the condition that for every pair of arguments
such that a defeats b and b defeats a, it is the case that a attacks b or b attacks a, that is, at least
one of a and b attacks the other.

Proof We prove by contradiction: Let us assume that a defeats b and b defeats a but
neither a attacks b nor b attacks a. By definition of the attack relation (Definition 13),

¬�a attacks b
�

=) ¬�¬(b�p a)
�

=) b�p a

and
¬�b attacks a

�

=) ¬�¬(a�p b)
�

=) a�p b.
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However, this is a contradiction since, by assumption, the preference ordering is strict,
and therefore it cannot be true that both a�p b and b�p a are true at the same time.

Lemma 18 A strict preference p satisfies the condition that for every pair a and b of arguments,
it is not the case that both a attacks b and b attacks a, that is, there can be no mutual attack.

Proof We prove by contradiction. Let us consider two mutually attacking arguments a
and b. By the definition of the attack relation, and because p is a total order, we have
that

a attacks b =) ¬(b�p a) =) �

a�p b _ a ⌘p b
�

and
b attacks b =) ¬(a�p b) =) �

b�p a _ b ⌘p a
�

where a ⌘p b means a is equally preferable to b. However, equality of preference is not
possible in a strict preference relation. Therefore it must be the case that a �p b and
b�p a, which is a contradiction of Eq. (27), again due to strictness.

We next prove that no argument is in abeyance if the preference relation over
arguments is strict. For that, we first prove that an argument in abeyance is always
attacked by at least another argument in abeyance.

Lemma 7 For every argument a,

Ab(a) =) 9b 2 attackers(a), Ab(b).

Proof By definition, an argument a is in abeyance if it is neither accepted nor rejected.
Applying the definitions of acceptance and rejection and manipulating the Boolean
formulae we obtain,

Ab(a) () ¬A(a) ^ ¬R(a)
() ¬�8b 2 attackers(a), R(b)

� ^ ¬�9b 2 attackers(a), A(b))
�

() �9b 2 attackers(a),¬R(b)
� ^ �8b 2 attackers(a),¬A(b))

�

() �9b 2 attackers(a), (A(b) _ Ab(b))
� ^ �8b 2 attackers(a),¬A(b))

�

() �9b 2 attackers(a), Ab(b)
� ^ �8b 2 attackers(a),¬A(b))

�

=) 9b 2 attackers(a), Ab(b).

Definition 16 An attack sequence is a sequence ha1, a2, . . . , ani of n arguments such that for
every 2  i  n, ai attacks ai�1.

Lemma 19 Let hA,R, ßi be a PAF with a strict and transitive preference relation p. Then, no
argument can appear more than once in any attack sequence, that is, for every attack sequence
ha1, a2, . . . , ani and every pair of integers i, j 2 [1, n] such that i 6= j, ai 6= aj.
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Proof
We first note that by definition of the attack relation, it must be the case that for any

two consecutive arguments ai, ai+1, it is true that ¬(ai �p ai+1). Since p is strict, this is
equivalent to ai+1 �p ai (c.f. Eq. (27)). That is,

an �p an�1 �p . . .�p a2 �p a1 (28)

We now assume, for contradiction, there exists an argument a? that appears twice in
the attack sequence at indexes i? and j?, that is,

9 i?, j? 2 [1, n], i? 6= j?, such that ai? = aj? = a?.

Since no argument defeats itself, it cannot attack itself, and thus the smallest possible
attack sequence with a repeated argument must have at least length 3. From this fact,
Eq. (28), and transitivity, there must exist an argument b 6= a? such that a? �p b�p a?.
This last fact implies that a? �p b and b�p a? must hold, which contradicts strictness
(Eq. (27)).

A corollary of this lemma is the following theorem.

Theorem 7 Every attack sequence ha1, a2, . . . , ani in a PAF hA,R, ßi with strict and transitive
p, and finite A is finite.

Proof Follows directly from Lemma 19 and the fact that A is finite.

We can now prove the main result of this section in the following theorem.

Theorem 6 Given an arbitrary triplet t = (X, Y | Z), and a PAF hA,R, ßi with a strict
and transitive preference relation p, and finite arguments set A, the top-down algorithm of
Algorithm 3 run for input t over hA,R, ßi terminates.

Proof In the tree traversed by the top-down algorithm, any path from the root to a leaf
is an attack sequence. Since for strict and transitive p, and finite A each such sequence
is finite, the algorithm always terminates.

Appendix B. Validity of the Argumentative Independence Test
In this section we prove the property of the argumentative independence test of deciding
that an input triplet (X, Y | Z) evaluates to either independence or dependence, but not
both or neither. We call this property the validity of the test.

We start we proving that under the assumption of a strict and transitive preference
relation, no argument is in abeyance.

Theorem 5 Let hA,R, ßi be a PAF with a strict and transitive preference relation p. Then no
argument a 2 A is in abeyance.

Proof Let us assume, for contradiction, that there is an argument a in abeyance. From
Lemma 7, not only a has an attacker in abeyance, say argument b, but b also has an
attacker in abeyance, and so on. That is, we can construct an attack sequence starting at
a that contains only arguments in abeyance. Moreover, this sequence must be infinite,
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since the lemma assures as we always have at least one attacker in abeyance. This is in
direct contradiction with Theorem 7.

Corollary 20 For every argument a in a PAF hA,R, ßi with strict and transitive p,

A(a) () ¬R(a).

We now prove a number of lemmas that hold only for the sub-class of propositional
arguments (arguments whose support contains only one proposition, equal to the head
of that argument). We start with a lemma that demonstrates that it cannot be the case
that an attacker of a propositional argument as and an attacker of its negation a¬s do
not attack each other. The former must attack the latter or vice versa.

Lemma 21 Let hA,R, ßi be a PAF with a strict preference relation p, as 2 A be a proposi-
tional argument, and a¬s its negation. For every pair of arguments b and c that attacks as and
a¬s respectively,

(b attacks c) _ (c attacks b).

Proof Since as and a¬s are propositional arguments, their support contains the head
and only the head, and thus any defeater (i.e., rebutter or undercutter) must have as
head ¬s and s, respectively, that is, the head of b must be ¬s and the head of c must be
s. Thus, b rebuts (and thus defeats) c and vice versa. The lemma then follows directly
from Lemma 17.

Lemma 22 Let hA,R, ßi be a PAF with a strict preference relation p, and as and a¬s be a
propositional argument and its negation. Then,

R(as) =) ¬R(a¬s).

Proof By assumption, R(as). We assume, for contradiction, that R(a¬s). Therefore, by
the definition of rejection, 9b 2 attackers(as) such that A(b), and 9c 2 attackers(a¬s)
such that A(c). By Lemma 21 b attacks c or c attacks b. In either case, an accepted argu-
ment is attacking an accepted argument, which contradicts the definition of acceptance.

Lemma 23 Given a PAF hA,R, ßi with a strict preference relation p, every propositional
argument as 2 A satisfies

A(as) =) ¬A(a¬s)

Proof We prove by contradiction. Let us assume that both as and a¬s are accepted. Since
as and a¬s are propositional arguments, they defeat each other. Then, by Lemma 17 as

attacks a¬s or vice versa. In either case an accepted argument has an accepted attacker,
which is a contradiction.

We now prove Theorem 4 that was introduced in Section 4, reproduced here for
convenience.
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Theorem 4 Given a PAF hA,R, ßi with a strict and transitive preference relation p, every
propositional argument as 2 A and its negation a¬s satisfy

A(as) () R(a¬s).

Proof The ( =) ) direction follows from Lemma 23 and Theorem 5. The ((=) direc-
tion follows from Lemma 22 and Theorem 5.

In Section 4 we defined the following semantics for deciding on the dependence or
independence of an input triplet (X, Y | Z):

({(X 6??Y | Z)}, (X 6??Y | Z)) is accepted () (X 6??Y | Z) is accepted =) (X 6??Y | Z)
({(X??Y | Z)}, (X??Y | Z)) is accepted () (X??Y | Z) is accepted =) (X??Y | Z)

(29)

where acceptance is defined over an independence-based PAF as defined in Section 3.3.
For this argumentative test of independence to be valid, its decision must be non-
ambiguous, that is, it must decide either independence or dependence, but not both or
neither. For that, exactly one of the antecedents of the above implications must be true.
Formally:

Theorem 3 For any input triplet s = (X, Y | Z), the argumentative independence test defined
by Eq. (29) produces a non-ambiguous decision, that is, it decides that s evaluates to either
independence or dependence, but not both or neither.

Proof Let us denote (X??Y | Z) by st and (X 6??Y | Z) by sf. Since strictness and
transitivity of the independence preference relation hold (proved in Section 3.3, lemmas
14 and 15 respectively), Theorems 4 and 5 hold as well. From Theorem 5 we know that
neither of the propositional arguments is in abeyance. Thus, since ast corresponds to
the negation of asf it follows from Theorem 4 that exactly one of them is accepted.
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Abstract
Various relationships are shown hold between monotonic effects and weak monotonic
effects and the monotonicity of certain conditional expectations. Counterexamples
are provided to show that the results do not hold under less restrictive conditions.
Monotonic effects are furthermore used to relate signed edges on a causal directed
acyclic graph to qualitative effect modification. The theory is applied to an example
concerning the direct effect of smoking on cardiovascular disease controlling for hyper-
cholesterolemia. Monotonicity assumptions are used to construct a test for whether
there is a variable that confounds the relationship between the mediator, hypercholes-
terolemia, and the outcome, cardiovascular disease.
Keywords: Bayesian networks, conditional expectation, covariance, directed acyclic
graphs, effect modification, monotonicity

1. Introduction
Several papers have considered various monotonicity relationships on Bayesian net-
works or directed acyclic graphs. Wellman (1990) introduced the notion of qualitative
causal influence and derived various resulting concerning the propagation of quali-
tative influences, the preservation of monotonicity under edge reversal, the necessity
of first order stochastic dominance for propagating influences and the propagation of
sub-additive and super-additive relationships on probabilistic networks. Druzdzel and
Henrion (1993) developed a polynomial time algorithm for reasoning in qualitative
probabilistic network, based on local sign propagation. More recently, van der Gaag
et al. (2004) showed that identifying whether a network exhibits various monotonicity
properties is coNPPP- complete. VanderWeele and Robins (2009) introduced the con-
cept of a monotonic effect which is closely related to Wellman’s qualitative influence
and considered the relationship between monotonicity properties and causal effects,
covariance, bias and confounding. In this paper we develop a number of probabilistic
properties concerning monotonic effects and weak monotonic effects. Some of these
properties give rise to certain inequality constraints that could be used to test for the
presence of hidden or unmeasured confounding variables. These inequality constraints
which arise from monotonicity relationships provide constraints beyond those already
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available in the literature (Kang and Tian, 2006). The paper is organized as follows. In
Section 2 we describe the notation we will use in this paper and review the definitions
concerning directed acyclic graphs. In Section 3 we present a motivating example for
the theory that will be developed. In Section 4, we define the concepts of a monotonic
effect and a weak monotonic effect in the directed acyclic graph causal framework, the
latter essentially being equivalent to Wellman’s (1990) qualitative influence. In Section 5,
we give a number of results relating weak monotonic effects to the monotonicity in
the conditioning argument of certain conditional expectations; we also return to the
motivating example and show how the theory developed can be applied to this example.
Finally, in Section 6, we give a number of results that relate weak monotonic effects
to the existence of qualitative effect modifiers. Section 7 closes with some concluding
remarks.

2. Notation and Directed Acyclic Graphs
Following Pearl (1995), a causal directed acyclic graph is a set of nodes (X1, . . . , Xn)
and directed edges amongst nodes such that the graph has no cycles and such that for
each node Xi on the graph the corresponding variable is given by its non-parametric
structural equation Xi = fi(pai, ei) where pai are the parents of Xi on the graph and
the ei are mutually independent. We will use W to denote the sample space for e and
w to denote a particular point in the sample space. These non-parametric structural
equations can be seen as a generalization of the path analysis and linear structural
equation models (Pearl, 1995, 2000) developed by Wright (1921) in the genetics literature
and Haavelmo (1943) in the econometrics literature. Directed acyclic graphs can be
interpreted as representing causal relationships. The non-parametric structural equa-
tions encode counterfactual relationships amongst the variables represented on the
graph. The equations themselves represent one-step ahead counterfactuals with other
counterfactuals given by recursive substitution. The requirement that the ei be mutually
independent is essentially a requirement that there is no variable absent from the graph
which, if included on the graph, would be a parent of two or more variables (Pearl, 1995,
2000). Further discussion of the causal interpretation of directed acyclic graphs can be
found elsewhere (Pearl, 1995, 2000; Spirtes et al., 2000; Dawid, 2002; Robins, 2003).

A path is a sequence of nodes connected by edges regardless of arrowhead direction;
a directed path is a path which follows the edges in the direction indicated by the
graph’s arrows. A node C is said to be a common cause of A and Y if there exists a
directed path from C to Y not through A and a directed path from C to A not through
Y. We will say that V1, . . . , Vn constitutes an ordered list if i < j implies that Vi is not a
descendant of Vj. A collider is a particular node on a path such that both the preceding
and subsequent nodes on the path have directed edges going into that node i.e. both the
edge to and the edge from that node have arrowheads into the node. A path between A
and B is said to be blocked given some set of variables Z if either there is a variable in Z
on the path that is not a collider or if there is a collider on the path such that neither
the collider itself nor any of its descendants are in Z. If all paths between A and B are
blocked given Z then A and B are said to be d-separated given Z. It has been shown
that if A and B are d-separated given Z then A and B are conditionally independent
given Z (Verma and Pearl, 1988; Geiger et al., 1990; Lauritzen et al., 1990). We will use
the notation A ‰ B|Z to denote that A is conditionally independent of B given Z; we
will use the notation (A ‰ B|Z)G to denote that A and B are d-separated given Z on
graph G. The directed acyclic graph causal framework has proven to be particularly
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Figure 1: Motivating example concerning the estimation of controlled direct effects.

useful in determining whether conditioning on a given set of variables, or none at all,
is sufficient to control for confounding. The most important result in this regard is the
back-door path criterion (Pearl, 1995). A back-door path from some node A to another
node Y is a path which begins with a directed edge into A. Pearl (1995) showed that for
intervention variable A and outcome Y, if a set of variables Z is such that no variable
in Z is a descendant of A and such that Z blocks all back-door paths from A to Y then
conditioning on Z suffices to control for confounding for the estimation of the causal
effect of A on Y. The counterfactual value of Y intervening to set A = a we denote by
YA=a.

3. Motivating Example
To motivate the theory we develop in this paper consider the following example.

Example 1 Suppose that Figure 1 represents a causal directed acyclic graph.
Let A denote smoking; let R hypercholesterolemia; and let Y denote cardiovas-

cular disease. High cholesterol can lead to the narrowing of the arteries resulting
in cardiovascular disease; smoking can lead to blood clots through platelet aggrega-
tion resulting in cardiovascular disease. Let Q denote some variable that confounds
the relationships between smoking and cardiovascular disease and between hyperc-
holesterolemia and cardiovascular disease (e.g. stress). Let U be some unmeasured
variable which might confound the relationship between hypercholesterolemia and
cardiovascular disease. The researcher is unsure whether the variable U is a cause of
R and we therefore represent the edge from U to R as a dashed line. The results of
Pearl (2001) imply that it is possible to estimate controlled direct effects of the form
YA=a1,R=r �YA=a0,R=r (i.e. the direct effect of smoking on cardiovascular disease con-
trolling for hypercholesterolemia) on the graph in Figure 1 if that U is not a cause of
R. Suppose that although the researcher is unsure about the presence an edge from
U to R, it is known that the relationship between A and Y is monotonic in the sense
that P(Y > y|A = a, R = r, Q = q, U = u) is non-decreasing in a for all y, r, q and u.
In Section 5, we will present theory that will allow us to derive a statistical test for the
null hypothesis that there is no unmeasured variable U confounding the relationship
between R and Y.
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4. On the Definition of a Monotonic Effect
The definition of a monotonic effect is given in terms of a directed acyclic graph’s
nonparametric structural equations.

Definition 1 The non-parametric structural equation for some node Y on a causal directed
acyclic graph with parent A can be expressed as Y = f (fpaY, A, eY) where fpaY are the parents
of Y other than A; A is said to have a positive monotonic effect on Y if for all fpaY and eY,
f (fpaY, A1, eY) � f (fpaY, A2, eY) whenever A1 � A2. Similarly A is said to have a negative
monotonic effect on Y if for all fpaY and eY, f (fpaY, A1, eY)  f (fpaY, A2, eY) whenever
A1 � A2.

As we have defined it above, a causal direct acyclic graph corresponds to a set of
non-parametric structural equations and as such the definition of a monotonic effect
given above is relative to a particular set of non-parametric structural equations. The
presence of a monotonic effect is closely related to the monotonicity of counterfactual
variables as is made clear by the following proposition. All proofs of all propositions
and theorems are given in Appendix A.

Proposition 2 The variable A has a positive monotonic effect on Y if and only if for all w and
all values of fpaY, Ya1,fpaY

(w) � Ya0,fpaY
(w) whenever a1 � a0.

We note that several sets of non-parametric structural equations may yield iden-
tical distributions of X = (X1, . . . , Xn) and {XV=v}V✓X,v2supp(V) (Pearl, 2000). In the
context of characterizations of causal directed acyclic graphs that make reference to
counterfactuals but not to non-parametric structural equations (Robins, 2003), a positive
monotonic effect could instead be defined to be present if for all fpaY and a1 � a0,
P(Ya1,fpaY

� Ya0,fpaY
) = 1. If this latter condition holds with respect to one set of non-

parametric structural equations it will hold for any set of non-parametric structural
equations which yields the same distribution for X and {XV=v}V✓X,v2supp(V). We note
that if for a1 � a0 the set {w : Ya1,fpaY

(w) < Ya0,fpaY
(w)} is of measure zero then Ya1,fpaY

and Ya0,fpaY
could be re-defined on this set so that Ya1,fpaY

(w) � Ya0,fpaY
(w) for all w and

so that the distributions of X and {XV=v}V✓X,v2supp(V) remain unchanged.
Because for any value w we observe the outcome only under one particular value

of the intervention variable, the presence of a monotonic effect is not identifiable.
The results presented in this paper are in fact true under slightly weaker conditions
which are identifiable when data on all of the directed acyclic graph’s variables are
observed. We thus introduce the concept of a weak monotonic effect which is a special
case of Wellman’s positive qualitative influence (Wellman, 1990). The definition of a
weak monotonic effect does not make reference to counterfactuals and thus can be
used in characterizations of causal directed acyclic graphs that do not employ the
concept of counterfactuals (Spirtes et al., 2000; Dawid, 2002). The stronger notion
of a monotonic effect given above is useful in the context of testing for synergistic
relationships (VanderWeele and Robins, 2008).

Definition 3 Suppose that variable A is a parent of some variable Y and let fpaY denote the
parents of Y other than A. We say that A has a weak positive monotonic effect on Y if the
survivor function S(y|a,fpaY) = P(Y > y|A = a,fpaY) is such that whenever a1 � a0 we
have S(y|a1,fpaY) � S(y|a0,fpaY) for all y and all fpaY; the variable A is said to have a weak
negative monotonic effect on Y if whenever a1 � a0 we have S(y|a1,fpaY)  S(y|a0,fpaY) for
all y and all fpaY.
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Proposition 4 If A has a positive monotonic effect on Y then A has a weak positive monotonic
effect on Y.

We note that for parent A and child Y, the definition of a weak monotonic effect
coincides with Wellman’s (1990) definition of positive qualitative influence when the
“context” for qualitative influence is chosen to be the parents of Y other than A.

A monotonic effect is a relation between two nodes on a directed acyclic graph and
as such it is associated with an edge. The definition of the sign of an edge can be given
either in terms of monotonic effects or weak monotonic effects. We can define the sign
of an edge as the sign of the monotonic effect or weak monotonic effect to which the
edge corresponds; this in turn gives rise to a natural definition for the sign of a path.

Definition 5 An edge on a causal directed acyclic graph from X to Y is said to be of positive
sign if X has a positive monotonic effect on Y. An edge from X to Y is said to be of negative
sign if X has a negative monotonic effect on Y. If X has neither a positive monotonic effect nor a
negative monotonic effect on Y, then the edge from X to Y is said to be without a sign.

Definition 6 The sign of a path on a causal directed acyclic graph is the product of the signs of
the edges that constitute that path. If one of the edges on a path is without a sign then the sign of
the path is said to be undefined.

We will call a causal directed acyclic graph with signs on those edges which allow
them a signed causal directed acyclic graph. The theorems in this paper are given
in terms of signed paths so as to be applicable to both monotonic effects and weak
monotonic effects. One further definition will be useful in the development of the theory
below.

Definition 7 Two variables X and Y are said to be positively monotonically associated if all
directed paths from X to Y or from Y to X are of positive sign and all common causes Ci of X
and Y are such that all directed paths from Ci to X are of the same sign as all directed paths from
Ci to Y; the variables X and Y are said to be negatively monotonically associated if all directed
paths between X and Y are of negative sign and all common causes Ci of X and Y are such that
all directed paths from Ci to X are of the opposite sign as all directed paths from Ci to Y.

It has been shown elsewhere (VanderWeele and Robins, 2009) that if X and Y are
positively monotonically associated then Cov(X, Y) � 0 and if X and Y are negatively
monotonically associated then Cov(X, Y)  0. We now develop several results concern-
ing the monotonicity in the conditioning argument of certain conditional expectations.

5. Monotonic Effects and Conditional Expectations
Lemma 8 below can be proved by integration by parts and will be used in the proofs
of the subsequent propositions. We will assume throughout the remainder of this
paper that the random variables under consideration satisfy regularity conditions that
allow for the integration by parts required in the proof of Lemma 8. If conditional
cumulative distribution functions are continuously differentiable then the regularity
conditions will be satisfied; the regularity conditions will also be satisfied if all variables
are discrete. Härdle et al. (1998, p72) also gives relatively weak conditions under which
such integration by parts is possible. Alternatively, the existence of the Lebesgue-
Stieltjes integrals found in the proof of Lemma 8 suffices to allow integration by parts.
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Note that Lemma 8 will always be applied either to the function h(y, a, r) = y or to
conditional survivor functions which will satisfy the relevant regularity conditions; thus
the conditions which are required for integration by parts are only regularity conditions
on the distribution of the random variables.

Lemma 8 If h(y, a, r) is non-decreasing in y and in a and S(y|a, r) = P(Y > y|A = a, R =
r) is non-decreasing in a for all y then E[h(Y, A, R)|A = a, R = r] is non-decreasing in a.

Proposition 9 immediately follows from Lemma 8.

Proposition 9 Suppose that the A! Y edge, if it exists, is positive. Let X denote some set of
non-descendants of Y that includesfpaY, the parents of Y other than A, then E[Y|X = x, A = a]
is non-decreasing in a for all values of x.

Proposition 12 gives the basic result for the monotonicity of conditional expectations.
For the conditional expectation of some variable Y to be monotonic in a conditioning
argument A, it requires that the conditioning set includes variables that block all
backdoor paths from A to Y. In order to prove Proposition 12 we will make use of the
following two lemmas.

Lemma 10 Suppose that A is a non-descendant of Y and let Q denote the set of ancestors of A
or Y which are not descendants of A. Let R = (R1, . . . , Rm) denote an ordered list of some set
of nodes on directed paths from A to Y such that for each i the backdoor paths from Ri to Y are
blocked by R1, . . . , Ri�1, A, and Q. Let V0 = A and Vn = Y and let V1, . . . , Vn�1 be an ordered
list of all the nodes which are not in R but which are on directed paths from A to Y such that at
least one of the directed paths from each node to Y is not blocked by R. Let Vk = {V1, . . . , Vk}
then S(vk|a, vk�1, q, r) = S(vk|pavk ).

Lemma 11 If under the conditions of Lemma 10 all directed paths from A to Y are positive
except possibly through R then S(y|a, q, r) is non-decreasing in a.

These two lemmas allow us to prove Proposition 12 given below.

Proposition 12 Suppose that A is a non-descendant of Y and let X denote some set of non-
descendants of A that blocks all backdoor paths from A to Y. Let R = (R1, . . . , Rm) denote an
ordered list of some set of nodes on directed paths from A to Y such that for each i the backdoor
paths from Ri to Y are blocked by R1, . . . , Ri�1, A and X. If all directed paths from A to Y are
positive except possibly through R then S(y|a, x, r) and E[y|a, x, r] are non-decreasing in a.

If R = ? the statement of Proposition 12 is considerably simplified and is stated in
the following corollary.

Corollary 13 Let X denote some set of non-descendants of A that blocks all backdoor paths
from A to Y. If all directed paths between A and Y are positive then S(y|a, x) and E[y|a, x] are
non-decreasing in a.

Lemma 11 and Proposition 12 are generalizations of results given by Wellman (1990)
and Druzdzel and Henrion (1993). In particular, in Lemma 11 if R = ?, then the result
follows immediately from repeated application of Theorems 4.2 and 4.3 in Wellman
(1990) or more directly from the work of Druzdzel and Henrion (1993, Theorem 4).
Lemma 11 generalizes the results of Wellman (1990) and Druzdzel and Henrion (1993)
by allowing for conditioning on nodes R = (R1, . . . , Rm) which are on directed paths
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Figure 2: Example illustrating Propositions 12–15.

from A to Y. Proposition 12 further generalizes Lemma 11 by replacing the set Q in
Lemma 11 which consists of the set of ancestors of A or Y which are not descendants of
A with some other set X which consists of some set of non-descendants of A that blocks
all backdoor paths from A to Y.

Propositions 14–18 relax the condition that the conditioning set includes variables
that block all backdoor paths A to Y and impose certain other conditions; the proofs of
each of these propositions make use of Proposition 12.

Proposition 14 Suppose that A is not a descendant of Y, that A is binary, and that A and Y
are positively monotonically associated then E[Y|A] is non-decreasing in A.

Proposition 15 Suppose that A is not a descendant of Y, that Y is binary, and that A and Y
are positively monotonically associated then E[A|Y] is non-decreasing in Y.

Propositions 14 and 15 require that conditioning variable be binary. Counterexam-
ples can be constructed to show that if the conditioning variable is not binary then the
conditional expectation may not be non-decreasing in the conditioning argument even
if A and Y are positively monotonically associated (see Appendix B, Counterexamples 1
and 2).

Propositions 14 and 15 can be combined to give the following corollary which makes
no reference to the ordering of A and Y.

Corollary 16 Suppose that A is binary and that A and Y are positively monotonically associ-
ated then E[Y|A] is non-decreasing in A.

Example 2 Consider the signed directed acyclic graph given in Figure 2.
By Proposition 12, we have that E[Y|A = a, C = c, R = r] and E[Y|A = a, C = c]

are non-decreasing in a. If A is binary then by Proposition 14, it is also the case that
E[Y|A = a] is non-decreasing in a. If Y is binary, then by Proposition 15, E[A|Y = y] is
non-decreasing in y. The monotonicity of E[Y|A = a, C = c, R = r] and E[Y|A = a, C =
c] also follow directly from the results of Wellman (1990) and Druzdzel and Henrion
(1993); the monotonicity of E[Y|A = a] and E[A|Y = y] do not.

Propositions 17 and 18 consider the monotonicity of conditional expectations while
conditioning on variables other than the variable in which monotonicity holds but not
conditioning on variables that are sufficient to block all backdoor paths between A and
Y. Propositions 17 and 18 generalize Propositions 14 and 15 respectively.

Proposition 17 Suppose that A is not a descendant of Y and that A is binary. Let Q be some
set of variables that are not descendants of Y nor of A and let C be the common causes of A and
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Figure 3: Example illustrating Propositions 17 and 18.

Y not in Q. If all directed paths from A to Y are of positive sign and all directed paths from C to
A not through Q are of the same sign as all directed paths from C to Y not through {Q, A} then
E[Y|A, Q] is non-decreasing in A.

Proposition 18 is similar to Proposition 17 but the conditional expectation E[A|Y, Q]
is considered rather than E[Y|A, Q] and Y rather than A is assumed to be binary. The
form of the proof differs.

Proposition 18 Suppose that A is not a descendant of Y and that Y is binary. Let Q be some
set of variables that are not descendants of Y nor of A and let C be the common causes of A and
Y not in Q. If all directed paths from A to Y are of positive sign and all directed paths from C to
A not through Q are of the same sign as all directed paths from C to Y not through {Q, A} then
E[A|Y, Q] is non-decreasing in Y.

Propositions 17 and 18 can be combined to give the following corollary which makes
no reference to the ordering of A and Y.

Corollary 19 Suppose that A is binary. Let Q be some set of variables that are not descendants
of Y nor of A and let C be the common causes of A and Y not in Q. If all directed paths from A
to Y (or from A to Y) are of positive sign and all directed paths from C to A not through {Q, Y}
are of the same sign as all directed paths from C to Y not through {Q, A} then E[Y|A, Q] is
non-decreasing in Y.

Example 3 Consider the signed directed acyclic graph given in Figure 3.
If A is binary, then by Proposition 17, E[Y|A = a, C = c, Q = q], E[Y|A = a, Q = q],

E[Y|A = a, C = c] and E[Y|A = a] are all non-decreasing in a. If Y is binary then by
Proposition 18, E[A|Y = y, C = c, Q = q], E[A|Y = y, Q = q], E[A|Y = y, C = c] and
E[A|Y = y] are all non-decreasing in y. The monotonicity of E[Y|A = a, C = c, Q = q]
follows directly from the results of Wellman (1990) and Druzdzel and Henrion (1993);
the monotonicity of the other conditional expectations do not.

We now return to Example 1 concerning potential unmeasured confounding in the
estimation of controlled direct effects.

Example 1 (Revisited). Consider once again the causal directed acyclic graph given
in Figure 1. Suppose that we may assume that A has a weak monotonic effect on
Y. Under the null hypothesis that U is not a cause of R (i.e. does not confound the
relationship between R and Y) we could conclude by Proposition 12 that E[Y|A =
a, R = r, Q = q] is non-decreasing in a for all r and q. Under the alternative hypothesis
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that U is a cause of R, we could not apply Proposition 12 because of the unblocked
backdoor path R�U �Y between R and Y. The monotonicity relationship would thus
not necessarily hold. Consequently, if E[Y|A = a, R = r, Q = q] were found not to be
monotonic in a then we could reject the null hypothesis that U is not a cause of R. Note
that the monotonicity of E[Y|A = a, R = r, Q = q] in a also follows from the results of
Wellman (1990) and Druzdzel and Henrion (1993). If, however, there were an edge from
U to Q for example, or in more complicated scenarios, the results of Wellman (1990)
and Druzdzel and Henrion (1993) would no longer suffice to conclude the monotonicity
of E[Y|A = a, R = r, Q = q] in a; one would need to employ Proposition 12.

We now construct a simple statistical test in the case that A, R and Y are all bi-
nary (cf. Robins and Greenland, 1992) of the null hypothesis that U is absent from
Figure 1. Let nijq denote the number of individuals in stratum Q = q with A = i
and R = j and let let dijq denote the number of individuals in stratum Q = q with
A = i and R = j and Y = 1. Let pijq denote the true probability P(Y = 1|A =
i, R = j, Q = q). From the null hypothesis that U is absent from Figure 1, it fol-
lows by Proposition 12 that p1jq � p0jq  0 for all j and q. Thus we have dijq ⇠
Bin(nijq, pijq) with E[

dijq
nijq

] = pijq and Var( dijq
nijq

) =
pijq(1�pijq)

nijq
. By the central limit cen-

tral limit theorem
(

d1jq
n1jq
� d0jq

n0jq
)�(p1jq�p0jq)

r

p1jq(1�p1jq)
n1jq

+
p0jq(1�p0jq)

n0jq

.
⇠N(0, 1) and by Slutsky’s theorem we have

(
d1jq
n1jq
� d0jq

n0jq
)�(p1jq�p0jq)

s

d1jq(n1jq�d1jq)

n3
1jq

+
d0jq(n0jq�d0jq)

n3
0jq

.
⇠N(0, 1). To test the null hypothesis that the edge from U to

R is absent from Figure 1 one may thus use the test statistic
(

d1jq
n1jq
� d0jq

n0jq
)

s

d1jq(n1jq�d1jq)

n3
1jq

+
d0jq(n0jq�d0jq)

n3
0jq

with critical regions of the form: {
(

d1jq
n1jq
� d0jq

n0jq
)

s

d1jq(n1jq�d1jq)

n3
1jq

+
d0jq(n0jq�d0jq)

n3
0jq

> Z1�a} to carry out a

one-sided (upper tail) test. The derivation of the power of such a test would require
providing explicit structural equations for each of the variables in the model. Similar
tests could be constructed for other scenarios. We note that if the test fails to reject
the null, one cannot conclude that the arrow from U to R is absent; if the inequality
E[Y|A = a1, R = r, Q = q]  E[Y|A = a2, R = r, Q = q] holds for all a1  a2 this is
potentially consistent with both the presence and the absence of an edge from U to R.
If, however, the test rejects the null then one can conclude that an edge from U to R
must be present, provided the other model assumptions hold. With observational data,
the assumption that no unmeasured confounding variable is present can be falsified
but it cannot be verified regardless of the approach one takes. It is nevertheless worth-
while testing any empirical implications of the no unmeasured confounding variables
assumptions which can be derived, such as those following from Proposition 12.

Tian and Pearl (2002) and Kang and Tian (2007) derived various equality constraints
that arise from causal directed acyclic graphs with hidden variables; Kang and Tian
(2006) derived various inequality constraints that arise from causal directed acyclic
graphs with hidden variables. We note that the inequality constraint E[Y|A = a1, R =
r, Q = q]  E[Y|A = a2, R = r, Q = q] for a1  a2 does not follow from the results
of Tian and Pearl (2002) or Kang and Tian (2006, 2007). The equality and inequality
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constraints which follow from their work will apply to all causal models consistent
with the directed acyclic graph in Figure 1 (without the sign); the inequality constraint
E[Y|A = a1, R = r, Q = q]  E[Y|A = a2, R = r, Q = q] follows only if it can be
assumed in Figure 1 that A has a weak positive monotonic effect on Y. More generally,
the results in this paper do not provide an alternative set of constraints but rather a
supplementary set of constraints to those of Tian and Pearl (2002) and Kang and Tian
(2006, 2007).

6. Effect Modification and Monotonic Effects
If when conditioning on a particular variable, the sign of the effect of another variable
on the outcome varies between strata of the conditioning variable, then the conditioning
variable is said to be a qualitative effect modifier. The following definition gives the
condition for qualitative effect modification more formally.

Definition 20 A variable Q is said to be an effect modifier for the causal effect of A on Y
if Q is not a descendant of A and if there exist two levels of A, a0 and a1 say, such that
E[YA=a1 |Q = q] � E[YA=a0 |Q = q] is not constant in q. Furthermore Q is said to be
a qualitative effect modifier if there exist two levels of A, a0 and a1, and two levels of Q,
q0 and q1, such that sign(E[YA=a1 |Q = q1] � E[YA=a0 |Q = q1]) 6= sign(E[YA=a1 |Q =
q0]� E[YA=a0 |Q = q0]).

Monotonic effects and weak monotonic effects are closely related to the concept of
qualitative effect modification. Essentially, the presence of a monotonic effect precludes
the possibility of qualitative effect modification. This is stated precisely in Proposi-
tions 21 and 23.

Proposition 21 Suppose that some parent A1 of Y is such that the A1 �Y edge is of positive
sign then there can be no other parent, A2, of Y which is a qualitative effect modifier for causal
effect of A1 on Y, either unconditionally or within some stratum C = c of the parents of Y other
than A1 and A2.

A similar result clearly holds if the A1 � Y edge is of negative sign. We give the
contrapositive of Proposition 21 as a corollary.

Corollary 22 Suppose that some parent of Y, A2, is a qualitative effect modifier for causal effect
of another parent of Y, A1, either unconditionally or within some stratum C = c of the parents
of Y other than A1 and A2 then A1 can have neither a weak positive monotonic effect nor a weak
negative monotonic effect on Y.

If there are intermediate variables between A and Y then Proposition 21 can be
generalized to give Proposition 23.

Proposition 23 Suppose that all directed paths from A to Y are of positive sign (or are all of
negative sign) then there exists no qualitative effect modifier Q on the directed acyclic graph for
the causal effect of A on Y.

Example 4 Consider the signed directed acyclic graph given in Figure 4 in which the
A�Y edge is of positive sign.

It can be shown that any of Q1, Q2, Q3, Q4 or Q5 can serve as effect modifiers for the
causal effect of A on Y (VanderWeele and Robins, 2007). However, by Proposition 21
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Figure 4: Example illustrating the use of Propositions 21 and 23.

or 23, since A has a (weak) monotonic effect on Y, none of Q1, Q2, Q3, Q4 or Q5 can
serve as qualitative effect modifiers for the causal effect of A on Y. Conversely, if it is
found that one of Q1, Q2, Q3, Q4 or Q5 is a qualitative effect modifier for the causal
effect of A on Y then the A�Y edge cannot be of positive (or negative) sign.

7. Concluding Remarks
In this paper we have related weak monotonic effects to the monotonicity of certain con-
ditional expectations in the conditioning argument and to qualitative effect modification.
When the variables on a causal directed acyclic graph exhibit weak monotonic effects
the results can be used to construct tests for the presence of unmeasured confounding
variables. Future work could examine whether it is possible to weaken the restrictions
on R in Proposition 12; another area of future research would include developing an
algorithm for what relationships need systematic evaluation in order to test for par-
ticular confounding patterns; further research could also be done on the derivation of
statistical tests of the type considered at the end of Section 5 for cases in which A, R and
Y are not binary and for dealing with issues related to multiple testing problems.
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Appendix A. Proofs.
Proof of Proposition 2.

By the definition of a non-parametric structural equation, Ya,fpaY
(w) = f (fpaY, a, eY(w))

and from this the result follows.

Proof of Proposition 4.

Since A has a positive monotonic effect on Y, for any a1 � a0 we have that S(y|a1,fpaY) =
P(Y > y|a1,fpaY) = P{ f (fpaY, a1, eY) > y} � P{ f (fpaY, a0, eY) > y} = P(Y >
y|a0,fpaY) = S(y|a1,fpaY).
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Proof of Lemma 8.

For a � a0 we have

E[h(Y, A, R)|A = a, R = r]� E[h(Y, A, R)|A = a0, R = r]

=
Z y=•

y=�•
h(y, a, r)dF(y|a, r)�

Z y=•

y=�•
h(y, a0, r)dF(y|a0, r)

=
Z y=•

y=�•
h(y, a, r)d{F(y|a, r)� F(y|a0, r)}+

Z y=•

y=�•
{h(y, a, r)� h(y, a0, r)}dF(y|a0, r)

= [h(y, a, r){F(y|a, r)� F(y|a0, r)}]y=•
y=�• �

Z y=•

y=�•
{F(y|a, r)� F(y|a0, r)}dh(y, a, r)

+
Z y=•

y=�•
{h(y, a, r)� h(y, a0, r)}dF(y|a0, r)

=
Z y=•

y=�•
{S(y|a, r)� S(y|a0, r)}dh(y, a, r) +

Z y=•

y=�•
{h(y, a, r)� h(y, a0, r)}dF(y|a0, r).

This final expression is non-negative since the integrands of both integrals are non-
negative for a � a0.

Proof of Proposition 9.

We have that E[Y|X = x, A = a] = E[Y|fpaY, A = a] and since A has a (weak) positive
monotonic effect on Y, we have that S(y|a,fpaY) is non-decreasing in a and it follows
from Lemma 8 that E[Y|X = x, A = a] = E[Y|fpaY, A = a] is non-decreasing in a.

Proof of Lemma 10.

We will say a path from A to B is a frontdoor path from A to B if the path begins with a
directed edge with the arrowhead pointing out of A. Let Qk and Rk be the subsets of Q
and R respectively that are ancestors of Vk. We will show that

S(vk|a, v1, . . . , vk�1, q, r) = S(vk|a, v1, . . . , vk�1, q, rk)

= S(vk|a, v1, . . . , vk�1, qk, rk) = S(vk|pavk ).

If Rk = R, the first equality holds trivially. Suppose that Rk 6= R so that Rm is not an
ancestor of Vk. All frontdoor paths from Rm to Vk must include a collider since Rm is
not an ancestor of Vk. This collider will not be in A, V1, . . . , Vk�1, Q, R1, . . . , Rm�1 since
all these variables are non-descendants of Rm. Thus all frontdoor paths from Rm to
Vk will be blocked given A, V1, . . . , Vk�1, Q, R1, . . . , Rm�1. All backdoor paths from Rm
to Vk with an edge going into Vk will be blocked given A, V1, . . . , Vk�1, Q, R1, . . . , Rm�1
by paVk ; note by hypothesis it can be seen that paVk will be contained by the variables
A, V1, . . . , Vk�1, Q, Rk since there is a directed path from Vk to Y and Q includes all
ancestors of Y not on directed paths from A to Y. All backdoor paths from Rm to
Vk with an edge going out from Vk will be blocked given A, Q, R1, . . . , Rm�1 by hy-
pothesis; otherwise there would be a backdoor path from Rm through Vk to Y not
blocked by A, Q, R1, . . . , Rm�1. But all backdoor paths from Rm to Vk with an edge
going out from Vk which are blocked by A, Q, R1, . . . , Rm�1 will also be blocked by
A, V1, . . . , Vk�1, Q, R1, . . . , Rm�1. This is because such a path concluding with an edge
going out from Vk which is blocked by A, Q, R1, . . . , Rm�1 but not blocked by A, V1, . . . ,
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Vk�1, Q, R1, . . . , Rm�1 would require that one of V1, . . . , Vk�1, say Vp, be a collider on
the path or a descendant of a collider. If one of V1, . . . , Vk�1 were a collider then the
path would in fact be blocked by the parents of the collider since all the parents of
V1, . . . , Vk�1 are in A, V1, . . . , Vk�1, Q, R1, . . . , Rm�1. If one of V1, . . . , Vk�1, say Vp, were
a descendant of the collider then none of the directed paths from the collider to Vp
could contain nodes in R1, . . . , Rm�1 for otherwise the path would not be blocked by
A, Q, R1, . . . , Rm�1; for the same reason the collider itself could not be in R1, . . . , Rm�1.
But it then follows that the collider must itself be one of V1, . . . , Vp�1 since it is an
ancestor of Vp with a directed path to Vp not blocked by R. However, if the collider is
one of V1, . . . , Vp�1 then the path would in fact be blocked by the parents of the collider
since all the parents of V1, . . . , Vk�1 are in A, V1, . . . , Vk�1, Q, R1, . . . , Rm�1. From this
it follows that all backdoor paths from Rm to Vk with an edge going out from Vk are
blocked by A, V1, . . . , Vk�1, Q, R1, . . . , Rm�1.

We have thus shown that Vk and Rm are d-separated given A, V1, . . . , Vk�1, Q, R1, . . . ,
Rm�1 and so

S(vk|a, v1, . . . , vk�1, q, r) = S(vk|a, v1, . . . , vk�1, q, r1, . . . , rm�1).

Similarly, Vk and Rm�1 are d-separated given A, V1, . . . , Vk�1, Q, R1, . . . , Rm�2 and so

S(vk|a, v1, . . . , vk�1, q, r1, . . . , rm�1) = S(vk|a, v1, . . . , vk�1, q, r1, . . . , rm�2).

We may carry this argument forward to get

S(vk|a, v1, . . . , vk�1, q, r) = S(vk|a, v1, . . . , vk�1, q, rk).

All backdoor paths from Vk to Q\Qk will be blocked given A, V1, . . . , Vk�1, Qk, Rk by
pavk . Since Vk is not a descendant of Q\Qk all frontdoor paths from Vk to Q\Qk will
involve at least one collider which is a descendant of Vk. This collider is not in the
conditioning set A, V1, . . . , Vk�1, Qk, Rk since this entire set consists of non-descendants
of Vk and so the collider will block the frontdoor path from Vk to Q\Qk.

Thus Vk and Q\Qk are d-separated given A, V1, . . . , Vk�1, Qk, Rk and so

S(vk|a, v1, . . . , vk�1, q, rk) = S(vk|a, v1, . . . , vk�1, qk, rk).

Furthermore, A, V1, . . . , Vk�1, Qk, Rk are non-descendants of Vk and include all of the
parents of Vk and so

S(vk|a, v1, . . . , vk�1, qk, rk) = S(vk|pavk ).

We have thus shown as desired that

S(vk|a, v1, . . . , vk�1, q, r) = S(vk|a, v1, ..., vk�1, q, rk)

= S(vk|a, v1, ..., vk�1, qk, rk) = S(vk|pavk ).

Proof of Lemma 11.

Let V0 = A and Vn = Y and let V1, . . . , Vn�1 be an ordered list of all the nodes which
are not in R but which are on directed paths from A to Y such that at least one of the
directed paths from each node to Y is not blocked by R. Let Vk = {V1, . . . , Vk}. It can be
shown by induction that by starting with n = k and for each k iteratively replacing by
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their negations the parents of Vk with negative edges into Vk suffices to obtain a graph
such that all edges on all directed paths from A to Y not blocked by R have positive
sign.

We can express E[1(Vn > v)|A, Q, R] as

E[E[. . . E[E[1(Vn > v)|A, Vn�1, Q, R]|A, Vn�2, Q, R]| . . . |A, V1, Q, R]|A, Q, R].

Now conditional on A, Vn�1\Vi, Q, R we have that

E[1(Vn > v)|, A, Vn�1, Q, R]

is non-decreasing in vi for i = 1, . . . , n� 1 since Vi has either a weak positive monotonic
effect or no effect on Vn. Thus conditional on A, Vn�1\{Vi, Vn�1}, Q, R we have that

E[1(Vn > v)|A, Vn�1, Q, R]

is a non-decreasing function of vi and vn�1. Furthermore, by Lemma 10 we have
that S(vn�1|a, v1, . . . , vn�2, q, r) = S(vn�1|pavn�1) and so S(vn�1|a, v1, . . . , vn�2, q, r) =
S(vn�1|pavn�1) is a non-decreasing in vi for all a, v1, . . . , vi�1, vi+1, . . . , vn�2, q, r since Vi
has either a weak positive monotonic effect or no effect on Vn�1. Thus by Lemma 8 we
have that conditional on A, Vn�2\Vi, Q, R,

E[E[1(Vn > v)|A, Vn�1, Q, R]|A, Vn�2, Q, R]

is non-decreasing in vi for i = 1, . . . , n� 2. Carrying the argument forward, conditional
on A, Q, R, we will have that

E[. . . E[E[1(Vn > v)|A, Vn�1, Q, R]|A, Vn�2, Q, R]| . . . |A, V1, Q, R]

is a non-decreasing function of v1 and v0 = a and since A has either a weak positive
monotonic effect or no effect on V1, S(v1|a, q, r) = S(v1|pav1) will be non-decreasing in
a and thus by Lemma 8,

S(y|a, q, r) = E[1(Vn > y)|A, Q, R]

= E[E[. . . E[E[1(Vn > y)|A, Vn�1, Q, R]|A, Vn�2, Q, R]| . . . |A, V1, Q, R]|A, Q, R]

will be non-decreasing in a.

Proof of Proposition 12

Let Q denote the set of ancestors of A or Y which are not descendants of A. Note
that if for each i the backdoor paths from Ri to Y are blocked by R1, . . . , Ri�1, A and X
then these backdoor paths will also be blocked by R1, . . . , Ri�1, A and Q since for each
backdoor path from Ri to X there must be some member of {A}[Q through which the
path passes. We may thus apply Lemma 11 to conclude that E[1(Y > y)|a, Q, r]. Since
Q blocks all backdoor paths from A to Y we have

S(y|a, x, r) = E[E[1(Y > y)|a, Q, x, r]|a, x, r]
= E[E[1(Y > y)|a, Q, r]|a, x, r] = E[E[1(Y > y)|a, W, r]|a, x, r]

where W is the subset of Q which are either parents of Y or parents of a node on a
directed path from A to Y. Let W 0 denote the subset of W for which there is a path to Y
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not blocked by A, X, R then E[E[1(Y > y)|a, W, r]|a, x, r] = E[E[1(Y > y)|a, W 0, r]|a, x, r].
All backdoor paths from A to W 0 are blocked given R and X by X since X blocks all
backdoor paths from A to Y. Any frontdoor path from A to W 0 will include a collider
since the nodes in W 0 are not descendants of A. The collider cannot be in X because
X includes only non-descendants of A. Suppose the collider were some node Ri; by
hypothesis all backdoor paths from Ri to Y are blocked by R1, . . . , Ri�1, A and X; thus
the frontdoor path from A to W 0 would have to be blocked by A, R1, . . . , Ri�1 and X
for otherwise there would be a backdoor path from Ri through W 0 to Y not blocked by
A, R1, . . . , Ri�1 and X. From this it follows that every frontdoor path from A to W 0 must
be blocked given R and X either by a collider or by a node in R or X. We have thus
shown that all paths from A to W 0 are blocked given R and X and so W 0 is conditionally
independent of A given R and X and so we have

E[E[1(Y > y)|a, W 0, r]|a, x, r] = E[E[1(Y > y)|a, W 0, r]|x, r]
= E[E[1(Y > y)|a, Q, r]|x, r].

We have thus shown that S(y|a, x, r) = E[E[1(Y > y)|a, Q, r]|x, r]. Since E[1(Y >
y)|a, Q, r] is non-decreasing in a for all q we also have that

S(y|a, x, r) = E[E[1(Y > y)|a, Q, r]|x, r]

is non-decreasing in a. Finally, since S(y|a, x, r) is non-decreasing in a, it follows from
Lemma 8 that E[y|a, x, r] is also non-decreasing in a.

Proof of Proposition 14.

Proposition 14 is in fact a special case of Proposition 17 with R = ? and Q = ?. The
proof of Proposition 17 is given below.

Proof of Proposition 15.

Proposition 15 is in fact a special case of Proposition 18 with R = ? and Q = ?. The
proof of Proposition 18 is given below.

Proof of Proposition 17.

By the law of iterated expectations,

E[Y|A = a, Q = q]
= Â

c
E[Y|A = a, C = c, Q = q]P(C = c|A = a, Q = q)

We have by Proposition 12 that E[Y|A, Q, C] is non-decreasing in A. Let (C1, . . . , Cn)
denote an ordered list of the variables in C. Let Qc be variables in Q which are common
causes of C and let Qn = Q\Qc. Let Qd

i be the variables in Qc that are descendants of
Ci. Let Cd

i denote the variables in C that are descendants of Ci and let Cn
i = C\{Ci, Cd

i }.
By Proposition 12 we have that E[Y|A, Q, C] is non-decreasing in each component Ci of
C by choosing for each i, A in Proposition 12 to be Ci, X in Proposition 12 to be the set
{Qn, Qc\Qd

i , Cn
i } and R in Proposition 12 to be the set {Qd

i , Cd
i , A}. Furthermore,

P(C = c|A = a, Q = q) =
P(A = a|C = c, Q = q)P(C = c|Q = q)

P(A = a|Q = q)
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and so
P(C = c|A = 1, Q = q) = nq(c)P(C = c|A = 0, Q = q)

where
nq(c) =

P(A = 0|Q = q)P(A = 1|C = c, Q = q)
P(A = 1|Q = q)P(A = 0|C = c, Q = q)

which is non-decreasing in each dimension of c since the numerator is non-decreasing
in each dimension of c and the denominator is non-increasing in each dimension of c by
Proposition 12 by choosing for each i, A in Proposition 12 to be Ci, X in Proposition 12
to be the set {Qn, Qc\Qc

i , Cn
i } and R in Proposition 12 to be the set {Qc

i , Cd
i }. Thus

E[Y|A = 1, Q = q]
= Â

c
E[Y|A = 1, C = c, Q = q]P(C = c|A = 1, Q = q)

�Â
c

E[Y|A = 0, C = c, Q = q]P(C = c|A = 1, Q = q)

= Â
c

E[Y|A = 0, C = c, Q = q]nq(c)P(C = c|A = 0, Q = q)

�Â
c

E[Y|A = 0, C = c, Q = q]P(C = c|A = 0, Q = q)

= E[Y|A = 0, Q = q].

The second inequality holds because by an argument similar to that above E[Y|A =
0, Q = q, C = c] is non-decreasing in each dimension of c and P(C = c|A = 1, Q = q)
= nq(c)P(C = c|A = 0, Q = q) weights more heavily higher values of each dimension
of c than does P(C = c|A = 0, Q = q) since nq(c) is non-decreasing in each dimension
of c. Thus E[Y|A = a, Q = q] is non-decreasing in a.

Proof of Proposition 18.

By the law of iterated expectations we have that

E[A|Y = y, Q = q] = Â
c

E[A|Y = y, C = c, Q = q]P(C = c|Y = y, Q = q)

= Â
c,a

aP(A = a|Y = y, C = c, Q = q)P(C = c|Y = y, Q = q)

= Â
c,a

a
P(Y = y, A = a, C = c|Q = q)

P(Y = y, C = c|Q = q)
P(C = c|Y = y, Q = q)

= Â
c,a

a
P(Y = y|A = a, C = c, Q = q)

P(Y = y|Q = q)
P(A = a, C = c|Q = q)

= EC,A[A
P(Y = y|A, C, Q = q)

P(Y = y|Q = q)
|Q = q].

As in the proof of Proposition 17, we have by Proposition 12 we have that conditional
on and Q = q, P(Y=1|A,C,Q=q)

P(Y=1|Q=q) is a non-decreasing function of A and of each dimension

of C. Similarly, P(Y=0|A,C,Q=q)
P(Y=0|Q=q) is a non-increasing function of A and each dimension

of C. Over c and a, conditional on and Q = q, P(Y=y|A=a,C=c,Q=q)
P(Y=y|Q=q) is a weight func-

tion that sums to 1 i.e. EC,A[
P(Y=y|A=a,C=c,Q=q)

P(Y=y|Q=q) ] = P(Y=y|Q=q)
P(Y=y|Q=q) = 1. Furthermore, by
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Proposition 12, S(a|c, q) is non-decreasing in c and we thus have that

E[A|Y = 1, Q = q] = EC,A[A
P(Y = 1|A, C, Q = q)

P(Y = 1|Q = q)
|Q = q]

� EC,A[A
P(Y = 0|A, C, Q = q)

P(Y = 0|Q = q)
|Q = q]

= E[A|Y = 0, Q = q]

and so E[A|Y, Q] is non-decreasing in Y.

Proof of Proposition 21.

Note that by Proposition 9 above if A1 has a weak positive monotonic effect on Y
then E[Y|A1 = a1, A2 = a2, C = c] must be non-decreasing in a1 and if A1 has a
weak negative monotonic effect on Y then E[Y|A1 = a1, A2 = a2, C = c] must be non-
increasing in a1. Since (Y ‰ A1|{A2, C})GE1

where GE1 is the original directed acyclic
graph G with all edges emanating from A1 removed, we have YA1=a ‰ A1|{A2, C}
(Pearl, 1995). Thus E[YA1=a1 |A2 = a2, C = c] = E[Y|A1 = a1, A2 = a2, C = c] and
so if A2 is a qualitative effect modifier for the causal effect of A1 on Y for stratum
C = c then we must two values of A1, a⇤1 and a⇤⇤1 , and two levels of A2, a02 and a002 ,
such that E[Y|A1 = a⇤⇤1 , A2 = a002 , C = c] � E[Y|A1 = a⇤1, A2 = a002 , C = c] < 0 and
E[Y|A1 = a⇤⇤1 , A2 = a02, C = c]� E[Y|A1 = a⇤1, A2 = a02, C = c] > 0. Either a⇤⇤1 > a⇤1
or a⇤⇤1 < a⇤1. Consider the first case (the second is analogous) then since E[Y|A1 =
a⇤⇤1 , A2 = a002 , C = c]� E[Y|A1 = a⇤1, A2 = a002 , C = c] < 0, A1 does not have a weak
positive monotonic effect on Y and since E[Y|A1 = a⇤⇤1 , A2 = a02, C = c]� E[Y|A1 =
a⇤1, A2 = a02, C = c] > 0, A1 does not have a weak negative monotonic effect on Y.
Now if A2 is a qualitative effect modifier for the causal effect of A1 unconditionally
then we must have two values of A1, a⇤1 and a⇤⇤1 , and two levels of A2, a02 and a002 ,
such that E[YA1=a⇤⇤1 |A2 = a002 ] � E[YA1=a⇤1 |A2 = a002 ] < 0 and E[YA1=a⇤⇤1 |A2 = a02] �
E[YA1=a⇤1 |A2 = a02] > 0. Once again either a⇤⇤1 > a⇤1 or a⇤⇤1 < a⇤1. We will consider
the first case (the second is analogous). We thus have that Â

c
E[Y|A1 = a⇤⇤1 , A2 =

a002 , C = c]P(C = c|A2 = a002 ) = Â
c

E[YA1=a⇤⇤1 |A2 = a002 , C = c]P(C = c|A2 = a002 ) =

E[YA1=a⇤⇤1 |A2 = a002 ] < E[YA1=a⇤1 |A2 = a002 ] = Â
c

E[YA1=a⇤1 |A2 = a002 , C = c]P(C = c|A2 =

a002 ) = Â
c

E[Y|A1 = a⇤1, A2 = a002 , C = c]P(C = c|A2 = a002 ) and so A1 cannot have a weak

positive monotonic effect on Y and similarly, Â
c

E[Y|A1 = a⇤⇤1 , A2 = a02, C = c]P(C =

c|A2 = a02) = Â
c

E[YA1=a⇤⇤1 |A2 = a02, C = c]P(C = c|A2 = a02) = E[YA1=a⇤⇤1 |A2 = a02] >

E[YA1=a⇤1 |A2 = a02] = Â
c

E[YA1=a⇤1 |A2 = a02, C = c]P(C = c|A2 = a02) = Â
c

E[Y|A1 =

a⇤1, A2 = a02, C = c]P(C = c|A2 = a02) and so A1 cannot have a weak negative monotonic
effect on Y.

Proof of Proposition 23.

We prove the Theorem for weak positive monotonic effects. The proof for weak negative
monotonic effects is similar. Let C denote all non-descendants of A which are either
parents of Y or parents of a node on a directed path between A and Y. By the law of
iterated expectations we have E[YA=a1 |Q = q]� E[YA=a0 |Q = q] = Âc E[YA=a1 |C =
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C A Y
++ ++

++

Figure 5: Directed acyclic graph illustrating counterexamples to Propositions 14 and 15
when A is not binary.

c, Q = q]P(C = c|Q = q) � Âc E[YA=a0 |C = c, Q = q]P(C = c|Q = q). We will
show that this latter expression is equal to Âc E[YA=a1 |C = c]P(C = c|Q = q) �
Âc E[YA=a0 |C = c]P(C = c|Q = q). By Theorem 3 of Pearl (1995) it suffices to show that
(Y ‰ Q|C, A)GA

where GA denotes the graph obtained by deleting from the original
directed acyclic graph all arrows pointing into A. Any front door path from Y to Q in
GA will be blocked by a collider. Any backdoor path from Y to Q in GA will be blocked
by C. We thus have that E[YA=a1 |Q = q]� E[YA=a0 |Q = q] = Âc E[YA=a1 |C = c]P(C =
c|Q = q)�Âc E[YA=a0 |C = c]P(C = c|Q = q). Since C will block all backdoor paths
from A to Y we have by the backdoor path adjustment theorem Âc E[Y|C = c, A =
a1]P(C = c|Q = q)� Âc E[Y|C = c, A = a0]P(C = c|Q = q) = Âc{E[Y|C = c, A =
a1]� E[Y|C = c, A = a0]}P(C = c|Q = q). If there were a qualitative effect modifier Q
for the causal effect of A on Y then there would exist a value q0 such that E[YA=a1 |Q =
q0]� E[YA=a0 |Q = q0] < 0. But since all paths between A and Y are of positive sign
and since C blocks all backdoor paths from A to Y we have by Proposition 12 that
E[Y|C = c, A = a] is non-decreasing in a and so E[YA=a1 |Q = q0]� E[YA=a0 |Q = q0] =
Âc{E[Y|C = c, A = a1]� E[Y|C = c, A = a0]}P(C = c|Q = q0) � 0.

Appendix B. Counterexamples.
Counterexample 1
Consider the directed acyclic graph given in Figure 5.

In this example C and Y are binary and A is ternary. Suppose that C ⇠ Ber(0.5),
eA ⇠ Ber(0.5) and that P(A = 0|eA = 0) = 1 and P(A = C + 1|eA = 1) = 1. Suppose
also that P(Y = 1|A = 2) = 1 and that if P(Y = C|A = 0) = 1 and P(Y = C|A =
1) = 1. Clearly then C has a positive monotonic effect on A and on Y and A has a
positive monotonic effect on Y and so A and Y are positively monotonically associated.
However, we have that E[Y|A = 1] = E[C|A = 1] = 0 ⇤ P(C = 1|A = 1) = 0 but
E[Y|A = 0] = E[C|A = 0] = 1 ⇤ P(C = 1|A = 0) + 0 ⇤ P(C = 0|A = 0) = 1/2.

Counterexample 2
Consider again the directed acyclic graph given in Figure 5. In this example we will
assume that C and A are binary and that Y is ternary. Suppose that C ⇠ Ber(0.5) and
that eA takes on the values 0, 1 and 2, each with probability 1/3. Suppose also that
P(A = 0|eA = 0) = 1, P(A = C|eA = 1) = 1 and P(A = 1|eA = 2) = 1. Suppose
further that P(Y = 0|C = 0) = 1 and if P(Y = A + 1|C = 1). Clearly then C has
a positive monotonic effect on A and on Y and A has a positive monotonic effect on
Y and so A and Y are positively monotonically associated. However, we have that
E[A|Y = 1] = 0 but E[A|Y = 0] = E[A|C = 0] = 1/3.
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Abstract
We propose the recursive autonomy identification (RAI) algorithm for constraint-based
(CB) Bayes-ian network structure learning. The RAI algorithm learns the structure
by sequential application of conditional independence (CI) tests, edge direction and
structure decomposition into autonomous sub-structures. The sequence of operations
is performed recursively for each autonomous sub-structure while simultaneously
increasing the order of the CI test. While other CB algorithms d-separate structures
and then direct the resulted undirected graph, the RAI algorithm combines the two
processes from the outset and along the procedure. By this means and due to structure
decomposition, learning a structure using RAI requires a smaller number of CI tests of
high orders. This reduces the complexity and run-time of the algorithm and increases
the accuracy by diminishing the curse-of-dimensionality. When the RAI algorithm
learned structures from databases representing synthetic problems, known networks
and natural problems, it demonstrated superiority with respect to computational com-
plexity, run-time, structural correctness and classification accuracy over the PC, Three
Phase Dependency Analysis, Optimal Reinsertion, greedy search, Greedy Equivalence
Search, Sparse Candidate, and Max-Min Hill-Climbing algorithms.
Keywords: Bayesian networks, constraint-based structure learning

1. Introduction
A Bayesian network (BN) is a graphical model that efficiently encodes the joint proba-
bility distribution for a set of variables (Heckerman, 1995; Pearl, 1988). The BN consists
of a structure and a set of parameters. The structure is a directed acyclic graph (DAG)
that is composed of nodes representing domain variables and edges connecting these
nodes. An edge manifests dependence between the nodes connected by the edge, while
the absence of an edge demonstrates independence between the nodes. The parameters
of a BN are conditional probabilities (densities) that quantify the graph edges. Once
the BN structure has been learned, the parameters are usually estimated (in the case of
discrete variables) using the relative frequencies of all combinations of variable states as
exemplified in the data. Learning the structure from data by considering all possible
structures exhaustively is not feasible in most domains, regardless of the size of the data

© 2009 R. Yehezkel & B. Lerner.
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(Chickering et al., 2004), since the number of possible structures grows exponentially
with the number of nodes (Cooper and Herskovits, 1992). Hence, structure learning
requires either sub-optimal heuristic search algorithms or algorithms that are optimal
under certain assumptions.

One approach to structure learning — known as search-and-score (S&S) (Chicker-
ing, 2002; Cooper and Herskovits, 1992; Heckerman, 1995; Heckerman et al., 1995) —
combines a strategy for searching through the space of possible structures with a scoring
function measuring the fitness of each structure to the data. The structure achieving
the highest score is then selected. Algorithms of this approach may also require node
ordering, in which a parent node precedes a child node so as to narrow the search space
(Cooper and Herskovits, 1992). In a second approach — known as constraint-based (CB)
(Cheng et al., 1997; Pearl, 2000; Spirtes et al., 2000) — each structure edge is learned
if meeting a constraint usually derived from comparing the value of a statistical or
information-theory-based test of conditional independence (CI) to a threshold. Meeting
such constraints enables the formation of an undirected graph, which is then further
directed based on orientation rules (Pearl, 2000; Spirtes et al., 2000). That is, generally
in the S&S approach we learn structures, whereas in the CB approach we learn edges
composing a structure.

Search-and-score algorithms allow the incorporation of user knowledge through the
use of prior probabilities over the structures and parameters (Heckerman et al., 1995).
By considering several models altogether, the S&S approach may enhance inference
and account better for model uncertainty (Heckerman et al., 1999). However, S&S
algorithms are heuristic and usually have no proof of correctness (Cheng et al., 1997)
(for a counter-example see Chickering, 2002, providing an S&S algorithm that identifies
the optimal graph in the limit of a large sample and has a proof of correctness). As
mentioned above, S&S algorithms may sometimes depend on node ordering (Cooper
and Herskovits, 1992). Recently, it was shown that when applied to classification, a
structure having a higher score does not necessarily provide a higher classification
accuracy (Friedman et al., 1997; Grossman and Domingos, 2004; Kontkanen et al., 1999).

Algorithms of the CB approach are generally asymptotically correct (Cheng et al.,
1997; Spirtes et al., 2000). They are relatively quick and have a well-defined stopping
criterion (Dash and Druzdzel, 2003). However, they depend on the threshold selected
for CI testing (Dash and Druzdzel, 1999) and may be unreliable in performing CI
tests using large condition sets and a limited data size (Cooper and Herskovits, 1992;
Heckerman et al., 1999; Spirtes et al., 2000). They can also be unstable in the sense that
a CI test error may lead to a sequence of errors resulting in an erroneous graph (Dash
and Druzdzel, 1999; Heckerman et al., 1999; Spirtes et al., 2000). Additional information
on the above two approaches, their advantages and disadvantages, may be found in
Cheng et al. (1997), Cooper and Herskovits (1992), Dash and Druzdzel (1999), Dash
and Druzdzel (2003), Heckerman (1995), Heckerman et al. (1995), Heckerman et al.
(1999), Pearl (2000) and Spirtes et al. (2000). We note that Cowell (2001) showed that for
complete data, a given node ordering and using cross-entropy methods for checking
CI and maximizing logarithmic scores to evaluate structures, the two approaches are
equivalent. In addition, hybrid algorithms have been suggested in which a CB algorithm
is employed to create an initial ordering (Singh and Valtorta, 1995), to obtain a starting
graph (Spirtes and Meek, 1995; Tsamardinos et al., 2006a) or to narrow the search space
(Dash and Druzdzel, 1999) for an S&S algorithm.

Most CB algorithms, such as Inductive Causation (IC) (Pearl, 2000), PC (Spirtes et al.,
2000) and Three Phase Dependency Analysis (TPDA) (Cheng et al., 1997), construct a
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DAG in two consecutive stages. The first stage is learning associations between variables
for constructing an undirected structure. This requires a number of CI tests growing
exponentially with the number of nodes. This complexity is reduced in the PC algorithm
to polynomial complexity by fixing the maximal number of parents a node can have
and in the TPDA algorithm by measuring the strengths of the independences computed
while CI testing along with making a strong assumption about the underlying graph
(Cheng et al., 1997). The TPDA algorithm does not take direct steps to restrict the size of
the condition set employed in CI testing in order to mitigate the curse-of-dimensionality.

In the second stage, most CB algorithms direct edges by employing orientation rules
in two consecutive steps: finding and directing V-structures and directing additional
edges inductively (Pearl, 2000). Edge direction (orientation) is unstable. This means
that small errors in the input to the stage (i.e., CI testing) yield large errors in the output
(Spirtes et al., 2000). Errors in CI testing are usually the result of large condition sets.
These sets, selected based on previous CI test results, are more likely to be incorrect
due to their size, and they also lead, for a small sample size, to poorer estimation of
dependences due to the curse-of-dimensionality. Thus, we usually start learning using
CI tests of low order (i.e., using small condition sets), which are the most reliable tests
(Spirtes et al., 2000). We further note that the division of learning in CB algorithms into
two consecutive stages is mainly for simplicity, since no directionality constraints have
to be propagated during the first stage. However, errors in CI testing is a main reason
for the instability of CB algorithms, which we set out to tackle in this research.

We propose the recursive autonomy identification (RAI) algorithm, which is a CB
model that learns the structure of a BN by sequential application of CI tests, edge
direction and structure decomposition into autonomous sub-structures that comply
with the Markov property (i.e., the sub-structure includes all its nodes’ parents). This
sequence of operations is performed recursively for each autonomous sub-structure.
In each recursive call of the algorithm, the order of the CI test is increased similarly to
the PC algorithm (Spirtes et al., 2000). By performing CI tests of low order (i.e., tests
employing small conditions sets) before those of high order, the RAI algorithm performs
more reliable tests first, and thereby obviates the need to perform less reliable tests
later. By directing edges while testing conditional independence, the RAI algorithm
can consider parent-child relations so as to rule out nodes from condition sets and
thereby to avoid unnecessary CI tests and to perform tests using smaller condition
sets. CI tests using small condition sets are faster to implement and more accurate than
those using large sets. By decomposing the graph into autonomous sub-structures,
further elimination of both the number of CI tests and size of condition sets is obtained.
Graph decomposition also aids in subsequent iterations to direct additional edges. By
recursively repeating both mechanisms for autonomies decomposed from the graph,
further reduction of computational complexity, database queries and structural errors
in subsequent iterations is achieved. Overall, the RAI algorithm learns faster a more
precise structure.

Tested using synthetic databases, nineteen known networks, and nineteen UCI
databases, RAI showed in this study superiority with respect to structural correctness,
complexity, run-time and classification accuracy over PC, Three Phase Dependency
Analysis, Optimal Reinsertion, a greedy hill-climbing search algorithm with a Tabu
list, Greedy Equivalence Search, Sparse Candidate, naive Bayesian, and Max-Min Hill-
Climbing algorithms.

After providing some preliminaries and definitions in Section 2, we introduce the
RAI algorithm and prove its correctness in Section 3. Section 4 presents experimental
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evaluation of the RAI algorithm with respect to structural correctness, complexity, run-
time and classification accuracy in comparison to CB, S&S and hybrid structure learning
algorithms. Section 5 concludes the paper with a discussion.

2. Preliminaries
A BN B(G, Q) is a model for representing the joint probability distribution for a set
of variables X = {X1 . . . Xn}. The structure G(V, E) is a DAG composed of V, a set of
nodes representing the domain variables X, and E, a set of directed edges connecting
the nodes. A directed edge Xi ! Xj connects a child node Xj to its parent node Xi. We
denote Pa(X,G) as the set of parents of node X in a graph G. The set of parameters Q
holds local conditional probabilities over X, P(Xi|Pa(Xi,G))8i that quantify the graph
edges. The joint probability distribution for X represented by a BN that is assumed
to encode this distribution1 is (Cooper and Herskovits, 1992; Heckerman, 1995; Pearl,
1988)

P(X1 . . . Xn) =
n

’
i=1

P(Xi|Pa(Xi,G)). (1)

Though there is no theoretical restriction on the functional form of the conditional
probability distributions in Equation 1, we restrict ourselves in this study to discrete
variables. This implies joint distributions which are unrestricted discrete distributions
and conditional probability distributions which are independent multinomials for each
variable and each parent configuration (Chickering, 2002).

We also make use of the term partially directed graph, that is, a graph that may have
both directed and undirected edges and has at most one edge between any pair of nodes
(Meek, 1995). We use this term while learning a graph starting from a complete undi-
rected graph and removing and directing edges until uncovering a graph representing
a family of Markov equivalent structures (pattern) of the true underlying BN2 (Pearl,
2000; Spirtes et al., 2000). Pap(X,G), Adj(X,G) and Ch(X,G) are, respectively, the sets
of potential parents, adjacent nodes3 and children of node X in a partially directed
graph G, Pap(X,G) = Adj(X,G)\Ch(X,G).

We indicate that X and Y are independent conditioned on a set of nodes S (i.e.,
the condition set) using X ?? Y | S, and make use of the notion of d-separation
(Pearl, 1988). Thereafter, we define d-separation resolution with the aim to evaluate d-
separation for different sizes of condition sets, d-separation resolution of a graph, an
exogenous cause to a graph and an autonomous sub-structure. We concentrate in this
section only on terms and definitions that are directly relevant to the RAI concept and
algorithm, where other more general terms and definitions relevant to BNs can be found
in Heckerman (1995), Pearl (1988), Pearl (2000), and Spirtes et al. (2000).

Definition 1 (d-separation resolution) The resolution of a d-separation relation between a
pair of non-adjacent nodes in a graph is the size of the smallest condition set that d-separates the
two nodes.

Examples of d-separation resolutions of 0, 1 and 2 between nodes X and Y are given
in Figure 1.

1. Throughout the paper, we assume faithfulness of the probability distribution to a DAG (Spirtes et al.,
2000).

2. Two BNs are Markov equivalent if and only if they have the same sets of adjacencies and V-structures
(Verma and Pearl, 1990).

3. Two nodes in a graph that are connected by an edge are adjacent.
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X Y

Z

(b)

X

Y
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Figure 1: Examples of d-separation resolutions of (a) 0, (b) 1 and (c) 2 between nodes X
and Y.

Definition 2 (d-separation resolution of a graph) The d-separation resolution of a graph
is the highest d-separation resolution in the graph.

The d-separation relations encoded by the example graph in Figure 2a and relevant
to the determination of the d-separation resolution of this graph are: 1) X1 ?? X2 |∆;
2) X1 ?? X4 | {X3}; 3) X1 ?? X5 | {X3}; 4) X1 ?? X6 | {X3}; 5) X2 ?? X4 | {X3}; 6)
X2 ?? X5 | {X3}; 7) X2 ?? X6 | {X3}; 8) X3 ?? X6 | {X4, X5} and 9) X4 ?? X5 | {X3}. Due
to relation 8, exemplifying d-separation resolution of 2, the d-separation resolution of
the graph is 2. Eliminating relation 8 by adding the edge X3 ! X6, we form a graph
having a d-separation resolution of 1 (Figure 2b). By further adding edges to the graph,
eliminating relations of resolution 1, we form a graph having a d-separation resolution
of 0 (Figure 2c) that encodes only relation 1.

X X

X

X X

X

(a)

X X

X

X X

X

(b)

X X

X

X X

X

(c)

Figure 2: Examples of graph d-separation resolutions of (a) 2, (b) 1 and (c) 0.

Definition 3 (exogenous cause) A node Y in G(V, E) is an exogenous cause to G 0(V0, E0),
where V0 ⇢ V and E0 ⇢ E, if Y /2 V0 and 8X 2 V0, Y 2 Pa(X,G) or Y /2 Adj(X,G) (Pearl,
2000).

Definition 4 (autonomous sub-structure) In a DAG G(V, E), a sub-structure GA(VA, EA)
such that VA ⇢ V and EA ⇢ E is said to be autonomous in G given a set Vex ⇢ V of exogenous
causes to GA if 8X 2 VA, Pa(X,G) ⇢ {VA [Vex}. If Vex is empty, we say the sub-structure
is (completely) autonomous4.

4. If G is a partially directed graph, then Pap(X,G) replaces Pa(X,G).
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We define sub-structure autonomy in the sense that the sub-structure holds the
Markov property for its nodes. Given a structure G, any two non-adjacent nodes in an
autonomous sub-structure GA in G are d-separated given nodes either included in the
sub-structure GA or exogenous causes to GA. Figure 3 depicts a structure G containing
a sub-structure GA. Since nodes X1 and X2 are exogenous causes to GA (i.e., they are
either parents of nodes in GA or not adjacent to them; see Definition 3), GA is said to be
autonomous in G given nodes X1 and X2.

X X

X

X

X

G(V;E)

GA(VA
;E

A)

Figure 3: An example of an autonomous sub-structure.

Proposition 5 If GA(VA, EA) is an autonomous sub-structure in a DAG G(V, E) given a set
Vex ⇢ V of exogenous causes to GA and X ?? Y |S, where X, Y 2 VA, S ⇢ V, then 9S0 such
that S0 ⇢ {VA [Vex} and X ?? Y |S0.

Proof The proof is based on Lemma 6.

Lemma 6 If in a DAG, X and Y are non-adjacent and X is not a descendant of Y,5 then X
and Y are d-separated given Pa(Y) (Pearl, 1988; Spirtes et al., 2000).

If in a DAG G(V, E), X ?? Y | S for some set S, where X and Y are non-adjacent, and
if X is not a descendant of Y, then, according to Lemma 6, X and Y are d-separated
given Pa(Y). Since X and Y are contained in the sub-structure GA(VA, EA), which is
autonomous given the set of nodes Vex, then, following the definition of an autonomous
sub-structure, all parents of the nodes in VA — and specifically Pa(Y)— are members
in set {VA [ Vex}. Then, 9S0 such that S0 ⇢ {VA [ Vex} and X ?? Y | S0, which proves
Proposition 5.

3. Recursive Autonomy Identification
Starting from a complete undirected graph and proceeding from low to high graph
d-separation resolution, the RAI algorithm uncovers the correct pattern6 of a structure

5. If X is a descendant of Y, we change the roles of X and Y and replace Pa(Y) with Pa(X).
6. In the absence of a topological node ordering, uncovering the correct pattern is the ultimate goal of BN

structure learning algorithms, since a pattern represents the same set of probabilities as that of the true
structure (Spirtes et al., 2000).
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by performing the following sequence of operations: (1) test of CI between nodes,
followed by the removal of edges related to independences, (2) edge direction according
to orientation rules, and (3) graph decomposition into autonomous sub-structures.
For each autonomous sub-structure, the RAI algorithm is applied recursively, while
increasing the order of CI testing.

CI testing of order n between nodes X and Y is performed by thresholding the value
of a criterion that measures the dependence between the nodes conditioned on a set
of n nodes (i.e., the condition set) from the parents of X or Y. The set is determined by
the Markov property (Pearl, 2000), for example, if X is directed into Y, then only Y’s
parents are included in the set. Commonly, this criterion is the c2 goodness of fit test
(Spirtes et al., 2000) or conditional mutual information (CMI) (Cheng et al., 1997).

Directing edges is conducted according to orientation rules (Pearl, 2000; Spirtes et al.,
2000). Given an undirected graph and a set of independences, both being the result
of CI testing, the following two steps are performed consecutively. First, intransitive
triplets of nodes (V-structures) are identified, and the corresponding edges are directed.
An intransitive triplet X ! Z  Y is defined if 1) X and Y are non-adjacent neighbors
of Z, and 2) Z is not in the condition set that separated X and Y. In the second step, also
known as the inductive stage, edges are continually directed until no more edges can be
directed, while assuring that no new V-structures and no directed cycles are created.

Decomposition into separated, smaller, autonomous sub-structures reveals the struc-
ture hierarchy. Decomposition also decreases the number and length of paths between
nodes that are CI-tested, thereby diminishing, respectively, the number of CI tests and
the sizes of condition sets used in these tests. Both reduce computational complexity.
Moreover, due to decomposition, additional edges can be directed, which reduces
the complexity of CI testing of the subsequent iterations. Following decomposition,
the RAI algorithm identifies ancestor and descendant sub-structures; the former are
autonomous, and the latter are autonomous given nodes of the former.

3.1. The RAI Algorithm

Similarly to other algorithms of structure learning (Cheng et al., 1997; Cooper and Her-
skovits, 1992; Heckerman, 1995), the RAI algorithm7 assumes that all the independences
entailed from the given data can be encoded by a DAG. Similarly to other CB algorithms
of structure learning (Cheng et al., 1997; Spirtes et al., 2000), the RAI algorithm assumes
that the data sample size is large enough for reliable CI tests.

An iteration of the RAI algorithm starts with knowledge produced in the previous
iteration and the current d-separation resolution, n. Previous knowledge includes Gstart,
a structure having a d-separation resolution of n� 1, and Gex, a set of structures each
having possible exogenous causes to Gstart. Another input is the graph Gall, which
contains Gstart, Gex and edges connecting them. Note that Gall may also contain other
nodes and edges, which may not be required for the learning task (e.g., edges directed
from nodes in Gstart into nodes that are not in Gstart or Gex), and these will be ignored
by the RAI. In the first iteration, n = 0, Gex = ∆, Gstart(V, E) is the complete undirected
graph and the d-separation resolution is not defined, since there are no pairs of d-
separated nodes. Since Gex is empty, Gall = Gstart.

Given a structure Gstart having d-separation resolution n� 1, the RAI algorithm seeks
independences between adjacent nodes conditioned on sets of size n and removes the

7. The RAI algorithm and a preliminary experimental evaluation of the algorithm were introduced in
Yehezkel and Lerner (2005).
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edges corresponding to these independences. The resulting structure has a d-separation
resolution of n. After applying orientation rules so as to direct the remaining edges, a
partial topological order is obtained in which parent nodes precede their descendants.
Childless nodes have the lowest topological order. This order is partial, since not all
the edges can be directed; thus, edges that cannot be directed connect nodes of equal
topological order. Using this partial topological ordering, the algorithm decomposes
the structure into ancestor and descendent autonomous sub-structures so as to reduce
the complexity of the successive stages.

First, descendant sub-structures are established containing the lowest topologi-
cal order nodes. A descendant sub-structure may be composed of a single childless
node or several adjacent childless nodes. We will further refer to a single descendent
sub-structure, although such a sub-structure may consist of several non-connected sub-
structures. Second, all edges pointing towards nodes of the descendant sub-structure
are temporarily removed (together with the descendant sub-structure itself), and the
remaining clusters of connected nodes are identified as ancestor sub-structures. The
descendent sub-structure is autonomous, given nodes of higher topological order com-
posing the ancestor sub-structures. To consider smaller numbers of parents (and thereby
smaller condition set sizes) when CI testing nodes of the descendant sub-structure, the
algorithm first learns ancestor sub-structures, then the connections between ancestor
and descendant sub-structures, and finally the descendant sub-structure itself. Each an-
cestor or descendent sub-structure is further learned by recursive calls to the algorithm.
Figures 4, 5 and 6 show, respectively, the RAI algorithm, a manifesting example and the
algorithm execution order for this example.

The RAI algorithm is composed of four stages (denoted in Figure 4 as Stages A,
B, C and D) and an exit condition checked before the execution of any of the stages.
The purpose of the exit condition is to assure that a CI test of a required order can
indeed be performed, that is, the number of potential parents required to perform the
test is adequate. The purpose of Stage A1 is to thin the link between Gex and Gstart,
the latter having d-separation resolution of n� 1. This is achieved by removing edges
corresponding to independences between nodes in Gex and nodes in Gstart conditioned
on sets of size n of nodes that are either exogenous to, or within, Gstart. Similarly,
in Stage B1, the algorithm tests for CI of order n between nodes in Gstart given sets
of size n of nodes that are either exogenous to, or within, Gstart, and removes edges
corresponding to independences. The edges removed in Stages A1 and B1 could not
have been removed in previous applications of these stages using condition sets of lower
orders. When testing independence between X and Y, conditioned on the potential
parents of node X, those nodes in the condition set that are exogenous to Gstart are X’s
parents whereas those nodes that are in Gstart are either its parents or adjacents.

In Stages A2 and B2, the algorithm directs every edge from the remaining edges that
can be directed. In Stage B3, the algorithm groups in a descendant sub-structure all the
nodes having the lowest topological order in the derived partially directed structure,
and following the temporary removal of these nodes, it defines in Stage B4 separate
ancestor sub-structures. Due to the topological order, every edge from a node X in an
ancestor sub-structure to a node Z in the descendant sub-structure is directed as X ! Z.
In addition, there is no edge connecting one ancestor sub-structure to another ancestor
sub-structure.

Thus, every ancestor sub-structure contains all the potential parents of its nodes, that
is, it is autonomous (or if some potential parents are exogenous, then the sub-structure
is autonomous given the set of exogenous nodes). The descendant sub-structure is, by
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Main function: Gout = RAI[n,Gstart(Vstart, Estart),Gex(Vex, Eex),Gall]

Exit condition

If all nodes in Gstart have fewer than n + 1 potential parents, set Gout =
Gall and exit.

A. Thinning the link between Gex and Gstart and directing Gstart

1. For every node Y in Gstart and its parent X in Gex, if 9S ⇢
{Pap(Y,Gstart) [ Pa(Y,Gex)\X} and |S| = n such that X ?? Y | S, then
remove the edge between X and Y from Gall.

2. Direct the edges in Gstart using orientation rules.

B. Thinning, directing and decomposing Gstart

1. For every node Y and its potential parent X both in Gstart, if 9S ⇢
{Pa(Y,Gex) [ Pap(Y,Gstart)\X} and |S| = n such that X ?? Y | S, then
remove the edge between X and Y from Gall and Gstart.

2. Direct the edges in Gstart using orientation rules.
3. Group the nodes having the lowest topological order into a descendant

sub-structure GD.
4. Remove GD from Gstart temporarily and define the resulting unconnected

structures as ancestor sub-structures GA1, . . . ,GAk .

C. Ancestor sub-structure decomposition
For i = 1 to k, call RAI[n + 1,GAi ,Gex,Gall].

D. Descendant sub-structure decomposition

1. Define GexD = {GA1, . . . ,GAk ,Gex} as the exogenous set to GD.
2. Call RAI[n + 1,GD,GexD ,Gall].
3. Set Gout = Gall and exit.

Figure 4: The RAI algorithm.
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definition, autonomous given nodes of ancestor sub-structures. Proposition 5 showed
that we can identify all the conditional independences between nodes of an autonomous
sub-structure. Hence, every ancestor and descendant sub-structure can be processed
independently in Stages C and D, respectively, so as to identify conditional indepen-
dences of increasing orders in each recursive call of the algorithm. Stage C is a recursive
call for the RAI algorithm for learning each ancestor sub-structure with order n + 1.
Similarly, Stage D is a recursive call for the RAI algorithm for learning the descendant
sub-structure with order n + 1, while assuming that the ancestor sub-structures have
been fully learned (having d-separation resolution of n + 1).
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Figure 5: Learning an example structure. a) The true structure to learn, b) initial (com-
plete) structure and structures learned by the RAI algorithm in Stages (see
Figure 4) c) B1, d) B2, e) B3 and B4, f) C, g) D and A1, h) D and A2 and i) D,
B1 and B2 (i.e., the resulting structure).

Figure 5 and Figure 6, respectively, show diagrammatically the stages in learning
an example graph and the execution order of the algorithm for this example. Figure 5a
shows the true structure that we wish to uncover. Initially, Gstart is the complete
undirected graph (Figure 5b), n = 0, Gex is empty and Gall = Gstart, so Stage A is
skipped. In Stage B1, any pair of nodes in Gstart is CI tested given an empty condition set
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RAI[2;G(fX ;X g); fG(fX g);G(fX ;X ;X g)g;G ]

RAI[2;G(fX g);fG(fX ;X g);G(fX g);G(fX ;X ;X g)g;G ]

45

7

89

1011

12

12
36

Figure 6: The execution order of the RAI algorithm for the example structure of Figure 5.
Recursive calls of Stages C and D are marked with double and single arrows,
respectively. The numbers annotating the arrows indicate the order of calls
and returns of the algorithm.
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(i.e., checking marginal independence), which yields the removal of the edges between
node X1 and nodes X3, X4 and X5 (Figure 5c). The edge directions inferred in Stage
B2 are shown in Figure 5d. The nodes having the lowest topological order (X2, X6, X7)
are grouped into a descendant sub-structure GD (Stage B3), while the remaining nodes
form two unconnected ancestor sub-structures, GA1 and GA2 (Stage B4)(Figure 5e). Note
that after decomposition, every edge between a node, Xi, in an ancestor sub-structure,
and a node, Xj, in a descendant sub-structure is a directed edge Xi ! Xj. The set of
all edges from an ancestor sub-structure to the descendant sub-structure is illustrated
in Figure 5e by a wide arrow connecting the sub-structures. In Stage C, the algorithm
is called recursively for each of the ancestor sub-structures with n = 1, Gstart = GAi
(i = 1, 2) and Gex = ∆. Since sub-structure GA1 contains a single node, the exit condition
for this structure is satisfied. While calling Gstart = GA2, Stage A is skipped, and in
Stage B1 the algorithm identifies that X4 ?? X5 | X3, thus removing the edge X4 – X5.
No orientations are identified (e.g., X3 cannot be a collider, since it separated X4 and
X5), so the three nodes have equal topological order and they are grouped to form
a descendant sub-structure. The recursive call for this sub-structure with n = 2 is
returned immediately, since the exit condition is satisfied (Figure 5f). Moving to Stage
D, the RAI is called with n = 1, Gstart = GD and Gex = {GA1,GA2}. Then, in Stage A1
relations X1 ?? {X6, X7} | X2, X4 ?? {X6, X7} | X2 and {X3, X5} ?? {X2, X6, X7} | X4
are identified, and the corresponding edges are removed (Figure 5g). In Stage A2, X6
and X7 cannot collide at X2 (since X6 and X7 are adjacent), and X2 and X6 (X7) cannot
collide at X7 (X6) (since X2 and X6 (X7) are adjacent); hence, no additional V-structures
are formed. Based on the inductive step and since X1 is directed at X2, X2 should
be directed at X6 and at X7. X6 (X7) cannot be directed at X7 (X6), because no new
V-structures are allowed (Figure 5h). Stage B1 of the algorithm identifies the relation
X2 ?? X7 | X6 and removes the edge X2 ! X7. In Stage B2, X6 cannot be a collider
of X2 and X7, since it has separated them. In the inductive step, X6 is directed at X7,
X6 ! X7 (Figure 5i). In Stages B3 and B4, X7 and {X2, X6} are identified as a descendant
sub-structure and an ancestor sub-structure, respectively. Further recursive calls (8 and
10 in Figure 6) are returned immediately, and the resulting partially directed structure
(Figure 5i) represents a family of Markov equivalent structures (pattern) of the true
structure (Figure 5a).

3.2. Minimality, Stability and Complexity

After describing the RAI algorithm (Section 3.1) and before proving its correctness (Sec-
tion 3.3), we analyze in Section 3.2 three essential aspects of the algorithm — minimality,
stability and complexity.

3.2.1. MINIMALITY

A structure recovered by the RAI algorithm in iteration m has a higher d-separation
resolution and entails fewer dependences and thus is simpler and preferred8 to a
structure recovered in iteration m� k where 0 < k  m. By increasing the resolution,
the RAI algorithm, similarly to the PC algorithm, moves from a complete undirected
graph having maximal dependence relations between variables to structures having

8. We refer here to structures learned during algorithm execution and do not consider the empty graph
that naturally has the lowest d-separation resolution (i.e., 0). This graph, having all nodes marginally
independent of each other, will be found by the RAI algorithm immediately after the first iteration for
graph resolution 0.
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less (or equal) dependences than previous structures, ending in a structure having no
edges between conditionally independent nodes, that is, a minimal structure.

3.2.2. STABILITY

Similarly to Spirtes et al. (2000), we use the notion of stability informally to measure the
number of errors in the output of a stage of the algorithm due to errors in the input to
this stage. Similarly to the PC algorithm, the main sources of errors of the RAI algorithm
are CI-testing and the identification of V-structures. Removal of an edge due to an
erroneous CI test may lead to failure in correctly removing other edges, which are not
in the true graph and also cause to orientation errors. Failure to remove an edge due
to an erroneous CI test may prevent, or wrongly cause, orientation of edges. Missing
or wrongly identifying a V-structure affect the orientation of other edges in the graph
during the inductive stage and subsequent stages.

Many CI test errors (i.e., deciding that (in)dependence exists where it does not) in CB
algorithms are the result of unnecessary large condition sets given a limited database
size (Spirtes et al., 2000). Large condition sets are more likely to be inaccurate, since they
are more likely to include unnecessary and erroneous nodes (erroneous due to errors
in earlier stages of the algorithm). These sets may also cause poorer estimation of the
criterion that measures dependence (e.g., CMI or c2) due to the curse-of-dimensionality,
as typically there are only too few instances representing some of the combinations of
node states. Either way, these condition sets are responsible for many wrong decisions
about whether dependence between two nodes exists or not. Consequently, these errors
cause structural inaccuracies and hence also poor inference ability.

Although CI-testing in the PC algorithm is more stable than V-structure identification
(Spirtes et al., 2000), it is difficult to say whether this is also the case in the RAI algorithm.
Being recursive, the RAI algorithm might be more unstable. However, CI test errors
are practically less likely to occur, since by alternating between CI testing and edge
direction the algorithm uses knowledge about parent-child relations before CI testing of
higher orders. This knowledge permits avoiding some of the tests and decreases the size
of conditions sets of some other tests (see Lemma 6). In addition, graph decomposition
promotes decisions about well-founded orders of node presentation for subsequent CI
tests, contrary to the common arbitrary order of presentation (see, e.g., the PC algorithm).
Both mechanisms enhance stability and provide some means of error correction, as will
be demonstrated shortly.

Let us now extensively describe examples that support our claim regarding the
enhanced stability of the RAI algorithm. Suppose that following CI tests of some order
both the PC and RAI algorithms identify a triplet of nodes in which two non-adjacent
nodes, X and Y, are adjacent to a third node, Z, that is, X – Z – Y. In the immediate edge
direction stage, the RAI algorithm identifies this triplet as a V-structure, X ! Z  Y.
Now, suppose that due to an unreliable CI test of a higher order the PC algorithm
removes X – Z and the RAI algorithm removes X ! Z. Eventually, both algorithms
fail to identify the V-structure, but the RAI algorithm has an advantage over the PC
algorithm in that the other arm of the V-structure is directed, Z  Y. This contributes
to the possibility to direct further edges during the inductive stage and subsequent
recursive calls for the algorithm. The directed arm would also contribute to fewer CI
tests and tests with smaller condition sets during CI testing with higher orders (e.g., if
we later have to test independence between Y and another node, then we know that Z
should not be included in the condition set, even though it is adjacent to Y). In addition,
the direction of this edge also contributes to enhanced inference capability.
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Now, suppose another example in which after removing all edges due to reliable CI
tests using condition set sizes lower than or equal to n, the algorithm identifies the V-
structure X ! Z  Y (Figure 7a). However, let assume that one of the V-structure arms,
say X ! Z, is correctly removed on a subsequent iteration using a larger condition set
size (say n + 1 without limiting the generality). We may be concerned that assuming
a V-structure for the lower graph resolution, the RAI algorithm wrongly directs the
second arm Z – Y as Z  Y. However, we demonstrate that the edge direction Z  Y
remains valid even if there should be no edge X – Z in the true graph. Suppose that
X ! Z was correctly removed conditioned on variable W, which is independent of
Y given any condition set with a size smaller than or equal to n. Then, the possible
underlying graphs are shown in Figures 7b-7d. The graph in Figure 7d is not possible,
since it yields that X and Y are dependent given all condition sets of sizes smaller than
or equal to n. In Figure 7b and Figure 7c, Z is a collider between W and Y, and thus
the edge direction Z  Y remains valid. A different graph, X ! W  Z – Y (i.e., W
is a collider), is not possible, since it means that X ?? Z | S, |S|  n, W /2 S and then
X – Z should have been removed in a previous order (using condition set size of n
or lower) and X ! Z  Y should not have been identified in the first place. Now,
suppose that W and Y are dependant. In this case, the possible graphs are those shown
in Figures 7e-7h. Similarly to the case in which W and Y are independent, W cannot be
a collider of X and Z (X !W  Z) in this case as well. The graphs shown in Figures
7e-7g cannot be the underlying graphs since they entail dependency between X and Y
given a condition set of size lower than or equal to n. The graph shown in Figure 7h
exemplifies a V-structure X !W  Y. Since we assume that X and Z are independent
given W (and thus X – Z was removed), a V-structure X ! W  Z is not allowed.
Since the edge X !W is already directed, the edge between W and Z must be directed
as W ! Z. In this case, to avoid the cycle Y !W ! Z ! Y, the edge between Y and Z
must be directed as in the true graph, that is, Y ! Z.

Finally for the stability subsection, we note that the contribution of graph decom-
position to structure learning using the RAI algorithm is threefold. First is the iden-
tification in early stages, using low-order, reliable CI tests, of the graph hierarchy,
exemplifying the backbone of causal relations in the graph. For example, Figure 5e
shows that learning our example graph (Figure 5a) from the complete graph (Figure 5b)
demonstrates, immediately after the first iteration, that the graph is composed of three
sub-structures — {X1}, {X2, X6, X7} and {X3, X4, X5}, where {X1}! {X2, X6, X7} and
{X3, X4, X5} ! {X2, X6, X7}. This rough (low-resolution) partition of the graph is
helpful in visualizing the problem and representing the current knowledge from the
outset and along the learning. The second contribution of graph decomposition is
the possibility to implement learning using a parallel processor for each sub-structure
independently. This advantage may be further extended in the recursive calls for the
algorithm.

Third is the contribution of graph decomposition to improved performance. Aiming
at a low number of CI tests, decomposition provides a sound guideline for deciding on
an educated order in which the edges should be CI tested. Based on this order, some
tests can be considered redundant and thus be avoided. Several methods for selecting
the right order for the PC algorithm were presented in Spirtes et al. (2000), but these
methods are heuristic. Decomposition into ancestor and descendent sub-structures is
followed by three levels of learning (Figure 4), that is, removing and directing edges
1) of ancestor sub-structures, 2) between ancestor and descendent sub-structures, and
3) of the descendent sub-structure. The second level has the greatest influence on

286



BAYESIAN NETWORK STRUCTURE LEARNING BY RECURSIVE AUTONOMY IDENTIFICATION

X Y

Z

(a)

X Y

Z

W

(b)

X Y

Z

W

(c)

X Y

Z

W

(d)

X Y

Z

W

(e)

X Y

Z

W

(f )

X Y

Z

W

(g)

X Y

Z

W

(h)

Figure 7: Graphs used to exemplify the stability of the RAI algorithm (see text).
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further learning. The removal of edges between ancestor and descendent sub-structures
and the sequential direction of edges in the descendant sub-structure assure that, first,
fewer potential parents are considered, while learning the descendent sub-structure
and second, more edges can be directed in this latter sub-structure. Moreover, these
directed edges and the derived parent-child relations prevent an arbitrary selection
order of nodes for CI testing and thereby enable employing smaller and more accurate
condition sets. Take, for example, CI testing for the redundant edge between X2 and
X7 in our example graph (Figure 5i) if the RAI algorithm did not use decomposition.
Graph decomposition for n = 0 (Figure 5e) enables the identification of two ancestor
sub-structures, GA1 and GA2, as well as a descendent sub-structure GD that are each
learned recursively. During Stage D (Figure 4) and while thinning the links between the
ancestor sub-structures and GD (in Stage A1 of the recursion for n = 1), we identify the
relations X1 ?? {X6, X7} | X2, X4 ?? {X6, X7} | X2 and {X3, X5} ?? {X2, X6, X7} | X4
and remove the 10 corresponding edges (Figure 5g). The decision to test and remove
these edges first was enabled by the decomposition of the graph to GA1 , GA2 and GD. In
Stage A2 (Figure 5h), we direct the edge X2 ! X6 (as X1 ?? X6 | X2 and thus X2 cannot
be a collider between X1 and X6) and edge X2 ! X7 (as X1 ?? X7 | X2 and thus X2
cannot be a collider between X1 and X7), and in Stage B (Figure 5i) we direct the edge
X6 ! X7. The direction of these edges could not be assured without removing first the
above edges, since the (redundant) edges pointing onto X6 and X7 would have allowed
wrong edge direction, that is, X6 ! X2 and X7 ! X2. If we had been using the RAI
algorithm with no decomposition (Figure 5d) (or the PC algorithm) and had decided
to check the independence between X2 and X7, first, we would have had to consider
condition sets containing the nodes X1, X3, X4, X5 or X6 (up to 10 CI tests whether
we start from X2 or X7). Instead, we perform in Stage B1 only one test, X2 ?? X7 | X6.
These benefits are the result of graph decomposition.

3.2.3. COMPLEXITY

CI tests are the major contributors to the (run-time) complexity of CB algorithms (Cheng
and Greiner, 1999). In the worst case, the RAI algorithm will neither direct any edges
nor decompose the structure and will thus identify the entire structure as a descendant
sub-structure, calling Stages D and B1 iteratively while skipping all other stages. Then,
the execution of the algorithm will be similar to that of the PC algorithm, and thus the
complexity will be bounded by that of the PC algorithm. Given the maximal number
of possible parents k and the number of nodes n, the number of CI tests is bounded by
(Spirtes et al., 2000)

2
✓

n
2

◆

·
k

Â
i=0

✓

n� 1
i

◆

 n2(n� 1)k�1

(k� 1)!
,

which leads to complexity of O(nk).
This bound is loose even in the worst case (Spirtes et al., 2000) especially in real-

world applications requiring graphs having V-structures. This means that in most
cases some edges are directed and the structure is decomposed; hence, the number of
CI tests is much smaller than that of the worst case. For example, by decomposing
our example graph (Figure 5) into descendent and ancestor sub-structures in the first
application of Stage B4 (Figure 5e), we avoid checking X6 ?? X7 | {X1, X3, X4, X5}. This
is because {X1, X3, X4, X5} are neither X6’s nor X7’s parents and thus are not included
in the (autonomous) descendent sub-structure. By checking only X6 ?? X7 | {X2}, the
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RAI algorithm saves CI tests that are performed by the PC algorithm. We will further
elaborate on the RAI algorithm complexity in our forthcoming study.

3.3. Proof of Correctness

We prove the correctness of the RAI algorithm using Proposition 7. We show that only
conditional independences (of all orders) entailed by the true underlying graph are
identified by the RAI algorithm and that all V-structures are correctly identified. We
then note on the correctness of edge direction.

Proposition 7 If the input data to the RAI algorithm are faithful to a DAG, Gtrue, having any
d-separation resolution, then the algorithm yields the correct pattern for Gtrue.

Proof We use mathematical induction to prove the proposition, where in each induction
step, m, we prove that the RAI algorithm finds (a) all conditional independences of
order m and lower, (b) no false conditional independences, (c) only correct V-structures
and (d) all V-structures, that is, no V-structures are missing.

Base step (m = 0): If the input data to the RAI algorithm was generated from a distri-
bution faithful to a DAG, Gtrue, having d-separation resolution 0, then the algorithm
yields the correct pattern for Gtrue.

Given that the true underlying DAG has a d-separation resolution of 0, the data
entail only marginal independences. In the beginning of learning, Gstart is a complete
graph and m = 0. Since there are no exogenous causes, Stage A is skipped. In Stage B,
the algorithm tests for independence between every pair of nodes with an empty condi-
tion set, that is, X ?? Y |∆ (marginal independence), removes the redundant edges and
directs the remaining edges as possible. In the resulting structure, all the edges between
independent nodes have been removed and no false conditional independences are
entailed. Thus, all the identified V-structures are correct, as discussed in Section 3.2.2
on stability, and there are no missing V-structures, since the RAI algorithm has tested
independence for all pair of nodes (edges). At the end of Stage B2 (edge direction),
the resulting structure and Gtrue have the same set of V-structures and the same set of
edges. Thus, the correct pattern for Gtrue is identified. Since the data entail only inde-
pendences of zero order, further recursive calls with m � 1 will not find independences
with condition sets of size m, and thus no edges will be removed, leaving the graph
unchanged.

Inductive step (m + 1): Suppose that at induction step m, the RAI algorithm discovers
all conditional independences of order m and lower, no false conditional independences
are entailed, all V-structures are correct, and no V-structures are missing. Then, if the
input data to the RAI algorithm was generated from a distribution faithful to a DAG,
Gtrue, having d-separation resolution m + 1, then the RAI algorithm would yield the
correct pattern for that graph.

In step m, the RAI algorithm discovers all conditional independences of order m
and lower. Given input data faithful to a DAG, Gtrue, having d-separation resolution
m + 1, there exists at least one pair of nodes, say {X, Y}, in the true graph, that has a
d-separation resolution of m + 1.9 Since the RAI, by the recursive call m + 1 (i.e., calling
RAI[m + 1,Gstart,Gex,Gall]), has identified only conditional independences of order m

9. If the d-separation resolution of {X, Y} is m0 > m + 1, then the RAI algorithm will not modify the graph
until step m0.
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and lower, an edge, EXY = (X – Y), exists in the input graph, Gstart. The smallest
condition set required to identify the independence between X and Y is SXY (X ??
Y | SXY), such that |SXY| � m + 1. Thus, |Pap(X)\Y| � m + 1 or |Pap(Y)\X| � m + 1,
meaning that either node X or node Y has at least m + 2 potential parents. Such an edge
exists in at least one of the autonomous sub-structures decomposed from the graph
yielded at the end of iteration m. When calling, in Stage C or Stage D, the algorithm
recursively for this sub-structure with m0 = m + 1, the exit condition is not satisfied
because either node X or node Y has at least m0 + 1 parents. Since Step m assured
that the sub-structure is autonomous, it contains all the necessary node parents. Note
that decomposition into ancestor, GA, and descendant, GD, sub-structures occurs after
identification of all nodes having the lowest topological order, such that every edge from
a node X in GA to a node Y in GD is directed, X ! Y. In the case that the sub-structure
is an ancestor sub-structure, SXY contains nodes of the sub-structure and its exogenous
causes. In the case that the sub-structure is a descendant sub-structure, SXY contains
nodes from the ancestor sub-structures and the descendant sub-structure. Therefore,
based on Proposition 5, the RAI algorithm tests all edges using condition sets of sizes
m0 and removes EXY (and all similar edges) in either Stage A or Stage B, yielding a
structure with d-separation resolution of m0 and thereby yields the correct pattern for
the true underlying graph of d-separation resolution m + 1.

Spirtes (2001) — when introducing the anytime fast casual inference (AFCI) algo-
rithm — proved the correctness of edge direction of AFCI. The AFCI algorithm can be
interrupted at any stage (resolution), and the resultant graph at this stage is correct with
probability one in the large sample limit, although possibly less informative10 than if
had been allowed to continue uninterrupted.11 Recall that interrupting learning means
that we avoid CI tests of higher orders. This renders the resultant graph more reliable.
We use this proof here for proving the correctness of edge direction in the RAI algorithm.
Completing CI testing with a specific graph resolution n in the RAI algorithm and
interrupting the AFCI at any stage of CI testing are analogous. Furthermore, Spirtes
(2001) proves that interrupting the algorithm at any stage is also possible during edge
direction, that is, once an edge is directed, the algorithm never changes that direction.
In Section 3.2.2, we showed that even if a directed edge of a V-structure is removed,
the direction of the remaining edge is still correct. Since directing edges by the AFCI
algorithm after interruption yields a correct (although less informative) graph (Spirtes,
2001), also the direction of edges by the RAI algorithm yields a correct graph. Having
(real) parents in a condition set used for CI testing, instead of potential parents, which
are the result of edge direction for resolutions lower than n, is a virtue, as was confirmed
in Section 3.1. All that is required that all parents, either real or potential, be included
within the corresponding condition set, and this is indeed guaranteed by the autonomy
of each sub-structure, as was proved above.

10. Less informative in the sense that it answers “can’t tell” for a larger number of questions; that is,
identifying, for example, “�” edge endpoint (placing no restriction on the relation between the pair of
nodes making the edge) instead of “!” endpoint.

11. The AFCI algorithm is also correct if hidden and selection variables exist. A selection variable models the
possibility of an observable variable having some missing data. We focus here on the case where neither
hidden nor selection variables exist.
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4. Experiments and Results
We compare the RAI algorithm with other state-of-the-art algorithms with respect to
structural correctness, computational complexity, run-time and classification accuracy
when the learned structure is used in classification. The algorithms learned structures
from databases representing synthetic problems, real decision support systems and
natural classification problems. We present the experimental evaluation in four sections.
In Section 4.1, the complexity of the RAI algorithm is measured by the number of
CI tests required for learning synthetically generated structures in comparison to the
complexity of the PC algorithm (Spirtes et al., 2000).

The order of presentation of nodes is not an input to the PC algorithm. Nevertheless,
CI testing of orders higher than 0, and therefore also edge directing, which depends
on CI testing, may be sensitive to that order. This may cause learning different graphs
whenever the order is changed. Dash and Druzdzel (1999) turned this vice of the PC
algorithm into a virtue by employing the partially directed graphs formed by using
different orderings for the PC algorithm as the search space from which the structure
having the highest value of the K2 metric (Cooper and Herskovits, 1992) is selected. For
the RAI algorithm, sensitivity to the order of presentation of nodes is expected to be
reduced compared to the PC algorithm, since the RAI algorithm, due to edge direction
and graph decomposition, decides on the order of performing most of the CI tests and
does not use an arbitrary order (Section 3.2.2). Nevertheless, to account for the possible
sensitivity of the RAI and PC algorithms to this order, we preliminarily employed 100
different permutations12 of the order for each of ten Alarm network (Beinlich et al.,
1989) databases. Since the results of these experiments had showed that the difference
in performance for different permutations is slight, we further limited the experiments
with the PC and RAI algorithms to a single permutation.

In Section 4.2, we present our methodology of selecting a threshold for RAI CI testing.
We propose selecting a threshold for which the learned structure has a maximum of a
likelihood-based score value.

In Section 4.3, we use the Alarm network (Beinlich et al., 1989), which is a widely
accepted benchmark for structure learning, to evaluate the structural correctness of
graphs learned by the RAI algorithm. The correctness of the structure recovered by
RAI is compared to those of structures learned using other algorithms — PC, TPDA
(Cheng et al., 1997), GES (Chickering, 2002; Meek, 1997), SC (Friedman et al., 1999)
and MMHC (Tsamardinos et al., 2006a). The PC and TPDA algorithms are the most
popular CB algorithms (Cheng et al., 2002; Kennett et al., 2001; Marengoni et al., 1999;
Spirtes et al., 2000); GES and SC are state-of-the-art S&S algorithms (Tsamardinos et al.,
2006a); and MMHC is a hybrid algorithm that has recently been developed and showed
superiority, with respect to different criteria, over all the (non-RAI) algorithms examined
here (Tsamardinos et al., 2006a). In addition to correctness, the complexity of the RAI
algorithm, as measured through the enumeration of CI tests and log operations, is
compared to those of the other CB algorithms (PC and TPDA) for the Alarm network.

In Section 4.4, we extend the examination of RAI in structure learning to known
networks other than the Alarm. Although the Alarm is a popular benchmark network,
many algorithms perform well for this network. Hence, it is important to examine RAI
performance on other networks for which the true graph is known. In the comparison
of RAI to other algorithms, we included all the algorithms of Section 4.3, as well as the

12. Dash and Druzdzel (1999) examined the relationships between the number of order permutations and
the numbers of variables and instances. We fixed the number of order permutations at 100.
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Optimal Reinsertion (OR) (Moore and Wong, 2003) algorithm and a greedy hill-climbing
search algorithm with a Tabu list (GS) (Friedman et al., 1999). We compared algorithm
performances with respect to structural correctness, run-time, number of statistical calls
and the combination of correctness and run-time.

In Section 4.5, the complexity and run-time of the RAI algorithm are compared to
those of the PC algorithm using nineteen natural databases. In addition, the classifica-
tion accuracy of the RAI algorithm for these databases is compared to those of the PC,
TPDA, GES, MMHC, SC and naive Bayesian classifier (NBC) algorithms. No structure
learning is required for NBC and all the domain variables are used. This classifier is
included in the study as a reference to a simple, yet accurate, classifier. Because we are
interested in this section in classification, and a likelihood-based score does not reflect
the importance of the class variable in structures used for classification (Friedman et al.,
1997; Kontkanen et al., 1999; Grossman and Domingos, 2004; Yang and Chang, 2002),
we prefer here the classification accuracy score in evaluating structure performance.

In the implementations of all sections, except Section 4.4, we were aided by the Bayes
net toolbox (BNT) (Murphy, 2001), BNT structure learning package (Leray and François,
2004) and PowerConstructor software (Cheng, 1998) and evaluated all algorithms our-
selves. In Section 4.4, we downloaded and used the results reported in Tsamardinos et al.
(2006a) for the non-RAI algorithms and used the Causal Explorer algorithm library (Al-
iferis et al., 2003) (http://www.dsl-lab.org/causal_explorer/index.html).
The Causal Explorer algorithm library makes use of methods and values of parameters
for each algorithm as suggested by the authors of each algorithm (Tsamardinos et al.,
2006a). For example, BDeu score (Heckerman et al., 1995) with equivalent sample size
10 for GS, GES, OR and MMHC; c2 p-values at the standard 5% for the MMHC’s and
PC’s statistical thresholds; threshold of 1% for the TPDA mutual information test; the
Bayesian scoring heuristic, equivalent sample size of 10 and maximum allowed sizes for
the candidate parent set of 5 and 10 for SC; and maximum number of parents allowed of
5, 10 and 20 and maximum allowed run time, which is one and two times the time used
by MMHC on the corresponding data set, for OR. The only parameter that requires
optimization in the RAI algorithm (similar to the other CB algorithms - PC and TPDA)
is the CI testing threshold. We use no prior knowledge to find this threshold but a
training set for each database (see Section 4.2 for details). Note, however that we do not
account for the time required for selecting the threshold when reporting the execution
time.

4.1. Experimentation with Synthetic Data

The complexity of the RAI algorithm was evaluated in comparison to that of the PC
algorithm by the number of CI tests required to learn synthetically generated structures.
Since the true graph is known for these structures, we could assume that all CI tests
were correct and compare the numbers of CI tests required by the algorithms to learn
the true independence relationships. In one experiment, all 29,281 possible structures
having 5 nodes were learned using the PC and RAI algorithms. The average number
of CI tests employed by each algorithm is shown in Figure 8a for increasing orders
(condition set sizes). Figure 8b depicts the average percentages of CI tests saved by the
RAI algorithm compared to the PC algorithm for increasing orders. These percentages
were calculated for each graph independently and then averaged. It is seen that the
advantage of the RAI algorithm over the PC algorithm is more prominent for high
orders.
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Figure 8: Measured for increasing orders, the (a) average number of CI tests required
by the RAI and PC algorithms for learning all possible structures having five
nodes and (b) average over all structures of the reduction percentage in CI
tests achieved by the RAI algorithm compared to the PC algorithm.
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Figure 9: Average number of CI tests required by the PC and RAI algorithms for in-
creasing graph sizes and orders of (a) 3 and (b) 4.

In another experiment, we learned graphs of sizes (numbers of nodes) between 6
and 15. We selected from a large number of randomly generated graphs 3,000 graphs
that were restricted by a maximal fan-in value of 3; that is, every node in such a graph
has 3 parents at most and at least one node in the graph has 3 parents. This renders a
practical learning task. Thus, the structures can theoretically be learned by employing
CI tests of order 3 and below and should not use tests of orders higher than 3. In such
a case, the most demanding test, having the highest impact on computational time, is
of order 3. Figure 9a shows the average numbers of CI tests performed for this order
by the PC and RAI algorithms for graphs with increasing sizes. Moreover, because the
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maximal fan-in is 3, all CI tests of order 4 are a priori redundant, so we can further
check how well each algorithm avoids these unnecessary tests. Figure 9b depicts the
average numbers of CI tests performed by the two algorithms for order 4 and graphs
with increasing sizes. Both Figure 9a and Figure 9b show that the number of CI tests
employed by the RAI algorithm increases more slowly with the graph size compared
to that of the PC algorithm and that this advantage is much more significant for the
redundant (and more costly) CI tests of order 4.

We further expanded the examination of the algorithms in CI testing for different
graph sizes and CI test orders. Figure 10 shows the average number and percentage
of CI tests saved using the RAI algorithm compared to the PC algorithm for different
condition set sizes and graph sizes. The number of CI tests having an empty condition
set employed by each of the algorithms is equal and is therefore omitted from the
comparison. The figure shows that the percentage of CI tests saved using the RAI
algorithm increases with both graph and condition set sizes. For example, the saving
in CI tests when using the RAI algorithm instead of the PC algorithm for learning a
graph having 15 nodes and using condition sets of size 4 is above 70% (Figure 10b). In
Section 4.4, we will demonstrate the RAI quality of requiring relatively fewer tests of
high orders than of low orders for graphs of larger sizes for real, rather than synthetic,
data.
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Figure 10: (a) Average number and (b) percentage of CI tests saved by using the RAI
algorithm compared to the PC algorithm for graph sizes of 6, 9, 12 or 15
(gray shades) and orders between 1 and 4.

4.2. Selecting the Threshold for RAI CI Testing

CI testing for the RAI algorithm can be based on the c2 test as for the PC algorithm or
the conditional mutual information (CMI) as for the TPDA algorithm. The CMI between
nodes X and Y conditioned on a set of nodes Z (i.e., the condition set), is:

CMI(X, Y|Z) =
NX

Â
i=1

NY

Â
j=1

NZ

Â
k=1

"

P(xi, yj, zk) · log
P(xi, yj|zk)

P(xi|zk) · P(yj|zk)

#

, (2)
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where xi and yj represent, respectively, states of X and Y, zk represents a combination
of states of all variables in Z, and NX , NY and NZ are the numbers of states of X, Y and
Z, respectively.

In both CI testing methods, the value of interest (either c2 or CMI) is compared
to a threshold. For example, CMI values that are higher or lower than the threshold
indicate, respectively, conditional dependence or independence between X and Y given
Z. However, the optimal threshold is unknown beforehand. Moreover, the optimal
threshold is problem and data-driven, that is, it depends, on the one hand, on the
database and its size and, on the other hand, on the variables and the numbers of their
states. Thus, it is not possible to set a “default” threshold value that will accurately
determine conditional (in)dependence while using any database or problem.

To find an optimal threshold for a database, we propose to score structures learned
using different thresholds by a likelihood-based criterion evaluated using the training
(actually validation) set and to select the threshold leading to the structure achieving
the highest score. Such a score may be BDeu (Heckerman et al., 1995), although other
scores (Heckerman et al., 1995) may also be appropriate. Note that BDeu scores equally
statistically indistinguishable structures. Figure 11 shows BDeu values for structures
learned by RAI for the Alarm network using different CMI threshold values. The
maximum BDeu value was achieved at a threshold value of 4e-3 that was selected as
the threshold for RAI CI testing for the Alarm network.
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Figure 11: BDeu values averaged over ten validation sets consisting of 10,000 samples
each drawn from the Alarm network for increasing CMI thresholds used in
CI testing for the RAI algorithm.

To assess the threshold selected using the suggested method, we employed the
Alarm network and computed the errors between structures learned using different
thresholds and the pattern that corresponds to the true known graph. Following Spirtes
et al. (2000) and Tsamardinos et al. (2006a), we define five types of structural errors
to evaluate structural correctness. An extra edge (commission; EE) error is due to an
edge learned by the algorithm although it does not exist in the true graph. A missing
edge (omission; ME) error is due to an edge missed by the algorithm although exists
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in the true graph. An extra direction (ED) error is due to edge direction that appears
in the learned graph but not in the true graph, whereas a missing direction (MD) error
is due to edge direction that appears in the true graph but not in the learned graph.
Finally, a reversed direction (RD) error is due to edge direction in the learned graph that
is opposite to the edge direction in the true graph.

Figure 12a shows the sensitivity of the five structural errors to the CMI threshold.
Each point on the graph is the average error over ten validation databases containing
10,000 randomly sampled instances each. Figure 12a demonstrates that the MD, RD and
ED errors are relatively constant in the examined range of thresholds and the ME error
increases monotonically. The EE error is the highest error among the five error types,
and it has a minimum at a threshold value of 3e-3.
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Figure 12: Structural errors of the RAI algorithm learning the Alarm network for differ-
ent CMI thresholds as averaged over ten validation sets of 10,000 samples
each. (a) Five types (ME, EE, MD, ED and RD) of structural errors, (b) EE,
ME and DE errors, and (c) SHD error (mean and std).

In Figure 12b, we cast the three directional errors using the total directional error
(DE), DE = ED + MD + RD, and plot this error together with the ME and EE errors. The
impact of each error for increasing thresholds is now clearer; the contribution of the DE
error is almost constant, that of the ME error increases with the threshold but is less
than DE, and that of the EE error dominants for every threshold.

Tsamardinos et al. (2006a) suggested assessing the quality of a learned structure
using the structural Hamming distance (SHD) metric, which is the sum of the five above
errors. We plot in Figure 12c this error for the experiment with the Alarm network.
Comparison of the threshold responsible for the minimum of the SHD error (2.5e-3)
to that selected according to BDeu (4e-3 in Figure 11) shows only a small difference,
especially as the maximum values of BDeu are obtained between thresholds of 2.5e-3
and 4e-3. This result motivates using the BDeu score, as measured on a validation
set, as a criterion for finding good thresholds for RAI CI testing. Thresholds that are
smaller than this range lead to too many pairs of variables that are wrongly identified
as dependent and thus the edges between them are not removed, contributing to high
EE errors (see, for example, Figure 12b). In addition, for thresholds higher than 3e-3,
more edges are wrongly removed, contributing to high ME errors.
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4.3. Learning the Alarm Network

For evaluating the correctness of learned BN structures, we used the Alarm network,
which is widely accepted as a benchmark for structure learning algorithms, since the
true graph for this problem is known. The RAI algorithm was compared to the PC,
TPDA, GES, SC and MMHC algorithms using ten databases containing 10,000 random
instances each sampled from the network.

Structural correctness can be measured using different scores. However, some of
the scores suggested in the literature are not always accurate or related to the true
structure. For example, Tsamardinos et al. (2006a), who examined the BDeu score
(Heckerman et al., 1995) and KL divergence (Kullback and Leibler, 1951) in evaluating
learned networks, noted that it is not known in practice to what degree the assumptions
(e.g., a Dirichlet distribution of the hyperparameters) in the basis of the BDeu score hold.
Moreover, usually such a score is used in both learning and evaluation of a structure;
hence the score favors algorithms that use it in learning. Tsamardinos et al. (2006a)
also mentioned that both scores do not rely on the true structure. Thus, they suggested
the SHD metric, which is directly related to structural correctness, since it is the sum
of the five errors of Section 4.2. Nevertheless, since SHD can be measured only when
the true graph is known, scores such as BDeu and KL divergence are of great value
in practical situations, for example, in classification problems like those examined in
Section 4.5 in which the true graph is not known. These scores are also beneficial in
the determination of algorithm parameters. For example, in Section 4.2 we measured
BDeu scores of structures learned using different thresholds in order to select a good
threshold for RAI CI testing.

Although SHD sums all five structural errors, we were first interested in examining
the contribution of each individual error to the total error. Table 1 summarizes the five
structural errors for each algorithm as averaged over 10 databases of 10,000 instances
each sampled from the Alarm network. These databases are different from those
validation databases used for threshold setting. The table also shows the total directional
error, DE, which is the sum of the three directional errors. Table 1 demonstrates that the
lowest EE and DE errors are achieved by the RAI algorithm and the lowest ME error is
accomplished by the MMHC algorithm. Computing SHD shows the advantage of the
RAI (3.5) algorithm over the PC (4.3), TPDA (9.5), GES (5.4), MMHC (13.1) and the SC
(24.3) algorithms. Further, we propose such a table as Table 1 as a useful tool for the
identification of the sources of structural errors of a given structure learning algorithm.

Note that the SHD error weighs each of the five error types equally. We believe
that a score that weighs the five types based on their relative significance to structure
learning will be a more accurate method to evaluate structural correctness; however,
deriving such a score is a topic for future research.

Complexity was evaluated for each of the CB algorithms by measuring the number
of CI tests employed for each order (condition set size) and the total number of log
operations. The latter criterion is proportional to the total number of multiplications,
divisions and logarithm evaluations that is required for calculating the CMI (Equation 2)
during CI testing. Figure 13 depicts the average percentage (and number) of CI tests
reduced by using the RAI algorithm compared to using the PC or TPDA algorithms for
increasing sizes of the condition sets. The RAI algorithm reduces the number of CI tests
of orders 1 and above required by the PC algorithm and those of orders 2 and above
required by the TPDA algorithm. Moreover, the RAI algorithm completely avoids the
use of CI tests of orders 4 and above and almost completely avoids CI tests of order 3
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Table 1: Structural errors of several algorithms as averaged over 10 databases each con-
taining 10,000 randomly generated instances of the Alarm network. The total di-
rectional error is the sum of three different directional errors, DE=ED+MD+RD,
and the SHD error is DE+EE+ME. Bold font emphasizes the smallest error over
all algorithms for each type of structural error.

Extra Missing Reversed Directional Extra Missing
Direction Direction Direction Error Edge Edge SHD

(ED) (MD) (RD) (DE) (EE) (ME)
SC 1 9.5 4.6 15.1 4.7 4.5 24.3

MMHC 0.8 3.3 5.7 9.8 2.6 0.7 13.1
GES 0.1 0.6 1.2 1.9 2.7 0.8 5.4

TPDA 0 4.2 0 4.2 2.4 2.9 9.5
PC 0 0 0.8 0.8 2.5 1.0 4.3
RAI 0 0 0.3 0.3 1.8 1.4 3.5

compared to both the PC and TPDA algorithms. However, the RAI algorithm performs
more CI tests of order 1 than the TPDA algorithm.

Figure 14 summarizes the total numbers of CI tests and log operations over different
condition set sizes required by each algorithm. The RAI algorithm requires 46% less CI
tests than the PC algorithm and 14% more CI tests (of order 1) than the TPDA algorithm.
However, the RAI algorithm significantly reduces the number of log operations required
by the other two algorithms. The PC or TPDA algorithms require, respectively, an
additional 612% or 367% of the number of log operations required by the RAI algorithm.
The reason for this substantial advantage of the RAI algorithm over both the PC and
TPDA algorithms is the saving in CI tests of high orders (see Figure 13). These tests
make use of large condition sets and thus are very expensive computationally.

4.4. Learning Known Networks

In addition to the state-of-art algorithms that were compared in Section 4.3, we include
in this section the OR and GS algorithms. We compare the performance of the RAI
algorithm to these algorithms by learning the structures of known networks employed
in real decision support systems from a wide range of applications. We use known
networks described in Tsamardinos et al. (2006a), which include the Alarm (Beinlich
et al., 1989), Barley (Kristensen and Rasmussen, 2002), Child (Cowell et al., 1999),
Hailfinder (Jensen and Jensen, 1996), Insurance (Binder et al., 1997), Mildew (Jensen
and Jensen, 1996) and Munin (Andreassen et al., 1989) networks. All these networks
may be downloaded from the Causal Explorer webpage. The Pigs, Link and Gene
networks, which were also evaluated in Tsamardinos et al. (2006a), are omitted from
our experiment due to memory and run-time limitations of the platform used in our
experiment. These limitations are in the computation of the BDeu scoring function
(part of the BNT toolbox) that is used for selecting a threshold for the RAI CI tests
(Section 4.2).

The Casual Explorer webpage also contains larger networks that were created by
tiling networks, such as the Alarm, Hailfinder, Child and Insurance, 3, 5 and 10 times.
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Figure 13: Average percentage (number) of CI tests reduced by using RAI compared
to using (a) PC and (b) TPDA, as a function of the condition set size when
learning the Alarm network.
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Figure 14: Cumulative numbers of (a) CI tests and (b) log operations required by PC,
TPDA, and RAI for learning the Alarm network. Different gray shades
represent different sizes of condition sets. Percentages on tops of the bars
are with reference to the RAI algorithm.
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Table 2: Nineteen networks with known structures that are used for the evaluation of
the structure learning algorithms. The number that is attached to the network
name (3, 5 or 10) indicates the number of tiles of this network. The # symbol
on the first column represents the network ID for further use in the subsequent
tables.

# Network # nodes # edges Max fan-in Max fan-out
1 Alarm 37 46 4 5
2 Alarm 3 111 149 4 5
3 Alarm 5 185 265 4 6
4 Alarm 10 370 570 4 7
5 Barley 48 84 4 5
6 Child 20 25 2 7
7 Child 3 60 79 3 7
8 Child 5 100 126 2 7
9 Child 10 200 257 2 7
10 Hailfinder 56 66 4 16
11 Hailfinder 3 168 283 5 18
12 Hailfinder 5 280 458 5 18
13 Hailfinder 10 560 1017 5 20
14 Insurance 27 52 3 7
15 Insurance 3 81 163 4 7
16 Insurance 5 135 281 5 8
17 Insurance 10 270 556 5 8
18 Mildew 35 46 3 3
19 Munin 189 282 3 15
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In the tiling method developed by Tsamardinos et al. (2006b), several copies (here 3,
5 and 10) of the same BN are tiled until reaching a network having a desired number
of variables (e.g., Alarm5 has 5 ⇥ 37 = 185 variables). The method maintains the
structural and probabilistic properties of the original network but allows the evaluation
of the learning algorithm as the number of variables increases without increasing the
complexity of the network. Overall, we downloaded and used nineteen networks, the
most important details of which are shown in Table 2. Further motivation for using
these networks and tiling is given in Tsamardinos et al. (2006a).

Throughout this experiment, we used for each network the same training and test
sets as used in Tsamardinos et al. (2006a), so we could compare the performance of the
RAI to all the algorithms reported in Tsamardinos et al. (2006a). The data in the Causal
Explorer webpage are given for each network using five training sets and five test sets
with 500, 1000 and 5,000 samples each. We picked and downloaded the data sets with
the smallest sample size (500), which we believe challenge the algorithms the most.
All the reported results for a network and a learning algorithm in this sub-section are
averages over five experiments in which a different training set was used for training
the learning algorithm and a different test set was used for testing this algorithm.

The RAI algorithm was run by us. CMI thresholds for CI testing corresponded
to the maximum BDeu values were obtained in five runs using five validation sets
independent of the training and test sets, and performances were averaged over the five
validation sets. We note that the thresholds selected according to the maximum BDeu
values (Section 4.2) also led to the lowest SHD errors. The OR algorithm was examined
with a maximum number of parents allowed for a node (k) of 5, 10 and 20 and allowed
run-time that is one and two times the time used by MMHC on the corresponding
data set (OR1 and OR2, respectively). The SC algorithm was evaluated with k = 5 and
k = 10 as recommended by its authors. Motivation for using these parameter values
and parameter values used by the remaining algorithms are given in Tsamardinos et al.
(2006a).

Following Tsamardinos et al. (2006a), we normalized all SHD results with the SHD
results of the MMHC algorithm. For each network and algorithm, we report on the
average ratio over the five runs. The normalized SHDs are presented in Table 3. A
ratio smaller (larger) than 1 indicates that the algorithm learns a more (less) accurate
structure than that learned using the MMHC algorithm. In addition, we average the
ratios over all nineteen databases similarly to Tsamardinos et al. (2006a). Based on
these averaged ratios, Tsamardinos et al. (2006a) found the MMHC algorithm to be
superior to the PC, TPDA, GES, OR and SC algorithms with respect to SHD. Table 3
shows that the RAI algorithm is the only algorithm that achieves an average ratio that is
smaller than 1, which means it learns structures that on average are more accurate than
those learned by MMHC, and thus also more accurate than those learned by all other
algorithms. Note the difference in SHD values for Alarm between Table 3 (as measured
in Tsamardinos et al., 2006a, on databases of 500 samples) and Table 1 (as measured by
us on databases of 10,000 samples).

Next, we compared the run-times of the algorithms in learning the nineteen net-
works. We note that the run-time of a structure learning algorithm depends, besides
on its implementation, on the number of statistical calls (Tsamardinos et al., 2006a) it
performs (e.g., CI tests in CB algorithms). For CB algorithms it also depends on the
orders of the CI tests and the number of states of each variable that is included in the
condition set. The run-time for each algorithm learning each network is presented in
Table 4. Following Tsamardinos et al. (2006a), we normalized all run-time results with
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Table 3: Algorithm SHD errors normalized with respect to the MMHC SHD error for
the nineteen networks detailed in Table 2. Average (avg.) for an algorithm is
over all networks. Blank cells represent jobs that Tsamardinos et al. (2006a)
reported that refused to run or did not complete their computations within
two days running time.

MMHC OR1 OR1 OR1 OR2 OR2 OR2 SC SC GS PC TPDA GES RAI
# k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10
1 1.00 1.23 1.39 1.67 1.05 1.02 1.40 1.63 1.66 2.02 3.66 2.34 1.23
2 1.00 1.85 1.95 1.96 1.78 1.77 1.80 1.57 1.57 2.26 2.49 3.94 1.26
3 1.00 1.59 1.61 1.63 1.48 1.63 1.69 1.32 1.35 2.10 2.35 3.10 1.02
4 1.00 1.46 1.52 1.53 1.49 1.52 1.57 1.18 2.09 2.72 0.87
5 1.00 1.03 1.05 1.08 0.98 0.97 0.99 1.15 1.16 12.34 1.44 0.92 0.67
6 1.00 1.38 1.30 1.15 1.25 1.24 1.15 1.48 1.56 0.79 3.26 7.18 0.79 1.60
7 1.00 0.99 1.06 1.03 0.87 0.86 1.01 0.95 0.97 0.94 2.95 5.03 1.20 1.22
8 1.00 1.45 1.74 1.69 0.89 1.10 0.99 0.88 0.93 1.15 3.71 6.82 2.48 1.59
9 1.00 2.12 1.40 1.81 1.42 1.44 1.45 1.08 1.12 1.19 3.49 5.96 1.33
10 1.00 1.01 0.99 1.03 0.99 0.99 1.01 0.96 0.99 2.64 2.36 1.14 0.41
11 1.00 1.33 1.34 1.34 1.27 1.26 1.28 1.10 1.01 3.92 3.01 0.71
12 1.00 1.40 1.41 1.42 1.30 1.30 1.28 1.12 1.01 5.20 3.26 0.76
13 1.00 1.33 1.33 1.34 1.34 1.29 1.33 1.10 1.02 2.99 0.74
14 1.00 1.04 0.93 0.85 0.95 0.79 0.76 1.33 1.17 1.20 3.26 2.54 1.01 0.76
15 1.00 1.08 1.06 1.25 1.04 1.14 1.15 1.26 1.33 1.57 4.09 3.04 0.98
16 1.00 1.25 1.24 1.12 1.13 1.15 1.17 1.24 1.25 1.59 4.22 2.86 0.91
17 1.00 1.30 1.29 1.31 1.19 1.13 1.24 1.18 1.24 1.55 2.87 0.88
18 1.00 1.09 1.11 1.10 1.10 1.12 1.07 1.04 0.91 7.83 2.08 0.87 0.63
19 1.00 1.09 1.16 1.06 1.17 0.95 1.30 1.29 0.44

avg. 1.00 1.32 1.31 1.33 1.19 1.21 1.24 1.19 1.29 1.36 4.36 3.41 1.20 0.95

the run-time results of the MMHC algorithm and report on the average ratio for each
algorithm and network over five runs. The run-time ratios for all algorithms except that
for the RAI were taken from the Causal Explorer webpage. The ratio for the RAI was
computed after running both the RAI and MMHC algorithms on our platform using the
same data sets. According to Tsamardinos et al. (2006a), MMHC is the fastest algorithm
among all algorithms (except RAI). Table 4 shows that RAI was the only algorithm that
achieved an average ratio smaller than 1, which means it is the new fastest algorithm.
The RAI average run-time was between 2.1 (for MMHC) and 2387 (for GES) times
shorter than those of all other algorithms. Perhaps part of the inferiority of GES with
respect to run-time can be related (Tsamardinos et al., 2006a) to many optimizations
suggested in Chickering (2002) that were not implemented in Tetrad 4.3.1 that was used
by Tsamardinos et al. (2006a) affecting their, and thus also our, results.

Accounting for both error and time, we plot in Figure 15 the SHD and run-time for all
nineteen networks normalized with respect to either the MMHC algorithm (Figure 15a)
or the RAI algorithm (Figure 15b). Figure 15 demonstrates that the advantage of RAI
over all other algorithms is evident for both the SHD error and the run-time.

It is common to consider the statistical calls performed by an algorithm of structure
learning as the major criterion of computational complexity (efficiency) and a major
contributor to the algorithm run-rime. In CB algorithms (e.g., PC, TPDA and RAI),
the statistical calls are due to CI tests, and in S&S algorithms (e.g., GS, GES, SC, OR)
the calls are due to the computation of the score. Hybrid algorithms (e.g., MMHC)
have both types of calls. In Table 5, we compare the numbers of calls for statistical
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Figure 15: Normalized SHD vs. normalized run-time for all algorithms learning all
networks. (a) Normalization is with respect to the MMHC algorithm (thus
MMHC results are at (1,1)) and (b) normalization is with respect to the RAI al-
gorithm (thus RAI results are at (1,1)). The points in the graph correspond to
19 networks (average performance over 5 runs) and 14� 1 = 13 algorithms.
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Table 4: Algorithm run-times normalized with respect to the MMHC run-time for the
nineteen networks detailed in Table 2. Average (avg.) for an algorithm is over
all networks. Blank cells represent jobs that Tsamardinos et al. (2006a) reported
that refused to run or did not complete their computations within two days
running time.

MMHC OR1 OR1 OR1 OR2 OR2 OR2 SC SC GS PC TPDA GES RAI
# k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10
1 1.00 1.14 1.00 1.07 2.24 2.22 2.33 1.75 16.93 2.17 1.87 3.74 0.69
2 1.00 1.62 1.65 1.64 2.51 2.53 2.63 7.15 9.71 8.16 1.15 12.75 0.52
3 1.00 1.21 1.32 1.33 2.35 2.41 2.48 6.01 6.54 9.80 92.64 9.11 0.59
4 1.00 1.38 1.61 1.43 2.87 2.93 2.77 13.85 71.15 41.81 0.65
5 1.00 1.26 1.24 1.21 2.29 2.42 2.36 7.36 2.74 89.28 4.10 219.5 0.20
6 1.00 1.61 1.61 1.53 2.39 2.34 3.25 0.64 6.71 1.05 0.82 6.56 31.12 0.25
7 1.00 1.15 1.14 1.06 2.12 2.10 2.18 3.66 8.64 2.44 1.02 10.27 921 0.36
8 1.00 1.12 1.14 1.13 2.10 2.19 2.29 4.16 8.31 5.76 1.05 14.19 3738 0.50
9 1.00 1.34 1.05 1.32 2.20 2.28 2.45 9.97 11.08 12.10 1.36 22.99 0.67
10 1.00 1.20 1.22 1.21 2.31 2.29 2.28 1.58 1.04 1.42 9.31 2690 0.17
11 1.00 1.13 1.15 1.14 2.15 2.21 2.27 4.88 4.96 9.32 32.39 0.65
12 1.00 1.11 1.15 1.17 2.24 2.27 2.19 7.39 10.01 23.14 39.22 0.58
13 1.00 1.18 1.19 1.15 2.94 2.61 2.74 13.77 29.84 99.00 0.85
14 1.00 1.02 1.03 1.03 2.09 2.06 2.05 1.26 15.36 1.02 3.62 10.19 78.06 0.24
15 1.00 1.09 1.13 1.18 2.25 2.38 2.21 2.96 8.50 3.63 59.50 18.87 0.36
16 1.00 1.49 1.48 1.54 2.97 2.95 2.96 5.15 7.88 3.63 173.3 8.67 0.48
17 1.00 1.19 1.12 1.20 2.30 2.35 2.40 10.73 13.95 22.34 32.00 0.64
18 1.00 2.46 2.43 2.55 3.68 3.46 3.68 61.04 5.23 1.76 9.67 343.7 0.75
19 1.00 1.05 1.07 1.08 2.09 0.24 0.40 0.27 0.01

avg. 1.00 1.30 1.30 1.31 2.43 2.45 2.53 8.61 10.33 10.39 30.75 20.27 1146 0.48

tests performed by the RAI algorithm and computed by us to those of the MMHC, GS,
PC and TPDA, as computed in Tsamardinos et al. (2006a), and downloaded from the
Causal Explorer webpage. We find that for all networks the RAI algorithm performs
fewer calls for statistical tests than all other algorithms. On average over all networks,
the RAI algorithm performs only 53% of the calls for statistical tests performed by the
MMHC algorithm, which is the algorithm that required the fewest calls of all algorithms
examined in Tsamardinos et al. (2006a). Figure 16 demonstrates this advantage of RAI
over MMHC graphically using a scatter plot. All points below the x = y line represent
data sets for which the numbers of calls for statistical tests of MMHC are larger than
those of RAI.

Evaluating the statistical significance of the results in Tables 3–5 using Wilcoxon
signed-ranks test (Demšar, 2006) with a confidence level of 0.05, we find the SHD errors
of RAI and MMHC to be not significantly different from each other; however, the RAI
run-times and numbers of statistical calls are significantly shorter than those of the
MMHC algorithm.

In continuation to Section 4.1, we further analyzed the complexity of RAI (as mea-
sured by the numbers of CI tests performed) according to the CI test orders and the
graph size. However, here we used real rather than synthetic data. We examined the
numbers of tests as performed for different orders for the Child, Insurance, Alarm and
Hailfinder networks and their tiled networks. Using the tiled networks (Tsamardi-
nos et al., 2006b), we could examine the impact of graph size on the number of tests.
Figure 17 shows the cumulative percentage of CI tests for a specific order out of the
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Table 5: Number of statistical calls performed by each algorithm normalized by the
number of statistical calls performed by the MMHC algorithm for the nineteen
networks detailed in Table 2. Average (avg.) for an algorithm is over all
networks. Blank cells represent jobs that Tsamardinos et al. (2006a) reported
that refused to run or did not complete their computations within two days
running time.

# MMHC GS PC TPDA RAI
1 1.00 2.42 9.95 1.94 0.81
2 1.00 3.78 2.51 3.34 0.57
3 1.00 4.44 1499.22 3.02 0.67
4 1.00 5.12 2.64 0.75
5 1.00 1.96 2995.87 1.58 0.34
6 1.00 1.32 3.61 2.92 0.21
7 1.00 2.49 4.61 2.97 0.39
8 1.00 3.25 4.40 3.17 0.51
9 1.00 3.91 5.43 3.13 0.64
10 1.00 1.75 36.54 1.93 0.30
11 1.00 2.57 340.44 1.83 0.72
12 1.00 3.07 1033.86 1.87 0.67
13 1.00 3.40 1.85 0.77
14 1.00 1.32 40.57 2.97 0.27
15 1.00 2.35 1082.45 2.71 0.39
16 1.00 3.12 5143.51 2.97 0.49
17 1.00 4.25 3.20 0.63
18 1.00 3.38 10.78 3.49 0.59
19 1.00 1.75 0.91 0.30

avg. 1.00 2.93 814.25 2.55 0.53

total number of CI tests performed for each network. The figure demonstrates that the
percentages of CI tests performed decrease with the CI test order and become small for
orders higher than the max fan-in of the network (see Table 2). These percentages also
decrease with the numbers of nodes in the network (validated on the tiled networks).
This is due to a faster increase of the number of low-order CI tests compared with the
number of high-order CI tests as the graph size increases for all networks except for
Hailfinder. For Hailefinder (Figure 17d), the threshold for the network was different
from those of the tiled networks. This led to an increase in the percentage of high-order
CI tests and a decrease in CI tests of order 0 when comparing the Hailfinder network to
its tiled versions. For all the tiled Alarm networks (Figure 17c), CI tests of order 0 nearly
sufficed for learning the network. Overall, the results support our preliminary results
with synthetic data and “perfect” CI tests (Section 4.1). Thus, we can conclude that as
the graph size increases, the RAI algorithm requires relatively fewer CI tests of high
orders, especially of orders higher than the max fan-in, than tests of low orders. This
result enhances the attractiveness in applying the RAI algorithm also to large problems.
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Figure 16: Number of statistical calls performed by the RAI algorithm vs. the number of
statistical calls performed by the MMHC algorithm for all networks and data
sets examined in this sub-section (5 data sets ⇥ 19 networks = 95 points).

4.5. Structure Learning for General BN Classifiers

Classification is one of the most fundamental tasks in machine learning (ML), and a
classifier is primarily expected to achieve high classification accuracy. The Bayesian
network classifier (BNC) is usually not considered as an accurate classifier compared
to state-of-the-art ML classifiers, such as the neural network (NN) and support vector
machine (SVM). However, the BNC has important advantages over the NN and SVM
models. The BNC enhances model interpretability by exhibiting dependences, inde-
pendences and causal relations between variables. It also allows the incorporation of
prior knowledge during model learning so as to select a better model or to improve the
estimation of its data-driven parameters. Moreover, the BNC naturally performs feature
selection as part of model construction and permits the inclusion of hidden nodes that
increase model representability and predictability. In addition, the BN has a natural way
of dealing with missing inputs by marginalizing hidden variables. Finally, compared
to NN and SVM, BNC can model very large, multi-class problems with different types
of variables. These advantages are important in real-world classification problems,
since they provide many insights into the problem at hand that are beyond the pure
classification decisions provided by NN and SVM.

We evaluated the RAI complexity, run-time and accuracy when applied to learning a
general BN classifier (Cheng and Greiner, 1999; Friedman et al., 1997) in comparison to
other algorithms of structure learning using nineteen databases of the UCI Repository
(Newman et al., 1998) and Kohavi and John (1997). These databases are detailed in
Table 6 with respect to the numbers of variables, classes and instances in each database.
All databases were analyzed using a CV5 experiment, except large databases (e.g.,
“chess”, “nursery” and “shuttle”), which were analyzed using the holdout methodology
and the common division to training and test sets (Newman et al., 1998; Friedman et al.,
1997; Cheng et al., 1997) as detailed in Table 6. Continuous variables were discretized
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Figure 17: Cumulative percentages of CI tests out of the total numbers of tests for
increasing orders as performed by the RAI algorithm for the (a) Child, (b)
Insurance, (c) Alarm, and (d) Hailfinder networks including their tiled net-
works.
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using the MLC++ library (Kohavi et al., 1994) and instances with missing values were
removed, as is commonly done.

Table 6: Databases of the UCI repository (Newman et al., 1998) and of Kohavi and John
(1997) used for evaluating the accuracy of a classifier learned using the RAI
algorithm.

# # # Test # training # testDatabase
variables classes instances methodology instances instances

australian 14 2 690 CV5 552 138
breast 9 2 683 CV5 544 136
car 6 4 1728 CV5 1380 345
chess 36 2 3196 holdout 2130 1066
cleve 11 2 296 CV5 236 59
cmc 9 3 1473 CV5 1176 294
corral 6 2 128 CV5 100 25
crx 15 2 653 CV5 520 130
flare C 10 9 1389 CV5 1108 277
iris 4 3 150 CV5 120 30
led7 7 10 3200 CV5 2560 640
mofn 3-7-10 10 2 1324 holdout 300 1024
nursery 8 5 12960 holdout 8640 4320
shuttle (s) 8 7 5800 holdout 3866 1934
tic-tac-toe 9 2 958 CV5 764 191
vehicle 18 4 846 CV5 676 169
vote 16 3 435 CV5 348 87
wine 13 3 178 CV5 140 35
zoo 16 7 101 CV5 80 20

Generally for this sub-section, CI tests for RAI and PC were carried out using the
c2 test (Spirtes et al., 2000) and those for TPDA using the CMI independence test
(Equation 2). However, CI tests for RAI and PC for the “corral”, “nursery” and “vehicle”
databases were carried out using the CMI independence test. In the case of the large
“nursery” database, the need to use the CMI test was due to a Matlab memory limitation
in the completion of the c2 test using the BNT structure learning package (Leray and
François, 2004). In the case of the “corral” and “vehicle” databases, the smallness of the
database, together with either the large numbers of classes, variables or states for each
variable, led to low frequencies of instances for many combinations of variable states.
In this case, the implementation of the c2 test assumes variable dependence (Spirtes
et al., 2000) that prevents the CB (PC, TPDA and RAI) algorithms from removing edges
regardless of the order of the CI test, leading to erroneous decisions. Another test of
independence, which is reported to be more reliable and robust, especially for small
databases or large numbers of variables (Dash and Druzdzel, 2003), may constitute
another solution in these cases.

Thresholds for the CI tests of the CB algorithms and parameter values for all other
algorithms were chosen for each algorithm and database so as to maximize the clas-
sification accuracy on a validation set selected from the training set or based on the
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recommendation of the algorithm authors or of Tsamardinos et al. (2006a). Although
using a validation set decreases the size of the training set, it also eliminates the chance
of selecting a threshold or a parameter that causes the model to overfit the training set
at the expense of the test set. If several thresholds/parameters were found suitable for
an algorithm, the threshold/parameter chosen was that leading to the fewest CI tests
(in the case of CB algorithms). For GES and GS there are no parameters to set (except
the equivalent sample size for the BDeu), and for MMHC we used the selections used
by the authors in all their experiments.

Finally, parameter learning was performed by maximum likelihood estimation.
Since we were interested in structure learning, no attempt was made to study estimation
methods other than this simple and most popular generative method (Cooper and
Herskovits, 1992; Heckerman, 1995; Yang and Chang, 2002). Nevertheless, we note that
discriminative models for parameter learning have recently been suggested (Pernkopf
and Bilmes, 2005; Roos et al., 2005). These models show an improvement over generative
models when estimating the classification accuracy (Pernkopf and Bilmes, 2005). We
expect that any improvement in classification accuracy gained by using parameter
learning other than maximum likelihood estimation will be shared by classifiers induced
using any algorithm of structure learning; however, the exact degree of improvement in
each case should be further evaluated.

Complexity of the RAI algorithm was measured by the number of CI tests employed
for each size of the condition set and the cumulative run-time of the CI tests. These
two criteria of complexity were also measured for the PC algorithm, since both the
RAI and PC algorithms use the same implementation of CI testing. Table 7 shows the
average number and percentage of CI tests reduced by the RAI algorithm compared
to the PC algorithm for different CI test orders and each database. An empty entry in
the table means that no CI tests of this order are required. A 100% cut in CI tests for a
specific order means that RAI does not need any of the CI tests employed by the PC
algorithm for this order (e.g., orders 2 and above for the “led7” database). It can be seen
that for almost all databases examined, the RAI algorithm avoids most of the CI tests of
orders two and above that are required by the PC algorithm (e.g., the “chess” database).
Table 7 also shows the reduction in the CI test run-time due to the RAI algorithm in
comparison to the PC algorithm for all nineteen databases examined; except for the
“australian” database, the cut is measured in tens of percentages for all databases and
for six databases this cut is higher than 70%. Run-time differences between algorithms
may be the result of different implementations. However, since in our case the run-time
is almost entirely based on the number and order of CI tests and RAI has reduced most
of the PC CI tests, especially those of high orders that are expensive in run-time, we
consider the above run-time reduction results to be significant.

Classification accuracy using a BNC has recently been explored extensively in the
literature (Friedman et al., 1997; Grossman and Domingos, 2004; Kontkanen et al., 1999;
Pernkopf and Bilmes, 2005; Roos et al., 2005). By restricting the general inference task of
BN to inference performed on the class variable, we turn a BN into a BNC. First, we
use the training data to learn the structure and then transform the pattern outputted
by the algorithm into a DAG (Dor and Tarsi, 1992). Thereafter, we identify the class
node Markov blanket and remove from the graph all the nodes that are not part of this
blanket. Now, we could estimate the probabilities comprising the class node posterior
probability, P(C|X), where X is the set of the Markov blanket variables. During the test,
we inferred the state c of the class node C for each test instantiation, X = x, using the
estimated posterior probability. The class ĉ selected was the one that maximized the
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Table 7: Average number (and percentage) of CI tests reduced by the RAI algorithm
compared to the PC algorithm for different databases and CI test orders and
the cut (%) in the total CI test run-time.

CI test order Run-timeDatabase
0 1 2 3 4 cut (%)

australian 0 (0) 3.8 (34.4) 6.05
breast 0 (0) 107.2 (54.8) 35 (99.1) 71.87
car 0 (0) 16 (100) 11.2 (100) 3.2 (100) 91.10
chess 0 (0) 2263 (76.3) 2516 (89) 581 (94) 249 (100) 80.65
cleve 0 (0) 12.4 (63) 39.60
cmc 0 (0) 10.2 (10.9) 8 (32.5) 14.22
corral 0 (0) 22.4 (100) 26 (100) 3.6 (100) 87.94
crx 0 (0) 8.8 (49.6) 25.25
flare C 0 (0) 16 (39.6) 3 (100) 20.38
iris 0 (0) 2 (40) 19.10
led7 0 (0) 46.2 (45.7) 105 (100) 140 (100) 105 (100) 91.74
mofn 3-7-10 0 (0) 17 (100) 4 (100) 67.70
nursery 0 (0) 20 (100) 30 (100) 20 (100) 5 (100) 89.70
shuttle (s) 0 (0) 1.4 (0.7) 95.8 (43.8) 117.6 (49.3) 83.6 (56.0) 38.94
tic-tac-toe 0 (0) 53.2 (27.1) 56.6 (48.6) 1.8 (51.4) 36.52
vehicle 0 (0) -12.4 (-2.9) 32.6 (20.4) -5.8 (-14.0) 3.4 (27.4) 13.15
vote 0 (0) 24.2 (21.9) 17.2 (98.1) 6.4 (100) 1 (100) 46.06
wine 0 (0) 25.8 (41.0) 44.2 (67.6) 40.6 (82.4) 19 (96.7) 29.11
zoo 0 (0) 82 (27.8) 365.8 (29.6) 1033.4 (27.7) 1928.6 (25.6) 13.63

posterior probability, meaning that ĉ = arg maxc P(C = c|X = x). By comparing the
class maximizing the posterior probability and the true class, we could compute the
classification accuracy.

In Table 8 we compared the classification accuracy due to the RAI algorithm to
those due to the PC, TPDA, GES, MMHC, SC and NBC algorithms. We note the overall
advantage of the RAI algorithm, especially for large databases. Since the reliability of
the CI tests increased with the sample size, it seems that RAI benefits from this increase
more than the other algorithms and excels in classifying large databases. RAI, when
compared to the other structure learning algorithms, yielded the best classifiers on six
(“flare C”, “nursery”, “led7”, “mofn”, “tic-tac-toe” and “vehicle”) of the ten largest
databases and among the best classifiers on the remaining four (“shuttle”, “chess”, “car”
and “cmc”) large databases. The other CB algorithms — PC and TPDA — also showed
here, and in Tsamardinos et al. (2006a), better results on the large databases. However,
the CB algorithms are less accurate on very small databases (e.g., “wine” and “zoo”).

Overall, RAI was the best algorithm on 7 databases compared to 5, 2, 5, 4, 5 and 5
databases for the PC, TPDA, GES, MMHC, SC and NBC algorithms, respectively. RAI
was the worst classifier on only a single database, whereas the PC, TPDA, GES, MMHC,
SC and NBC algorithms were the worst classifiers on 2, 4, 6, 2, 2 and 7 databases,
respectively. We believe that the poor results of the GES and MMHC algorithms on the
“nursery” database may be attributed to the fact that these algorithms find the class node
C as a child of many other variables, making the estimation of P(C|X) unreliable due to
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Table 8: Mean (and standard deviation for CV5 experiments) of the classification ac-
curacy of the RAI algorithm in comparison to those of the PC, TPDA, GES,
MMHC, SC and NBC algorithms. Bold and italic fonts represent, respectively,
the best and worst classifiers for a database.

Database PC TPDA GES MMHC SC NBC RAI

australian 85.5 (0.5) 85.5 (0.5) 83.5 (2.1) 86.2 (1.5) 85.5 (1.2) 85.9 (3.4) 85.5 (0.5)
breast 95.5 (2.0) 94.4 (2.7) 96.8 (1.1) 97.2 (1.2) 96.5 (0.8) 97.5 (0.8) 96.5 (1.6)
car 84.3 (2.6) 84.5 (0.6) 81.5 (2.3) 90.2 (2.0) 93.8 (1.1) 84.7 (1.3) 92.9 (1.1)
chess 93.1 90.1 97.0 94.1 92.5 87.1 93.5
cleve 76.7 (7.2) 72.0 (10.7) 79.4 (5.7) 82.1 (4.5) 83.5 (5.7) 83.5 (5.2) 81.4 (5.4)
cmc 50.9 (2.3) 46.4 (2.1) 46.3 (1.5) 48.6 (2.6) 49.7 (2.5) 51.3 (1.3) 51.1 (3.2)
corral 100 (0) 88.2 (6.4) 100 (0) 100 (0) 100 (0) 85.2 (7.3) 100 (0)
crx 86.4 (2.6) 86.7 (3.4) 82.2 (6.4) 86.7 (1.7) 86.7 (3.4) 86.2 (2.8) 86.4 (2.6)
flare C 84.3 (2.5) 84.3 (2.4) 84.3 (2.5) 84.3 (2.5) 84.3 (2.5) 77.7 (3.1) 84.3 (2.5)
iris 96.0 (4.3) 93.3 (2.4) 96.0 (4.3) 94.0 (3.6) 92.7 (1.5) 94.0 (4.3) 93.3 (2.4)
led7 73.3 (1.8) 72.9 (1.5) 72.9 (1.5) 72.9 (1.5) 72.9 (1.5) 72.9 (1.5) 73.6 (1.6)
mofn 3-7-10 81.4 90.8 79.8 90.5 91.9 89.8 93.2
nursery 72.0 64.7 33.3 29.3 30.3 66.0 72.0
shuttle (s) 98.4 96.3 99.5 99.2 99.2 98.8 99.2
tic-tac-toe 74.7 (1.4) 72.2 (3.8) 69.9 (2.8) 71.1 (4.2) 70.4 (4.7) 69.6 (3.1) 75.6 (1.9)
vehicle 63.9 (3.3) 65.6 (2.8) 64.1 (11.2) 69.3 (1.5) 64.8 (9.1) 62.0 (4.0) 70.2 (2.8)
vote 95.9 (1.5) 95.4 (2.1) 94.7 (2.8) 95.6 (2.2) 93.1 (2.2) 90.6 (3.3) 95.4 (1.6)
wine 85.4 (7.8) 97.8 (3.0) 98.3 (2.5) 98.3 (2.5) 98.3 (2.5) 98.9 (1.5) 87.1 (5.9)
zoo 89.0 (8.8) 96.1 (2.2) 96.0 (2.3) 93.1 (4.5) 95.9 (6.9) 96.3 (3.8) 89.0 (8.79)

average 83.5 83.0 81.9 83.3 83.3 83.1 85.3
std 12.7 13.8 18.4 18.4 18.4 13.3 12.3

the curse-of-dimensionality. The structures learned by the other algorithms required a
smaller number of such connections and thereby reduced the curse.

In addition, we averaged the classification accuracies of the algorithms over the
nineteen databases. Averaging accuracies over databases has no meaning in itself
except that the average accuracies over many different problems of different algorithms
may infer about the relative expected success of the algorithms in other classification
problems. It is interesting to note that although the different algorithms in our study
showed different degrees of success on various databases, most of the algorithms
(i.e., PC, TPDA, MMHC, SC and NBC) achieved almost the same average accuracy
(83.0%-83.5%). The GES average accuracy was a little inferior (81.9%) to that of the
above algorithms, and the average accuracy of the RAI (85.3%) was superior to that of
all algorithms. Concerning the standard deviation of the classification accuracy, RAI
outperformed all classifiers implying to the robustness of the RAI-based classifier.

Superiority of one algorithm over another algorithm for each database was evaluated
with a statistical significance test (Dietterich, 1998). We used a single-sided t-test to
evaluate whether the mean difference between any pair of algorithms as measured on
the five folds of the CV5 test was greater than zero. Table 9 summarizes the statistical
significance results, measured at a significance level of 0.05, for any two classifiers and
each database examined using cross validation. The number in each cell of Table 9
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Table 9: Statistical significance using a t-test for the classification accuracy results of
Table 8. For a given database, each cell indicates the number of algorithms
found to be inferior at a significance level of 0.05 to the algorithm above the
cell.

Databse PC TPDA GES MMHC SC NBC RAI

australian 1 1 0 1 0 1 1
breast 0 0 0 2 0 3 0
car 1 1 0 4 6 1 5
cleve 0 0 0 1 3 3 2
cmc 4 0 0 1 2 2 3
corral 2 0 2 2 2 0 2
crx 0 0 0 0 0 0 0
flare C 1 1 1 1 1 0 1
iris 1 0 1 0 0 0 0
led7 0 0 0 0 0 0 5
tic-tac-toe 3 2 0 0 0 0 5
vehicle 0 1 0 3 0 0 3
vote 2 2 1 3 0 0 1
wine 0 2 2 2 2 2 0
zoo 0 0 0 0 2 0 0

total 15 10 7 20 18 12 28
average 1.00 0.67 0.47 1.33 1.20 0.8 1.87

describes — for the corresponding algorithm and database — the number of algorithms
that are inferior to that algorithm for that databases. A “0” value indicates that the
algorithm is either inferior to all the other algorithms or not significantly superior to
any of them. For example, for the “car” database the PC, TPDA, GES, MMHC, SC, NBC
and RAI algorithms were significantly superior to 1, 1, 0, 4, 6, 1 and 5 other algorithms,
respectively. In total, the superiority of the RAI algorithm over the other algorithms
was statistically significant 28 times, with an average of 1.87 algorithms per database.
The second and third best algorithms were the MMHC and SC algorithms, with a total
of 20 and 18 times of statistically significant superiority and averages of 1.33 and 1.2
per database, respectively. The least successful classifier, according to Tables 8 and
9, was the one that is learned using GES. We believe that this inferiority arises from
the assumptions on the type of probabilities and their parameters made by the GES
algorithm when computing the BDeu score (Heckerman et al., 1995), assumptions that
probably do not hold for the examined databases.

Although this methodology of statistical tests between pairs of classifiers is the most
popular in the machine learning community, there are other methodologies that evaluate
statistical significance between several classifiers on several databases simultaneously.
For example, Demšar (2006), recently suggested using Friedman test (Friedman, 1940)
and some post-hoc tests for such an evaluation.
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5. Discussion
The performance of a CB algorithm in BN structure learning depends on the number of
conditional independence tests and the sizes of condition sets involved in these tests.
The larger the condition set, the greater the number of CI tests of high orders that have
to be performed and the smaller their accuracies.

We propose the CB RAI algorithm that learns a BN structure by performing the
following sequence of operations: 1) test of CI between nodes and removal of edges
related to independences, 2) edge direction employing orientation rules, and 3) structure
decomposition into smaller autonomous sub-structures. This sequence of operations is
performed recursively for each sub-structure, along with increasing the order of the CI
tests. Thereby, the RAI algorithm deals with less potential parents for the nodes on a
tested edge and thus uses smaller condition sets that enable the performance of fewer
CI tests of higher orders. This reduces the algorithm run-time and increases its accuracy.

By introducing orientation rules through edge direction in early stages of the algo-
rithm and following CI tests of lower orders, the graph “backbone” is established using
the most reliable CI tests. Relying on this “backbone” and its directed edges in later
stages obviates the need for unnecessary CI tests and enables RAI to be less complex
and sensitive to errors.

In this study, we proved the correctness of the RAI algorithm. In addition, we
demonstrated empirically, using synthetically generated networks, samples of nineteen
known structures, and nineteen natural databases used in classification problems, the
advantage of the RAI algorithm over state-of-the-art structure learning algorithms, such
as PC, TPDA, GS, GES, OR, SC and MMHC, with respect to structural correctness,
number of statistical calls, run-time and classification accuracy. We note that no attempt
was made to optimize the parameters of the other algorithms and the effect of such
optimization was not evaluated. This is due to the fact that some of the algorithms
have more than one parameter to optimize and besides, no optimization methods were
proposed by the algorithm inventors. We propose such an optimization method for the
RAI algorithm that uses only the training (validation) data.

We plan to extend our study in several directions. One is the comparison of RAI-
based classifiers to non-BN classifiers, such as the neural network and support vector
machine. Second is the incorporation of different types of prior knowledge (e.g., related
to classification) into structure learning. We also intend to study error correction during
learning and to allow the inclusion of hidden variables to improve representation and
facilitate learning with the RAI algorithm.
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Abstract
We present an algorithmic framework for learning local causal structure around target
variables of interest in the form of direct causes/effects and Markov blankets applicable
to very large data sets with relatively small samples. The selected feature sets can be
used for causal discovery and classification. The framework (Generalized Local Learning,
or GLL) can be instantiated in numerous ways, giving rise to both existing state-of-the-
art as well as novel algorithms. The resulting algorithms are sound under well-defined
sufficient conditions. In a first set of experiments we evaluate several algorithms
derived from this framework in terms of predictivity and feature set parsimony and
compare to other local causal discovery methods and to state-of-the-art non-causal
feature selection methods using real data. A second set of experimental evaluations
compares the algorithms in terms of ability to induce local causal neighborhoods using
simulated and resimulated data and examines the relation of predictivity with causal
induction performance.

Our experiments demonstrate, consistently with causal feature selection theory,
that local causal feature selection methods (under broad assumptions encompassing ap-
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propriate family of distributions, types of classifiers, and loss functions) exhibit strong
feature set parsimony, high predictivity and local causal interpretability. Although
non-causal feature selection methods are often used in practice to shed light on causal
relationships, we find that they cannot be interpreted causally even when they achieve
excellent predictivity. Therefore we conclude that only local causal techniques should
be used when insight into causal structure is sought.

In a companion paper we examine in depth the behavior of GLL algorithms, provide
extensions, and show how local techniques can be used for scalable and accurate global
causal graph learning.
Keywords: local causal discovery, Markov blanket induction, feature selection, classifi-
cation, causal structure learning, learning of Bayesian networks

1. Introduction
This paper addresses the problem of how to learn local causal structure around a target
variable of interest using observational data. We focus on two specific types of local
discovery: (a) identification of variables that are direct causes or direct effects of the
target, and (b) discovery of Markov blankets. A Markov Blanket of a variable T is a
minimal variable subset conditioned on which all other variables are probabilistically
independent of T.

Discovery of local causal relationships is significant because it plays a central role in
causal discovery and classification, because of its scalability benefits, and because by
naturally bridging causation with predictivity, it provides significant benefits in feature
selection for classification. More specifically, solving the local causal induction problem
helps understanding how natural and artificial systems work; it helps identify what
interventions to pursue in order for these systems to exhibit desired behaviors; under
certain assumptions, it provides minimal feature sets required for classification of a
chosen response variable with maximum predictivity; and finally local causal discovery
can form the basis of efficient algorithms for learning the global causal structure of all
variables in the data.

The paper is organized as follows: Section 2 provides necessary background material.
The section summarizes related prior work in feature selection and causal discovery;
reviews recent results that connect causality with predictivity; explains the central role
of local causal discovery for achieving scalable global causal induction; reviews prior
methods for local causal and Markov blanket discovery and published applications;
finally it introduces the open problems that are the focus of the present report. Section 3
provides formal concepts and definitions used in the paper. Section 4 provides a general
algorithmic framework, Generalized Local Learning (GLL), which can be instantiated in
many different ways yielding sound algorithms for local causal discovery and feature
selection. Section 5 evaluates a multitude of algorithmic instantiations and parameter-
izations from GLL and compares them to state-of-the-art local causal discovery and
feature selection methods in terms of classification performance, feature set parsimony,
and execution time in many real data sets. Section 6 evaluates and compares new and
state-of-the-art algorithms in terms of ability to induce correct local neighborhoods
using simulated data from known networks and resimulated data from real-life data
sets. Section 7 discusses the experimental findings and their significance.

The experiments presented here support the conclusion that local structural learning
in the form of Markov blanket and local neighborhood induction is a theoretically well-
motivated and empirically robust learning framework that can serve as a powerful tool
for data analysis geared toward classification and causal discovery. At the same time
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several existing open problems offer possibilities for non-trivial theoretical and practical
discoveries making it an exciting field of research. A companion paper (part II of the
present work) studies the GLL algorithm properties empirically and theoretically, intro-
duces algorithmic extensions, and connects local to global causal graph learning (Aliferis
et al., 2010). An online supplement to the present work is available at http://www.
nyuinformatics.org/downloads/supplements/JMLR2009/index.html. In
addition to supplementary tables and figures, the supplement provides all software and
data needed to reproduce the analyses of the present paper.

2. Background
In the present section we provide a brief review of feature selection and causal discovery
research, summarize theoretical results motivating this work, present methods to speed-
up scalability of discovery, give desiderata for local algorithms, review prior methods for
Markov blanket and local neighborhood induction, and finally discuss open problems
and focus of this paper.

2.1. Brief Review of Feature Selection and Causal Discovery Research

Variable selection for predictive modeling (also called feature selection) has received
considerable attention during the last three decades both in statistics and in machine
learning (Guyon and Elisseeff, 2003; Kohavi and John, 1997). Intuitively, variable selec-
tion for prediction aims to select only a subset of variables for constructing a diagnostic
or predictive model for a given classification or regression task. The reasons to per-
form variable selection include (a) improving the model predictivity and addressing
the curse-of-dimensionality, (b) reducing the cost of observing, storing, and using the
predictive variables, and finally, (c) gaining an understanding of the underlying process
that generates the data. The problem of variable selection is more pressing than ever,
due to the recent emergence of extremely large data sets, sometimes involving tens
to hundreds of thousands of variables and exhibiting a very small sample-to-variable
ratio. Such data sets are common in gene expression array studies, proteomics, compu-
tational biology, text categorization, information retrieval, image classification, business
data analytics, consumer profile analysis, temporal modeling, and other domains and
data-mining applications.

There are many different ways to define the variable selection problem depending
on the needs of the analysis. Often however, the feature selection problem for clas-
sification/prediction is defined as identifying the minimum-size subset of variables
that exhibit the maximal predictive performance (Guyon and Elisseeff, 2003). Variable
selection methods can be broadly categorized into wrappers (i.e., heuristic search in the
space of all possible variable subsets using a classifier of choice to assess each subset’s
predictive information), or filters (i.e., not using the classifier per se to select features, but
instead applying statistical criteria to first select features and then build the classifier
with the best features). In addition, there exist learners that perform embedded variable
selection, that is, that attempt to simultaneously maximize classification performance
while minimizing the number of variables used. For example, shrinkage regression
methods introduce a bias into the parameter estimation regression procedure that im-
poses a penalty on the size of the parameters. The parameters that are close to zero are
essentially filtered-out from the predictive model.
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A variety of embedded variable selection methods have been recently introduced.
These methods are linked to a statement of the classification or regression problem as an
optimization problem with specified loss and penalty functions. These techniques usu-
ally fall into a few broad classes: One class of methods uses the L2-norm penalty (also
known as ridge penalty), for example, the recursive feature elimination (RFE) method
is based on the L2-norm formulation of SVM classification problem (Rakotomamonjy,
2003; Guyon et al., 2002). Other methods are based on the L1-norm penalty (also known
as lasso penalty), for example, feature selection via solution of the L1-norm formulation
of SVM classification problem (Zhu et al., 2004; Fung and Mangasarian, 2004) and penal-
ized least squares with lasso penalty on the regression coefficients (Tibshirani, 1996). A
third set of methods is based on convex combinations of the L1- and L2-norm penalties,
for example, feature selection using the doubly SVM formulation (Wang et al., 2006)
and penalized least squares with elastic net penalty (Zou and Hastie, 2005). A fourth
set uses the L0-norm penalty, for example, feature selection via approximate solution of
the L0-norm formulation of SVM classification problem (Weston et al., 2003). Finally
other methods use other penalties, for example, smoothly clipped absolute deviation
penalty (Fan and Li, 2001).

Despite the recent emphasis on mathematically sophisticated methods such as the
ones mentioned, the majority of feature selection methods in the literature and in
practice are heuristic in nature in the sense that in most cases it is unknown what
consists an optimal feature selection solution independently of the class of models fitted,
and under which conditions an algorithm will output such an optimal solution.

Typical variable selection approaches also include forward, backward, forward-
backward, local and stochastic search wrappers (Guyon and Elisseeff, 2003; Kohavi and
John, 1997; Caruana and Freitag, 1994). The most common family of filter algorithms
ranks the variables according to a score and then selects for inclusion the top k variables
(Guyon and Elisseeff, 2003). The score of each variable is often the univariate (pairwise)
association with the outcome variable T for different measures of associations such as
the signal-to-noise ratio, the G2 statistic and others. Information-theoretic (estimated
mutual information) scores and multivariate scores, such as the weights received by a
Support Vector Machine, have also been suggested (Guyon and Elisseeff, 2003; Guyon
et al., 2002). Excellent recent reviews of feature selection can be found in Guyon et al.
(2006a), Guyon and Elisseeff (2003) and Liu and Motoda (1998).

An emerging successful but also principled filtering approach in variable selection,
and the one largely followed in this paper, is based on identifying the Markov blanket
of the response (“target”) variable T. The Markov blanket of T (denoted as MB(T))
is defined as a minimal set conditioned on which all other measured variables become
independent of T (more details in Section 3).

While classification is often useful for recognizing or predicting the behavior of a sys-
tem, in many problem-solving activities one needs to change the behavior of the system
(i.e., to “manipulate it”). In such cases, knowledge of the causal relations among the
various parts of the system is necessary. Indeed, in order to design new drugs and
therapies, institutional policies, or economic strategies, one needs to know how the
diseased organism, the institution, or the economy work. Often, heuristic methods
based on multivariate or univariate associations and prediction accuracy are used to
induce causation, for example, consider as causally “related” the features that have a
strong association with T. Such heuristics may lead to several pitfalls and erroneous
inductions, as we will show in the present paper. For principled causal discovery with
known theoretical properties a causal theory is needed and classification is not, in gen-
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eral, sufficient (Spirtes et al., 2000; Pearl, 2000; Glymour and Cooper, 1999). Consider
the classical epidemiologic example of the tar-stained finger of the heavy smoker: it
does predict important outcomes (e.g., increased likelihood for heart attack and lung
cancer). However, eliminating the yellow stain by washing the finger does not alter
these outcomes. While experiments can help discover causal structure, quite often
experimentation is impossible, impractical, or unethical. For example, it is unethical
to force people to smoke and it is currently impossible to manipulate most genes in
humans in order to discover which genes cause disease and how they interact in doing
so. Moreover, the discoveries anticipated due to the explosive growth of biomedical
and other data cannot be made in any reasonable amount of time using solely the
classical experimental approach where a single gene, protein, treatment, or intervention
is attempted each time, since the space of needed experiments is immense. It is clear
that computational methods are needed to catalyze the discovery process.

Fortunately, relatively recently (1980’s), it was shown that it is possible to soundly
infer causal relations from observational data in many practical cases (Spirtes et al.,
2000; Pearl, 2000; Glymour and Cooper, 1999; Pearl, 1988). Since then, algorithms that
infer such causal relations have been developed that can greatly reduce the number of
experiments required to discover the causal structure. Several empirical studies have
verified their applicability (Tsamardinos et al., 2003b; Spirtes et al., 2000; Glymour and
Cooper, 1999; Aliferis and Cooper, 1994).

One of the most common methods to model and induce causal relations is by
learning causal Bayesian networks (Neapolitan, 2004; Spirtes et al., 2000; Pearl, 2000).
A special, important and quite broad class of such networks is the family of faithful
networks intuitively defined as those whose probabilistic properties, and specifically
the dependencies and independencies, are a direct function of their structure (Spirtes
et al., 2000). Cooper and Herskovits were the first to devise a score measuring the fit
of a network structure to the data based on Bayesian statistics, and used it to learn the
highest score network structure (Cooper and Herskovits, 1992). Heckerman and his
colleagues studied theoretically the properties of the various scoring metrics as they
pertain to causal discovery (Glymour and Cooper, 1999; Heckerman, 1995; Heckerman
et al., 1995). Heckerman also recently showed that Bayesian-scoring methods also
assume (implicitly) faithfulness, see Chapter 4 of Glymour and Cooper (1999). Another
prototypical method for learning causal relationships by inducing causal Bayesian
networks is the constraint-based approach as exemplified in the PC algorithm by
Spirtes et al. (2000). The PC induces causal relations by assuming faithfulness and
by performing tests of independence. A network with a structure consistent with the
results of the tests of independence is returned. Several other methods for learning
networks have been devised subsequently (Chickering, 2003; Moore and Wong, 2003;
Cheng et al., 2002a; Friedman et al., 1999b).

There may be many different networks that fit the data equally well, even in the
sample limit, and that exhibit the same dependencies and independencies and are
thus statistically equivalent. These networks belong to the same Markov equivalence
class of causal graphs and contain the same causal edges but may disagree on the
direction of some of them, that is, whether A causes B or vice-versa (Chickering, 2002;
Spirtes et al., 2000). An essential graph is a graph where the directed edges represent
the causal relations on which all equivalent networks agree upon their directionality
and all the remaining edges are undirected. Causal discovery by employing causal
Bayesian networks is based on the following principles. The PC (Spirtes et al., 2000),
Greedy Equivalence Search (Chickering, 2003) and other prototypical or state-of-the-
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art Bayesian network-learning algorithms provide theoretical guarantees, that under
certain conditions such as faithfulness they will converge to a network that is statistically
indistinguishable from the true, causal, data-generating network, if there is such. Thus,
if the conditions hold the existence of all and the direction of some of the causal relations
can be induced by these methods and graphically identified in the essential graph of
the learnt network.

A typical condition of the aforementioned methods is causal sufficiency (Spirtes
et al., 2000). This condition requires that for every pair of measured variables all
their common direct causes are also measured. In other words, there are no hidden,
unmeasured confounders for any pair of variables. Algorithms, such as the FCI, that
in some cases can discover causal relationships in the presence of hidden confounding
variables and selection bias, have also been designed (see Spirtes et al. 2000 and Chapter
6 of Glymour and Cooper 1999).

As it was mentioned above, using observational data alone (even a sample of an
infinite size), one can infer only a Markov equivalence class of causal graphs, which may
be inadequate for causal discovery. For example, it is not possible to distinguish with
observational data any of these two graphs that belong to the same Markov equivalence
class: X ! Y and X  Y. However, experimental data can distinguish between these
graphs. For example, if we manipulate X and see no change in the distribution of Y, we
can conclude that the data-generative graph is not X ! Y. This principle is exploited by
active learning algorithms. Generally speaking, causal discovery with active learning
can be described as follows: learn an approximation of a causal network structure
from available data (which is initially only observational data), select and perform an
experiment that maximizes some utility function, augment data and possibly current
best causal network with the result of experiment, and repeat the above steps until some
termination criterion is met.

Cooper and Yoo (1999) proposed a Bayesian scoring metric that can incorporate both
observational and experimental data. Using a similar metric (Tong and Koller, 2001)
designed an algorithm to select experiments that reduce the entropy of probability of
alternative edge orientations. A similar but more general algorithm has been proposed
in Murphy (2001) where the expected information gain of a new experiment is calculated
and the experiment with the largest information gain is selected. Both above methods
were designed for discrete data distributions. Pournara and Wernisch (2004) proposed
another active learning algorithm that uses a loss function defined in terms of the size of
transition sequence equivalence class of networks (Tian and Pearl, 2001) and can handle
continuous data. Meganck et al. (2006) have introduced an active learning algorithm
that is based on a general decision theoretic framework that allows to assign costs to
each experiment and each measurement. It is also worthwhile to mention the GEEVE
system of Yoo and Cooper (2004) that recommends which experiments to perform to
discover gene-regulation pathway. This instance of causal active learning allows to
incorporate preferences of the experimenter. Recent work has also provided theoretical
bounds and related algorithms to minimize the number of experiments needed to infer
causal structure (Eberhardt et al., 2006, 2005).

2.2. Synopsis of Theoretical Results Motivating Present Research

A key question that has been investigated in the feature selection literature is which
family of methods is more advantageous: filters or wrappers. A second one is what are
the “relevant” features? The latter question presumably is important because “relevant”
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features should be important for discovery and so several definitions appeared defining
relevancy (Guyon and Elisseeff, 2003; Kohavi and John, 1997). Finally, how can we
design optimal and efficient feature selection algorithms? Fundamental theoretical
results connecting Markov blanket induction for feature selection and local causal
discovery to standard notions of relevance were given in Tsamardinos and Aliferis
(2003). The latter paper provides a technical account and together with Spirtes et al.
(2000), Pearl (2000), Kohavi and John (1997) and Pearl (1988) they constitute the core
theoretical framework underpinning the present work. Here we provide a very concise
description of the results in Tsamardinos and Aliferis (2003) since they partially answer
these questions and pave the way to principled feature selection:

1. Relevance cannot be defined independently of the learner and the model-
performance metric (e.g., the loss function used) in a way that the relevant fea-
tures are the solution to the feature selection problem. The quest for a universally
applicable notion of relevancy for prediction is futile.

2. Wrappers are subject to the No-Free Lunch Theorem for optimization: averaged
out on all possible problems any wrapper algorithm will do as well as a random
search in the space of feature subsets. Therefore, there cannot be a wrapper that is
a priori more efficient than any other (i.e., without taking into account the learner
and model-performance metric). The quest for a universally efficient wrapper is
futile as well.

3. Any filter algorithm can be viewed as the implementation of a definition of
relevancy. Because of #1, there is no filter algorithm that is universally optimal,
independently of the learner and model-performance metric.

4. Because of #2, wrappers cannot guarantee universal efficiency and because of #3,
filters cannot guarantee universal optimality and in that respect, neither approach
is superior to the other.

5. Under the conditions that (i) the learner that constructs the classification model
can actually learn the distribution P(T | MB(T)) and (ii) that the loss function is
such that perfect estimation of the probability distribution of T is required with
the smallest number of variables, the Markov blanket of T is the optimal solution
to the feature selection problem.

6. Sound Markov blanket induction algorithms exist for faithful distributions.

7. In faithful distributions and under the conditions of #5, the strongly/weakly/
irrelevant taxonomy of variables (Kohavi and John, 1997) can be mapped naturally
to causal graph properties. Informally stated, strongly relevant features were
defined by Kohavi and John (1997) to be features that contain information about
the target not found in other variables; weakly relevant features are informative
but redundant; irrelevant features are not informative (for formal definitions see
Section 3). Under the causal interpretation of this taxonomy of relevancy, strongly
relevant features are the members of the Markov blanket of the target variable,
weakly relevant features are all variables with an undirected path to T which are
not themselves members of MB(T), and irrelevant features are variables with no
undirected path to the target.
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8. Since in faithful distributions the MB(T) contains the direct causes and direct
effects of T, and since state-of-the-art MB(T) algorithms output the spouses sep-
arately from the direct causes and direct effects, inducing the MB(T) not only
solves the feature selection problem but also a form of local causal discovery
problem.

Figure 1 provides a summary of the connection between causal structure and predictiv-
ity.
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Relationship between causal structure and predictivity in faithful distributions. 

Figure 1: Relationship between causal structure and predictivity in faithful distribu-
tions. Cyan variables are members of Markov blanket of T. They are depicted
inside the red dotted square (i.e., variables that have undirected path to target
T and that are predictive of T given the remaining variables which makes
them strongly relevant). Markov blanket variables include direct causes of T
(C, D), direct effects (F), and “spouses” of T (i.e., direct causes of the direct
effects of T) (G). Grey variables are non-members of Markov blanket of T that
have undirected path to T. They are not predictive of T given the remaining
variables but they are predictive given a subset of the remaining variables
(which makes them weakly relevant). Light-gray variables are variables that
do not have an undirected path to T. They are not predictive of T given any
subset of the remaining variables, thus they are irrelevant.

We will refer to algorithms that perform feature selection by formal causal induction
as causal feature selection and algorithms that do not as non-causal. As highly comple-
mentary to the above results we would add the arguments in favor of causal feature
selection presented in Guyon et al. (2007) and recent theoretical (Hardin et al., 2004)
and empirical (Statnikov et al., 2006) results that show that under the same sufficient
conditions that make Markov blanket the optimal solution to the feature selection and
local causal discovery problem, state-of-the-art methods such as ranking features by
SVM weights (RFE being a prototypical algorithm Guyon et al. 2002) do not return
the correct causal neighborhood and are not minimal, that is, do not solve the feature
selection problem) even in the large sample limit.

The above theoretical results also suggest that one should not attempt to define and
identify the relevant features for prediction, when discovery is the goal of the analysis.
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Instead, we argue that a set of features with well-defined causal semantics should be
identified instead: for example, the MB(T), the set of direct causes and direct effects of
T, the set of all (direct and indirect) causes of T, and so on.

We will investigate limitations of prominent non-causal feature selection algorithms
in the companion paper (Aliferis et al., 2010).

2.3. Methods to Speed-up Discovery: Local Discovery as a Critical Tool for
Scalability

As appealing as causal discovery may be for understanding a domain, predicting effects
of intervention, and pursuing principled feature selection for classification, a major
problem up until recent years has been scalability. The PC algorithm is worst-case
exponential (Spirtes et al., 2000) and in practical settings it cannot typically handle more
than a hundred variables. The FCI algorithm is similarly worst-case intractable (Spirtes
et al., 2000) and does not handle more than a couple of dozen of variables practically.
Learning Bayesian networks with Bayesian scoring techniques is NP-Hard (Chickering
et al., 1994). Heuristic hill-climbing techniques such as the Sparse Candidate Algorithm
(Friedman et al., 1999b) do not provide guaranteed correct solutions, neither they are
very efficient (they can cope with a few hundred variables at the most in practical
applications).

With the advent of massive data sets in biology, medicine, information retrieval, the
WWW, finance, economics, and so on, scalability has become a critical requirement for
practical algorithms. In early 2000’s predictions about the feasibility of causal discovery
in high-dimensional data were bleak (Silverstein et al., 2000). A variety of methods to
scale up causal discovery have been devised to address the problem:

1. Learn the full graph but focus on special types of distributions;

2. Exploit domain knowledge to speed-up learning;

3. Abandon the effort to learn the full causal graph and instead develop methods
that find a portion of the true arcs (not specific to some target variable);

4. Abandon the effort to learn the full causal graph and instead develop methods
that learn the local neighborhood of a specific target variable directly;

5. Abandon the effort to learn the fully oriented causal graph and instead develop
methods that learn the unoriented graph;

6. Induce constrains of the possible relationships among variables and then learn
the full causal graph.

Techniques #1 and #2 were introduced in Chow and Liu (1968) for learning tree-like
graphs and Naïve-Bayes graphs (Duda and Hart, 1973), while modern versions are
exemplified in (i) TAN/BAN classifiers that relax the Naïve-Bayes structure (Cheng
and Greiner, 2001, 1999; Friedman et al., 1997), (ii) efficient complete model averaging
of Naïve-Bayes classifiers (Dash and Cooper, 2002), and (iii) algorithm TPDA which
restricts the class of distributions so that learning becomes from worst-case intractable to
solvable in 4th degree polynomial time to the number of variables (and quadratic if prior
knowledge about the ordering of variables is known) (Cheng et al., 2002a). Technique #3
was introduced by Cooper (1997) and replaced learning the complete graph by learning
only a small portion of the edges (not pre-specified by the user but determined by the
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discovery method). Techniques #4� 6 pertain to local learning: Technique #4 seeks
to learn the complete causal neighbourhood around a target variable provided by the
user (Aliferis et al., 2003a; Tsamardinos et al., 2003b). We emphasize that local learning
(technique #4) is not the same as technique #3 (incomplete learning) although inventors
of incomplete methods often call them ‘local’. Technique #5 abandons directionality
and learns only a fully connected but undirected graph by using local learning methods
(Tsamardinos et al., 2006; Brown et al., 2005). Often post-processing with additional
algorithms can provide directionality. The latter can also be obtained by domain-
specific criteria or experimentation. Finally, technique #6 uses local learning to restrict
the search space for full-graph induction algorithms (Tsamardinos et al., 2006; Aliferis
and Tsamardinos, 2002b).
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Figure 2: Five types of causal discovery from local (types 1, 2), to global (4, 5) and
intermediate (3). Specialized algorithms that solve type 2 (local causes and
effects) can become building blocks for relatively efficiently solving all other
types of causal discovery as well (see text for details).

In the present paper we explore methods to learn local causal neighborhoods and
test them in high-dimensional data sets. In the companion paper (Aliferis et al., 2010) we
provide a framework for building global graphs using the local methods. Incomplete
learning (technique #3) is not pursued because it is redundant in light of the other
(complete) local and global learning approaches. Figure 2 provides a visual reference
guide to the kinds of causal discovery problems the methods in the present work are
able to address by starting from local causal discovery.
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2.4. Desiderata for Local Algorithms, Brief Review of Prior Methods for Markov
Blanket and Local Neighborhood Induction

An ideal local learning algorithm should have three characteristics: (a) well-defined
properties, especially broadly applicable conditions that guarantee correctness, (b) good
performance in practical distributions and corresponding data sets, including ones with
small sample and many features, and finally (c) scalability in terms of running time. We
briefly review progress made in the field toward these goals.

Firm theoretical foundations of Bayesian networks were laid down by Pearl and
his co-authors (Pearl, 1988). Furthermore, all local learning methods exploit either
the constraint-based framework for causal discovery developed by Spirtes, Glymour,
Schienes, Pearl, and Verma and their co-authors (Spirtes et al., 2000; Pearl, 2000; Pearl
and Verma, 1991) or the Bayesian search-and-score Bayesian network learning frame-
work introduced by Cooper and Herskovits (1992). The relevant key contributions were
covered in Section 2.1 and will not be repeated here.

While the above foundations were introduced and developed in the span of at least
the last 30 years, local learning is no more than 10 years old. Specialized Markov blanket
learning methods were first introduced in 1996 (Koller and Sahami, 1996), incomplete
causal methods in 1997 (Cooper, 1997), and local causal discovery methods (for targeted
complete induction of direct causes and effects) were first introduced in 2002 and
2003 (Tsamardinos et al., 2003b; Aliferis and Tsamardinos, 2002a). In 1996, Koller et al.
introduced a heuristic algorithm for inducing the Markov blanket from data and tested
the algorithm in simulated, real text, and other types of data from the UCI repository
(Koller and Sahami, 1996). In 1997 Cooper and colleagues introduced and applied
the heuristic method K2MB for finding the Markov blanket of a target variable in the
task of predicting pneumonia mortality (Cooper, 1997). In 1997 Cooper introduced an
incomplete method for causal discovery (Cooper et al., 1997). The algorithm was able to
circumvent lack of scalability of global methods by returning a subset of arcs from the
full network. To avoid notational confusion we point out that the algorithm was termed
LCD (local causal discovery) despite being an incomplete rather than local algorithm as
local algorithms are defined in the present paper (i.e., focused on some user-specified
target variable or localized region of the network). A revision of the algorithm termed
LCD2 was presented in Mani and Cooper (1999).

In 1999 Margaritis and Thrun introduced the GS algorithm with the intent to induce
the Markov blanket for the purpose of speeding up global network learning (i.e., not
for feature selection) (Margaritis and Thrun, 1999). GS was the first published sound
Markov blanket induction algorithm. The weak heuristic used by GS combined with the
need to condition on at least as many variables simultaneously as the Markov blanket
size makes it impractical for many typical data sets since the required sample grows
exponentially to the size of the Markov blanket. This in turn forces the algorithm to stop
its execution prematurely (before it identifies the complete Markov blanket) because
it cannot grow the conditioning set while performing reliable tests of independence.
Evaluations of GS by its inventors were performed in data sets with a few dozen
variables leaving the potential of scalability largely unexplored.

In 2001 Cheng et al. applied the TPDA algorithm (a global BN learner) (Cheng et al.,
2002a) to learn the Markov blanket of the target variable in the Thrombin data set in
order to solve a prediction problem of drug effectiveness on the basis of molecular
characteristics (Cheng et al., 2002b). Because TPDA could not be run with more than a
few hundred variables efficiently, they pre-selected 200 variables (out of 139,351 total)
using univariate filtering. Although this procedure in general will not find the true
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Markov blanket (because otherwise-unconnected with the target spouses can be missed,
many true parents and children may not be in the first 200 variables, and many non-
Markov blanket members cannot be eliminated), the resulting classifier performed very
well winning the 2001 KDD Cup competition.

Friedman et al. proposed a simple Bootstrap procedure for determining membership
in the Markov blanket for small sample situations (Friedman et al., 1999a). The Markov
blanket in this method is to be extracted from the full Bayesian network learned by the
SCA (Sparse Candidate Algorithm) learner (Friedman et al., 1999b).

In 2002 and 2003 Tsamardinos, Aliferis, et al. presented a modified version of GS,
termed IAMB and several variants of the latter that through use of a better inclusion
heuristic than GS and optional post-processing of the tentative and final output of the
local algorithm with global learners would achieve true scalability to data sets with
many thousands of variables and applicability in modest (but not very small) samples
(Tsamardinos et al., 2003a; Aliferis et al., 2002). IAMB and several variants were tested
both in the high-dimensional Thrombin data set (Aliferis et al., 2002) and in data sets
simulated from both existing and random Bayesian networks (Tsamardinos et al., 2003a).
The former study found that IAMB scales to high-dimensional data sets. The latter
study compared IAMB and its variants to GS, Koller-Sahami, and PC and concluded
that IAMB variants on average perform best in the data sets tested.

In 2003 Tsamardinos and Aliferis presented a full theoretical analysis explaining
relevance as defined by Kohavi and John (1997) in terms of Markov blanket and causal
connectivity (Tsamardinos and Aliferis, 2003). They also provided theoretical results
about the strengths and weaknesses of filter versus wrapper algorithms, the impos-
sibility of a universal definition of relevance, and the optimality of Markov blanket
as a solution to the feature selection problem in formal terms. These results were
summarized in Section 2.2.

The extension of Sparse Candidate Algorithm to create a local-to-global learning
strategy was first introduced in Aliferis and Tsamardinos (2002b) and led to the MMHC
algorithm introduced and evaluated in Tsamardinos et al. (2006). MMHC was shown in
Tsamardinos et al. (2006) to achieve best-of-class performance in quality and scalability
compared to most state-of-the-art global network learning algorithms.

In 2002 Aliferis et al. also introduced parallel and distributed versions of the IAMB
family of algorithms (Aliferis et al., 2002). These serve as the precursor of the parallel
and distributed local neighborhood learning method presented in the companion paper
(Aliferis et al., 2010). The precursor of the GLL framework was also introduced by
Aliferis and Tsamardinos in 2002 for the explicit purpose of reducing the sample size
requirements of IAMB-style algorithms (Aliferis and Tsamardinos, 2002a).

In 2003 Aliferis et al. introduced algorithm HITON1 Aliferis et al., and Tsamardinos
et al. introduced algorithms MMPC and MMMB (Aliferis et al., 2003a; Tsamardinos et al.,
2003b). These are the first concrete algorithms that would find sets of direct causes or
direct effects and Markov blankets in a scalable and efficient manner. HITON was tested
in 5 biomedical data sets spanning clinical, text, genomic, structural and proteomic
data and compared against several feature selection methods with excellent results in
parsimony and classification accuracy (Aliferis et al., 2003a). MMPC was tested in data
simulated from human-derived Bayesian networks with excellent results in quality and
scalability. MMMB was tested in the same data sets and compared to prior algorithms
such as Koller-Sahami algorithm and IAMB variants with superior results in the quality
of Markov blankets. These benchmarking and comparative evaluation experiments

1. From the Greek word “Xitẃn” meaning “cloak”, and pronounced <hee tó n>.
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provided evidence that the local learning approach held not only theoretical but also
practical potential.

HITON-PC, HITON-MB, MMPC, and MMMB algorithms lacked so-called “sym-
metry correction” (Tsamardinos et al., 2006), however HITON used a wrapping post-
processing that at least in principle removed this type of false positives. The symmetry
correction was introduced in 2005 and 2006 by Tsamardinos et al. in the context of the
introduction of MMHC (Tsamardinos et al., 2006, 2005). Peña et al. also published work
pointing to the need for a symmetry correction in MMPC (Peña et al., 2005b).

HITON was applied in 2005 to understand physician decisions and guideline com-
pliance in the diagnosis of melanomas (Sboner and Aliferis, 2005). HITON has been
applied for the discovery of biomarkers in human cancer data using microarrays and
mass spectrometry and is also implemented in the GEMS and FAST-AIMS systems
for the automated analysis of microarray and mass spectrometry data respectively
(Statnikov et al., 2005b; Fananapazir et al., 2005). In a recent extensive comparison
of biomarker selection algorithms (Aliferis et al., 2006a,b) it was found that HITON
outperforms 16 state-of-the-art representatives from all major biomarker algorithmic
families in terms of combined classification performance and feature set parsimony.
This evaluation used 9 human cancer data sets (gene expression microarray and mass
spectrometry) in 10 diagnostic and outcome (i.e., survival) prediction classification
tasks. In addition to the above real data, resimulation was also used to create two
gold standard network structures, one re-engineered from human lung cancer data
and one from yeast data. Several applications of HITON in text categorization have
been published where the algorithm was used to understand complex “black box” SVM
models and convert complex models to Boolean queries usable by Boolean interfaces of
Medline (Aphinyanaphongs and Aliferis, 2004), to examine the consistency of editorial
policies in published journals (Aphinyanaphongs et al., 2006), and to predict drug-drug
interactions (Duda et al., 2005). HITON was also compared with excellent results to
manual and machine feature selection in the domain of early graft failure in patients
with liver transplantations (Hoot et al., 2005).

In 2003 Frey et al. explored the idea of using decision tree induction to indirectly
approximate the Markov blanket (Frey et al., 2003). They produced promising results,
however a main problem with the method was that it requires a threshold parameter
that cannot be optimized easily. Furthermore, as we show in the companion paper
(Aliferis et al., 2010) decision tree induction is subject to synthesis and does not select
only the Markov blanket members.

In 2004 Mani et al. introduced BLCD-MB, which resembles IAMB but using a
Bayesian scoring metric rather than conditional independence testing (Mani and Cooper,
2004). The algorithm was applied with promising results in infant mortality data (Mani
and Cooper, 2004).

A method for learning regions around target variables by recursive application of
MMPC or other local learning methods was introduced in Tsamardinos et al. (2003c).
Peña et al. applied interleaved MMPC for learning regions in the domain of bioinfor-
matics (Peña et al., 2005a).

In 2006 Gevaert et al. applied K2MB for the purpose of learning classifiers that could
be used for prognosis of breast cancer from microarray and clinical data (Gevaert et al.,
2006) . Univariate filtering was used to select 232 genes before applying K2MB.

Other recent efforts in learning Markov blankets include the following algorithms:
PCX, which post-processes the output of PC (Bai et al., 2004); KIAMB, which addresses
some violations of faithfulness using a stochastic extension to IAMB (Peña et al., 2007);
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FAST-IAMB, which speeds up IAMB (Yaramakala and Margaritis, 2005); and MBFS,
which is a PC-style algorithm that returns a graph over Markov blanket members
(Ramsey, 2006).

2.5. Open Problems and Focus of Paper

The focus of the present paper is to describe state-of-the-art algorithms for inducing
direct causes and effects of a response variable or its Markov blanket using a novel cohe-
sive framework that can help in the analysis, understanding, improvement, application
(including configuration / parameterization) and dissemination of the algorithms. We
furthermore study comparative performance in terms of predictivity and parsimony of
state-of-the-art local causal algorithms; we compare them to non-causal algorithms in
real and simulated data sets using the same criteria; and show how novel algorithms can
be obtained. A second major hypothesis (and set of experiments in the present paper) is
that non-causal feature selection methods may yield predictively optimal feature sets
while from a causal perspective their output is unreliable. Testing this hypothesis has
tremendous implications in many areas (e.g., analysis of biomedical molecular data)
where highly predictive variables (biomarkers) of phenotype (e.g., disease or clinical
outcome) are often interpreted as being causally implicated for the phenotype and great
resources are invested in pursuing these markers for new drug development and other
research.

In the second part of our work (Aliferis et al., 2010) we address gaps in the theo-
retical understanding of local causal discovery algorithms and provide empirical and
theoretical analyses of their behavior as well as several extensions including algorithms
for learning the full causal graph using a divide-and-conquer local learning approach.

3. Notation and Definitions
In the present paper we use Bayesian networks as the language in which to represent
data generating processes and causal relationships. We thus first formally define causal
Bayesian networks. Recall that in a directed acyclic graph (DAG), a node A is the parent
of B (B is the child of A) if there is a direct edge from A to B, A is the ancestor of B (B
is the descendant of A) if there is a direct path from A to B. “Nodes”, “features”, and
“variables” will be used interchangeably.

3.1. Notation

We will denote variables with uppercase letters X, Y, Z, values with lowercase letters,
x, y, z, and sets of variables or values with boldface uppercase or lowercase respectively.
A “target” (i.e., response) variable is denoted as T unless stated otherwise.

Definition 1 Conditional Independence. Two variables X and Y are conditionally indepen-
dent given Z, denoted as I(X, Y | Z), iff P(X = x, Y = y | Z = z) = P(X = x | Z =
z)P(Y = y | Z = z), for all values x, y, z of X, Y, Z respectively, such that P(Z = z) > 0.

Definition 2 Bayesian network hV , G, Ji. Let V be a set of variables and J be a joint proba-
bility distribution over all possible instantiations of V . Let G be a directed acyclic graph (DAG)
such that all nodes of G correspond one-to-one to members of V . We require that for every
node A 2 V , A is probabilistically independent of all non-descendants of A, given the parents
of A (i.e., Markov Condition holds). Then we call the triplet hV , G, Ji a Bayesian network
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(abbreviated as “BN”), or equivalently a belief network or probabilistic network (Neapolitan,
1990).

Definition 3 Operational criterion for causation. Assume that a variable A can be forced
by a hypothetical experimenter to take values ai. If the experimenter assigns values to A
according to a uniformly random distribution over values of A, and then observes P(B | A =
ai) 6= P(B | A = aj) for some i and j, (and within a time window dt), then variable A is a
cause of variable B (within dt).

We note that randomization of values of A serves to eliminate any combined caus-
ative influences on both A and B. We also note that universally acceptable definitions
of causation have eluded scientists and philosophers for centuries. Indeed the provided
criterion is not a proper definition, because it examines one cause at a time (thus multiple
causation can be missed), it assumes that a hypothetical experiment is feasible even
when in practice this is not attainable, and the notion of “forcing” variables to take values
presupposes a special kind of causative primitive that is formally undefined. Despite
these limitations, the above criterion closely matches the notion of a Randomized
Controlled Experiment which is a de facto standard for causation in many fields of
science, and following common practice in the field (Glymour and Cooper, 1999) will
serve operationally the purposes of the present paper.

Definition 4 Direct and indirect causation. Assume that a variable A is a cause of variable
B according to the operational criterion for causation in definition 3. A is an indirect cause for
B with respect to a set of variables V , iff A is not a cause of B for some instantiation of values of
V \ {A, B}, otherwise A is a direct cause of B.

Definition 5 Causal probabilistic network (a.k.a. causal Bayesian network). A causal
probabilistic network (abbreviated as “CPN”) hV , G, Ji is the Bayesian network hV , G, Ji with
the additional semantics that if there is an edge A! B in G then A directly causes B (for all
A, B 2 V ) (Spirtes et al., 2000).

Definition 6 Faithfulness. A directed acyclic graph G is faithful to a joint probability distri-
bution J over variable set V iff every independence present in J is entailed by G and the Markov
Condition. A distribution J is faithful iff there exists a directed acyclic graph G such that G is
faithful to J (Spirtes et al., 2000; Glymour and Cooper, 1999).

It follows from the Markov Condition that in a CPN C = hV , G, Ji every conditional
independence entailed by the graph G is also present in the probability distribution J
encoded by C. Thus, together faithfulness and the causal Markov Condition establish a close
relationship between a causal graph G and some empirical or theoretical probability distribution
J. Hence we can associate statistical properties of the sample data with causal properties of the
graph of the CPN. The d-separation criterion determines all independencies entailed by
the Markov Condition and a graph G.

Definition 7 d-separation, d-connection. A collider on a path p is a node with two incom-
ing edges that belong to p. A path between X and Y given a conditioning set Z is open, if (i)
every collider of p is in Z or has a descendant in Z, and (ii) no other nodes on p are in Z. If a
path is not open, then it is blocked. Two variables X and Y are d-separated given a conditioning
set Z in a BN or CPN C iff every path between X, Y is blocked (Pearl, 1988).
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Property 1 Two variables X and Y are d-separated given a conditioning set Z in a faithful BN
or CPN iff I(X, Y | Z) (Spirtes et al., 2000). It follows, that if they are d-connected, they are
conditionally dependent.

Thus, in a faithful CPN, d-separation captures all conditional dependence and
independence relations that are encoded in the graph.

Definition 8 Markov blanket of T, denoted as MB(T). A set MB(T) is a minimal set of
features with the following property: for every variable subset S with no variables in MB(T),
I(S, T | MB(T)). In Pearl’s terminology this is called the Markov Boundary (Pearl, 1988).

Property 2 The MB(T) of any variable T in a faithful BN or a CPN is unique (Tsamardinos
et al., 2003b) (also directly derived from Pearl and Verma 1991 and Pearl and Verma 1990).

Property 3 The MB(T) in a faithful CPN is the set of parents, children, and parents of children
(i.e., “spouses”) of T (Pearl, 2000, 1988).

Definition 9 Causal sufficiency. For every pair of measured variables, all their common
causes are also measured.

Definition 10 Feature selection problem. Given a sample S of instantiations of variable set
V drawn from distribution D, a classifier induction algorithm C and a loss function L, find:
smallest subset of variables F ✓ V such that F minimizes expected loss L(M, D) in distribution
D where M is the classifier model (induced by C from sample S projected on F).

In the above definition, we mean “exact” minimization of L(M, D). In other words,
out of all possible subsets of variable set V , we are interested in subsets F ✓ V that
satisfy the following two criteria: (i) F minimizes L(M, D) and (ii) there is no subset
F⇤ ✓ V such that |F⇤| < |F| and F⇤ also minimizes L(M, D).

Definition 11 Wrapper feature selection algorithm. An algorithm that tries to solve the
Feature Selection problem by searching in the space of feature subsets and evaluating each one
with a user-specified classifier and loss function estimator.

Definition 12 Filter feature selection algorithm. An algorithm designed to solve the Fea-
ture Selection problem by looking at properties of the data and not by applying a classifier to
estimate expected loss for different feature subsets.

Definition 13 Causal feature selection algorithm. An algorithm designed to solve the
Feature Selection problem by (directly or indirectly) inducing causal structure and by exploiting
formal connections between causation and predictivity.

Definition 14 Non-causal feature selection algorithm. An algorithm that tries to solve
the Feature Selection problem without reference to the causal structure that underlies the data.

Definition 15 Irrelevant, strongly relevant, weakly relevant, relevant feature (with
respect to target variable T). A variable set I that conditioned on every subset of the remaining
variables does not carry predictive information about T is irrelevant to T. Variables that are not
irrelevant are called relevant. Relevant variables are strongly relevant if they are predictive for T
given the remaining variables, while a variable is weakly relevant if it is non-predictive for T
given the remaining variables (i.e., it is not strongly relevant) but it is predictive given some
subset of the remaining variables.
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4. A General Framework for Local Learning
In this section we present a formal general framework for learning local causal structure.
Such a framework enables a systematic exploration of a family of related but not
identical algorithms which can be seen as instantiations of the same broad algorithmic
principles encapsulated in the framework. Also, the framework allows us to think
about formal conditions for correctness not only at the algorithm level but also at the
level of algorithm family. We are thus able to identify two distinct sets of assumptions
for correctness: the more general set of assumptions (admissibility rules) applies to the
generative algorithms and provides a set of flexible rules for constructing numerous
algorithmic instantiations each one of which is guaranteed to be correct provided that
in addition a more specific and fixed set of assumptions hold (i.e., specific sufficient
conditions for correctness of the algorithms that are instantiations of the generative
framework).

We consider the following two problems of local learning:

Problem 1 Given a set of variables V following distribution P, a sample D drawn from P, and
a target variable of interest T 2 V : determine the direct causes and direct effects of T.

Problem 2 Given a set of variables V following distribution P, a sample D drawn from P, and
a target variable of interest T 2 V : determine the direct causes, direct effects, and the direct
causes of the direct effects of T.

From the work of Spirtes et al. (2000) and Pearl (2000, 1988) we know that when the
data are observational, causal sufficiency holds for the variables V , and the distribution
P is faithful to a causal Bayesian network, then the direct causes, direct effects, and
direct causes of the direct effects of T, correspond to the parents, children, and spouses
of T respectively in that network.

Thus, in the context of the above assumptions, Problem 1 seeks to identify the
parents and children set of T in a Bayesian network G faithful to P; we will denote this
subset as PCG(T). There may be several networks that faithfully capture distribution P,
however, as we have shown in Tsamardinos et al. (2003b) (also directly derived from
Pearl and Verma 1991, 1990) PCG(T) = PCG0(T), for any two networks G and G0 faithful
to the same distribution. So, the set of parents and children of T is unique among all
Bayesian networks faithful to the same distribution and so we will drop the superscript
and denote it simply as PC(T). Notice that, a node may be a parent of T in one network
and a child of T in another, for example, the graphs X  T and X ! T may both be
faithful to the same distribution. However, the set of parents and children of T, that is,
{X}, remains the same in both networks. Finally, by Theorem 4 in Tsamardinos et al.
(2003b) we know that the Markov blanket MB(T) is unique in all networks faithful to
the same distribution. Therefore, under the assumptions of the existence of a causal
Bayesian network that faithfully captures P and causal sufficiency of V , the problems
above can be recast as follows:

Problem 3 Given a set of variables V following distribution P, a sample D drawn from P, and
a target variable of interest T 2 V : determine the PC(T).

Problem 4 Given a set of variables V following distribution P, a sample D drawn from P, and
a target variable of interest T 2 V : determine the MB(T).
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Problem 1 is geared toward local causal discovery, while Problem 2 is oriented
toward causal feature selection for classification. The solutions to these problems
can form the basis for solving several other related local discovery problems, such as
learning the unoriented set of causal relations (skeleton of a Bayesian network), a region
of interest of a given depth of d edges around T, or further analyze the data to discover
the orientation of the causal relations.

The Generalized Local Learning (GLL) framework consists of two main types of algo-
rithms: GLL-PC (GLL Parent and Children) for Problem 1 and GLL-MB for Problem 2.

4.1. Discovery of the PC(T) Set

Identification of the PC(T) set is based on the following theorem in Spirtes et al. (2000):

Theorem 1 In a faithful BN hV , G, Pi there is an edge between the pair of nodes X 2 V and
Y 2 V iff ¬I(X, Y | Z), for all Z ✓ V \ {X, Y}.

Any variable X that does have an edge with T belongs to the PC(T). Thus, the
theorem gives rise to an immediate algorithm for identifying PC(T): for any variable
X 2 V \ {T}, and all Z ✓ V \ {X, T}, test whether I(X, T | Z). If such a Z exists for
which I(X, T | Z), then X /2 PC(T), otherwise X 2 PC(T). This algorithm is equivalent
to a “localized version” of SGS (Spirtes et al., 2000). The problem of course is that
the algorithm is very inefficient because it tests all subsets of the variables and thus
does not scale beyond problems of trivial size. The order of complexity is O(|V |2|V |�2).
The general framework presented below attempts to characterize not only the above
algorithm but also efficient implementations of the theorem that maintain soundness.

There are several observations that lead to more efficient but still sound algorithms.
First notice that, once a subset Z ✓ V \ {X, T} has been found s.t. I(X, T | Z) there is
no need to perform any other test of the form I(X, T | Z0): we know that X /2 PC(T).
Thus, the sooner we identify good candidate subsets Z that can render the variables
conditionally independent from T, the fewer tests will be necessary.

Second, to determine whether X 2 PC(T) there is no need to test whether ¬I(X, T |
Z) for all subsets Z ✓ V \ {X, T} but only for all subsets Z0 ✓ ParentsG(T) \ {X} and
all Z0 ✓ ParentsG(X) \ {T} where G is any network faithful to the distribution. To see
this, let us first assume that there is no edge between X and T. Notice that either X is a
non-descendant of T or T is a non-descendant of X since the network is acyclic and they
cannot be both descendants of each other. If X is a non-descendant of T in G, then by the
Markov Condition we know that there is a subset Z of ParentsG(T) = ParentsG(T) \
{X} (the equality because we assume no edge between T and X) such that I(X, T | Z).
Similarly, if T is a non-descendant of X in G then there is Z ✓ ParentsG(X) \ {T} such
that I(X, T | Z). Conversely, if there is an edge X ! T or T ! X, then the dependence
¬I(X, T | Z) holds for all Z ✓ V \ {X, T} (by the theorem), thus also holds for all
Z ✓ ParentsG(T) \ {X} or Z ✓ ParentsG(X) \ {T}. We just proved that:

Proposition 1 In a faithful BN hV , G, Pi there is an edge between the pair of nodes X 2 V
and T 2 V iff ¬I(X, T | Z), for all Z ✓ ParentsG(X) \ {T} and Z ✓ ParentsG(T) \ {X}.

Since the networks in most practical problems are relatively sparse, if we knew the
sets
ParentsG(T) and ParentsG(X) then the number of subsets that would need to be
checked for conditional independence for each X 2 PC(T) is significantly smaller:
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|2|V\{T,X}|| � |2|ParentsG(X)|| + |2|ParentsG(T)||. Of course, we do not know the sets
ParentsG(T) and ParentsG(X) but one could work with any superset of them as shown
by the following proposition:

Proposition 2 In a faithful BN hV , G, Pi there is an edge between the pair of nodes X 2 Vand
T 2 V iff ¬I(X, T | Z), for all Z ✓ S and Z ✓ S0, where ParentsG(X) \ {T} ✓ S ✓
V \ {X, T} and ParentsG(X) \ {T} ✓ S0 ✓ V \ {X, T}.

Proof If there is an edge between the pair of nodes X and T then ¬I(X, T | Z), for
all subsets Z ✓ V \ {X, T} (by Theorem 1) and so ¬I(X, T | Z) for all Z ✓ S and
Z ✓ S0 too. Conversely, if there is no edge between the pair of nodes X and T,
then I(X, T | Z), for some Z ✓ ParentsG(X) = ParentsG(X) \ {T} ✓ S or Z ✓
ParentsG(T) = ParentsG(T) \ {X} ✓ S0 (by Proposition 1).

Now, the sets ParentsG(X) and ParentsG(T) depend on the specific network G that
we are trying to learn. As we mentioned however, there may be several such statistically
equivalent networks among which we cannot differentiate from the data, forming an
equivalence class. Thus, it is preferable to work with supersets of ParentsG(T) and
ParentsG(X) that do not depend on a specific network member of the class: these
supersets are the sets PC(T) and PC(X).

Let us suppose that we have available a superset of PC(T) called TPC(T) (tentative
PC). For any node X 2 TPC(T) if I(X, T | Z) for some Z ✓ TPC(T) \ {X, T}, then by
Proposition 2, we know that X has no edge with T, that is, X /2 PC(T). So, X should
also be removed from TPC(T) to obtain a better approximation of PC(T). If however,
¬I(X, T | Z) for all Z ✓ TPC(T) \ {X, T}, then it is still possible that X /2 PC(T) because
there may be a set Z ✓ PC(X) where Z * PC(T) for which I(X, T | Z).

Is there actually a case, where X cannot be made independent of T by conditioning on
some subset of PC(T)? We know that all non-descendants of T can be made independent
of T conditioned on a subset of its parents, thus, if there is such an X it has to be a
descendant of T. Figure 3 shows such a case. These situations are rare in practice as
indicated by our empirical results in Sections 5 and 6, which implies that by conditioning
on all subsets of TPC(T) one will approximate PC(T) quite closely.

T

A

X

B

 
PC(T). Notice that, there is no subset of 

Figure 3: PC(T) = {A}, PC(X) = {A, B}, X /2 PC(T). Notice that, there is no subset of
PC(T) that makes T conditionally independent of X : ¬I(X, T | ∆),¬I(X, T |
A). However, there is a subset of PC(X) for which X and T become condition-
ally independent: I(X, T | {A, B}). The Extended PC(T) (see Definition 16 in
this section) is EPC(T) = {A, X}.
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Definition 16 We call the Extended PC(T), denoted as EPC(T), the set PC(T) union the set
of variables X for which ¬I(X, T | Z), for all Z ✓ PC(T) \ {X}.

The previous results allow us to start building algorithms that operate locally around T
in order to find PC(T) efficiently and soundly. Consider first the sketch of the algorithm
below:

1: Find a superset TPC(T) of PC(T)
2: for each variable X 2 TPC(T) do
3: if 9Z ✓ TPC(T) \ {X}, s.t. I(X, T | Z) then
4: remove X from TPC(T)
5: end if
6: end for
7: Return TPC(T)

This algorithm will output TPC(T) ✓ EPC(T). To ensure we end up with the exact
PC(T) we can use the following pruning algorithm:

1: for all X 2 TPC(T) do {returned from Algorithm 4.1}
2: if T /2 TPC(X) then
3: remove X from TPC(T) {TPC(X) is obtained by running Algorithm 4.1}
4: end if
5: end for

In essence, the second algorithm checks for every X 2 TPC(T) whether the symmetrical
relation holds: T 2 TPC(X). If the symmetry is broken, we know that X /2 PC(T) since
the parents-and-children relation is symmetrical.

What is the complexity of the above algorithms? In Algorithm 4.1 if step 1 is
performed by an Oracle with constant cost, and with TPC(T) equal to PC(T), then
the first algorithm requires an order of O(|V |2|PC(T)|) tests. The second algorithm will
require an order of O(|V |2|PC(X)|) tests for each X in TPC(T). Two observations to notice
are: (i) the complexity order of the first algorithm depends linearly on the size of the
problem |V |, exponentially on |PC(T)|, which is a structural property of the problem,
and how close TPC(T) is to PC(T) and (ii) the second algorithm requires multiple times
the time of the first algorithm for minimal returns in quality of learning, that is, just to
take care of the scenario in Figure 3 and remove the variables EPC(T) \ PC(T) (i.e., X
in Figure 3).

Since an Oracle is not available the complexity of both algorithms strongly depends
on how close approximation of the PC(T) is and how efficiently this approximation is
found. The simplest strategy for example is to set TPC(T) = V , essentially getting the
local version of the algorithm SGS described above. In general any heuristic method
that returns a superset of PC(T) is admissible, that is, it could lead to sound algorithms.

Also notice that in the first algorithm the identification of the members of the TPC(T)
(step 1) and the removal of variables from it (step 3) can be interleaved. TPC(T) can
grow gradually by one, many variables, or all members of it at a time before it satisfies
the requirement that is a superset of PC(T). The requirement for the algorithm to be
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sound is that, in the end, all tests I(X, T | Z) for all subsets Z of PC(T) \ {X} have been
performed.

 

GLL-PC: High-level pseudocode and main components of Generalized Local Learning - Parents and 
Children. Returns PC(T) 
 

1. U fl GLL-PC-nonsym(T)   // first approximate PC(T) without symmetry check 
2. For all X   U  
3.     If T  GLL-PC-nonsym(X) then U fl U\ {X} // check for symmetry  
4. Return U  // true set of parents and children 

 

GLL-PC-nonsym(T) // returns a set which is a subset of EPC(T) and a superset of PC(T) 
 

1. Initialization 
a. Initialize a set of candidates for the true PC(T) set: TPC(T) fl S, s.t. S  V\{T} 
b. Initialize a priority queue of variables to be examined for inclusion in TPC(T): OPEN fl V\{T  TPC(T)} 

2. Apply inclusion heuristic function 
a. Prioritize variables in OPEN for inclusion in TPC(T);   
b. Throw away non-eligible variables from OPEN;  
c. Insert in TPC(T) the highest-priority variable(s) in OPEN and remove them from OPEN 

3. Apply elimination strategy to remove variables from TPC(T) 
4. Apply interleaving strategy by repeating steps #2 and #3 until a termination criterion is met 
5. Return TPC(T)  
 

 

Figure 4: High-level outline and main components (underlined) of GLL-PC algorithm.

Given the above, the components of Generalized Local Learning GLL-PC, that is, an
algorithm for PC(T) identification based on the above principles are the following: an
inclusion heuristic function to prioritize variables for consideration as members of TPC(T)
and include them in TPC(T) according to established priority. The second component
of the framework is an elimination strategy, which eliminates variables from the TPC(T)
set. An interleaving strategy is the third component and it iterates between inclusion
and elimination until a stopping criterion is satisfied. Finally the fourth component is
the check that the symmetry requirement mentioned above is satisfied. See Figure 4 for
details. The main algorithm calls an internally defined subroutine that induces parents
and children of T without symmetry correction (i.e., returns a set which is a subset of
EPC(T) and a superset of PC(T)). Note that in all references to TPC(T) hereafter, due to
generality of the stated algorithms and the process of convergence of TPC(T) to PC(T),
TPC(T) stands for just an approximation to PC(T).

Also notice that the term “priority queue” in the schema of Figure 4 indicates an
abstract data structure that satisfies the requirement that its elements are ranked by
some priority function so that the highest-priority element is extracted first. TPC(T)
in step 1a of the GLL-PC-nonsym subroutine will typically be instantiated with the
empty set when no prior knowledge about membership in PC(T) exists. When the user
does have prior knowledge indicating that X is a member of PC(T), TPC(T) can be
instantiated to contain X. This prior knowledge may come from domain knowledge,
experiments, or may be the result of running GLL-PC on variable X and finding that T
is in PC(X) when conducting local-to-global learning (Aliferis et al., 2010; Tsamardinos
et al., 2006).

Steps #2, 3, 4 in GLL-PC-nonsym can be instantiated in various ways. Obeying a set
of specific rules generates what we call “admissible” instantiations. These admissibility
rules are given in Figure 5.

Theorem 2 When the following sufficient conditions hold:
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a. There is a causal Bayesian network faithful to the data distribution P;

b. The determination of variable independence from the sample data D is correct;

c. Causal sufficiency in V

any algorithmic instantiation of GLL-PC in compliance with the admissibility rules #1� #3
above will return the direct causes and direct effects of T.

The proof is provided in the Appendix.
We note that the algorithm schema does not address various optimizations and does

not address the issue of statistical decisions in finite sample. These will be discussed later.
We also note that initialization of TPC(T) in step 1a of the GLL-PC-nonsym function is
arbitrary because correctness (unlike efficiency) of the algorithm is not affected by the
initial contents of TPC(T).
TPC(T).   

 

GLL-PC: Admissibility rules   
 

 1. The inclusion heuristic function should respect the following requirement:  
 

// Admissibility rule #1 
All variables XX PC(T) are eligible for inclusion in the candidate set TPC(T) and each one is 
assigned a non-zero value by the ranking function. Variables with zero values are discarded and 
never considered again.  
 

Note that variables may be re-ranked after each update of the candidate set, or the original ranking may 
be used throughout the algorithm’s operation. 
 

2. The elimination strategy should satisfy the following requirement: 
 

// Admissibility rule #2 
All and only variables that become independent of the target variable T given any subset of the 
candidate set TPC(T) are discarded and never considered again (whether they are inside or outside 
TPC(T)). 
 

3. The interleaving strategy iterates inclusion and elimination any number of times provided that iterating 
stops when the following criterion is satisfied: 

 

//Admissibility rule #3 
At termination no variable outside the set TPC(T) is eligible for inclusion and no variable in the 
candidate set can be removed at termination. 
 

 

Figure 5: GLL-PC admissibility rules.

We next instantiate the GLL-PC schema to derive two pre-existing algorithms,
interleaved HITON-PC with symmetry correction and MMPC with symmetry correction
(Tsamardinos et al., 2006; Aliferis et al., 2003a; Tsamardinos et al., 2003b). Figure 6 depicts
the instantiations needed to obtain interleaved HITON-PC.

The interleaved HITON-PC with symmetry correction algorithm starts with an
empty set of candidates, then ranks variables for priority for inclusion in the candidate
set by univariate association. It discards variables with zero univariate association. It
then accepts each variable into TPC(T). If any variable inside the candidate set becomes
independent of the response variable T given some subset of the candidate set, then the
algorithm removes that variable from the candidate set and never considers it again.
In other words, the algorithm attempts to eliminate weakly relevant features from the
TPC(T) every time the TPC(T) receives a new member. Iterations of insertion and
elimination stop when there are no more variables to examine for inclusion. Once
iterating has stopped, the candidate set is filtered using symmetry criterion. Finally, the
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Interleaved HITON-PC with symmetry correction 
Derived from GLL-PC with following instantiation specifics: 
 

Initialization 
TPC(T) fl  
 

Inclusion heuristic function 
a. Sort in descending order the variables X in OPEN according to their pairwise association with T, i.e., 

Assoc(X, T| ).  
b. Remove from OPEN variables with zero association with T, i.e., when I(X, T| ) 
c. Insert at end of TPC(T) the first variable in OPEN and remove it from OPEN   

 

Elimination strategy   
 For each X  TPC(T) 
  If  ZZ TPC(T)\{X}, s.t. I(X, T|Z) remove X from TPC(T) 

 

Interleaving strategy   
Repeat  
 steps #2 and #3 of GLL-PC-nonsym 
Until OPEN=  

 

 

Figure 6: Interleaved HITON-PC with symmetry correction as an instance of GLL-PC.

candidate set is output. Because the admissibility criteria are obeyed, the algorithm is
guaranteed to be correct when the assumptions of Theorem 2 hold.

!"

#" $"
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Figure 7: Bayesian network used to trace the algorithms.

Below we prove that that admissibility rules are obeyed in interleaved HITON-PC
with symmetry under the assumptions of Theorem 2:

1. Rule #1 (inclusion) is obeyed because all PC(T) members have non-zero univariate
association with T in faithful distributions.

2. Rule #2 (elimination) is directly implemented so it holds.

3. Rule #3 (termination) is obeyed because termination requires empty OPEN and
thus eligible variables (i.e., members of PC(T)) outside TPC(T) could only be
previously discarded from OPEN or TPC(T). Neither case can happen because of
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Table 1: Trace of GLL-PC-nonsym(T) during execution of interleaved HITON-PC algo-
rithm.

Step of GLL-
PC-nonsym  

Comments OPEN TPC(T) 

1 Initialize TPC(T) and OPEN {A, B, C, D, E, F, G}  
2a (I) Prioritize variables in OPEN for inclusion in 

TPC(T) 
{F, D, E, A, B, G, C}  

2b (I) Throw away non-eligible members of OPEN (G 
and C) 

{F, D, E, A, B}  

2c (I) Insert in TPC(T) the highest-priority variable in 
OPEN (F) and remove it from OPEN  

{D, E, A, B} {F} 

3 (I) Apply elimination strategy to TPC(T): no effect {D, E, A, B} {F} 
2 (II) Insert the highest-priority variable (D) in TPC(T) 

and remove it from OPEN 
{E, A, B} {F, D} 

3 (II) Apply elimination strategy to TPC(T): no effect {E, A, B} {F, D} 
2 (III) Insert the highest-priority variable (E) in TPC(T) 

and remove it from OPEN 
{A, B} {F, D, E} 

3 (III) Apply elimination strategy to TPC(T): remove F 
since I(T, F|{D,E}) 

{A, B} {D, E} 

2 (IV) Insert the highest-priority variable (A) in TPC(T) 
and remove it from OPEN 

{B} {D, E, A} 

3 (IV) Apply elimination strategy to TPC(T): no effect {B} {D, E, A} 
2 (V) Insert the highest-priority variable (B) in TPC(T) 

and remove it from OPEN 
 {D, E, A, B} 

3 (V) Apply elimination strategy to TPC(T): no effect  {D, E, A, B} 
4  Stop interleaving since OPEN =   {D, E, A, B} 

 

admissibility rules #1, #2 respectively. Similarly all variables in TPC(T) that can
be removed are removed because of admissibility rule #2.

A trace of the algorithm is provided below for data coming out of the example BN of
the Figure 7. We assume that the network is faithful and so the conditional dependencies
and independencies can be read off the graph directly using the d-separation criterion.
Consider that we want to find parents and children of the target variable T using
interleaved HITON-PC with symmetry. Table 1 gives a complete trace of step 1 of
the instantiated GLL-PC algorithm, that is, execution of GLL-PC-nonsym subroutine
for variable T. The Roman numbers in the table refer to iterations of steps 2 and 3 in
GLL-PC-nonsym.

Thus we have TPC(T) = {D, E, A, B} by the end of GLL-PC-nonsym subroutine,
so U = {D, E, A, B} in step 1 of GLL-PC. Next, in steps 2 and 3 we first run GLL-PC-
nonsym for all X 2 U:

• GLL-PC-nonsym(D)! {T, F}
• GLL-PC-nonsym(E)! {T, F}
• GLL-PC-nonsym(A)! {T, G, C, B}
• GLL-PC-nonsym(B)! {A, C}

and then check symmetry requirement. Since T /2 GLL-PC-nonsym(B), the variable B
is removed from U. Finally, the GLL-PC algorithm returns U = {D, E, A} in step 4.
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Figure 8 shows how algorithm MMPC is obtained from GLL-PC. MMPC is also
guaranteed to be sound when the conditions of Theorem 2 hold. Interleaving consists
of iterations of just the inclusion heuristic function until OPEN is empty. The heuristic
inserts into TPC(T) the next variable F that maximizes the minimum association of
variables in OPEN with T given all subsets of TPC(T). In the algorithm, this minimum
association of X with T conditioned over all subsets of Z is denoted by MinZAssoc(X, T |
Z). The intuition is that we accept next the variable that despite our best efforts to be
made conditionally independent of T (i.e., conditioned on all subsets of our current
estimate TPC(T)) is still highly associated with T. The two main differences of the
MMPC algorithm from interleaved HITON-PC are the more complicated inclusion
heuristic function and the absence of interleaving of the inclusion-exclusion phases
before all variables have been processed by the inclusion heuristic function. A set
of optimizations and caching operations render the algorithm efficient; for complete
details see Tsamardinos et al. (2006, 2003b).

Below we prove that admissibility rules are obeyed in MMPC with symmetry under
the assumptions of Theorem 2:

1. Rule #1 (inclusion) is obeyed because all PC(T) members have non-zero condi-
tional association with T in faithful distributions.

2. Rule #2 (elimination) is directly implemented so it holds.

3. Rule #3 (termination) is obeyed because termination requires empty OPEN and
thus eligible variables (i.e., members of PC(T)) outside TPC(T) could only be
previously discarded from OPEN or TPC(T). Neither case can happen because of
admissibility rules #1, #2 respectively. Similarly all variables in TPC(T) that can
be removed are removed because of admissibility rule #2.

We now introduce a new algorithm, semi-interleaved HITON-PC with symmetry
correction, see Figure 9. Semi-interleaved HITON-PC operates like interleaved HITON-
PC with one major difference: it does not perform a full variable elimination in TPC(T)
with each TPC(T) expansion. On the contrary, once a new variable is selected for
inclusion, it attempts to eliminate it and if successful it discards it without further
attempted eliminations. If it is not eliminated, it is added to the end of the TPC(T) and
new candidates for inclusion are sought. Because the admissibility criteria are obeyed
the algorithm is guaranteed to be correct under the assumptions of Theorem 2.

Below we prove that admissibility rules are obeyed in semi-interleaved HITON-PC
with symmetry under the assumptions of Theorem 2:

1. Rule #1 (inclusion) is obeyed because all PC(T) members have non-zero univariate
association with T in faithful distributions.

2. Rule #2 (elimination) is directly implemented so it holds.

3. Rule #3 (termination) is obeyed because termination requires empty OPEN and
thus eligible variables (i.e., members of PC(T)) outside TPC(T) could only be
previously discarded from OPEN or TPC(T). Neither case can happen because of
admissibility rules #1, #2 respectively. Similarly all variables in TPC(T) that can
be removed are removed because of admissibility rule #2.

A trace of the algorithm is provided below for data coming out of the example
faithful BN of the Figure 7. Consider that we want to find parents and children of the
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MMPC with symmetry correction
  Derived from GLL-PC with following instantiation specifics: 

Initialization
TPC(T)   

Inclusion heuristic function
a. Sort in descending order the variables X in OPEN according to MinZAssoc(X, T|Z) for Z!TPC(T)\{X}
b. Remove from OPEN variables X with zero association with T, given some Z!TPC(T)\{X}
c. Insert at end of TPC(T) the first variable in OPEN and remove it from OPEN   

Elimination strategy   
 If OPEN= 
  For each X ! TPC(T)
   If " Z#TPC(T)\{X}, s.t. I(X, T|Z) remove X from TPC(T) 

Interleaving strategy   
Repeat
 steps #2 and #3 of GLL-PC-nonsym 
Until OPEN= 

Figure 8: MMPC with symmetry correction as an instance of GLL-PC.

 

Semi-Interleaved HITON-PC with symmetry correction 
  Derived from GLL-PC with following instantiation specifics: 
 

Initialization 
TPC(T) fl  

 

Inclusion heuristic function 
a. Sort in descending order the variables X in OPEN according to their pairwise association with T, i.e., 

Assoc(X, T| ).  
b. Remove from OPEN variables with zero association with T, i.e., when I(X, T| ) 
c. Insert at end of TPC(T) the first variable in OPEN and remove it from OPEN   
 

Elimination strategy   
 If OPEN=  
  For each X  TPC(T) 
   If  ZZ TPC(T)\{X}, s.t. I(X, T|Z) remove X from TPC(T) 
 Else 

X fl last variable added to TPC(T) // in step 2 of GLL-PC-nonsym 
          If  ZZ TPC(T)\{X}, s.t. I(X, T|Z) remove X from TPC(T) 

 

Interleaving strategy   
Repeat  
 steps #2 and #3 of GLL-PC-nonsym 
Until OPEN=  

 

 

Figure 9: Semi-interleaved HITON-PC with symmetry correction as an instance of
GLL-PC.

target variable T using semi-interleaved HITON-PC with symmetry. Table 2 gives a
complete trace of step 1 of the instantiated GLL-PC algorithm, that is, execution of
GLL-PC-nonsym subroutine for variable T. The Roman numbers in the table refer to
iterations of steps 2 and 3 in GLL-PC-nonsym.

Thus we have TPC(T) = {D, E, A, B} by the end of GLL-PC-nonsym subroutine,
so U = {D, E, A, B} in step 1 of GLL-PC. Next, in steps 2 and 3 we first run GLL-PC-
nonsym for all X 2 U:
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Table 2: Trace of GLL-PC-nonsym(T) during execution of semi-interleaved HITON-PC
algorithm.

Step of GLL-
PC-nonsym  

Comments OPEN TPC(T) 

1 Initialize TPC(T) and OPEN {A, B, C, D, E, F, G}  
2a (I) Prioritize variables in OPEN for inclusion in 

TPC(T) 
{F, D, E, A, B, G, C}  

2b (I) Throw away non-eligible members of OPEN (G 
and C) 

{F, D, E, A, B}  

2c (I) Insert in TPC(T) the highest-priority variable in 
OPEN (F) and remove it from OPEN  

{D, E, A, B} {F} 

3 (I) Apply elimination strategy to TPC(T): no effect {D, E, A, B} {F} 
2 (II) Insert the highest-priority variable (D) in TPC(T) 

and remove it from OPEN 
{E, A, B} {F, D} 

3 (II) Apply elimination strategy to TPC(T): no effect {E, A, B} {F, D} 
2 (III) Insert the highest-priority variable (E) in TPC(T) 

and remove it from OPEN 
{A, B} {F, D, E} 

3 (III) Apply elimination strategy to TPC(T):  
No effect 

{A, B} {F, D, E} 

2 (IV) Insert the highest-priority variable (A) in TPC(T) 
and remove it from OPEN 

{B} {F, D, E, A} 

3 (IV) Apply elimination strategy to TPC(T): no effect {B} {F, D, E, A} 
2 (V) Insert the highest-priority variable (B) in TPC(T) 

and remove it from OPEN 
 {F, D, E, A, B} 

3 (V) Apply elimination strategy to TPC(T): remove F 
since I(T, F|{D,E}) 

 {D, E, A, B} 

4  Stop interleaving since OPEN =   {D, E, A, B} 
 

• GLL-PC-nonsym(D)! {T, F}
• GLL-PC-nonsym(E)! {T, F}
• GLL-PC-nonsym(A)! {T, G, C, B}
• GLL-PC-nonsym(B)! {A, C}

and then check symmetry requirement. Since T 2 GLL-PC-nonsym(B), the variable B is
removed from U. Finally, the GLL-PC algorithm returns U = {D, E, A} in step 4.

4.2. Discovery of the MB(T) Set

As mentioned in Section 3 the MB(T) contains all information sufficient for the deter-
mination of the conditional distribution of T : P(T | MB(T)) = P(T | V \ {T}) and
further, it coincides with the parents, children and spouses of T in any network faithful
to the distribution (if any) under causal sufficiency. The previous subsection described a
general family of algorithms to obtain the PC(T) set, and so in order to find the MB(T)
one needs in addition to PC(T), to also identify the spouses of T.

First notice that, approximating MB(T) with PC(T) and missing the spouse nodes
may in theory discard very informative nodes. For example, suppose that X and T are
two uniformly randomly chosen numbers in [0, 1] and that Y = min(1, X + T). Then,
the only faithful network representing the joint distribution is X ! Y  T, where
X is the spouse of T. In predicting T, the spouse node X may reduce the uncertainty
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completely: conditioned on Y, T may become completely determined (when both X and
T are less than 0.5). Thus, it theoretically makes sense to develop algorithms that identify
the spouses in addition to the PC(T), even though later in Section 5 we empirically
determine that within the scope of distributions and problems tried, the PC(T) resulted
in feature subsets almost as predictive as the full MB(T). In the companion paper
(Aliferis et al., 2010) we also provide possible reasons explaining the good performance
of PC(T) versus MB(T) for classification in practical tasks.

The theorem on which the algorithms in this family are based to discover the MB(T)
is the following:

Theorem 3 In a faithful BN hV , G, Pi, if for a triple of nodes X, T, Y in G, X 2 PC(Y),
Y 2 PC(T), and X /2 PC(T), then X ! Y  T is a subgraph of G iff ¬I(X, T | Z [ {Y}),
for all Z ✓ V \ {X, T} (Spirtes et al., 2000).

We distinguish two cases: (i) X is a spouse of T but it is also a parent or child,
for example, X ! T ! Y and also X ! Y. In this case, we cannot use the theorem
above to identify Y as a collider and X as a spouse. But at the same time we do not
have to: X 2 PC(T) and so it will be identified by GLL-PC. (ii) X 2 MB(T) \ PC(T) in
which case we can use the theorem to locally discover the subgraph X ! Y  T and
determine that X should be included in MB(T).

We now introduce the GLL-MB in Figure 10. The admissibility requirement is simply
to use an admissible GLL-PC instantiation.

 

GLL-MB: Generalized Local Learning - Markov Blanket 
 

1. PC(T) fl GLL-PC(T)            // obtain PC(T) by running GLL-PC for variable T 
2. For every variable Y  PC(T) 

     PC(Y) fl GLL-PC(Y)       // obtain PC(Y) for every member Y of PC(T) 
3. TMB(T) fl PC(T)                 // initialize TMB(T) with PC(T) members 
4. S fl { YY PC(T) PC(Y)} \ {PC(T)  {T}}     // these are the potential spouses 
5. For every variable X  S  
 a.  Retrieve a subset Z s.t. I(X, T | Z) // subset was identified and stored in steps 1 and 2 
 b.  For every variable Y  PC(T) s.t. X  PC(Y) // Y is a potential common child of T and X 
 c.         If I(X, T| ZZ {Y})       // X is a spouse 
 d.               Insert X into TMB(T)  
6. Optionally: Eliminate from TMB(T) predictively redundant members using a backward wrapper approach.  
7. Return TMB(T) 
 

 

Figure 10: GLL-MB: Generalized Local Learning – Markov Blanket algorithm.

For the identification of PC(T) any method of GLL-PC can be used. Also, in step 5a
we know such a Z exist since X /2 PC(T) (by Theorem 1); this Z has been previously
determined and is cached during the call to GLL-PC.

Theorem 4 When the following sufficient conditions hold

a. There is a causal Bayesian network faithful to the data distribution P;

b. The determination of variable independence from the sample data D is correct;

c. Causal sufficiency in V
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any algorithmic instantiation of GLL-MB in compliance with the admissibility rule will return
MB(T) (with no need for step 6).

The proof is provided in the Appendix.
A new Markov blanket algorithm, semi-interleaved HITON-MB, can be obtained by

instantiating GLL-MB (Figure 10) with the semi-interleaved HITON-PC algorithm with
symmetry correction for GLL-PC.

Semi-interleaved HITON-MB is guaranteed to be correct under the assumptions of
Theorem 4, hence the only proof of correctness needed is the proof of correctness for
semi-interleaved HITON-PC with symmetry (which was provided earlier).

A trace of the semi-interleaved HITON-MB algorithm for data coming out of the
example faithful BN of the Figure 7 follows below. Please refer to Figure 10 for step
numbers. Consider that we want to find Markov blanket of T. In step 1, we find
PC(T) = {D, E, A}. Then in step 2 we find PC(X) for all X 2 PC(T):

• PC(D) = {T, F},

• PC(E) = {T, F},

• PC(A) = {T, G, C, B},

In step 3 we initialize TMB(T) {D, E, A}. The set S in step 4 contains the following
variables: {F, G, C, B}. In step 5 we loop over all members of S to find spouses of T. Let
us consider each variable separately:

• Loop for X = F: In step 5a we retrieve a subset Z = {D, E} that renders X = F
independent of T. In step 5b we loop over all potential common children of F and
T, that is, Y = D and Y = E. When we consider Y = D, we find that X = F is
independent of T given Z [ {Y} = {D, E} and thus do not include F in TMB(T)
in step 5d. When we consider Y = E, we also do not include F in TMB(T) in step
5d.

• Loop for X = G: In step 5a we retrieve a subset Z = ∆ that renders X = G
independent of T. In step 5b we loop over all potential common children of G
and T, that is, variable Y = A. We find that X = G is dependent on T given
Z [ {Y} = {A} and thus include G in TMB(T) in step 5d.

• Loop for X = C: In step 5a we retrieve a subset Z = ∆ that renders X = C
independent of T. In step 5b we loop over all potential common children of C
and T, that is, variable Y = A. We find that X = C is dependent on T given
Z [ {Y} = {A} and thus include C in TMB(T) in step 5d.

• Loop for X = B: In step 5a we retrieve a subset Z = {A, C} that renders X = B
independent of T. In step 5b we loop over all potential common children of B
and T, that is, variable Y = A. We find that X = B is independent of T given
Z [ {Y} = {A, C} and thus do not include G in TMB(T) in step 5d.

By the end of step 5, we have TMB(T) = {D, E, A, G, C}. Notice that it is the
true MB(T). In step 6 we perform wrapping to remove members of TMB(T) that
are redundant for classification. Let us assume that we used a backward wrapping
procedure that led to removal of variable G, for example because omitting this variable
does not increase classification loss. Thus, we have TMB(T) = {D, E, A, C} in step 7
when the algorithm terminates.
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The above algorithm specifications and proofs demonstrate that it is relatively
straightforward to derive correct algorithms and prove their correctness using the GLL
framework. It is also straightforward to derive relaxed versions (for example non-
symmetry corrected versions of interleaved and semi-interleaved HITON and MMPC)
which trade-off correctness for improved tractability.

4.3. Computational Complexity

The complexity of all algorithms presented depends on the time for the tests of inde-
pendence and measures of associations. For the G2 test of independence for discrete
variables, for example, we use in reported experiments an implementation linear to the
sample size and exponential to the number of variables in the conditional set. However,
because the latter number is small in practice, tests are relatively efficient. Faster im-
plementations exist that only take time n log(n) to the number n of training instances,
independent of the size of the conditioning set. Also, advanced data structures (Moore
and Wong, 2003) can be employed to improve the time complexity (see Tsamardinos
et al. 2006 for details on the implementation of the tests). In reported experiments we
also implement the measure of association Assoc(X, T | Z) to be the negative p-value
returned by the test I(X, T | Z) and so it takes exactly the same time to compute as a
test of independence. In the following discussion, we consider the complexity of the
algorithms in terms of the number of tests and measures of association they perform.

The number of tests of the GLL-PC algorithm in Figure 4 depends on several fac-
tors. These are the inclusion heuristic efficiency in approximating the PC(T), the time
required by the inclusion heuristic, and the size of the PC(T) which is a structural
property of the problem to solve. Interleaved-HITON-PC (algorithm in Figure 6) for
example, will sort the variables using |V | measures of associations. Subsequently, it
will perform a test I(X, T | Z) for all subsets of the largest TPC(T) in any iteration of
interleaving of the inclusion-exclusion steps. With appropriate caching a test will never
have to be repeated. Thus, assuming the largest size of the TPC(T) is in the order of the
PC(T), the complexity of the GLL-PC-nonsym subroutine is O(|V |2|PC(T)|). In step 3,
it will execute the GLL-PC-nonsym subroutine again for all X 2 TPC(T). Assuming
each neighborhood of X is about the same as the PC(T), when checking the symmetry
condition, the algorithm will perform another O(|V ||PC(T)|2|PC(T)|)tests.

To identify MB(T) by the GLL-MB algorithm in Figure 10 we first need to initialize
subset S. Assuming all neighborhoods are about the same size (i.e., equal to |PC(T)|),
the total complexity to find the set S is O(|V ||PC(T)|22|PC(T)|) since we call GLL-PC
for each member of the PC(T). In fact, several optimizations can reduce this order to
O(|V ||PC(T)|2|PC(T)|) but we will not elaborate further in this paper. In step 5, in the
worst case we perform a single test for each node in S and each node in PC(T) for a total
of at most O(|PC(T)|2) tests (the subset Z in step 5a is cached and retrieved). So the
order of the algorithm is O(|V ||PC(T)|22|PC(T)|) tests given the structural assumptions
above.

All other algorithmic instantiations of the template in this section have similar
complexity.

At this point it is worth noting a number of polynomial approximation algorithms
in the literature that increase efficiency without sacrificing quality to a large degree. The
identification of a subset Z in step 3 of the GLL-PC-nonsym subroutine as described
in algorithm instantiations of GLL-PC is a step exponential to the size of the TPC(T);
however, one could attempt to discover it in a greedy fashion, for example by starting
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with the empty set and adding to Z the variable decreasing the association with T the
most. These ideas started with the TPDA algorithm (Cheng et al., 2002a) and were
further explored in Brown et al. (2005). Similar improvements can be applicable to
inclusion strategy.

For the above analysis we assumed that all tests I(X, T | Z) can or should be
performed and return the correct results. However, in the next sub-section we discuss
how the statistical decisions of independence or dependence are made; these decisions
severely affect the complexity of the algorithms as well.

4.4. Dealing with Statistical Decisions

The quality of the algorithms in practice highly depends on their ability to statistically
determine whether I(X, T | Z) or ¬I(X, T | Z) (equivalently whether Assoc(X, T | Z)
is zero or non-zero) for a pair of variables X and T and a set of variables Z. The
test I(X, T | Z) is implemented as a statistical hypothesis test with null hypothesis
H0: X and T are independent given Z. A p-value corresponding to this test statistic’s
distribution expresses the probability of seeing the same or more extreme (i.e., indicative
of dependence) test statistic values when sampling from distributions where H0 is true.
If the p-value is lower than a given threshold (i.e., significance level “alpha”) a, then
we consider the independence hypothesis to be improbable and reject it. Thus, for a
sufficiently low p-value we accept dependence. If however, the p-value is not low enough
to provide confidence in rejecting H0 then there are two possibilities:

a) H0 actually holds, that is, the variables are indeed conditionally independent.

b) H0 does not hold, the variables are conditionally dependent but we cannot confi-
dently reject H0.

The reasons for b) are that either the dependence is weak relatively to the available
sample to be detected (in order words, we have low probability to reject the null
hypothesis H0 when it does not hold, that is, low statistical power), or we are using
the wrong statistical test for this type of dependency. In essence, we would like to
distinguish between the following cases:

a) I(X, T | Z) holds with high-probability

b) ¬I(X, T | Z) holds with high-probability

c) Undetermined case given the available sample

To deal with case c) in our implementations we take the following approach, in-
troduced by Spirtes et al. (2000): we consider that we are facing case c) if there is no
sufficient power according to a reliability criterion. In our implementations this criterion
depends on parameter h-ps. The criterion dictates that if and only if we have at least
h-ps sample instances per number of cells (i.e., number of parameters to be estimated)
in the contingency tables for the discrete statistical tests then the test is reliable.

Once a test is deemed unreliable an algorithm needs to decide how to handle the
corresponding statistical decision. For example, the PC algorithm for global causal
discovery (Spirtes et al., 2000) considers that given no other evidence, all variables are
dependent with each other. That is, a pair of variables is always connected by an edge in
the graph unless a subset Z is discovered that renders them conditionally independent.
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The implementations of GLL instantiations in the present paper do not perform
an unreliable test either. However, ignoring unreliable tests with 0-order conditioning
test (i.e., univariate tests) is equivalent to assuming I(X, T | Z) whereas ignoring
unreliable tests with higher-order conditioning test (i.e., conditioning sets with 1 or
more conditioning variables) is equivalent to assuming ¬I(X, T | Z) as far as this
unreliable test is concerned (because the final judgment on independence, is deferred
to reliable, typically lower-order tests). Thus, given no evidence of dependence, we
assume the unreliable tests to return I(X, T | Z). The different treatment of the PC
implementation leads to problems as discussed in Tsamardinos et al. (2006) pointing to
the importance of this implementation aspect of the algorithms.

Another practical implementation issue arises when prior knowledge, experiments,
or domain substantive knowledge ensures that a variable X is in PC(T) or that X is not
in PC(T). In such cases the algorithm can be modified to “lock” X inside or outside
TPC(T) respectively in order to avoid the possibility that errors in statistical decisions
will counter previously validated knowledge and possibly propagate more statistical
decision errors.

In addition to h-ps, a second restriction on the conditioning set size is provided by
parameter max-k. This parameter places an absolute limit on the number of elements in
a conditioning set size, without reference to available sample size. As such max-k partici-
pates in the reliability judgment but also restricts the computational complexity of the
algorithms by trading off computational complexity for fit to data.

Specifically first consider that more variables than the actual PC(T) could be output
by the algorithm. A variable X that becomes independent of T only when we condition
on Z, with |Z| > max-k could enter the TPC(T) and will not be removed afterwards.
For example, if max-k = 1, then variable F in Figure 7 cannot be d-separated from T
given any Z with |Z|  1. Thus, the reliability criterion may increase the number of
tests performed, since these depend on the size of the TPC(T). On the other hand, the
criterion forces certain tests not to be performed, specifically those whose conditioning
set Z size is larger than max-k. Thus, since only (TPC(T)

max-k ) subsets are tested out of all
possible 2|TPC(T)| ones, the complexity of the algorithm GLL-PC-nonsym now becomes
O(|V ||TPC(T)|max-k), that is, polynomial of order max-k.

The parameters h-ps and max-k are user-specified or, alternatively, optimized auto-
matically by cross-validation, or optimized for a whole domain. The role and importance
of these two parameters, especially with respect to quality of statistical decisions, is
explored in detail in the companion paper (Aliferis et al., 2010). Finally, because the
quality of statistical decisions is not addressed in the proofs of correctness provided
earlier, it was implicitly assumed that whenever sufficient sample size is provided to
the algorithms statistical decisions are reliable.

A recent treatment that specifically addresses the role of statistical decisions in finite
sample is presented in Tsamardinos and Brown (2008a). In this work, a bound of the
p-value of the existence of an edge is provided; the bound can be used to control the
False Discovery Rate of the identification of the PC(T) or all the edges in a network.
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5. Comparative Evaluation of Local Causal and Non-Causal Feature
Selection Algorithms in Terms of Feature Selection Parsimony and
Classification Accuracy

In the present section we examine the ability of GLL algorithms to discover compact
sets of features with as high classification performance as possible for each data set and
compare them with other local causal structure discovery methods as well as non-causal
feature selection methods.

In order to avoid bias in error estimation we apply nested N-fold cross-validation.
The inner loop is used to try different parameters for the feature selection and classifier
methods while the outer loop tests the best configuration on an independent test set.
Details are given in Statnikov et al. (2005b), Dudoit and van der Laan (2003) and Scheffer
(1999).

All experiments discussed in this section and elsewhere in this paper were con-
ducted on ACCRE (Advanced Computing Center for Research and Education) High
Performance Computing system at Vanderbilt University. The ACCRE system consists
of 924 x86 processors (the majority of which 2 GHz) and 668 PowerPC processors (2.2
GHz) running 32 and 64-bit Linux OS. The overall computational capacity of the cluster
is approximately 6 TFLOPS. For preliminary and exploratory experiments we used a
smaller cluster of eight 3.2 GHz x86 processors.

The evaluated algorithms are listed in the Appendix Tables 5–7. They were chosen
on the basis of prior independently published results showing their state-of-the-art
performance and applicability to the range of domains represented in the evaluation
data sets. We compare several versions of GLL, including parents and children (PC)
and Markov blanket (MB) inducers. Whenever we refer to HITON-PC algorithm in
this paper, we mean semi-interleaved HITON-PC without symmetry correction, unless
mentioned otherwise. Also, other GLL algorithms evaluated do not have symmetry
correction unless mentioned otherwise. Finally, unless otherwise noted, GLL-MB does
not implement a wrapping step.

Tables 8–9 in the Appendix present the evaluation data sets. The data sets were
chosen on the basis of being representative of a wide range of problem domains (biology,
medicine, economics, ecology, digit recognition, text categorization, and computational
biology) in which feature selection is essential. These data sets are challenging since
they have a large number of features with small-to-large sample sizes. Several data sets
used in prior feature selection and classification challenges were included. All data sets
have a single binary target variable.

To perform imputation in data sets with missing values, we applied a non-parametric
nearest neighbor method (Batista and Monard, 2003). Specifically, this method imputes
each missing value of a variable with the present value of the same variable in the most
similar instance according to Euclidian distance metric. Discretization in non-sparse con-
tinuous data sets was performed by a univariate method (Liu et al., 2002) implemented
in Causal Explorer (Aliferis et al., 2003b). For a given continuous variable, the method
considers many binary and ternary discretization thresholds (by means of a sliding win-
dow) and chooses the one that maximizes statistical association with the target variable.
In sparse continuous data sets, discretization was performed by assigning value 1 to
all non-zero values. All variables in each data set were also normalized to be in [0, 1]
range to facilitate classification by SVM and KNN. All computations of statistics for the
preprocessing steps were performed based on training data only to ensure unbiased
classification error estimation. Statistical comparison between algorithms was done

351



ALIFERIS STATNIKOV TSAMARDINOS MANI KOUTSOUKOS

using two-sided permutation test (with 10,000 permutations) at 5% alpha level (Good,
2000). The null hypothesis of this test is that algorithms perform the same.

Both polynomial SVMs and KNN were used for building classifiers from each se-
lected feature set. In complementary experiments, the native classifier for each one of
several feature selection methods (LARS-EN, L0, and RFVS) was used and its perfor-
mance was compared against classifiers induced by SVMs and KNN. For SVMs, the
misclassification cost C and kernel degree d were optimized over values [1, 10, 100] and
[1, 2, 3, 4], respectively. For KNN, the number of nearest neighbors k was optimized over
values [1,...,min(1000, number of instances in the training set)]. All optimization was
conducted in nested cross-validation using training data only, while the testing data was
used only once to obtain an error estimate for the final classifier. We used the libSVM
implementation of SVM classifiers (Fan et al., 2005) and our own implementation of
KNN.

We note that use of SVMs and KNN does not imply that GLL methods are designed
to be filters for these two algorithms only, or that the algorithm comparison results
narrowly apply to these two classifiers. Rather as explained in Section 2.2, GLL algo-
rithms provide performance guarantees as long as the classifier used has universal
approximator properties. SVMs and KNN are two exemplars of practical and scalable
such methods in wide use. We also emphasize that selecting features with a wrapper or
embedded feature selection method that is not SVM or KNN specific is not affected by
the inductive bias mismatch because such mismatch is affecting performance only when
the classifier used is “handicapped” relative to the native classifier (Tsamardinos and
Aliferis, 2003; Kohavi and John, 1997). We provide experimental data substantiating
this point in the Appendix Table 10 (and Table S1 in the online supplement) where we
compare classification performance of RFVS, LARS-EN, and L0 with features selected by
each corresponding method to the classification performance of SVMs and KNN using
the same features. It is shown that SVM predictivity matches, whereas KNN predictivity
compares favorably, with the classifiers that are native to each feature selector. On the
other hand, the choice of SVMs and KNN provides several advantages to the research
design of the evaluation: (a) the same classifiers can be used with all data sets removing
a possible confounder in the evaluation; (b) they can be used without feature selection
(i.e., full variable set) to give a reference point of predictivity under no feature selection
(that in practice is as good as empirically optimal predictivity especially when using
SVMs); (c) they can be used when sample size is smaller than number of variables; (d)
prior evidence suggests that they are suitable classifiers for the domains; (e) they can be
executed in tractable time using nested cross-validation as required by our protocol.

In all cases when an algorithm had not terminated within 2 days of single-CPU
time per run on a single training set (including optimization of the feature selector
parameters) and in order to make the experimental comparison feasible with all methods
and data sets in the study, we deemed it to be impractical and terminated it. While the
practicality of spending more than two days of single-CPU time on a single training set
can be debated, we believe that use of slower algorithms in practice is problematic due
to the following reasons: (i) in the context of N-fold cross-validation the total running
time is at least N times longer (i.e., >20 days single-CPU time); (ii) the analyst does
not know whether the algorithm will terminate within a reasonable amount of time,
and (iii) when quantification of uncertainty about various parameters (e.g., estimating
variance in error estimates via bootstrapping) is needed the analysis becomes prohibitive
regardless of analyst flexibility and computational resources. When comparing a pair of
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algorithms we consider only the data sets where both algorithms terminate within the
allotted time.

We evaluate the algorithms using the following metrics:

1. Number of features selected;

2. Proportion of features selected relative to the original number of features (i.e.,
prior to feature selection);

3. Classification performance measured as area under ROC curve (AUC) (Fawcett,
2003);

4. Feature selection time in minutes.2

Figure 11 compares each evaluated algorithm to semi-interleaved HITON-PC with
G2 test as a reference performance for GLL, in the two-dimensional space defined by
proportion of selected features and classification performance by SVM (results for KNN
are similar and are available in Table S5 in the online supplement). As can be seen in the
figure (and also in Figure S1 of the online supplement), GLL algorithms typically return
much more compact sets than other methods. More compact results are provided by
versions that induce the PC set rather than the MB for obvious reasons. Out of GLL
methods, the most compact sets are returned when the Z-test is applicable (continuous
data) compared to G2 test (discrete or discretized data). As seen in Tables S2-S3 in the
online supplement, depending on the parameterization of GLL, compactness varies.
However, regardless of configuration, both GLL and other local causal methods (i.e.,
IAMB, BLCD-MB, FAST-IAMB, K2MB) with the exception of Koller-Sahami are typically
more compact than non-causal feature selection methods (i.e., univariate methods with
backward wrapping, RFE, RELIEF, Random Forest-based Variable Selection, L0, and
LARS-EN). Forward stepwise selection and some configurations of LARS-EN, Random
Forest-based Variable Selection, and RFE are often very parsimonious, however their
parsimony varies greatly across data sets. Notice that whenever an algorithm variant
employed statistical comparison among feature sets (in particular non-causal ones), it
improved compactness (Figure S1 and Tables S2-S3 in the online supplement). Table 3
gives statistical comparisons of compactness between one reference GLL algorithm
(semi-interleaved HITON-PC with G2 test and cross-validation-based optimization
of the algorithm parameters) and 43 non-GLL algorithms and variants (including no
feature selection). In 21 cases the GLL reference method gives statistically significantly
more compact sets compared to all other methods, in 16 cases parsimony is not statisti-
cally distinguishable, and in 6 cases HITON-PC gives less compact feature sets. These
6 cases correspond strictly to non-GLL causal feature selection algorithms and at the
expense of severe predictive suboptimality (0.06 to 0.10 AUC) relative to the reference
GLL method (see Tables S4-S5 in the online supplement).

5.1. Compactness Versus Classification Performance

Compactness is only one of the two requirements for solving the feature selection
problem. A maximally compact algorithm that does not achieve optimal predictivity

2. In all cases we used the implementations provided by the authors of methods, or state-of-the-art imple-
mentations, and thus reported time should be considered representative of what practitioners can expect
in real-life with equipment and data similar to the ones used in the present study. However, we note
that running times should be interpreted as indicative only since numerous implementation details and
possible optimizations as well as computer platform discrepancies can affect results.
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Table 3: Statistical comparison via permutation test (Good, 2000) of 43 non-GLL algo-
rithms (including no feature selection) to the reference GLL algorithm (semi-
interleaved HITON-PC with G2 test and cross-validation-based optimization
of the algorithm parameters by SVM classifier) in terms of SVM predictivity
and parsimony. Each non-GLL algorithm compared to HITON-PC in each row
is denoted by “Other”. Bolded p-values are statistically significant at 5% alpha.
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does not solve the feature selection problem. Figure 11 examines the trade-off of
compactness and SVM predictivity (results for KNN are similar and available in Table
S5 in the online supplement). The best possible point for each graph is at the upper
left corner. For ease of visualization the results are plotted for each algorithmic family
separately. To avoid overfitting and to examine robustness of various methods to
parameterization we did not select the best performing configuration, but plotted all of
them. Notice that some algorithms did not run on all 13 real data sets (i.e., algorithms
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with Fisher’s Z-test are applicable only to continuous data, while some algorithms did
not terminate within 2 days of single-CPU time per run on a single training set). For
such cases, we plotted results only for data sets where the algorithms were applicable
and the results for HITON-PC correspond to the same data sets. As can be seen, GLL
algorithms that induce PC sets dominate both other causal and non-causal feature
selection algorithms. This is also substantiated in Table 3 (and Table S7 in the online
supplement that provides results for KNN classifier) that gives statistical comparisons
of predictivity between the reference GLL algorithm and all 43 non-GLL algorithms
and variants (including no feature selection). In 9 cases the GLL reference method gives
statistically significantly more predictive sets compared to all other methods, in 33 cases
predictivity is not statistically distinguishable, and in 1 case GLL gives less predictive
feature sets (however the magnitude of the GLL suboptimal predictivity is only 0.018
AUC on average, whereas the difference in compactness is more than 33% features
selected on average).

The overall performance patterns of combined predictivity and parsimony are highly
consistent with Markov blanket induction theory (Section 2.2) which predicts maximum
compactness and optimal classification performance when using the MB. Different
instantiations of the GLL method give different trade-offs between predictivity and
parsimony (details and statistical comparisons to the reference method are provided in
online supplement Tables S2-S6 and S8).

In the companion paper (Aliferis et al., 2010), we examine in detail conditions
under which PC induction can give optimal classification performance (the empirical
illustration is provided in Figure 13). The comparison of HITON-PC with G2 test and
HITON-PC with Z-test reveals that both statistics perform similarly, while the latter
(where it is applicable) does not require discretization of continuous data that can
simplify data analysis significantly (see Figure 12 and statistical comparisons in Table S9
in the online supplement). In Table S10 of the online supplement we provide statistical
comparisons of non-GLL causal feature selection methods in terms of predictivity and
parsimony. K2MB, BLCD-MB, IAMB, and FAST-IAMB rather unexpectedly perform
statistically indistinguishably in terms of predictivity and parsimony. Since BLCD-MB
differs from K2MB by an additional backward elimination step, this implies that this
step rarely results in elimination of features in the real data sets tested.

5.2. Analysis of Running Times

Table S6 in the online supplement gives detailed running times for all feature selection
experiments. Major observations include that: (i) univariate methods, RELIEF, RFE,
LARS-EN are in general the fastest ones, (ii) Koller-Sahami is probably the slowest
method since it does not terminate on several data sets within the allotted time limit, (iii)
FAST-IAMB is two orders of magnitude faster than IAMB on the average, and (iv) GLL
algorithms are practical for very high-dimensional data (e.g., in the Thrombin data set
with > 100,000 features GLL-PC requires 10 to 52 minutes single-CPU time depending
on fixed-parameter configuration, and less than 3 hours when GLL-PC is automatically
optimized by cross-validation).

In conclusion, the GLL reference algorithm dominates most feature selection meth-
ods in predictivity and compactness. Some non-GLL causal methods are more parsi-
monious than the reference GLL method at the expense of severe classification subop-
timality. One univariate method exhibits slightly higher predictivity but with severe
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disadvantage in parsimony. No feature selection method achieves equal or better
compactness with equal or better classification performance than GLL.

6. Comparative Evaluation of Markov Blanket Induction, Local
Causal Neighborhood and Other Non-Causal Algorithms for Local
Structure Discovery

In the present section we study the ability of GLL algorithms to discover local causal
structure (in the form of parent and children sets and Markov blankets) and compare
them with other local structure discovery methods as well as non-causal feature selec-
tion. While many researchers apply feature selection techniques strictly to improve the
cost and effectiveness of classification, in many fields researchers routinely apply feature
selection in order to gain insights about the causal structure of the domain. A frequently
encountered example is in bioinformatics where a plethora of feature selection methods
are applied in high-throughput genomic and proteomic data to discover biomarkers
suitable for new drug development, personalizing medical treatments, and orienting
subsequent experimentation (Zhou et al., 2002; Li et al., 2001; Holmes et al., 2000; Eisen
et al., 1998). It is thus necessary to test the appropriateness of various feature selection
techniques for causal discovery, not just classification.

In order to compare the performance of the tested techniques for causal discovery,
we simulate data from known Bayesian networks and also use resimulation, whereby
real data is used to elicit a causal network and then data is simulated from the obtained
network (see Table 11 in the Appendix). For each network, we randomly select 10
different targets and generate 5 samples (except for sample size 5,000 where one sample
is generated) to reduce variability due to sampling.3 An independent sample of 5,000
instances is used for evaluation of classification performance.

In order to avoid overfitting of the results to the method used to induce the causal
network, an algorithm with different inductive bias is used than the algorithms tested.
In our case we use SCA (Friedman et al., 1999b). We note that SCA has greatly different
inductive bias from the GLL variants and thus the comparison (provided that the
causal generative model is a Bayesian network) is not unduly biased toward them,
while still allowing induction of a credible causal graphical model. Specifically, the
inductive biases of the two methods can be described as follows: SCA performs global,
heuristically constrained, Bayesian search-and-score, greedy TABU iterative search for
a Bayesian network that has maximum-a-posteriori probability given the data under
uninformative prior on all possible network structures. GLL algorithms induce a local
causal neighborhood, under the distributional assumption of faithfulness and causal
sufficiency, employing statistical tests of conditional independence, and preferring
to assume a variable is in the local neighborhood whenever a conditional test is not
applicable due to small sample (provided that a univariate association exists, otherwise
independence is the default) in order to minimize false negative risk of losing a true
member and overall risk of false positives and false negatives if true network is not
dense. More about the inductive bias of GLL can be found in Aliferis et al. (2010).

3. For networks Lung_Cancer and Gene, we also add an eleventh target that corresponds to the natural
response variable: lung cancer diagnosis and cell cycle state, respectively. For network Munin we use
only 6 targets because of extreme probability distributions of the majority of variables that do not allow
variability in the finite sample of size 500 and even 5000. Because of the same reason, we did not
experiment with sample size 200 in the Munin network.

356



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART I

We obtained two resimulated networks as follows: (a) Lung_Cancer network: We
randomly selected 799 genes and a phenotype target (cancer versus normal tissue
indicator) from human gene expression data of Bhattacharjee et al. (2001). Then we
discretized continuous gene expression data and applied SCA to elicit network structure.
(b) Gene network: It was obtained from a subset of variables of yeast gene expression
data of Spellman et al. (1998) that contained 800 randomly selected genes and a target
variable denoting cell cycle state. Continuous gene expression data was also discretized
and SCA was applied to learn network. This research design follows Friedman et al.
(2000).

Furthermore, we note that additional factors not captured in the simulation or res-
imulation process make real-life discovery potentially harder than in our experiments.
Such factors include for example, deviations of faithfulness, existence of temporal and
cellular aggregation effects, unmeasured variables, and various measurement, nor-
malization, and noise artifacts. However evaluations with simulated and resimulated
data yield comparative performances that are still highly informative since if a method
cannot induce the correct structure from relatively easier settings, it is unlikely that in
harder real-life situations it will perform any better. In other words successful causal
structure discovery performance in simulated and resimulated networks represents at
a minimum “gate-keeper” level performance that will filter the more promising from
the less promising methods (Spirtes et al., 2000). Finally, as Spirtes et al. (2000) note the
behavior of constraint-based algorithms is particularly complex and theoretical analyses
are very difficult to perform. The same is true for several other modern feature selec-
tion methods. Hence, simulation experiments are necessary in order to gain a deeper
understanding of the strengths and limitations of many state-of-the-art algorithms. The
evaluated algorithms are provided in Appendix Table 12.

We evaluate the algorithms using the following metrics:

1. Graph distance. This metric calculates the average shortest unoriented graph
distance of each variable returned by an algorithm to the local neighborhood of
target, normalized by the average such distance of all variables in the graph. The
rationale is to normalize the score to allow for comparisons across data sets and
to correct the score for randomly choosing variables. The score is a non-negative
number and has the following interpretation: value 0 means that current feature
set is a subset of the true local neighborhood of the target, values less than 1 are
better than random selection in the specific network, values equal to 1 are as good
as random selection in the specific network and values higher than 1 are worse
than random selection. The metric is computed using Dijkstra’s shortest path
algorithm.

2. Euclidean distance from the perfect sensitivity and specificity (in the ROC space) for
discovery of local neighborhood of the target variable. This is computed as in
Tsamardinos et al. (2003b) and provides a loss function-neutral combination of
sensitivity and specificity.

3. Proportion of false positives and proportion of false negatives.

4. Classification performance using polynomial SVM and KNN classifiers with parameters
optimized by nested cross-validation (misclassification cost C and kernel degree
d for SVMs and number of nearest neighbors k for KNN) on an independently
sampled test data set with large sample (n=5000). The performance is measured
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by AUC (Fawcett, 2003) on binary tasks and proportion of correct classifications
on multiclass tasks.

5. Feature selection time in minutes. All caveats regarding interpretation of running
times stated in Section 5 apply here as well.

We note that the causal discovery evaluations emphasize local discovery of direct
causes and direct effects and this choice is supported by several reasons. First, in many
domains searching for direct causes and effects is natural (e.g., biological pathway
discovery). Second, for non-causal feature selection methods, a natural causal inter-
pretation of their output is being among the direct causes and direct effects (or the
Markov blanket) of the target. Consider for example clustering or differential gene
expression in bioinformatics where if Gene1 clusters with Gene2, or if Gene3 is more
strongly differentially expressed with respect to some phenotype than Gene4 then Gene1
and Gene2 are interpreted to be members of the same pathway (i.e., in close proximity in
the gene regulatory/causal network), and Gene 3 is interpreted to be more likely to de-
termine the phenotype than Gene4. Similar interpretations abound for other non-causal
feature selection methods. We notice that if a method is locally causally inconsistent
then it is very unlikely that it will be globally causally consistent either. The logic of
this argument is that algorithms either return global or local causal knowledge. If an
algorithm outputs a global causal graph and this is incorrect, then this implies that
locally it will be wrong for at least some variables. Conversely, if the global graph is
correct then locally it is correct as well. If algorithm B outputs a correct local causal
set (e.g., direct causes and direct effects) then we can “piece together” these sets and
obtain a correct global graph. Finally, if an algorithm outputs an incorrect non-empty
local causal set, this implies that B returns non-causes as direct causes or remote causes
as direct causes (and the same for effects). Thus, it is not possible to construct the full
causal graph strictly from knowledge provided by the algorithm. As a result, local
causal consistency is necessary for global consistency as well.

A second reason for focusing on local causal discovery is that it is much harder in
practice than indirect causal discovery in highly interconnected causal networks. In
our bioinformatics example, because cancer affects many pathways, it is trivial to find
genes affected by cancer, since a large proportion (e.g., half) of the measured genes are
expected to be affected. However, it is vastly harder to find the chain of events that
leads from occurrence of cancer to Gene1 becoming under- or over-expressed. In such
settings, discovery of remote causation is not particularly hard, neither it is particularly
interesting. Conversely, when one has a locally correct causal discovery algorithm as
elucidated in Section 2, global causal learners can be relatively easily constructed.

Finally, in our evaluations we do not examine quality of causal orientation of the
algorithms output for several reasons: First, while GLL algorithms’ output can be
oriented by constraint-based or other post-processing, non-causal feature selection
methods do not readily admit orientation. Second, orientation is not needed when
target T is a terminal variable as is often the case in the real data. Third, oriented local
causal discovery is harder than unoriented one (Ramsey et al., 2006), and it makes
sense to examine the ability of the feature selection algorithms for causal discovery in
tasks of incremental difficulty, especially since as we will see most of the non-causal
algorithms do not perform well even when seeking unoriented causality. Fourth,
orientation information can be obtained subsequently by experiments or knowledge-
based post-processing and in many practical settings it is not the primary obstacle to
causal discovery.
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6.1. Superiority of Causal Over Non-Causal Feature Selection Methods for Causal
Discovery

Causal methods achieve, consistently under a variety of conditions and across all metrics
employed, superior causal discovery performance than non-causal feature selection
methods in our experiments. Figures 14(a) and 15 compare semi-interleaved HITON-PC
to HITON-MB, RFE, UAF, L0, and LARS-EN in terms of graph distance and for different
sample sizes. Other GLL instantiations such as Interleaved-HITON-PC, MMPC, and
Interleaved-MMPC perform similarly to HITON-PC (data in Table S12 in the online
supplement). We apply HITON-PC as is and also with a variable pre-filtering step such
that only variables that pass a test of univariate association with the target at 5% False
Discovery Rate (FDR) threshold are input into the algorithm (Benjamini and Yekutieli,
2001; Benjamini and Hochberg, 1995). Motivation and analysis of incorporating FDR in
GLL is provided in Aliferis et al. (2010).

As can be seen, in all samples HITON-PC variants return features closely localized
near the target while HITON-MB requires relatively larger sample size to localize well.
The distance is smaller as sample size grows. Methods such as univariate filtering
localize features well in some data sets and badly in others. As sample size grows,
localization of univariate filtering deteriorates. Methods L0, and LARS-EN exhibit a
reverse-localization bias (i.e., preferentially select features away from the target). Perfor-
mance of RFE varies greatly across data sets in its ability to localize features and this
is independent of sample size. A “bull’s eye” plot for Insurance10 data set is provided
in Figure 16. A localization example for Insurance10 data set is shown in Figure 17.
The presented visualization examples are representative of the relative performance of
causal versus non-causal algorithms. Table 4 provides p-values (via a permutation test
at 5% alpha) for the differences of localization among algorithms.

Tables S13-S16 and Figure S2(a)-(d) in the online supplement compare the same
algorithms in terms of (a) Euclidian distance from the point of perfect sensitivity and
specificity, (b) proportion of false negatives, (c) proportion of false positives, and (d)
running time in minutes. Consistent with the results presented in the main text, local
causal discovery algorithms strongly outperform non-causal feature selection methods
in ability to find the direct causes and effects of the target variable.

6.2. Classification Performance is Misleading for Causal Discovery

Despite causally wrong outputs (i.e., failing to return the Markov blanket or parents
and children set), several non-causal feature selection methods achieve comparable
classification performance with causal algorithms in the simulated data. Figure 14(b)
(and Tables S17-S18 and Figure S2(e) in the online supplement) shows the average AUC
and proportion of correct classifications. This phenomenon is related to information
redundancy of features in relation to the target in non-sparse causal processes. In
addition, it is facilitated by the relative insensitivity of state-of-the-art classifiers to
irrelevant and redundant features. Good classification performance is thus greatly misleading
as a criterion for quality of causal hypotheses generated by non-causal feature selection
algorithms.

In conclusion, the results in the present section strongly undermine the hope that
non-causal feature selection methods can be used as good heuristics for causal discovery.
The idea that non-causal feature selection can be used for causal discovery should be
viewed with caution (Guyon et al., 2007). Whole research programs are, in many
domains, built on experiments motivated by causal hypotheses that were generated by
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Table 4: Statistical comparison between semi-interleaved HITON-PC with G2 test (with
and w/o FDR correction) and other methods in terms of graph distance. Bolded
p-values are statistically significant at 5% alpha.
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non-causal feature selection results (Zhou et al., 2002; Li et al., 2001; Holmes et al., 2000;
Eisen et al., 1998) and this seems an unfortunate and inadvisable practice, in light of
existence of principled causal algorithms. On the other hand, generalized local learning
algorithms in simulated and resimulated experiments show great potential for local
causal discovery.

7. Discussion
In the present section we discuss main findings of this research, state limitations and
outline open problems, and give an overview of problems addressed in the companion
paper.

7.1. Main Findings

Our experimental evaluation shows that GLL algorithms typically attain the theoret-
ically expected benefits of strong feature set parsimony without loss of performance
relative to the best classification attained by any method used in the experiments. The
wide range of data sets and algorithms used shows that the sufficient conditions stated
in the proofs for correctness for GLL are likely to hold and/or that violations may be
small or well tolerated.

The second major result from our experiments is that we showed that use of non-
causal feature selection methods for learning causality although very widespread,
is generally inadvisable. We used resimulated and simulated data and showed that
causally-motivated feature selection methods connect local causal discovery with feature
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selection for classification consistent with recent theoretical work. Feature selection
algorithms that are not causal have a tendency to return highly predictive feature sets
that are scattered all over the network, or that are in the periphery of the network,
and cannot be otherwise interpreted in a way that makes useful and consistent causal
sense. We strongly caution practitioners to use principled causal discovery algorithms
whenever available and to not substitute causal discovery methods with predictive/non-
causal feature selection ones for reasons of convenience or due to non familiarity with
such methods. Practical software widely exists that can be used to apply state-of-the-art
causal methods including the methods studied in the present paper that is available for
download from the online supplement.

Finally, the theoretical framework that is based in large part on faithfulness and
other assumptions summarized in Sections 2 and 3 is a valuable frame of reference both
conceptually and algorithmically. However, we do not consider it to be an absolute and
immutable measure by which to judge all new and existing algorithms. Our data shows
that algorithms that are not deemed correct under the more general assumptions of the
framework (e.g., algorithms that do not employ symmetry correction, or algorithms
that use PC(T) instead of MB(T) for feature selection for classification) offer in many
real data sets same predictive quality and better computational tractability than the
sound algorithms. This is a reflection of several factors. One of them is the existence
of distributions that are special classes of faithful ones and are easier to analyze (e.g.,
where symmetry correction is not required, or in other words where EPC(T) = PC(T)).
A second factor is mitigating circumstances for violations of assumptions (Aliferis
et al., 2010). A third factor is that practical implementations of sound algorithms are
statistically imperfect (in other words, a theoretical assumption that conveniently leads
to a proof of correctness, for example that a conditional test of independence is correct,
does not entail immediate or flawless practical feasibility since all such tests admit errors
in practice). An alternative set of assumptions for correctness may require vaguely
‘sufficient sample size’ disregarding the practical difficulty of determining whether in
any given analysis this requirement is met. As a result, practical implementations may
claim soundness without being demonstrably sound in applied settings. We address
the small-sample behavior of GLL algorithms with empirical analysis in the companion
paper (Aliferis et al., 2010).

7.2. Limitations and Open Problems

A possible critique of the present work is that Markov blanket features may not work
well with a plethora of classifiers, distributions and loss functions. Indeed, a feature
selector that is uniformly optimal is not attainable as shown by the results in Tsamardi-
nos and Aliferis (2003), and several (possibly infinite) conceivable classifiers will fail
to capture the information in the selected features. Our focus was to examine if the
GLL framework has merit in the sense of whether GLL instantiations when applied
and compared to reasonable state-of-the-art baseline feature selectors in many complex
data sets from typical analysis domains and with practical classifiers, loss function and
sample sizes, yield good performance consistent with the theoretical claims of GLL.

Another possibility we would like to address is that best predictivity achieved in
our experiments for each data set may not be optimal since some classifier other than
SVMs and KNN may yield better predictivity. We believe that this possibility is remote
for the following reason: Evidence from earlier published work where we have applied
instances of GLL with classifiers such as ANNs, Decision Trees, Simple Bayes, as well as
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SVMs and KNN supports that the choice of classifier matters very little in practice and
similar predictivity/parsimony patterns as the ones reported here were found (Aliferis
et al., 2003a). On the other hand, the use of SVMs and KNN as classifiers uniformly
across our experiments confers many benefits explained in Section 5. To further support
the use of these classifiers we provide additional experimental results in Appendix
Table 10 where we use features extracted from embedded or wrapper-based feature
selectors (L0, RFVS, LARS-EN) and compare SVMs and KNN to classifiers native to the
above embedded and wrapper-based methods. We found that SVMs and KNN achieve
predictivity comparable to the classifiers from the aforementioned feature selectors.

Additional strong evidence in favor of our conclusions that GLL algorithms yield
highly predictive and parsimonious feature sets is given by the simulated and resim-
ulated data experiments where both the data-generative model and optimal feature
sets are known. In those experiments the true Markov blanket is directly given by the
model and does constitute the gold standard for the smallest and optimally informative
feature set for common loss functions in the sense that it contains all information available
for predicting the target. The experiments showed that the GLL algorithms identify this
Markov blanket very well and better than the baseline comparison algorithms.

Although the GLL framework and the studied instantiations and implementations
are theoretically well motivated and empirically robust in many practical data analysis
domains, as demonstrated in our experiments, as with all machine learning methods
they should be expected to not perform well in quality or efficiency in certain distribu-
tions. Such distributions may include cases where the Markov blanket is very large and
thus the combinatorics of the elimination phase makes it too slow. Another case can be
when extreme non-linearities render the PC(T) members “invisible” to the algorithm
(because univariate association with the target is zero). Another possibility for hurt-
ing efficiency arises when excessive synthesis of information exists such that the true
members of PC(T) are not considered before other weakly relevant variables enter the
TPC(T). Also when certain types of deterministic relationships exist or more broadly
target information equivalence (i.e., special types of violations of faithfulness), many
Markov blankets may exist and the algorithms will return a predictively optimal feature
set but both causal localization and optimal parsimony may be lost (Statnikov, 2008).
The practical importance of these possibilities needs to be assessed domain-by-domain.

Some of the adverse situations described in the limitations sub-section can be ad-
dressed by relaxing the algorithm operation (e.g., for very large Markov blankets the
analyst can set max-k to a very small number and achieve faster execution but incur
some false positives). In some domains, violation of assumptions are mitigated by other
factors (e.g., Aliferis et al. 2010 describes how connectivity can make extremely epistatic
parents visible to the algorithms). These and other situations constitute open research
areas and very recent research efforts attempt to address these issues. For example,
Statnikov (2008) provides algorithms that address multiplicity of Markov blankets and
Tsamardinos and Brown (2008b) introduce a method for kernel mapping of extremely
non-linear functions to a faithful feature space that can be used to do feature selection
via GLL in the transformed feature space.

Although the emphasis of the present work was in classification, Markov blanket
theory applies equally well to regression and thus the GLL framework can be used
for regression problems as well. An empirical analysis of performance of regression-
oriented GLL instantiations and comparisons to state-of-the-art methods were not
pursued here however.
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7.3. Further Problems Addressed in the Companion Paper

While the theory motivating local learning and especially Markov blanket induction
for feature selection has wide implications, it is far from complete. To begin with,
all theoretical arguments to-date apply to the large sample case. While the theory
implies that the large-sample Markov blanket and the corresponding classifiers fitted
from large sample, are predictively optimal, it is not known to what extend learning
from small samples affects the optimality of Markov blanket based feature selection.
More specifically, it is not clear how often in small samples and real-life distributions
the true Markov blanket (i.e., obtained from the data-generative process) gives an
optimal classifier when the latter is fitted from small samples with state-of-the-art
classifiers. Similarly, we do not know whether the estimated Markov blanket gives
an optimal classifier when the latter is fitted from small samples or even when it is
fitted from the large sample. Related to the above for practical applications, we do
not know how fast is convergence of the estimated Markov blanket/classifier to true
Markov blanket/optimal classification as a function of sample size, for the available
state-of-the-art Markov blanket inducing algorithms. In the second part of our work
(Aliferis et al., 2010) we examine these issues. We also provide explanations why
counter-intuitively relaxed versions of some algorithms that trade-off computational
efficiency for theoretical soundness tend to outperform sound versions in some domains.
Moreover, we systematically study the factors that influence the quality and number of
statistical decisions, explain the inductive bias of the algorithms, show how non-causal
feature selection methods can be understood in light of Markov blanket induction
theory, and address divide-and-conquer local to global causal graph learning strategies.

Appendix A.
This Appendix provides proofs of theorems and additional tables referenced in the
paper.

A.1. Proof of Theorem 2

Consider the algorithm in Figure 4. First notice, that as we mentioned above, when
conditions (a) and (c) hold the direct causes and direct effects of T will coincide with the
parents and children of T in the causal Bayesian network G that faithfully captures the
distribution (Spirtes et al., 2000). As we have shown in Section 4 and in Tsamardinos
et al. (2003b), the PCG(T) = PC(T) is unique in all networks faithfully capturing the
distribution.

First we show that the algorithm will terminate, that is that the termination criterion
of admissibility rule #3 will be met. The criterion requires that no variable eligible
for inclusion will fail to enter TPC(T) and that no variable that can be eliminated
from TPC(T) is left inside. Indeed because (a) due to admissibility rule #1 all eligible
variables in OPEN are identified, (b) V is finite and OPEN instantiated to V \ {T}, and
(c) termination will not happen before all eligible members of OPEN are moved from
OPEN to TPC(T), the first part of the termination criterion will be satisfied. The second
part of the termination criterion will also be satisfied because of admissibility rule #2
which examines for removal all variables and discards the ones that can be removed.

Lemma 1 The output of GLL-PC-nonsym TPC(T) is such that: PC(T) ✓ TPC(T) ✓
EPC(T).
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Proof Let us assume that X 2 PC(T) and show that X 2 TPC(T) by the end of GLL-
PC-nonsym. By admissibility rule #3, X will never fail to enter TPC(T) by the end
of GLL-PC-nonsym. By Theorem 1, for all Z ✓ V \ {X}, ¬I(X, T | Z) and so the
elimination strategy because of admissibility rule #2 will never remove X from TPC(T)
by the end of GLL-PC-nonsym.

Now, let us assume that X 2 TPC(T) by the end of GLL-PC-nonsym and show that
X 2 EPC(T). Let us assume the opposite, that is, that X /2 EPC(T) and so by definition
I(X, T | Z), for some Z ✓ PC(T) \ {X}. By the same argument as in the previous
paragraph, we know that at some point before termination of the algorithm, in step 4,
TPC(T) will contain the PC(T). Since X /2 EPC(T), the elimination strategy will find
that I(X, T | Z), for some Z ✓ PC(T) \ {X} and remove X from TPC(T) contrary to
what we assumed. Thus, X 2 EPC(T) by the end of GLL-PC-nonsym.

Lemma 2 If X 2 EPC(T) \ PC(T), then T /2 EPC(X) \ PC(X)

Proof Let us assume that X 2 EPC(T) \ PC(T). For every network G faithful to the
distribution P ParentsG(T) ✓ PCG(T) = PC(T). X has to be a descendant of T in
every network G faithful to the distribution because if it is not a descendant, then
there is a subset Z of T’s parents s.t., I(X, T | Z) (by the Markov Condition). Since
X 2 EPC(T) \PC(T), we know that by definition ¬I(X, T | Z), for all Z ✓ PC(T) \ {X}.
By the same argument, if also T 2 EPC(X) \ PC(X), T would have to be a descendant
of X in the every network G which is impossible since the networks are acyclic. So,
T /2 EPC(X) \ PC(X).

Let us assume that X 2 PC(T). By Lemma 1, X 2 TPC(T) by the end of GLL-PC-
nonsym. Since also T 2 PC(X), substituting X for T, we also have that by the end of
GLL-PC-nonsym, T 2 TPC(X). So, X will not be removed from U by the symmetry
requirement of GLL-PC either, and will be in the final output of the algorithm.

Conversely, let us assume that X /2 PC(T) and show X /2 U at termination of
algorithm GLL-PC. If X never enters TPC(T) by the inclusion heuristic, the proof is
done. Similarly, if X enters but is later removed from TPC(T) by the exclusion strategy,
the proof is done too. So, let us assume that X enters TPC(T) at some point and by the
end of GLL-PC-nonsym(T) is not removed by the exclusion strategy. By Lemma 1, we
get that by the end of GLL-PC-nonsym, X 2 EPC(T) and since we assumed X /2 PC(T),
we get that X 2 EPC(T) \ PC(T). By Lemma 2, we get that T /2 EPC(X) \ PC(X). Since
also T /2 PC(X), we get that T /2 EPC(X). Step 3 of GLL-PC will thus eliminate X from
U.

A.2. Proof of Theorem 4

Since we assume faithful Bayesian networks, d-separation in the graph of such a network
is equivalent to independence and can be used interchangeably (Spirtes et al., 2000).

If X 2 MB(T), we show X 2 TMB(T) in the end. If X 2 MB(T) and X 2 PC(T), it
will be included in the TMB(T) in step 3, will not be removed afterwards and will be
included in the final output.

If X 2 MB(T) \ PC(T) then X will be included in S since if X is a spouse of T, there
exists Y (by definition of spouse) s.t., X 2 PC(Y), Y 2 PC(T) and X /2 PC(T). For that
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Y, by Theorem 3 we know that ¬I(X, T | Z [ {Y}), for all Z ✓ V \ {X, T} and so the
test in step 5c will succeed and X will be included in TMB(T) in the end.

Conversely, if X /2 MB(T) we show that X /2 TMB(T) by the end of the algorithm.
Let Z be the subset in step 5a, s.t., I(X, T | Z) (i.e., Z d-separates X and T). Then, Z
blocks all paths from X to T. For the test in step 5c to succeed a node Y must exist that
opens a new path, previously closed by Z, from X to T. Since by conditioning on an
additional node a path opens, Y has to be a collider (by the d-separation definition)
or a descendant of a collider on a path from X to T. In addition, this path must have
length two edges since all nodes in S are the parents and children of the PC(T) but
without belonging in PC(T). Thus, for the test in step 5c to succeed there has to be a
path of length two from X to T with a collider in-between, that is, X has to be a spouse
of T. Since X /2 MB(T) the test will fail for all Y and X /2 TMB(T) by the end of the
algorithm.
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Figure 11: Causal Feature Selection Returns More Compact Feature Sets Than Non-
Causal Feature Selection—Comparison of each algorithmic family with semi-
interleaved HITON-PC with G2 test. HITON-PC is executed with 9 different
configurations: {max-k = 1, a = 0.05}, {max-k = 2, a = 0.05}, {max-
k = 3, a = 0.05}, {max-k = 4, a = 0.05}, {max-k = 1, a = 0.01}, {max-
k = 2, a = 0.01}, {max-k = 3, a = 0.01}, {max-k = 4, a = 0.01}, and
a configuration that selects one of the above parameterizations by nested
cross-validation. Results shown are averaged across all real data sets where
both HITON-PC with G2 test and an algorithmic family under consideration
are applicable and terminate within 2 days of single-CPU time per run on a
single training set. Multiple points for each algorithm correspond to different
parameterizations/configurations. See Appendix Tables 5–7 for detailed list
of algorithms. The left graph has x-axis (proportion of selected features)
ranging from 0 to 1 and y-axis (classification performance AUC) ranging
from 0.5 to 1. The right graph has the same data, but the axes are magnified
to see the details better. This figure is continued in Figures 12 and 13.
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Figure 12: Continued from Figure 11.
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Figure 13: Continued from Figure 12.
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Figure 14: Performance of feature selection algorithms in 9 simulated and resimulated
data sets: (a) graph distance, (b) classification performance of polynomial SVM
classifiers. The smaller is causal graph distance and the larger is classification
performance, the better is the algorithm. The results are given for training
sample sizes = 200, 500, and 5000. The bars denote maximum and minimum
performance over multiple training samples of each size (data is available
only for sample sizes 200 and 500). The metrics reported in the figure are
averaged over all data sets, selected targets, and multiple samples of each
size. L0 did not terminate within 2 days (per target) for sample size 5000.
Please see text for more details.
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Sample size 200 
Child10 Insurance10 Alarm10 Hailfinder10 Pigs Link Lung_Cancer Gene Average

HITON-PC (max k=4) 0.43 0.41 0.42 0.83 0.41 0.44 0.44 0.50 0.48
HITON-PC (max k=3) 0.43 0.41 0.42 0.83 0.41 0.44 0.44 0.50 0.48
HITON-PC (max k=2) 0.43 0.41 0.42 0.83 0.41 0.44 0.44 0.50 0.48
HITON-PC (max k=1) 0.45 0.42 0.42 0.83 0.41 0.46 0.53 0.50 0.50
HITON-PC-FDR (max k=4) 0.29 0.15 0.24 0.18 0.10 0.17 0.24 0.18 0.19
HITON-PC-FDR (max k=3) 0.29 0.15 0.24 0.18 0.10 0.17 0.24 0.18 0.19
HITON-PC-FDR (max k=2) 0.29 0.15 0.24 0.18 0.10 0.17 0.24 0.18 0.19
HITON-PC-FDR (max k=1) 0.29 0.15 0.24 0.18 0.10 0.17 0.34 0.18 0.21
HITON-MB (max k=3) 0.70 0.68 0.50 0.99 0.49 0.66 0.50 0.64 0.64
RFE (reduction of features by 50%) 0.58 0.38 0.50 0.71 0.52 0.45 0.75 0.59 0.56
RFE (reduction of features by 20%) 0.57 0.46 0.54 0.65 0.46 0.30 0.63 0.54 0.52
UAF-KruskalWallis-SVM (50%) 0.45 0.27 0.32 0.50 0.26 0.34 0.34 0.26 0.34
UAF-KruskalWallis-SVM (20%) 0.43 0.32 0.38 0.55 0.27 0.29 0.29 0.22 0.34
UAF-Signal2Noise-SVM (50%) 0.47 0.31 0.44 0.47 0.33 0.35 0.46 0.27 0.39
UAF-Signal2Noise-SVM (20%) 0.44 0.35 0.40 0.56 0.28 0.29 0.44 0.25 0.38
L0 0.95 0.93 0.83 0.97 0.99 0.83 0.82 0.92 0.90
LARS-EN (for multiclass response) 0.67 0.70 0.64 0.79 0.78 0.66 0.64 0.78 0.71
LARS-EN (one-versus-rest) 0.83 0.68 0.67 0.92 0.89 0.70 0.67 0.89 0.78  

 

Sample size 500 
Child10 Insurance10 Alarm10 Hailfinder10 Pigs Link Munin Lung_Cancer Gene Average

HITON-PC (max k=4) 0.23 0.26 0.32 0.57 0.27 0.33 0.24 0.28 0.32 0.31
HITON-PC (max k=3) 0.23 0.26 0.32 0.57 0.27 0.33 0.24 0.28 0.32 0.31
HITON-PC (max k=2) 0.23 0.26 0.32 0.57 0.27 0.33 0.24 0.29 0.32 0.32
HITON-PC (max k=1) 0.24 0.28 0.37 0.57 0.34 0.39 0.24 0.52 0.45 0.38
HITON-PC-FDR (max k=4) 0.09 0.08 0.20 0.13 0.02 0.11 0.29 0.14 0.07 0.12
HITON-PC-FDR (max k=3) 0.09 0.08 0.20 0.13 0.02 0.11 0.29 0.13 0.07 0.12
HITON-PC-FDR (max k=2) 0.09 0.08 0.20 0.13 0.02 0.11 0.29 0.11 0.07 0.12
HITON-PC-FDR (max k=1) 0.09 0.11 0.23 0.13 0.08 0.12 0.29 0.40 0.22 0.19
HITON-MB (max k=3) 0.28 0.34 0.37 0.85 0.30 0.43 0.35 0.34 0.38 0.41
RFE (reduction of features by 50%) 0.63 0.51 0.61 0.53 0.37 0.40 0.26 0.70 0.56 0.51
RFE (reduction of features by 20%) 0.54 0.48 0.69 0.53 0.41 0.39 0.26 0.58 0.49 0.49
UAF-KruskalWallis-SVM (50%) 0.37 0.27 0.42 0.49 0.21 0.39 0.34 0.27 0.24 0.33
UAF-KruskalWallis-SVM (20%) 0.40 0.27 0.41 0.48 0.26 0.40 0.30 0.26 0.25 0.34
UAF-Signal2Noise-SVM (50%) 0.40 0.27 0.42 0.51 0.22 0.45 0.29 0.33 0.22 0.35
UAF-Signal2Noise-SVM (20%) 0.42 0.30 0.43 0.51 0.23 0.43 0.30 0.32 0.24 0.35
L0 0.98 0.97 0.93 0.98 0.99 0.87 0.53 0.87 0.97 0.90
LARS-EN (for multiclass response) 0.67 0.71 0.70 0.75 0.78 0.68 0.33 0.60 0.79 0.67
LARS-EN (one-versus-rest) 0.70 0.74 0.74 0.91 0.90 0.77 0.30 0.62 0.82 0.72  

 

Sample size 5000 
Child10 Insurance10 Alarm10 Hailfinder10 Pigs Link Munin Lung_Cancer Gene Average

HITON-PC (max k=4) 0.13 0.16 0.25 0.35 0.20 0.19 0.04 0.23 0.30 0.20
HITON-PC (max k=3) 0.13 0.16 0.25 0.35 0.20 0.19 0.04 0.23 0.30 0.20
HITON-PC (max k=2) 0.13 0.17 0.25 0.33 0.22 0.19 0.04 0.36 0.33 0.23
HITON-PC (max k=1) 0.18 0.27 0.29 0.33 0.30 0.42 0.04 0.63 0.50 0.33
HITON-PC-FDR (max k=4) 0.00 0.03 0.10 0.10 0.00 0.08 0.04 0.00 0.00 0.04
HITON-PC-FDR (max k=3) 0.00 0.03 0.10 0.10 0.00 0.08 0.04 0.00 0.00 0.04
HITON-PC-FDR (max k=2) 0.00 0.05 0.10 0.10 0.00 0.08 0.04 0.08 0.00 0.05
HITON-PC-FDR (max k=1) 0.01 0.17 0.14 0.11 0.16 0.16 0.04 0.55 0.23 0.18
HITON-MB (max k=3) 0.17 0.20 0.28 0.38 0.27 0.30 0.20 0.33 0.35 0.28
RFE (reduction of features by 50%) 0.63 0.64 0.58 0.59 0.40 0.90 0.28 0.66 0.48 0.57
RFE (reduction of features by 20%) 0.58 0.58 0.69 0.54 0.54 0.92 0.22 0.50 0.43 0.56
UAF-KruskalWallis-SVM (50%) 0.37 0.37 0.62 0.55 0.42 0.69 0.38 0.39 0.20 0.44
UAF-KruskalWallis-SVM (20%) 0.37 0.40 0.60 0.54 0.27 0.59 0.41 0.42 0.24 0.43
UAF-Signal2Noise-SVM (50%) 0.46 0.35 0.65 0.54 0.43 0.67 0.24 0.31 0.25 0.43
UAF-Signal2Noise-SVM (20%) 0.39 0.42 0.58 0.51 0.31 0.60 0.39 0.50 0.25 0.44
LARS-EN (for multiclass response) 0.67 0.85 0.65 0.87 0.74 0.75 0.52 0.71 0.79 0.73
LARS-EN (one-versus-rest) 0.71 0.86 0.74 0.84 0.95 0.80 0.48 0.74 0.88 0.78  

 

Figure 15: Causal graph distance results for training sample sizes = 200, 500 and 5000.
The results reported in the figure are averaged over all selected targets.
Lighter cells correspond to smaller (better) values of graph distance; darker
cells correspond to larger (worse) values of graph distance. L0 did not
terminate within 2 days (per target) for sample size 5000.
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Figure 16: Visualization of graph distances for Insurance10 network and sample size
5000 by “bull’s eye” plot. For each method, results for 10 randomly selected
targets are shown. The closer are points to the origin, the better is ability
for local causal discovery. Results for GLL method HITON-PC-FDR are
highlighted with red; results for baseline methods are highlighted with
green.
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Figure 17: An example of poor localization by a baseline method and good localization
by a GLL method. Left: Graph of the adjacency matrix of Insurance10 network.
Target variable is shown with red. HITON-PC discovers all 5 members of the
parents and children set and a false positive variable #177 that is located close
to the true neighborhood (discovered variables are shown with blue bolded
circles). RFE discovers 4 out of 5 members of the PC set and introduces
many false positives scattered throughout the network (discovered variables
are shown with yellow circles). Right: A magnified area of the Insurance10
network close to the target variable.
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Table 5: Algorithms used in evaluation on real data sets. When statistical comparison
was performed inside a wrapper, we used a non-parametric method by DeLong
et al. (1988). The only exception is Random Forest-based Variable Selection
(RFVS), where we used a method recommended by its authors (Diaz-Uriarte
and Alvarez de Andres, 2006). For GLL algorithms (i.e., variants of HITON-PC,
HITON-MB, MMPC, MMMB) we experimented with both G2 and Fisher’s
Z-test whenever the latter was applicable. This table is continued in Tables 6
and 7.

Method Additional Information Reference
No feature selection

RFE (recursive feature
elimination SVM-based
method)

• reduction by 50% at each iteration, best performing fea-
ture subset is returned (Guyon et al., 2002)• reduction by 20% at each iteration, best performing fea-
ture subset is returned
• reduction by 50% at each iteration, statistically same as
best performing feature subset is returned
• reduction by 20% at each iteration, statistically same as
best performing feature subset is returned

UAF-KruskalWallis-
SVM (univariate ranking
by Kruskal-Wallis
statistic and feature
selection with SVM
backward wrapper)

• reduction by 50% at each iteration, best performing fea-
ture subset is returned (Statnikov et al., 2005a;

Hollander and Wolfe,
1999)• reduction by 20% at each iteration, best performing fea-

ture subset is returned
• reduction by 50% at each iteration, statistically same as
best performing feature subset is returned
• reduction by 20% at each iteration, statistically same as
best performing feature subset is returned

UAF-Signal2Noise-SVM
(univariate ranking by
signal-to-noise statistic
and feature selection
with SVM backward
wrapper)

• reduction by 50% at each iteration, best performing fea-
ture subset is returned (Guyon et al., 2006b;

Statnikov et al., 2005a;
Furey et al., 2000)• reduction by 20% at each iteration, best performing fea-

ture subset is returned
• reduction by 50% at each iteration, statistically same as
best performing feature subset is returned
• reduction by 20% at each iteration, statistically same as
best performing feature subset is returned

UAF-Neal-SVM
(univariate ranking by
Radford Neal’s statistic
and feature selection
with SVM backward
wrapper)

• reduction by 50% at each iteration, best performing fea-
ture subset is returned Chapter 10 in Guyon

et al. (2006a)• reduction by 20% at each iteration, best performing fea-
ture subset is returned
• reduction by 50% at each iteration, statistically same as
best performing feature subset is returned
• reduction by 20% at each iteration, statistically same as
best performing feature subset is returned

Random Forest Variable
Selection (RFVS)

• best performing feature subset is returned (Diaz-Uriarte and
Alvarez de Andres, 2006;
Breiman, 2001)

• statistically same as best performing feature subset is
returned
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Table 6: Continued from Table 5.

Method Additional Information Reference
LARS-Elastic Net
(LARS-EN)

• best performing feature subset is returned (Zou and Hastie, 2005)• statistically same as best performing feature subset is
returned

RELIEF (with backward
wrapping by SVM)

• Number of neighbors = 1, reduction by 50% at each
iteration, best performing feature subset is returned

(Kononenko, 1994; Kira
and Rendell, 1992)

• Number of neighbors = 1, reduction by 20% at each
iteration, best performing feature subset is returned
• Number of neighbors = 5, reduction by 50% at each
iteration, best performing feature subset is returned
• Number of neighbors = 5, reduction by 20% at each
iteration, best performing feature subset is returned
• Number of neighbors = 1, reduction by 50% at each iter-
ation, statistically same as best performing feature subset
is returned
• Number of neighbors = 1, reduction by 20% at each iter-
ation, statistically same as best performing feature subset
is returned
• Number of neighbors = 5, reduction by 50% at each iter-
ation, statistically same as best performing feature subset
is returned
• Number of neighbors = 5, reduction by 20% at each iter-
ation, statistically same as best performing feature subset
is returned

L0-norm (Weston et al., 2003)
Forward Stepwise Selec-
tion

using SVM classifier for wrapping (Caruana and Freitag,
1994)

Koller-Sahami (with
backward wrapping by
SVM)

• k = 0, best performing feature subset is returned

(Koller and Sahami,
1996)

• k = 1, best performing feature subset is returned
• k = 2, best performing feature subset is returned
• k = 0, statistically same as best performing feature subset
is returned
• k = 1, statistically same as best performing feature subset
is returned
• k = 2, statistically same as best performing feature subset
is returned

IAMB

• G2 test and a = 0.05 (Tsamardinos and
Aliferis, 2003;
Tsamardinos et al.,
2003a)

• G2 test and a = 0.01
• mutual information criterion with threshold=0.01

K2MB (Cooper et al., 1997;
Cooper and Herskovits,
1992)
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Table 7: Continued from Table 6.

Method Additional Information Reference
BLCD-MB (Mani and Cooper, 2004)
FAST-IAMB G2 test and a = 0.05 (Yaramakala and Mar-

garitis, 2005)

HITON-PC
(semi-interleaved)

• max-k = 4 and a = 0.05

Novel algorithm

• max-k = 3 and a = 0.05
• max-k = 2 and a = 0.05
• max-k = 1 and a = 0.05
• max-k = 4 and a = 0.01
• max-k = 3 and a = 0.01
• max-k = 2 and a = 0.01
• max-k = 1 and a = 0.01
• max-k and a selected by cross-validation

Interleaved HITON-PC

• max-k = 4 and a = 0.05

(Aliferis et al., 2003a)

• max-k = 3 and a = 0.05
• max-k = 2 and a = 0.05
• max-k = 1 and a = 0.05
• max-k = 4 and a = 0.01
• max-k = 3 and a = 0.01
• max-k = 2 and a = 0.01
• max-k = 1 and a = 0.01
• max-k and a selected by cross-validation

MMPC

• max-k = 4 and a = 0.05

(Tsamardinos et al., 2006,
2003b)

• max-k = 3 and a = 0.05
• max-k = 2 and a = 0.05
• max-k = 1 and a = 0.05
• max-k = 4 and a = 0.01
• max-k = 3 and a = 0.01
• max-k = 2 and a = 0.01
• max-k = 1 and a = 0.01
• max-k and a selected by cross-validation

Interleaved MMPC

• max-k = 4 and a = 0.05

Novel algorithm

• max-k = 3 and a = 0.05
• max-k = 2 and a = 0.05
• max-k = 1 and a = 0.05
• max-k = 4 and a = 0.01
• max-k = 3 and a = 0.01
• max-k = 2 and a = 0.01
• max-k = 1 and a = 0.01
• max-k and a selected by cross-validation

HITON-MB
(semi-interleaved)

• max-k = 3 and a = 0.05 Novel algorithm• max-k = 3 and a = 0.01

MMMB • max-k = 3 and a = 0.05 (Tsamardinos et al.,
2003b)• max-k = 3 and a = 0.01
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Table 10: Classification performance (AUC) for polynomial SVMs and classifiers na-
tive to LARS-EN, L0, and RFVS feature selection algorithms induced with
features selected by the latter three methods. In cells marked with “T”, the
corresponding feature selection method did not terminate within the allotted
time.

Feature 
subset

Classifier
In

fa
nt

_ 
M

or
ta

lit
y

O
hs

um
ed

A
C

PJ
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E
tio

lo
gy

L
ym
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om
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et

te
D

ex
te

r
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lv
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n
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an
ce

r
H

iv
a

N
ov

a
B

an
kr

up
tc

y

LARS-EN
(w/o stat. 
comp.)

SVM 0.88 0.80 0.89 0.60 0.99 0.98 1.00 0.98 0.89 0.92 0.73 0.96 0.95

LARS-EN 0.88 0.81 0.88 0.60 1.00 0.98 1.00 0.99 0.89 0.92 0.77 0.94 0.94

SVM 0.86 0.77 0.82 0.57 0.99 0.98 1.00 0.96 0.85 0.94 0.62 0.96 0.95

LARS-EN 0.87 0.78 0.82 0.57 1.00 0.97 0.99 0.96 0.90 0.94 0.69 0.93 0.94

SVM 0.82 0.72 0.84 0.60 0.99 0.97 1.00 0.97 0.81 0.91 0.68 0.96 T

L0 0.81 0.72 0.87 0.58 0.99 0.97 1.00 0.96 0.81 0.91 0.69 0.95 T

SVM 0.82 T T 0.61 T 0.98 1.00 0.97 T 0.93 0.74* T 0.96

RF 0.84 T T 0.63 T 0.98 1.00 0.97 T 0.91 0.78 T 0.97

SVM 0.86 T T 0.61 T 0.98 1.00 0.96 T 0.93 0.68* T 0.97

RF 0.78 T T 0.63 T 0.98 1.00 0.97 T 0.92 0.75 T 0.97

LARS-EN
(w/o stat. 
comp.)

LARS-EN
(with stat. 

comp.)

L0

RFVS
(w/o stat. 
comp.)

RFVS 
(with stat. 

comp.)

Table 11: Simulated and resimulated data sets used for experiments. Lung_Cancer
network is resimulated from human lung cancer gene expression data (Bhat-
tacharjee et al., 2001) using SCA algorithm (Friedman et al., 1999b). Gene
network is resimulated from yeast cell cycle gene expression data (Spellman
et al., 1998) using SCA algorithm. More details about data sets are provided
in Tsamardinos et al. (2006).

Bayesian 
network 

Number of 
variables 

Training samples 
Number of selected 

targets 

Child10 200 5 x 200, 5 x 500, 1 x 5000 10 

Insurance10 270 5 x 200, 5 x 500, 1 x 5000 10 

Alarm10 370 5 x 200, 5 x 500, 1 x 5000 10 

Hailfinder10 560 5 x 200, 5 x 500, 1 x 5000 10 

Munin 189 5 x 500, 1 x 5000 6 

Pigs 441 5 x 200, 5 x 500, 1 x 5000 10 

Link 724 5 x 200, 5 x 500, 1 x 5000 10 

Lung_Cancer  800 5 x 200, 5 x 500, 1 x 5000 11 

Gene 801 5 x 200, 5 x 500, 1 x 5000 11 
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Table 12: Algorithms used in local causal discovery experiments with simulated and
resimulated data.

HITON-PC (max k=4) HITON-PC-FDR (max k=4) 

HITON-PC (max k=3) HITON-PC-FDR (max k=3) 

HITON-PC (max k=2) HITON-PC-FDR (max k=2) 

HITON-PC (max k=1) HITON-PC-FDR (max k=1) 

Interleaved HITON-PC (max k=4) HITON-MB (max k=3) 

Interleaved HITON-PC (max k=3) MMMB (max k=3) 

Interleaved HITON-PC (max k=2) RFE (reduction of features by 50%) 

Interleaved HITON-PC (max k=1) RFE (reduction of features by 20%) 

MMPC (max k=4) UAF-KruskalWallis-SVM (50%) 

MMPC (max k=3) UAF-KruskalWallis-SVM (20%) 

MMPC (max k=2) UAF-Signal2Noise-SVM (50%) 

MMPC (max k=1) UAF-Signal2Noise-SVM (20%) 

Interleaved MMPC (max k=4) L0 

Interleaved MMPC (max k=3) LARS-EN (for multiclass response) 

Interleaved MMPC (max k=2) LARS-EN (one-versus-rest) 

Interleaved MMPC (max k=1)  
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Abstract
In part I of this work we introduced and evaluated the Generalized Local Learning

(GLL) framework for producing local causal and Markov blanket induction algorithms.
In the present second part we analyze the behavior of GLL algorithms and provide
extensions to the core methods. Specifically, we investigate the empirical convergence
of GLL to the true local neighborhood as a function of sample size. Moreover, we
study how predictivity improves with increasing sample size. Then we investigate how
sensitive are the algorithms to multiple statistical testing, especially in the presence
of many irrelevant features. Next we discuss the role of the algorithm parameters
and also show that Markov blanket and causal graph concepts can be used to un-
derstand deviations from optimality of state-of-the-art non-causal algorithms. The
present paper also introduces the following extensions to the core GLL framework:
parallel and distributed versions of GLL algorithms, versions with false discovery rate
control, strategies for constructing novel heuristics for specific domains, and divide-
and-conquer local-to-global learning (LGL) strategies. We test the generality of the
LGL approach by deriving a novel LGL-based algorithm that compares favorably to

© 2010 C.F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani & X.D. Koutsoukos.
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the state-of-the-art global learning algorithms. In addition, we investigate the use of
non-causal feature selection methods to facilitate global learning. Open problems and
future research paths related to local and local-to-global causal learning are discussed.
Keywords: local causal discovery, Markov blanket induction, feature selection, classifi-
cation, causal structure learning, learning of Bayesian networks

1. Introduction
The present paper constitutes the second part of the study of Generalized Local Learn-

ing (GLL) which provides a unified framework for discovering local causal structure
around a target variable of interest using observational data under broad assumptions.
GLL supports local discovery of variables that are direct causes or direct effects of
the target and of the Markov blanket of the target. In the first part of the work (Al-
iferis et al., 2010) we introduced GLL and explained the importance of local causal
discovery both for identification of highly predictive and parsimonious feature sets
(feature selection problem), and for scaling up causal discovery. We then evaluated GLL
instantiations against a plethora of state-of-the-art alternatives in many real, simulated
and resimulated data sets. The main conclusions were that GLL algorithms achieved
excellent predictivity, compactness and ability to learn local neighborhoods. Moreover,
state-of-the-art non-causal feature selection methods often achieve excellent predictivity
but are misleading in terms of causal discovery.

In the present paper we provide several extensions to GLL, study its properties,
and extend to global graph learning using GLL as the core method. Because of the
close relationship with Aliferis et al. (2010) we do not repeat here background material,
technical definitions, or algorithm specifications. These are found in Aliferis et al. (2010),
Sections 2–4.

The paper is organized as follows: Section 2 studies the empirical convergence
of GLL instantiations to the true local neighborhood and to optimal predictivity as a
function of sample size. Section 3 studies the effects of multiple statistical testing and
the sensitivity of GLL algorithms to large numbers of irrelevant features. Section 4
provides a theoretical analysis of GLL algorithms with respect to determinants of sta-
tistical decisions, heuristic efficiency and construction of inclusion heuristic functions,
reasons for good performance of direct causes and effects instead of induced Markov
blanket, and reduced sensitivity to error estimation problems that affect wrappers
and traditional filters. Section 5 covers two algorithmic extensions, parallel process-
ing and False Discovery Rate pre-filtering. Section 6 investigates the use of local
learners like GLL for global learning and provides a general local-to-global learning
framework. In that section we also derive a new algorithm HHC and compare it to
the previously described MMHC, and show the potential of local induction variable
ordering for tractability and quality improvements. Section 7 uses causal feature se-
lection theory to shed light on limitations of established and newer feature selection
methods and the inappropriateness of causally interpreting their output. Section 8
concludes with a discussion of the findings of the present paper and several open
problems. An appendix and an online supplement (http://www.nyuinformatics.
org/downloads/supplements/JMLR2009/index.html) provide additional
results, as well as code and data sets that can be used to replicate the experiments.
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2. Empirical Convergence and Comparison of Theoretical to
Estimated Markov Blanket

As explained in Aliferis et al. (2010), arguments about the suitability of Markov blanket
induction for feature selection for classification are based on large sample results, with
convergence of small sample performance to the theoretical optimum being unknown.
In the present section we use simulated data sets from published Bayesian networks
to produce an empirical evaluation of classification performance convergence with
respect to training sample size of two types of classifiers: one that uses the estimated
Markov blanket (MB(T)) or parents and children set (PC(T)) and one that uses the true
MB(T) or PC(T) set (obtained from the known generative network). We use polynomial
SVMs and KNN to fit each classifier type from three training sample sizes: 200, 500
and 5,000 samples. We note that GLL algorithms provide predictive and optimality
guarantees for universal approximator classifiers and SVMs and KNN are used here
as exemplars of this class of algorithms. In Aliferis et al. (2010) we also discuss more
generally suitable classifiers, distributions and loss functions for GLL instantiations.
An independent sample of 5,000 instances is used as evaluation test for classification
performance (measured by AUC for binary and proportion of correct classifications
for multiclass classification tasks). We use data sets sampled from 9 different Bayesian
networks (See Table 15 in the Appendix). For each Bayesian network, we randomly
select 10 different targets and generate 5 samples (except for sample size 5,000 where one
sample is generated) to reduce variability due to sampling.1 An independent sample
of 5,000 instances is used as evaluation test for classification performance. Several
local causal induction algorithms are used (including algorithms that induce direct
causes/direct effects, and Markov blankets), and are compared to several non-causal
algorithms to obtain reference points for baseline performance: RFE, UAF (univariate
association filtering), L0, and LARS-EN (see Table 16 in the Appendix for the list of all
algorithms). Classifier parameters (misclassification cost C and degree d for polynomial
SVMs and number of neighbors K for KNN) are optimized by nested cross-validation
following the same methodology as in Aliferis et al. (2010).

Results are presented in Figure 1 (and more details are given in Tables S19 and S20
of the online supplement). The main conclusions follow. Note that similar patterns are
present when KNN is used instead of SVMs (with the only difference that convergence
is slightly slower for KNN than for SVMs). For brevity we discuss here the SVM results
only.

(a) Classification performance of the true parents and children and Markov blan-
ket feature sets are not statistically significantly different at the 0.05 alpha level
in sample 200 (p-value = 0.1440) and are statistically significantly different for
larger samples (p-values = 0.0098 and <0.0001 for sample sizes 500 and 5,000,
respectively). The difference in SVM classification performance between using the
PC(T) and MB(T) sets however does not exceed 0.02 AUC in favor of the MB(T)
set. This means that even when the true PC(T) and MB(T) sets are known in the
tested data, fitting classifiers from small data using the PC(T) set is as good as

1. For networks Lung_Cancer and Gene, we also add an eleventh target that corresponds to the natural
response variable: lung cancer diagnosis and cell cycle state, respectively. For network Munin we use
only 6 targets because of extreme probability distributions of the majority of variables that do not allow
variability in the finite sample of size 500 and even 5000. Because of the same reason, we did not
experiment with sample size 200 in the Munin network.
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using the MB(T) set. In large sample, MB(T) features have a small predictive
advantage over PC(T) features.

(b) In small samples, feature selection increases classification performance for all
tested classifier types (i.e., both when we know the PC(T) or MB(T) sets and when
we estimate them from data) over using all features. This advantage becomes
smaller but does not vanish in large sample. The difference in SVM classification
performance between an average feature selection method and using all features is
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Figure 1: Classification performance of polynomial SVM (left) and KNN (right) classi-
fiers in 9 simulated and resimulated data sets. Results are given for training
sample sizes = 200, 500, and 5000. “True-PC” and “True-MB” correspond to
the true PC(T) and MB(T) feature sets obtained from the known generative
network. The bars denote maximum and minimum performance over multi-
ple training samples of each size (data is available only for sample sizes 200
and 500). The performances reported in the figure are averaged over all data
sets, selected targets, and multiple samples of each size. L0 did not terminate
within the allotted time limit for sample size 5000.
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statistically significant at the 0.05 alpha level (p-values = <0.0001, 0.0028, <0.0001
for sample sizes 200, 500, and 5,000, respectively).

(c) The true PC(T) or true MB(T) features set when fitted from sample size of 200 has
a small (0.02-0.03 AUC/proportion of correct classifications for SVM) advantage
over the estimated PC(T) or MB(T) features fitted from small sample. This
difference is statistically significant at the 0.05 alpha level with p-values 0.0144
and <0.0001 for the PC(T) and MB(T) classifiers, respectively. Very quickly (as
sample size becomes 500), this advantage becomes insignificant (0.01 point of
AUC/proportion of correct classifications for SVM) with corresponding p-values
0.4708 and 0.0506 for the PC(T) and MB(T) classifiers, respectively. This implies
that predictivity of estimated MB(T) and PC(T) sets converge to the optimal one
very quickly with respect to sample size.

(d) Classifiers for estimated MB(T)/PC(T) sets fitted from small sample and classi-
fiers for the true MB(T)/PC(T) sets fitted from small sample have indistinguish-
able performance in sample size 500 (as shown in (c) above); then performance
increases in sample size 5,000 for both types of classifiers (p-values ranging from
<0.0001 to 0.0174 with AUC increases between 0.01 and 0.04). We thus conclude
that fitting the right classifier parameters to the identified features is less sample
efficient than identifying the right feature set.

(e) Some of the non-causal feature selection methods (e.g., L0, LARS-EN) tend to com-
pare less favorably in small sample to their large sample performance compared
to GLL algorithms.

3. Multiple Statistical Tests and Insensitivity to Irrelevant Variables
In this section we focus our attention to a subtle but an important problem facing many
feature and causal discovery algorithms operating in very high dimensional spaces,
namely the problem of multiple statistical comparisons, which is exacerbated when
many irrelevant features are present. We will show that GLL algorithms have inherent
control to false positives due to multiple comparisons while the same is not true for
other non-causal feature selection methods tested.

Briefly stated, when conducting n statistical tests with an error type I level a (i.e.,
statistical significance level, that is probability that a truly null hypothesis is rejected,
thus falsely concluding that a statistical difference or association or dependence exists
when in reality it does not) it is expected that a · n false positives will occur on average.
Consider a common analysis situation in bioinformatics research where a researcher
conducts one test per variable (i.e., single nucleotide polymorphism (SNP)) in an assay
with 10,000 SNP probes in total. 10,000 such tests need be conducted to see whether uni-
variately each SNP probe is differentially present in two or more phenotype categories.
If the researcher uses a equal to 5%, then under the null hypothesis (i.e., all 10,000 SNPs
are not truly differentially expressed) the analysis will yield 500 false positive SNP
probes.

Standard statistical practice involves addressing the problem via one of two basic
approaches. The first approach, the classic Bonferroni correction (Casella and Berger,
2002), adjusts the a by replacing it by a/n so that in our example the 5% false positive
rate is preserved for each feature selected by the multiple tests. This approach preserves
the desired a, but reduces the power to detect statistically significant features (namely
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Table 1: Classification performance (AUC) of polynomial SVM estimated on
5,000 sample independent testing set for features selected by HITON-
PC with parameter max-k={0, 1, 2, 3, 4} on different training sample sizes
{100, 200, 500, 1000, 2000, 5000}. The color of each table cell denotes strength of
predictivity with yellow (light) corresponding to low classification performance
and red (dark) to high classification performance.

Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 1.00 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.98 0.98 0.63 0.63 0.62 0.62 0.62 0.50 0.50 0.50 0.50 0.50
200 1.00 1.00 0.99 0.98 0.98 0.99 1.00 0.99 0.99 0.99 0.67 0.69 0.67 0.66 0.66 0.51 0.50 0.49 0.50 0.50
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.72 0.73 0.72 0.71 0.50 0.50 0.51 0.49 0.49

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.68 0.74 0.73 0.74 0.72 0.50 0.52 0.51 0.50 0.49
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.74 0.74 0.74 0.74 0.49 0.50 0.49 0.50 0.49
5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.72 0.74 0.74 0.74 0.74 0.51 0.51 0.49 0.49 0.49

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 0.95 0.95 0.95 0.95 0.95 0.83 0.92 0.92 0.92 0.92 0.66 0.69 0.69 0.69 0.69 0.50 0.50 0.50 0.50 0.50
200 0.96 0.95 0.95 0.95 0.95 0.89 0.95 0.95 0.95 0.95 0.68 0.77 0.78 0.78 0.78 0.50 0.50 0.50 0.50 0.50
500 0.96 0.96 0.96 0.96 0.96 0.93 0.95 0.95 0.95 0.95 0.71 0.80 0.80 0.80 0.81 0.50 0.51 0.50 0.50 0.50

1000 0.97 0.97 0.97 0.97 0.97 0.94 0.97 0.96 0.96 0.96 0.73 0.82 0.81 0.82 0.82 0.50 0.50 0.50 0.50 0.50
2000 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.76 0.82 0.82 0.82 0.82 0.50 0.50 0.50 0.50 0.50
5000 0.97 0.98 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.81 0.83 0.83 0.83 0.83 0.50 0.50 0.50 0.50 0.50

Version 1
(original network)

Version 2 
(original network + 
irrelevant variables)

Version 3
(weakened signal + 
irrelevant variables)

Version 4
(only irrelevant variables)

max-k parameter

Version 1
(original network)

max-k parameter

Version 2 
(original network + 
irrelevant variables)

Version 3
(weakened signal + 
irrelevant variables)

Version 4
(only irrelevant variables)

 
 

Low classification performance High classification performance  

the features that are truly differentially expressed and detectable at a but non-detectable
at a/n), hence creates false negatives that were not present before the correction. The
second approach, False Discovery Rate (FDR) control (Benjamini and Yekutieli, 2001;
Benjamini and Hochberg, 1995), trades off false positives and false negatives by ensuring
not that each feature passing the chosen p-value threshold preserves the original a, but
that from the all features found to be significant (i.e., for which the null hypothesis is
rejected) a desired proportion will be false positives on average. In our example, FDR
methods may, for example, allow the researcher to ensure that on average no more
than 10 out of 100 SNPs selected are false positives. This is highly useful in exploratory
analysis of high-dimensional data where subsequent experimentation can sort out false
positives easily but where false negatives have high cost.

Constraint-based causal methods employ, in large data sets and depending on
connectivity and inclusion heuristic efficiency, many thousands of statistical tests of
independence and are thus expected a priori to be particularly sensitive to the multiple
testing problem. We note that, rather not obviously at first, testing under the null
hypothesis does not only occur when irrelevant features exist but also whenever we
test weakly relevant features conditioned on a set of variables that blocks all paths
connecting it with the target. Other feature selection methods do not explicitly conduct
statistical tests of independence but may also be sensitive to many irrelevant features as
we will show. In the present section we first systematically explore empirically and then
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Table 2: Number of false negatives in the parents and children set for features selected
by HITON-PC with parameter max-k={0, 1, 2, 3, 4} on different training sample
sizes {100, 200, 500, 1000, 2000, 5000}. For Version 4 of the network the parents
and children set is empty since there are no relevant variables. The color of each
table cell denotes number of false negatives with yellow (light) corresponding
to smaller values and red (dark) to larger ones.

Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 3.30 15.30 18.20 18.20 18.20 3.30 15.40 18.40 18.40 18.40 9.40 21.90 23.40 23.40 23.40
200 1.20 7.70 17.70 19.60 19.60 1.20 7.70 17.70 19.60 19.60 4.40 17.50 23.20 23.40 23.40
500 0.80 1.30 5.70 15.10 18.00 0.80 1.30 5.70 15.10 18.00 1.00 4.60 17.50 21.70 21.90

1000 0.30 1.00 1.50 5.40 11.70 0.30 1.00 1.50 5.40 11.70 0.80 1.70 6.60 17.50 19.90
2000 0.30 0.90 1.00 1.80 4.10 0.30 0.90 1.00 1.80 4.10 0.70 1.00 1.80 8.70 15.80
5000 0.00 0.40 1.00 1.10 1.10 0.00 0.40 1.00 1.10 1.10 0.30 0.80 1.00 1.40 4.80

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 1.70 4.10 4.10 4.10 4.10 1.70 4.10 4.20 4.20 4.20 2.20 5.00 5.00 5.00 5.00
200 1.40 3.90 4.00 4.00 4.00 1.40 3.90 4.00 4.00 4.00 1.80 4.50 4.70 4.70 4.70
500 0.40 2.60 2.70 2.70 2.70 0.40 2.60 2.90 3.00 3.00 0.60 3.90 4.40 4.40 4.40

1000 0.10 2.00 2.10 2.10 2.10 0.10 2.00 2.20 2.20 2.20 0.80 3.60 3.90 4.00 4.00
2000 0.00 1.40 1.50 1.50 1.50 0.00 1.40 1.50 1.50 1.50 0.10 3.10 3.60 3.50 3.50
5000 0.00 0.50 1.10 1.20 1.20 0.00 0.50 1.10 1.20 1.20 0.00 1.40 1.70 1.80 1.80

Version 1
(original network)

Version 2 
(original network + irrelevant 

variables)

Version 3
(weakened signal + irrelevant 

variables)
max-k parameter

Version 1
(original network)

Version 2 
(original network + irrelevant 

variables)

Version 3
(weakened signal + irrelevant 

variables)

max-k parameter

 
 

Small number of false negatives Large number of false negatives  

examine theoretically the degree of sensitivity of GLL algorithms to irrelevant features,
how they address the multiple testing problem, and how other feature selection and
causal discovery algorithms compare along these dimensions.

In the first set of experiments we run only semi-interleaved HITON-PC without
symmetry correction on two networks and variants. The networks, described in Aliferis
et al. (2010), are the Lung_Cancer resimulated network and the Alarm10 network. The
former is chosen for its higher connectivity whereas the latter is designed to have lower
connectivity. In the Lung_Cancer network we focused our attention on the natural target
variable; this target has 26 members of the parents and children set and 18 spouses, 14
irrelevant variables, and 741 weakly relevant ones. We created four versions of this
network: Version 1 contains the original network (total number of variables 800). In
Version 2 we augment the original network with 7990 irrelevant variables (total number
of variables 8790). Version 3 is the same as Version 2, except for 10% of values of the
target are randomly flipped to weaken the signal (total number of variables 8790).
Finally, Version 4 is same as Version 2, except that there are only irrelevant variables and
the target (total number of variables is 8790� 741� 18� 26 = 8005). The tiled Alarm10
has also four corresponding versions but its target was chosen randomly and it has only
6 members of the parents and children set and no spouses. In both networks (and their
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Table 3: Number of false positives (within weakly relevant variables) in the
parents and children set for features selected by HITON-PC with
parameter max-k={0, 1, 2, 3, 4} on different training sample sizes
{100, 200, 500, 1000, 2000, 5000}. For Version 4 of the network there are
no weakly relevant variables. The color of each table cell denotes number of
false positives with yellow (light) corresponding to smaller values and red
(dark) to larger ones.

Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 65.00 0.80 0.30 0.30 0.30 65.00 0.70 0.40 0.40 0.40 62.40 0.90 0.50 0.50 0.50
200 120.50 3.00 0.10 0.00 0.00 120.50 3.00 0.10 0.00 0.00 85.60 2.90 0.60 0.60 0.60
500 149.00 5.80 0.00 0.10 0.00 149.00 5.80 0.00 0.10 0.00 110.70 4.20 0.40 0.30 0.30

1000 202.90 11.60 0.10 0.00 0.00 202.90 11.60 0.10 0.00 0.00 123.70 5.70 0.00 0.00 0.00
2000 236.10 16.40 0.50 0.10 0.00 236.10 16.40 0.50 0.10 0.00 171.10 12.00 0.40 0.00 0.00
5000 410.40 30.80 2.60 0.10 0.00 410.40 30.80 2.60 0.10 0.00 272.60 20.30 1.10 0.00 0.00

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 22.10 3.70 3.70 3.70 3.70 22.10 2.40 2.40 2.40 2.40 22.50 1.80 1.80 1.80 1.80
200 26.50 0.80 0.80 0.80 0.80 26.50 0.60 0.50 0.50 0.50 25.20 1.30 0.90 0.90 0.90
500 32.20 0.90 0.10 0.10 0.10 32.20 0.80 0.10 0.10 0.10 32.00 1.00 0.20 0.20 0.20

1000 30.20 1.40 0.00 0.00 0.00 30.20 1.30 0.00 0.00 0.00 27.10 0.70 0.10 0.30 0.30
2000 33.50 2.90 0.30 0.30 0.30 33.50 2.80 0.30 0.30 0.30 32.40 1.80 0.60 0.20 0.20
5000 38.00 5.40 0.30 0.20 0.10 38.00 5.30 0.30 0.20 0.10 37.30 3.10 0.20 0.20 0.20

Version 1
(original network)

Version 2 
(original network + 
irrelevant variables)

Version 3
(weakened signal + 
irrelevant variables)

max-k parameter

Version 1
(original network)

Version 2 
(original network + 
irrelevant variables)

Version 3
(weakened signal + 
irrelevant variables)

max-k parameter

 
 

Small number of false positives Large number of false positives  

variants) we create irrelevant variables by randomly permuting values of weakly and
strongly variables so that the distribution of each variable values is realistic. With these
8 data set versions we can systematically examine the effects of presence of irrelevant
variables, strength of predictive signal of features for the target, network connectivity
and of the values of the GLL max-k parameter (Aliferis et al., 2010).

We run HITON-PC and build SVM classifiers for all networks and variants, varying
sample size and the max-k parameter, and measure AUC, false negatives, false positives
that are weakly relevant, false positives that are irrelevant and total false positives. To
ensure that our results are not affected by variability in small samples, we generate 10
random samples of each size and average results.

Tables 1–5 provide evidence for the following conclusions:

(a) Classification performance is mildly or not affected by false positives and false
negatives (Table 1). When many false negatives are present, predictivity is com-
pensated by the few remaining strong relevant features plus strongly predictive
weakly relevant ones. This implies that classification performance cannot be used
to inform us about the presence of false positives/negatives.
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Table 4: Number of false positives in the parents and children set for features selected
by HITON-PC with parameter max-k={0, 1, 2, 3, 4} on different training sam-
ple sizes {100, 200, 500, 1000, 2000, 5000}. The color of each table cell denotes
number of false positives with yellow (light) corresponding to smaller values
and red (dark) to larger ones.

Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 65.20 0.80 0.30 0.30 0.30 476.60 2.30 1.90 1.90 1.90 551.20 12.60 9.10 9.10 9.10 411.60 12.70 9.80 9.80 9.80
200 122.00 3.00 0.10 0.00 0.00 609.10 4.20 0.10 0.00 0.00 557.20 17.80 3.50 3.60 3.60 488.60 17.30 5.80 5.50 5.50
500 149.20 5.80 0.00 0.10 0.00 595.00 7.90 0.00 0.10 0.00 535.60 17.50 1.30 1.50 1.70 446.00 28.10 6.40 5.00 4.90

1000 203.40 11.60 0.10 0.00 0.00 625.60 13.20 0.10 0.00 0.00 536.90 18.40 0.20 0.30 0.30 422.70 31.20 6.90 5.30 5.10
2000 236.90 16.40 0.50 0.10 0.00 645.10 18.00 0.50 0.10 0.00 579.00 23.10 0.80 0.00 0.00 409.00 31.80 6.10 4.00 4.00
5000 411.10 30.80 2.60 0.10 0.00 813.50 32.50 2.60 0.10 0.00 670.40 32.10 1.10 0.00 0.00 403.10 30.90 6.20 4.70 4.10

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 22.10 3.70 3.70 3.70 3.70 414.20 25.40 25.20 25.20 25.20 431.20 28.00 28.20 28.20 28.20 392.10 23.30 23.40 23.40 23.40
200 26.50 0.80 0.80 0.80 0.80 439.40 6.30 4.30 4.30 4.30 453.00 11.60 7.40 7.40 7.40 412.90 19.30 9.70 9.70 9.70
500 32.20 0.90 0.10 0.10 0.10 443.80 4.70 0.90 0.90 0.90 449.90 15.80 4.60 4.10 4.00 411.60 24.40 6.80 6.60 6.60

1000 30.20 1.40 0.00 0.00 0.00 444.30 3.70 0.90 0.60 0.60 427.00 13.30 3.40 3.10 3.00 414.10 22.70 7.20 6.40 6.30
2000 33.50 2.90 0.30 0.30 0.30 415.50 4.40 0.30 0.30 0.30 412.40 11.90 2.40 1.80 1.70 382.00 25.00 8.80 6.50 5.90
5000 38.00 5.40 0.30 0.20 0.10 419.00 6.70 0.40 0.20 0.10 404.40 10.80 1.20 0.50 0.50 381.00 22.90 6.10 5.00 4.90

max-k parameter

Version 1
(original network)

Version 2 
(original network + irrelevant 

variables)

Version 3
(weakened signal + irrelevant 

variables)

Version 4
(only irrelevant variables)

max-k parameter

Version 1
(original network)

Version 2 
(original network + irrelevant 

variables)

Version 3
(weakened signal + irrelevant 

variables)

Version 4
(only irrelevant variables)

 
 

Small number of false positives Large number of false positives  
 

(b) As expected, false negatives are reduced as sample size grows (because power
increases), however they also increase as max-k grows, because the number of
tests increases as max-k grows and thus overall power decreases (Table 2).

(c) When no irrelevant features are present, as sample size grows the number of
false positives that are weakly relevant increases if max-k is not sufficient to block
paths from/to each weakly relevant to/from the target. As max-k increases the
false positives decrease to the point that they vanish (Table 3). Overall, both false
negatives and false positives vanish given enough sample size and sufficient (but
not excessive) max-k, (i.e., sample size � 2,000, max-k=2) (Tables 2 and 4).

(d) When irrelevant features are present, as sample size grows the number of false
positives that are weakly relevant increases if max-k is not sufficient to block paths
from/to each weakly relevant to/from the target. As max-k increases, the false
positives decrease to the point that they vanish (Table 3). False positives due to
irrelevant features (Table 5) quickly vanish as max-k becomes 2 or higher and this
holds as long as sample size is larger than 200. False negatives are not affected by
presence of irrelevant features (Table 2). Thus, overall, with enough sample size
and right value of max-k, both false negatives and false positives vanish (Tables 2
and 4).

(e) When the predictive signal is weaker, both false negatives are increased and false
positives within weakly relevant variables are decreased for a given sample size
(because power is smaller) (Tables 2 and 3). However false positive irrelevant
variables (Table 5) are increased. This is due to the fact that fewer features enter
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ALIFERIS STATNIKOV TSAMARDINOS MANI KOUTSOUKOS

Table 5: Number of false positives (within irrelevant variables) in the parents and chil-
dren set for features selected by HITON-PC with parameter max-k={0, 1, 2, 3, 4}
on different training sample sizes {100, 200, 500, 1000, 2000, 5000}. The color
of each table cell denotes number of false positives with yellow (light) corre-
sponding to smaller values and red (dark) to larger ones.

Lung_Cancer

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 0.20 0.00 0.00 0.00 0.00 411.60 1.60 1.50 1.50 1.50 488.80 11.70 8.60 8.60 8.60 411.60 12.70 9.80 9.80 9.80
200 1.50 0.00 0.00 0.00 0.00 488.60 1.20 0.00 0.00 0.00 471.60 14.90 2.90 3.00 3.00 488.60 17.30 5.80 5.50 5.50
500 0.20 0.00 0.00 0.00 0.00 446.00 2.10 0.00 0.00 0.00 424.90 13.30 0.90 1.20 1.40 446.00 28.10 6.40 5.00 4.90

1000 0.50 0.00 0.00 0.00 0.00 422.70 1.60 0.00 0.00 0.00 413.20 12.70 0.20 0.30 0.30 422.70 31.20 6.90 5.30 5.10
2000 0.80 0.00 0.00 0.00 0.00 409.00 1.60 0.00 0.00 0.00 407.90 11.10 0.40 0.00 0.00 409.00 31.80 6.10 4.00 4.00
5000 0.70 0.00 0.00 0.00 0.00 403.10 1.70 0.00 0.00 0.00 397.80 11.80 0.00 0.00 0.00 403.10 30.90 6.20 4.70 4.10

Alarm10

Sample size 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
100 0.00 0.00 0.00 0.00 0.00 392.10 23.00 22.80 22.80 22.80 408.70 26.20 26.40 26.40 26.40 392.10 23.30 23.40 23.40 23.40
200 0.00 0.00 0.00 0.00 0.00 412.90 5.70 3.80 3.80 3.80 427.80 10.30 6.50 6.50 6.50 412.90 19.30 9.70 9.70 9.70
500 0.00 0.00 0.00 0.00 0.00 411.60 3.90 0.80 0.80 0.80 417.90 14.80 4.40 3.90 3.80 411.60 24.40 6.80 6.60 6.60

1000 0.00 0.00 0.00 0.00 0.00 414.10 2.40 0.90 0.60 0.60 399.90 12.60 3.30 2.80 2.70 414.10 22.70 7.20 6.40 6.30
2000 0.00 0.00 0.00 0.00 0.00 382.00 1.60 0.00 0.00 0.00 380.00 10.10 1.80 1.60 1.50 382.00 25.00 8.80 6.50 5.90
5000 0.00 0.00 0.00 0.00 0.00 381.00 1.40 0.10 0.00 0.00 367.10 7.70 1.00 0.30 0.30 381.00 22.90 6.10 5.00 4.90

max-k parameter

Version 1
(original network)

Version 2 
(original network + irrelevant 

variables)

Version 3
(weakened signal + irrelevant 

variables)

Version 4
(only irrelevant variables)

max-k parameter

Version 1
(original network)

Version 2 
(original network + irrelevant 

variables)

Version 3
(weakened signal + irrelevant 

variables)

Version 4
(only irrelevant variables)

 
 

Small number of false positives Large number of false positives  

the TPC(T) set thus leading to fewer tests that can be performed hence smaller
capacity to remove irrelevant false positives. As previously with enough sample
and right max-k, false positives and negatives are fully eliminated (Tables 2 and 4).

(f) When the data consists only of irrelevant features, false positives (irrelevant) are
reduced as max-k increases for all sample sizes (Table 5). There is a very small
persistent residual number of false positives regardless of how small the sample
is or how big the max-k. These phenomena happen because the algorithm needs
a sufficient number of elements in the TPC(T) set (i.e., tentative parents and
children of T) in order to execute conditional independence tests and remove the
false positive irrelevant features.

(g) The above trends are remarkably consistent in both networks suggesting that
different redundancy and connectivity do not affect the above algorithm behavior.

In the second set of experiments we compare empirically in the above two networks
(four variants for each as previously) and 6 sample sizes the following algorithms: semi-
interleaved HITON-PC, MMPC, a version of HITON-PC where we pre-filter features by
Benjamini FDR control (at FDR rate threshold of 5%) (Benjamini and Yekutieli, 2001),
the true PC(T) set extracted from the data generating network (denoted as “True-PC”
in Table 6), UAF (univariate association filtering) with Bonferroni correction, UAF
with Benjamini FDR control, uncorrected UAF, “wrapped” UAF, RFE, and LARS-EN.
Tables 6–9 provide support for the following conclusions:
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Table 7: Number of false negatives in the parents and children set for selected features.
HITON-PC, HITON-PC-FDR, and MMPC are applied with max-k=2. For
Version 4 of the network the parents and children set is empty since there are
no relevant variables. The color of each table cell denotes number of false
negatives with yellow (light) corresponding to smaller values and red (dark)
to larger ones.

Lung_Cancer

FS method 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000
UAF 3.3 1.2 0.8 0.3 0.3 0.0 3.3 1.2 0.8 0.3 0.3 0.0 9.4 4.4 1.0 0.8 0.7 0.3

UAF+Bonferroni 13.9 6.1 1.5 1.0 0.9 0.2 17.6 8.4 1.8 1.0 1.0 0.5 24.9 19.9 6.7 2.4 1.0 1.0
UAF+FDR 9.2 2.5 0.9 0.5 0.4 0.0 13.4 4.8 1.3 0.9 0.8 0.0 24.0 16.2 3.5 1.3 1.0 0.8
HITON-PC 18.2 17.7 5.7 1.5 1.0 1.0 18.4 17.7 5.7 1.5 1.0 1.0 23.4 23.2 17.5 6.6 1.8 1.0

HITON-PC-FDR 19.3 18.5 5.7 1.5 1.0 1.0 19.2 18.5 5.7 1.5 1.0 1.0 24.7 23.3 17.9 6.6 1.8 1.0
MMPC 18.5 17.7 5.7 1.5 1.0 1.0 18.9 17.7 5.7 1.5 1.0 1.0 23.4 22.8 17.6 6.6 1.8 1.0

LARS-EN 19.9 14.2 8.8 7.9 3.6 1.0 15.9 18.6 10.0 10.0 3.7 1.6 22.8 21.5 18.3 13.4 9.4 10.7
RFE (reduction 50%) 20.7 15.9 9.4 6.1 4.1 1.0 18.8 14.6 13.3 9.2 3.2 1.6 21.1 15.9 7.6 8.6 14.8 12.8
RFE (reduction 20%) 21.9 17.1 10.5 12.5 4.9 2.6 18.7 18.8 11.0 9.1 3.7 2.3 15.6 18.1 8.3 14.3 16.9 12.3

UAF-KW-SVM (50%) 17.5 16.6 5.9 5.3 1.6 0.7 17.8 15.8 8.6 9.8 5.6 1.5 20.1 14.1 10.9 9.3 8.2 7.3
UAF-KW-SVM (20%) 21.0 18.8 10.5 8.3 2.6 0.7 19.1 18.7 10.7 13.2 6.4 1.2 20.5 14.3 12.4 8.1 6.9 7.2
UAF-S2N-SVM (50%) 20.8 17.1 6.0 7.6 2.5 1.3 17.6 16.7 8.4 7.1 7.0 1.9 16.6 15.4 15.6 11.5 8.3 4.9
UAF-S2N-SVM (20%) 23.1 19.9 9.4 10.5 5.1 1.8 20.5 18.5 10.4 11.3 7.0 0.7 19.4 14.8 15.4 12.3 6.6 5.5

Alarm10

FS method 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000
UAF 1.7 1.4 0.4 0.1 0.0 0.0 1.7 1.4 0.4 0.1 0.0 0.0 2.2 1.8 0.6 0.8 0.1 0.0

UAF+Bonferroni 4.1 2.7 1.4 1.0 0.5 0.0 4.7 3.2 1.5 1.1 0.7 0.2 5.0 4.4 2.7 1.4 1.0 0.5
UAF+FDR 3.3 2.2 0.8 1.0 0.3 0.0 4.3 2.8 1.4 1.1 0.5 0.0 4.9 3.8 2.4 1.2 0.9 0.2
HITON-PC 4.1 4.0 2.7 2.1 1.5 1.1 4.2 4.0 2.9 2.2 1.5 1.1 5.0 4.7 4.4 3.9 3.6 1.7

HITON-PC-FDR 4.6 4.2 3.2 2.3 1.7 1.0 4.8 4.3 3.2 2.3 1.7 1.0 5.5 4.7 4.4 4.2 3.6 2.1
MMPC 4.1 4.0 3.0 2.4 1.6 1.0 4.3 4.1 3.5 2.4 1.6 1.0 5.0 4.7 4.5 4.2 3.7 2.1

LARS-EN 3.8 3.8 1.7 1.7 1.5 1.4 4.4 4.1 2.5 2.2 1.9 1.4 4.6 4.6 4.6 3.5 2.2 2.0
RFE (reduction 50%) 4.1 3.7 2.1 1.9 2.3 1.5 4.8 4.7 3.2 3.3 2.6 1.8 4.6 4.9 5.2 4.6 4.2 3.6
RFE (reduction 20%) 4.1 3.7 2.4 2.7 2.1 1.8 5.0 4.4 3.4 3.2 2.3 2.0 5.0 5.3 5.0 4.5 3.7 3.3

UAF-KW-SVM (50%) 3.8 3.8 2.2 0.8 0.9 0.4 4.8 3.6 2.4 2.2 1.4 0.1 3.8 4.2 3.4 2.1 2.2 0.8
UAF-KW-SVM (20%) 4.0 3.2 2.4 1.1 0.4 0.0 4.2 3.6 2.4 1.9 1.2 0.0 4.2 4.3 2.7 2.8 1.9 1.2
UAF-S2N-SVM (50%) 3.5 3.6 2.1 1.0 0.8 0.4 4.7 3.8 2.2 2.1 1.5 0.2 5.1 4.4 4.3 3.5 2.7 1.0
UAF-S2N-SVM (20%) 4.3 3.5 2.6 1.3 0.5 0.0 4.9 3.7 2.5 1.9 1.7 0.2 5.0 4.5 3.6 3.0 2.5 1.4

Version 1
(original network)

Version 2 
(original network + irrelevant 

variables)

Version 3
(weakened signal + irrelevant 

variables)
sample size

Version 1
(original network)

Version 2 
(original network + irrelevant 

variables)

Version 3
(weakened signal + irrelevant 

variables)
sample size

Small number of false negatives Large number of false negatives

(h) Due to strength of signal and redundancy of predictors, AUC reaches the theo-
retical maximum (provided by the generative network) very quickly and for all
methods (Table 6).

(i) When no irrelevant features are present and in the stronger signal setting, simple
and FDR-corrected UAF (but not wrapped UAF) has the least false negatives in
very small samples (Table 7). As sample size grows all methods reduce their false
negatives (Table 7). GLL methods pick up the strongly relevant features without
false positives and reach near perfect separation (i.e., 1-2 false negatives and
zero false positives) at sample size 1,000 and higher (Table 8). No other method
simultaneously minimizes false positives and false negatives as GLL.
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(j) In the setting of strong signal with irrelevant features, simple UAF has the least
false negatives in very small samples (Table 7) and the largest number of false
positives (Table 8).

(k) When the predictive signal is weaker, false negatives are increased and weakly
relevant false positives are decreased for a given sample size compared to the
stronger signal case (Tables 7 and 8). Simple UAF is again most sensitive in terms
of detecting strongly relevant features in smaller samples until sample size 1,000-
2,000 where UAF-Bonferroni and UAF-FDR and GLL match the false negative
rates (Table 7). As previously, GLL (with HITON-PC and MMPC performing
similarly) achieves excellent false positive rates better than those by FDR not only
for weakly relevant but also for irrelevant features.

(l) HITON-PC augmented with FDR pre-filtering behaves almost identically as regu-
lar HITON-PC except for the case with only irrelevant features in the data where
HITON-PC without FDR admits a few false positives (Table 9).

(m) State-of-the-art feature selection methods are prone to select very large numbers
of irrelevant features (Table 9).

In conclusion, HITON-PC and by extension GLL algorithms (since the same funda-
mental mechanisms for variable inclusion and elimination are shared because of the
GLL-PC template and admissibility requirements), have a very strong built-in capacity
to control for false positives due to multiple comparisons. False positives due to multiple
comparisons quickly vanish for max-k 1 or higher regardless of sample size. Given enough
sample size (s1,000 or more in the data tested), and by choosing 5% as the nominal a for
all conditioning independence tests executed, the algorithm fully eliminates irrelevant
features from its output without incurring a penalty in false negatives, even when
irrelevant features are the majority among observed features. Parameter max-k controls
the false positives due to both weakly relevant and irrelevant features. The false positive
rate in this worst-case situation is in the presented experiments s 5/8, 000 = 0.000625
which is much better than what the conservative Bonferroni-adjusted a guarantees,
and without incurring false negatives (as both Bonferroni and FDR methods do). Both
established feature selectors such as variants of UAF and newer ones are very sensitive
to irrelevant features and produce large numbers of false positives. Given the attractive
characteristics of FDR-augmented HITON-PC, we evaluate it with real data sets in
Section 5.

4. Theoretical Analysis of GLL
In the present section we provide a theoretical analysis of the Generalized Local Learning
algorithms.

4.1. Determinants of Quality of Statistical Decisions and Computational
Tractability. Parameters max-k and h-ps

On a rather superficial level when conditioning sets are large enough, statistical tests
become less reliable. For example, as explained in Aliferis et al. (2010), cells in con-
tingency tables used to calculate p-values of discrete tests of independence (such as
the widely-used G2 or X2 test) become scarcely populated and this leads to unreliable
test results. This motivates the heuristic practice of considering as unreliable and not
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Table 8: Number of false positives (within weakly relevant variables) in the parents and
children set for selected features. HITON-PC, HITON-PC-FDR, and MMPC
are applied with max-k=2. For Version 4 of the network there are no weakly
relevant variables. The color of each table cell denotes number of false positives
with yellow (light) corresponding to smaller values and red (dark) to larger
ones.

Lung_Cancer

FS method 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000
UAF 65.0 120.5 149.0 202.9 236.1 410.4 65.0 120.5 149.0 202.9 236.1 410.4 62.4 85.6 110.7 123.7 171.1 272.6

UAF+Bonferroni 1.8 8.9 33.6 65.5 91.6 160.3 0.6 4.1 21.2 52.5 80.3 134.3 0.1 0.7 4.8 14.9 43.4 83.6
UAF+FDR 9.4 39.3 78.3 130.5 168.6 359.9 2.7 13.6 46.2 82.6 111.8 230.7 0.1 2.3 13.3 33.5 70.8 123.6
HITON-PC 0.3 0.1 0.0 0.1 0.5 2.6 0.4 0.1 0.0 0.1 0.5 2.6 0.5 0.6 0.4 0.0 0.4 1.1

HITON-PC-FDR 0.2 0.0 0.0 0.1 0.3 1.4 0.1 0.1 0.0 0.1 0.3 1.4 0.1 0.6 0.3 0.0 0.3 0.5
MMPC 0.3 0.1 0.0 0.1 0.5 2.7 0.3 0.1 0.0 0.1 0.5 2.7 0.7 0.8 0.4 0.0 0.4 1.1

LARS-EN 7.5 15.7 5.7 3.7 39.2 59.0 4.6 2.1 4.9 1.1 4.0 25.7 5.4 2.9 3.4 4.4 7.2 3.2
RFE (reduction 50%) 0.7 7.1 13.1 22.0 79.1 123.2 3.1 5.5 1.7 5.8 20.3 24.1 82.9 43.5 170.5 108.2 152.6 96.8
RFE (reduction 20%) 0.4 3.2 12.1 3.0 73.1 167.9 4.8 1.3 5.5 1.9 14.0 22.2 141.5 28.1 115.1 18.8 122.6 112.9

UAF-KW-SVM (50%) 2.0 1.5 76.5 6.8 124.9 172.8 1.7 3.3 14.9 2.6 37.7 120.2 8.8 83.0 24.1 257.0 83.5 97.3
UAF-KW-SVM (20%) 0.6 1.1 4.8 2.5 91.4 179.9 1.0 2.1 14.1 0.7 10.3 124.4 6.4 82.5 22.4 137.8 19.1 46.9
UAF-S2N-SVM (50%) 1.3 1.4 43.1 2.7 114.3 139.8 3.5 2.1 7.1 5.0 26.9 109.5 228.9 98.4 25.4 102.6 86.6 180.0
UAF-S2N-SVM (20%) 0.2 0.4 12.7 1.2 70.1 128.1 1.0 1.5 5.3 1.6 22.3 120.8 153.4 117.5 19.5 53.8 93.1 175.8

Alarm10

FS method 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000
UAF 22.1 26.5 32.2 30.2 33.5 38.0 22.1 26.5 32.2 30.2 33.5 38.0 22.5 25.2 32.0 27.1 32.4 37.3

UAF+Bonferroni 4.4 4.8 7.4 8.6 10.7 14.6 3.3 4.4 6.0 8.0 9.2 13.1 1.5 3.1 4.9 6.7 7.7 10.3
UAF+FDR 5.0 6.2 9.7 10.1 14.3 20.1 3.9 4.8 7.2 8.6 10.7 14.6 1.8 3.8 5.4 7.3 8.7 12.2
HITON-PC 3.7 0.8 0.1 0.0 0.3 0.3 2.4 0.5 0.1 0.0 0.3 0.3 1.8 0.9 0.2 0.1 0.6 0.2

HITON-PC-FDR 0.9 0.5 0.0 0.1 0.1 0.0 0.7 0.4 0.1 0.1 0.1 0.0 0.7 0.6 0.2 0.2 0.2 0.3
MMPC 3.7 0.8 0.2 0.3 0.4 0.1 2.6 0.5 0.2 0.2 0.4 0.1 2.6 0.7 0.3 0.4 0.5 0.3

LARS-EN 20.7 9.4 56.1 24.7 17.2 36.7 3.2 3.0 3.9 4.1 3.9 9.1 1.0 1.6 2.3 3.3 3.4 4.9
RFE (reduction 50%) 16.7 18.6 114.9 68.9 23.7 36.9 2.0 1.3 3.5 2.9 1.5 3.7 19.7 1.4 1.3 1.6 1.9 2.9
RFE (reduction 20%) 11.3 18.1 56.0 9.8 19.7 38.7 2.5 0.9 1.9 2.5 1.7 3.3 11.6 0.9 0.8 1.1 1.5 2.7

UAF-KW-SVM (50%) 13.5 4.0 32.6 51.4 49.7 35.9 3.4 3.4 5.6 5.4 9.1 15.4 13.7 3.7 4.4 5.7 7.6 10.6
UAF-KW-SVM (20%) 5.7 5.4 10.2 42.3 37.5 58.7 3.3 3.1 5.4 5.7 8.8 14.7 5.6 3.3 4.9 5.2 7.3 9.0
UAF-S2N-SVM (50%) 18.6 4.3 72.3 55.0 37.5 38.2 2.0 3.3 8.1 5.9 8.9 14.6 1.4 2.3 2.7 4.2 6.0 9.8
UAF-S2N-SVM (20%) 7.1 4.1 44.6 17.8 38.2 40.1 1.9 3.8 5.0 6.1 8.1 13.1 1.4 2.8 3.2 4.6 6.5 8.8

Version 1
(original network)

Version 2 
(original network + irrelevant variables)

Version 3
(weakened signal + irrelevant variables)

sample size

Version 1
(original network)

Version 2 
(original network + irrelevant variables)

Version 3
(weakened signal + irrelevant variables)

sample size

Small number of false positives Large number of false positives

executing a test in which the sample size is less than: (“number of cells to be fitted”
· h-ps), with parameter h-ps set to 10 by default in the PC algorithm (Spirtes et al.,
2000) and 5 in GLL instantiations. Recall from Aliferis et al. (2010) that h-ps stands for
“heuristic power size” and denotes the smallest sample size per cell in the contingency
table of a reliable conditional test of independence. Moreover, when the conditioning
set size is large enough to block all paths between a weekly relevant variable and the
target, there is no need to exceed this conditioning set size because the resulting tests
are redundant and the operation of the algorithm becomes unnecessarily slow. Thus it
seems reasonable that we would wish to restrict the conditioning set size to not exceed
this sufficient blocking size. This is accomplished by setting the value of parameter
max-k. We will see however that max-k has a much more elaborate function than simply
“trimming away” excessive computations.

In reality things are significantly more complicated because, as first pointed out
by Spirtes et al. (2000), statistical reliability of a single test is a misleading concept in
the context of complex constraint-based algorithms such as GLL. Standard statistical
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considerations of the type of testing a hypothesis once do not carry over well to the
constraint-based algorithm setting. Similarly, running time is also a complex function
of direct or indirect restrictions placed on number of tests and the number of variables
with which to build such tests (i.e., the size of TPC(T)).

We first explain what happens when running semi-interleaved HITON-PC in faithful
distributions (same arguments can be generalized to other GLL-PC and GLL-MB ver-
sions). Consider first that in the case of a strongly relevant feature S, when conducting
just one test I(S, T | ∆) for the purposes of inclusion of S in TPC(T), regardless of
how small power is, we should always execute this test because the worst that can
happen is that we fail to include S in TPC(T), whereas if we do not execute the test
and assume independence by default, we will surely miss it. In the context of many
tests however, the notion of single-test reliability for S no longer applies. For example,
when we consider a test that has the potential to reject S from TPC(T) (where it was
placed previously by a different test), by allowing the conditioning test size to grow large,
the power is reduced (assuming monotonic association of S through the potentially
multiple paths connecting S with T). Hence, we need to preserve the combined power
(i.e., combination of individual powers of all tests applied to S) in order to not eliminate
S from TPC(T). Although these tests are highly correlated and combined power is
larger than the product of powers of the same set of tests performed on independent
samples, still the more tests are executed the smaller the combined power and the larger
the possibility of falsely eliminating S becomes. The parameter h-ps partially controls
power because the larger it is, the smaller number of tests (that would eliminate S) are
executed. However h-ps should not be too large either because a strongly relevant S will
not be included in TPC(T) in the first place. Parameter max-k also controls in part the
number of tests allowed. Max-k does not fully determine the number of tests because it
specifies the dimensionality of allowed tests, not their total number. As max-k grows,
more tests for eliminating S from TPC(T) are executed, thus the combined power drops.
In summary, for a given distribution the number of tests performed is affected by h-ps,
max-k and the size of TPC(T).

So far the discussion has centered on one type of conditional independence test,
that is, tests where the candidate member of PC(T), X, is a strongly relevant feature
(type 1). This is the first of four types of conditional tests. The other three are: con-
ditional independence tests where the candidate member of PC(T), X, is a weakly
relevant feature and some paths with T are not blocked by the conditioning set (type 2a),
conditional independence tests where the candidate member of PC(T), X, is a weakly
relevant feature and all paths with T are blocked by the conditioning set (type 2b), and
finally conditional independence tests where the candidate member of PC(T), X, is an
irrelevant feature (type 3).

The quality of conditional tests of the first type is determined by the power of the
association of X with T given the conditioning set. Since not one but potentially many
such tests are conducted, the combined power of all such tests determines whether X
will be selected and stay in the TPC(T) set. For example, variable X (a true member
of PC(T)) will be considered for inclusion in TPC(T) by HITON-PC with probability
= power of detecting ¬I(X, T) given the available sample size and test employed.
However for X to stay in TPC(T) until the algorithm terminates, and assuming B, C
have entered TPC(T), none of the tests I(X, T | B), I(X, T | C), I(X, T | {B, C}) must
conclude independence. The power or each one of these tests can be lower or higher
than the power of I(X, T) and the combined power can quickly diminish, however
several mitigating factors prevent this from happening. First, when using linear tests
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under common distributional assumptions such as multivariate normality, the necessary
sample size to achieve desired level of power grows linearly to number of variables
in the conditional set. Second, as explained earlier, conditional independence tests of
the same variable and T in the same sample are highly correlated. Third, controlling
the number of members of TPC(T) by a good heuristic inclusion function reduces the
total number of tests; such control occurs indirectly by putting first the true members
of PC(T) or members that block many variables. Fourth, the order of executing the
tests and constructing conditioning sets is important for reducing the number of tests
performed on strongly relevant variables. This is exemplified in semi-interleaved
HITON-PC where new entrants in TPC(T) are tested before current TPC(T) members
thus if the heuristic inclusion function is a good one, strongly relevant members are
tested a smaller number of times at the elimination phase.

Returning our attention to the quality of statistical decisions for weakly relevant
variables, we observe that when a conditioning set does not block all paths to/from
T either for inclusion or for elimination purposes (type 2a), we are sampling under
the alternative hypothesis (i.e., there exists association) and the determining factor for
failing to reject the weakly relevant feature is the combined power which is determined
by the same factors as elaborated for strongly relevant variables previously. The com-
bined probability for rejection may be small for similar reasons as type 1 conditional
independence tests (albeit higher than for strongly relevant features due to the fact
that under a good inclusion heuristic weakly relevant features enter TPC(T) later than
strongly relevant ones and thus more tests are applied on each weakly relevant than on
each strongly relevant feature on average).

However, when the conditioning set blocks all paths from/to T (type 2b), then we
sample under the null hypothesis and the determining factor shifts from the combined
power to the combined a (i.e., statistical significance). Given that the a for each condi-
tional test is typically low (i.e., 5% or smaller) and that as the number of tests under the
null increases, the combined a drops up to exponentially fast, and eliminating weakly
relevant features occurs with high probability as the number of applied tests increases.
In HITON-PC, the smaller is h-ps, the easier it is to include a weakly relevant feature
(based on univariate association heuristic), whereas max-k does not affect this function.
In terms of rejecting a weakly relevant feature in TPC(T), the larger max-k and the
smaller h-ps become, the easier it is to eliminate a weakly relevant feature.

The quality of statistical decisions for type 3 of conditional independence tests,
that is for irrelevant variables, is determined by the combined a since we always test
under the null hypothesis. Because the combined a drops fast as the number of tests
applied to each irrelevant variable (and these tests are abundant when even a handful
of variables have been admitted in TPC(T)), the combined probability for admitting
and not rejecting irrelevant variables is exceedingly small. However when no strongly
(and thus no weakly) relevant feature exists, conditioning sets inside the TPC(T) set
become smaller as irrelevant variables are eliminated from it with the end result of
leaving a small number of “residual” irrelevant features in the final output as evidenced
in the simulation experiments of Section 3. By pre-filtering variables with an FDR filter
(Benjamini and Yekutieli, 2001; Benjamini and Hochberg, 1995), we not only gain the
security that if the data consists exclusively of irrelevant variables fewer or no false
positives will be returned, but also we can use max-k to control sensitivity and specificity
trading weakly relevant false positives for strongly relevant true positives and vice
versa (i.e., without worrying about adversely trading off irrelevant features).

403



ALIFERIS STATNIKOV TSAMARDINOS MANI KOUTSOUKOS

Lung_Cancer max-k HITON-PC MMPC max-k HITON-PC MMPC max-k # of fn # of fp

1 4,028 5,683 1 7,257 8,900 1 1 13
Target variable #1 2 12,328 14,577 2 33,018 38,892 2 1 0

3 73,554 77,885 3 277,922 294,211 3 1 0
4 250,560 259,099 4 1,181,889 1,225,682 4 3 0

Alarm10 max-k HITON-PC MMPC max-k HITON-PC MMPC max-k # of fn # of fp

1 457 490 1 545 585 1 1 2
Target variable #199 2 470 496 2 608 652 2 1 0

3 491 521 3 692 752 3 1 0
4 496 527 4 717 782 4 1 0

* Results are same for HITON-PC and MMPC for number of false positives and false negatives

Number of members in 
PC set = 6

Number of conditional 
independence tests

Cost of conditional 
independence tests

Number of false positives (fp) 
and false negatives (fn)*

Number of members in 
PC set = 26

 

Figure 2: Efficiency of HITON-PC versus MMPC.

Finally, the total number of tests is determined by both parameters h-ps and max-k,
in a non-monotonic manner. That is, whenever h-ps is extremely large it effectively
disallows most tests and the algorithm quickly terminates returning the empty set
regardless of max-k. For medium/small values of h-ps, more tests are executed, more
variables enter TPC(T), and many tests are executed before TPC(T) is finalized. Max-k
modifies this number by potentially restricting the number of tests. When h-ps is very
small, tests are allowed with very large conditioning tests and as long as max-k does
not disallow them, the total number of tests grow very large.

4.2. Efficiency and Heuristic Robustness of HITON-PC Versus MMPC

Figure 2 presents the number and cost2 (proportional to time) of conditional inde-
pendence tests performed by semi-interleaved HITON-PC versus MMPC in the 2,000-
sample data set from the Alarm10 and Lung_Cancer networks. As can be seen, HITON-
PC performs fewer tests on average while achieving the same performance as MMPC.
We notice that the max-min association heuristic closely reflects the logic behind the
combined probability for error for the weakly relevant features. MMPC when testing
under the alternative hypothesis (i.e., strongly relevant features, or unblocked weakly
relevant ones) requires measuring all relevant associations, whereas HITON requires
just the univariate ones for inclusion purposes. However semi-interleaved HITON tries to
eliminate the newly included variable immediately upon inclusion and thus effectively
conducts a similar number of tests as MMPC. Both algorithms when testing under the
null hypothesis (irrelevant or fully-blocked weakly relevant features) on average execute
the same number of tests. The max-min association inclusion heuristic is a priori more
prone to basing its decisions for inclusion in TPC(T) on less statistically reliable criteria.
This is because the more associations are considered and the larger the conditioning sets
are, the higher variance in the minimum association estimates is expected, making the
maximum of such associations over all variables considered more prone to sampling
error (i.e., it is likely to be overfitted to the sample). Because of better robustness of

2. The cost of a conditional independence test is calculated as the number of variables participating in it
(excluding target variable). For example, univariate tests have cost = 1, tests with conditioning on two
variables have cost = 3.
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the univariate association relative to the weakest association over many conditional
associations true members of PC(T) may enter the TPC(T) set earlier. However both
HITON-PC and MMPC exhibit similar performance in real and simulated data sets,
demonstrating that the theoretical problem with max-min association is in practice very
rare.

4.3. Synthesis and Problems for Inclusion Heuristics; Constructing New Inclusion
Heuristics

A problem when inducing local neighborhoods and particularly Markov blankets is that
of information synthesis. The problem consists of a variable X that is not in PC(T) having
higher association (univariate or conditional on some subsets) with T than members
of PC(T) (for a concrete example see Figure 13). We will call such variables, synthesis
variables. Synthesis variables were identified as major problems for algorithms such as
IAMB (Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a) or GS (Margaritis and
Thrun, 1999) that induce Markov blankets and do so by conditioning in their inclusion
phase on all variables in the tentative MB(T). Because of the requirement to condition
on all variables in the tentative MB(T), the sample requirements grow exponentially
fast to the size of the tentative MB(T) and thus it is absolutely imperative to keep out
of it synthesis variables since they unnecessarily increase the sample requirements to
the point that the algorithm may need to stop executing conditional independence tests
(and either halt or output the tentative MB(T) as best but flawed estimate of the true
MB(T)).

With regards to GLL algorithms, most efficient operation is achieved when the
variables that alone or in combination have the property that block the largest fraction
of weakly relevant variables, enter first in TPC(T) (even if they are not strongly relevant
themselves). Synthesis variables may or may not have this property, so synthesis may
or may not be a problem for a specific GLL algorithm based on characteristics of the
specific data in hand.

Construction of new inclusion heuristics may be required in difficult cases where the
univariate and max-min heuristics do not work well leading to very slow processing
time and very large TPC(T) sets, in order to make operation of local learning tractable.
In practice, both the univariate and max-min association heuristics work very well with
real and simulated data sets, so we do not pursue here implementation and testing
new heuristics in artificial problems, although we recognize the possibility of such need
in future problematic data distributions. We outline here, in broad strokes, general
strategies for creating new inclusion heuristics for such cases:

1. Random heuristic search informed by standard heuristic values. This strategy is based
on using one of the usual heuristics to rank candidate variables and making selec-
tion decisions based on random selection of a candidate variable with probability
proportional to the original heuristic value. This enables using the older heuristic
as a starting point but allowing occasionally deviations from it to explore the
possibility that lower-ranked candidates may have better potential as blocking
variables. A simulated-annealing determination of probability of selection (or
other efficient stochastic search algorithms) can be pursued as well.

2. Constructing new heuristic functions by observing blocking capability (in terms of
candidate variables blocked by conditioning sets in which V is a member) or
probability of a variable V to remain in TPC(T). The empirical observations can
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be collected from a variety of tractable sources: either from a single incomplete
run of the algorithm (i.e., without waiting to terminate), or in other data sets
characteristic of the domain, or in multiple runs on smaller (randomly chosen)
subsets of the original feature set. The new heuristic function F can be constructed
as the conditional probability:

F(Vi) = P(Vi 2 TPC(T) | h(Vi))

where h(Vi) is the original heuristic value of variable Vi, or the proportion of
candidates blocked by a conditioning set containing Vi:

F(Vi) =
M

Â
k=1

Nk(Vi)/M

where Nk(Vi) is the number of candidate variables blocked by a conditioning set
that contains variable Vi in trial k.

3. Exploiting known domain structure. When properties of the causal structure of the
data generating structure and/or distributional characteristics are known, one
can use this information alone or in conjunction with the previous two strategies
to derive more efficient heuristics.

We note that developing an inclusion heuristic that leads to efficient execution of
GLL is not always feasible since the very problem of finding the features with direct
edges with the target is intractable in the worst case (e.g., consider a graph that is fully
connected). In some cases, as we will show in Section 6, it is possible to transform an
intractable local learning problem into a tractable one by employing a global learning strategy
(i.e., exploiting asymmetries in connectivity).

4.4. Inductive Bias of GLL

Informally the inductive bias of GLL is that it seeks a balance of false negatives for
strongly relevant variables with false positives for weakly relevant and irrelevant
variables. The main regulating parameters (for standard inclusion heuristics, elimination
and interleaving strategies) are h-ps and max-k. In practice, the algorithms tested in our
work to date reveal higher sensitivity to max-k and thus at first approximation we treat
optimization of this parameter as having higher priority. Smaller max-k empirically
decreases false negatives and increases false positives overall. Larger max-k increases
the false negatives and decreases the false positives. GLL in moderate to large samples
achieves small numbers of false negatives and small numbers of false positives. In
very small samples GLL prefers false positive errors than false negative ones when
max-k is small. This occurs because given some evidence in favor of PC(T) membership
(provided by lower-dimensional and thus more sample efficient) tests of a variable X
but no reliable proof to the contrary (provided by omitted higher-dimensional and thus
unreliable tests), the algorithm outputs X as member of PC(T). A similar behavior
exists for the MB(T) versions (with respect to MB(T) membership). Notice that as
max-k grows many more tests can be executed provided that a liberal h-ps is chosen,
and these tests can be used to eliminate both weakly relevant as well as strongly relevant
features in TPC(T). The choice of a more liberal h-ps default value in GLL (compared
to the more stringent value in the published implementation of PC algorithm) allows
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Figure 3: Scenarios explaining good empirical performance of PC(T) set for classifica-
tion.

a more effective control of the tradeoff between false positives and false negatives in
small samples by changing values of max-k.

By contrast, the SGS and PC algorithms (Spirtes et al., 2000) given no evidence in
favor of membership of X in PC(T) and no reliable proof to the contrary, assumes that X
has a common edge with T. IAMB (Tsamardinos and Aliferis, 2003; Tsamardinos et al.,
2003a) to the contrary, given some reliable evidence in favor of a variable X belonging to
MB(T) but no reliable proof to the contrary, outputs X as member of MB(T) if X is in the
tentative Markov blanket TMB(T) and is agnostic with respect to membership in MB(T)
if X is outside TMB(T). Bayesian scoring methods in small samples are dominated by
their priors and typically they prefer sparse networks which lead to fewer false positives
and more false negatives.

4.5. Reasons for Good Performance of Non-Symmetry Corrected Algorithms

The empirical evaluations in part I of this work (Aliferis et al., 2010) have shown
that the addition of symmetry correction adds little to quality, while it detracts from
computational efficiency. Evidently very often EPC(T) t PC(T) in real-life distributions
and targets of interest. In addition, due to imperfect power to detect and return strongly
relevant features, applying symmetry correction leads to reduced power and increased
false negatives.
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4.6. Reasons for Good Performance of the PC(T) Set Instead of the MB(T) Set for
Classification

According to the theoretical results summarized in Aliferis et al. (2010), under broad
assumptions spouses are needed for optimal classification performance. Given that
in the majority of data sets tested in Aliferis et al. (2010) as well as the experiments in
Section 2 of the present paper, when the set of parents and children is used instead of
MB(T) it produces equal or almost equal performance, more compact feature sets and
faster feature selection times than inducting the full MB(T) (i.e., both PC(T) and MB(T)
estimated under the same assumptions of the theory that predicts that MB(T) is needed
for optimal feature selection). In this sub-section we provide likely explanations for the
empirically excellent performance of substituting the set PC(T) in place of MB(T) for
classification (apart from the obvious possibility that spouses may be much fewer and
with smaller predictive value than parents and children). Figure 3 describes visually
five plausible scenarios explaining the phenomenon.

The first scenario corresponds to the situation whereby the target variable T does not
have children (and thus no spouses) by virtue of domain constraints. Such situations
happen when the target variable is a variable preceded in time by all other variables
(e.g., patient outcome on the basis of earlier observations); or when naturally the target
variable cannot have children (e.g., the target being meaning category of a text document
as a function of patterns of presence/absence of words in the text). The second scenario
describes the situation where a child is not observed (hidden) in the data set and thus
the spouse B cannot be made informative for the target and thus it can neither be
detected nor can it enhance a classifier built from the data. The third scenario describes
the situation where a spouse has connecting paths to the target but these cannot be
blocked simultaneously because of small sample size and/or choice of max-k. Hence
GLL-PC could admit the spouse D as a member of PC(T). The fourth scenario simply
shows a case where a spouse is also a child (or parent) and thus will be a member of
PC(T) as well as MB(T). Finally the fifth scenario shows that an unmeasured variable
may make a spouse appear as having a direct edge to or from the target (and thus are
detectable by GLL-PC).

We note that in practical data analysis and evaluations when both PC(T) and MB(T)
are induced and are found to have similar classification performance, typically MB(T)
is much larger than PC(T). However this may be a reflection of the inductive bias of
GLL which prefers to admit potential false positives if they cannot be shown for sample
size reasons to be independent of the target.

Finally note that explanations #1, 2, 3, and 4 are special cases of the assumptions of
the Markov blanket induction theory and thus they do not refute these assumptions
(whereas #5 violates causal sufficiency). In the discussion section we consider additional
situations with violations of GLL assumptions.

4.7. Error Estimation Problems in Wrapping and Standard Filters Due to Small
Sample Size. GLL Filtering is Less Sensitive to Error Estimation Difficulties
and Robust to Small Samples

Wrapping has been praised as a feature selection methodology for its ability to tailor
the feature selection to the inductive bias of the classifier(s) of choice as well as to the
loss function of interest (Kohavi and John, 1997). Occasionally, this property will work
against the analysis (see Section 7 for example for how it can jeopardize causal discov-
ery). On the other hand, wrapping has been criticized for its very large computational
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cost as well as on the grounds that it is subject to No Free Lunch Theorem limitations
(i.e., a priori all wrappers are equally good, making it hard to find the right wrapper for
the distribution, loss function and classifier(s) of interest) (Tsamardinos and Aliferis,
2003). In the present section we explain what we believe is perhaps the most serious
practical shortcoming of wrapping feature selection methods, namely that they rely
on error estimation procedures that are often unreliable because of small sample sizes. The
difficulties that will be presented here help explain the sometimes poor performance of
some of the feature selection algorithms in the evaluation part (Aliferis et al., 2010). In
contrast, we will show that GLL filtering is resistant to these problems.

Recall that the critical point when applying error estimators is to have a sufficiently
small variance and to be unbiased or to correct for any bias, as for example is the case
of the (biased) Bootstrap estimator. Consider an idealized example where a greedy
(steepest-descent) backward selection wrapper algorithm is applied on faithful data
that contains 5 irrelevant features I1, . . . , I5 and one strongly relevant feature S.

Assume that in reality the optimal feature set consisting of only the strongly relevant
feature S gives a predictor model with true error measured by AUC is 0.75 in the
large sample (i.e., in the distribution where the data is sampled from). For all practical
unbiased error estimators, because of variability in the estimates of error due to small
sample sizes, and because of potential sensitivity of the classifier employed to irrelevant
features, some subsets that contain S will have error estimates in small sample situations
that are larger and some smaller than the true AUC of 0.75. The backward wrapping
starts by eliminating one variable at a time producing feature sets and corresponding
predictor models and by eliminating the feature that decreases error the most relative
to the starting model that contains all features. As a result, a feature set can be chosen,
not because the error is truly decreased if we remove any more features, but because
the error estimates vary and the backward wrapper (naively) does not take this into
account. If the wrapper is configured to employ statistical significance tests each time it
compares estimates of error between pairs of feature sets and corresponding classifiers,
because statistical tests of error estimate differences are often underpowered (which is
another manifestation of the large variance in error estimates) such tests will often fail
to reveal true differences. Thus the wrapper can falsely conclude that two models have
same error when in reality they do not. This will entail choosing wrongly the smallest
of the two and eliminating valuable features. Also due to multiple comparisons, such
an algorithm will falsely conclude for a proportion of feature sets that a difference
in predictor model performance is statistically significant thus continuing removal of
relevant features when they should not be removed.

We emphasize that this problem is not present in wrapper methods only. In tradi-
tional feature ranking methods, the above problem is also present but often ignored
in the sense that many studies on feature ranking algorithms produce a performance-
to-feature-number plot, with performance estimated on a single data set. However
the practical data analysis problem of how to select a specific number of features that
achieves at most some desired error is left unspecified and in fact subject to the same
error estimation difficulty that applies to wrapping. Moreover, in recent algorithms
such as RFE, the problem is acknowledged implicitly in the applied examples provided
by the authors of the method, since feature sets are reduced by for example 50% in each
iteration of the algorithm creating a new subset of features examined by cross-validation
by the algorithm (Guyon et al., 2002). This is done to reduce overfitting of selected
feature set to the data because of the large variability of error estimates. As evidenced
by the evaluations presented in Aliferis et al. (2010), it is possible to improve on tradi-

409



ALIFERIS STATNIKOV TSAMARDINOS MANI KOUTSOUKOS

Table 10: Trace of semi-interleaved HITON-PC without symmetry correction (i.e., GLL-
PC-nonsym subroutine) showing insensitivity to error estimation difficulties
that affect wrappers.

3

 

Action Decision Notes 

Rank variables according to 
univariate association with  target 
T 

S (association = 0.8) 
I1 (association = 0.3) 
I2 (association = 0.1) 
I3 (association = 0.1) 
I4 (association = 0.05) 
I5 (association = 0.0) 

Some associations of irrelevant  
variables are non-zero due to sampling 
variation 

Test S for inclusion: 
¬I(S, T) 

Admit S in TPC(T) Assuming S is a strong predictor of the  
target, the power of the univariate test 
will be sufficient to reject independence 

Test I1 for inclusion: 
I(I1, T) 

Eliminate I1 Test will be correct with probability  
1-α (typically 0.95) 

Test I2 for inclusion: 
I(I2, T) 

Eliminate I2 Test will be correct with probability  
1-α (typically 0.95) 

Test I3 for inclusion: 
¬I(I3, T) 

Consider I3 Assume we were unlucky and had a 
false positive 

Test I3 for inclusion: 
I(I3, T | S) 

Eliminate I3 Test will be correct with probability  
1-α (typically 0.95). Very unlikely 
(probability = 0.0025) that I3 will pass 
through second test 

Test I4 for inclusion: 
I(I4, T) 

Eliminate I4 Test will be correct with probability  
1-α (typically 0.95) 

Test I5 for inclusion: 
I(I5, T) 

Eliminate I5 Test will be correct with probability  
1-α (typically 0.95) 

Test S  for final elimination: 
no test to be made 

Accept S   

Return {S} as final output    

 

tional wrapping, ranking and RFE selection by applying statistical tests of difference
of error estimates, or by increasing/decreasing the granularity of feature selection (i.e.,
proportion of features removed at each iteration). Still the produced feature sets are not
optimal in parsimony. The numbers of strongly relevant, weakly relevant and irrelevant
features is not critical to the existence of the problem, neither is the type of wrapper
(forward, backward, forward-backward, GA, etc.) as long as some basic requirements
are met: error estimation is not perfect but subject to sampling variability due to small
sample, and enough features exist in data for enough error estimate comparisons to be
spurious.

Contrary to the above, GLL filtering relies little on error estimation3 and uses robust
mechanisms to control false negatives and false positives separately for strongly relevant,
weakly relevant and irrelevant features respectively. In Table 10 we give a concrete
demonstration of how semi-interleaved HITON-PC (without symmetry correction for
simplicity) is less prone to errors in the same example. The critical observation is for an
irrelevant feature to enter TPC(T) and stay in it, it has to survive multiple (i.e., 2|TPC(T)|)

3. Notice that some reliance on error estimation exists in domains where a suitable max-k and a are not
known and need be optimized by cross-validation. The corresponding number of parameterizations
is very small however (typically at the order of 10 combined parameter configurations) and thus error
estimation is less likely to lead the algorithm astray. The same is true for the optional wrapping step in
GLL-MB which selects features from a highly reduced set compared to the original feature set (notice that
this wrapping step is seldom needed in practice and is reserved for higher sample settings).
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Chunked Parallel GLL-PC Algorithm (not symmetry corrected) 
 

Input: Dataset D, target variable T, desired number of data chunks ch. 
 

1. Split the data D into ch arrays Ci of equal size, such that each array contains a non-overlapping subset of 
the variables plus T. 

2. For all i, compute ChunkPCi(T) Å GLL-PC-nonsym(T, Ci) 
3. L Å GLL-PC-nonsym(T, !i ChunkPCi(T)) 
4. Return L and exit 

 

 

Figure 4: Chunked Parallel GLL-PC algorithm (not symmetry corrected).

tests of conditional independence and each such test has probability 1� a to leave
the irrelevant feature in TPC(T). The total probability of failing to reject the irrelevant
variable thus grows up to exponentially small to the number of tests performed and
is independent of the sample size. In our simplified example with just one strongly
irrelevant feature inside TPC(T), each irrelevant feature has probability of entering and
staying in TPC(T) of at most a2 = 0.0025. This is true regardless of whether sample size
is 10,000 samples or just 10 samples.

5. Algorithmic Extensions to GLL
In the present section we introduce algorithmic extensions to the Generalized Local
Learning algorithms: parallel and distributed local learning and FDR pre-filtering.

5.1. Parallel and Distributed Local Learning

Following ideas for parallelizing the IAMB algorithm for MB(T) estimation (Aliferis
et al., 2002), we introduce a coarse-grain parallelization of GLL-PC that addresses
two problems: (a) the data does not fit into fast memory (RAM), and (b) even if the
data fits, we wish to speedup execution time by parallel processing. We allow for the
possibility that the user may have access to just one node or, alternatively, may have
access to several nodes arranged in a parallel cluster. The algorithm presented can
return PC(T) and can run with any instantiation of GLL-PC. The algorithm is designed
to be correct provided that no symmetry correction is required (i.e., in distributions
where EPC(T) ⌘ PC(T)). Correct parallel/distributed versions in distributions where
symmetry correction is needed can also be obtained as can algorithms that parallelize
MB(T) induction. In the present paper we only discuss parallel GLL-PC without
symmetry correction because of its conceptual and implementation simplicity and
speed, because it can be used for both causal discovery and prediction, and because
as demonstrated empirically (Aliferis et al., 2010), many real distributions behave
consistently with being “symmetrical” (i.e., EPC(T) ⌘ PC(T)).

Chunked Parallel GLL-PC algorithm (not symmetry corrected): This algorithm as-
sumes that one has access to several nodes and that the data can fit to the available
memory once distributed, while it may or may not fit to a single node. Initially the
algorithm divides the input data D into ch chunks Ci such that every Ci includes all
cases, but only a subset Vi of the variable set V plus T. For simplicity we assume that
each chunk has an equal number of features (that can be determined, for example, by
the maximum size that can be processed in fast memory or the number of available
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computer nodes in a parallel implementation). Variations where unequal variable allo-
cations are employed can be easily obtained in similar fashion. Then GLL-PC-nonsym is
run on each chunk (as indicated by the extra input argument Ci) returning ChunkPCi(T)
(i.e., parents and children of T in chunk Ci). Next, GLL-PC-nonsym is run on one node
with the union [iChunkPCi(T), it obtains a local neighborhood L, and terminates by
outputting L. Figure 4 gives the parallel GLL-PC high-level pseudo-code. Step #2 is the
parallel step.

We note that a potential problem with chunked GLL-PC is that the tentative neigh-
borhood in some chunk(s) may grow very large (up to the size of the chunk in the worst
case) while the true neighborhood across all variables may be very small. This creates
the possibility of overflow both in the sense of data not fitting in a single node and in
the sense of not having enough sample size to perform reliable statistical inferences.

Theorem 1 Chunked parallel GLL-PC without symmetry correction is sound given the suffi-
cient conditions for soundness of GLL-PC and the requirement that in the generating distribution
P, PC(T) is the same as the Extended PC(T) (see definition of EPC(T) in Aliferis et al. 2010).

Proof In each chunk, GLL-PC-nonsym will identify all true members of PC(T) that
are in the chunk (because these can never be rendered independent of T, according to
Theorem 1 in Aliferis et al. 2010) and some false positives which cannot be eliminated
without conditioning on PC(T) members that belong to another chunk. Thus in step #3,
GLL-PC-nonsym is executed on a superset of PC(T). By definition, all non-members of
PC(T) can be rendered independent of T conditioned on some subset of PC(T) as long
as PC(T) ⌘ EPC(T). Since PC(T) ⌘ EPC(T), the identified PC(T) will be correct.

The complexity of Chunked Parallel GLL-PC without symmetry correction is in
the worst case exponentially slower than running GLL-PC on all data. This is because
the complexity of GLL-PC is worst-case exponential to the size of TPC(T) and while
TPC(T) in all data can be very small, in some chunks TPC(T) can be as large as the
chunk itself. When however local neighborhoods in each chunk are smaller than the
global TPC(T) and since GLL-PC is worst-case exponential, the algorithm can also be
exponentially faster than running GLL-PC on all data. This is in sharp contrast with
parallel IAMB where both the speedup is linear to the number of chunks in the best
case (upper bound on the speed-up factor is ch) and worst-case running time is a small
constant multiple of running the algorithm on all data (Aliferis et al., 2002).

Chunked Distributed GLL: When we run the algorithm with data already distri-
buted, the data splitting and transfer step #1 (as well as associated transfer cost) is
omitted. Typically we will need to link the distributed data using a suitable common
key. For example consider a large organization wishing to analyze data in order to find
determinants of production costs overall many and geographically dispersed branches,
each with its own local data set and different recorded features. An appropriate key
might be time label of observations. Another example is hospital patient data distributed
among numerous local databases in different units and labs of the hospital, where
patient id is a suitable key.

Chunked GLL with single CPU: This variant assumes access to one CPU only and
addresses the problem of data not fitting in the fast memory. By processing parts of
the data sequentially and obtaining a small superset of PC(T) each time, a much larger
data set than what fits in fast memory can be analyzed.

We now apply a parallel version of semi-interleaved HITON-PC on the four largest
real data sets (Ohsumed, ACPJ_Etiology, Thrombin, and Nova) of the empirical evaluation
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Figure 5: Results of application of single-CPU and parallel versions of semi-interleaved
HITON-PC on the four largest real data sets (Ohsumed, ACPJ_Etiology, Throm-
bin, and Nova). Average results over 4 data sets are shown. The following
versions of HITON-PC are used: HITON-PC4 (max-k=4, a=0.05), HITON-PC3
(max-k=3, a=0.05), HITON-PC2 (max-k=2, a=0.05), HITON-PC1 (max-k=1,
a=0.05).

in Aliferis et al. (2010). We use 10 CPU’s on the ACCRE cluster described in Aliferis et al.
(2010). As can be seen in Figure 5 the parallel version achieves the same parsimony
and classification performance as the single-CPU application with speedup for three
out of four versions of HITON-PC (see Figure 5). P-values from the permutation test
of the null hypothesis that single-CPU and parallel GLL-PC algorithms achieve the
same performance are 0.7468 (for SVM classification), 0.4950 (for KNN classification),
0.2408 (for proportion of selected features), and 0.6374 (for running time in minutes).
We note that running times for HITON-PC algorithm in this subsection are less than
in the remainder of the paper because these experiments were executed on the most
recent version of the ACCRE cluster.

5.2. FDR pre-Filtering

As explained in Section 3, in simulated and resimulated data sets with weak-signal/
small sample and in all-irrelevant features situations, removing features using false
discovery rate control can improve the number of false positives in HITON-PC and
MMPC. We applied HITON-PC with FDR pre-filtering in all real data sets of Aliferis et al.
(2010). As can be seen in Figure 6, this enhancement does not entail improvements in
parsimony, classification performance or running time in the data sets tested. P-values
from the permutation test of the null hypothesis that GLL-PC algorithms with and
without FDR correction achieve the same performance are 0.5254 (for SVM classification),

413



ALIFERIS STATNIKOV TSAMARDINOS MANI KOUTSOUKOS

0.5

0.6

0.7

0.8

0.9

1

A
U

C
 (S

V
M

)

 

 

HITO
N-PC4 

HITO
N-PC3 

HITO
N-PC2 

HITO
N-PC1 

HITO
N-PC op

t 

without FDR

with FDR
0.5

0.6

0.7

0.8

0.9

1

A
U

C
 (K

N
N

)

 

 

HITO
N-PC4 

HITO
N-PC3 

HITO
N-PC2 

HITO
N-PC1 

HITO
N-PC op

t 

without FDR

with FDR

0

0.02

0.04

0.06

0.08

P
ro

po
rti

on
 o

f s
el

ec
te

d 
fe

at
ur

es

 

 

HITO
N-PC4 

HITO
N-PC3 

HITO
N-PC2 

HITO
N-PC1 

HITO
N-PC op

t 

without
FDR

with
FDR

0

50

100

150

200

Ti
m

e 
in

 m
in

ut
es

 

 

HITO
N-PC4 

HITO
N-PC3 

HITO
N-PC2 

HITO
N-PC1 

HITO
N-PC op

t 

without
FDR

with
FDR

: Results of application of semi-interleaved HITON-PC with and without FDR correction on 13

Figure 6: Results of application of semi-interleaved HITON-PC with and without
FDR correction on 13 real data sets. Average results over the data sets are
shown. The following versions of HITON-PC are used: HITON-PC4 (max-
k=4, a=0.05), HITON-PC3 (max-k=3, a=0.05), HITON-PC2 (max-k=2, a=0.05),
HITON-PC1 (max-k=1, a=0.05), HITON-PC opt (max-k and a are optimized
over values {1, 2, 3, 4} and {0.05, 0.01}, respectively, by cross-validation to
maximize SVM classification performance).

0.3698 (for KNN classification), 0.9426 (for proportion of selected features), and 0.3776
(for running time in minutes). Since however the algorithm exhibits small sensitivity
to false positives due to multiple comparisons when many irrelevant features are
expected and few relevant features are present, we recommend pre-filtering with FDR.
Alternatively, if one gets a few variables combined with error estimates consistent with
uninformative classifier, then re-running standard GLL with FDR pre-processing can be
tried.

When evaluating local causal discovery performance in the simulated data of Aliferis
et al. (2010), semi-interleaved HITON-PC with FDR pre-processing achieves dramat-
ically better performance than other algorithms including other HITON and MMPC
variants with respect to graph distance score, which indicates average causal prox-
imity to the target of the returned variables. Specifically, in large sample (N=5,000)
HITON-PC with FDR correction achieves up to 5-fold reduction in the graph distance
score relative to the best non-FDR filtered causal algorithm and up to 9-fold reduction
compared to the best non-causal algorithm. In small sample (N=200) the reduction
in both cases is 2-fold. P-values from the permutation test of the null hypothesis that
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Figure 7: Graph distances averaged over all 9 simulated and resimulated data sets,
all selected targets in each data set, and multiple samples of a given size.
The following versions of semi-interleaved HITON-PC with FDR correction
are used: HITON-PC4-FDR (max-k=4, a=0.05), HITON-PC3-FDR (max-k=3,
a=0.05), HITON-PC2-FDR (max-k=2, a=0.05), and HITON-PC1-FDR (max-
k=1, a=0.05). “Best causal” is the best causal feature selection algorithm
among techniques that do not incorporate FDR. “Best non-causal” is the best
non-causal feature selection algorithm. See Aliferis et al. (2010) for a detailed
list of algorithms.

the best non-causal algorithm performs the same as the average HITON-PC with FDR
correction are <0.0001 for sample sizes 200, 500, and 5,000. P-values for comparison
with the best causal algorithm are <0.0001, 0.0030, and <0.0001 for sample sizes 200,
500, and 5000, respectively. See Figure 7. This improvement incurs only a very small
decrease in sensitivity as evidenced by small concurrent increases in false negatives.

6. Spanning Local to Global Learning
In the present section we investigate the use of local learning methods (such as GLL)
for global learning in a divide-and-conquer fashion. We remind that a major motivation
for pursuing local causal learning methods is scaling up causal discovery and causal
feature selection as explained in Aliferis et al. (2010). Although similar concepts can
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be used for region learning, we will not address this type of discovery problem here.
The main points of the present section are that (a) the local-to-global framework can be
instantiated in several ways with excellent empirical results; (b) an important previously
unnoticed factor is the variable order in which to execute local learning, and (c) trying
to use non-causal feature selection in order to facilitate global learning (instead of causal
local learning) is not as a promising strategy as previously thought.

 
 

LGL: Local-to-Global Learning  
 

1. Find PC(X) for every variable X in the data using an admissible instantiation of GLL-PC and 
prioritizing which variables to induce PC(X) for, according to a prioritization strategy. 

2. Piece together the undirected skeleton from the local GLL-PC results. 
3. Use any desired arc orientation scheme to orient edges.  

 

 

Figure 8: Local-to-Global Learning (LGL) algorithmic schema.

 
 

MMHC Global Learning Algorithm 
 

1. Find PC(X) for every variable X in data using MMPC (without symmetry correction) and lexicographic 
prioritization. 

2. Piece together the undirected skeleton using an “OR rule” (an edge exists between A and B iff A is in 
PC(B) or B is in PC(A)). 

3. Use greedy steepest-ascent TABU search and BDeu score to orient edges.  
 

 

Figure 9: MMHC global learning algorithm as an instance of LGL.

 
 

HHC Global Learning Algorithm  
 

1. Find PC(X) for every variable X in data using semi-interleaved HITON-PC (without symmetry 
correction) and lexicographic prioritization. 

2. Piece together the undirected skeleton using an “OR rule” (an edge exists between A and B iff A is in 
PC(B) or B is in PC(A)). 

3. Use greedy steepest-ascent TABU search and BDeu score to orient edges.  
 

 

Figure 10: HHC global learning algorithm as an instance of LGL.

6.1. General Concepts

A precursor to the main idea behind the local-to-global learning approach can be found
in SCA (Friedman et al., 1999), where a heuristic approximation of the local causes of
every variable constraints the space of search of the standard greedy search-and-score
Bayesian algorithm for global learning increasing thus computational efficiency. Given
powerful methods for finding local neighborhoods, provided by the GLL framework,
one can circumvent the need for uniform connectivity (as well as user knowledge of that
connectivity) and avoid the application of inefficient heuristics employed in SCA thus
improving on quality and speed of execution. Figure 8 provides the general algorithmic
schema term LGL (for local-to-global learning). Steps #1–3 can be instantiated in
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numerous ways. If an admissible GLL-PC (as defined in Section 4 of Aliferis et al.
2010) is used in step #1, and step #2 is consistent with the results of GLL-PC for all
variables, and a sound orientation scheme in step #3, then the total algorithm is trivially
sound under the assumptions of correctness of GLL-PC. These are the admissibility
requirements for the LGL template. It follows that:

Proposition 1 Under the following sufficient conditions we obtain correctly oriented causal
graph with any admissible instantiation of LGL:

a. There is a causal Bayesian network faithful to the data distribution P;

b. The determination of variable independence from the sample data D is correct;

c. Causal sufficiency in V .

The recently-introduced algorithm MMHC is an instance of the LGL framework
(Tsamardinos et al., 2006). Figure 9 shows how MMHC instantiates LGL. MMHC
is not sound with respect to orientation because greedy steepest-ascent search is not a
sound search strategy for search-and-score global learning. Despite being theoretically
not sound the algorithm works very well in practice and in an extensive empirical
evaluation it was shown to outperform in speed and quality several state-of-the-art
algorithms (Greedy Search, GES, OR, PC, TPDA, and SCA) (Tsamardinos et al., 2006).

6.2. A New Instantiation of LGL: HHC

To demonstrate the generality and robustness of the LGL framework we provide here as
an instantiation of LGL, a new global learning algorithm termed HHC (see Figure 10),
and compare it empirically to the state-of-the-art MMHC algorithm. We also show that
the two algorithms are not identical in edge quality or computational efficiency, with
the new algorithm being at least as good on average as MMHC.

Table 11 presents results for missing/extra edges in undirected skeleton, number
of statistical tests for construction of skeleton, structural Hamming distance (SHD),
Bayesian score, and execution time on 9 of the largest data sets used for the evaluation of
MMHC. Since the data sets were simulated from known networks, the algorithm output
can be compared to the true structure. As can be seen, in all 9 data sets, HHC performs
equally well with MMHC in terms of SHD and Bayesian score. In 8 out of 9 data sets it
performs from 10% to 50% fewer tests, and in one data set (Link) it performs >10 times
the tests performed by MMHC resulting in running 35% slower in terms of execution
time. Because MMHC was found to be superior to a number of other algorithms for the
data sets tested, HHC’s better performance over MMHC in 8 out of 9 data sets (in terms
of number of statistical tests for skeleton construction) and similar performance in 9
out of 9 data sets (in terms of quality metrics) translates also to excellent performance
of HHC relative to Greedy Search, GES, OR, PC, TPDA, and SCA (Tsamardinos et al.,
2006).

6.3. Importance of Variable Prioritization for Quality and Efficiency

An important parameter of local-to-global learning previously unnoticed in algorithms
such as SCA and MMHC is the ordering of variables when executing the local causal
discovery variable-by-variable (i.e., not in parallel). We will assume that results are
shared among local learning runs of GLL-PC, that is when we start learning PC(X) by
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Table 11: Comparison of HHC and MMHC global learning algorithms. Both algorithms
were executed on a random sample of size 1000, using default parameters
of MMHC as implemented in Causal Explorer (i.e., G2 test for conditional
independence, a = 0.05, max-k = 10, Dirichlet weight = 10, BDeu priors).

HHC

Child10 Insurance10 Alarm10 Hailfinder10 Pigs Munin Lung_Cancer Gene Link

Extra edges in 
learned skeleton

95 143 176 1265 276 36 621 601 1456

Missing edges in 
learned skeleton

25 149 165 359 0 257 91 6 439

Structural 
Hamming distance 
for DAG

101 297 344 728 4 273 187 72 1150

Bayesian score for 
DAG

-188.61 -229.02 -178.56 -738.77 -496.11 -33.14 -559.43 -651.36 -337.74

Number of 
statistical tests for 
skeleton 
construction

28,879 52,757 82,543 217,490 134,244 733 859,348 401,779 7,931,044

Time for building 
skeleton (in 
minutes)

0.74 1.59 2.47 8.05 3.98 0.23 24.40 12.32 537.72

Total time for 
running algorithm 
(in minutes)

1.21 3.32 6.80 24.84 14.33 0.47 181.97 60.14 563.46

MMHC

Child10 Insurance10 Alarm10 Hailfinder10 Pigs Munin Lung_Cancer Gene Link

Extra edges in 
learned skeleton

71 128 184 1220 281 38 567 557 1541

Missing edges in 
learned skeleton

25 148 164 352 0 258 88 4 396

Structural 
Hamming distance 
for DAG

100 296 346 725 4 275 191 69 1145

Bayesian score for 
DAG

-188.95 -229.03 -179.09 -738.80 -496.11 -33.12 -559.01 -651.12 -337.62

Number of 
statistical tests for 
skeleton 
construction

32,980 67,943 90,117 243,571 177,278 1,023 1,360,493 451,364 644,055

Time for building 
skeleton (in 
minutes)

0.81 1.99 2.49 12.81 5.45 0.38 55.16 12.23 382.93

Total time for 
running algorithm 
(in minutes)

1.42 3.79 5.21 29.54 13.11 0.46 451.70 51.84 415.69

Dataset

Dataset

GLL-PC rather than starting with an empty TPC(X) set, we start with all variables Y:
X 2 PC(Y). This constitutes a sound instantiation of the GLL-PC algorithm template as
explained in Aliferis et al. (2010). Figure 11 gives two extreme examples where the right
order can “make-or-break” an LGL algorithm.

In Figure 11(a) it is straightforward (and left to the reader to verify) that an order of
local learning < X1, X2, . . . , X100, Y > without symmetry correction (the latter being a
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Y

X1 X100X2

X1 X100X2

Y

(a) (b)

 
 

Figure 11: Two examples where the variable ordering for local learning can make
execution of the LGL algorithm from quadratic to exponential-time.

reasonable choice as we have seen) requires a quadratic number of conditional indepen-
dence tests (CITs) for the unoriented graph to be correctly learned. However, the order
of local learning < Y, X1, X2, . . . , X100 > requires up to an exponential number of CITs
as max-k and sample are allowed to grow without bounds. Even with modest max-k
values, the number of CITs is higher-order polynomial and thus intractable. Even when
Y is not in the beginning but as long as a non-trivial number of X’s are after it in the
ordering, the algorithm will be intractable or at least very slow. The latter setting occurs
in the majority of runs of the algorithm with random orderings.

In Table 12 we provide data from a simulation experiment showing the above in
concrete terms and exploring the effects of limited sample and connectivity at the same
time. As can be seen, under fixed sample, running HHC with order from larger to
smaller connectivity, as long as the sample is enough for the number of parents to be
learned (i.e., number of parents is  20), increases run time by more than 100-fold.
However because sample is fixed, as the number of parents grows the number of
conditional independence tests equalizes between the two strategies because CITs that
have too large conditioning sets for the fixed sample size are not executed. Although
the number of CITs is self-limiting under these conditions, quality (in terms of number
of missing edges, that is, number of undiscovered parents of T) drops very fast as
the number of parents increases. The random ordering strategy trades off quality for
execution time with the wrong (larger-to-smaller connectivity) ordering, however in all
instances the right ordering offers better quality and 2 to 100-fold faster execution that
random ordering.

A more dramatic difference exists for the structure in Figure 11(b) where Y is a
parent of all X’s. Here the number of tests required to find the parent (Y) of each Xi is
quadratic to the number of variables with the right ordering (low-to-high connectivity)
whereas an exponential number is needed with the wrong ordering (large-to-small
connectivity). Because the sample requirements are constant to the number of children
of Y, quality is affected very little and there is no self-restricting effect of the number of
CITs, opposite to what holds for causal structure in Figure 11(a). Hence the number of
CITs grows exponentially larger for the large-to-small connectivity ordering versus the
opposite ordering and a similar trend is also present for the average random ordering
in full concordance with our theoretical expectations. See Table 13 for results of related
simulation experiments.

These results show that in some cases, it is possible to transform an intractable local
learning problem into a tractable one by employing a global learning strategy (i.e., by exploiting

419



ALIFERIS STATNIKOV TSAMARDINOS MANI KOUTSOUKOS

Table 12: Results of simulation experiment with HHC algorithm. The graphical struc-
ture is depicted on Figure 11(a). HHC was run on a random sample of size
1,000 with G2 test for conditional independence, a=0.05, max-k = 5, Dirichlet
weight = 10, BDeu priors.
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Table 13: Results of simulation experiment with HHC algorithm. The graphical struc-
ture is depicted on Figure 11(b). HHC was run on a random sample of size
1,000 with G2 test for conditional independence, a=0.05, max-k=5, Dirichlet
weight = 10, BDeu priors. Empty cells correspond to experiments when the
algorithm did not terminate within 10,000,000 CITs.
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asymmetries in connectivity). Thus the variable order in local-to-global learning may have
promise for substantial speedup and improved quality in real-life data sets (assuming
the order of connectivity is known or can be estimated). However the optimal order is a
priori unknown for some domain. Can we use local variable connectivity as a proxy to
optimal order in real data? The next experiment assumes the existence of an oracle that
gives the true local connectivity for each variable. The experiment examines empirically
the effect of three orders (low-to-high connectivity, lexicographical (random) order, and
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Figure 12: Number of CITs required for skeleton construction during execution of HHC
expressed as % points and normalized within each data set to lexicographical
order. Data for three orderings of variables is shown on the figure: low-
to-high connectivity, lexicographical, and high-to-low connectivity orders.
HHC was executed with same parameters as in Table 11. More detailed
results are provided in Table 11 and Table S21 in the online supplement.

high-to-low connectivity order) on the quality of learning and number of CITs in the
MMHC evaluation data sets. It also compares the sensitivity of HHC to order.

As can be seen in Figure 12, the order does have an effect on computational efficiency
however not nearly as dramatic in the majority of these more realistic data sets compared
to the simpler structures of Figure 11. An exception is the Link data set in which low-
to-high connectivity allows HHC to run 17 times faster than lexicographical (random)
order and 27 times faster than high-to-low connectivity order. For the majority of cases,
running these algorithms with lexicographical (i.e., random) order is very robust and
does not affect quality adversely but affects run time and number of CITs to a small
degree (details in Table S21 in the online supplement).

Thus, while connectivity affects which variable order is optimal in LGL algorithms,
ranking by local connectivity does not exactly correspond to the optimal order. Fig-
ure S3 in the online supplement shows the number of CITs plotted against true local
connectivity in each one of the 9 data sets used in this section. Related to the above,
Figure S4 in the supplement also shows the distribution of true local connectivity in
each data set. Consistent trends indicating the shape of the distributions by which the
degree of local connectivity may determine an advantage of orderings low-to-high to
high-to-low connectivity are not apparent in these data sets.

We hypothesize that more robust criteria for the effect of variable ordering in LGL
algorithms can be devised. For example, the number or total cost of CITs required to
locally learn the neighborhood of each variable. Such criteria are also more likely to
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Table 14: Results for hybrid methods using RFE, LARS-EN and UAF.
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be available or to be approximated well during practical execution of an algorithm
than true connectivity. A variant of HHC, algorithm HHC-OO (standing for HHC with
optimal order) (Aliferis and Statnikov, 2008) orders variables dynamically according
to heuristic approximations to the total number of CITs for each variable. We also
conjecture that the strategy for piecing together the local learning results strongly
interacts with the local variable ordering to determine the tradeoff between the quality
and efficiency of LGL algorithms. Evaluation of these hypotheses is outside the scope
of the present paper.

6.4. Using non-Causal Feature Selection for Global Learning

In recent years several researchers have proposed that because modern feature selection
methods can deal with large dimensionality/small sample data sets, they could also be
used to speed up or approximate large scale causal discovery (e.g., Kohane et al. 2003 use
univariate feature selection to build so-called “relevance networks”), or hybrid methods
can be employed that use feature selection as a pre-processing to build a skeleton and
then an orientation algorithm like Greedy Search in the spirit of MMHC and LGL
(Schmidt et al., 2007). The results of Aliferis et al. (2010) contradict this postulate
because they show that non-causal feature selection does not give locally correct results.
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However it is still conceivable that orientation-and-repair post-processing algorithms
(e.g., with Bayesian search-and-score) can still provide a high quality final causal graph.
We test this hypothesis by examining several such hybrid methods using respectively
RFE, LARS-EN and UAF post-processed by Greedy TABU Bayesian search-and-score.
We use simulated data sets from 5 out of 9 Bayesian networks employed earlier in
the present section. This is because the other 4 networks cannot be used for reliable
training and testing of the underlying classifier since they have several variables with
very unbalanced distributions. As shown in Table 14, the hypothesis is not corroborated
by the experimental results. In particular, Greedy Search with feature selection-based
skeleton, exhibits substantial drops in quality of the returned networks (measured
by structural hamming distance Tsamardinos et al., 2006) and typically more than
one order of magnitude longer running times compared to HHC with lexicographical
(random) variable ordering. On the basis of these findings, which are consistent with
the results in Aliferis et al. (2010), we do not find encouraging evidence that non-causal
feature selection can be used as an adjunct to global causal discovery. Strong evidence
exists however in favor of using principled local causal methods instead, within the
frameworks of LGL.

7. Using Causal Graphs and Markov Blanket Theory as a Conceptual
Analysis Framework for Feature Selection Methods

In the present section we show that by adopting a causal structural perspective founded
on the theoretical results outlined in Aliferis et al. (2010), several strengths and weak-
nesses and general performance characteristics of non-causal feature selection algo-
rithms become apparent and our empirical findings in Aliferis et al. (2010) can be better
understood. We review several established and state-of-the-art methods both from a
feature selection perspective (e.g., does the algorithm exhibit false positives and false
negatives relative to minimal feature set that yields optimal predictivity?) and from a
causal discovery perspective (is the output of the algorithm causally sound?). With re-
spect to the latter for reasons elucidated in Aliferis et al. (2010), we focus on localization
of causal inferences (i.e., whether the feature selection output is locally causally correct),
and when this is not obtained, we examine whether some other useful causal inference
can be made.

7.1. Univariate Association Filtering

Figure 13 shows the causal structure of a data-generating process. The causal structure
is parameterized as shown in Appendix Figure 19. This structure and parameterization
entails that association(B, T) < association(C, T). Because of synthesis of information
along two paths however, association(A, T) > association(C, T) and association(A, T) >
association(E, T). The example illustrates that from the feature selection perspective the
optimal predictor set (i.e., the Markov blanket) for predicting or classifying the target T
is {C, D, E, F}. However, because univariate associations of non-MB(T) members can
be higher than those of members, false positives are incurred when selecting features
using univariate association-based filters. Furthermore, spouses without connecting
path to the target will have zero univariate association and thus will not be selected at all
by univariate filtering. The embedded table shows the false positives and false negatives
(relative to the gold standard set MB(T)) at each possible threshold for variable inclusion.
In all cases predictivity is suboptimal.

423



ALIFERIS STATNIKOV TSAMARDINOS MANI KOUTSOUKOS

A

B

C

T

E

D

F

G2 = 55
p = 5·10-12

Select first k features:

Selected FN FP              Predictivity

A (k=1) C,D,E,F A Suboptimal

A,C (k=2) D,E,F A Suboptimal

A,B,C (k=3) D,E,F A,B Suboptimal

A,B,C,E (k=4) D,F A,B Suboptimal

A,B,C,D,E (k=5) F A,B Suboptimal

G2 = 39
p = 3·10-10

G2 = 45
p = 2·10-11

G2 = 19
p = 10-5

G2 = 29
p = 9·10-8

G2 = 0.04
p = 0.84

 

Figure 13: Limitations of univariate feature selection explained using a causal graph
perspective. Strength of univariate association with the target variable T is
measured in a fixed sample of size 10,000 by the negative p-value of a G2-test
and depicted next to each variable.

X

Y
T = + 
T = -

Figure 14: Example showing that Principal Component Analysis yields redundant
features.

From the causal discovery perspective, the example makes evident that non-causally
relevant features such as A and B can be selected with higher ranking than causally
relevant ones such as D and E. Association synthesis thus forbids an interpretation of
the higher-ranked causal variables as more direct causes (or effects) than lower-ranked
features even when all of them are causal. Worse yet, even without synthesis, an
arbitrarily large number of non-causal features can be selected before truly causal ones
are selected. To see why this is the case consider that between C and B there may be
arbitrarily many variables arranged in a chain so that their association with T is larger
than that of both true cause D and true effect E.

7.2. Principal Component Analysis

As can be seen in Figure 14, the principal component defined by the diagonal (Y�X = 0)
perfectly separates the two target classes and will be chosen by a PCA procedure since
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X        Y | T

PC2 PC1

 
Example showing that Principal Component Analysis yields locally causally inconsistent results

Figure 15: Example showing that Principal Component Analysis yields locally causally
inconsistent results.

it explains maximum proportion of variance in the data. While projecting the original
data on this single dimension reduces dimensionality of the classification problem, from
the perspective of finding the original features that are important and non-redundant
the method leads to false positives (since the coefficients of both Y and X are equal in
the depicted Principal Component, indicating that both features are deemed equally
necessary).

The example in Figure 15 shows that PCA is not sound for causal discovery. As
shown in the figure, X is a direct cause of T and Y is not causal for T but confounded by
X. Application of causal learning via the usual assumptions and procedures reveals that
X is a direct cause or effect of T and that Y is not directly causally linked with T (the
requisite conditional independence tests are depicted). However, an optimal procedure
for Principal Component classification will select the second principal component PC2
which achieves perfect classification. However both X and Y have equal coefficients
in each principal component. Hence PCA may select both redundant features and
non-causal features.

7.3. Feature Selection Using SVM Weights

A fundamental weakness of the maximum-gap inductive bias, as employed in SVMs, is
its local causal inconsistency. Consider a scenario (Figure 16) similar to the previous
sub-section where we wish to discover the direct causes of a response variable T, from
observations about variables X, Y, T. Assume for simplicity that T is a terminal variable
and thus X and Y precede it in time. For example, T can be a clinical phenotype and
X, Y can be gene expression values. The causal process that generates the data is seen
in the upper right corner of Figure 16. As can be seen in the left part of the figure, the
SVM classifier can perfectly predict T using X and Y as predictors. In doing so it prefers
the classifier with gap G1 to the classifier with smaller gap G2. The preferred classifier
assigns non-zero (and in fact equal) weights to both X, Y thereby admitting Y in the
local causal neighborhood if selected variables are interpreted causally. However, X
renders Y independent from T and not vice versa. More generally, in distributions where
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X
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Figure 16: Example showing that SVM weight-based feature selection yields locally
causally inconsistent results and redundant features.

 

A

T

B

YX

T = A2 + B2 + e1

X = A2 + e2

Y = B2 + e3
T = X + Y + e4

Figure 17: Example showing that wrapping, by tailoring feature selection to the classi-
fier inductive bias may produce causally misleading results.

the Causal Markov Condition holds, SVMs will occasionally fail to detect that Y is not a
local cause of T. Sound causal discovery algorithms do not face this problem, however.
In addition, the preference for maximum gap classifier biases in favor of assigning
non-zero weights to redundant features (Y in the example).

On the positive side, theoretical results show that SVMs in the large sample will
assign zero weights to irrelevant variables (Hardin et al., 2004). Despite this theoretical
good property, in the experiments of Aliferis et al. (2010) it was found that in realistic
finite sample weights of irrelevant variables are non-zero. In the work of Statnikov
et al. (2006) it was found that weights of irrelevant features occasionally exceed those
of weakly relevant features and furthermore that SVM weights are also susceptible to
assigning larger weights to synthesis features rather than direct causes and effects.
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X

T

Y

A P(T | X, Y) (X=0, Y=0) (X=0, Y=1) (X=1, Y=1)

T=0 1 0 1
T=1 0 1 0

P(X | A) A=0 A=1 P(A)

X=0 0.40 0.75 A=0 0.71
X=1 0.60 0.25 A=1 0.29

P(Y | A) A=0 A=1

Y=0 0.80 0.10
Y=1 0.20 0.90

(X=1, Y=0)

0

1

Figure 18: Example showing that connectivity may mitigate violations of faithfulness.
Dashed line indicates a highly non-linear function (XOR). The left part shows
the causal structure, while the right part shows its parameterization.

7.4. Wrapping

One of the widely-cited advantages of wrapping as a feature selection method is that it
allows to tailor the selection of features to the inductive bias of the classifier (Kohavi and
John, 1997). We show here how this property when combined with rich connectivity
may yield causally misleading results. Consider the generative process of Figure 17.
The target T is a quadratic function of its true causes A, B. Variables X, Y are effects of
A, B respectively with similar non-linear functional relationships. A causal discovery
procedure such as HITON-PC given enough sample and a suitable statistical test of
independence will discover {A, B} as the correct set of direct causes and direct effects.
Consider however a practitioner who attacks the problem of learning a good classifier
for T and reducing the necessary feature set using wrapping instead. If, as would
normally be the case, the analyst starts with a simpler model class before proceeding
to consider more complex ones, assuming that noise components e2, and e3 are small
enough then the linear classifier would perform very well with {X, Y} as predictors
and a wrapper tailored to the linear inductive bias would eliminate A and B.

In small networks with a few variables and limited connectivity the above possibility
is small, however in large networks with thousands of variables and rich connectivity as
well as with massive information redundancy (e.g., biological networks) such “variable
replacement” is entirely feasible and thus tailoring feature selection to a classifier’s
inductive bias (as wrapping does) can be an obstacle to sound causal discovery.

7.5. Connectivity and Priors Compensating for Violations of Faithfulness -
Learning XOR Parents Using Univariate Association in GLL and Other
Algorithms

A violation of faithfulness where constraint-based algorithms are expected to fail is
when the target is an extremely non-linear function of its parents. A prototypical
example is when T is the parity (XOR) of its parents A and B. Conventional wisdom,
based on the truth table of the XOR function, dictates that first-order effects are zero and,
as a result, the parents cannot be detected by the inclusion heuristic of the algorithm (i.e.,
HITON-PC or MMPC). As shown in Figure 18 however, connectivity among variables
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can mitigate this difficulty. In the figure, variables X and Y can have non-zero univariate
association with T, even though in textbook descriptions of parity where parents are
unconnected and with 50% prior probability each for being 0 or 1, univariate association
vanishes. An example parameterization that allows for this effect is given in the figure
as well. This counter-intuitive phenomenon occurs because when X and Y are common
effects of A, knowing the value of X is informative about A and thus about Y. Therefore
the joint values of {X, Y} are constrained and this creates univariate association of
X and Y with T. Similarly, conditional association of X with T given Y is non zero.
The phenomenon is not restricted to parity (or other extremely non-linear) functions
in which the parity parents are connected in the network. Figure 20 in the Appendix
shows an example where skewed priors on the unconnected parity parents X, Y lead to
non-zero univariate association of X and Y with the target T.

The phenomenon described in this sub-section does not only apply to GLL algo-
rithms but extends to other feature selectors as well. For example, the success of
univariate filtering as feature selector, which has been documented in many domains
(Guyon et al., 2006), can in part be explained via connectivity effects that allow univari-
ate association to detect complex non-linear relationships of selected features with the
target variable.

The discussion in this section is complemented by analysis of embedded feature
selection in decision tree induction and of RELIEF in the online supplement Figures S5
and S6 (omitted here due to space limitations). It is shown that these algorithms can
admit false positives and false negatives both predictively and causally with respect to
the target variable neighborhood.

8. Discussion and Open Problems
In this section we present a thorough discussion of results, outline open problems and
future directions, and provide a conclusion.

8.1. Discussion of Results

The algorithms presented, and their applied evaluation and theoretical analysis clarify
many of the initially open questions discussed in Aliferis et al. (2010) and point to
several new research directions. We showed that in empirical tests with 9 simulated
data sets, GLL convergence to optimal performance is very fast with respect to sample
size both in the sense of producing feature sets that have equal predictivity as the true
MB(T) and PC(T) sets, and in the sense of achieving near optimal predictivity even at
moderate samples sizes. These results corroborate the empirically good performance of
GLL instantiations in real data sets (Aliferis et al., 2010).

An unexpected and important finding was that GLL algorithms exhibit strong intrinsic
control of false positives due not only to weakly relevant but also due to irrelevant features.
This control is empirically better in the tested data sets than what formal state-of-the-
art FDR control provides except in the rare case when the data consists exclusively of
irrelevant features. In Statnikov et al. (2010) we show that GLL can discover differentially
expressed genes when the sample size is so small that FDR does not yield any gene.
The same cannot be said for other feature selection methods that were found to be
particularly prone to false positives due to both irrelevant and weakly relevant features.
On the other hand, it needs to be noted that classical FDR methods do not control at all
weakly relevant false positives (as GLL does). A simple pre-filtering of GLL algorithms
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with an FDR control method eliminates false positives in all cases tested and yields the
best algorithm for local causal learning among tested algorithms. We expect that other
algorithms for example PC and MMHC will benefit from such an FDR prefiltering as
well.

Within the GLL framework both the max-k and h-ps parameters control the false
positives and false negatives tradeoff, through control of combined power and combined
significance levels. We examined via targeted experiments and theoretical discussion
the complex determination of quality of statistical decisions in GLL algorithms (aspects
of which are shared by previous global constraint-based algorithms). Having two
parameters to control quality of statistical decisions confers advantages since they
can regulate different aspects of such decisions, and trade-off statistical quality with
computational complexity.

Our efforts to explain the good predictive performance of the estimated PC(T) set
compared to the estimated MB(T) set focused on producing explanations consistent
with sufficient assumptions for Markov blanket optimality so that the good performance
of the PC(T) set would not be wrongly construed as entailing rejection of the theoretical
assumptions, or as inability to infer the correct MB(T) when the assumptions hold in
the data. This is because both the results of our simulated experiments in Aliferis et al.
(2010) as well as previously published experiments (Tsamardinos et al., 2003b) show
that GLL algorithms estimate very well the MB(T) and PC(T) sets.

We also used a causal graph point of view and Markov blanket concepts to under-
stand a variety of non-causal feature selection algorithms. This approach provides a
cohesive and fresh perspective into the behavior of several algorithms for feature selection. We
made this point by showing that the theory readily reveals why prominent feature
selection methods exhibit many false positives and why they cannot be used for sound
causal discovery. This complements the findings of Aliferis et al. (2010) that demonstrate
empirical feature selection and causal discovery suboptimality for many state-of-the-art
non-causal feature selection methods.

We discussed in detail a fundamental statistical weakness of wrapping, namely that
it is prone to errors due to imperfect error estimation. This is especially the case when
sample size is small whereby practical unbiased error estimators have large variance.
The same problem applies implicitly to widely-used feature selection approaches such
as ranking by univariate association and selecting the first k features. We showed why
GLL algorithms are less sensitive to this shortcoming. In general our results show that
GLL instantiations are robust enough to apply across a wide variety of domains.

Established feature selection criteria in statistics such as the AIC (Akaike Information
Criterion) bare some resemblance to Markov blanket feature selection in the sense
that AIC does not require classification error estimation. Specifically, AIC balances
the number of features (parameters) with the likelihood of the data given a model:
AIC = 2k � 2log(L), where k is the number of parameters and L is the likelihood
function. Model selection is driven by optimizing AIC. A critical difference however
is that Markov blanket induction does not require a generative model of the data to
be calculated (but relies on conditional independence tests). Given that inducing a
generative model is in general harder than finding features that cannot be rendered
independent of the target, and given that many recent powerful classifiers do not
build generative models (e.g., SVMs) it follows that the Markov blanket induction
approach has a corresponding advantage over AIC. Markov blanket induction is less
model-dependent than AIC for the same reason. Note that similarly the GLL algorithms
by not attempting to induce edge directionality (a task harder than edge detection,
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Ramsey et al., 2006) except when absolutely necessary they avoid incurring errors
in edge detection produced by false conclusions about directionality (since one type
of discovery affects the other). As a result, Markov blanket induction via the GLL
framework has advantages over eliciting Markov blankets by using methods that
require global or local orientation.

The extensive evaluation of GLL algorithms in Aliferis et al. (2010) shows that the
sufficient conditions stated in the proofs for correctness are likely to hold often, or
that violations may be small. In some cases we showed that the algorithms may not
fail when the assumptions are violated. Due to the critical role of non-faithfulness
as a major source of possible failure we discuss it here in more detail. Faithfulness
is violated in a variety of situations (Spirtes et al., 2000), notably in practice when (a)
extremely non-linear or deterministic functions exist, when (b) causality cannot be
localized, and when (c) variables share the same information for a response (target
variable). Practical examples, respectively, are extreme epistasis in genetics, non-local
causation in quantum mechanics, and gene-phenotype information redundancy in gene
expression microarrays. For many additional reasons see Spirtes et al. (2000) and Meek
(1995).

However, we showed that even in prototypical non-faithful functions such as XOR,
the existence of unbalanced priors or the existence of connectivity among XOR par-
ent variables of the target can make such parent variables visible again to the GLL
algorithms as well as other feature selectors (e.g., univariate association filtering). We
believe that this finding may have broad implications of which we mention a few. First,
it explains in part the success of univariate feature selection methods in many domains
since univariate filtering can pick up features that are involved in extremely non-linear
functions. Second, other algorithms that are typically thought to not be able to learn
such functions, such as Genetic Algorithms (Sharpe, 2000) in many situations may be
able to do just that. In addition, to the extent that biological systems have evolved by
evolutionary processes similar to genetic algorithms, truly extreme epistatic functions
may not be as rare as previously thought. Recent proposals that suggest that such func-
tions (i.e., biological systems) can be learned (i.e., evolved) by GAs (i.e., by evolution)
through multiple objective optimization may be too pessimistic (Lenski et al., 2003).
Third, previous postulates that randomized experiments (e.g., in biology, medicine and
psychology) because they examine one causal factor at a time are thus unable to detect
parity-like functions, may also be pessimistic (Aliferis and Cooper, 1998).

Returning to non-local causality, we point out that cognitively it is advantageous
to modularize causal knowledge in order to reduce the connectivity of causal graphs
and thus to control learning complexity (as well as to increase ability to store and
process such knowledge with limited cognitive resources). We may thus be facing
in both natural as well as artificial systems a selection bias (relative to all possible
theoretical distributions) where causal systems and models of those are highly modular
because it is easier to create and handle such systems and their models. Indeed in most
known macroscopic causal processes (e.g., biological pathways, medicine, engineering,
economics, social networks) causal systems are highly modular and thus local.

For all of the above reasons faithfulness is a very reasonable a priori, and powerful
in practice, distributional assumption. At the same time at least some violations can
be tolerated well by causal algorithms that are designed to use it and existing research
addresses violations systematically, for example extensions of standard causal discovery
algorithms capable of addressing target information equivalency (Statnikov, 2008).
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The exploration of parallel and distributed techniques in the present paper showed
that GLL is amenable to parallelized and distributed local causal discovery and feature selection.
We established empirically the potential of parallelization for speeding up process-
ing time without loss of quality. The presented parallel algorithm can also be used
for distributed feature selection and causal discovery in a principled manner. Many
more algorithms (namely that induce Markov blankets and admit symmetry correction
when needed) can be constructed following the approach introduced in parallel and
distributed IAMB for Markov blanket induction (Aliferis et al., 2002). In contrast to
parallel IAMB however, parallel GLL-PC can be exponentially faster (or slower) than
induction in the full data. This is a very interesting future research direction.

In exploring the transition from local-to-global strategies we showed that the local-
to-global learning framework LGL can be instantiated in several ways. We examined
one new instantiation of local-to-global learning, algorithm HHC. Although in most
real data tested a random variable order is as good as perfectly-informed ordering by
local connectivity, we showed in the present paper something previously unnoticed,
namely that in some cases the right order of local neighborhood learning can entail
exponential time vs. low-order polynomial time execution of local-to-global algorithms.
This finding has a subtle implication: if the right ordering can be found for local learning,
the resulting global learning of all variables can be faster than the local learning targeted
at just one variable. Thus, just as local learning can speed up global learning the reverse
may also be true.

On the other hand, our results showed that the idea that non-causal feature selection
methods could help in addressing scalability of formal causal algorithms may be mis-
placed in light of the failure of non-causal feature selection methods to induce causality
and given that highly scalable and sound methods such as GLL algorithms do exist.
Several tested algorithms where non-causal feature selection is used to elicit a skeleton
which is then oriented and refined by formal causal global methods are very slow and
typically produce lower-quality graphs than LGL instantiations relying on sound local
causal methods.

8.2. Open Problems and Future Directions

The results presented in Aliferis et al. (2010) and in the present paper merely scratch the
surface of causal feature selection algorithms, local causal learning, and local-to-global
learning. We briefly discuss here a few salient opportunities for moving this exciting
area forward.

An assumption that is probably too strong for soundness of MB(T) induction is
that of causal sufficiency. For example, we conjecture without formal proof, that the
algorithms should attain soundness even if the causal sufficiency is localized among the
target and the members of its Markov blanket. Even when this local causal sufficiency is
violated, predictive optimality among measured variables may not be compromised in
many practical situations (although the usual causal interpretation of the found features
is affected). Characterizing localized versions of faithfulness and causal sufficiency is
an area that is likely to give a better understanding of existing algorithms and possibly
lead to improvements. Examining and dealing with the effects of temporal aggregation,
sampling (e.g., cellular) aggregation, feedback loops, and limited local causality on
feasibility of local causal discovery will be helpful in determining the space of practical
usefulness of the GLL framework.
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A previously underemphasized important parameter for false negatives control is the
order of conditional independence tests used for elimination (i.e., part of the elimination
strategy in the GLL-PC schema). In general, the earlier time that strongly relevant
variables are being examined for elimination, the better the chances for avoiding a false
negative conditional independence test result since the combined power is larger. This
is accomplished implicitly in HITON-PC and MMHC by using heuristics that include
strongly relevant features first in TPC(T) and then in both semi-interleaved HITON-PC
and MMHC, where new candidates are considered for elimination first and where
conditioning sets are constructed with stronger candidates for PC(T) first. Systematic
study of such prioritization schemes may yield performance benefits over existing
GLL instantiations. Other areas that may yield improved performance is selective or
full model averaging to address instability of MB(T) estimation in small samples and
optimizing alpha thresholds and FDR thresholds either for a domain or a data set,
possibly separately for each variable.

In general, the treatment of determination of unreliable tests by means of the heuris-
tic rule and parameter h-ps in GLL instantiations can be improved by incorporating
formal power-size analysis whenever possible. More broadly, removing the requirement
for a uniform sample size requirement across independence tests of same order (but
different response function) is likely to yield improved algorithms. Other statistical
issues such as improved statistical handling of structural zeros for discrete statistics,
improved statistical tests that combine discrete and continuous data, handling “forced”
covariates (i.e., variables that need to remain in TPC(T) or TMB(T) so that a particular
effect is controlled for) are also worth exploring. Related to proper statistical testing
is the issue of optimal discretization, not for classification as has been explored before
in the literature, but for causal discovery (for a study toward that direction see Fu
2005). Other statistical extensions are to adapt the GLL method for survival analysis, or
other time-to-event analyses without discretizing outcomes and with ability to handle
observation censoring.

Exploitation of prior knowledge and development of methods to exploit prior causal
knowledge (e.g., variable ordering, forced edges, forbidden edges, known size of local
neighborhoods, known directionalities/structure and degree of connectivity, etc.) may
yield greatly improved methods. Comparisons of knowledge-enhanced to pure data-
driven instantiations will then be very informative.

An obvious possibility not examined in the present work is using GLL methods for
regression. Another natural line of future research is to study situations where a loss
function does not require exact knowledge of the conditional probability P(T | MB(T))
in which a promising strategy is to use a wrapping post-processing step to remove
unnecessary features thus tailoring the final feature set to a loss function less stringent
than the ones that typically guarantee soundness for GLL-MB algorithms.

Different distributional assumptions, for example monotone DAG faithfulness to
make GLL and LGL algorithms faster (for a first attempt see Brown et al. 2005) may
provide algorithms that tradeoff well quality for speed in specific domains.

Although we did not address the issue in this work, post-processing the results of
GLL and LGL output using algorithms that detect hidden variables and orient edges is
an obvious direction for research.

The study of convergence behavior of GLL and of false discovery rate control were
either empirical or qualitative in the present paper. Derivation of mathematical analyses
of convergence to the optimal MB(T) and optimal classifier (as function of sample size),
of effects of synthesis, of how common synthesis is, of combined power and alpha for
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specific distributions will be very interesting, especially as other components of the
framework (for example handling of unreliable tests) are also formalized.

Developing methods that handle efficiently very large neighborhoods with hundreds
of features and small sample size, as well as developing methods for special-purpose
causal structures (e.g., genome-wide association studies) is also an area where significant
improvements can be made.

The skeleton phase of LGL is a form of dynamic programming and this explains
its efficiency and soundness and probably leaves reduced opportunity for dramatic
efficiency improvements. One possible avenue would be the exploration of different
strategies for linking together the local skeleton results (step #2 in LGL schema). Both
MMHC and HHC use an “OR” strategy but many alternative approaches can be de-
vised. Furthermore, the edge orientation step may be greatly improved over the use of
greedy search-and-score. Numerous other obvious instantiations of LGL (for instance
combining GLL-PC versions with global algorithms such as GES, and TPDA) can also
be implemented with substantial potential for good empirical performance. Moreover,
methods to automatically identify optimal variable prioritization for local learning can
yield improvements in certain distributions and we outlined related research directions
in Section 6.3.

Finally, extending the framework to address broader definitions of feature selection
is particularly important. Examples include finding: all sets that give desired trade-off
between feature number and predictivity; all sets with smallest cost that give highest
predictivity (i.e., when different observation costs apply for each variable); and all sets
that optimize arbitrary multi-attribute utility/loss functions.

8.3. Conclusions

The empirical and theoretical results presented in the present paper and its companion
paper (Aliferis et al., 2010) support the notion that local causal learning in the form of
Markov blanket and local neighborhood induction is a theoretically well-motivated
and empirically robust learning methodology as embodied in the Generalized Local
Learning framework. Generalized Local Learning yields algorithms with excellent
performance in data analysis geared toward classification and causal discovery. Local-
to-global learning strategies have the potential to enhance large-scale causal discovery.
Several existing open problems offer possibilities for non-trivial theoretical and practical
discoveries, making this an exciting field of research.

Appendix A.
This Appendix provides additional tables and figures referenced in the paper.
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Table 15: Simulated and resimulated data sets used for experiments. The Lung_Cancer
network is resimulated from human lung cancer gene expression data (Bhat-
tacharjee et al., 2001) using the SCA algorithm (Friedman et al., 1999). The
Gene network is resimulated from yeast cell cycle gene expression data (Spell-
man et al., 1998) using SCA algorithm. More details about data sets are
provided in Tsamardinos et al. (2006).

Bayesian 
network 

Number of 
variables 

Training samples 
Number of selected 

targets 

Child10 200 5 x 200, 5 x 500, 1 x 5000 10 

Insurance10 270 5 x 200, 5 x 500, 1 x 5000 10 

Alarm10 370 5 x 200, 5 x 500, 1 x 5000 10 

Hailfinder10 560 5 x 200, 5 x 500, 1 x 5000 10 

Munin 189 5 x 500, 1 x 5000 6 

Pigs 441 5 x 200, 5 x 500, 1 x 5000 10 

Link 724 5 x 200, 5 x 500, 1 x 5000 10 

Lung_Cancer  800 5 x 200, 5 x 500, 1 x 5000 11 

Gene 801 5 x 200, 5 x 500, 1 x 5000 11 

Table 16: Algorithms used in local causal discovery experiments with simulated and
resimulated data.

HITON-PC (max k=4) Interleaved MMPC (max k=2) 

HITON-PC (max k=3) Interleaved MMPC (max k=1) 

HITON-PC (max k=2) HITON-MB (max k=3) 

HITON-PC (max k=1) MMMB (max k=3) 

Interleaved HITON-PC (max k=4) RFE (reduction of features by 50%) 

Interleaved HITON-PC (max k=3) RFE (reduction of features by 20%) 

Interleaved HITON-PC (max k=2) UAF-KruskalWallis-SVM (50%) 

Interleaved HITON-PC (max k=1) UAF-KruskalWallis-SVM (20%) 

MMPC (max k=4) UAF-Signal2Noise-SVM (50%) 

MMPC (max k=3) UAF-Signal2Noise-SVM (20%) 

MMPC (max k=2) L0 

MMPC (max k=1) LARS-EN (for multiclass response) 

Interleaved MMPC (max k=4) LARS-EN (one-versus-rest) 

Interleaved MMPC (max k=3) 
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P(C)
P(T | C, D) (D=0, C=0) (D=0, C=1) (D=1, C=0) (D=1, C=1) C=0 0.50

T=0 0.55 0.45 0.48 0.45 C=1 0.50

T=1 0.45 0.55 0.52 0.55
P(F)

P(E | T, F) (T=0, F=0) (T=0, F=1) (T=1, F=0) (T=1, F=1) F=0 0.50

E=0 0.6 0.4 0.55 0.55 F=1 0.50

E=1 0.4 0.6 0.45 0.45

P(D)

P(A | B, E) (B=0, E=0) (B=0, E=1) (B=1, E=0) (B=1, E=1) F=0 0.50
A=0 0.90 0.03 0.04 0.03 F=1 0.50

A=1 0.03 0.90 0.03 0.03
A=2 0.03 0.04 0.90 0.04 P(B | C) C=0 C=1

A=3 0.04 0.03 0.03 0.90 B=0 0.98 0.02

B=1 0.02 0.98
Figure A.1:  Parameterization of the network in Figure 7.1. 

T d y

Figure 19: Parameterization of the network in Figure 13.

   
 

X Y

T

P(T | X, Y) (X=0, Y=0) (X=0, Y=1) (X=1, Y=0) (X=1, Y=1)
T=0 1 0 0 1
T=1 0 1 1 0

P(X) P(Y)
X=0 0.20 Y=0 0.90
X=1 0.80 Y=1 0.10

Figure 20: In this example, T = XOR(X, Y). The priors of X and Y are given in the
table. Both X and Y have very strong univariate association with T despite
being XOR parents and in the absence of connectivity.
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