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Foreword

About six months ago, Isabelle Guyon asked me to write a foreword for the first volume
on the Causality Challenge (Volume 2 of the Challenges in Machine Learning series), a
collection of papers on causal discovery and a collection of “discovery challenges” that
involved simulated or real datasets along with particular discovery objectives. I praised
the work, and publicly salivated over what the work might mean for the future. Bringing
the vast talent of the Machine Learning community to bear on the problems of causal
discovery that have been articulated and pioneered by philosophers, statisticians, ar-
tificial intelligence researchers and social scientists seemed sure to produce exciting
science. Seemingly just minutes after the printer cooled down from that volume, Is-
abelle sent me the second and present volume, which is all I could have hoped for and
more. The collection of excellent papers that follow contain something for everyone
and something by everyone. If foundational and representational issues are of interest,
Judea Pearl begins the volume with a lucid tutorial on Causal Bayes networks, fol-
lowed immediately by a philosophical challenge to this framework from Phil Dawid.
Later in the volume, Kevin Murphy and colleagues argue that causal discovery can be
done without Directed Acyclic Graphs (DAGs), Still further on, Voortman, Dash and
Druzdzel consider causal processes represented at equilibrium and those represented as
dynamical systems, and argue that only by using an algorithm motivated by none other
than Nobel Laureate Herb Simon can we do causal discovery for systems in which the
two representations clash.

If general frameworks within which causal discovery can be situated is of interest,
then the volume includes a beautiful piece by Frederick Eberhardt casting causal dis-
covery as a game theoretic duel between a “scientist” and “nature,” as well as a piece
by Lemeire and Steenhaut that looks at causal discovery as an instance of Kolmogorov
complexity, as well as a piece on Bayesian algorithms for causal data mining, as well
as a piece by Tillman and Spirtes which looks at when causal structure matters, even
when the task is strictly predictive, as well as a piece from Uganda on fast causal learn-
ing by committee. If causal discovery involving time series is of interest, articles by the
Intelligent Data Analysis Group in Germany on multivariate time series and Granger
causality and a group from Beijing are rich and new, and the collection also includes
fascinating pieces on discovering cyclic causal processes, discovering non-linear net-
works, as well as pieces on algorithms specialized to more local tasks like discovering
the causal direction between a single pair of variables and making predictions about
particular manipulations.

The second part of this volume presents a number of datasets and analyses of them
that were part of the second Causality Challenge. These range from protein-signaling
networks to silicon wafer manufacturing data to simulated data sets for a variety of pur-
poses. They are exactly the sort of community wide scientific challenges that advance
a field. In short, Isabelle Guyon, Dominik Janzing, and Bernhard Schölkopf are due
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FOREWORD

enormous praise for causing the existence of another important collection of papers
that practically define the state-of-the-art for causal discovery in 2010. I’m going to
send this off and go down to the mailbox to look for the next volume.

Richard Scheines
Professor of Philosophy, Machine Learning, and Human-Computer Interaction
Carnegie Mellon University
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Preface

This book reprints papers of the Neural Information Processing Systems 2008 (NIPS
2008) workshop “Causality: Objectives and Assessment”, December 12, 2008, Whistler,
Canada. The papers were initially published on-line in JMLR Workshop and Confer-
ence proceedings (JMLR W&CP), Volume 6: http://jmlr.csail.mit.edu/
proceedings/papers/v6/.
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Abstract
The NIPS 2008 workshop on causality provided a forum for researchers from differ-
ent horizons to share their view on causal modeling and address the difficult question
of assessing causal models. There has been a vivid debate on properly separating
the notion of causality from particular models such as graphical models, which have
been dominating the field in the past few years. Part of the workshop was dedi-
cated to discussing the results of a challenge, which offered a wide variety of ap-
plications of causal modeling. We have regrouped in these proceedings the best pa-
pers presented. Most lectures were videotaped or recorded. All information regard-
ing the challenge and the lectures are found at http://www.clopinet.com/
isabelle/Projects/NIPS2008/. This introduction provides a synthesis of
the findings and a gentle introduction to causality topics, which are the object of ac-
tive research.
Keywords: Causality, Bayesian Networks, Benchmark, Challenge, Competition, re-
simulated data, probe method

1. Motivations

Machine learning has traditionally been focused on prediction: Given observations that
have been generated by an unknown stochastic dependency, the goal is to infer a law
that will be able to correctly predict future observations generated by the same depen-
dency. Statistics, in contrast, has traditionally focused on “data modeling”, i.e., on the
estimation of a probability law that has generated the data. During recent years, the
boundaries between the two disciplines have become blurred and both communities
have adopted methods from the other, however, it is probably fair to say that neither of
them has yet fully embraced the field of causal modeling, i.e., the detection of causal
structure underlying the data. This has probably different reasons. Many statisticians
would still shun away from developing and discussing formal methods for inferring
causal structure, other than through experimentation, as they would traditionally think
of such questions as being outside statistical science and internal to any science where
statistics is applied. Researchers in machine learning, on the other hand, have too long

c� 2010 I. Guyon, D. Janzing & B. Schölkopf.
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GUYON JANZING SCHÖLKOPF

focused on a limited set of problems, shying away from non i.i.d. data and problems of
distribution shifts between training and test set, neglecting the mechanisms underlying
the generation of the data, including issues like stochastic dependence, and all too often
neglecting statistical tools like hypothesis testing, which are crucial to current methods
for causal discovery.

Since the Eighties there has been a community of researchers, mostly from statistics
and philosophy, who, in spite of the pertaining views described above, have developed
methods aiming at inferring causal relationships from observational data, building on
the pioneering work of Glymour, Scheines, Spirtes, Pearl, and others. While this com-
munity has remained relatively small, it has recently been complemented by a number
of researchers from machine learning. This introduces a new viewpoint to the issues
at hand, as well as a new set of tools, including algorithms of causal feature selection,
nonlinear methods for testing statistical dependencies using reproducing kernel Hilbert
spaces, and methods derived from independent component analysis. Presently, there is
a profusion of algorithms being proposed, mostly evaluated on toy problems or in ap-
plication contexts where models cannot be falsified because of the lack of appropriate
data. One of the main challenges in causal learning consists of developing strategies
for an objective evaluation. This includes finding methods to acquire large representa-
tive data sets of both “observational” and “experimental” data. This, in turn, raises the
question to what extent the regularities observed in these data sets provide sufficient
evidence on unknown causal structures.

The two themes discussed at the NIPS 2008 workshop on causality reflect these
concerns: (1) Objectives: Define causal problems i.e., generic tasks involving causal
modeling illustrated across various application domains. Formalize such tasks math-
ematically to clearly outline the objectives to be optimized. (2) Assessment: Devise
reliable protocols of evaluation of solutions to causal problems. To address these ob-
jectives, we stated a program of data exchange and benchmarking: the “causality work-
bench” (Guyon et al., 2010). As part of the effort, we organized for NIPS 2008 a
“pot-luck challenge” in which participants were invited to either contribute a solution
to one of six proposed tasks or propose a new task.

This introduction is directed to researchers, students, and practitioners with no prior
exposure to causality problems, but with some background in machine learning or data
mining. It gently guides them through the maze of problems and techniques, without
burdening them with mathematical notations and discusses the main outcomes of the
workshop. A glossary is appended.

2. Contents overview

In these proceedings, we have gathered the contributions of researchers from a wide
variety of horizons. Our collection of papers includes:

- a tutorial paper by one of the founders of the field, Judea Pearl, who revisits
the problem of causal modeling with graphical models taking a counterfactual
viewpoint,
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CAUSALITY: OBJECTIVES AND ASSESSMENT

- a thought provoking paper by Philip Dawid questioning the sanity of the “causal
Bayesian network” methodology and proposing a different way of using graph-
ical models for causal modeling, not necessarily interpreting arrows as causal
relationships,

- an insightful paper by Lemeire and Steenhaut justifying some of the common
model selection choices made in causal discovery using graphical models with
the notion of Kolmogorov complexity,

- a novel vision of causal discovery as a game by Frederick Eberhardt,
- a machine learning approach by Haufe and collaborators to learning causal rela-

tionships from multivariate time series by enforcing model sparsity,
- two new algorithms by Mani and collaborators for discovering unconfounded

causal relationships from observational data without assuming causal sufficiency
(which precludes hidden common causes for the observed variables),

- a paper by Tillman and Spirtes analyzing under which conditions models using
classical variable or feature selection methods may or may not outperform causal
models, shedding light on the results of the causation and prediction challenge
(WCCI 2008 (Guyon et al., 2008)).

The proceedings also include selected contributions to the NIPS 2008 “causality pot-
luck challenge”, proposing innovative solutions to:

- reverse engineering Boolean networks (the SIGNET task),
- finding local causal relationships around a target variable (the LOCANET task),
- finding all possible Markov boundaries, when there is a large number of possible

solutions (the TIED task),
- learning a causal network from “heavy handed” manipulations affecting several

variables simultaneously (the CYTO task),
- learning causal relationships among pairs of variables isolated from their context

– therefore making impossible the use of conditional dependencies to unravel
causal direction (the CauseEffectPairs task),

- quantifying the causal effect of promotions on sales (the PROMO task).

Kun Zhang and Aapo Hyvärinen received the best benchmark result award for their
contribution to the CauseEffectPairs task (8/8 correct answers). The following authors
received mentions: Ernest Mwebaze and John Quinn (for their work on the REGED
dataset of the LOCANET task), and You Zhou, Changzhang Wang, Jianxin Yin, Zhi
Geng (SIDO dataset, LOCANET task), Mehreen Saeed and the team of Cheng Zheng
and Zhi Geng (SIGNET task), and Eugene Tuv (TIED task).

The tasks of the challenge and new proposed tasks contributed by the participants
are summarized in Tables 1 and 2. The proceedings include papers describing these
tasks, including the new contributions, which will be used in future challenges:

- learning causal relationships using time series when noise is corrupting data in a
way that the classical Granger causality method may fail (the NOISE task),
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- learning the structure of a fairly complex dynamic system that disobeys the
equilibration-manipulation commutability, and predicting the effect of manip-
ulations accurately when a manipulation does not cause an instability (the MIDS
task),

- in a manufacturing process (wafer production), identifying measurements on the
production line that allow engineers to detect early the pass/fail status at the end
of the line (the SECOM task) or identifying faulty manufacturing steps affecting
a performance metric (the SEFTY task).

The donor of the dataset NOISE (Guido Nolte) received the best dataset award. The
reviewers appreciated that the task includes both real and artificial data and we want to
encourage future data donors to move in this direction.

To facilitate the work of practitioners, we have also assembled a collection of “Fact
Sheets" containing brief descriptions of the tasks of the challenge and their proposed
solutions.

In the rest of this introduction, we develop the main problems addressed in the NIPS
2008 workshop on causality: “objectives” and “assessment”. At the risk of missing
important aspects, we focus on those concepts most related to machine learning. Sec-
tion 3 reviews the various settings of causal modeling. Section 4 identifies objectives
for causal modeling and indicates the role that machine learning may play in pursuing
such objectives. Section 5 gives a brief overview of assessment methods. Finally, in
a discussion section (Section 6) we provide a perspective on challenges being faced,
success stories, and open problems.

3. Causal systems vs. causal models

A proper definition for causality that regroups all the notions it encompasses in philos-
ophy, psychology, history, law, religion, statistics, physics, and engineering has eluded
scientists and philosophers for centuries. However, to avoid accusations of circularity,
we give in this section tentative definitions, which, although not universally accepted,
are useful to pursue machine learning objectives.

3.1. Causal systems

In the branch of causal studies closest to engineering, the notion of causality is inti-
mately related to the idea that there exist self-contained systems, which have a number
of input variables and output variables. Given values of the input variables (set by an
external agent), there is a mechanism (a function), which determines the values of the
output variables, eventually up to some uncontrollable “stochastic noise”. In a certain
sense, the values assumed by the input variables cause those of the output variables.
There is an intrinsic asymmetry: inversely, if the external agent would force the output
variables to assume given values, one would not expect the input variables to be influ-
enced. Take the example of TV remote controllers: you can press a button and turn on
or off the TV, but turning on or off the TV does not affect the buttons of the remote
controller.

4
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Name
(TP; NP; V)

Size Description Objective

CEP
(Real; 5;
218)

P=8 pairs. N=2 variables. Cause Effect Pairs. Pairs of
real variables with known
causal relationships.

Find the
causal
direction in
all pairs.

CYTO
(Real; 2;
394)

P'800 samples per
experimental condition ⇥ 9
conditions. N=11 proteins.

Causal Protein-Signaling
Networks in human T cells.
Protein activity monitored
by flow cytometry.
“Heavy-handed”
manipulations are performed
using chemical activators or
inhibitors.

Learn the
architecture
of the protein
signaling
network.

LOCANET
(Semi-
artificial;
10; 558)

REGED & MARTI: P=500
patients; N=999 genes +
target (disease).
CINA: P=16033 persons;
N=132 attributes + target
(earnings).
SIDO: P=12678 drugs;
N=4932 descriptors + target
(activity).

LOcal CAusal NETwork.
Four datasets: REGED and
MARTI (genomics), CINA
(marketing), and SIDO (drug
discovery). The datasets also
include large test sets that
were used in the “causation
and prediction
challenge” (Guyon et al.,
2008).

Find the
local causal
structure
around a
given target
variable
(depth 3
network).

SECOM
(Real; NA;
59)

P=1567 wafers. N=591 QC
measurements + 1 binary
target (pass/fail) and 1 date
of processing

Semiconductor
manufacturing. Production
entities (wafers) are
associated with quality
control (QC) measurements
on a fabrication line. The
labels represent a pass/fail
yield in line testing
(classification problem).

Predict
pass/fail in
test data and
identify
predictive
features.

TIED
(Artificial;
1; 330)

P=750 training ex. N=1000
variables (including target).

Target Information
Equivalent Dataset. A
Bayesian network with 72
equivalent Markov blankets
of the target variable.

Find all
Markov
blankets.

Table 1: Atemporal datasets. “TP” is the data type, “NP” the number of participants
who returned results and “V” the number of views as of December 2008. The
semi artificial datasets are generally “re-simulated” data, i.e., data obtained
from simulators of real tasks, usually trained with real data. Two datasets
of LOCANET are made of real data augmented with artificial “probe” vari-
ables (SIDO and CINA). N is the number of variables and P is the number of
examples (in training data; some datasets have test data too). 5
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Name
(TP; NP;
V)

Size Description Objective

MIDS
(Artificial;
NA; 65)

T=12 sampled values in
time (unevenly spaced);
R=10000 simulations.
N=9 variables.

Mixed Dynamic
Systems. Simulated
time-series based on
linear Gaussian models
with no latent common
causes, but with multiple
dynamic processes.

Use the training data
to build a model able
to predict the effects
of manipulations on
the system in test
data.

NOISE
(Real +
artificial;
NA; 43)

Artificial: T=6000 time
points; R=1000
simulations; N=2
variables.
Real: R=10 subjects.
T'200000 points
sampled at 256Hz.
N=19 channels.

Real and simulated
EEG data. Learning
causal relationships using
time series when noise is
corrupting data causing
the classical Granger
causality method to fail.

Artificial task: find
the causal dir. in pairs
of var.
Real task: Find
which region of the
brain influences
which other one.

PROMO
(Semi-
artificial;
3; 570)

T=365⇥3 days; R=1
simulation; N=1000
promotions + 100
products.

Simulated marketing
task. Daily values of
1000 promotions and 100
product sales for three
years incorporating
seasonal effects.

Predict a 1000⇥100
boolean influence
matrix, indicating for
each (i,j) element
whether the ith

promotion has a
causal influence of
the sales of the jth

product.
SEFTI
(Semi-
artificial;
NA; 35)

R=4000 manufacturing
lots; T=300
asynchronous
operations (pair of
values {one of N=25
tool IDs, date of
processing}) +
continuous target
(circuit performance for
each lot).

Semiconductor
manufacturing. Each
wafer undergoes 300
steps each involving one
of 25 tools. A regression
problem for quality
control of end-of-line
circuit performance.

Find the tools that are
guilty of performance
degradation and
eventual interactions
and influence of time.

SIGNET
(Semi-
artif.; 2;
415)

T=21 asynchronous
state updates; R=300
pseudodynamic
simulations; N=43 rules.

Abscisic Acid Signaling
Network. Model inspired
by a true biological
signaling network.

Determine the set of
43 boolean rules that
describe the network.

Table 2: Time dependent datasets. “TP” is the data type, “NP” the number of par-
ticipants who returned results and “V” the number of views as of December
2008. The semi-artificial datasets are obtained from simulators of real tasks.
N is the number of variables, T is the number of time samples (not necessarily
evenly spaced) and R the number of simulations with different initial states or
conditions.

6
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A wide variety of physical systems under equilibrium do not fall into that category.
For instance, a perfect gas governed by the law pV = nRT , which states that the product
of pressure p and volume V is proportional to the temperature T , would not constitute
a “causal system” in the sense described above since any change in two of the variables
{p,V,T} results in a change in the third one. The role of the three variables p, V and T
seems completely symmetrical. Even though there is much to say about the causal in-
terpretation of particular systems subject to the law of perfect gases, we shy away from
such controversial cases and limit ourselves to systems in which there is a consensus
on their causal interpretation. For instance, there can hardly be any disagreement that
if we record the altitude of given villages and their average yearly temperature, if there
is a cause-effect relationship, it ought to be altitude that causes temperature and not the
opposite.

In many applications, it is useful to broaden the notion of causality to a set of inter-
related variables, not necessarily assuming either a role of input or output variable. It
becomes then more difficult to define causality and determine to what extent we can say
that a variable “causes” another variable. An “operational criterion of causality” (Gly-
mour and Cooper, 1999) is sometimes adopted: consider a system characterized by a
set of interdependent random variables (RV) generated by a “natural” stationary dis-
tribution, some of which corresponding to directly actionable variables (their values
can be set by means of action or manipulation performed by an agent external to the
system rather than drawn from the “natural” distribution). A random variable C may
be called a cause of another RV E, called its effect or consequence, if actions per-
formed on C by an external agent result in changes in the distribution of E. For
instance, the variable C=smoking and E=lung cancer may have given “natural” distri-
butions in a given population. Banning smoking (at least in some places) is an action
that may be taken by an external agent (e.g., the Surgeon General). Changes in lung
cancer incidence as a result of this action would indicate a causal link between smok-
ing and lung cancer, according to this criterion. This operational criterion of causality
provides a sufficient condition for C to be called a cause of E, but not a necessary con-
dition, hence it cannot serve as a definition: An absence of change in the distribution
of E under manipulation of C does not exclude that C is a cause of E. For instance,
consider the outcome of tossing two fair coins C1 and C2 and the variable E that is pos-
itive if both coins fall on the same side and negative otherwise. Performing the action
of forcing C1 to be constantly on the “face” side does not change the distribution of E
even though C1 is a cause of E (in the sense that, in the unmanipulated system, E is
determined both by C1 and C2). To broaden the notion of causality, we give a definition
of causal relevance of a variable C to a target E, in the context of other variables (Guyon
et al., 2007). For other definitions, see also (Glymour and Cooper, 1999; Pearl, 2000;
Spirtes et al., 2000; Neapolitan, 2003; Koller and Friedman, 2009).

The notion of causality between RVs allows us to make simple connections to ma-
chine learning and to feature selection applications in which data are often represented
as random vectors. It implicitly makes the assumption that similar events repeat them-
selves and statistics can be computed, hence it does not encompass single event causal-
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ity (like legal responsibility in a crime). There are alternative ways of thinking of
causality as relationships between objects, events or system states, which we do not
cover in this introduction.

Our everyday-life concept of causality is very much linked to time dependencies
(the causes precede their effects). However, many machine learning problem are con-
cerned with “cross-sectional studies”, which are studies where many samples are drawn
at a given point in time. Thus, sometimes the reference to time is replaced by the notion
of “causal ordering”. Causal ordering can be understood as fixing a particular time scale
and considering only causes happening at time t and effects happening at time t +Dt,
where Dt can be made as small as we want. But, we will also consider applications in
which time dependencies are critical (for instance to continuously monitor treatment in
a changing environment) corresponding to problems encountered in so-called “longitu-
dinal studies”.

From the point of view described in this section, a “causal system” is characterized
by a set of variables, including at least some observable and some directly actionable
variables, and a set of permitted actions or manipulations, which may be performed by
an external agent to evidence causal relationships between these variables. With some
abuse of language we refer to such variables as “random variables” to indicate that they
are governed by a “natural” probability distribution when the system is left to evolve
according to its own dynamics, and that causal conclusions will be drawn from samples
and have only a statistical validity (like “price” influences “sales” or “age” influences
“health”). Throughout this introduction, we often use a population of patients under
the care of a physician as an example of a causal system. Variables of interest include
socio-economic factors, environmental factors, clinical variables, etc. and the physician
plays the role of an external agent administering treatments (thought of as actions or
manipulations). We put forward this setting for concreteness, but acknowledge that
requiring a separation between an inside and an outside of the system and the notion of
external agent and manipulations is the object of much debate. In particular, causality
is sometimes defined in terms of counterfactuals (see glossary): “C causes E” means
that “had C not occurred, E would not have taken place”. However, because we cannot
rewind history and replay events after making small controlled changes, causation can
only be inferred, never exactly known. In that sense, it can be understood that the role
of “external agents” performing scientific experiments and of statisticians analyzing
observations is to approximate as well as possible counterfactuals.

3.2. Causal models

A long time debate in machine learning has been whether predictive models should
or not model the data’s generative process. Years of research and the results of recent
benchmarks (Clopinet, 2009) seemed to have settled the question: there is no need to be
concerned with the data’s generative process; “agnostic" predictive models, in the vein
of neural networks, decision trees and kernel methods, perform as well or better than
generative models, at least for data-mining style tasks for which data are i.i.d. But one
should be careful not to jump too quickly to conclusions: might the situation change
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when we switch from making predictions in a stationary environment (the i.i.d. case) to
predicting the consequences of actions?

Assume that we have a system of only two random variables X and Y . In a station-
ary i.i.d. setting, all that is needed to make predictions is the joint distribution P(X ,Y ),
which does not inform us on whether X was generated from Y or vice versa. How-
ever, if actions are being performed, it is useful to know how data were generated.
Assume that X is generated first according to P(X) (say X is the atmospheric tem-
perature) and then Y according to P(Y |X) (say Y is the position of the needle of a
thermometer). Then, if we force X to assume a given value (by a manipulation like by
making a big bonfire), we expect a certain change in Y . Conversely, if we force the
thermometer needle position, we do not expect this should have an impact on temper-
ature. The effect of interventions on the joint distribution cannot be predicted by the
Bayes formula P(X ,Y ) = P(X |Y )P(Y ) = P(Y |X)P(X). In particular, borrowing Pearl’s
notations (Pearl, 2000), P(X |do(Y = y))) may be different from P(X |Y = y), where
do(Y = y) means that Y has been forced to take the value y (by an external agent),
while Y = y means that Y has been observed to have the value y. In the case of the
temperature example, we have P(Y |do(X = x)) = P(Y |X = x) (observing a given tem-
perature or forcing it artificially to attain the same value results in the same thermometer
reading), but we have P(X |do(Y = y)) 6= P(X |Y = y). In fact, P(X |Y = y) obeys the
Bayes formula P(X |Y = y) = P(Y = y|X)P(X)/P(Y = y), but P(X |do(Y = y)) does
not: P(X |do(Y = y)) = P(X) (temperature does not change as a result of forcing the
needle position).

From the above considerations, we can conclude that some knowledge of how the
data were generated should be useful to build predictive models, if predictions of
the consequences of actions are to be made. In our example, it is useful to choose
between two alternative generative models: X generated first according to P(X), then
Y generated according to P(Y |X); or, Y generated first according to P(Y ), then X gen-
erated according to P(X |Y ). Importantly, P(X |Y )P(Y ) is not the same as P(Y |X)P(X),
if the “do” operator is inserted. However, this does not mean that the data’s genera-
tive process should be modeled faithfully to obtain best prediction performances. As
always in machine learning, overfitting must be avoided when modeling data and the
best predictive model does not necessarily belong to the class of systems that gen-
erated the data, owing to the celebrated bias-variance tradeoff (Geman et al., 1992).
Therefore, what may appear at first sight to be over-simplifying assumptions (some of
which are discussed in Section 6) may turn out to reduce the variance of the model class
so effectively that, even though some bias is introduced, good performance is attained.

Before moving forward, we want for concreteness to give some examples of causal
models. The use of graphical models in causality has a long history that can be traced
back to “path analysis” (Wright, 1921), “structural equations” (Haavelmo, 1943), and
modern graphical models that can have a causal interpretation (Spiegelhalter et al.,
1993; Glymour and Cooper, 1999; Pearl, 2000; Spirtes et al., 2000; Neapolitan, 2003;
Koller and Friedman, 2009). Many other types of models have been used to model
causal relationships, including artificial neural networks, Boolean networks, and vari-
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ous types of Markov models, including hidden Markov models (HMM), partially ob-
servable Markov decision processes (POMDP). The type of causal relationships under
consideration have often been modeled as Bayesian causal networks or structural
equation models (SEM) (Pearl, 2000; Spirtes et al., 2000; Neapolitan, 2003). In the
graphical representation of such models, an arrow between two variables A! B indi-
cates the direction of a causal relationship: A causes B. A node of the graph, labeled
with a particular variable X , represents a mechanism to generate the value of X given
the parent node variable values. For Bayesian networks, such evaluation is carried out
by a conditional probability distribution P(X |Parents(X)) while for structural equa-
tion models it is carried out by a function of the parent variables, eventually distorted by
stochastic noise (often but not necessarily additive noise). Learning a causal graph can
be thought of as a model selection problem: Alternative graph architectures are con-
sidered and a selection is performed, either by ranking the architectures with a global
score (e.g., a marginal likelihood, or a penalty-based cost function), or by retaining
only graphs that fulfill a number of constraints, such as dependencies or independen-
cies between subsets of variables. Such graphical models usually make at least two
simplifying assumption: the causal Markov condition (CMC) and the causal faith-
fulness condition (CFC), both of which are discussed in more details is Section 6.

The task of training and selecting causal models is significantly harder than that
of training and selecting regular predictive models (classical machine learning from
i.i.d. data). The main hurdle in classical machine learning is generally the lack of
training data: In most practical applications, with a sufficient amount of training data,
the true data distribution may be approached with arbitrary precision, then the problem
is “solved”. In the jargon of causal modeling, the data commonly used in machine
learning are called observational data; those are data collected from systems, which
are let to evolve according to their own dynamics, without external intervention. Cross-
validation is highly effective to perform model selection in this setting.

In contrast, causal models can often not be effectively trained with only “obser-
vational data” and cross-validation is ineffective to perform causal model selection,
because many models with entirely different causal architectures may perform equally
well in an observational setting. It is still debated what the most effective causal model
selection strategy should be, but many penalty-based cost functions privileging simple
models or stable models have been proposed (Koller and Friedman, 2009). In addi-
tion, training and selecting causal models often require data collected after external
interventions (also referred to as actions, manipulations, or experiments). Such ex-
perimental data can better distinguish between mere statistical dependence (due for
instance to an unknown common cause, referred to as confounding variable or con-
founder) and true causation. A widely recognized methodology of unraveling causal
relationships or validating causal assumptions is randomized controlled trial (RCT).
RCTs are most often used for conducting planned experiments in healthcare, but are
also employed in other areas of application including judicial, educational, and social
research. RCTs involve the random allocation of different interventions (treatments or
conditions) to subjects. As long as numbers of subjects are sufficient, this ensures that
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both known and unknown confounding factors are evenly distributed between treat-
ment groups. Methods for learning cause-effect links without experimentation (learn-
ing from observational data) are attractive because observational data is often available
in abundance and experimentation may be costly, unethical, impractical, or even plain
impossible (London and Kadane, 2002). Still, many causal relationships cannot be as-
certained without the recourse of experimentation and the use of a mix of observational
and experimental data might be the most cost effective.

4. Objectives of causal modeling

One of the central topics of the NIPS 2008 workshop was to define objectives for causal
modeling. In the previous section, we have tentatively defined causal systems and in-
troduced causal models, not as data generative models, but as tools to predict the con-
sequences of action. Predicting the consequences of actions is often considered to be
the main charter of causal modeling. We now review a number of other related causal
problems worth pursuing and then put them in the context of applications.

4.1. Causal problems

We collectively call “causal problems” problems requiring the notion of causality. We
contrast such problems with machine learning applications using i.i.d. training and test
data. In the i.i.d. setting, variables predictive of the target, regardless of causal relation-
ships, may be useful. For instance, in medical diagnosis, the abundance of a protein
in serum may be used as a predictor of disease. It is not relevant to know whether the
protein is a cause of the disease (e.g., resulting from a gene mutation), or a consequence
(e.g., an antibody responding to inflammation). If one is interested in a diagnosis, the
abundance of this protein is enough and means disease. We differentiate the problem
of making predictions in a stationary environment (diagnosis) with two other types of
predictions: the prediction of the consequences of actions performed deliberately by
and external agent and counterfactual predictions:

Prediction of the consequences of actions: More and more applications require
the assessment of the results of given actions (also referred to as “manipulations” or
“experiments”), performed by agents external to the system, thus disturbing the natural
functioning of the system. Such assessment is essential in many domains, including
epidemiology, medicine, ecology, economy, sociology and business, to assist the devel-
opment of new treatments and new policies. Assessing the consequences of actions is
radically different from making predictions in a stationary environment when the sys-
tem is subject to its own dynamics. For instance, one might observe that both smoking
and coughing are predictive of respiratory disease in a general population and use either
predictor for diagnosis. One is a cause (smoking) and the other a symptom (coughing).
Acting on the cause can change the disease state, but not acting on the symptom. There-
fore if we are interested in treatment rather than in diagnosis it is extremely important
to distinguish between causes and symptoms to predict the consequences of actions.
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Counterfactual prediction: Another landmark of causal reasoning is counterfac-
tual prediction. In fact, some philosophers and practitioners like defining causality via
counterfactuals. A typical counterfactual question is: considering that a given patient
who took a nicotine substitute stopped smoking, what would have happened if he had
not take the medicine? Would he have stopped smoking anyway? More generally,
considering a self-contained system of interdependent RVs, what would have been the
values assumed by certain variables had some other variables taken values different
from the ones observed?

We see that there are subtle differences between predicting the consequence of ac-
tions and counterfactuals. First, counterfactuals have to do with hypothetical events
that could have taken place in the past whereas predicting the consequences of actions
projects events into the future. Second, counterfactual predictions are usually point-
wise predictions. For instance, we want to predict what would have happened to one
particular patient. In contrast, we might want to optimize the consequences of future
actions on a population of patients.

There are many other causal questions. Here we mention a few, which were raised
at the NIPS 2006 workshop on causality:

- Determine what manipulations are needed to reach a desired system state with
maximum probability (e.g., select variables and propose values to achieve a cer-
tain value of a response/target variable, with perhaps a cost per variable).

- Find a causal explanation for a certain observed state y of a target variable Y ,
i.e., a set of variables having assumed given values, which lead with high proba-
bility to the given observation Y = y.

- Propose system queries to acquire training data, i.e., design experiments, with
perhaps an associated cost per variable and per sample and perhaps with con-
straints on variables, which cannot be controllable.

- Determine a local causal region around a response/target variable (causal adja-
cency).

- Determine the source cause(s) for a response/target variable.
- Predict the existence of unmeasured variables (not part of the set of variables

provided in the data), which are potential confounders (are common causes of an
observed variable and the target).

- Predict which variables called “relevant” by feature selection algorithms are po-
tentially causally irrelevant because their statistical dependency to the target is
the result of an experimental artifact (e.g. sampling bias or systematic error).

- Determine causal direction in time series data in which one variable is causing
the other.

Defining causal problems supersedes the need for defining causal systems, if we
think of causality as a means to an end (solving problems, attaining objectives). We
do not need to ascertain that data are generated by a causal system to address a causal
problem or answer a causal question. Let us go back to our example of the perfect gas
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for which the system of variables {p,V,T} did not seem to be in any particular causal
relationship. If we use a bicycle pump, the action of pumping has predictable conse-
quences linking the reduction of volume of the gas in the pump to the increase in pres-
sure. Hence, via action/manipulation/experimentation we can evidence a cause-effect
relationship for this particular setup, without the prerequisite of solving the problem of
whether the set of RVs involved form a “causal” system (this question might not even
make sense). What matters to us, in this case, is that we can predict the consequence of
actions, i.e., we can use the bicycle pump for a purpose.

4.2. The role of machine learning

The main charter of Machine Learning is learning from data the structure and param-
eters of an optimal predictive model. We refer to this task as model inference. Once
a model structure and its parameters are computed, another kind of inference can take
place: the inference of variable statistics (point estimations, estimation of expectations,
or distribution calculation) given the values of other variables. We refer to this other
problem as variable inference to distinguish it from the first one. When authors re-
fer to causal inference, they may either refer to variable inference, model inference, or
both. We briefly review both aspects to contrast them.

VARIABLE INFERENCE

A lot of effort has been put into solving the problem of variable inference in Bayesian
networks (BN) and Structural Equation Models (SEMs), independently of solving the
problem of model inference. In many applications, the structure of a causal models is
derived from prior knowledge. For instance, in the PROMO task of the challenge, the
model structure is given by expect knowledge (“promotions” influence “sales”); only
the parameters need to be estimated from data. In some applications, the parameters
themselves cannot be subject to learning because of lack of training data, but they can be
derived from expert knowledge. For example, the methodology of the noisy-or model,
which has been widely deployed for medical diagnosis (Russell and Norvig, 2003) and
fault diagnosis (Yongli et al., 2006), allows mapping expert knowledge to parameters.
It makes simple independence assumptions between direct causes Xi, i = 1, ...n of a
target Y . The influence of the Xi on Y is parameterized by only n parameters pi, easy
and intuitive to evaluate for experts. Using n intermediary influence variables Yi such
that Y is the simple logical OR of the Yi, the parameters pi represent the probabilities of
successful influence: P(Yi = 1|Xi = 1) = pi and P(Yi = 1|Xi = 0) = 0. The models thus
constructed are used for variable inference.

Variable inference makes use of the model to predict values of certain variables in
various situations, including when values of some other variables are missing or im-
posed (manipulations or counterfactuals). Here is a typical example of variable infer-
ence in a simplified “alarm network” (Pearl, 1988): Burglary! Alarm Earthquake.
Assume that the alarm goes off and alerts the police by telephone. The question is:
has there been a burglary. If there has just been an earthquake, the probability of
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a burglary goes down and it may be unnecessary to send a police officer. Calcu-
lation of conditional probabilities (such as P(Burglary|Alarm,Earthquake)) can be
facilitated by causal networks in complex cases involving a large number of vari-
ables. Such uses of causal networks inherit directly from expert systems in artifi-
cial intelligence, adding the additional “uncertainty” dimension to the logical con-
structs. Bayesian networks or SEMs with designated architecture and parameters can
be thought of as motors of calculation of conditional probabilities. Going one step
beyond, in some cases, it is possible to predict conditional probabilities in a post-
manipulation distribution given the pre-manipulation distribution (the so-called “nat-
ural” distribution) and some causal assumptions. For instance, one might want to com-
pute P(Burglary|do(Alarm),Earthquake), where do(Alarm) means that the alarm is
triggered by an external agent. The action of the agent disconnects the Alarm vari-
able from its original causes Burglary and Earthquake, hence P(Burglary|do(Alarm),
Earthquake) = P(Burglary). A complete methodology to carry out such variable in-
ference problems using causal networks (implemented with BNs or SEMs) has been
developed by Pearl and his collaborators under the name of “do-calculus” (Pearl, 2000).

MODEL INFERENCE

While variable inference is an important aspect of causal inference with a well devel-
oped set of algorithms, model inference has recently become the focus of interest. In
that realm, machine learning has various important roles to play:

- The finite sample case. Traditionally in the causal discovery community, al-
gorithms for learning causal network structure have been developed with the
assumption that there exists an “oracle” having perfect knowledge of the data
distribution, and which is capable of answering without mistake questions about
conditional independence between subsets of variables. This implicitly make
the assumption that an infinite amount of training data are available. This raises
the questions of developing robust and powerful statistical tests of conditional
independence (Margaritis and Thrun, 2001). Kernel methods have moved in this
direction (Gretton et al., 2005).

- Feature and model selection. Another tradition of the causal discovery com-
munity is to dismiss cross-validation for model selection and focus on penalty-
based cost functions (most often using Bayesian priors) for reasons alluded to in
Section 3.2. Yet, as demonstrated in the “causation and prediction” challenge,
regular feature selection methods and cross-validation can take you very far to
prune feature space (Guyon et al., 2008). Also, purely frequentist penalty-based
model selection methods based on regularization, which have been developed in
machine learning, may provide effective means of causal model selection (Pellet
and Elisseeff, 2008; Lozano et al., 2009). In the problem of cause-effect pairs for
instance, where constraint-based methods using conditional independence tests
are not applicable, such methods have proved to be effective (see the papers of
Mooij and Janzing and that of Zhang and Hyvärinen in these proceedings).
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- Learning algorithms. There is a wealth of algorithms developed in machine
learning, which can find applications in learning causal models. We saw recently
the application of the ICA algorithm to learning SEMs with non-Gaussian noise
for linear models (Shimizu et al., 2006), extended in these proceedings to non-
linear models by Zhang and Hyvärinen. Recent methods also use non-linear re-
gression techniques to distinguish between cause and effect (Hoyer et al., 2008).
Novel methods for identifying latent confounders use a combination of nonlinear
dimensionality reduction and kernel dependence measures (Janzing et al., 2009).

4.3. Examples of applications

Recently, there has been a surge of interest in causal models in data mining, prompted
by the need of assisting policy making and the availability of massive amounts of
“observational data”. Examples of applications of causal models include: biology,
medicine and pharmacology (Oniśko et al., 1997; Herskovits and Dagher, 1997; Fried-
man et al., 2000; Kononenko, 2009), epidemiology (Aickin, 2002), climatology (Chu
and Glymour, 2008), social and economic sciences (Kaplan, 2000; Demiralp and Hoover,
2003; Moneta, 2005), marketing (CFMDCY, 2006), neuroscience (Ding et al., 2006;
Neves et al., 2008), psychology, law enforcement and crime prevention (Young, 2008),
manufacturing„ quality control, and fault or security diagnosis (Qin and Lee, 2003;
Kraaijeveld and Druzdzel, 2005). Among the most prominent applications, which have
taken off in the past decade, uncovering regulatory networks of chemicals in living
organisms and connecting those networks to disease, has been the object of much re-
search. For a rather extensive bibliography, see (Markowetz, 2007). Epidemiology has
long been one of the main areas of application of causal modeling (Rubin, 1974; Her-
skovits and Dagher, 1997; J.M. Robins, 2000). Epidemiologists have also embraced
the new tools of genomics and proteomics to investigate gene-environment interactions
(Vinei and Kriebel, 2006; Jenab et al., 2009).

5. Assessment of causal solutions

A second objective of the NIPS 2008 workshop was to find means of assessing the
performances of solutions proposed to causal problems. We present in this section as-
sessment methods, which have been used in our challenges, and point to other methods
of interest.

5.1. Experimental verifications

The most established way of assessing causal theories is to carry out randomized con-
trolled experiments to test hypothetical causal relationships. Fisher’s book “The Design
of Experiments” in 1935 laid the mathematical foundations for experimental design.
The central idea is the systematic use of randomization to avoid confounding.

For example, in the medical domain, a causal relationships C! E between a treat-
ment C and an effect E may be tested in a Randomized Controlled Trial (RCT).
Variable C may be the choice of one of two available treatments for a patient with lung
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cancer and E may represent 5-year survival. If we randomly assign a large number
of patients to the two treatments by flipping a fair coin and observe that the proba-
bility distribution for 5-year survival differs between the two treatment groups, it may
be concluded that the choice of treatment causally determines survival in patients with
lung cancer. The double blind placebo-controlled Randomized Controlled Trial, where
allocations are randomized and neither patient not doctor knows which treatment has
been assigned, is now standard in clinical trials. In agriculture, complex experiments
in which many factors are controlled simultaneously are commonly performed. Un-
fortunately, experimenting is a long and costly process, and, in many domains it is
impractical or infeasible.

An ideal benchmark of causal discovery methods (uncovering causal relationships
from observational data) would compare predictions obtained by applying algorithms
to large observational databases with the outcome of well designed experimental stud-
ies. Because of the rarity of adequate observational data sets paired with appropriate
randomized experiments, to our knowledge no such comparisons have been made.

The Causality Workbench project has started a program of benchmarks in which re-
alistic simulated systems will be used for generating observational data and performing
virtual experiments (Guyon et al., 2010). In the “causation and prediction challenge”
(Guyon et al., 2008), we used matched sets of artificially generated data for various
tasks: a training dataset drawn from a “natural” unmanipulated distribution and sev-
eral test sets drawn from various types of post-manipulation distributions.

We present alternative evaluation methods in the following sections.

5.2. Established ground truth

Second best to pairing observational studies and the outcome of designed experiments
is to compare causal relationships inferred from observational data to ground truth
established from human expertise (see glossary). This method has been used for in-
stance by Cooper and Spirtes, 1998 (Spirtes et al., 2000, page 369) to compare cause-
effect relationships inferred from a database on hospitalized pneumonia patients to
expert medical judgement. Here are a few examples of cause-effect pairs tested in
this study: Coronary artery disease!Myocardial in f ection, Employment status!
Illegal drug abuse, Nausea ! Vomiting, and Number o f comorbid conditions !
Dire outcome. In the pot-luck challenge organized for NIPS 2008, one dataset used
human judgement as ground truth: the CauseEffectPairs dataset. Examples include the
pairs Altitude! Temperature and Longitude! Precipitation in German cities and
Age! Length for the snail Abalone.

In biology, regulatory pathways obtained by curating thousands of peer reviewed
papers constitute reference human knowledge for discovery studies performed with
genomic and proteomic observational data (Kanehisa et al., 2008). In the pot-luck
challenge, the CYTO dataset is a good example using this type of ground truth. Note,
however that due to many inconsistencies in the biological literature there is a lot of
uncertainty in the reference regulatory pathways.
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Using artificially generated data is another way of having access to an established
ground truth (i.e., the structure of the data generative model). In the NIPS 2008 chal-
lenge, several datasets resorted to this means of assessment. The dataset TIED is purely
artificial and was designed to illustrate a particular technical difficulty. The datasets
REGED and MARTI were build from a simulator of a gene regulatory network influ-
encing lung cancer, trained with real data. The dataset SIGNET was simulated from
a set of Boolean rules representing knowledge of a plant regulatory pathway gathered
from several published papers.

5.3. Statistical tests

We regroup in this section a variety of techniques making solely use of observational
data to validate causal structures using some statistical argument. We think of such
methods as the weakest way of validating causal relationships, yet they are much useful
because there are often no better alternatives.

1. Validation of theoretical models by hypothesis testing. Statistical hypothesis
testing is used as “confirmatory analysis” (not for structure discovery via tests
of conditional independence) in social sciences, psychology, and econometrics
to validate theoretical models proposed by experts. The parameters of a causal
model (typically a SEM) whose structure is determined from domain knowledge,
are fitted to data. In ordinary least square regression (with several input features
that represent alleged causes and a single target variable), the residuals of the
model are compared to the residuals of a null model (e.g., the expected value
of the target, another previously proposed model, or, for time series, an auto-
regressive model). Statistical tests used to perform such comparisons include
the Chi-square test. The tested model is invalidated if its predictions cannot be
found statistically significantly better than those of the null model. Individual
parameters of the model can also be examined within the estimated model in
order to see how well the proposed model fits the driving theory.

For structural equation models (SEMs) assuming Gaussian noise models, the
parameter calculations are based on the covariance matrix of the variables.
Goodness-of-fit is based on comparing the observed covariance matrix with the
covariance matrix estimated by the model. In the early literature on SEMs, ana-
lysts tested simply the null hypothesis that the specified model leads to an exact
reproduction of the observed covariance matrix with a chi-square test, but this
was later replaced by a comparison with the predictions of a null model (e.g., a
baseline model assuming that all variables are uncorrelated) (Bollen and Long,
1992). Recently, methods for testing structural parts of a model rather than the
whole model have been proposed, providing a more detailed and insightful vali-
dation (Tsamardinos and Brown, 2008).

Another type of test investigates whether the explanatory variables and the er-
ror terms are statistically independent, as recently used in (Shimizu et al., 2006;
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Hoyer et al., 2008), and by Kun Zhang and Aapo Hyvärinen in these proceed-
ings. Since these dependencies are typically non-linear, tests must be able detect
higher-order dependencies, not just simple correlations, . Kernel-based methods
like HSIC (Gretton et al., 2005) seem to be useful for this task.

It is important to remember that if such methods are to be used for structure
validation, the structure of the tested model should not be obtained from the data
used for testing (otherwise it is like testing on training data).1 Also, a model
passing such a test is not confirmed, but rather it is not rejected, because the
evidence obtained from observational data is usually insufficient to confirm a
causal model. The tested model should have falsifiable implications, which can
be tested against the data.

2. Instrumental variables. In econometrics, epidemiology and related disciplines,
the method of instrumental variables is used to estimate causal relationships when
controlled experiments are not feasible. In attempting to estimate the causal ef-
fect of some variable C on another E, an instrument is a third variable I which
affects E only through I’s effect on C: I!C! E. The method can be thought
of as a “natural” experiment in which the instrument variables play the role of
the “external agent”. The success of the method hinges on the selection of suit-
able instruments. For instance, Cooper and Spirtes, 1998 (Spirtes et al., 2000,
page 372) used race, age, and gender as an instruments in the determination of
cause-effect pairs in the example of pneumonia covariates mentioned in the pre-
vious section. In Section 6.2, we give examples of Mendelian randomization in
which naturally occurring gene mutations are used as instruments to manipulate
the level of certain proteins in blood.

Other natural and quasi-natural experiments of various types are commonly ex-
ploited, for example (Miguel et al., 2004) use weather shocks to identify the
effect of civil conflict on economic growth. Jared Diamond (Diamond, 1997)
defends the thesis of the influence of climate and natural resources on societal
development (including food production vs. hunting and gathering) using a natu-
ral controlled experiment: the scattering of populations of homogeneous ancestry
over a relatively short period of time in the widely diverse Polynesian islands.

3. Re-simulation and model architecture stability. The consistency of the find-
ings obtained by causal discovery algorithms on real data may also be tested by
“re-simulation”. The re-simulation method consists in: (1) Training a data gener-
ative model with real observational data; (2) Generating simulated datasets with
the model under various noise conditions; (3) Training new models for every the

1. This section focusses on model assessment or “validation” (testing), not on model selection, which we
consider part of training. Statistical tests are also used sometimes for model selection. For instance,
nested models with increasing numbers of variables may be created and pvalues may be computed.
This can be understood as testing a model not only against a single model, but against all simpler
models. Pvalues must be adjusted correctly to take into account the multiple testing problem.
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simulated dataset; (4) Studying the model stability with respect to its architec-
tures and its predictions made under manipulation. This methodology was used
by Statnikov and collaborators (Aliferis et al., 2006) on the problem of lung can-
cer. The REGED dataset used in our challenges emerged from this study, but
re-simulation was not used as an assessment method is the challenge.

Re-simulation is a variant of an assessment methods often used for clustering al-
gorithms in which the stability of the model under various perturbations of the
data is studied (Ben-Hur et al., 2002). Perturbations may include resampling
the training dataset or adding noise to the input variables. Clustering and other
unsupervised learning methods including principal component analysis and fac-
tor analysis can be thought of as latent causal constructs (the latent variables or
cluster centers being alleged hidden causes).

4. Probe method. Yet another type of method of assessment, very popular in the
field of variable or feature selection, is to introduce in real data a number of artifi-
cial “distracter” variables called “contrasts” (Tuv et al., 2006) or “probes” (Stop-
piglia et al., 2003; Guyon and Dreyfus, 2006), which are, by construction, not
predictive of a target variable of interest. In the first causality challenge (Guyon
et al., 2008; Guyon et al., 2008), we extended this method to the assessment of
causal discovery algorithms.

The use of probes is relatively straightforward for “regular” feature selection
from i.i.d. data, with the goal of selecting predictive variables of a given target
variable, regardless of causal relationships. In statistics, for algorithms providing
a ranking of variables in order of relevance, it is standard to compare the index
of ranked variables to the index of hypothetical variables (called probes) drawn
from a null distribution representing irrelevant variables (Guyon and Dreyfus,
2006). In this way, one can test the null hypothesis that variables are irrelevant.
For instance, assume that our target variable is binary (e.g., the patient health
status “cancer” or “healthy”) and that we want to determine whether a given
predictor variable of mean µ is individually predictive of the target (univariate
association). A possible null hypothesis may be that variables are drawn from
a Gaussian distribution of mean µ and the alternative hypothesis may be that
it is drawn from a mixture model of two Gaussians with different means (but
same variance). The t-test may then be used to test the hypothesis of equality
of the means of the two classes and determining whether the predictor variable
of interest significantly separates the two classes. Choosing the right ranking
criterion and a good null distribution has been the object of a lot of study and
there is no one-size-fit all solution (see Guyon and Dreyfus, 2006, for a review).
A completely non-parametric solution to the problem is to select a well suited
ranking criterion, not corresponding to any known tabulated statistic (e.g., the
Relief criterion Kira and Rendell, 1992), then to generate random “probes” by
permuting the values of randomly chosen real variables. In this way, the marginal
distribution of the probes mimics that of the real variables, but the randomization
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of the order of the values make them independent of the target variable. This
method bears resemblance with permutation tests (Pitman, 1937). It is widely
applied in genomics.

Extending the idea of probes for the problem of “causal” feature selection is not
as simple as it may seem. We move from the relatively simple question of sep-
arating “relevant” from “irrelevant” features to a multi-class problem including
“causes” of the target, “effects” of the target, “confounded” variables and “unre-
lated” variables. Suppose for simplicity that we only want to determine whether
an algorithm correctly uncovers causes of a target variable. “Irrelevant” vari-
ables include “unrelated” variables, “effects” and “confounded” variables. So, to
test the efficacy of an algorithm to uncover causes of the target, we must intro-
duce artificial distracter variables (probes) of several kinds. Specifically, we need
to construct variables with a “null mechanism” (e.g., a function plus some noise
or a posterior distribution), taking as input subsets of the available real variables
(including eventually the target) and previously constructed probes. This ensures
that no probe will be a cause of the target, but that some will be predictive and
some not.

One way of assessing the validity of a proposed set of causes of the target is
to compute the fraction of probes (all non-causes of the target) in that subset.
Large fractions of probes shed doubt to the validity of the proposed causes. The
probability of getting a number of probes smaller than a certain threshold can
serve as a basis for a statistical test.

In the causality challenges that we organized, we assessed “causal relevance”
using the probe method. Algorithms were required to return an ordered list
of variables, with, for instance, all causes coming first in order of preference
or confidence. If the truth values of the causal relationships had been known,
this ranking could simply have been evaluated with the Area Under the ROC
curve (AUC, the area under the curve plotting the fraction of correctly detected
causes vs. the fraction of false alarms, when a threshold on the number of top
ranking causes is varied). Instead, we used the probe AUC (called PAUC) as a
proxy (correctly detecting causes being replaced by correctly excluding probes).
In (Guyon et al., 2008), we prove that, if the null distribution used to gener-
ate the probes is correct, in the limit of an infinite number of probes, we have
PAUC = (n+/nr)AUC + 0.5n�/nr, where AUC is the true AUC (which cannot
be computed) and n+ and n� are the unknown numbers of positive examples
(causes) and negative examples (non-causes) for the nr = n++n� real variables.
Hence, asymptotically PAUC is monotonically related to the real AUC and there-
fore it can be used as a proxy to assess the relative performance of models.

The introduction of probes among the real variables induces a perturbation,
which may distort the causal discovery problem (e.g., by creating spurious con-
ditional dependencies between the target and real variables). These perturbations
may alter the real cause-effect relationships in unsuspected ways. Hence, for
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discovery, we recommend to re-run the algorithm on real data only, without the
addition of probes.

6. Discussion: Failure breeds success

The old timers of machine learning and artificial neural networks will remember that
the field has long been traumatized by the XOR problem. In the 1960’s, Frank Rosen-
blatt, Bernard Widrow and others introduced various training algorithms for one layer
neural networks. In 1969, Minsky and Papert in their book on Perceptrons (Minsky and
Papert, 1969), inventoried problems, which were “non linearly separable”, i.e., could
not be solved with one layer neural networks. The archetype or such problems is the
XOR problem: the Boolean function XOR is not linearly separable. The book had a
great impact and put the field of artificial neural networks in dormancy for nearly 20
years. During its revival in the 1980’s when algorithms to train multi-layer Perceptrons
emerged, no paper on artificial neural networks failed to address the XOR problem. It
is worth noting though that linear discriminant functions are tremendously useful and
failing to solve the XOR problem is not an indication that a learning machine is useless.
For example, in the 1990’s, the non-linear Support Vector Machine was invented (Boser
et al., 1992), which brought attention to its linear version dating back from the 1960’s.
The linear SVM is now a very widely used method in text processing and bioinformat-
ics.

The field of causal discovery has many problems similar to the XOR problem. How-
ever, neither solving them nor failing to solve them is necessarily an indication that the
methods will not perform well in real world applications. While such problems should
be used as tools to improve our methodology and we also should constantly remind
ourselves that “failure breeds success” and that stumbling on any of these problems
does not mean that unraveling causal relationships is a hopeless task and much less that
causality is a useless concept. In this section, we first play devil’s advocate and give
10 reasons why causal discovery might be a hopeless enterprize. Then, we tell 10 suc-
cess stories proving the pessimists wrong. Finally, we list 10 open problems on which
researchers are still stumbling.

6.1. Ten challenging problems

Several papers in these proceedings present cases in which common assumptions made
are violated or cases in which common causal models either find spurious causal rela-
tionships or fail to uncover existing ones. Most of these problems are discussed thor-
oughly in causality textbooks (Pearl, 2000; Spirtes et al., 2000; Neapolitan, 2003). We
present briefly ten of them.

1. No formal definition of causality. There is so far no formal mathematical defi-
nition of causality. Two approaches attempt to fill this vacuum: (1) Operational
tests of causality (Glymour and Cooper, 1999) allow us to detect causality ex-
perimentally using controlled experiments, but they provide only sufficient crite-
ria for causality, not necessary conditions (see Section 3.1). (2) Data generative
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models propose ways in which variables values may be generated from each other
using defined mechanisms. Algorithms, which can reconstruct the architecture
of a model using data generated by that model are called “causal discovery algo-
rithms”.

2. Statistically dependent is not the same as correlated. Two random variables
X and Y are called independent if P(X ,Y ) = P(X)P(Y ) which is a stronger con-
dition than absence of correlation, i.e., E(XY ) = E(X)E(Y ). This distinction
is often overlooked by causal discovery algorithms, which use correlation as a
symptom of causation instead of statistical dependency. Non-linear mechanisms
can generate dependencies without any correlation (although, in typical cases,
dependent variables are at least weakly correlated). Reciprocally, (partial) corre-
lation can arise in the absence of (conditional) statistical dependence: Partial cor-
relations are given by the correlations of the residuals after linear regression. If X
and Y are non-linear functions of Z (up to noise terms independent of each other
and of Z), only non-linear regression would render them independent and un-
correlated. Hence X and Y can remain partially correlated, given Z, even though
they are conditionally independent, given Z. Therefore, neglecting the possibility
of non-linear mechanism and using statistical tests based only on correlation can
lead both to false negative and false positive dependencies.

3. Statistical dependence does not imply causation2. According to the princi-
ple of common cause (PCC), every statistical dependency between two random
variables X and Y has a causal explanation. Reichenbach (Reichenbach, 1956)
formulated the following three (not necessarily exclusive) cases: (1) X causes Y ,
(2) Y causes X , or (3) there is a third variable Z (common cause or confounder)
causing both X and Y . In this last case, conditioning on Z renders X and Y inde-
pendent, if cases (1) and (2) do not hold. For instance, assume that “chocolate in-
take” (variable X) is found to positively correlate with “life expectancy” (variable
Y ). This does not necessarily imply that eating more chocolate will improve your
chances of living longer. It is possible that in fact “gender” (variable Z) affects
both “life expectancy” (females live longer) and “chocolate intake” (females eat
more chocolate), but that in each “gender” sub-population (male or female) there
is no dependence between “chocolate intake” and “life expectancy” (Simpson’s
paradox).

The problem that confounders are often unobserved, unobservable or even un-
known and that Z can be a high-dimensional vector of relevant factors, is one of
the main obstacles of causal inference from observational data. Often it is even
hard to quantify latent factors such as subject’s personality and physical con-
dition in a medical study. In other words, there is no way for reliably deciding

2. In light of the previous item, we avoid using the terser motto “correlation does not mean causation”.
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whether the set of observed variables is causally sufficient (i.e., does not exclude
any common cause of any pair of variables)3.

For causally sufficient sets of variables, the postulate of the causal Markov con-
dition (CMC) provides a practical principle for selecting candidate causal struc-
tures from observational data, by providing conditions under which statistical
dependency may be linked to causality. Several equivalent versions of the CMC
exist. The most commonly used version postulates conditional independence
between every variable and its non-effects, given its direct causes. Pearl jus-
tified the CMC by a model of causality where every variable is a function of its
direct causes and a noise variable that renders the causal mechanism probabilis-
tic (structural equation model or SEM). Then the CMC follows, assuming joint
statistical independence of the noise terms4. The most common violations of the
CMC arise from violations of causal sufficiency or existence of correlated noise.
In deterministic systems, violations of the CMC may result from the existence
of constraints (such as conservation of mass, energy, or momentum); a classical
example is that of the trajectories of two billiard balls hit by a third one (see the
paper of Lemeire and Steenhaut in these proceedings).

4. “Faithfulness” is not always justifiable by “stability”. This sentence is a short-
hand to bag together a variety of related hypotheses commonly referred to as
Causal Faithfulness Condition (CFC). While the CMC essentially states that de-
pendency implies the existence of a causal arrow, the CFC states the opposite,
namely that independence implies no causal arrow. The CFC is more controver-
sial than the CMC and it is the XOR problem of causality. Imagine two identical
fair coins tossed simultaneously and let us call X1 and X2 the binary random vari-
ables corresponding to the outcome (heads or tail). Consider a outcome Y , which
is whether or not both coins fell on different sides. Note that the logical relation
Y = X1XORX2 is fulfilled. Since both X1 and X2 are individually independent of Y
(and independent of each other), according to the CFC one should not draw any
causal arrow. However, clearly, there is a joint dependency between X1,X2 and
Y . In the causal network framework one could represent the dependency with
the unfaithful graph X1! Y  X2, but the representation [X1,X2]! Y might be
more suitable since the two variables jointly cause Y . Other classical examples of
faithfulness violation for non-binary variables include cases in which two causal
paths exactly cancel each other with a particular choice of parameters. In either
case (XOR or canceled causal path) the “stability” argument in favor of the CFC

3. See section 6.2 in (Pearl, 2000), called “Why there is no statistical test for confounding, why many
think there is, and why they are almost right”.

4. There is a tight relation between CMC and PCC: The conditional independence of two effects, given
their common cause, is just a special case of CMC with three variables. It can also be argued that the
independence of noise terms in Pearl’s model corresponds to an absence of common noise-generating
mechanism, which follows from the PCC. Spirtes et al. (2000) proposed a weak causal Markov as-
sumption, similar to the converse of the PCC, stating that if X and Y have no common cause (including
each other), they are probabilistically independent. This weaker assumptions implies the CMC for
SEMs
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is that if there is the smallest defect in the generative process (a coin not exactly
fair or parameters not exactly tuned to cancel the causal paths), then the sym-
metry is broken and faithfulness is re-established. Critics of the CFC point out
that, in practice, small asymmetries are difficult to detect from empirical data and
that there are many systems in which there is an equilibrium leading to canceled
causal paths (see for instance the paper of Voortman, Dash, and Druzdzel in these
proceedings). Hence, many technical systems like systems of logical gates easily
violate faithfulness.

5. Markov equivalences. Many causal graphs may generate identical probability
distributions or at least entail the same set of conditional independencies between
variables (Markov equivalent graphs). For instance X ! Y ! Z, X  Y  Z,
and X  Y ! Z all have the same unique Markov property that X and Z are in-
dependent given Y . Most structure learning algorithms (from observational data)
rely on the existence of so-called unshielded colliders of the form X ! Y  Z,
which do not have any other Markov equivalent graph. Such methods can unravel
causal relationships in systems of at least three variables, up to Markov equiva-
lent graphs. Hence, they are not applicable to the problem of cause-effect pairs.
Recent methods have addressed this problem, such as the solutions proposed in
these proceedings to the CauseEffetPairs task.

6. Model selection. When learning from observational data, classical cross-
validation is not very useful to perform model selection since predictions are to be
made on data from a different, post-manipulation, distribution. Hence, penalty-
based methods like AIC (Akaike, 1973) or BIC (Schwarz, 1978) are sometimes
used to drive model choices toward fewer parameters or minimal architectures.
Yet, obviously, minimal models are not always the best. For an analysis, see the
paper of Lemeire and Steenhaut in these proceedings.

7. Measurement errors, quantization, and aggregation distort dependencies. In
his presentation at the NIPS 2008 workshop, Richard Scheines gave several ex-
amples in which measurement errors or data quantization limit causal discovery.
For instance, a causal system of three variables X , Y , and Z may have the Markov
property that X is independent of Z given Y (i.e., one of these three graphs is valid:
X ! Y ! Z, X  Y  Z, X  Y ! Z), and yet, this Markov property may go
undetected if Y is observed through a noisy or quantized version Y 0 (technically,
Y 0 is a consequence of Y and therefore it does not d-separate X and Z). Similarly,
variables X , Y , and Z may be the result of averaging over populations X = Âi Xi,
Y = ÂiYi, and Z = Âi Zi. So, even though Xi might be independent of Zi given Yi
for every i, it is possible that the property does not hold for the average.

8. Sample bias and attrition bias plague experimental design. The validity of
randomized experiments relies on the quality of randomization. Spurious rela-
tionships may be found because of sampling. For instance, it may be found that
there is a correlation between pregnancy and flu. If the patients were sampled
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only from an emergency room, this may simply indicate that patients with acute
nausea or vomiting symptoms arising from multiple conditions are more likely
to show up in the emergency room, not that the two conditions are causally re-
lated or have a common cause. Sample bias plagues retrospective studies, which
analyze observational data collected without any particular design. Prospective
longitudinal studies following patients over a period of time are usually less prone
to sample bias because they are more carefully designed, but they are prone to
attrition bias (some patients quit the study before the end, for instance when a
treatment has undesirable side effects.)

9. Markovian causal graphs do not represent suitably all data’s generative pro-
cesses. Directed Acyclic Graphs (DAGs) cannot represent cyclic systems, by
definition. This can be remedied by unfolding cycles in time, which, for dis-
crete time systems amounts to using a classical Markov model. But, symmetric
relationships (such as gravitational or electrical forces) or constraints (such as en-
ergy, mass and momentum conservation) are not suitably represented by arrows
(which are usually interpreted as directional relationships). Accordingly, a given
event Y may simultaneously generate multiple related consequences (a classical
example is that of the billiard ball hitting two balls simultaneously). The nota-
tion X  Y ! Z suggests that X and Z are generated by Y from two independent
mechanisms, rather that a single mechanism with underlying constraints. A new
notation such as Y ! [X ,Z] may be more suitable. See the paper of Lemeire and
Steenhaut in these proceedings for a discussion of this issue.

10. Causality in time series is not necessarily an easier problem. Causality is
commonly thought of as a time-related concept (causes precede their effects). So
how can causality in time series be harder to investigate than causality in time
independent data? On one hand, the problem is indeed simpler because events
that took place in the future may be pruned from the set of candidate causes of an
event. Thus temporal causal models use only past values of variables to predict
future values. On the other hand, modeling can be harder (i) if the time series
are non-stationary (spurious correlations are easily found), (ii) if the variables
are measured in presence of noise (see the NOISE dataset in these proceedings),
(iii) if data are scarce (overfitting problems can be severe since the data points are
not independent, therefore more data points are required than for i.i.d. data), (iv)
if experiments are not properly designed (in particular, the non-commutativity
of equilibration and manipulation might complicate matters, see the paper of
Voortman, Dash, and Druzdzel in these proceedings).

This list is pretty scary, although non-exhaustive. On top of that, the availability of
(quality) data, particularly experimental data, is usually limited. Causal models are per-
haps even more prone to overfitting than regular predictive models, because in addition
to estimating dependencies, one must estimate the direction of the causal relationships.
When there is enough data, causal models suffer from a high computational complexity.
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Hence for a large number of variables, sub-problems must usually be solved (e.g., fo-
cusing on the local neighborhood of a variable). And yet, there are success stories!

6.2. How causal conclusions changed our life - ten stories

Researchers working on causal inference are often confronted with three kind of objec-
tions:

(1) Philosophical concerns about whether causality is a well-defined scientific con-
cept. In 1913, Bertrand Russel stated “the law of causality, I believe, like much that
passes muster among philosophers, is a relic of a bygone age, surviving, like the monar-
chy, only because it is erroneously supposed to do no harm” (Russell, 1913). On one
hand, this perspective seems to be supported by the way many physical laws are formu-
lated, e.g., as time-inversion symmetric differential equations in space time in Einstein’s
theory of special relativity, just discovered at Russel’s time. On the other hand, physics
can also be seen as predicting how outcomes of experiments depend on the experimen-
tal setup, which is an inherently causal formulation.

(2) Scepticism about whether causal conclusions can be drawn from non-
interventional observations. The most radical version of this concern would be the
belief that only randomized controlled studies yield valuable causal conclusions. A
more moderate version, which probably many statisticians would agree to, states that
causal inference from non-randomized studies relies essentially on background knowl-
edge of the domain of the data, which makes it part of the respective field rather than
being part of statistics.

(3) Scepticism about whether causal discovery from observational data can be
mathematically formalized up to a degree that admits the implementation of reliable
inference algorithms. There is, however, no clear boundary between (2) and (3) be-
cause the way the input of an algorithm is specified can contain an arbitrary amount
of prior knowledge. For instance, how to formalize observations in terms of random
variables already involves human judgements about which representation is natural for
the respective problem – a decision that also occurs in other machine learning tasks.

The practical relevance of concern (1) is questionable since an essential part of sci-
entific and technological progress consists in deriving causal statements as opposed to
purely predictive ones because they are the only results that provide criteria for human
actions. The examples of this section illustrate how causal insights from different sci-
entific disciplines already influenced both private decisions and those in public health,
economy and politics. Historical examples pre-dating the computer age involved more
human reasoning than computerized data analysis, but we include them because of
their exemplary nature. They also show that progress has been made by exploiting
non-interventional data and not only by randomized control studies, which responds
to concern (2). The more recent examples, including the practical impact of Granger
causality, the use of instrumental variables in genetic studies (via Mendelian random-
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ization) and successes of Bayesian network in biology and SEMs in social sciences
respond to concern (3).

In selecting our success stories, we have applied very stringent criteria, which pre-
vented us from including many promising on-going efforts mentioned in Section 4.3
(either because the conclusions have not yet been sufficiently validated or because their
socio-economic impact has not been evaluated). Consequently, many recent algorithms
are not yet illustrated in these success stories. However, in response to concern (3), it
should be emphasized that causality research must not be reduced to developing algo-
rithms (even though this is an important part). Human causal reasoning requires ratio-
nales to rely on. The goal to develop automatic causal discovery has already created
a conceptual clarity (Pearl, 2000; Spirtes et al., 2000) that many previous discussions
were lacking. Human causal inference also requires reliable criteria that state-of-the-art
statistics do not provide. Pioneering work from (Janzing and Schölkopf, 2008) present
a formal basis for causal inference that also work with single observations rather than
relying on statistical ensembles. In deriving further principles, one should be encour-
aged by the following successes of causal thinking in science.

1. Vitamin C and scurvy: A historical RCT. Observational epidemiology and
controlled experiments have revolutionized our understanding of causal risk fac-
tors predisposing to a variety of common diseases. While at sea in May 1747, a
ship surgeon of the British Royal Navy, James Lind, provided some crew mem-
bers affected by scurvy with two oranges and one lemon per day, in addition to
normal rations, while others continued on their regular diet. In the history of
science, this is considered to be the first occurrence of a controlled experiment
comparing results of two populations where one factor is applied to one group
only with all other factors the same. Following this discovery, in 1795 the Royal
Navy provided a daily ration of fresh lime or lemon juice to the sailors and suc-
cessfully fought scurvy. It is now established that citrus fruits contain Vitamin C,
which is necessary for the treatment and prevention of scurvy. However, there is
continuing debate within the scientific community over the best dose schedule of
vitamin C for maintaining optimal health in humans and whether overdose may
have adverse effects.

2. Hygiene and infectious diseases: Can you believe what you can’t see? It
is hard to believe that the use of basic hygiene precautions was at some point
fought by the medical establishment. Yet, when the Hungarian physician Ig-
naz Philipp Semmelweis discovered in the 1840’s that cases of puerperal fever
(childbed fever) could be cut drastically if doctors washed their hands in a chlo-
rine solution before gynaecological examinations, he was ridiculed and harassed.
The validation of the germ theory by Pasteur’s experiments in the 1860’s was
necessary before the cause-effect relationship between hygiene and infectious
diseases was accepted. He exposed freshly boiled broth to air in vessels either
directly exposed to air or protected by a filter stopping all particles. Nothing grew
in the protected broths, therefore the living organisms that grew in unprotected

27



GUYON JANZING SCHÖLKOPF

broths came from outside (as spores on dust) rather than being generated within
the broth. This initial work stimulated the development of techniques to kill
germs in beverages (Pasteurization), protocols of antiseptic surgery, and immu-
nization methods (vaccination). With the advent of more powerful microscopes
and the progresses made in microbiology, a large body of work now supports that
the underlying mechanisms of infectious diseases involve germs, which can be
killed with anti-bacterial agents, thus providing an explanation for the causal link
between hygiene and infectious diseases.

3. Crop yield optimization in agriculture: Mathematical foundations of exper-
imental design. The first statistician to consider a formal mathematical method-
ology for designing experiments was Fisher, in his book “The Design of Experi-
ments” (1935). He developed his methodology while working at the Rothamsted
Experimental Station (England), one of the oldest agricultural research institu-
tions, founded in 1843. Partly through these methods, researchers at Rothamsted
have made significant contributions to agricultural science, including the discov-
ery and development of systemic herbicides and pyrethroid insecticides, as well
as pioneering contributions to the fields of virology, nematology, soil science and
pesticide resistance. During World War II, aiming to increase crop yields for a
nation at war, a team under the leadership of Judah Hirsch Quastel developed
2,4-D, still the most widely used weed-killer in the world. In medicine, the dou-
ble blind Randomized Controlled Trial (RCT), where allocations are randomized
and neither patient not doctor knows which treatment has been assigned, is now
a standard experimental design in clinical trials.

4. The smoking ban and lung cancer: Better err on the safe side. Prior to
World War I, lung cancer was considered to be a rare disease, which most physi-
cians would never see during their career. With the postwar rise in popularity of
cigarette smoking, however, came an epidemic of lung cancer. In 1950, Richard
Doll undertook with Austin Bradford Hill a study of lung cancer patients in 20
London hospitals, at first under the belief that it was due to the new material
tarmac, or motor car fumes, but rapidly discovering that tobacco smoking was
the only factor they had in common. Sir Ronald A. Fisher and other statisticians
opposed the conclusions of Doll and Hill that smoking caused lung cancer on
the ground that correlation does not imply causation. For instance, there may be
an unknown genetic factor, which causes both lung cancer and craving for to-
bacco. Many studies followed (see Spirtes et al., 2000, page 239 for a detailed
account), eventually leading to tobacco smoking bans in public places in several
countries. Interestingly, the results of controlled studies on the effect of smoking
on lung cancer are mixed, but there is a large consensus that the smoking ban
reduced heart disease (Sources include, the US National Cancer Institute and the
American Lung Association).

5. NSAIDs, drug efficacy and drug toxicity. Non-steroidal anti-inflammatory
drugs (NSAIDs) include some of the most commercially successful drugs like
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Aspirin or Tylenol. They are used to treat pain, fever and inflammation. Most
NSAIDs act as non-selective inhibitors of the enzyme cyclooxygenase, which
catalyzes the formation of prostaglandins, messenger molecules in the process of
inflammation causing pain and fever. This mechanism of action was elucidated
by John Vane, who later received a Nobel Prize for his work in 1982. Medicines
containing derivatives of salicylic acid, structurally similar to aspirin, have been
in medical use since ancient times. A French chemist, Charles Frederic Gerhardt,
was the first to prepare acetylsalicylic acid in 1853. In 1899, Bayer patented it
for its use as a drug under the name Aspirin. Aspirin’s popularity grew over
the first half of the twentieth century, spurred by its effectiveness in the wake of
the Spanish flu pandemic of 1918, and aspirin’s profitability led to fierce com-
petition and the proliferation of aspirin brands and products, especially after the
American patent held by Bayer expired in 1917. Aspirin is no longer used in
children and adolescents due to the risk of Reye’s syndrome; paracetamol (the
international non-proprietary name for the drug Tylenol) is now often used in-
stead. In 1887 the clinical pharmacologist Joseph von Mering first tried parac-
etamol on patients. In 1893 he published his results comparing paracetamol with
phenacetin, another aniline derivative, claiming that, unlike phenacetin, paraceta-
mol had a slight tendency to produce methemoglobinemia (abnormal oxidation of
hemoglobin to methemoglobin, reducing the oxygen transport capabilities of red
blood cells). The toxicity of paracetamol was not challenged until the late 1940’s
when it was shown that phenacetin metabolizes to paracetamol (von Mering’s re-
sults may have been due to some impurity). Paracetamol was first marketed in the
United States in 1953 by Sterling-Winthrop Co., which promoted it as preferable
to aspirin since it was safe to take for children. More recently, the commercially
successful NSAID Vioxx, approved by the FDA in 1999, was voluntarily with-
drawn from the market by Merck in 2004 because of concerns about increased
risk of heart attack and stroke. This example illustrates the intricacy of determin-
ing positive and negative effects via a combination of observational, controlled
studies, and understanding of mechanisms.

6. Genetic epidemiology: Towards personalized medicine. Genetic epidemiol-
ogy is concerned with understanding heritable aspects of disease risk, individ-
ual susceptibility to disease, and ultimately with contributing to a comprehen-
sive molecular understanding of pathogenesis and a medicine tailored to the
individuals. It is also an area of intensive causal studies. According to Kraft
and Hunter (Kraft and Hunter, 2009): “A major goal of the Human Genome
Project was to facilitate the identification of inherited genetic variants that in-
crease or decrease the risk of complex diseases. The completion of the Inter-
national HapMap Project and the development of new methods for genotyping
individual DNA samples at 500,000 or more loci have led to a wave of discov-
eries through genome-wide association studies. These analyses have identified
common genetic variants that are associated with the risk of more than 40 dis-
eases and human phenotypes. Several companies have begun offering direct-to-
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consumer testing that uses the same single-nucleotide polymorphism chips that
are used in genomewide studies.” And, according to Goldstein (Goldstein, 2009):
“More than 100 genomewide association studies have been conducted for scores
of human diseases, identifying hundreds of polymorphisms that are widely seen
to influence disease risk. After many years in which the study of complex human
traits was mired in false claims and methodological inconsistencies, genomics
has brought not only comprehensive representation of common variation but also
welcome rigor in the interpretation of statistical evidence.”

7. Reverse causation and confounding resolved by Mendelian randomization.
Mendelian randomization makes a bridge between observational epidemiology
studying environmental factors and genetic epidemiology. The problem of “re-
verse causality” occurs when the direction of a cause-effect relationship is in-
verted because the onset of the cause was not detectable. The problem was stud-
ied by Martijn Katan in 1986 (Katan, 2004; Keavney, 2004) for the association
between low serum cholesterol levels and cancer. In this case, a pre-existing
occult tumor might cause lower cholesterol levels, rather than lower cholesterol
levels causing cancer (Garcia-Palmier et al., 1981). The association might also
be explained by confounding factors (such as cigarette smoking) related both to
future cancer risk and to lower circulating cholesterol (McMichael et al., 1984).
Katan proposed a method using genetics to emulate a RCT without performing
actual manipulations. His method was never tested but it was then generalized
by Gray and Wheatley in 1991 (Gray and Wheatley, 1991; Wheatley and Gray,
2004; Smith, 2007) in a method called “Mendelian Randomization”. The idea is
to use a naturally occurring genetic polymorphism, with a well understood reg-
ulatory effect, as an instrument to manipulate a variable of interest (e.g., raising
blood cholesterol). Importantly, the genotype must only affect the disease status
indirectly via its effect on the variable of interest (e.g., blood cholesterol). Be-
cause genotypes are assigned randomly when passed from parents to offspring,
the statistical dependence between the population genotype and the cancer can-
not be confounded (as opposed to cholesterol, where confounding by social,
behavioral or physiological factors is possible). The biggest success so far of
Mendelian randomization studies were obtained using a mutation of methylene
tetrahydofolate reductase as randomization instrument in studies of the implica-
tion of folate in coronary heart disease, fetus neural tube defects, and cancer (see
Smith, 2007).

8. System biology: Reverse engineering the cell. One branch of system biology,
which is an active area of causal studies, aims at modeling a whole cell. As part
of that effort, Nir Friedman and his collaborators wrote several of the key papers
using Bayes Networks for gene expression analysis and pathway modeling. This
approach generalized the method of Boolean networks for pathway modeling
traditionally used by chemical engineers to abstract metabolic and biochemical
networks by modeling uncertainty and introducing hidden variables. For a re-
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view of Friedman’s work see (Friedman, 2004). For the most part, published
papers in this area propose networks based on analyzing empirical data and then
compare the results with the existing literature. Few papers are followed by an
experimental validation of new findings. Still, these results, which incorporate
global simultaneous measurements, are a good complement to results coming
from other sources investigating in more details the interactions of few chemical
species, including e.g., via gene knockout experiments.

9. College dropouts: Assisting policy-making in social sciences. Using causal
discovery algorithms to learn the structure of Structural Equation Models, Spirtes
and collaborators have worked out a large number of problems previously pub-
lished in the literature and found structures matching or closely resembling those
built with expert knowledge (Spirtes et al., 2000). The examples include find-
ing the causes of publishing probability, finding the influence of parent education
on children education, and finding what influences abortion opinions. For illus-
tration, we give an end-to-end story, which actually led to a change in policy:
(Druzdzel and Glymour, 1999) performed a study at the request of the provost of
Carnegie Mellon University (CMU) to investigate policies for lowering dropout
rates. Using the US News and World Report database on American college and
universities, they found that all variables in the database to be independent of
college dropout given the results of test scores of the entering class (SAT test
scores). Subsequent higher selection of students based on the SAT test results at
CMU correlated with lower dropout rates (but may have been affected by other
factors).

10. Granger causality: Causality in time series. Clive Granger and his collabora-
tors published in 1970’s and 1980’s methods for determining whether some time
series are useful in forecasting others. A time series x(t) “Granger causes” an-
other y(t) if the bivariate model (using past values of x and y to predict y) is more
predictive than the auto-regressive model (using only past values of y to predict
y). This conclusion, however, is only correct if there are no instantaneous causal
influences between x(t) and y(t) and if there is no common cause influencing
both.

Granger received the 2003 Nobel prize in economics for his work on co-
integration and modeling of non-stationary time series. If both x(t) and y(t) are
non-stationary, but some linear combination ax(t)+by(t) is stationary, then x(t)
and y(t) are said to be co-integrated. Granger proved that co-integrated time se-
ries must be in a Granger causal relationship. In spite of its limitations, Granger
causality is a big leap forward as it eliminates many spurious correlation or spu-
rious regression found by fitting models making stationarity assumptions using
ordinary least squares. Granger’s work has transformed the way economists deal
with time-series data. Today, tests of stationarity and co-integration are carried
out routinely as a stepping-stone to the specification of dynamic econometric
models relating exchange rates and price levels, consumption and wealth, divi-
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dends and stock prices, and interest rates of different maturities (source: Nobel
web site (Granger, 2003)).

6.3. Ten open problems

Much remains to be done in the domain of causal modeling. While successful causal
studies have focused primarily on systems of just a few variables, more ambitious recent
endeavors have ventured to unravel causal relationships in systems of thousands of
variables, facing new challenges. We give ten research directions, which we think
deserve attention.

1. Optimizing directly defined objectives. One of the two themes of the NIPS
2008 workshop was to define objectives for causal modeling. Assuming that we
made a step in the right direction, the next step will be to develop methods to op-
timize such objectives. In pattern recognition, the old paradigm which consisted
in developing separately the building blocks of recognition systems (preprocess-
ing, classifier, and post-processing) has made way to approaches, which globally
optimize simultaneously all the parameters of the processing chain with respect
to a global objective. Similarly, we anticipate that in causal modeling searching
directly for optimal modes of action (policies) to attain given objectives may be
easier and yield better solutions than attempting to faithfully unravel the data’s
generative process. The causal model would then just be a means to an end, not
an end in itself. Such approaches may bridge between causal modeling, opera-
tions research and identification and control.

2. Improving and comparing assessment methods. The second theme of the
workshop was the development and study of methods of assessment of causal
models. As we pointed out in the course of the paper, the problems of model se-
lection, model performance prediction, and model assessment are more difficult
for causal models than for regular statistical models because data are not i.i.d. We
briefly reviewed some assessment methods in Section 5. The next step will be to
study and compare such methods (and others), eventually leading to best practice
recommendations for data analysts.

3. Understanding and modifying regularly made assumptions. Assumptions
like the CMC, causal sufficiency, the CFC, Gaussianity of the noise, linearity
of the relationships, are often made out of convenience rather than out of an un-
derstanding of the data’s generative process and of the possible consequences on
the solution. Collecting pedagogical examples violating such assumptions should
facilitate the work of data analysts and, in turn, inspire theoreticians to modify the
assumptions. For instance, unfaithful distributions can arise from deterministic
relations (Lemeire, 2007), which are not uncommon in nature. Finding appro-
priate meta-principles which imply faithfulness under specific conditions would
be an option for future foundations of causal inference (see the paper of Lemeire
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and Steenhaut in these proceedings). In a Bayesian setting, this task would cor-
responds to finding good priors on the parameter space of a Bayesian network.
One could ask for abstract properties such priors should have, following earlier
work of (Meek, 1995).

4. Developing versatile regularized models. Bayesian networks based on directed
acyclic graphs (DAGs) are praised for their simplicity, but have the limitations
that we mentioned in Section 6.1. Many other models have been proposed to gen-
eralize them and/or address their limitations, including partial ancestral graphs
(which model uncertainties about arrow directions), Markov random fields (for
bi-directional connections), cyclic and dynamic models. Linear structural equa-
tion models (SEMs) with Gaussian noise variables have been generalized to non-
linear and non-Gaussian noise models. Practitioners are at a loss to determine
without domain knowledge which model may be best suited and avoid either un-
derfitting or overfitting data. It may facilitate their work to move towards general-
purpose versatile causal models, and use regularization methods to bias the search
for optimal structures and parameters towards simpler solutions. Efforts in this
direction have stated to emerge (see Lozano et al., 2009, and the paper of Zhang
and Hyvärinen in these proceedings)

5. Developing efficient and effective algorithms. Much progress has been made
recently towards scaling up algorithms to large numbers of variables and large
numbers of examples. One approach has been to make use of regular feature
selection methods developed in machine learning to prune the search for causes
and effects (Aliferis et al., 2003). This and other efforts in the same direction
need to be pursued.

6. Developing a methodology for feature construction. Variable definition and
coding is not innocuous in causal modeling. We have seen in Section 6.1 that
variable aggregation can occlude some conditional independencies. Coding a cat-
egorical variable into several (dependent) variables using a complete disjunctive
coding may result in similar problems. Hence a methodology for defining, con-
structing, and coding variables must be developed to guide practitioners. Steps
in this direction have recently be made (Spirtes, 2008).

7. Addressing imperfections in data. Imperfection in data such as measurement
errors, data quantization, missing values, sampling bias, attrition bias, and cor-
related noise may be responsible for modeling errors. While classical statistical
models may degrade gracefully with such data imperfections, structural errors
in causal models may yield entirely wrong conclusions as to which actions are
susceptible to influence a desired outcome. Although it may not be possible to
inventory all possible adverse situation, it is important to raise awareness among
practitioners, find methods for diagnosing a number of classical problems, and
eventually find remedies.
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8. Integrating heterogeneous information. Merging data from a variety of sources
is going to be one of the major challenge in some domains. In genomics and pro-
teomics, for instance, understanding the role of specific genes and proteins in
disease requires multidisciplinary approach. Relevant data come from sources as
diverse as high-throughput tools (like DNA microarrays and mass-spectrometry),
gene knock-out/knock-down techniques, protein characterization, metabolic pro-
filing, high-content screening, phenotype, and clinical data. In medicine, it is
generally admitted that the strongest evidence for therapeutic interventions is
provided by systematic review of multiple Randomized Controlled Trials. The
Cochrane Collaboration is a group of over 15,000 volunteers in more than 90
countries who review the effects of health care interventions tested in biomedi-
cal randomized controlled trials. There may be value in developing methods to
integrate information from various sources, identify possible contradictions, and
track them back to confounding factors or experimental errors.

9. Designing studies combining observational and experimental data. Observa-
tional studies and expert opinions are usually not considered reliable evidence,
compared to controlled experiments. However, experiments being costly, time
consuming and sometimes unethical or impractical, it seems that it could make
sense to design studies in which both observational and experimental data would
be collected, in an effort to maximize information for a given budget.

10. Quantifying uncertainty. Learning from a finite amount of observational and/or
experimental data yields models and predictions tainted with uncertainty. Most
causal discovery algorithms are justified in the infinite sample size limit. There is
a need to quantify uncertainty e.g., with bounds on the prediction error involving
model complexity, data quality, and data quantity.

7. Conclusion

There is an intense activity in a nucleus of machine learning researchers interested in
causality. We hope that this activity will result in improving techniques to unravel
cause-effect relationships and expand the domain of application in areas where the
number of features and variables is much larger than those usually considered in the
past. At this stage, there seems to be an abundance of algorithms looking for good
applications. Hence the most urgent questions are: How to get good problems? How to
get good data? How to get conclusive results? For that reason, we are continuing our
effort of data exchange and benchmark through the Causality Workbench project.

While we hope that our effort will lead to an improvement in methodology, we
would like to borrow the wisdom of Petitti (Petitti, 2004), who makes the following
four recommendations: (1) Do not turn a blind eye to contradiction. Do not ignore
contradictory evidence but try to understand the reasons behind the contradictions. (2)
Do not be seduced by mechanism. Even where a plausible mechanism exists, do not
assume that we know everything about that mechanism and how it might interact with
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other factors. (3) Suspend belief. Do not be seduced by your desire to prove your case.
(4) Maintain scepticism. Question whether the factors under investigation can really be
that important; consider what other differences might characterize the case and control
groups. Do not extrapolate results beyond the limits of reasonable certainty.
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Glossary

Action: An intervention performed by an external agent to disrupt the normal func-
tioning of a system, which would otherwise be left to evolve according to its own
dynamics.

Causal Bayesian Network: A model frequently used in causal discovery, using a di-
rected acyclic graph (DAG) to model causal relationships between random vari-
ables. Using the network, it is possible to infer the probability distribution of
some variable given measured values of others.

Causal Faithfulness Condition (CFC): The CFC is the faithfulness condition applied
to a causal model (see “faithfulness”). The CFC essentially states that indepen-
dence implies absence of a causal arrow. Complying with the CFC excludes
modeling the XOR problem and cases in which multiple paths compensate each
other.

Causal Markov Condition (CMC): The CMC is the Markov condition applied to a
causal model (see “Markov property” or “Markov condition”). The CMC essen-
tially states that statistical dependency implies the existence of a causal arrow.
See also “principle of common cause”. Systems with hidden confounders violate
the CMC. See also “causal sufficiency”.

Causal sufficiency: Causal sufficiency essentially states that there are no hidden vari-
able that is a common cause of two variables considered, i.e., no hidden con-
founder. This commonly made assumption is very difficult to verify and the
presence of a hidden confounder may invalidate completely a study. See “con-
founder”.

Cause (as system state or event): Informally, a cause can be defined as a state C of
a system of interest consistently followed by another state E (its effect) when-
ever the system is (actually or hypothetically) forced to assume the state C. The
eventual existence of unobservable state variables makes it possible that corre-
lated events succeeding each other are not in a causal relationship: both may
be the consequence of an earlier common cause. For instance, lightning may
trigger both thunder, followed by a fire alarm. “Thunder” and “fire alarm” are
the consequence of the common cause “lightning”, but are not causally related,
even though “thunder” might happen consistently before “fire alarm”. This am-
biguity could be resolved if an external agent could perform an experiment and
force “thunder” to happen with or without “lightning”. See also manipulation or
action.

Cause (as random variable): If a random variable is an indicator of presence/absence
of an event, causal relationships between random variables are simple extensions
of causal relationships between events. More generally, causal relationships be-
tween random variables can be defined via manipulations. For instance, given
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two random variables C and E and a manipulation do(C), a univariate causal re-
lationship between C (cause) and E (effect) is found if P(E|do(C)) 6= P(E). For
instance, in a randomized clinical trial, C can be the amount of medicine taken
and E the health status of the patient. If the health status of patients having taken
the medicine differs from that of patients in the control group, a causal effect is
detected.

Conditional independence (CI): Two random variables X and Y are conditionally in-
dependent of a third one iff P(X ,Y |Z) = P(X |Z)P(Y |Z). This may be extended
to subsets of variables. Regular statistical independence is equivalent to condi-
tioning on the empty set.

Confounded variable: An alleged cause of a target variable whose dependency with
the target can be explained by the presence of a confounder (see “confounder”).

Confounding factor or confounder: A variable that shows statistical dependencies to
a target variable and its alleged cause and that may be a common cause to both,
hence potentially making us confuse statistical dependence and causation.

Consequence, effect: The effect can be defined as the manifestation of the cause, see
cause.

Counterfactual: An event contrary to the fact. Causality and counterfactuals are in-
timately tied together. Some authors argue that all causal statements can be
phrased in terms of counterfactuals: “the throw of the stone caused the window
to break” may be replaced by “had the stone not been thrown, the window would
not have broken”. Causal models allow us to predict what would have happened
under a situation that did not occur (e.g., “would the patient have died had he not
taken the treatment”).

Cross-validation (CV): A method frequently used in machine learning to select mod-
els, e.g., with different architectures or hyper-parameters. One selects the model
with the best CV performance, obtained by splitting repeatedly the available (ob-
servational) training data into training and validation set and averaging the pre-
diction results on the validation sets. If observational data are used, CV is not a
good method for selecting among alternative causal architectures.

Do-calculus: A method for calculating conditional probabilities of certain variables
in a post-manipulation distribution given only conditional probabilities from the
pre-manipulation distribution and some causal assumptions. The method was
originally developed by Judea Pearl.

D-separation (D-connection): A set C is said to d-separate A from B if C blocks
every path between A and B. If A and B are not d-separated, then they are d-
connected. A path P between two variables A and B is blocked by a set of nodes
C if (1) P contains a chain I ! C ! J or a fork I  C ! J such that C is
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in C, or (2) P does not contain a collider I ! C J such that C or any of its
descendants are in C. D-separation is an algorithm to compute all the conditional
independence relations entailed by a Bayesian network or a SEM.

Endogenous variable: A variable having explicit causes within a particular causal
model. The characterization depends on the set of variables under consideration
and the chosen causal model. Complementary concept: exogenous variable.

Exogenous variable: A variable having no explicit causes within a particular causal
model. The characterization depends on the set of variables under consideration
and the chosen causal model. Complementary concept: endogenous variable.

Experiment: Planned manipulations designed to determine causal relationships (see
also “randomized controlled trial”).

Experimental data: Data collected as a result of an experiment (see also “observa-
tional data”).

Faithfulness: In the Bayesian network framework, a graph is faithful to a distribution
if all the conditional independencies entailed by the distribution are reflected by
Markov properties that can be read from the graph (see “Markov property”). A
distribution is faithful if there exists a faithful graph representing it.

Features: Variables potentially predictive of the target variable, also called covariates,
explanatory variables , or predictor variables in statistics.

Ground truth: In the pattern recognition jargon, “ground truth” refers to verified in-
formation obtained by scouting the terrain on the ground as opposed to informa-
tion collected from far away observations, like satellite images.

I.i.d: Independent and identically distributed. A common assumption about the data
distribution in machine learning, which assumes a stationary data generating pro-
cess. This assumption is violated when external agents perform manipulations on
the system.

Inference: There are two types of inference: model inference and variable inference
(see the corresponding definitions).

Instrumental variable: A variable I used to test an alleged causal relationship C! E
by performing a “natural manipulation” of C. It must be known that I is exoge-
nous and cannot influence E in any other way than though C.

Latent variable: An unobserved (hidden) variable, possibly unknown.

Manipulation: A set of actions performed by an external agent on a system under
study to disrupt the normal functioning of a system. A manipulation of a random
variable C denoted as do(C) consists in making C assume values according to
a distribution decided by the agent, distinct from the “natural” distribution of C
conditioned on the other variables of the system.
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Markov blanket and Markov boundary (MB): A Markov blanket of a target vari-
able (called MB) is a sufficient set of variables such that all other variables
are independent of the target, given MB. A minimal Markov blanket is called
a Markov boundary. Under some conditions, the Markov boundary is unique.
Under the faithfulness assumption (see “faithfulness”) it coincides with the set of
parents, children, and spouses of the target. Many people include the minimality
restriction in the definition of Markov blankets, therefore identifying the Markov
blanket and the Markov boundary.

Markov property and Markov condition: A stochastic process of random variables
has the Markov property if its future states are independent of far away past states
given the present and a finite number of near past states (i.e., it is memoryless).
All Markov processes have an equivalent first order Markov process in which
future states are independent of past states given the present state. By extension,
atemporal Bayesian networks and SEMs are (first order) Markov models in the
sense that each node is independent of its non-descendants given its parents. This
is also called the “Markov condition”. For these models, a “Markov property”
is a conditional independence property between a subset of variables. “Markov
properties” read from the graph (see “d-separation”) are all valid conditional in-
dependence properties.

Model inference, model fitting, training: In a learning problem, inference refers to
choosing the model, its structure, hyper-parameters and parameters.

Model over-fitting: Training a model to make excellent predictions for training exam-
ples, but obtaining poor prediction performance on test examples.

Natural distribution: Synonym of “observational distribution” or “pre-manipulation”
distribution.

Non-interventional observations: See “observational data”.

Observational data: Data collected from the observation of a system let to evolve
according to its own dynamics, without controlled intervention (see also “exper-
imental data”).

Observational distribution: The joint distribution of the variables of a system in the
absence or any external perturbation. Also called “pre-manipulation distribu-
tion”.

Pre-manipulation distribution: Same as “observational distribution”.

Principle of Common Cause (PCC): The PCC states that if two variables are cor-
related but neither is the cause of the other, then there should be at least one
common cause influencing both variables.

Post-manipulation distribution: The joint distribution of the variables of a system
after an action was performed by an external agent.
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Predictive model, predictor: A mathematical construct y = f (x;a) parameterized by
a parameter vector a, allowing to make predictions of an outcome y given an
input datum x.

Randomized Controlled Trial (RCT): Planned experiments involving a random allo-
cation of different interventions (treatments or conditions) to subjects. As long as
the numbers of subjects are sufficient, this ensures that both known and unknown
confounding factors are evenly distributed between treatment groups. There are
many variants of RCTs including various blinding and randomizing techniques
(see also “experiment”).

Structural Equation Model (SEM): A model to represent causal relationships as a
directed acyclic graph (DAG), similar to a Bayesian network, but in which
variables are interconnected by functional relationships (eventually altered by
stochastic noise) rather than conditional distributions. Noise variables are called
“exogenous”; other (dependent) variables are called “endogenous”. (See “exoge-
nous variables” and “endogenous variables”).

Target variable (or target): The outcome under study.

Variable inference: A trained model (e.g. a Bayesian network) can then be used to
infer variable probability distributions from the partial knowledge of other vari-
ables.
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Abstract
This paper reviews a theory of causal inference based on the Structural Causal Model
(SCM) described in (Pearl, 2000a). The theory unifies the graphical, potential-outcome
(Neyman-Rubin), decision analytical, and structural equation approaches to causa-
tion, and provides both a mathematical foundation and a friendly calculus for the
analysis of causes and counterfactuals. In particular, the paper establishes a method-
ology for inferring (from a combination of data and assumptions) the answers to three
types of causal queries: (1) queries about the effect of potential interventions, (2)
queries about counterfactuals, and (3) queries about the direct (or indirect) effect of
one event on another.
Keywords: Structural equation models, confounding, graphical methods, counterfac-
tuals, causal effects, potential-outcome.

1. Introduction

The research questions that motivate most quantitative studies in the health, social and
behavioral sciences are not statistical but causal in nature. For example, what is the
efficacy of a given drug in a given population? Whether data can prove an employer
guilty of hiring discrimination? What fraction of past crimes could have been avoided
by a given policy? What was the cause of death of a given individual, in a specific
incident? These are causal questions because they require some knowledge of the data-
generating process; they cannot be computed from the data alone.

Remarkably, although much of the conceptual framework and algorithmic tools
needed for tackling such problems are now well established, they are hardly known to
researchers in the field who could put them into practical use. Why?

Solving causal problems mathematically requires certain extensions in the standard
mathematical language of statistics, and these extensions are not generally emphasized
in the mainstream literature and education. As a result, large segments of the research
community find it hard to appreciate and benefit from the many results that causal
analysis has produced in the past two decades. These results rest on advances in three
areas:

1. Nonparametric structural equations

c� 2010 J. Pearl.
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2. Graphical models

3. Symbiosis between counterfactual and graphical methods.

This paper aims at making these advances more accessible to the general research
community by, first, contrasting causal analysis with standard statistical analysis, sec-
ond, comparing and unifying existing approaches to causal analysis, and finally, pro-
viding a friendly formalism for counterfactual analysis, within which most (if not all)
causal questions can be formulated, analyzed and resolved.

We will see that, although full description of the data generating process cannot be
inferred from data alone, many useful features of the process can be estimated from
a combination of (1) data, (2) prior qualitative knowledge, and/or (3) experiments.
Thus, the challenge of causal inference is to answer causal queries of practical interest
with minimum number of assumptions and with minimal experimentation. Following
an introductory section which defines the demarcation line between associational and
causal analysis, the rest of the paper will deal with the estimation of three types of
causal queries: (1) queries about the effect of potential interventions, (2) queries about
counterfactuals (e.g., whether event x would occur had event y been different), and (3)
queries about the direct and indirect effects.

2. From Associational to Causal Analysis: Distinctions and Barriers

2.1. The Basic Distinction: Coping With Change

The aim of standard statistical analysis, typified by regression, estimation, and hypoth-
esis testing techniques, is to assess parameters of a distribution from samples drawn of
that distribution. With the help of such parameters, one can infer associations among
variables, estimate the likelihood of past and future events, as well as update the likeli-
hood of events in light of new evidence or new measurements. These tasks are managed
well by standard statistical analysis so long as experimental conditions remain the same.
Causal analysis goes one step further; its aim is to infer not only the likelihood of events
under static conditions, but also the dynamics of events under changing conditions, for
example, changes induced by treatments or external interventions.

This distinction implies that causal and associational concepts do not mix. There
is nothing in the joint distribution of symptoms and diseases to tell us that curing the
former would or would not cure the latter. More generally, there is nothing in a distri-
bution function to tell us how that distribution would differ if external conditions were
to change—say from observational to experimental setup—because the laws of prob-
ability theory do not dictate how one property of a distribution ought to change when
another property is modified. This information must be provided by causal assumptions
which identify relationships that remain invariant when external conditions change.

These considerations imply that the slogan “correlation does not imply causation”
can be translated into a useful principle: one cannot substantiate causal claims from
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associations alone, even at the population level—behind every causal conclusion there
must lie some causal assumption that is not testable in observational studies.1

2.2. Formulating the Basic Distinction

A useful demarcation line that makes the distinction between associational and causal
concepts crisp and easy to apply, can be formulated as follows. An associational con-
cept is any relationship that can be defined in terms of a joint distribution of observed
variables, and a causal concept is any relationship that cannot be defined from the dis-
tribution alone. Examples of associational concepts are: correlation, regression, depen-
dence, conditional independence, likelihood, collapsibility, propensity score, risk ratio,
odd ratio, marginalization, conditionalization, “controlling for,” and so on. Examples
of causal concepts are: randomization, influence, effect, confounding, “holding con-
stant,” disturbance, spurious correlation, faithfulness/stability, instrumental variables,
intervention, explanation, attribution, and so on. The former can, while the latter can-
not be defined in term of distribution functions.

This demarcation line is extremely useful in causal analysis for it helps investiga-
tors to trace the assumptions that are needed for substantiating various types of scien-
tific claims. Every claim invoking causal concepts must rely on some premises that
invoke such concepts; it cannot be inferred from, or even defined in terms statistical
associations alone.

2.3. Ramifications of the Basic Distinction

This principle has far reaching consequences that are not generally recognized in the
standard statistical literature. Many researchers, for example, are still convinced that
confounding is solidly founded in standard, frequentist statistics, and that it can be given
an associational definition saying (roughly): “U is a potential confounder for examin-
ing the effect of treatment X on outcome Y when both U and X and U and Y are not
independent.” That this definition and all its many variants must fail (Pearl 2000a, Sec-
tion 6.2)2 is obvious from the demarcation line above; if confounding were definable
in terms of statistical associations, we would have been able to identify confounders
from features of nonexperimental data, adjust for those confounders and obtain unbi-
ased estimates of causal effects. This would have violated our golden rule: behind
any causal conclusion there must be some causal assumption, untested in observational
studies. Hence the definition must be false. Therefore, to the bitter disappointment of
generations of epidemiologist and social science researchers, confounding bias cannot
be detected or corrected by statistical methods alone; one must make some judgmental
assumptions regarding causal relationships in the problem before an adjustment (e.g.,
by stratification) can safely correct for confounding bias.

1. The methodology of “causal discovery” (Spirtes, et al. 2000; Pearl 2000a, chapter 2) is likewise based
on the causal assumption of “faithfullness” or “stability.”

2. Any intermediate variable U on a causal path from X to Y satisfies this definition, without confounding
the effect of X on Y .
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Another ramification of the sharp distinction between associational and causal con-
cepts is that any mathematical approach to causal analysis must acquire new notation
for expressing causal relations – probability calculus is insufficient. To illustrate, the
syntax of probability calculus does not permit us to express the simple fact that “symp-
toms do not cause diseases”, let alone draw mathematical conclusions from such facts.
All we can say is that two events are dependent—meaning that if we find one, we can
expect to encounter the other, but we cannot distinguish statistical dependence, quan-
tified by the conditional probability P(disease|symptom) from causal dependence, for
which we have no expression in standard probability calculus. Scientists seeking to ex-
press causal relationships must therefore supplement the language of probability with
a vocabulary for causality, one in which the symbolic representation for the relation
“symptoms cause disease” is distinct from the symbolic representation of “symptoms
are associated with disease.”

2.4. Two Mental Barriers: Untested Assumptions and New Notation

The preceding two requirements: (1) to commence causal analysis with untested,3 theo-
retically or judgmentally based assumptions, and (2) to extend the syntax of probability
calculus, constitute the two main obstacles to the acceptance of causal analysis among
statisticians and among professionals with traditional training in statistics.

Associational assumptions, even untested, are testable in principle, given suffi-
ciently large sample and sufficiently fine measurements. Causal assumptions, in con-
trast, cannot be verified even in principle, unless one resorts to experimental control.
This difference stands out in Bayesian analysis. Though the priors that Bayesians com-
monly assign to statistical parameters are untested quantities, the sensitivity to these
priors tends to diminish with increasing sample size. In contrast, sensitivity to prior
causal assumptions, say that treatment does not change gender, remains substantial re-
gardless of sample size.

This makes it doubly important that the notation we use for expressing causal as-
sumptions be meaningful and unambiguous so that one can clearly judge the plausibil-
ity or inevitability of the assumptions articulated. Statisticians can no longer ignore the
mental representation in which scientists store experiential knowledge, since it is this
representation, and the language used to access it that determine the reliability of the
judgments upon which the analysis so crucially depends.

How does one recognize causal expressions in the statistical literature? Those
versed in the potential-outcome notation (Neyman, 1923; Rubin, 1974; Holland, 1988),
can recognize such expressions through the subscripts that are attached to counterfac-
tual events and variables, e.g. Yx(u) or Zxy. (Some authors use parenthetical expressions,
e.g. Y (0), Y (1), Y (x,u) or Z(x,y).) The expression Yx(u), for example, stands for the
value that outcome Y would take in individual u, had treatment X been at level x. If u is
chosen at random, Yx is a random variable, and one can talk about the probability that Yx
would attain a value y in the population, written P(Yx = y). Alternatively, Pearl (1995)

3. By “untested” I mean untested using frequency data in nonexperimental studies.
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used expressions of the form P(Y = y|set(X = x)) or P(Y = y|do(X = x)) to denote the
probability (or frequency) that event (Y = y) would occur if treatment condition X = x
were enforced uniformly over the population.4 Still a third notation that distinguishes
causal expressions is provided by graphical models, where the arrows convey causal
directionality.5

However, few have taken seriously the textbook requirement that any introduction
of new notation must entail a systematic definition of the syntax and semantics that
governs the notation. Moreover, in the bulk of the statistical literature before 2000,
causal claims rarely appear in the mathematics. They surface only in the verbal inter-
pretation that investigators occasionally attach to certain associations, and in the verbal
description with which investigators justify assumptions. For example, the assumption
that a covariate not be affected by a treatment, a necessary assumption for the control
of confounding (Cox, 1958, p. 48), is expressed in plain English, not in a mathematical
expression.

Remarkably, though the necessity of explicit causal notation is now recognized by
most leaders in the field, the use of such notation has remained enigmatic to most rank
and file researchers, and its potentials still lay grossly underutilized in the statistics
based sciences. The reason for this, can be traced to the unfriendly and ad-hoc way in
which causal analysis has been presented to the research community, resting primarily
on the restricted paradigm of controlled randomized trials advanced by Rubin (1974).

The next section provides a conceptualization that overcomes these mental barriers;
it offers both a friendly mathematical machinery for cause-effect analysis and a formal
foundation for counterfactual analysis.

3. Structural Causal Models (SCM) and The Language of Diagrams

3.1. Semantics: Causal Effects and Counterfactuals

How can one express mathematically the common understanding that symptoms do not
cause diseases? The earliest attempt to formulate such relationship mathematically was
made in the 1920’s by the geneticist Sewall Wright (1921), who used a combination of
equations and graphs. For example, if X stands for a disease variable and Y stands for
a certain symptom of the disease, Wright would write a linear equation:

y = bx+u (1)

where x stands for the level (or severity) of the disease, y stands for the level (or sever-
ity) of the symptom, and u stands for all factors, other than the disease in question, that
could possibly affect Y . In interpreting this equation one should think of a physical pro-
cess whereby Nature examines the values of x and u and, accordingly, assigns variable

4. Clearly, P(Y = y|do(X = x)) is equivalent to P(Yx = y), This is what we normally assess in a controlled
experiment, with X randomized, in which the distribution of Y is estimated for each level x of X .

5. These notational clues should be useful for detecting inadequate definitions of causal concepts; any
definition of confounding, randomization or instrumental variables that is cast in standard probability
expressions, void of graphs, counterfactual subscripts or do(⇤) operators, can safely be discarded as
inadequate.
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Y the value y = bx+u. Similarly, to “explain” the occurrence of disease X , one could
write x = v, where V stand for all factors affecting X .

To express the directionality inherent in this process, Wright augmented the equa-
tion with a diagram, later called “path diagram,” in which arrows are drawn from (per-
ceived) causes to their (perceived) effects and, more importantly, the absence of an
arrow makes the empirical claim that the value Nature assigns to one variable is not
determined by the value taken by another. In Figure 1, for example, the absence of ar-
row from Y to X represent the claim that symptom Y is not among the factors V which
affect disease X .

The variables V and U are called “exogenous” ; they represent observed or unob-
served background factors that the modeler decides to keep unexplained, that is, factors
that influence but are not influenced by the other variables (called “endogenous”) in the
model.

If correlation is judged possible between two exogenous variables, U and V , it is
customary to connect them by a dashed double arrow, as shown in Figure 1(b).

Figure 1: A simple structural equation model, and its associated diagrams. Unobserved
exogenous variables are connected by dashed arrows.

To summarize, path diagrams encode causal assumptions via missing arrows, rep-
resenting claims of zero influence, and missing double arrows (e.g., between V and U),
representing the (causal) assumption Cov(U,V )=0.

Figure 2: (a) The diagram associated with the structural model of equation (2). (b) The
diagram associated with the modified model, Mx0 , of equation (3), represent-
ing the intervention do(X = x0).

The generalization to nonlinear systems of equations is straightforward. For exam-
ple, the non-parametric interpretation of the diagram of Figure 2(a) corresponds to a set
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of three functions, each corresponding to one of the observed variables:

z = fZ(w)
x = fX(z,v) (2)
y = fY (x,u)

where W,V and U are assumed to be jointly independent but, otherwise, arbitrarily
distributed.

Remarkably, unknown to most economists and pre-2000 philosophers,6 structural
equation models provide a formal interpretation and symbolic machinery for analyzing
counterfactual relationships of the type: “Y would be y had X been x in situation U=u,”
denoted Yx(u) = y. Here U represents the vector of all exogenous variables.7

The key idea is to interpret the phrase “had X been x0” as an instruction to modify
the original model and replace the equation for X by a constant x0, yielding the sub-
model.

z = fZ(w)
x = x0 (3)
y = fY (x,u)

the graphical description of which is shown in Figure 2(b).
This replacement permits the constant x0 to differ from the actual value of X (namely

fX(z,v)) without rendering the system of equations inconsistent, thus yielding a formal
interpretation of counterfactuals in multi-stage models, where the dependent variable
in one equation may be an independent variable in another (Balke and Pearl, 1994ab;
Pearl, 2000b). For example, to compute E(Yx0), the expected effect of setting X to x0,
(also called the average causal effect of X on Y , denoted E(Y |do(x0)) or, generically,
E(Y |do(x))), we solve equation (3) for Y in terms of the exogenous variables, yielding
Yx0 = fY (x0,u), and average over U and V . It is easy to show that in this simple system,
the answer can be obtained without knowing the form of the function fY (x,u) or the
distribution P(u). The answer is given by:

E(Yx0) = E(Y |do(X = x0) = E(Y |x0)

which is estimable from the observed distribution P(x,y,z). This result hinges on the
assumption that W,V, and U are mutually independent and on the topology of the graph
(e.g., that there is no direct arrow from Z to Y .)

6. Connections between structural equations and a restricted class of counterfactuals were recognized
by Simon and Rescher (1966). These were later generalized by Balke and Pearl (1995) who used
modified models to permit counterfactual conditioning on dependent variables.

7. Because U = u may contain detailed information about a situation or an individual, Yx(u) is related
to what philosophers called “token causation,” while P(Yx = y|Z = z) characterizes “Type causation,”
that is, the tendency of X to influence Y in a sub-population characterized by Z = z.
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In general, it can be shown (Pearl 2000a, Chapter 3) that, whenever the graph is
Markovian (i.e., acyclic with independent exogenous variables) the post-interventional
distribution P(Y = y|do(X = x)) is given by the following expression:

P(Y = y|do(X = x)) = Â
t

P(y|t,x)P(t) (4)

where T is the set of direct causes of X (also called “parents”) in the graph. Again,
we see that all factors on the right hand side are estimable from the distribution P of
observed variables and, hence, the counterfactual probability P(Yx = y) is estimable
with mere partial knowledge of the generating process – the topology of the graph and
independence of the exogenous variables is all that is needed.

When some variables in the graph (e.g., the parents of X) are unobserved, we
may not be able to learn (or “identify” as it is called) the post-intervention distribu-
tion P(y|do(x)) by simple conditioning, and more sophisticated methods would be
required. Likewise, when the query of interest involves several hypothetical worlds
simultaneously, e.g., P(Yx = y,Yx0 = y0)8, the Markovian assumption may not suffice for
identification and additional assumptions, touching on the form of the data-generating
functions (e.g., monotonicity) may need to be invoked. These issues will be discussed
in Sections 3.2 and 5.

This interpretation of counterfactuals, cast as solutions to modified systems of equa-
tions, provides the conceptual and formal link between structural equation models, used
in economics and social science and the Neyman-Rubin potential-outcome framework
to be discussed in Section 4. But first we discuss two long-standing problems that
have been completely resolved in purely graphical terms, without delving into alge-
braic techniques.

3.2. Confounding and Causal Effect Estimation

The central target of most studies in the social and health sciences is the elucidation of
cause-effect relationships among variables of interests, for example, treatments, poli-
cies, preconditions and outcomes. While good statisticians have always known that
the elucidation of causal relationships from observational studies must be shaped by
assumptions about how the data were generated, the relative roles of assumptions and
data, and ways of using those assumptions to eliminate confounding bias have been a
subject of much controversy. The structural framework of Section 3.1 puts these con-
troversies to rest.

COVARIATE SELECTION: THE BACK-DOOR CRITERION

Consider an observational study where we wish to find the effect of X on Y , for exam-
ple, treatment on response, and assume that the factors deemed relevant to the problem
are structured as in Figure 3; some are affecting the response, some are affecting the
treatment and some are affecting both treatment and response. Some of these factors

8. Read: The probability that Y would be y if X were x and y0 if X were x0.
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Figure 3: Graphical model illustrating the back-door criterion. Error terms are not
shown explicitly.

may be unmeasurable, such as genetic trait or life style, others are measurable, such
as gender, age, and salary level. Our problem is to select a subset of these factors for
measurement and adjustment, namely, that if we compare treated vs. untreated subjects
having the same values of the selected factors, we get the correct treatment effect in
that subpopulation of subjects. Such a set of factors is called a “sufficient set” or a set
“appropriate for adjustment”. The problem of defining a sufficient set, let alone finding
one, has baffled epidemiologists and social science for decades (see Greenland et al.,
1999; Pearl, 1998, 2003 for review).

The following criterion, named “back-door” in Pearl (1993a), settles this this prob-
lem by providing a graphical method of selecting a sufficient set of factors for adjust-
ment. It states that a set S is appropriate for adjustment if two conditions hold:

1. No element of S is a descendant of X

2. The elements of S “block” all “back-door” paths from X to Y , namely all paths
that end with an arrow pointing to X .9

Based on this criterion we see, for example, that the sets {Z1,Z2,Z3},{Z1,Z3}, and
{W2,Z3}, each is sufficient for adjustment, because each blocks all back-door paths
between X and Y . The set {Z3}, however, is not sufficient for adjustment because, as
explained above, it does not block the path X  W1 Z1! Z3 Z2!W2! Y .

The implication of finding a sufficient set S is that, stratifying on S is guaranteed
to remove all confounding bias relative the causal effect of X on Y . In other words, it
renders the causal effect of X on Y estimable, via

P(Y = y|do(X = x))
= Â

s
P(Y = y|X = x,S = s)P(S = s) (5)

Since all factors on the right hand side of the equation are estimable (e.g., by regression)
from the pre-interventional data, the causal effect can likewise be estimated from such
data without bias.

9. A set S of nodes is said to block a path p if either (i) p contains at least one arrow-emitting node that
is in S, or (ii) p contains at least one collision node that is outside S and has no descendant in S. See
(Pearl, 2000a, pp. 16-7). If S blocks all paths from X to Y it is said to “d-separate X and Y .”
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The back-door criterion allows us to write equation (5) directly, after selecting a
sufficient set S from the diagram, without resorting to any algebraic manipulation. The
selection criterion can be applied systematically to diagrams of any size and shape,
thus freeing analysts from judging whether “X is conditionally ignorable given S,” a
formidable mental task required in the potential-outcome framework (Rosenbaum and
Rubin, 1983). The criterion also enables the analyst to search for an optimal set of
covariate—namely, a set S that minimizes measurement cost or sampling variability
(Tian et al., 1998).

GENERAL CONTROL OF CONFOUNDING

Adjusting for covariates is only one of many methods that permits us to estimate causal
effects in nonexperimental studies. A much more general identification criterion is
provided by the following theorem:

Theorem 1 (Tian and Pearl, 2002)
A sufficient condition for identifying the causal effect P(y|do(x)) is that every path
between X and any of its children traces at least one arrow emanating from a measured
variable.10

For example, if W3 is the only observed covariate in the model of Figure 3, then
there exists no sufficient set for adjustment (because no set of observed covariates can
block the paths from X to Y through Z3), yet P(y|do(x)) can nevertheless be estimated
since every path from X to W3 (the only child of X) traces either the arrow X !W3,
or the arrow W3! Y , both emanating from a measured variable (W3). In this example,
the variable W3 acts as a “mediating instrumental variable” (Pearl, 1993b; Chalak and
White, 2006) and yields the estimand:

P(Y = y|do(X = x))
= Â

w3

P(W3 = w3|do(X = x))P(Y = y|do(W3 = w3))

= Â
w3

P(w3|x)Â
x0

P(y|w3,x0)P(x0) (6)

More recent results extend this theorem by (1) presenting a necessary and sufficient
condition for identification (Shpitser and Pearl, 2006), and (2) extending the condition
from causal effects to any counterfactual expression (Shpitser and Pearl, 2007). The
corresponding unbiased estimands for these causal quantities are readable directly from
the diagram.

The mathematical derivation of causal effect estimands, like equations (5) and (6) is
merely a first step toward computing quantitative estimates of those effects from finite
samples, using the rich traditions of statistical estimation and machine learning. Al-
though the estimands derived in (5) and (6) are non-parametric, this does not mean that

10. Before applying this criterion, one may delete from the causal graph all nodes that are not ancestors
of Y .
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one should refrain from using parametric forms in the estimation phase of the study.
For example, if the assumptions of Gaussian, zero-mean disturbances and additive in-
teractions are deemed reasonable, then the estimand given in (6) can be converted to
the product E(Y |do(x)) = rW3X rYW3·X x, where rY Z·X is the (standardized) coefficient of
Z in the regression of Y on Z and X . More sophisticated estimation techniques can be
found in Rosenbaum and Rubin (1983), and Robins (1999). For example, the “propen-
sity score” method of Rosenbaum and Rubin (1983) was found to be quite useful when
the dimensionality of the adjusted covariates is high and the data is sparse (See Pearl
2000a, 2nd edition, 2009a, pp. 348–52).

It should be emphasized, however, that contrary to conventional wisdom (e.g., Ru-
bin (2009)), propensity score methods are merely efficient estimators of the right hand
side of (5); they cannot be expected to reduce bias in case the set S does not satisfy the
back-door criterion (Pearl 2009abc).

3.3. Counterfactual Analysis in Structural Models

Not all questions of causal character can be encoded in P(y|do(x)) type expressions, in
much the same way that not all causal questions can be answered from experimental
studies. For example, questions of attribution (e.g., I took an aspirin and my headache
is gone, was it due to the aspirin?) or of susceptibility (e.g., I am a healthy non-smoker,
would I be as healthy had I been a smoker?) cannot be answered from experimental
studies, and naturally, this kind of questions cannot be expressed in P(y|do(x)) nota-
tion.11 To answer such questions, a probabilistic analysis of counterfactuals is required,
one dedicated to the relation “Y would be y had X been x in situation U=u,” denoted
Yx(u) = y.

As noted in Section 3.1, the structural definition of counterfactuals involves mod-
ified models, like Mx0 of equation (3), formed by the intervention do(X = x0) (Figure
2(b)). Call the solution of Y in model Mx the potential response of Y to x, and denote it
by the symbol Yx(u). In general, then, the formal definition of the counterfactual Yx(u)
in SCM is given by (Pearl 2000a, p. 98):

Yx(u) = YMx(u).

The quantity Yx(u) can be given experimental interpretation; it stands for the way an
individual with characteristics (u) would respond, had the treatment been x, rather than
the treatment x = fX(u) actually received by that individual. In our example, since Y
does not depend on v and w, we can write:

Yx0(u,v,w) = Yx0(u) = fY (x0,u).

11. The reason for this fundamental limitation is that no death case can be tested twice, with and without
treatment. For example, if we measure equal proportions of deaths in the treatment and control groups,
we cannot tell how many death cases are actually attributable to the treatment itself; it is quite possible
that many of those who died under treatment would be alive if untreated and, simultaneously, many of
those who survived with treatment would have died if not treated.
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Clearly, the distribution P(u,v,w) induces a well defined probability on the counter-
factual event Yx0 = y, as well as on joint counterfactual events, such as ‘Yx0 = y AND
Yx1 = y0,’ which are, in principle, unobservable if x0 6= x1. Thus, to answer attributional
questions, such as whether Y would be y1 if X were x1, given that in fact Y is y0 and X
is x0, we need to compute the conditional probability P(Yx1 = y1|Y = y0,X = x0) which
is well defined once we know the forms of the structural equations and the distribution
of the exogenous variables in the model. For example, assuming linear equations (as in
Figure 1),

x = v, y = bx+u,

the conditions Y = y0 and X = x0 yield v = x0 and u = y0�bx0, and we can conclude
that, with probability one, Yx1 must take on the value: Yx1 = bx1 +u = b (x1� x0)+ y0.
In other words, if X were x1 instead of x0, Y would increase by b times the difference
(x1� x0). In nonlinear systems, the result would also depend on the distribution of U
and, for that reason, attributional queries are generally not identifiable in nonparametric
models (Pearl, 2000a, Chapter 9).

In general, if x and x0 are incompatible then Yx and Yx0 cannot be measured simulta-
neously, and it may seem meaningless to attribute probability to the joint statement “Y
would be y if X = x and Y would be y0 if X = x0.”12 Such concerns have been a source
of objections to treating counterfactuals as jointly distributed random variables (Dawid,
2000). The definition of Yx and Yx0 in terms of two distinct submodels neutralizes these
objections (Pearl, 2000b), since the contradictory joint statement is mapped into an
ordinary event, one where the background variables satisfy both statements simultane-
ously, each in its own distinct submodel; such events have well defined probabilities.

The structural interpretation of counterfactuals also provides the conceptual and
formal basis for the Neyman-Rubin potential-outcome framework, an approach to cau-
sation that takes a controlled randomized trial (CRT) as its starting paradigm, assum-
ing that nothing is known to the experimenter about the science behind the data. This
“black-box” approach, which has thus far been denied the benefits of graphical or struc-
tural analyses, was developed by statisticians who found it difficult to cross the two
mental barriers discussed in Section 2.4. The next section establishes the precise rela-
tionship between the structural and potential-outcome paradigms, and outlines how the
latter can benefit from the richer representational power of the former.

4. The Language of Potential Outcomes and Counterfactuals

The primitive object of analysis in the potential-outcome framework is the unit-based
response variable, denoted Yx(u), read: “the value that outcome Y would obtain in ex-
perimental unit u, had treatment X been x” (Neyman, 1923; Rubin, 1974). Here, unit
may stand for an individual patient, an experimental subject, or an agricultural plot. In
Section 3.3 we saw that this counterfactual entity has the natural interpretation as rep-
resenting the solution for Y in a modified system of equations, where unit is interpreted

12. For example, “The probability is 80% that Joe belongs to the class of patients who will be cured if
they take the drug and will die otherwise.”
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a vector u of background factors that characterize an experimental unit. Each structural
equation model thus carries a collection of assumptions about the behavior of hypo-
thetical units, and these assumptions permit us to derive the counterfactual quantities
of interest. In the potential-outcome framework, however, no equations are available
for guidance and Yx(u) is taken as primitive, that is, an undefined quantity in terms
of which other quantities are defined; not a quantity that can be derived from some
model. In this sense the structural interpretation of Yx(u) provides the formal basis for
the potential-outcome approach; the formation of the submodel Mx explicates mathe-
matically how the hypothetical condition “had X been x” could be realized, and what
the logical consequence are of such a condition.

4.1. The “Black-Box” or “Missing-data” Paradigm

The distinct characteristic of the potential-outcome approach is that, although investi-
gators must think and communicate in terms of undefined, hypothetical quantities such
as Yx(u), the analysis itself is conducted almost entirely within the axiomatic framework
of probability theory. This is accomplished, by postulating a “super” probability func-
tion on both hypothetical and real events. If U is treated as a random variable then the
value of the counterfactual Yx(u) becomes a random variable as well, denoted as Yx. The
potential-outcome analysis proceeds by treating the observed distribution P(x1, . . . ,xn)
as the marginal distribution of an augmented probability function P⇤ defined over both
observed and counterfactual variables. Queries about causal effects (written P(y|do(x))
in the structural analysis) are phrased as queries about the marginal distribution of the
counterfactual variable of interest, written P⇤(Yx = y). The new hypothetical entities
Yx are treated as ordinary random variables; for example, they are assumed to obey the
axioms of probability calculus, the laws of conditioning, and the axioms of conditional
independence.

Naturally, these hypothetical entities are not entirely whimsy. They are assumed to
be connected to observed variables via consistency constraints (Robins, 1986) such as

X = x =) Yx = Y, (7)

which states that, for every u, if the actual value of X turns out to be x, then the value that
Y would take on if ‘X were x’ is equal to the actual value of Y . For example, a person
who chose treatment x and recovered, would also have recovered if given treatment x by
design. Whether additional constraints should tie the observables to the unobservables
is not a question that can be answered in the potential-outcome framework, which lacks
an underlying model.

The main conceptual difference between the two approaches is that, whereas the
structural approach views the intervention do(x) as an operation that changes the dis-
tribution but keeps the variables the same, the potential-outcome approach views the
variable Y under do(x) to be a different variable, Yx, loosely connected to Y through
relations such as (7), but remaining unobserved whenever X 6= x. The problem of in-
ferring probabilistic properties of Yx, then becomes one of “missing-data” for which
estimation techniques have been developed in the statistical literature.
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Pearl (2000a, Chapter 7) shows, using the structural interpretation of Yx(u), that
it is indeed legitimate to treat counterfactuals as jointly distributed random variables
in all respects, that consistency constraints like (7) are automatically satisfied in the
structural interpretation and, moreover, that investigators need not be concerned about
any additional constraints except the following two:

Yyz = y for all y, subsets Z, and values z for Z (8)
Xz = x) Yxz = Yz for all x, subsets Z, and values z for Z (9)

Equation (8) ensures that the interventions do(Y = y) results in the condition Y = y,
regardless of concurrent interventions, say do(Z = z), that may be applied to variables
other than Y . Equation (9) generalizes (7) to cases where Z is held fixed, at z.

4.2. Problem Formulation and the Demystification of “Ignorability”

The main drawback of this black-box approach surfaces in problem formulation, namely,
the phase where a researcher begins to articulate the “science” or “causal assumptions”
behind the problem at hand. Such knowledge, as we have seen in Section 1, must be
articulated at the onset of every problem in causal analysis – causal conclusions are
only as valid as the causal assumptions upon which they rest.

To communicate scientific knowledge, the potential-outcome analyst must express
assumptions as constraints on P⇤, usually in the form of conditional independence as-
sertions involving counterfactual variables. For instance, in our example of Figure
2(a), to communicate the understanding that the (Z) is randomized (hence indepen-
dent of V and U), the potential-outcome analyst would use the independence constraint
Z??{Xz,Yx}.13 To further formulate the understanding that Z does not affect Y directly,
except through X , the analyst would write a, so called, “exclusion restriction”: Yxz =Yx.

A collection of constraints of this type might sometimes be sufficient to permit a
unique solution to the query of interest; in other cases, only bounds on the solution can
be obtained. For example, if one can plausibly assume that a set Z of covariates satisfies
the conditional independence

Yx??X |Z (10)

(an assumption that was termed “conditional ignorability” by Rosenbaum and Rubin,
1983, then the causal effect P⇤(Yx = y) can readily be evaluated to yield

P⇤(Yx = y) = Â
z

P⇤(Yx = y|z)P(z)

= Â
z

P⇤(Yx = y|x,z)P(z) (using (10))

= Â
z

P⇤(Y = y|x,z)P(z) (using (7))

= Â
z

P(y|x,z)P(z). (11)

13. The notation Y??X |Z stands for the conditional independence relationship
P(Y = y,X = x|Z = z) = P(Y = y|Z = z)P(X = x|Z = z) (Dawid, 1979).
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The last expression contains no counterfactual quantities (thus permitting us to drop
the asterisk from P⇤) and coincides precisely with the standard covariate-adjustment
formula of equation (5).

We see that the assumption of conditional ignorability (10) qualifies Z as a suf-
ficient covariate for adjustment; it is entailed indeed by the “back-door” criterion of
Section 3.2, which qualifies such covariates by tracing paths in the causal diagram.

The derivation above may explain why the potential-outcome approach appeals to
mathematical statisticians; instead of constructing new vocabulary (e.g., arrows), new
operators (do(x)) and new logic for causal analysis, almost all mathematical operations
in this framework are conducted within the safe confines of probability calculus. Save
for an occasional application of rule (9) or (7)), the analyst may forget that Yx stands
for a counterfactual quantity—it is treated as any other random variable, and the entire
derivation follows the course of routine probability exercises.

However, this mathematical orthodoxy exacts a very high cost: all background
knowledge pertaining to a given problem must first be translated into the language
of counterfactuals (e.g., ignorability conditions) before analysis can commence. This
translation may in fact be the hardest part of the problem. The reader may appreciate
this aspect by attempting to judge whether the assumption of conditional ignorability
(10), the key to the derivation of (11), holds in any familiar situation, say in the exper-
imental setup of Figure 2(a). This assumption reads: “the value that Y would obtain
had X been x, is independent of X , given Z”. Even the most experienced potential-
outcome expert would be unable to discern whether any subset Z of covariates in Figure
3 would satisfy this conditional independence condition.14 Likewise, to derive equa-
tion (6) in the language of potential-outcome (see Pearl 2000a, page 233), one would
need to convey the structure of the chain X !W3 ! Y using the cryptic expression:
W3x??{Yw3 ,X}, read: “the value that W3 would obtain had X been x is independent
of the value that Y would obtain had W3 been w3 jointly with the value of X". Such
assumptions are cast in a language so far removed from ordinary understanding of sci-
entific theories that, for all practical purposes, they cannot be comprehended or ascer-
tained by ordinary mortals. As a result, researchers in the graph-less potential-outcome
camp rarely use “conditional ignorability” (10) to guide the choice of covariates; they
view this condition as a hoped-for miracle of nature rather than a target to be achieved
by reasoned design.15

Replacing “ignorability” with a simple condition (i.e., back-door) in a graphical
model permits researchers to understand what conditions covariates must fulfill before
they eliminate bias, what to watch for and what to think about when covariates are

14. Inquisitive readers are invited to guess whether Xz??Z|Y holds in Figure 2(a).
15. The opaqueness of counterfactual independencies explains why many researchers within the potential-

outcome camp are unaware of the fact that adding a covariate to the analysis (e.g., Z3 in Figure 3) may
actually increase confounding bias. Paul Rosenbaum, for example, writes: “there is no reason to
avoid adjustment for a variable describing subjects before treatment” Rosenbaum (2002), p. 76. Don
Rubin (2009) goes as far as stating that refraining from conditioning on an available measurement is
“nonscientific ad hockery” for it goes against the tenets of Bayesian philosophy (see Pearl 2009bc for
a discussion of this fallacy).
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selected, and what experiments we can do to test, at least partially, if we have the
knowledge needed for covariate selection.

Aside from offering no guidance in covariate selection, formulating a problem in
the potential-outcome language encounters three additional hurdles. When counterfac-
tual variables are not viewed as byproducts of a deeper, process-based model, it is hard
to ascertain whether all relevant counterfactual independence judgments have been ar-
ticulated, whether the judgments articulated are redundant, or whether those judgments
are self-consistent. The need to express, defend, and manage formidable counterfactual
relationships of this type explain the slow acceptance of causal analysis among health
scientists and statisticians, and why economists and social scientists continue to use
structural equation models instead of the potential-outcome alternatives advocated in
Angrist et al. (1996); Holland (1988); Sobel (1998).

On the other hand, the algebraic machinery offered by the counterfactual nota-
tion, Yx(u), once a problem is properly formalized, can be extremely powerful in refin-
ing assumptions (Angrist et al., 1996), deriving consistent estimands (Robins, 1986),
bounding probabilities of necessary and sufficient causation (Tian and Pearl, 2000), and
combining data from experimental and nonexperimental studies (Pearl, 2000a). Pearl
(2000a, p. 232) presents a way of combining the best features of the two approaches. It
is based on encoding causal assumptions in the language of diagrams, translating these
assumptions into counterfactual notation, performing the mathematics in the algebraic
language of counterfactuals (using (7), (8), and (9)) and, finally, interpreting the result
in plain causal language. The next section illustrates such symbiosis.

5. Mediation: Direct and Indirect Effects

5.1. Direct versus Total Effects:

The causal effect we have analyzed so far, P(y|do(x)), measures the total effect of a
variable (or a set of variables) X on a response variable Y . In many cases, this quantity
does not adequately represent the target of investigation and attention is focused instead
on the direct effect of X on Y . The term “direct effect” is meant to quantify an effect
that is not mediated by other variables in the model or, more accurately, the sensitivity
of Y to changes in X while all other factors in the analysis are held fixed. Naturally,
holding those factors fixed would sever all causal paths from X to Y with the exception
of the direct link X ! Y , which is not intercepted by any intermediaries.

A classical example of the ubiquity of direct effects involves legal disputes over
race or sex discrimination in hiring. Here, neither the effect of sex or race on appli-
cants’ qualification nor the effect of qualification on hiring are targets of litigation.
Rather, defendants must prove that sex and race do not directly influence hiring deci-
sions, whatever indirect effects they might have on hiring by way of applicant qualifi-
cation.

Another example concerns the identification of neural pathways in the brain or the
structural features of protein-signaling networks in molecular biology (Brent and Lok,
2005). Here, the decomposition of effects into their direct and indirect components
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carries theoretical scientific importance, for it predicts behavior under a rich variety of
hypothetical interventions.

In all such examples, the requirement of holding the mediating variables fixed must
be interpreted as (hypothetically) setting the intermediate variables to constants by
physical intervention, not by analytical means such as selection, conditioning, or ad-
justment. For example, it will not be sufficient to measure the association between
gender (X) and hiring (Y ) for a given level of qualification Z, because, by condition-
ing on the mediator Z, we may create spurious associations between X and Y even
when there is no direct effect of X on Y . This can easily be illustrated in the model
X ! Z  U ! Y , where X has no direct effect on Y . Physically holding Z constant
would permit no association between X and Y , as can be seen by deleting all arrows
entering Z. But if we were to condition on Z, a spurious association would be created
through U (unobserved) that might be construed as a direct effect of X on Y .

Using the do(x) notation, and focusing on expectations, this leads to a simple defi-
nition of controlled direct effect:

CDE D
= E(Y |do(x),do(z))�E(Y |do(x0),do(z))

or, equivalently, using counterfactual notation:

CDE D
= E(Yxz)�E(Yx0z)

where Z is any set of mediating variables that intercept all indirect paths be-
tween X and Y . Graphical identification conditions for expressions of the type
E(Y |do(x),do(z1),do(z2), . . . ,do(zk)) were derived by Pearl and Robins (1995) (see
Pearl 2000a, Chapter 4) and invoke sequential application of the back-door conditions
discussed in Section 3.2.

5.2. Natural Direct Effects

In linear systems, the direct effect is fully specified by the path coefficient attached to
the link from X to Y ; therefore, the direct effect is independent of the values at which we
hold Z. In nonlinear systems, those values would, in general, modify the effect of X on
Y and thus should be chosen carefully to represent the target policy under analysis. For
example, it is not uncommon to find employers who prefer males for the high-paying
jobs (i.e., high z) and females for low-paying jobs (low z).

When the direct effect is sensitive to the levels at which we hold Z, it is often mean-
ingful to average the direct effect over those levels. Conceptually, we can define the
average direct effect DEx,x0(Y ) as the expected change in Y induced by changing X
from x to x0 while keeping all mediating factors constant at whatever value they would
have obtained under do(x). This hypothetical change, which Robins and Greenland
(1991) called “pure” and Pearl (2001) called “natural,” mirrors what lawmakers in-
struct us to consider in race or sex discrimination cases: “The central question in any
employment-discrimination case is whether the employer would have taken the same
action had the employee been of a different race (age, sex, religion, national origin etc.)
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and everything else had been the same.” (In Carson versus Bethlehem Steel Corp., 70
FEP Cases 921, 7th Cir. (1996)).

Extending the subscript notation to express nested counterfactuals Pearl (2001)
gave the following definition for the “natural direct effect”:

DEx,x0(Y ) = E(Yx0,Zx)�E(Yx). (12)

Here, Yx0,Zx represents the value that Y would attain under the operation of setting X to
x0 and, simultaneously, setting Z to whatever value it would have obtained under the
setting X = x. We see that DEx,x0(Y ), the natural direct effect of the transition from x to
x0, involves probabilities of nested counterfactuals and cannot be written in terms of the
do(x) operator. Therefore, the natural direct effect cannot in general be identified, even
with the help of ideal, controlled experiments (see footnote 11 for intuitive explanation).
Pearl (2001) has nevertheless shown that, if certain assumptions of “no confounding”
are deemed valid,16 the natural direct effect can be reduced to

DEx,x0(Y ) = Â
z
[E(Y |do(x0,z))�E(Y |do(x,z))]P(z|do(x)). (13)

The intuition is simple; the natural direct effect is the weighted average of the controlled
direct effect, using the causal effect P(z|do(x)) as a weighing function.

In particular, expression (13) is both valid and identifiable in Markovian models,
where each term on the right can be reduced to a “do-free” expression using equation
(4).

5.3. Natural Indirect Effects

Remarkably, the definition of the natural direct effect (12) can easily be turned around
and provide an operational definition for the indirect effect – a concept shrouded in
mystery and controversy, because it is impossible, using the do(x) operator, to disable
the direct link from X to Y so as to let X influence Y solely via indirect paths.

The natural indirect effect, IE, of the transition from x to x0 is defined as the ex-
pected change in Y affected by holding X constant, at X = x, and changing Z to what-
ever value it would have attained had X been set to X = x0. Formally, this reads (Pearl,
2001):

IEx,x0(Y )
D
= E[(Yx,Zx0 )�E(Yx)], (14)

which is almost identical to the direct effect (equation (12)) save for exchanging x and
x0.

Indeed, it can be shown that, in general, the total effect T E of a transition is equal
to the difference between the direct effect of that transition and the indirect effect of the
reverse transition. Formally,

T Ex,x0(Y )
D
= E(Yx0 �Yx) = DEx,x0(Y )� IEx0,x(Y ). (15)

16. One sufficient condition is that Zx??Yx0,z|W holds for some set W of measured covariates. See details
and graphical criteria in Pearl (2001, 2005) and in Petersen et al. (2006).
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In linear systems, where reversal of transitions amounts to negating the signs of
their effects, we have the standard additive formula

T Ex,x0(Y ) = DEx,x0(Y )+ IEx,x0(Y ). (16)

Since each term above is based on an independent operational definition, this equal-
ity constitutes a formal justification for the additive formula used routinely in linear
systems.

Note that, although it cannot be expressed in do-notation, the indirect effect has
clear policy-making implications. For example: in the hiring discrimination context,
a policy maker may be interested in predicting the gender mix in the work force if
gender bias is eliminated and all applicants are treated equally—say, the same way
that males are currently treated. This quantity will be given by the indirect effect of
gender on hiring, mediated by factors such as education and aptitude, which may be
gender-dependent.

More generally, a policy maker may be interested in the effect of issuing a direc-
tive to a select set of subordinate employees, or in carefully controlling the routing of
messages in a network of interacting agents. Such applications motivate the analysis of
path-specific effects, that is, the effect of X on Y through a selected set of paths (Avin
et al., 2005).

Note that in all these cases, the policy intervention invokes the selection of signals
to be sensed, rather than variables to be fixed. Pearl (2001) has suggested therefore
that signal sensing is more fundamental to the notion of causation than manipulation;
the latter being but a crude way of stimulating the former in experimental setup. The
mantra “No causation without manipulation” must be rejected. (See Pearl 2000a, Sec-
tion 11.4.5, 2nd Ed.)

It is remarkable that counterfactual quantities like DE and ID that could not be
expressed in terms of do(x) operators, and appear therefore void of empirical content,
can, under certain conditions be estimated from empirical studies. A general character-
ization of those conditions is given in Shpitser and Pearl (2007).

Additional examples of this “marvel of formal analysis” are given in (Pearl, 2000a,
Chapters 7, 9, 11). It constitutes an unassailable argument in defense of counterfactual
analysis, as expressed in Pearl (2000b) against the stance of Dawid (2000) and Geneletti
(2007).

6. Conclusions

Statistics is strong in devising ways of describing data and inferring distributional pa-
rameters from sample. Causal inference require two addition ingredients: a science-
friendly language for articulating causal knowledge, and a mathematical machinery
for processing that knowledge, combining it with data and drawing new causal con-
clusions about a phenomenon. This paper introduces nonparametric structural causal
models (SCM) as a formal and meaningful language for formulating causal knowl-
edge and for explicating causal concepts used in scientific discourse. These include:
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randomization, intervention, direct and indirect effects, confounding, counterfactuals,
and attribution. The algebraic component of the structural language coincides with the
potential-outcome framework, and its graphical component embraces Wright’s method
of path diagrams (in its nonparametric version). When unified and synthesized, the two
components offer empirical investigators a powerful methodology for causal inference
which resolves long-standing problems in the empirical sciences. These include the
control of confounding, the evaluation of policies, the analysis of mediation and the
algorithmization of counterfactuals.
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Abstract
Directed acyclic graph (DAG) models are popular tools for describing causal relation-
ships and for guiding attempts to learn them from data. They appear to supply a means
of extracting causal conclusions from probabilistic conditional independence proper-
ties inferred from purely observational data. I take a critical look at this enterprise,
and suggest that it is in need of more, and more explicit, methodological and philo-
sophical justification than it typically receives. In particular, I argue for the value of a
clean separation between formal causal language and intuitive causal assumptions.
Keywords: Directed acyclic graph, conditional independence, probabilistic causality,
statistical causality, causal DAG, augmented DAG, Pearlian DAG, causal discovery,
causal Markov condition, reification fallacy, instrumental variable

1. Introduction

This article is based on a talk given at the 2008 NIPS Workshop Causality: Objectives
and Assessment, where I was commissioned to play “devil’s advocate” in relation to the
enterprise of causal discovery, which — as evidenced by the other contributions to the
workshop — has become an important and vibrant strand of modern machine learning.
Like Cartwright (2007, Chapter II), I take a sceptical attitude to the widespread view
that we can learn about causal processes by constructing DAG models of observational
data.

In taking on this sceptical rôle I would not wish to be thought entirely negative
and destructive: on the contrary, I am impressed by the overall quality of work in this
area, be it fundamental methodology, algorithmic development, or scientific applica-
tion. Moreover, many of the cautions I shall raise have been clearly identified, appre-
ciated and enunciated by the major players in the field, and will be at the back, if not
the forefront, of the minds of many of those who use the techniques and algorithms. I
do feel, however, that there is still a useful contribution to be made by reiterating and
to some extent reframing these cautions. A companion paper (Dawid, 2010) makes
similar points, with emphasis on the variety of concepts of causality rolled up in the
statistical methodology.

c� 2010 A.P. Dawid.
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My principal concern here is to clarify and emphasise the strong assumptions that
have to be made in order to make progress with causal modelling and causal discovery,
and to argue that these should never be accepted glibly or automatically, but deserve
careful attention and context-specific discussion and justification whenever the methods
are applied. And, in a more positive vein, I describe a formal language that can assist in
expressing such assumptions in an unambiguous way, thereby facilitating this process
of discussion and justification.

1.1. DAG models

A unifying feature of the discussion is the use of directed acyclic graph (DAG) repre-
sentations. These can interpreted and applied in a number of very different ways, which
I attempt to elucidate and contrast. Here I give a very brief preview of these different
interpretations.

Consider for example the simple DAG

(a) X  Z! Y .

One interpretation of this is as a probabilistic DAG, which is just a graphical way of
describing the probabilistic conditional independence (CI) property X??Y | Z — and
is thus interchangeable with the entirely equivalent descriptions of this CI property by
means of the DAGs

(b) X ! Z! Y ; or

(c) X  Z Y .

A totally different interpretation of (a) is as a causal DAG, saying that Z is (in some
sense) a “common cause” of both X and Y , which are otherwise causally unrelated.
Under this causal interpretation the DAGs (a), (b) and (c) are not interchangeable.

Although these interpretations (probabilistic and causal) have absolutely nothing in
common, it is often assumed that a single DAG can fulfil both these interpretative func-
tions simultaneously. When this is so, it follows that any variable will be independent of
its non-effects, given its direct causes — the causal Markov property that forms the ba-
sis of “causal discovery” algorithms that attempt to infer causal relationships from ob-
servationally discovered probabilistic conditional independencies. Unfortunately there
is no clear way of deciding when (if ever) it is appropriate to endow a DAG with this
dual interpretation.

Pearlian DAGs aim to clarify this connexion, using interventions to define causal
relationships, and making strong assumptions to relate the non-interventional proba-
bilistic regime with various interventional causal regimes. For example, this interpre-
tation of DAG (a) would require that the observational joint conditional distribution of
(X ,Y ) given Z = z (under which X and Y are in fact conditionally independent) is the
same as the joint distribution of (X ,Y ) that would ensue when we intervene on Z to
set its value to z. Such Pearlian assumptions, which are testable (at least in principle),
support a rich causal calculus. There are also valuable variations on this approach that
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require fewer assumptions (e.g., we envisage intervention at some, but not all, of the
nodes in the DAG).

This abundance of different interpretations of the same DAG is rich in possibilities,
but at the same time a potential source of confusion.

1.2. Outline

In §2 I recall the importance of distinguishing between passive observation (“seeing”)
and intervention (“doing”). Section 3 introduces the algebraic theory of conditional
independence (CI), relevant to the “seeing” context, while graphical representations of
CI are described and discussed in §4. In §5 I switch to considering causal models and
their graphical representations, as relevant to the “doing” context, while §6 discusses
possible relationships that might be assumed to hold between graphical representations
in the two contexts. Section 7 treats the more specific assumptions underlying Judea
Pearl’s use of DAGs to represent and manipulate causality. In §8, I comment on the
strong assumptions that are implicit in these causal models. Section 9 then presents
an approach to modelling causality that does not require any such assumptions (though
these can be represented when desired), and this is further illustrated, and contrasted
with other approaches, in §§ 10 and 11. The need for (and possibilities for) contex-
tual justification of causal assumptions is highlighted in §12, while §13 summarises
the arguments presented and considers what might be an appropriate rôle for causal
discovery.

2. Seeing and doing

Spirtes et al. (2000) and Pearl (2009), among others, have stressed the fundamental im-
portance of distinguishing between the activities of Seeing and Doing. Seeing involves
passive observation of a system in its natural state. Doing, on the other hand, relates
to the behaviour of the system in a disturbed state, typically brought about by some
external intervention. For statistical applications a strong case can be made (Dawid,
2000, 2002b) for regarding the philosophically problematic concept of causation as
simply describing how the system responds to external intervention — a stripped-down
“agency” or “manipulationist” interpretation of causality (Hausman, 1998; Woodward,
2003). Causal inference then refers to the problem of drawing conclusions, from avail-
able data, about such responses to interventions.

The cleanest case is when the data were collected under the very interventional
regime in which we are interested. “To find out what happens to a system when you in-
terfere with it you have to interfere with it (not just passively observe it)” (Box, 1966).
This is the credo underlying the whole discipline of experimental design and inference,
as exemplified by the most important medical advance of the 20th century: the con-
trolled clinical trial.

Often, however, for reasons of cost, practicality, ethics, etc., we can not experiment,
but are confined to passive observation of the undisturbed system. Now it is a logically
trivial but fundamentally important point that there is no necessary connexion between
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the different regimes of seeing and doing: a system may very well behave entirely
differently when it is kicked than when it is left alone. So any understanding one
might achieve by observation of the system’s undisturbed behaviour is at best indirectly
relevant to its disturbed behaviour, and thus to causal inference. We might attempt to
proceed by assuming connexions between the different regimes, which — if valid —
would allow us to transfer knowledge gained from seeing to inferences about the effects
of doing. But it is important to be entirely explicit about such assumptions; to attempt,
so far as is possible, to justify them; and to be fully aware of the sensitivity of any
conclusions drawn to their validity.

In recent years there has grown up a body of methodology, broadly described as
causal discovery, that purports to extract causal (doing) conclusions from observational
(seeing) data in fairly automatic fashion (Spirtes et al., 2000; Glymour and Cooper,
1999; Neapolitan, 2003). This approach largely revolves around directed acyclic graph
(DAG) models, which have interpretations in both the seeing and the doing contexts,
so that a DAG model identified from observational (seeing) data can be imbued with
causal (doing) content. However, these two interpretations of DAGs, while related, are
logically distinct, and have no necessary connexion. Hence it is important to clearly
identify, understand, and provide contextual justification for, the assumptions that are
needed to support replacement of one interpretation by another. There can be nothing
fully automatic about causal discovery.

I will survey various different interpretations of DAG models, and their relation-
ships with conditional independence.

3. Seeing: Conditional independence

We start by concentrating on the behaviour, under a single stable regime, of a collection
of variables of interest. We assume that this behaviour will be modelled by means of a
fixed joint probability distribution P.1 If we can obtain and record repeated observations
under the same regime, we might hope to estimate P. Here we largely ignore problems
of inference, and restrict attention to purely probabilistic properties.

One of the most important of such properties is that of conditional independence,
CI (Dawid, 1979a, 1980). We write X??Y | Z [P] to denote that, under the distribution
P, variables X and Y are probabilistically independent given Z = z, for any observ-
able value z of Z. When P can be understood we write simply X??Y | Z. This can
be interpreted in various equivalent ways, but for our purposes the most useful is the

1. There are of course many interpretations of probability (Galavotti, 2005). For present purposes a
naïve frequentist view, which can also be given a subjective Bayesian intepretation in terms of ex-
changeability (de Finetti, 1975), will suffice. Williamson (2005) argues for an “objective Bayesian”
interpretation as most appropriate for causal inference. The formal mathematical framework is the
same in all cases.
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following:2

P(X = x | Y = y, Z = z) depends only on z, and not further on y. (1)

Universal3 qualitative properties of probabilistic CI include (Dawid, 1979a; Spohn,
1980; Pearl and Paz, 1986):

X??Y | X

X??Y | Z ) Y ??X | Z

X??Y | Z, W  Y ) X??W | Z

X??Y | Z, W  Y ) X??Y | (W,Z)

X??Y | Z
and
X??W | (Y,Z)

9
=

; ) X??(Y,W ) | Z

(2)

(where W  Y denotes that W is a function of Y ).
There is another useful property, which is however valid not universally, but only

under additional conditions (Dawid, 1979b, 1980):4

X??Y | (Z,W ) and X??Z | (Y,W )) X??(Y,Z) |W . (3)

While (2) (and, where appropriate, (3)) do not exhaust all the general properties of
probabilistic CI (Studený, 1992), they are adequate for most statistical purposes.

4. Graphical representation

It can be helpful to use mathematical constructions of various kinds to represent and
manipulate CI (Dawid, 2001a). This involves making formal analogies between prop-
erties of probabilistic CI and non-probabilistic properties of the representations we use.
The representations themselves can look very different from probability distributions,
and we need to be very clear as to how we are to interpret properties of such a represen-
tation as “saying something about” properties of CI. As with any use of representations
to assist understanding and construct arguments, the semantics (or meaning) of a rep-
resentation — describing exactly just how it is to be taken as relating to the external
“reality” it is intended to represent — is at least as important as its syntax — describing
its internal grammar.

One of the most popular and useful of such representations is the directed acyclic
graph (DAG). A DAG † has a set V of nodes, and arrows joining them, with no loops or
directed cycles. A full description and analysis of the formal semantics of the relation-
ship between DAGs and the collections of CI properties they represent, together with

2. Purely for simplicity, we may here suppose the variables are discrete, and all combinations of logically
possible values have positive probability. For a rigorous definition in the general case, see Dawid
(1980).

3. i.e. holding for any distribution P and any variables X ,Y, . . .
4. For example, when the sample space is discrete and each elementary outcome has positive probability.

75



DAWID

the associated notation and terminology, can be found in Cowell et al. (2007). Although
this theory will be familiar to many readers, I repeat here the specific features I wish to
emphasise — more to clarify what is not being said than what is.

4.1. d-separation

Given node-sets S,T,U ✓V , we say U d-separates S from T in †, and write S ?d T |U [†],
if the following somewhat complex geometric property5 is satisfied. First we delete all
nodes that are not “ancestors” of some node in S[T [U , as well as all their incoming
arrows; then we add undirected edges between any two nodes that are “parents” of a
common “child” node, if they are not already joined by an arrow; next we delete all
arrowheads, so obtaining an undirected graph, the relevant moralized ancestral graph.
Finally, in this graph we look for paths joining S and T that do not intersect U . If there
are none such, then S and T are d-separated by U in †.

It turns out (Lauritzen et al., 1990) that this graph-theoretic separation property also
obeys the formal rules (2) (with  interpreted as ✓), and is thus potentially able to rep-
resent some collections of probabilistic conditional independence properties. Specifi-
cally, when the nodes of † represent random variables, we say that † represents a col-
lection C of conditional independence relations between sets of variables if the graph-
theoretic property S ?d T |U [†] holds exactly when the CI relation S??T |U either
belongs to C, or can be logically deduced from C by application of the rules in (2). For
a probability distribution P over V , we say † represents P if (the Markov condition):

S ?d T |U [†]) S??T |U [P]. (4)

This will be so if and only if, under P, for each V 2 V , V is conditionally independent of
its parents in V , pa(V ), given its non-descendants in V , nd(V ). Such a representation is
termed (probabilistically) faithful when the converse implication to (4) also holds, i.e.
the only conditional independence properties holding in P between the variables in V
are those represented by †. These relationships between the d-separation properties of a
DAG and a collection of CI properties, or a joint distribution P, constitute the semantic
interpretation of the DAG.

As a simple example, Figure 1 shows the unique DAG over four variables (Z,U,X ,Y )
that represents the following pair of CI properties:

U ?? Z (5)
Y ?? Z | (X , U). (6)

It is important to note that, for given variable set V , the collections of CI properties
C that can be represented by a DAG are very special.6 Thus with V = {X ,Y,Z}, the pair

5. We here describe the “moralisation” version of this property (Lauritzen et al., 1990). This is logically
equivalent to the d-separation property as described by Pearl (1986); Verma and Pearl (1990).

6. They are exactly those that are logically equivalent (using (2)) to a collection of the form
Vi??{V1, . . . ,Vi�1} | Si for i = 1, . . . ,N, where V1, . . . ,VN is an ordering of V , and Si ✓ {V1, . . . ,Vi�1}.
In this case the associated DAG has an arrow into each Vi from each node in Si.
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Figure 1: Simple DAG

of properties {X??Y , X??Y | Z} has no DAG representation, and this is indeed the
typical state of affairs. Conversely, when a DAG representation is available, it need not
be unique. Distinct DAGs on V are termed Markov equivalent when they represent the
same collection of CI relations: this will be so if and only if they have the same skeleton
(undirected version) and immoralities (configurations of the form A!C B with no
arrow between A and B) (Frydenberg, 1990; Verma and Pearl, 1991). Thus the three
DAGs (a), (b) and (c) of §1.1 are Markov equivalent, all representing the same single
CI property X??Y | Z, and are all equally valid for this purpose. This representational
flexibility is extended further when we allow the set V of variables considered to vary:
thus both DAGs of Figure 2 represent the single CI property A??B.

Figure 2: Two DAGs representing A??B

4.2. What do the arrows mean?

According to the theory presented above, the purpose of a DAG representation is to
mirror, via the d-separation semantics described in §4, the probabilistic relationship
of conditional independence — a relationship that, it is worth emphasising, is entirely
symmetrical, as captured by the second line of (2). However, it is in the very nature, and
indeed name, of a directed acyclic graph that it contains directed arrows between vari-
ables, so that this particular graphical representation embodies a non-symmetrical rela-
tionship between nodes. But this is a pure artifact: thus Figure 1, although composed
of directed arrows, is nothing but an alternative way of representing the symmetrical
CI relationships (5) and (6). The rôle of an arrow in a DAG model is much like that of
a construction line in an architect’s drawing: although it plays an important rôle in the
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formal syntax of the model, it has no direct counterpart in the world, and contributes
only indirectly to the semantic interpretation of the model.

4.3. Reification

Nevertheless, having built a DAG representation of a probability distribution, it is hard
to resist the temptation to interpret an arrow from node X to node Y in the DAG as rep-
resenting something meaningful in the real-world system that the DAG is modelling —
for example, as embodying some conception of the non-symmetrical relation of cause
and effect: that X is, in some sense, a “direct cause” of Y . Likewise, we might be
tempted to read off from the Figure 1 such intuitive properties as “X lies on the causal
pathway between Z and Y ”. But no such inferences are justified from the formal se-
mantics relating DAG representations to conditional independence. Such interpretation
of an incidental formal attribute of a mathematical representation of the world as corre-
sponding to something real in the external (physical or mental) world7 may be termed
“reification”. While reification can often be indicative and fruitful, it is important to
be very clear as to when we are reaching beyond the formal semantics by which the
representation has been supposed to encode real-world properties, and in that case to
consider very carefully whether, when and how this might be justifiable.

5. Causal DAGs

An entirely different use of a DAG representation is to model causal relations directly.
Unlike conditional independence, which is a clearly defined property of a probability
distribution, causality is a slippery and ambiguous concept. In dealing with causal re-
lations, we can either regard them as fundamental undefined primitives in themselves,
or as defined in terms of still more basic ingredients, such as the effect of interven-
tions. In either case the important thing, if a representation is to be used for meaningful
communication, is that all parties have the same (explicit or implicit) understanding
of the things it is supposed to be representing, and of the nature and mechanics of the
representation.

A common causal interpretation of a DAG is along the following lines, quoted from
Hernán and Robins (2006) (their Figure 2 is redrawn here as our Figure 3), in discussion
of a certain problem relating to the use of “instrumental variables” (see §10 below):

“A causal DAG is a DAG in which:

(i). the lack of an arrow from Vj to Vm can be interpreted as the absence of
a direct causal effect of Vj on Vm (relative to the other
variables on the graph)8

(ii). all common causes, even if unmeasured, of any pair of variables
on the graph are themselves on the graph. In Figure 2. . . the inclusion

7. Bourdieu (1977, p. 29) speaks of “sliding from the model of reality to the reality of the model”
8. A stronger and potentially more useful requirement is that an arrow be present if and only if there is

such a direct causal effect.
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Figure 3: Figure 2 of Hernán and Robins (2006)

of the measured variables (Z,X ,Y ) implies that the causal DAG must
also include their unmeasured common causes (U,U⇤).”

Here we have used teletype font (not in the original) to highlight non-
mathematical causal concepts.9 Only when we have pre-existing understanding and
interpretation of these concepts will it be possible to say whether or not a given DAG
is indeed a causal DAG for the problem it is intended to represent. Such a question
can never be addressed solely in formal terms, by reference only to the DAG. In partic-
ular, we can not define concepts such as “direct causal effect” or “common cause” by
reference to a putative DAG model unless that model has previously been justified as
“causal” by other, necessarily non-graphical, considerations not involving these terms.

However we may choose to understand the causal terms involved, it is clear that the
semantics whereby a DAG represents causal properties are qualitatively totally differ-
ent from those whereby it represents conditional independence properties. In the former
case, the arrows are supposed to have a direct interpretation in terms of cause and effect;
whereas, as emphasised in §4.2, for conditional independence the arrows are nothing
but incidental construction features supporting the d-separation semantics. A related
distinction is that conditional independence is an externally determined all-or-nothing
affair, whose validity is unaffected by which other variables and properties we may
choose to represent in our DAG: this means, in particular, we can not interpret the pres-
ence or absence of an arrow from X to Y in some probabilistic DAG representation as
representing a fundamental CI property, since such arrows can come and go as we vary
the set of variables represented. In contrast, the very meaning of the properties (such as
“direct effect”) represented by a causal DAG may be dependent on the specification of
the variable set V , and may change (with corresponding changes in the relevant repre-
sentation) as we vary V . Correspondingly an arrow in a causal DAG can be considered
as having independent meaning (e.g. as representing a “direct effect”) — albeit only in
terms of causal concepts defined relative to the specific variables represented.

Contrasting conditional independence and causality, we see that both in their sub-
ject matter and in their graphical representation they differ markedly. We could simply

9. Note that (i) involves a causal concept that is not regarded as absolute, but rather as relative to a
specific collection of variables under consideration.
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keep them in entirely different pockets, with nothing whatsoever to do with each other.
However, there is a long-standing tradition of attempting to forge connexions between
the two. Indeed, some thinkers (Shafer, 1996; Spohn, 2001) regard the very concept of
causality as entirely supervenient on that of conditional independence (for an appropri-
ate collection of variables).

6. Probabilistic causality

One approach, going back at least to Reichenbach (1956) and pursued by Suppes (1970)
among others, essentially proceeds by relating the probabilistic conditional indepen-
dence of two variables X and Y given some third variable Z to the causal independence
of X and Y , in the sense that neither of these variables causally affects the other. How-
ever it is not easy to make this precise. In one direction, it apparently implies that, if X
and Y are completely independent probabilistically (so that we can take Z to be vacu-
ous), then neither can causally affect the other. However, this degree of implication is
not usually claimed, since such independence could be an accidental result of numerical
cancellation between two or more non-null causal probabilistic relationships involving
these and other variables.10 Likewise, if we find that X and Y are not independent given
any variable Z currently under consideration, we can not immediately deduce causal
dependence between X and Y , since we can not rule out the possibility that we have
simply not examined enough Zs.

In the converse direction, it might be claimed (the “weak causal Markov assump-
tion”, Scheines and Spirtes, 2008) that, if X and Y are “causally disconnected”, in the
sense that neither X nor Y causally affects the other and they have no other common
cause Z, then they should be probabilistically independent.

6.1. Causal Markov condition

A still more thoroughgoing approach is based on the “Causal Markov condition”, CMC
(Spohn, 1980; Spirtes et al., 2000). Essentially, this supposes that, when we do have
a causal DAG representation11 of a system, the identical DAG will also represent its
CI properties. Equivalently,12 CMC requires that any variable be probabilistically inde-
pendent of its non-effects,13 conditional on its direct causes — all understood relative to
the set of variables in the causal DAG. When valid, CMC allows us to infer conditional
independence properties from causal assumptions (so long as these can be represented
by a causal DAG).

10. Such a state of affairs is sometimes dismissed as being due to a “non-faithful” DAG representation of
the problem. But at this level of generality we do not have a DAG.

11. e.g., as described in §5.
12. At any rate, with the stronger interpretation of footnote 8.
13. The “effect” relation here is the transitive closure of the “direct effect” relation.
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6.2. Other interpretations of probabilistic causality

Recently other ideas have been suggested for relating causal relationships between vari-
ables to properties of their joint probability distribution. For example, Janzing and
Schölkopf (2008b,a) distinguish between the two decompositions of a joint distribution,
p(x,y) = p(x) p(y |x) and p(x,y) = p(y) p(x |y), in terms of their algorithmic complex-
ity: if, say, the former is simpler by this criterion, one might regard this as indicating a
causal effect of X on Y . Similarly (Zhang and Hyvärinen, 2009), if one can reasonably
describe p(y |x), but not p(x |y), in terms of an implicit additive error structure, one
might again interpret that as implying that X is a cause of Y . It is clear that the assump-
tions underlying such claims are very different from those of “probabilistic causality”
above. The extent to which they might be appropriate, and indeed whether they even
relate to the same conception of causality, deserves deeper attention.

6.3. Causal discovery

“Causal discovery” aims to deduce causal properties of a system from its CI properties,
themselves typically inferred (with a consequent degree of uncertainty) from an analy-
sis of data generated by the system. There are many variations and algorithms, but all
share the same basic philosophy. The fundamental assumptions14 needed to validate
this enterprise in any particular application are:

Assumption 6.1 (Causal representation) There exists some DAG † that is a causal
DAG representation of the system.

Assumption 6.2 (Causal Markov condition) The identical DAG † also represents (by
means of the Markov condition (4)) the probabilistic conditional independence proper-
ties of the system.

The more sophisticated causal discovery methods appreciate that (especially in the light
of (ii) of §5) it would not generally be reasonable to expect the causal DAG † to involve
only the variables that happen to have been measured, and so will allow for the inclusion
of additional unobserved variables.

Some putative causal DAG representations might be eliminated directly on a pri-
ori grounds, e.g. taking into account temporal order. Under Assumption 6.2, any re-
maining putative causal DAG representation will have implications for the probability
distribution over the observed variables — either directly in terms of conditional inde-
pendencies when there are no unobserved variables in the causal DAG, or more subtle
consequences of “latent conditional independence” when there are. Consequently, if
those implications are not supported by the data, then the hypothesised causal DAG
may be eliminated on empirical grounds. In this way, and under the assumptions made,
we can gain partial knowledge of causal structure from a combination of a priori rea-
soning and observational data.

To make further progress, it is common to strengthen Assumption 6.2 as follows:

14. There are also variations using different graphical representations of causal and CI properties, such as
partial ancestral graphs (Richardson and Spirtes, 2002; Zhang, 2008).
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Assumption 6.3 (Causal faithfulness) The causal DAG † is a probabilistically faith-
ful representation of the system.

In this case, the only conditional independence properties enjoyed by the variables in
† will be those represented by the causal DAG †. Under Assumption 6.1 and Assump-
tion 6.3, knowledge of which (patent or latent) conditional independencies do or do not
hold between the observed variables allows us to eliminate still more putative causal
DAG representations of the problem. However, even if we knew which variables were
to be included in the causal DAG †, and all the conditional independence properties they
possess, we might not be able to identify † uniquely, since we could never distinguish
observationally15 between distinct DAGs that are Markov (but not causal) equivalent.
Even with this remaining ambiguity, it may be possible to make some causal infer-
ences: thus if every uneliminated causal DAG description of the problem involves the
same variable set V , and all contain an arrow from X to Y , we can infer that X is a direct
cause of Y relative to V .

Zhang and Spirtes (2008) point out that certain implications of the combination
of Assumptions 6.1 and 6.3 can be tested empirically. For it follows from Assump-
tion 6.3 that the conditional independence properties of the observational distribution P
are faithfully represented by some DAG, and this property has testable consequences.
But this does not make much progress towards causal inference without the additional
strong Assumption 6.1.

7. Pearlian DAGs

Judea Pearl, through his book (Pearl, 2009) and many other works, has popularised a
particular use of DAGs to represent both CI and causal properties simultaneously —
the latter understood as describing the effects of interventions. We shall refer to a DAG
imbued with such an interpretation as a Pearlian DAG.16

Such a representation applies to a collection of variables measured on some system,
such that we can intervene (or at least can conceive of the possibility of intervening) on
any one variable or collection of variables, so as to “set” the value(s) of the associated
variable(s) in a way that is determined entirely externally. This gives rise to a wide
variety of interventional regimes, while the observational regime arises as the special
case that no variables are set. A DAG † is then a Pearlian representation of the system
when the following properties hold:

15. although we may be able to do so on a priori grounds
16. We in fact shall deal only with Pearl’s initial, fully stochastic, theory. More recently (see the second-

half of Pearl (2009), starting with Chapter 7), he has moved to an interpretation of DAG models
based on deterministic functional relationships, with stochasticity deriving solely from unobserved
exogenous variables. That interpretation does however imply all the properties of the stochastic theory,
and can be regarded as a alternative description of it. (This is however not so when we move from DAG
models to more general representations, when such deterministic models have restricted generality:
see Example 11.2 below.)

82



BEWARE OF THE DAG!

Property 7.1 (Locality) Under regimes in which all variables other than V are set, at
arbitrary values, the associated distribution of V depends only on the settings of its
parents, pa(V ), in †.

This can be interpreted as requiring that only the DAG parents of V have a direct effect
on V , relative to the other variables in the DAG.

Property 7.2 (CMC) Under any regime, † represents (by means of the Markov condi-
tion (4)) the probabilistic conditional independence properties of the associated joint
distribution.

Under any interventional regime that sets the value of V 2 V , there trivially can be no
dependence of the (one-point) distribution of V on pa(V ): the arrows into V could thus
be removed while retaining a DAG representation of this regime.

Under Property 7.1, † can plausibly be interpreted as a causal DAG representa-
tion of the problem: property (i) of §5 is incorporated in Property 7.1, while prop-
erty (ii), though not directly interpreted or represented, might be regarded as implicit
in Property 7.2. With this interpretation, Property 7.2, applied to the observational
regime, implies the causal Markov condition.

However, a Pearlian DAG representation must also satisfy an additional “modular-
ity” (or “invariance”) condition:

Property 7.3 (Modularity) For any node V 2 V , its conditional distribution, given its
DAG parents pa(V ), is the same, no matter which variables in the system (other than V
itself) are intervened on.

(Note that Property 7.1 follows from Property 7.2 combined with Property 7.3).
Property 7.3 extends CMC: not only can we relate the qualitative conditional inde-

pendence properties and causal properties represented by † (as embodied in CMC), but
we can further relate the various quantitative distributional behaviours of the system
when subjected to different interventions. In particular, from purely observational data
on V we could estimate the modular parent-child distributions, and piece these together
to deduce the joint distribution for the system under any set of interventions: a fully
quantitative solution to the problem of inferring causality from observational data.

We see that a Pearlian DAG representation embodies CMC (for its particular inter-
pretation of causality), but much more besides. When we can assume that a system is
represented by some Pearlian DAG, we can attempt “quantitative causal discovery”, in
which we attempt to learn the quantitative as well as the qualitative causal structure of
the problem, as embodied in the underlying Pearlian DAG.

8. How do we get started?

As is brilliantly attested by the work of Pearl, an extensive and fruitful theory of causal-
ity can be erected upon the foundation of a Pearlian DAG. So, when we can assume
that a certain DAG is indeed a Pearlian DAG representation of a system, we can apply
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that theory to further our causal understanding of the system. But this leaves entirely
untouched the vital questions: when is a Pearlian DAG representation of a system ap-
propriate at all?; and, when it is, when can a specific DAG † be regarded as filling this
rôle? As we have seen, Pearlian representability requires many strong relationships to
hold between the behaviours of the system under various kinds of interventions.

Causal discovery algorithms, as described in §6.3, similarly rely on strong assump-
tions, such as Assumption 6.1 and Assumption 6.2, about the behaviour of the sys-
tem. The need for such assumptions chimes with Cartwright’s maxim “No causes
in, no causes out” (Cartwright, 1994, Chapter 2), and goes to refute the apparently
widespread belief that we are in possession of a soundly-based technology for drawing
causal conclusions from purely observational data, without further assumptions.17 This
belief perhaps arises because every DAG model can be given both a probabilistic and a
causal interpretation, so it is easy to conclude that, once we have derived a DAG model
to describe observational conditional independencies, it must necessarily also be inter-
pretable according to more sophisticated causal semantics (e.g., as a Pearlian DAG).
While this is evidently untrue (in particular, distinct but Markov equivalent DAG mod-
els, representing identical observational CI properties, will always have different impli-
cations when interpreted causally), such reification of a DAG CI representation can be
very tempting.

In my view, the strong assumptions needed even to get started with causal interpre-
tation of a DAG are far from self-evident as a matter of course,18 and whenever such an
interpretation is proposed in a real-world context these assumptions should be carefully
considered and justified. Without such justification, why should we have any faith at
all in, say, the application of Pearl’s causal theory, or in the output of causal discovery
algorithms?

But what would count as justification? We return to this important question in §12.
For the moment we merely remark that it cannot be conducted entirely within a model,
but must, as a matter of logic, involve consideration of the interpretation of the terms in
the model in the real world.

9. A formal language for causality

Another difference between a DAG representation of CI and a DAG representation of
causality is that the former is always available, while the latter is not. In particular,
a complete DAG over a collection of variables is totally non-committal as to their CI
properties, and so (vacuously) correct. However, interpreted causally, even a complete
DAG makes strong assertions. If we do not wish to make any such assertions, we can
not even begin to consider using a causal DAG representation.

17. See Geneletti (2005) for further discussion of the hidden assumptions made in this enterprise.
18. It is commonly recognised (Scheines and Spirtes, 2008) that there are cases where such assumptions

should not be expected to hold, such as in the presence of measurement error or coarsening (which
might however be rehabilitated by including the original variables in the DAG), and, more fundamen-
tally, when dealing with dynamic processes in equilibrium (Dash, 2005).
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A less restrictive approach to causal modelling (Didelez and Sheehan, 2007a) is to
develop a formal framework, with clear semantics relating mathematical properties of a
putative representation to causal properties of the external system it is intended to rep-
resent, but without any commitment as to what properties the system should have: such
properties should be expressible within the system, but not imposed by it. In particular,
no rigid assumptions about how causality relates to probability need be made. Rather,
the aim is to present a completely general language, in terms of which we can clearly
express and manipulate whatever tentative causal assumptions we may wish to entertain
in a specific context (in particular, it should be possible to make no such assumptions
whatsoever). In these respects the rôle of such a theory would be similar to that of the
theory of probabilistic conditional independence, as described in Sections 3 and 4.

One way of proceeding involves extending that same CI theory into the causal do-
main, using a manipulationist conception of causality (similar to that underlying the
approach of Pearl). The basic ingredients are of two kinds, intended to represent, re-
spectively, the variables (“domain variables”) in the system, and the “regimes” under
which those variables are generated. For application to modelling a particular external
system, we must fully understand what real-world variables are supposed represented
by the domain variables in the model, and what real-world regimes by the regime vari-
ables in the model. To accommodate our manipulationist stance, at least one of the
regimes modelled should result from an external intervention.

The kind of causal property that will be expressible in this theory will concern
relationships between the probabilistic behaviours of the domain variables, across the
various regimes. Specifically, we are able (but are not obliged!) to postulate the identity,
across two or more regimes, of the conditional distribution for one set of domain vari-
ables given another set of domain variables. When this holds we can regard that condi-
tional distribution as a stable “modular component”,19 transferable across regimes.

This invariance or (stochastic) “stability” concept, in addition to being fundamental
to my interpretation of causality, has other useful applications, arguably outside “causal
inference”, which can be modelled and analysed in essentially the same way. Thus
we might consider the differing probabilistic behaviours of some collection of random
variables in various different hospitals. We could then introduce a non-random regime
indicator (but now without an interventional interpretation) to index which hospital we
are looking at: this would allow us to express an assumption that a certain conditional
distribution is the same in all hospitals. Or (see Example 9.1 below), we could express
the property that a certain imperfect diagnostic test has the same error probabilities,
no matter who it is used on. Such “reusable invariant modules” can be conveniently

19. Modularity — though more typically conceived in terms of transferable deterministic relationships
between variables — has often been taken as an essential or defining property of causality, though
this view has been challenged (Cartwright, 2007, Chapter II-3). While I make no metaphysical com-
mitment to modularity as essential to the understanding of causality, nor even to the expression of
modularity solely in terms of invariant conditional distributions, I consider that this particular ap-
proach covers a very great deal of ground, and is able to handle most aspects of “statistical” causality.
A similar approach, regarding causality as residing in the “structural stability” of random variation, is
taken by Russo (2008).
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implemented in “object-oriented” software such as HUGIN 620(Dawid et al., 2007),
and have been found useful in generic schemes for handling and interpreting evidence
(Hepler et al., 2007).

We observe that Property 7.3 of a Pearlian DAG representation is of just this mod-
ular form. The essential difference between Pearl’s approach and that described here
is that, in a Pearlian DAG model, Property 7.3 requires many modularity properties to
hold — for each V 2 V , under many different observational-interventional regimes — in
a way that is fully determined by the form of the DAG. In contrast, we do not seek to
impose any particular modularity requirements, nor do we require that the problem be
representable by a DAG. We simply provide a language for expressing and manipulat-
ing any modularity properties that we might think it appropriate, on the basis of subject
matter understanding, to impose or hyothesise. As we shall see in §9.2, in some (spe-
cial) cases such more limited assumptions can themselves be usefully represented by
DAG-type models, but these will be non-prescriptive, and will make explicit exactly
what modularity assumptions it has been considered appropriate to incorporate.

9.1. Extended conditional independence

Suppose then that there is a collection of domain variables that together describe rel-
evant aspects of the behaviour of a system under each regime of interest. Under any
one of these regimes, these variables will have a joint distribution. Any conditional in-
dependence properties that distribution may have could be expressed algebraically as
in §3 or — where appropriate — graphically as in §4. We now indicate how to extend
such mathematical representations to incorporate any relationships, as described above
in terms of invariant conditional distributions, that might be assumed to hold between
the various different regimes.

Example 9.1 As a simple example, let X be a patient’s actual systolic blood pressure,
and Y the value of this as recorded on a certain sphygnomanometer. The same sphyg-
nomanometer might be used on different patients at different times, but it might be
reasonable to assume that the distribution of Y given X is stable, irrespective of the
circumstances of use. We could introduce a regime indicator F , whose values specify
the conditions, environment, kind of patient, etc.. Note that whereas the domain vari-
ables (X ,Y ) are random, F is not: rather, it has the status of a statistical parameter,
indexing the probabilistic regime under consideration. In particular, any probability or
independence statements must, explicitly or implicitly, be conditioned on the value of
F .

The stability assumption is just that the conditional density p(y | F = f ,X = x) for
Y , given X = x, in regime F = f , is in fact the same for all values of f . In the light
of (1), we see that this can be expressed in the form of a conditional independence
property:

Y ??F | X . (7)

⇤
20. http://www.hugin.com/
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It is important to note that expression (7) makes sense, even though F is not a
random variable. In general, for the expression X??Y | Z in (1) to be meaningful,
while X must be random there is no requirement that the conditioning variables Y and
Z be random: either or both could be a parameter variable or regime indicator (see
Dawid (1979a, 2002b) for further details). This language of extended conditional in-
dependence (ECI) thus provides a natural way of expressing stability across regimes of
modular conditional distributions. In particular, ECI supplies an appropriate formal
language (syntax and semantics) for describing and handling causality in our modular
manipulationist understanding of the term.

Example 9.2 Consider a system involving domain variables Z,U,X ,Y . We wish to
model the effect of an intervention that sets the value of X . To this end we introduce an
intervention variable, FX , a special regime indicator with values corresponding to the
different regimes that arise on intervening to set the value of X in various ways (Spohn,
1976; Spirtes et al., 2000; Pearl, 2009). If X is binary, then FX might have values /0, 0
and 1, the interpretation being that, when FX = /0 (the idle regime), the domain variables
arise from the undisturbed system; whereas when FX = 0 [resp., 1] they arise from the
system disturbed by an external intervention that forces X to take the value 0 [resp., 1].

In general, the joint distributions of (Z,U,X ,Y ) under the three different regimes
(i.e., given FX = /0, 0 or 1) could be entirely arbitrary,21 and unrelated to each other. But
should we wish to specify or describe connexions between them, we can usefully do
so using ECI. This programme can be effected, in great generality, in entirely algebraic
fashion: we can use the general properties (2) and (with due care) (3) to manipulate ECI
properties, almost exactly as for probabilistic CI. We just have to ensure that no non-
random variable occurs as the first term in any ECI relation in either our assumptions
or our conclusions.

Again, these manipulations are most conveniently described and conducted in
graphical terms — though we once again warn that by no means every problem that
can be manipulated algebraically can be modelled graphically. ⇤

9.2. Augmented DAGs

Just as for regular CI it is sometimes possible, and then is helpful, to represent a col-
lection of ECI properties by means of a DAG22 — but now extended to include nodes
to represent non-random regime variables (generally drawn as square), in addition to
nodes representing domain variables (generally drawn as round). Indeed, this can
be done with essentially the identical constructions and interpretations as for regular
DAGs. Such a DAG is termed an influence diagram (ID) (Dawid, 2002b).

Many of the IDs considered in a causal context have a specific form, as “augmented
DAGs”

21. Except that, to express our intended interpretation of FX , under FX = 0 [resp., 1] we should require
X = 0 [resp., 1] with probability 1. There is however no immediate implication for the distribution of
any other variables.

22. Other kinds of graphical CI representations can be similarly extended to include intervention variables
(Dawid, 2002a; Zhang, 2008; Eichler and Didelez, 2009).

87



DAWID

(Pearl, 1993). Figure 4 shows an augmented DAG, a variation on the simple, purely
probabilistic, DAG of Figure 1, that also incorporates, in a particular way, an interven-
tion node FX , interpreted as in Example 9.2.

Figure 4: Augmented DAG

What does it mean to say that a particular system is modelled by this augmented
DAG? To address this question, we apply the “d-separation semantics” described in
§4 — but now ignoring the distinction between domain and regime variables. The DAG
thus represents the following (algebraically expressed) conditional independence prop-
erties:

(U,Z) ?? FX (8)
U ?? Z | FX (9)
Y ?? FX | (X ,U) (10)
Y ?? Z | (X ,U ;FX). (11)

Using (1), property (8) is to be interpreted as saying that the joint distribution of
(U,Z) is independent of the regime FX : i.e., it is the same in all three regimes. In
particular, it is unaffected by whether, and if so how, we intervene to set the value of
X . The identity of this joint distribution across the two interventional regimes FX =
0 and FX = 1 could be interpreted as expressing a causal property: manipulating X
has no (probabilistic) effect on the pair of variables (U,Z). Furthermore, since this
common joint distribution is also supposed the same in the idle regime, FX = /0, we
could in principle use observational data to estimate it — thus opening up the possibility
of causal inference.

Property (9) asserts that, in their (common) joint distribution in any regime, U and
Z are independent: this however is a purely probabilistic, not a causal, property.

Property (10) says that the conditional distribution of Y given (X ,U) is the same
in both interventional regimes, as well as in the observational regime, and can thus be
considered as a modular component, fully transferable between the three regimes —
again, I regard this as expressing a causal property.

Finally, property (11) asserts that this common conditional distribution is unaffected
by further conditioning on Z (not in itself a causal property).
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Just as for regular CI, it is possible for a collection of ECI properties to have more
than one representation as an augmented DAG. This is the case for Figure 5, where the
direction of the arrow between U and V is not determined.

Figure 5: Two Markov-equivalent augmented DAGs

We see that the ingredients required for at least some causal assertions and in-
ferences — namely that certain marginal or conditional distributions be unaffected by
whether or how certain interventions are made — are readily expressible using the fa-
miliar language of conditional independence (specifically, they arise when the second
argument of an ECI relation is a regime variable). They are just as readily manipulated
by means of the rules embodied in (2). And in those special cases that it is possi-
ble to express all the causal and probabilistic assumptions made in a form that can be
represented by an augmented DAG, we can use the d-separation semantics of §4 as a
“theorem-proving machine” to discover their logical implications.

9.3. Pearlian DAGs as augmented DAGs

A Pearlian DAG is readily represented as a special kind of augmented DAG. To do
this, we elaborate the given DAG by including, for every domain variable V in it, an
intervention node FV , and an arrow pointing from FV to V . Properties 7.1, 7.2 and 7.3
are then explicitly represented by the d-separation semantics. Correspondingly all the
implications of a Pearlian representation can be deduced from this augmented DAG and
d-separation.

In Pearl’s earlier work (Pearl, 1993, 1995) he moved backwards and forwards be-
tween explicit and implicit representation of the intervention variables in the DAG.
More recently he, and most of those following him, have been using only the implicit
version, in which the intervention variables FV are not explicitly included in the dia-
gram, but (to comply with the Pearlian interpretation) the DAG is nevertheless to be
interpreted as if they were. I regard this demotion of the intervention indicators as a ret-
rograde move, since the resulting graphical representation, while imbued with Pearlian
causal semantics, is visually indistinguishable from a DAG used to describe purely
probabilistic CI. Consequently, great care is needed to be clear just what a given DAG
is intended to represent, and to avoid slipping unthinkingly from one interpretation to
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another. Explicit representation of intervention nodes helps to guard against such con-
fusion, as well as simplifying interpretation and manipulation.23

10. Instrumental variables

To clarify the similarities and differences between augmented DAG representations and
other causal DAG representations, we revisit the example of §5. Hernán and Robins
(2006) present the causal DAG of Figure 3 as a counterexample to the supposition
(Martens et al., 2006) that the following conditions are necessary for a variable Z to
qualify as an “instrumental variable” for estimating the causal effect of an “exposure”
X on a “response” Y , in the presence of an additional, unmeasured, variable U (a con-
founder), that affects both X and Y , when we can not directly manipulate X :

(i). Z has a causal effect on X

(ii). Z affects the outcome Y only through X (i.e., no direct effect of Z on Y )

(iii). Z does not share common causes with the outcome Y (i.e., no confounding for
the effect of Z on Y ).

The causal DAG presented by Hernán and Robins (2006) as embodying these as-
sumptions is essentially the same as our Figure 1. This is contrasted with the causal
DAG of Figure 3, which is not regarded as embodying condition (i), since Z has no
direct causal effect on X , but is merely associated with it through sharing a common
cause U⇤.

Note that the descriptions of both problems employ intuitive causal terms, and that
these are associated with the presence and directionality of the arrows in the causal
DAG representations.

DAG representations of the ECI versions of these stories are presented in Figure 4
and Figure 6. In each case an intervention node FX associated with X has been added,
describing three regimes of interest: the idle regime FX = /0 corresponding to pure
observation, and the two interventional regimes FX = 0 and 1, corresponding to an in-
tervention in which X is externally manipulated to take values 0 and 1, respectively.
While data can be gathered only under the idle regime, which is thus all that can be di-
rectly estimated, our interest is nevertheless in estimating (if possible), and, especially,
comparing, the distributions of the response Y under the interventional regimes, FX = 0
and FX = 1.

Now in the story represented by Figure 3 or Figure 6, the variable U⇤, while appar-
ently required for a full causal specification of the structure of the problem, plays no rôle
in the analysis of Z as an instrumental variable. So we can restrict attention to the joint

23. For example, Pearl (1995) derives his “do-calculus” rules using an explicit augmented DAG represen-
tation, but then re-expresses them in terms of the unaugmented graph — when they become consider-
ably more complex. It is not clear what is gained to compensate for this loss of transparencqy.
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Figure 6: Augmented DAG corresponding to Figure 3

distribution, under the various regimes, of the variables (U,X ,Y,Z), and their indepen-
dence properties. We then find that the augmented DAG of Figure 6 embodies the iden-
tical conditional independence properties (8)–(11) as the alternative augmented DAG
of Figure 4, in which U⇤ does not figure at all. Consequently, for our purposes this is
just as good an augmented DAG representation of the problem as Figure 6. This equiv-
alence should be contrasted with the apparent attitude of Hernán and Robins (2006),
that if Figure 3 is a “true” causal DAG representation of the problem, then Figure 1
is not. We would likewise have to distinguish these two DAG representations under a
Pearlian interpretation, which would be equivalent to attaching intervention nodes to
every domain variable. But this would involve making many additional and possibly
questionable assumptions, none of which is needed for the analysis.

An important interpretive difference between causal DAGs as described in §5 and
as represented by augmented DAGs is that, in the former, causal meaning is understood
as carried by the arrows, whereas, in the latter, it is entirely carried by extended condi-
tional independence properties, involving intervention variables, which are represented
only indirectly in the DAG, via d-separation. In particular, in Figure 4 (and in contrast
to the causal interpetation of Figure 1) the arrow from Z to X is not to be construed
as representing a relationship of cause and effect between Z and X (see Didelez and
Sheehan (2007b) for more on this in the context of Mendelian randomization).

The ECI properties (8)–(9) are “core conditions” for a variable Z to be an instrument
for the effect of X on Y .24 Once so characterised, these properties can be manipulated
algebraically using the rules of (2) (together with properties such as FX = 0) X = 0),
without reference to any graphical representation: the “theorem-proving” properties of
DAG representations, while immensely useful, are logically inessential. But if we do
want to use graphical representations to help us, there is no point in arguing whether it
is Figure 4 or Figure 6 that is “correct” — since each of them embodies (8)–(9) equally
well.

24. There is one more core condition, expressible in terms of ECI though not graphically representable:
X 6??Z | FX = /0. In addition to these core conditions, precise identification of a causal effect by means
of an instrumental variable requires further modelling assumptions, such as linear regressions (Didelez
and Sheehan, 2007b).
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11. Non-DAG modularity

Bertrand Russell (Russell, 1913) famously opined “The law of causality, I believe, like
much that passes muster among philosophers, is a relic of a bygone age, surviving, like
the monarchy, only because it is erroneously supposed to do no harm”. Many scientific
laws are symmetric, and thus inappropriate for representation in terms of directional
causal properties. Nevertheless, they can still be described by means of modularity
properties, and these can frequently be expressed using ECI.25

Example 11.1 Ideal gas
Consider a system involving a fixed number N of molecules of a monatomic ideal gas
in an impermeable container, whose volume can be adjusted by manipulating a piston.
The container is immersed in a heat bath of constant absolute temperature t⇤. Let V , P
denote, respectively, the volume and pressure of the gas.

Suppose first that the manipulations of the piston are isothermal, i.e. slow enough
that, by heat transfer through the walls of the container, the gas always remains at the
external temperature t⇤. Then P and V are functionally related by Boyle’s law:

PV = c (12)

where the constant c is kNt⇤, k being Boltzmann’s constant.
Let the regime indicator F describe various isothermal manipulations of the piston,

in either fixed or random ways. In all cases the relation (12) will hold. In particular,
given either V or P, the other is determined, irrespective of the regime that brought the
situation about. We shall thus have, simultaneously, the ECI properties

P ?? F | V (13)
V ?? F | P (14)

where, for example, the modular conditional distribution of P given V = v associated
with (13) is a 1-point distribution at c/v. We note that there is no DAG representation
of the pair of ECI properties (13) and (14).

We could alternatively consider adiabatic manipulations, which proceed sufficiently
fast that no heat can transfer through the walls of the container (but not so fast as to add
energy to the gas). Then (12) is replaced by

PV
5
3 = constant. (15)

Again (13) and (14) will hold, but now with different specifications for the modular
conditional distributions.

25. Alternative modular descriptions can also be used in this more general context, for example, based on
non-recursive systems of simultaneous structural equations, such as in Pearl (2009, Chapter 7) (see
Example 11.2 below). An immediate advantage of the ECI description over representations in terms
of equations is that, because of its relationship with conditional distributions, each ECI property, of
the form X??Y | Z, automatically comes with an associated directionality: from its conditioning
variables (Y,Z) to its response variables X .
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Finally, consider arbitrary manipulations of the piston. There are now no modular
relationships holding between P and V , but modularity can be restored by introduc-
ing the additional variable T , the absolute temperature of the gas. The (symmetrical)
invariant relationship is

PV = kNT. (16)

In terms of ECI we have

P ?? F | (V, T ) (17)
V ?? F | (P, T ) (18)
T ?? F | (P,V ) (19)

where, for example, the modular conditional distribution of P given V = v,T = t associ-
ated with (17) is a 1-point distribution at kNt/v. Again, there is no DAG representation
of this collection of ECI properties. ⇤

Example 11.2 Price and demand
A simple econometric model relates price, P, and quantity demanded, Q, for some
good. It is supposed possible to manipulate either of these to any given value. There are
additional unobserved explanatory variables UP, UQ, which are supposed unaffected by
such manipulations, having a given joint distribution. Let FP, FQ denote the indicators
for interventions at P, Q respectively. We suppose we have specified the interventional
conditional distribution of Q, given (P = p,UP,UQ;FP = p,FQ = /0), and that this does
not in fact depend on UP; and similarly we have specified the conditional distribution
for P, given (Q = q,UP,UQ;FP = /0,FQ = q), which is independent of UQ.

The idle regime, when FP = FQ = /0, is taken as referring to the joint distribution “in
equilibrium”. On the basis of economic theory it is supposed — constituting our “mod-
ular assumptions” — that all the above specified marginal and conditional distributions
continue to apply, simultaneously, in this equilibrium regime. (Note that consistency
conditions then constrain the possible specifications of the conditional distributions for
Q and P).

The modular assumptions made are encapsulated in the following ECI properties:

(UP,UQ) ?? (FP,FQ) (20)
Q ?? (FP,UP) | (P,FQ,UQ) (21)
P ?? (FQ,UQ) | (Q,FP,UP). (22)

There is no DAG representation of this collection of properties, but they can be
represented using the more general graphical semantics of chain-graphs (Cowell et al.,
2007; Dawid, 2002a), involving undirected as well as directed links: the relevant dia-
gram is shown in Figure 7.26

26. In reality we can not vary FP and FQ independently: at least one of them must be idle. This “variation
non-independence” (Dawid, 2001a,b) could be represented in Figure 7 by a further undirected link
between FP and FQ; however this is of no real consequence here.
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Figure 7: Chain-graph for price-demand relationship

When each of the modular distributions of Q given (P,UQ), and of P given (Q,UP),
is concentrated on a single point, so that they represent deterministic functional rela-
tionships, and moreover those relationships are linear and (UP,UQ) are bivariate nor-
mal, our model is isomorphic to the structural equation model considered by Pearl
(2009, §7.2.1).27 However — and in sharp contrast to the analogous case for DAG
models — even if we consider only the case that UP and UQ are independent, this model
is not equivalent, in terms of the properties of the observables (Q,P) under the dif-
ferent regimes, to a case where the latent variables (UP,UQ) are absent (equivalently,
taken as trivial), but we allow genuine stochasticity in the above conditional distribu-
tions. In particular, the appropriate generalisation of d-separation (Frydenberg, 1990)
applied to the chain-graph of Figure 7 (even without the link UQ —UP) does not yield
Q??FP | (P,FQ), although (by (21) with the U’s absent) this does hold in the stochastic
model. A confirmation of this non-equivalence is that, in the stochastic model without
U’s, the observational and interventional distributions of Q given P are identical, as
follows immediately from the above relation; whereas Pearl’s own analysis shows that
this is typically not the case for the deterministic model incorporating U’s.

We can entertain more general models, in which the U’s are non-trivial and the
specified distributions are genuinely stochastic. Again, the observational and interven-
tional and distributions of Q given P will differ, but the relationship between them will
be different from both the cases considered above.

Our general ECI model (20)–(22) thus incorporates Pearl’s deterministic structural
model, but allows other cases too — which, it could be argued, are no less obviously
appropriate as descriptions of the problem. A moral of this analysis is that we should
not be cavalier in setting out the ingredients (variables and modular conditional distri-
butions) of such a model, but need to think very carefully about them in the context of
the problem we are modelling and any relevant theory. And in order for us to be able
to approach this task in a meaningful way, we must be able to identify the unobserved
explanatory variables UP and UQ as real-world quantities. We can not just treat them as
convenient mathematical fictions (“error terms”), for then how are we to decide whether

27. We have omitted Pearl’s observable explanatory variables I, W for simplicity.
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our model should be deterministic or stochastic? — a choice that will make a difference
to our analysis and conclusions.

⇤

12. Justifying assumptions

Perhaps the most important characteristic of my suggested approach to causality, us-
ing extended conditional independence and (where appropriate) augmented DAGs or
other graphical representations, is that it is descriptive, not prescriptive. It makes no
assumptions as to how causality ought to behave or be represented; rather, it supplies a
language by which we are able clearly to express and manipulate any such assumptions
we might wish to make in any given context. In this respect it differs from other theo-
ries of “probabilistic causality”28 in much the same way as Kolmogorov’s purely formal
theory of probability differs from other theories such as the “classical theory” based on
the assumption that intuitively “equally possible” outcomes should be assigned equal
probabilities, or von Mises’s theory of collectives, which sought to represent assumed
empirical properties of probability, such as the existence and stability of limiting rela-
tive frequencies, directly within the formal theory. This strict separation of the formal
general-purpose language from any special assumptions that might be made in specific
contexts allows for much greater clarity and flexibility. It also protects against the ever-
present danger of unthinking reification of incidental formal properties of our represen-
tations. In particular, it does not in itself support causal interpretation of a probabilistic
DAG. If we wish to represent this, we have very explicitly to introduce (using ECI)
whatever additional assertions we are making about effects of interventions. ECI is a
purely mechanical tool for manipulating causal properties, not a philosophical founda-
tion for defining them.

This purely formal approach does, of necessity, leave entirely untouched such es-
sential questions as “Where do we get our causal assumptions from?” and “How can
they be justified?” It is at this point, entirely removed from representational issues, that
we might find a place for more informal arguments, based on intuitive understandings
of cause and effect.

In principle, the meaning of ECI assumptions such as (8)–(11) is straightforward;
and they could indeed all be tested empirically if we had access to data collected on
(U,Z,X ,Y ) under the various regimes. In practice, however, we will usually not have
such data (and it may not even be clear which unobserved external variable or variables
are represented by the symbol U). Then the appropriateness of the assumptions made
requires and deserves further, necessarily context-dependent, argument.

28. By this term I do not mean to include general theories of “ statistical causality,” such as that of Rubin
(1978), which likewise make no prescriptive assumptions. See Dawid (2000, 2002b) for comparisons
and contrasts between my own approach and other approaches to statistical causality. The general
points I have made could have been developed from the viewpoint of those other theories, though
these mostly do not focus, as I do, on modularity at the level of conditional distributions, which
supplies a natural point of contact with the intuitive concepts of “probabilistic causality”.
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For example, physical randomization of a treatment T in the “idle” regime is gen-
erally agreed to provide a convincing reason for believing that the observational distri-
bution of a response Y , given T = t, is the same as its distribution would be under an
intervention to set T to t (formally: Y ??FT | T ), thus justifying causal interpretation
of these conditional distributions. Although this property of randomization is usually
taken as intuitively obvious, I am not aware of any argument for it based on deeper prin-
ciples. One such argument could be based on the assumed existence of some sufficient
covariate U , such that (a) U??FT and (b) Y ??FT | (T,U) (Dawid, 2002b). Here, (a)
says that the distribution of U is unaffected by which regime is operating — typically
believable if U is a “pre-treatment” variable; while (b) says that, conditional on U and
which treatment T is applied, the response Y of the system is unaffected by how (i.e., in
which regime) it is applied. While it may not be easy to identify a specific pre-treatment
variable U with this property, one might be willing to accept that some such variable
does exist. Randomization, and the pretreatment status of U , now gives good cause to
accept T ??U | FT = /0, whence (since T is in any case non-random in any interven-
tional regime) (c) T ??U | FT . Using the rules of (2), it is straightforward to deduce,
from the three CI properties (a), (c), (b), the desired conclusion Y ??FT | T . Alter-
natively, these CI properties can be represented by the augmented DAG of Figure 8,
from which we can readily read off Y ??FT | T . Similar arguments can be made to

Figure 8: Augmented DAG for randomization

justify suitably expressed causal interpretations of data generated under more complex
randomization schemes. But the appropriateness of any such argument needs to be
carefully considered, not just taken for granted.29

When physical randomization is not possible, it will be necessary to attempt to jus-
tify causal CI assumptions on other grounds. For example, in the instrumental variable

29. Indeed, even in a randomized double-blind clinical trial — the “gold standard” of evidence-based
medicine — one could argue that the very artificiality of the trial negates assumption (b) above: we
would not expect the same response process to operate for future treated patients as for those in the
trial. To make progress we might make weaker assumptions, such as transferability from the clinical
trial into general practice of the “specific causal effect”: E(Y | T = 1,U = u,FT = /0)�E(Y | T =
0,U = u,FT = /0) = E(Y | FT = 1,U = u)�E(Y | FT = 0,U = u). While not expressible in terms
of ECI, such an assumption still relates to the invariance of probabilistic properties across different
regimes. Again, it should be made explicit, and justified (ideally empirically).
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problem of §10, we need to argue for the appropriateness of the assumptions (8)–(11).
(Once again, it is enough that there exist some variable U , which we need not however
specify in detail, for which the conditions can be assumed to hold.)

Property (8) essentially requires that both U and Z be pre-treatment variables, and
then (10) implies that U must be a sufficient covariate.

Properties (9) and (11) are more problematic. Property (9) could be plausible if Z is
itself determined by randomization: a scenario in which this occurs is that of “incom-
plete compliance” (Dawid, 2003), where patients are randomized to treatment, with
randomization indicator Z, but the treatment X actually taken might not be the same
as that assigned. Alternatively, in “Mendelian randomization” (Didelez and Sheehan,
2007b), Z might be a gene that naturally affects X : property (9) might then be justi-
fied, for suitable U , on the basis of the random assortment of genes under Mendelian
genetics. As described by Didelez and Sheehan (2002): “If we think of U as some
behavioural pattern or life style, this independence condition can be justified as long as
we are reasonably certain that any possible genetic factors influencing the behavioural
pattern are unrelated to this particular gene”.

Finally, (11) requires that the distribution of Y given (X ,U) (which has been as-
sumed the same in all regimes) is unaffected, in any regime, by further conditioning on
Z — intuitively expressed as “no direct effect of Z on Y ”. This might be plausible in the
imperfect compliance context, where we could believe that behaviour of the response
Y could depend on the treatment X actually taken and further pre-existing individual
characteristics U , but not further on the treatment Z that the individual was supposed
to take. In the context of Mendelian randomization, we require that “there is no asso-
ciation between the genotype and the disease status given the intermediate phenotype
and the life style” (Didelez and Sheehan, 2002). (However, core conditions (9) and
(11) can be violated in the presence of various complications, such as linkage dise-
quilibrium, pleiotropy, genetic heterogeneity or population stratification (Didelez and
Sheehan, 2007b).)

When attempting to justify the core conditions in a specific context, it is plausible
that thinking about the problem in terms of further unobserved variables, such as U⇤

in Figure 6, can play a valuable rôle in the process. However, once these conditions
have been settled on as the assumptions we wish to introduce, there is no need to make
irrelevant distinctions between alternative, equally valid representations of them, such
as Figure 4 and Figure 6.

In the ECI framework, attention is clearly drawn to any assumptions we may choose
to make, since these have to be clearly expressed as explicit ingredients added to our
model, and justified in the context of the real-world application under consideration.
In other approaches the assumptions are often hidden, and it is easy to be misled into
believing that they are not in need of justification. For example, the weak causal Markov
assumption (§6) rules out certain ECI representations purely on the basis of ordinary
CI properties in the observational regime; but there is no logical reason why this should
be so, and its validity should be carefully considered in every intended application.

97



DAWID

13. Conclusion

We have contrasted various approaches to the interpretation of graphical models of
probabilistic causal processes. Each of these purports to relate properties of the mathe-
matical model and properties of the process.

The most common approach, “probabilistic causality” (see §6), works with intuitive
understandings of causal terms, which are often taken as undefined and self-evident
primitives, although they can also be regarded as deriving from an underlying manip-
ulationist conception. Its most important feature is that it assumes links (via e.g. the
“Causal Markov Condition”) between such causal concepts and certain probabilistic
conditional independence properties — links that, however, there is no reason to be-
lieve hold in complete generality.

In contrast the approach described in §9, based on the algebraic theory of extended
conditional independence and its graphical representations, is based on a clearly defined
internal mathematical structure (syntax), and clearly described rules of interpretation
(semantics). In these respects it is similar to Pearl’s approach. However, unlike both
that approach and that of probabilistic causality, it does not suppose any special rela-
tionship between causality and conditional independence. It merely supplies a formal
language by means of which we can express and explore interesting causal conjectures,
phrased as the identity of certain conditional distributions across a variety of different
regimes (typically encompassing both intervention and pure observation). This surgi-
cal separation of the formal language from ad hoc causal assumptions enforces clear
and unambiguous articulation of those assumptions, allows us to develop the logical
implications of our assumptions, and clarifies exactly what needs to be justified in any
particular context. That justification is itself, however, an entirely separate task, that
can not rely on formal representations of any kind but must relate to the real-world con-
text of the problem. Perhaps the most important contribution of modelling “causality”
in terms of ECI is to highlight the vital need for such external justification.

13.1. What rôle for “causal discovery"?

The enterprise of “causal discovery” aims to extract causal conclusions from observa-
tionally inferred conditional independencies. However it can not do so without making
(explicitly or, more often, implicitly) strong causal assumptions — which may rest un-
justified, so invalidating the process. Such methods can nevertheless be useful in sug-
gesting interesting causal conjectures for further investigation. Ideally we should then
gather data from appropriate interventional studies, to investigate — and if necessary
revise — the validity of conjectures, made purely on the basis of observational data,
about the effects of interventions. Williamson (2005), among others, has argued for
such a “hybrid hypothetico-deductive/inductive” approach.

Alternatively, when we can collect data under a variety of regimes, including in-
terventional studies, we could directly apply variations of causal discovery techniques,
to uncover genuinely causal properties. Thus, if we had data on variables (U,Z,X ,Y )
under all three regimes FX = /0, FX = 0, FX = 1, we could empirically test the ECI
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properties (8) and (10), by (for example) simple c

2-tests (which are equally valid for
testing homogeneity of conditional distributions as they are for testing conditional inde-
pendence); alternatively, Bayesian techniques could be used (Cooper and Yoo, 1999).
Only with such experimental data could we hope to obtain genuine empirical evidence
in favour of a causal DAG representation such as Figure 4.
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Abstract
This paper presents a game theoretic approach to causal discovery. The problem of
causal discovery is framed as a game of the Scientist against Nature, in which Nature
attempts to hide its secrets for as long as possible, and the Scientist makes her best
effort at discovery while minimizing cost. This approach provides a very general
framework for the assessment of different search procedures and a principled way of
modeling the effect of choices between different experiments.
Keywords: causal discovery, interventions, search strategy, game theory, worst and
expected case analysis

1. Introduction

In machine learning much of the literature on causal discovery has focused on discov-
ery in passive observational data. The analysis of experimental data has been left to the
field of experimental design, but there the focus has been on the optimal allocation of
samples to a pre-determined set of treatment variables, and the subsequent analysis of
the data. Very little work has been done on the selection of experiments. The speci-
fication of the best sequence of experiments to discover particular causal relations has
largely been left to the “good judgment of the scientist.” Only recently have first steps
been taken to automate this process: Tong and Koller (2001); Murphy (2001); Yoo
and Cooper (2003); Meganck et al. (2005) and He and Geng (2008) have presented
approaches to select the next best experiment based on information theoretic measures
or expected utility, and Eberhardt (2007) provided worst case bounds for such search
strategies under different assumptions. In this paper a game theoretic analysis of se-
quences of experiments is proposed that identifies appropriate guidelines for the choice
and comparison of different experimental strategies.

Randomized controlled trials (RCTs) are perhaps the most widely accepted stan-
dard to determine cause and effect. If, as intended by the randomization, the interven-
tion makes the intervened variable independent of its normal causes, then it breaks any
confounding of the causal effect of the intervened variable on the outcome variable by

c� 2010 F. Eberhardt.
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measured or unmeasured common causes.1 Given a set of, say, three variables X ,Y and
Z, a scientist has many choices of which variable(s) to randomize. She could intervene
on any one and measure the other two. She could randomize any two, independently
or not, and measure the third, etc. Whichever choice she makes, one experiment will
in general not guarantee – even in the large sample limit – the discovery of the true
causal structure among the 25 possible (directed acyclic) causal structures over the
three variables. Sequences of different experiments are often necessary to determine all
the causal relations between variables. But what is the best sequence, and in what sense
of “best”?

2. Worst Case Analysis

One way to compare different search strategies is to consider their worst case perfor-
mance. In Eberhardt et al. (2005) we gave worst case analyses of different search
procedures for causal discovery involving different types of interventions under a vari-
ety of different assumptions. The quality of different search procedures was measured
in terms of the number of experiments sufficient and in the worst case necessary to
discover the true causal structure among N variables. The worst case was characterized
by the causal structure that required the longest sequence of experiments that could not
be avoided (by more appropriate choices of experiments given the available knowledge
at the choice point). The following table summarizes the results for sequences of ex-
periments with single or multiple simultaneous RCT-type interventions per experiment
on a set of N causal variables, with and without latent variables:2

Interventions per Experiment Latent Variables Present Number of Experiments
Single No 2 if N = 2 & N�1 if N > 2
Single Yes impossible

Multiple No blog2(N)+1c
Multiple Yes N

A worst case analysis provides an upper bound, but in practice the worst case may
be very rare whereas a “typical” search problem might be resolved much faster. Con-
sequently, the expected performance is often considered. The computation of an ex-
pectation depends on a distribution over the possible hypotheses. In the case of three
variables, it would require a distribution over the 25 possible (acyclic) causal structures.
In many cases, the uniform distribution is used, but without more specific knowledge
of the domain under consideration, it is not clear why the uniform distribution is more
appropriate than any other. Often sparsity assumptions play a crucial role in restricting
the hypothesis space and it is not clear that a uniform distribution over hypotheses is

1. With regard to causal discovery, weaker forms of interventions can also provide insights but we will
leave that issue aside here.

2. The second row indicates that no sequence of experiments, in which only a single variable is subject
to an RCT-type intervention, is sufficient to discover the causal structure in the worst case if there are
latent variables. Under different assumptions, such as linearity, discovery is possible (see Eberhardt
(2007)).
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“uninformative” when a sequence of experiments is used for discovery. What, then,
can be said about an expected case performance without commitment to a particular
distribution?

3. Expectation and Optimization

One approach supported by a game-theoretic interpretation of the discovery problem
is the worst case expected performance, i.e. the upper bound on the expected length
of sequences of experiments sufficient and in the worst case necessary to discover the
causal structure, no matter what the probability distribution over the set of directed
acyclic graphs is. That is, for each distribution P(G) over the set G of directed acyclic
graphs, take the expectation EP(.) of the number of experiments #ex(.) sufficient and in
the worst case necessary to uniquely discover the true causal graph G, whatever G is.
Then take the upper bound – the supremum – of those expectations. Or formally:

sup
E

EP(#ex(G)) over all P(G). (1)

The key to determining this quantity is the specification of #ex(G) for some true under-
lying causal structure G. To specify this quantity we need to specify how experiments
are chosen. But how and which experiments are chosen affects which causal structures
are difficult to learn, so the supremum is affected by both the underlying distribution
over causal structures and the sequence of experiments that is used to identify which
one is true.3

Let S be a strategy that specifies a sequence of experiments, in which the next ex-
periment is determined with probability 1 contingent on the evidence revealed in all
previous experiments. Given a set G0 ✓ G of possible causal structures (determined
by non-zero probability in the probability distribution P(.) over causal structures), let
#exS(G) be the number of experiments according to strategy S that is necessary and
sufficient to uniquely identify a particular causal structure G 2 G0. Since we are inter-
ested in an optimal number of experiments, we can now define #ex(G) as the number
of experiments necessary and sufficient to uniquely identify G 2 G0 using a strategy S+

where

8S 6= S+ EP(#exS(G))� EP(#exS+(G)). (2)

That is, for a given set of possible causal structures G0, #ex(G) specifies the expected
number of experiments necessary and sufficient to uniquely identify the causal structure
G 2 G 0 using a most efficient strategy S+. However, since we are interested in the

3. For example: If one always intervenes on X first, then causal structures in which X is an effect (but not
a cause!) of the other variables, are more difficult to discover because any incoming causal influence
on X is destroyed by the intervention, and so the structure cannot be distinguished from one in which
X is causally independent of the other variables. Consequently, a distribution that puts more weight
on those graphs will be a candidate for the maximum expectation. But such a distribution results in a
much lower expectation if the first intervention always intervenes on one of the causes of X (say Y ),
since the Y ! X edge is discovered immediately.
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supremum of the expectations, the distribution P(.) that specifies the set of possible
graphs, must be such that it is implies the largest expected number of experiments for a
given strategy, i.e. given a strategy S, P+(.) is chosen such that for any

P(.) 6= P+(.) EP+(#exS(G))� EP(#exS(G)). (3)

Definitions (2) & (3) make the interdependence between a search strategy and the distri-
bution over hypotheses explicit: Given a hypothesis space one can specify the optimal
search strategy. Given a search strategy one can specify the hypothesis space that will
make search most difficult. We can thus rephrase the supremum in (1) above as the
following optimization:

EP⇤(#exS⇤(G)) (4)

where it is simultaneously the case that for any

P(.) 6= P⇤(.) EP⇤(#exS⇤(G))� EP(#exS⇤(G)) (5)

and given the set of possible causal structures implied by P⇤(.),

8S 6= S⇤ EP⇤(#exS(G))� EP⇤(#exS⇤(G)). (6)

For fixed sequences of experiments that specify a particular experiment for a given his-
tory of evidence there is no solution to the above double optimization. That is, for any
specific strategy S there is a probability distribution P(.) that maximizes the number
of experiments with respect to S (in fact, the expectation can always be forced to the
absolute worst case bound). However, an alternative strategy S 0 would do better on
P(.), but then there is another probability distribution P0(.) that would trouble strategy
S 0.

The main problem is that knowledge of the proposed sequence of experiments per-
mits a choice of distribution over hypotheses that is specifically geared towards making
discovery hard for that sequence of experiments. A natural solution to this problem is
to consider search strategies that do not commit to a particular experiment in light of
a particular history of evidence, but rather to a distribution over possible experiments,
i.e. a mixture of search strategies. This suggests a game-theoretic analysis.

4. Discovery as a Game

We can recast the above analysis of search strategies as a two person zero-sum game
between Nature and the Scientist. The Scientist attempts to discover the true causal
structure as efficiently as possible and Nature tries to make discovery as difficult as
possible – in our case (for now) in terms of the number of experiments.

Nature initially gets to decide what the truth is – the underlying causal structure
– but then has to stick with it, while the Scientist performs her experiments. Nature’s
pure strategies are all the directed acyclic causal structures over N variables. After each
experiment by the Scientist the independence relations true in the underlying causal
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structure (manipulated by the intervention) are returned, i.e. the equivalence class of
directed acyclic graphs that contains the true graph and is consistent with the sequence
of experiments so far, is revealed. We refer to this – as is standard in game theory –
as an information set. The pure strategies for the Scientist are all possible sequences
of experiments. The Scientist may end the game after any sequence of experiments by
declaring one of the graphs remaining in her information set as true. If the Scientist is
correct, the payoff is the negative number of experiments that were performed (negative,
since the Scientist wants to perform as few experiments as possible). If the Scientist
is incorrect, the payoff is �•. Payoffs of �• ensure that in order to avoid infinite
loss the Scientist must be able to prove that her response is uniquely correct given the
evidence.4

In game theory a strategy that specifies for each choice point a determinate choice
(of experiment) corresponds to a pure strategy. A mixed strategy permits non-trivial
distributions over the choices of experiments. Sometimes a mixed strategy can outper-
form any pure strategy. In our context the case for mixed strategies for Nature (i.e.
distributions over graphs) is obvious – it would not be an interesting search problem if
Nature were restricted to selecting one particular causal structure with probability 1. In
the case of the Scientist we consider mixed strategies for two reasons. First, we already
indicated at the end of Section 3 that there is no solution to the optimization problem
when the Scientist is restricted to pure strategies. Second, and perhaps more intuitively,
there are many circumstances in which a restriction to a specific experiment in light
of the available evidence is artificial. For example, suppose there are two variables X
and Y and it is known that either X ! Y or Y ! X , each with probability 0.5. In that
case a commitment to always intervene on X is artificial. Flipping a fair coin to either
intervene in X or Y seems more appropriate.

For simplicity of exposition (and computation), we assume that every variable can
be manipulated, that there are no latent variables and we only consider sequences of
experiments in which one (or no) variable is subject to an intervention per experiment.5

Given that the worst case bound on the number of experiments under these circum-
stances is N� 1 for N > 2 variables, we do not need to consider search strategies for
the Scientist that are longer than N�1 experiments, i.e. the table of results in Section 2
gives upper bounds on the worst case loss for the Scientist. Consider a simple example.

4.1. Example: Two Variables

Suppose there are just two variables. There are three possible causal structures among
two variables X and Y , call them

Sa := X Y, Sb := X ! Y and Sc := X  Y.

Two experiments involving single interventions are sufficient and in the worst case
necessary to discover the causal structure uniquely. The full game of Nature against

4. Of course, one could integrate into the payoff structure some account of how wrong a Scientist is, but
we leave this for future consideration.

5. See Section 6 and Eberhardt (2007) for more on multiple simultaneous interventions.
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Scientist is given in Figure 1. Nature can select among the three structures (grey boxes)
Sa,Sb and Sc. The Scientist does not know which structure is selected, so Sa,Sb and
Sc form an information set. The Scientist makes the next move and can end the game
by guessing one of the structures without collecting any data (represented by the three
arrows leaving each grey box upwards with Sa, Sb or Sc and the respective payoffs
to Nature of 0 when the choice was correct and • when incorrect). Alternatively, the
Scientist can perform a passive observation (N), an intervention on the first variable
(X), or an intervention on the second variable (Y). Depending on the choice and the
true underlying graph, the game is either resolved because the graph can be uniquely
identified (payoffs are indicated), or one of three new information sets – represented
in the figure as a box containing the two causal structures that cannot be distinguished
given the experiments so far – is returned. Again, the Scientist can end the game at this

Figure 1: Discovery of Causal Structure as a game of Nature against the Scientist, here
for two causally sufficient variables.

point with a guess, or can continue with a further experiment. Guesses and experiments
that do not make sense in light of the evidence obtained so far, are not included in the
game, since the Scientist is assumed to be rational. Given the worst case bound of two,
there is no need to consider strategies of more than two experiments.

The game now permits an analysis of the optimal (mixed) search strategy against
the most difficult probability distribution over causal structures. Since the game was
constructed as a zero-sum game, the Nash equilibrium of the game corresponds to the
mini-max solution, i.e. the Nash equilibrium specifies the desired upper bound on the
expectation of the number of experiments sufficient and in the worst case necessary
to discover the causal structure. The strategies implied by the Nash equilibrium for
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Nature and the Scientist, respectively, characterize a state, in which a unilateral change
in strategy by Nature or by the Scientist does not improve their individual score.

An analysis of the game shows that the Nash equilibrium is given by a mixed strat-
egy that is uniform over the three possible structures Sa,Sb and Sc for Nature, and a
mixed strategy for the Scientist that is uniform over passive observation, an intervention
on X and an intervention on Y for the first experiment, and indifferent between possible
(relevant) experiments for the second experiment, if a second experiment is necessary.
That is, if Nature “selects” the true causal structure among the two variables uniformly,
then Nature is making the discovery task maximally difficult for the Scientist. On the
other side, by choosing uniformly whether to intervene on X , intervene on Y or just
passively observe in the first experiment, the Scientist is doing the best she can to dis-
cover Nature’s secrets efficiently, given that Nature is an adversarial player. Any other
strategy, even mixed, will do no better and may well be worse (or will allow Nature to
adapt accordingly to make things worse).

One could take this result to be a justification for the consideration of the uniform
distribution over the hypothesis space in the assessment of an expected case perfor-
mance for algorithms, but we will show below that this argument does not extend be-
yond the case of two variables.

The value of the Nash equilibrium represents the expected payoff to Nature (and
loss to the Scientist) when playing the mixed strategy that is Nash. For this two vari-
able game it is 5/3 experiments, so the worst case expected performance is slightly
better than the absolute worst case bound of 2 experiments. The Scientist’s strategy
is in this case not an equalizer, since some graphs are resolved in one experiment and
others in two. The Nash equilibrium is, if we ignore the indifference for the second
experiment, unique. As already indicated in the discussion of the optimization in the
previous section, there is no Nash-equilibrium over pure strategies for either side, i.e.
there is no Nash equilibrium if Nature selects one particular causal structure with prob-
ability 1, and there is no Nash equilibrium if the Scientist picks a experiments with
probability 1. In both cases the opponent can adjust to do better. Further, returning
with a guess of the true causal structure at any point is (obviously, given the infinities
in the payoff structure) not Nash, so the solution that the Scientist returns is guaranteed
to be justifiable given the evidence. Guessing (ending the game early) only becomes a
viable option, when Nature is restricted to playing a subset of the possible structures.

The mixed strategy for the Scientist that is Nash is a Bayes solution, since it is a
best response to the uniform distribution over structures. No two-experiment strategy
(using single interventions) is a best response to any pure or mixed strategy by Nature.
Interestingly, this last point does not apply in the case of three variable graphs. In
the case of three variables, the game is substantially more complicated. There are 25
pure strategies for Nature (all DAGs over three variables) and 67 pure strategies for the
Scientist (including all the early stops by guessing). We computed a Nash equilibrium,
which determined 2 as the solution for the game: The worst case expected number of
experiments sufficient and in the worst case necessary to determine the causal graph
over three variables is two. That is, in the case of three variables, Nature can force
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the Scientist to the absolute worst case bound (N� 1 = 2) even in expectation. To do
so, Nature must select the true causal structure using a uniform distribution over the
following set of 10 different graphs over three variables: the empty graph, three graphs
consisting of a common effect only and the six possible complete graphs. Due to the
edge-breaking nature of RCT-type interventions, at least two graphs of the 10 remain
indistinguishable after any single intervention experiment or passive observation; hence
a second experiment is necessary.

We know from the table in Section 2 that two experiments are sufficient for three
variables. Consequently, the uniform distribution over the 10 graphs implies that any
sequence of two different experiments is a best response, and obviously an equalizer
(same payoff of two experiments, no matter which graph is true). No pure or mixed
strategy will fare any better against the above distribution, which is not to say that there
are no mixed strategies that do equally well.6

5. General Results

For single interventions per experiment, the three variable game is unique: For no other
number of variables can Nature force the Scientist to the worst case bound in expecta-
tion. The general result for mixed strategies using single interventions per experiment
is given by the following theorem.
Theorem Given a set of N > 3 causally sufficient variables, the supremum of the ex-
pected number of experiments sufficient and in the worst case necessary to discover the
causal structure is 2

3 N� 1
3 experiments if only one (or no) variable can be subject to a

RCT-type intervention per experiment.
This bound is the value of a Nash equilibrium of the game: Nature plays a mixed

strategy that is uniform over the complete(!) graphs over N variables only. For any
N there are N! such structures. From Nature’s perspective, there is no advantage in
considering incomplete causal structures, since for N > 3 variables, two single inter-
ventions have to be performed anyway, and in those two experiments any missing edge
would be detected. This implies that a uniform distribution over all possible hypothe-
ses (graphs) is not Nash for Nature, and an analysis based on such a distribution would
underestimate the worst case expectation. For the Scientist the following strategy is
Nash:
Strategy Given N causally sufficient variables X1, . . . ,Xn, let each experiment Ei in the
sequence intervene on Ii = {Xj}, where Xj is selected uniformly from the variables that
have not yet been subject to an intervention so far in the sequence.

Since the game is symmetric with regard to the ordering of the variables (any vari-
able can occur in any position in the graph), there are no order constraints on the Sci-
entist’s strategy. Of course, there may exist for some circumstances a particular order

6. For example, if the passive observation is included as a possible first experiment, then if Nature
chooses uniformly, it is a best response, but not an equalizer: 2/5 of the time it finds the graph in
one experiment and 3/5 of the time it requires 8/3 experiments (i.e. two experiments on average
overall).
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of experiments that minimizes the length of the sequence; but the Scientist cannot tell
in advance.

For multiple simultaneous interventions per experiment the case is far more com-
plicated. A discussion can be found in Eberhardt (2007); simulations suggest that the
absolute worst case bound for multiple simultaneous interventions (blog2(N)c+ 1 ex-
periments) is fairly close to the worst case expectation, which would imply that the
computationally simple pure strategies for the absolute worst case are fairly efficient
even compared to the optimal mixed strategy, which is very hard to compute.

6. Conclusion

We framed the search for causal structure as a game in which Nature gets the first move
to determine the graph after which the Scientist has free reign. This follows the ap-
proach developed for statistical hypothesis testing by Wald (1950), and generalizes it to
sequences of experiments. Needless to say, this is only a first step presented with a very
simple example. But the possibilities for generalization should now be obvious: (i) The
effect of additional assumptions on the search procedure can be represented in terms of
additional or reduced underdetermination in the information sets at any decision point.
(ii) Cost other than the number of experiments can be considered. One may consider
cost functions in terms of sample size, number of variables subject to intervention, or
actual cost of experimentation – ethical or monetary. These cost functions need not be
uniform across variables. (iii) Constraints or background knowledge on possible causal
structures can be represented by limiting the possible pure strategies for Nature, while
constraints on the set of experiments – e.g. it might not be possible to subject all vari-
ables to an experiment – limit the pure strategies for the Scientist. (iv) The robustness
of search strategies can be analyzed in terms of changes in the optimal strategy with
regard to off-equilibrium play by Nature – after all, Nature need not be adversarial;
and the sensitivity of the optimal search strategy can be investigated by considering
off-equilibrium play by the Scientist.

The game-theoretic approach to the discovery problem provides a general frame-
work in which search strategies can be analyzed for their efficiency using a well-defined
terminology and highly developed machinery. General guidelines for search procedures
can be discovered and assessed on the basis of the explicit trade-off between discov-
ery and its cost. Addressing these issues in the appropriate generality will require the
integration of some of the most sophisticated game-theoretic techniques.
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Appendix: Proofs7

Lemma 1 For N � 4 the supremum of the expected number of experiments sufficient
and in the worst case necessary to uniquely determine the causal graph is greater than
2 if only single interventions are permitted per experiment.
Lemma 2 The uniform distribution over complete graphs of N variables maximizes the
expected number of experiments sufficient and in the worst case necessary to discover
the true graph uniquely when only single intervention experiments are permitted.
Theorem Given a set of N > 3 causally sufficient variables, the supremum of the ex-
pected number of experiments sufficient and in the worst case necessary to discover the
causal structure is 2

3 N� 1
3 experiments if only one (or no) variable can be subject to a

RCT-type intervention per experiment.
Proof By Lemma 2, the uniform distribution over complete graphs is a worst case
distribution. Suppose without loss of generality that the true complete graph over the
variables X1, . . . ,XN is such that for all i < j, Xi ! Xj. Under these circumstances an
intervention on Xi is (1) uninformative with respect to edge-orientation about all pairs of
variables Xj,Xk with j,k < i; (2) uninformative with respect to edge-orientation about
all pairs of variables Xj,Xk with j,k > i; and (3) informative for the remaining edges: It
resolves (i) edges between variables Xj,Xk with j > i > k, (ii) outgoing edges from Xi
and, (iii) since it is known that the graph is complete, edges broken by the intervention
can be identified, and so all edges incident on Xi are resolved. In other words, an
intervention on Xi splits the discovery problem into two subproblems, one with N� i
variables and the other with i�1 variables. About these subproblems, the intervention
on Xi is uninformative.

Given the uniform distribution over complete graphs, the problem is entirely sym-
metric in the sense that each node is equally likely to be at any of the possible positions
in a complete graph. Similarly, a uniform distribution selecting among the unintervened
variables, implies that each variable is equally likely to be subject to an intervention in
the first experiment. Consequently, we can give the expected number of experiments
for this worst case distribution in terms of the numbers required for the subproblems
the intervention creates:

E(#E(N)) =
1
N

N

Â
i=1

(E(#E(i�1))+E(#E(N� i))+1) = 1+
2
N

N

Â
i=1

E(#E(i�1))

where E(#E(N)) is the expected number of experiments required to discover the true
graph if the graph is sampled from a Uniform over complete graphs of N variables. So
the expected number of experiments for N variables is one plus the average of the sum
of the number of experiments that it takes to resolve the two subproblems of size N� i
and i�1, respectively. For complete graphs with two and three variables, one can check
by hand that E(#E(2)) = 1 and E(#E(3)) = 5/3. So finally we prove by induction that

E(#E(N)) =
2
3

N� 1
3

for N � 2.

7. For more detailed proofs see Eberhardt (2007).
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It is true for N = 2. Suppose it is true for all integers up to some N�1. Then

E(#E(N)) = 1+
2
N

N

Â
i=1

E(#E(i�1)) = 1+
2
N

N

Â
i=1

(
2
3
(i�1)� 1

3
) =�1

3
+

2
3

N
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Abstract
Our goal is to estimate causal interactions in multivariate time series. Using vector
autoregressive (VAR) models, these can be defined based on non-vanishing coeffi-
cients belonging to respective time-lagged instances. As in most cases a parsimonious
causality structure is assumed, a promising approach to causal discovery consists in
fitting VAR models with an additional sparsity-promoting regularization. Along this
line we here propose that sparsity should be enforced for the subgroups of coefficients
that belong to each pair of time series, as the absence of a causal relation requires the
coefficients for all time-lags to become jointly zero. Such behavior can be achieved
by means of `1,2-norm regularized regression, for which an efficient active set solver
has been proposed recently. Our method is shown to outperform standard methods
in recovering simulated causality graphs. The results are on par with a second novel
approach which uses multiple statistical testing.
Keywords: Vector Autoregressive Model, Granger Causality, Group Lasso, Multiple
Testing

1. Introduction

Causality is commonly defined based on the widely accepted assumption that an ef-
fect is always preceded by its cause. Granger (1969) postulates a measure of causal
influence between two time series (Granger Causality). In a nutshell, a time series zi
Granger-causes time series z j if knowledge of past values of zi improves the prediction
of z j (compared to only using past values of z j). The improvement is assessed by means
of the Granger score, which is defined as the logarithm of the ratio of the residuals of
the two models (1) including only z j and (2) including both zi and z j.

In the case of a set F = {z1, . . . ,zM} of time series, the pairwise analysis may lead
to spurious detection of a causal relation. For this reason it is advisable to additionally

c� 2010 S. Haufe, K.-R. Müller, G. Nolte & N. Krämer.
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include the set F \ {zi,z j} of all other observable time series in both models. This
approach, to which we refer as complete (or conditional) Granger Causality, resolves
the problem of spurious causality due to common hidden factors z⇤ if z⇤ 2 F . If the
z⇤ are not observable, Granger causality fails and we refer to Nolte et al. (2008) for a
detailed discussion and a remedy.

Just to illustrate the problem, consider that a hidden driving factor is equally pro-
nounced in two variables zi0 and zi00. If both variables contain roughly the same amount
of noise, all of the sets F , F \ {zi0} and F \ {zi00} provide equal information about z j,
for which reason complete Granger causality will neither identify zi0 nor zi00 as a driver.
This type of mistake can only be avoided if each set F \ {zi0} is tested against all sets
not including zi0, which leads to exponential complexity.

An elegant alternative to the pairwise comparisons of (complete) Granger causality
is to handle all potential causal relations between all time series at once. Assuming a
linear dynamics of the system under study, this leads us to the vector autoregressive
(VAR) model. Interestingly, the parameters of the VAR model induce a natural alterna-
tive definition of causal influence, which is compliant with Granger’s considerations.

In many applications the true causality graph is assumed to be sparse, i.e. only a few
causal interactions between time series are expected. Ordinary Least Squares (OLS)
and Ridge Regression, which are usually used for fitting VAR models, however, are
known for producing dense coefficients. Only recently Valdes-Sosa et al. (2005) have
proposed to enforce estimation of sparse AR coefficients using `1-norm regularized
models such as the Lasso (Tibshirani, 1996).

In this paper we propose a novel sparse approach which – unlike Lasso – accounts
for the fact that the absence of a causal relation between zi and z j requires all AR co-
efficients belonging to that certain pair of time series to be jointly zero. Furthermore,
we consider Ridge Regression in combination with the multiple statistical testing pro-
cedure provided by Hothorn et al. (2008). More details on the methodology are given
in section 3. These methods are evaluated and compared to standard approaches in
extensive simulations.

2. Background

In this section, we briefly summarize related approaches to estimate sparse vector au-
toregressive models in the context of causal discovery. We roughly distinguish between
sparse estimation methods and testing strategies.

Given a multivariate time series z(t) 2RM a linear vector autoregressive process of
order P is defined as

z(t) =
P

Â
p=1

A(p)z(t� p)+"(t) , (1)

where A(p) 2RM⇥M, "⇠N (0,s2I) and t 2 Z indicates time. Hence, the signal at time
t is modeled as a linear combination of its P past values and Gaussian measurement
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noise. Inspired by the initial assumption that the cause should always precede the ef-
fect, we suggest the following definition of causality. We say that time series zi has a
causal influence on time series z j if for at least one p 2 {1, . . . ,P}, the coefficient A(p)

ji
corresponding to the interaction between z j and zi at the pth time-lag is nonzero.

Thus, causal inference may be conducted by estimating the matrices A(p) from a
sample Z = (z(1), . . . ,z(T )). Let us introduce the following shortcuts. We denote
by A =

�
A(1), . . . ,A(P)�> the matrix of all VAR coefficients and set X = (Z1, . . . ,ZP),

Y = Z0, Zp = (z(P+1� p), . . . ,z(T � p))>. Here vec(·) denotes the vectorization op-
eration.

2.1. Sparsity

Probably the most straightforward way to estimate a sparse VAR is to use `1-
regularization on the set of coefficients,

bAlasso = argmin
A
kvec(XA�Y )k2

2 +l kvec(A)k1 , l � 0 .

Recently, Valdes-Sosa et al. (2005) proposed a combination of VAR-estimation and
the Lasso (Tibshirani, 1996). While Valdes-Sosa et al. (2005) only consider a VAR
model of order 1, there have been extensions to higher orders (e.g. Arnold et al., 2007).
However, we note in the latter case, Lasso is not used on the VAR coefficients directly,
but that the problem is transformed into the task of estimating partial correlation co-
efficients between time-lagged copies of the time series (see also Opgen-Rhein and
Strimmer, 2007).

2.2. Testing

Just as in the case of sparse methods, it is often suggested to transform the regres-
sion task into the estimation of the matrix of partial correlation coefficients between
time-lagged copies of the time series. While Drton and Perlman (2008) estimate the
correlation matrix in an unregularized way, Opgen-Rhein and Strimmer (2007) propose
a shrinkage estimator, which is superior in the case of high-dimensional data (Schäfer
and Strimmer, 2005). Afterwards, significant partial correlations are detected by con-
trolling false discovery rates. While the latter approach is only tested for P = 1, it is
straightforward to extend it to higher order VAR’s.

3. Our Approach

In the following, we provide the details regarding the groupwise sparsity and the alter-
native testing strategy respectively.

3.1. Ridge Regression and Multiple Testing

Under the assumption of Gaussian white noise it is natural to estimate the AR coeffi-
cients using regularized least squares, and probably the most straightforward way to do
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so is to use Ridge Regression,

bAridge = argmin
A
kvec(XA�Y )k2

2 +l kvec(A)k2
2 = (X>X +l I)�1X>Y ,l � 0 . (2)

Thanks to the Ridge penalty, Eq. 2 delivers solutions with small coefficients, which,
however, are in general never exactly zero. In the strict sense of Granger, this cor-
responds to a fully-connected dependency graph, rendering Ridge Regression an im-
proper candidate for sparse causal recovery. On the other side, many of the estimated
coefficients are expected to be non-significant. Hence, we propose a sparsification by
means of statistical testing, where our approach is, in contrast to e.g. bootstrapping, to
explicitly derive p-values.

From Eq. 2 it is apparent that the estimation can be done independently for each col-
umn of A, and so does the testing. Let therefore ↵k denote the kth column of A and let
yk = (zk(P+1), . . . ,zk(T ))>. Neglecting the dependency of X and Y , the Ridge coeffi-
cients depend linearly on Y , we can conclude that under the null-hypothesis H0 :↵k = 0,
we have b↵k ⇠N (0,s2

k S) with S =
�
X>X +l I

��1 X>X
�
X>X +l I

��1. Furthermore,
setting H = X

�
X>X +l I

��1 X> an estimate of the model variance s

2
k is given by

b
s

2
k =

kyk�Hykk2

trace((I�H)(I�H>))
. (3)

Using Eq. 3 we can now construct normalized test statistics eaik = baik/
q

s

2
k Sii which

are jointly normally distributed with e↵ ⇠ N (0,R) and Ri j := Si j/
p

SiiS j j. Suppose
we want to test all individual hypotheses H0,i : aik = 0 simultaneously, then, according
to Hothorn et al. (2008), the adjusted p-values are pi = 1� g(R, |eaik|). We reject a
hypothesis, if the p-value is below the predefined significance level g . Here,

g(R, t) = P
✓

max
i

|eaik| t
◆
=
Z t

�t
. . .
Z t

�t
f(a1, . . . ,aMP)da1 · · ·daMP (4)

and f(↵) is the density function of the multivariate normal distribution N (0,R).

3.2. Group Lasso

Sparse causal discovery using Ridge Regression is a two-step procedure and may possi-
bly suffer from the aggregation of assumptions that enter in each step. Direct estimation
of sparse VAR coefficients (e.g. via Lasso) is therefore desirable, as this would allow
omission of the multiple significance testing step. However, for higher order models,
this approach is prone to selecting a different set of causal interactions for each of the
P time lags. We here suggest that this behavior can be overcome by enforcing joint
sparsity of the coefficient vectors that belong to a certain pair of time series. This cor-
responds to incorporating the prior belief that causal influences between time series are
not restricted to only one particular time lag into the estimation. The positive effect of
such modeling can be verified in Figure 1 (see Section 4 for more details).
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The idea of imposing groupwise sparse coefficients leads to `1,2-norm regularized
regression also known as the Group Lasso (Yuan and Lin, 2006), which has also appli-
cations in Multiple Kernel Learning (Bach et al., 2004; Sonnenburg et al., 2006) and
the EEG/MEG inverse problem (e.g. Haufe et al., 2008). The term `1,2-norm stands
here for an `1-norm of a vector of `2-norms. Our proposed objective is given by

bAglasso = argmin
A
kvec(XA�Y )k2

2 (5)

s.t.
���
⇣

A(1)
11 , . . . ,A

(P)
MM

⌘���
2
+Â

i6= j

���
⇣

A(1)
i j , . . . ,A

(P)
i j

⌘���
2
 k , (6)

This penalty leads to a groupwise variable selection, i.e. a whole block of coefficients
is jointly zero. Note that the first term in Eq. 6 penalizes all MP coefficients describing
univariate relations. In this way, those coefficients are shrunk and hence, overfitting
is avoided. Furthermore, we remark that it is also conceivable to to split the the whole
estimation of A into M subproblems (as suggested in Subsection 3.1), which is desirable
in large-scale scenarios.

Eqs. 5 and 6 define a non-differentiable but convex optimization problem which can
be solved in polynomial time by means of Second-order Cone Programming (SOCP).
For problems with sparse expected structure, however, the optimization can be carried
out much more efficiently using the results of Roth and Fischer (2008). By keeping
a set of active coefficient groups, their algorithm needs to call the SOCP solver only
for problem sizes far smaller than the original problem – leading to a considerable
reduction of memory usage and computation time. In the experiments, we employ the
active-set algorithm of Roth and Fischer (2008) in combination with a freely available
SOCP solver (Sturm, 1999).

4. Simulations

We conduct a series of experiments in which the causal structure of simulated data
has to be recovered. We include the proposed groupwise sparse approach, standard
Lasso, Ridge Regression with multiple testing and complete Granger Causality based
on AR models in the comparison. All four approaches are applied both with and with-
out knowledge of the true model order. In the latter case P = 10 is chosen for the
reconstruction. For all methods considered, it is also possible to estimate the model
order P, e.g., via cross-validation.

4.1. Setup

Each simulated data set consists of a multivariate time series with parameters M = 7
and T = 1000 that is generated by a random VAR process of order P = 5 according to
1. The distribution of the noise component "(t) is chosen to be the standard normal
distribution. The VAR coefficients for all but 10 randomly chosen pairs of time series
are set to zero, yielding exactly 10 causal interactions. The non-zero coefficients are
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drawn randomly from N (0,0.04I). Each set of VAR coefficients is tested for the stabil-
ity of its induced dynamical system by looking at the eigenvalues of the corresponding
transition matrix. Only coefficients leading to stable systems (i.e those with transition
matrices with eigenvalues of at most 1) are accepted. We consider the following three
types of problems, for each of which we created 10 instances: 1) no noise is added to
the data generated by the VAR model 2) the data is superimposed by Gaussian noise
of approximately the same strength, which is uncorrelated (white) both across time and
sensors 3) the data is superimposed by mixed noise of approximately the same strength,
which is generated as a random instantaneous mixture of M univariate AR processes of
order 20. Note that in none of these cases the noise itself possesses a causal structure
which would superimpose the true structure.

For measuring performance we consider Receiver Operating Characteristics (ROC)
curves, which allow objective assessment of the performance in different regimes (e.g.
very few false positives). As an additional measure of absolute performance we also
calculate the Area Under Curve (AUC). ROC curves and AUC values are averaged
across the 10 problem instances and standard errors are computed for AUC.

Complete Granger Causality is calculated using the Levinson-Wiggens-Robinson
algorithm for fitting AR models (Marple, 1987), which is available in the open Biosig
toolbox (Schlögl, 2003). For each pair of variables, the Granger score is calculated. The
Granger score is standardized by dividing it by it’s standard deviation as estimated by
the jackknife. To obtain a ROC-curve, the standardized scores are threshold at different
values, ranging from completely sparse to completely dense solutions.

The regularization parameter of Ridge Regression l is chosen via 10-fold cross-
validation (with respect to time-series prediction accuracy). For this value of l , we
derive the test statistics defined in Subsection 3.1. The multidimensional integrals in
Eq. 4 are computed using Monte Carlo sampling according to Genz (1992). ROC-
curves are constructed by varying the significance level g .

For Lasso and Group Lasso, solutions ranging from completely sparse to com-
pletely dense are obtained through variation of the regularizing constant l and k re-
spectively.

4.2. Results and Discussion

First, we illustrate the different behavior of the investigated methods in Figure 1. This
example corresponds to the situation without noise and with known model order P = 5.
The leftmost part of the Figure shows the true underlying causal structure. In the top we
show the strength of the generating AR coefficients belonging to each pair of variables.
Following Granger, this defines the binary causal influence matrix in the bottom, where
black boxes indicate causal interactions.

The reconstructions for the different methods are here based on a point estimate
of the VAR coefficients, rather than the whole ROC curve. For Granger causality, this
estimate is obtained by thresholding the standardized Granger score. A causal influ-
ence is defined to be significant, if the standardized score exceeds a threshold of 0.5.
The regularizing constant of Ridge Regression, Lasso and Group Lasso is fixed using
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10-fold cross-validation. Note that for the Lasso variants, this already determines the
sparse causality structure. For Ridge Regression, we perform subsequent sparsification
using a significance level of g = 0.05.

We display the estimated binary influence matrices in the bottom row of Figure
1. In the top row, we also show for the sake of comprehensibility the quantities these
matrices are derived from by means of thresholding. In cases of Lasso and Group Lasso
these quantities are simply the estimated AR coefficients and the threshold is zero (the
machine precision). For Ridge Regression we depict the negative logarithmic p-values
derived from the AR coefficients, while for complete Granger causality the standardized
Granger score is shown.

Figure 1: Simulated causal influence matrix and estimates according to Granger
Causality, Ridge Regression, Lasso and Group Lasso. In the top row the gen-
erating AR coefficients and their Lasso/Group Lasso estimates are shown,
as well as the p-values derived from Ridge Regression and the (complete)
Granger-score. The bottom row depicts the binarized causal influence matri-
ces.

Table 1 summarizes the AUC scores obtained in the experiments described above.
The complementing ROC curves are shown in Figure 2. In short it can be stated that
Group Lasso and Ridge Regression outperform their competitors in all scenarios, al-
though not always significantly. While Ridge Regression performs slightly better than
Group Lasso in the noiseless condition, Group Lasso has a clearly visible yet insignif-
icant advantage over all methods in the white noise setting. Under the influence of
mixed noise Ridge Regression and Group Lasso are on par. Note furthermore that the
ROC curve for Lasso is below the ROC curve of Group Lasso, which shows that Lasso
tends to be too dense. Interestingly, knowledge of the true model order hardly provided
any significant advantage in our simulations.

5. Conclusion

We presented a novel approach for causal discovery in multivariate time series which
is based on the Group Lasso. As an alternative we also discussed Ridge Regression
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Figure 2: Average ROC curves of Granger Causality (red), Ridge Regression (green),
Lasso (blue) and Group Lasso (black) in three different noise conditions and
for two different model orders.

GRANGER RIDGE LASSO GLASSO
NO NOISE 0.991 ± 0.004 1.000 ± 0.000 0.996 ± 0.002 0.997 ± 0.002

P = 5 WHITE NOISE 0.910 ± 0.023 0.948 ± 0.020 0.941 ± 0.021 0.971 ± 0.016
MIXED NOISE 0.896 ± 0.012 0.928 ± 0.010 0.889 ± 0.011 0.926 ± 0.012
NO NOISE 0.980 ± 0.005 0.998 ± 0.002 0.996 ± 0.002 0.999 ± 0.001

P = 10 WHITE NOISE 0.885 ± 0.019 0.958 ± 0.012 0.948 ± 0.013 0.979 ± 0.005
MIXED NOISE 0.893 ± 0.013 0.931 ± 0.015 0.861 ± 0.014 0.931 ± 0.007

Table 1: Average AUC scores and standard errors of Granger Causality, Ridge Regres-
sion, Lasso and Group Lasso in three different noise conditions and for two
different model orders. Entries with significant superior score are highlighted.

with subsequent multiple testing according to Hothorn et al. (2008) which is also novel
in the context of VAR modeling. Both approaches were shown to outperform standard
methods in simulated scenarios. Future research will aim at applying our techniques
to real-world problems. Given that the sparsity assumption is correct, our Group Lasso
approach should be able to handle much larger problems than the ones that were con-
sidered here by 1) splitting the problem into M independent subproblems and 2) using
the active set solver of Roth and Fischer (2008) in combination with strong regulariza-
tion that ensures staying in the sparse regime. We expect that this will allow large-scale
applications such as the estimation of cerebral information flow from functional Mag-
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netic Resonance Tomography (fMRI) recordings to benefit from the improved accuracy
of our approach.
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Abstract
This paper studies the feasibility and interpretation of learning the causal struc-

ture from observational data with the principles behind the Kolmogorov Minimal
Sufficient Statistic (KMSS). The KMSS provides a generic solution to inductive infe-
rence. It states that we should seek for the minimal model that captures all regularities
of the data. The conditional independencies following from the system’s causal struc-
ture are the regularities incorporated in a graphical causal model. The meaningful
information provided by a Bayesian network corresponds to the decomposition of
the description of the system into Conditional Probability Distributions (CPDs). The
decomposition is described by the Directed Acyclic Graph (DAG). For a causal in-
terpretation of the DAG, the decomposition should imply modularity of the CPDs.
The CPDs should match up with independent parts of reality that can be changed
independently. We argue that if the shortest description of the joint distribution is
given by separate descriptions of the conditional distributions for each variable given
its effects, the decomposition given by the DAG should be considered as the top-
ranked causal hypothesis. Even when the causal interpretation is faulty, it serves as
a reference model. Modularity becomes, however, implausible if the concatenation
of the description of some CPDs is compressible. Then there might be a kind of
meta-mechanism governing some of the mechanisms or either a single mechanism
responsible for setting the state of multiple variables.

1. Introduction

Causal inference is an ambitious research field, as it tries to learn how the world is
put together from observations only. The algorithms for causal inference are based
on the conditional independencies implied by the causal structure of the system. The
theory of graphical causal models, as developed by Pearl et al., gives a probabilistic
view on causation and is based on the theory of Bayesian networks. The Directed
Acyclic Graph (DAG) of a Bayesian network can be regarded as a representation of
the conditional independencies of a probability distribution. A causal model gives a
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causal interpretation to the edges of a Bayesian network. The causal interpretation is
based on manipulability; the model exhibits the structure of the system such that it
is able to predict changes to the system. Hausman and Woodward (1999) show that
this interventionist interpretation of causality is tightly linked to modularity. They also
defend the equivalence of modularity and the causal Markov condition (Hausman and
Woodward, 1999, p. 554).

The causal interpretation of a Bayesian network is often criticized (Freedman and
Humphreys, 1999; Cartwright, 2001; Williamson, 2005; Hausman and Woodward, 1999).
This paper would like to contribute to the discussion by analyzing causal inference
through the concept of the Kolmogorov Minimal Sufficient Statistic (KMSS). The idea
is that patterns or regularities in the observed data do not happen by accident. They
teach us the important properties of the system. We say that the regularities constitute
the meaningful information of the data. The KMSS allows a formal separation of mea-
ningful and random information, based on the Kolmogorov complexity of objects. The
application of Kolmogorov complexity to inductive inference has given rise to different
methods, such as Minimum Message Length (MML) (Wallace and Boulton, 1968) and
Minimum Description Length (MDL) (Rissanen, 1978). These methods are used for
selecting the best model from a given set of models. The choice of model class, how-
ever, determines the regularities under consideration. During our discussion, we will
not stick to an a priori chosen set of regularities, but search for the relevant regulari-
ties. Regularities will show up to be of key importance for testing the validity of causal
inference.

This paper puts forward that the meaningful information of a Bayesian network is
the decomposition of the system’s description into separate components, the Condi-
tional Probability Distributions (CPDs). The correctness of the causal interpretation of
this decomposition relies on whether the CPDs correspond to independent mechanisms.
We will analyze the correctness by looking at the regularities not incorporated by the
Bayesian network.

In Section 2, the concept of KMSS is introduced. In Section 3, we will give a
survey of graphical causal model theory and the learning algorithms. The link between
a Bayesian network and the KMSS of a probability distribution is discussed in Section
4. In Section 5 we will argue that causal inference is plausible if the Bayesian network
gives the KMSS. Section 6 discusses the cases in which the minimal Bayesian network
does not provide the minimal description.

2. Meaningful Information

Kolmogorov Complexity provides an objective measure of simplicity so that Occam’s
razor can be applied. The Kolmogorov Complexity of a string x is defined to be the
length of the shortest computer program that prints the string and then halts (Li and
Vitányi, 1997):

K(x) = min
p:U(p)=x

l(p) (1)
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with U a universal Turing machine and l(p) the size in bits of program p. Pat-
terns in the string allow for its compression, i.e. to describe the data using fewer
symbols than the number of symbols to describe the data literally. The string
“0001000100010001000100010010001000100010001” can be described shorter by
program REPEAT 11 TIMES "0001". But not all bits of this program can be re-
garded as containing meaningful information. We consider meaningful information as
the properties of the string that allow for its compression (Vitányi, 2002). Such proper-
ties are called patterns or regularities. The regularity of the string is the repetition. The
number of repetitions (11) or the substring "0001" is random information. A random
string, which is incompressible, has no meaningful information at all.

For inductive inference, we will look for a minimal description in 2 parts, one
containing the regularities of the data, which we call the model, and one part containing
the remaining random noise. Such a description is called a two-part code. This results
in generic approaches for inductive inference, such as Minimum Description Length
(MDL). According to MDL we have to pick the model Mmdl from model class M
where Mmdl is the model which minimizes the sum of the description length of M and
of the data D encoded with the help of M (Grünwald, 1998):

Mmdl = arg min
M2M

{L(M)+L(D | M)} (2)

with L(.) the description length.
The MDL approach relies on the a priori chosen model class. It does not tell us how

to make sure the models capture all and nothing more than the regularities of the data.
The KMSS provides a formal separation of meaningful and meaningless information.
We limit the introduction of KMSS to models that can be related to a finite set of objects,
called the model set. In the context of learning, we are interested in a model set S that
contains string x and the objects that share x’s regularities. With |S| the size of set S, all
elements of a set S can be enumerated with a binary index of length log2 |S|. We say
that x is typical for S if

K(x | pS)� log2 |S|�b (3)

with pS the shortest program that describes S and b an agreed upon constant. The index
is constructed by index enumerating all elements of the set, its length is thus log2 |S|.
Atypical elements have regularities that are not shared by most of the set’s members
and can therefore be described by a shorter description. Most elements of S are typical,
since, by counting arguments, only a small portion of it can be described shorter than
log2 |S|.

The Kolmogorov Minimal Sufficient Statistic (KMSS) of x is defined as the shortest
program p⇤ which describes the smallest set S⇤ such that x is a typical element of S⇤

and the two-stage description of x is as good as the minimal single-stage description of
x (Gács et al., 2001):

p⇤ = argmin
p
{l(p) | U(p) = S, x 2 S, K(S)+ log2 |S| K(x)} (4)
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Program p⇤ minimally describes the meaningful information present in x and nothing
else. This can be understood as follows. By the inequality, the two-part description is
at least as short as the Kolmogorov complexity of x. Since we seek for the simplest S
(minimal p), we will only describe regularities by p. Regularities compress the des-
cription and greatly reduce the size of S. Putting random information in S would also
reduce log2 |S|, but would increase K(S) equally.

K(x) depends on the chosen Turing machine U , or, in practice, on the chosen des-
cription language. Minimality and compressibility are thus partly dependent on the
choice of language. Another problem for directly applying the definitions is the in-
tractability of K(x). It falls out of the scope of this paper to address these problems,
consult (Li and Vitányi, 1997) for an in-depth analysis. We will apply the principles
behind Kolmogorov complexity, MDL and KMSS in order to better understand causal
inference, its interpretation and feasibility.

3. Graphical Causal Models

This chapter will introduce graphical causal models and the learning algorithms (Pearl,
2000; Spirtes et al., 1993; Tian and Pearl, 2002).

3.1. Representation of Causal Relations

Graphical causal models intend to describe with a Directed Acyclic Graph (DAG) the
structure of the underlying physical mechanisms governing a system under study. The
state of each variable, represented by a node in the graph, is generated by a stochastic
process that is determined by the values of its parent variables in the graph. All variables
that influence the outcome of the process are called causes of the outcome variable. An
indirect cause produces the state of the effect indirectly, through another variable. If
there is no intermediate variable among the known variables, the cause is said to be a
direct cause.

Each process represents a physical mechanism. In it most general form it can be
described by a conditional probability distribution (CPD) P(X | Pa(X)), where Pa(X) is
the set of parent nodes of X in the graph and constitute the direct causes of the variable.
The combination of the CPDs results in the system’s joint probability distribution:

P(X1, . . . ,Xn) =
n

’
i=1

P(Xi | Pa(Xi)) (5)

The right hand side is called a factorization of the joint probability distribution.

3.2. The Effect of Changes to the System

We attribute a causal interpretation to the edges of the graph, but what does this ‘causal
interpretation’ signify? The approach of Pearl and many others is to draw a connection
between causation and manipulability (Hausman and Woodward, 1999). The causal
interpretation is defined by the model’s capacity to predict the effect of changes to the
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system. Changes are defined by Pearl as interventions. An intervention is defined as an
atomic operation that fixates a set of variables to some given states and eliminates the
corresponding factors (CPDs) from the factorization (Eq. 5) (Pearl, 2000). Applied on
a causal graph, an intervention on variable X sets the value of X and breaks all of the
edges in the graph directed into X and preserves all other edges in the graph, including
all edges directed out of X . This is called the Manipulation Theorem by Spirtes et al.
(1993, p. 51). Intervening on a variable only affects its effects. Causes have to be
regarded as if they were levers which can be used to manipulate their effects.

This approach does not directly define causality, but defines the implications of
having a thorough knowledge of the mechanisms that make up a system. Manipulability
puts a constraint of independentness on the mechanisms. The accuracy of the mutilated
model relies on autonomy or modularity; a mechanism can be replaced by another
without affecting the rest of the system. It is defined by Hausman and Woodward
(1999, p. 545) as follows. Note that they relate each CPD to a structural equation.

Definition 1 (Modularity) For all subsets Z of the variable set V, there is some non-
empty range R of values of members of Z such that if one intervenes and sets the value
of the members of Z within R, then all equations except the equations with a member of
Z as a dependent variable (if there is one) remain invariant.

3.3. Representation of Independencies

The evidence for causal inference is the conditional independencies entailed by the sys-
tem’s causal structure. For a causal model, the causal Markov condition gives us the
independencies that follow from the causal structure: each variable is probabilistically
independent of its non-effects conditional on its direct causes (Spirtes et al., 1993).
These independencies are irrespective of the nature of the mechanisms, of the exact pa-
rameterization of the conditional probability distributions P(Xi | Pa(Xi)). All indepen-
dencies following from the causal Markov condition can be retrieved from the causal
graph by the d-separation criterion. A causal graph is called faithful if all conditional
independencies from the distribution follow from the causal Markov condition.

3.4. Correspondence with Bayesian Networks

Graphical causal models provide a probabilistic account of causality (Spohn, 2001).
This resulted in a close correspondence with Bayesian networks. In contrast to causal
models, Bayesian networks are only concerned with offering a dense and manageable
representation of joint distributions. A joint distribution over n variables can be facto-
rized relative to a chosen variable ordering (X1, . . . ,Xn) as follows:

P(X1, . . . ,Xn) =
n

’
i

P(Xi | X1, . . . ,Xi�1) (6)

Variable Xj can be removed from the conditioning set of variable Xi if it becomes con-
ditionally independent from Xi by conditioning on the rest of the set:

Xj??Xi | X1 . . .Xj�1,Xj+1 . . .Xi�1 (7)
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Such conditional independencies reduce the complexity of the factors in the facto-
rization. The conditioning sets of the factors can be described by a Directed Acyclic
Graph (DAG), in which each node represents a variable and has incoming edges from
all variables of the conditioning set of its factor. The joint distribution is then descri-
bed by the DAG and the conditional probability distributions (CPDs) of the variables
conditional on their parents: P(Xi | Pa(Xi)). A Bayesian network is a factorization
that is edge-minimal, in the sense that no edge can be deleted without destroying the
correctness of the factorization.

Causal models attribute a causal interpretation to the edges of the graph of a Baye-
sian network and are therefore called causally interpreted Bayesian networks. Bayesian
networks are just dense descriptions of probability distributions and offer an explicit
representation of dependencies and independencies. The link is that the causal Markov
condition follows from the correctness of the factorization (Hausman and Woodward,
1999, p. 532).

Although edge-minimality of a Bayesian network, the graph depends on the chosen
variable ordering. Some orderings lead to the same networks, while others result in dif-
ferent topologies. All networks represent the probabilities just as well, except that some
are more complex than others. We call the minimal Bayesian networks the Bayesian
networks which have the least number of edges in their DAGs.

3.5. Causal Inference

The goal of causal inference is to learn the causal structure of a system based on obser-
vational data. Causal structure learning algorithms fall apart in two categories: scoring-
based and constraint-based algorithms. Scoring-based algorithms are based on an op-
timized search through the set of all possible models, which tries to find the minimal
model that best describes the data. Each model is given a score that is a trade-off be-
tween model complexity and goodness-of-fit. Different scoring criteria have been ap-
plied in these algorithms, such as a Bayesian scoring method (Cooper and Herskovits,
1992), an entropy based method (Herskovits, 1991) and one based on the Minimum
Description Length (Suzuki, 1996). Irrespective of the exact definition of the scoring
criteria, we can say that the algorithms are looking for the minimal Bayesian network.

Constraint-based learning algorithms rely on the conditional independencies de-
tected that follow from the system’s causal structure. It is a kind of evidence-based
construction, the decisions to include an edge and on the edge’s orientation are based
on the presence or absence of certain independencies. The algorithms assume mini-
mality, faithfulness and the causal Markov condition (Spirtes et al., 1993). We are
also searching for the minimal Bayesian network, since a faithful Bayesian network is
minimal (Lemeire et al., 2009).

4. Bayesian Networks as Minimal Descriptions of Distributions

In this section we will draw the connection between Bayesian networks and the KMSS
of probability distributions. Let us apply the principle of KMSS to inductive inference
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of multivariate data that are independently and identically distributed (i.i.d.). Following
the principle, the inferred model should capture the regularities of the data. The type
of regularity we have to consider is a dependency between variables; knowing one
variable gives information about the state of another variable. The knowledge about
the state of a single stochastic variable is captured by a probability distribution over it.
Dependency information is captured by the joint probability distribution defined over
the variables of interest. The KMSS of the distribution should be a minimal description
of the distribution’s regularities. In this section we will consider the description given
by a Bayesian network, other regularities will be considered in Section 6.

From the theory of Bayesian networks, we know that a joint distribution can be
described shorter by a factorization (relative to a certain variable ordering) that is re-
duced by conditional independencies (given by Eq. 7). This leads to the description of
the joint distribution by a factorization: P(X1, . . . ,Xn) = ’CPDi, with CPDi the CPD
of variable Xi, defining P(Xi | Pa(Xi)), a distribution over Xi conditional on a subset of
some other variables. A two-part description of a joint distribution is then:

descr(P(X1 . . .Xn)) = descr({Pa(X1), . . . ,Pa(Xn)})+descr(CPD1)+ · · ·+descr(CPDn)
(8)

With descr() denoting a description. The parents’ lists can be described very compact
by a DAG. The descriptive size of the CPDs is determined by the number of variables
in the conditioning sets, the number of free parameters for describing the distributions
and the chosen accuracy. Eq. 8 corresponds to the description of a Bayesian network. If
this results in an incompressible description, the DAG gives the meaningful information
and the KMSS. This is proven by the following theorem.

Theorem 2 Given a set of probability distributions P defined over a set of n variables
X1, . . . ,Xn. Consider a probability distribution P 2 P which can be decomposed by a
factorization based on parents’ lists Pa(X1), . . . ,Pa(Xn). Consider that the factorization
is described (see Eq. 8) by a minimal code which is able to describe all P0 2P that can
be described by a factorization based on the same parents’ lists. If such a description
results in an incompressible string, then the first part (the description of the parents’
lists) is the Kolmogorov minimal sufficient statistic of P.

Proof The parents’ lists describe a subset P 0 ⇢ P which includes all elements that can
be decomposed by the same factorization. We assume that this description is incom-
pressible, therefore its length corresponds to K(P 0) up to a constant 1. The code used to
describe the CPDs allows a description of all elements of P 0. It is a minimal code, so its
length equals to log2 |P 0|. The total description is incompressible, so its length equals,
up to a constant, to K(P). We have found a set P 0, for which K(P 0)+ log2 |P 0| K(P).

Next, we have to prove that there is no other set, P 00, which has a shorter description
and for which the inequality holds (see Eq. 4). Assume that such a P 00 exists. If

1. Two minimal descriptions of x based on different codes or turing machines are equal up to a constant
that is independent of x. Since the descriptions are minimal, they are incompressible.
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P 00 ⇢ P 0, the description of the CPDs would be compressible. P 00 is a smaller set,
indicating that there are regularities in P which are not described by P 0. If P 0 ⇢ P 00,
then, similarly, the description of K(P 00)+ log2 |P 00| would be compressible. It follows
that if such a P 00 exists, both sets contain exclusive elements that do not belong to the
other set. This implies that the descriptions of both sets exploit regularities of P that
are not exploited by the other one. Therefore neither of the descriptions is minimal and
incompressible. This proves that such a P 00 does not exist.

The DAG thus minimally describes the dependencies among the variables, the
model’s complexity is reduced by conditional independencies.

It must be noted that if there exists a faithful and minimal Bayesian network, it is
not necessarily unique. Multiple minimal models can exist for a distribution. These
models represent the same set of independencies and are therefore statistically indis-
tinguishable. They define a Markov-equivalence class. It is proved that they share the
same skeleton and v-structures. They only differ in the orientation of some edges (Pearl,
2000). This set can be represented by a partially-directed acyclic graph in which some
of the edges are not oriented. The corresponding factorizations have the same number
of conditioning variables. Thus, all models of a Markov-equivalence class have the
same complexity.

5. Correspondence of Decomposition to Independent Mechanisms

Causal inference from observations is based on finding the minimal Bayesian network
(Sec. 3.5) and attaching a causal interpretation to it (Sec. 3.2). In this section we will
discuss the case in which, for a given set of observations, there is exactly one minimal
Bayesian network which is also the minimal description of the data. This means that
there are no other regularities than the conditional independencies the model represents.
The DAG is then the KMSS of the data and minimally represents all regularities. We
argue that description minimality can be linked to causality.

Note that for not overloading the discussion we will assume causal sufficiency:
there are no unknown variables that affect more than one known variable.

5.1. Correspondence of Bayesian Networks to a Decomposition

Let us first analyze what the meaningful information of a Bayesian network exactly
represents. A Bayesian network describes a joint probability distribution by DAG G and
a list of CPDs as given by Equation 8. The description is decomposed into individual
CPDs. The decomposition is described by the DAG, it tells us which CPDs we have
to consider. The DAG G contains the meaningful information. It describes a model
set of distributions PG, all sharing the conditional independencies following from the
Markov condition. The distributions that only have these independencies are the typical
elements of PG. G is faithful to them. Distributions having other independencies, are
atypical, their description based on G is compressible (Lemeire et al., 2009, Theorem
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6). We will consider them in the next section. We will first assume that the description
is unique and minimal.

A Bayesian network thus describes a decomposition and matches with a reduction-
ist view, according to which the world can be studied in parts. Indeed, if the system
cannot be decomposed, if there are no conditional independencies that simplify a facto-
rization, then the DAG does not contain meaningful information (Theorem 2). We end
up with a Holist system in which everything depends on everything.

It must be noted that the assumption of a unique minimal Bayesian network is not
essential. If the minimal Bayesian network is not unique, the Markov-equivalence class
indicates exactly which parts are undecided, namely the orientation of some edges.
So, we know exactly for which parts of the model we have not enough information to
decide upon the decomposition. For the remainder of the model, the decomposition is
known. When we speak of the minimal Bayesian network, we actually mean the class
of closely-related minimal Bayesian networks.

5.2. Correspondence of the Decomposition to Mechanisms

Let us now investigate whether the CPDs of the minimal Bayesian network of a pro-
bability distribution can be matched up with the mechanisms of the underlying system.
The minimal Bayesian network provides modularity in the descriptive sense: the des-
cription consists of components. But does this also imply modularity in the causal
sense: do the descriptive components correspond to independent parts of reality? In
other words, does the model learned by observations reveal the underlying system?

We have found the simplest model. Following Occam’s razor this is the model
we should ‘select’. But does Occam’s razor also guarantees that this model tells us
something about the real system? Yet, we did not only find the minimal Bayesian
networks in the set of all Bayesian networks, we also found the minimal model in the
general sense. The model is the KMSS and has extracted all regularities from the data.
Moreover, the model is unique. From these facts we argue that:

In absence of background knowledge, experiments with interventions or other infor-
mation, given that a minimal Bayesian network is the KMSS of the data, the top-ranked
hypothesis is that each CPD represents an independent part of reality.

Before explaining what we exactly mean by ‘top-ranked’ hypothesis, let us consider
two counter examples.

5.3. Counter Examples

Consider people living at different latitudes and the amount of vitamin D creation.
Melanin is a pigment that protects us against harmful UV radiation. On the other hand,
we need a limited amount of UV radiation to produce a necessary amount of vitamin
D. To ensure this, evolution has given humans a different amount melanin, which is
reflected by skin color, relative to the amount of sun they are exposed to. The latter is
mainly affected by the latitude. This results in a nearly constant amount of vitamin D
creation independent from the latitude we live at. Figure 1 shows the real causal model
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Figure 1: The relation between vitamin D creation and latitude: true causal model (a)
and minimal Bayesian network (b).

Figure 2: Coder-decoder system, taken from Spirtes et al. (1993, Figure 3.23), in which
Z equals to X . Description of the system (a) and minimal model (b).

(a) and the minimal Bayesian network (b). Evolution has controlled the Latitude!
Melanin relation such that the parameters were calibrated until the influences from
Latitude on Vitamin D neutralized. This is a counter example of Occam’s razor; the
simplest model does not give us the true model. There is a meta-mechanism, namely
evolution, controlling the mechanisms.

Next, consider the coder-decoder example, taken from Spirtes et al. (1993, Figure
3.23), shown by Figure 2(a). Variable Y encodes the values of both R and X , and Z
decodes Y to match the value of X . This is possible because the first bit of Y corresponds
to the value of X . The coder-decoder system is designed to exhibit the specific behavior
that Z equals to X . The model describing such a system, shown in Figure 2(a), is
clearly not minimal. In the minimal description of the system given by Figure 2(b),
Z is directly related to X . Occam’s razor is violated. The CPD components are part
of a greater mechanism and are engineered to match each other in such a way that
the desired functionality is realized. The causal interpretation of the minimal model is
incorrect. If we intervene on Y by manually setting the value of Y to a certain value
which is not controlled by X , then Z becomes independent of X .
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5.4. Conclusions about the Causal Interpretation of the Decomposition

The examples illustrate that the real system can be more complex than suggested by
the complexity of the observations. Does this invalidate our claim about the minimal
Bayesian network? It shows that Occam’s razor cannot always be trusted. The minimal
model may be incorrect, in the sense that the causal interpretation should be considered
with care. But even when faulty, the minimal Bayesian network tells us two things
about the system.

First, the DAG of the minimal Bayesian network describes the qualitative behavior
of the system. This is true for both counter examples. From Figure 1(b) we see that the
amount of vitamin D creation is independent from the latitude we live in. From Figure
2(b) we immediately see that Z only depends on X and is totally independent from R
and Y . The structure of the real causal models does not reveal these independencies.
We have to carefully study the parameterization to understand these independencies.
Moreover, these are not accidental independencies. For the first example, it is the re-
sult of an evolution triggered by the evolutionary fitness. For the second example, it
was the deliberate intention of the engineer to give the system this specific behavior.
This corresponds to the rationale behind Occam’s razor: regularities are most likely not
accidental, but indications of a kind of mechanism. Only the occurrence of acciden-
tal (in)dependencies in the data, due to a limited sample size for example, makes the
minimal model not correctly describing the system’s behavior.

Secondly, we argue that the minimal Bayesian network at least serves as a reference
model. The correspondence of the CPDs to real mechanisms might be untrue due to
a meta-mechanism controlling the configuration of the system. The likelihood of the
occurrence of such a mechanism must be estimated from background knowledge. In
that case, experiments with interventions will have to be performed in order to reveal the
true causal model (Korb and Nyberg, 2006). But even then will the minimal Bayesian
network show its value. It can be used as a reference model, which will be compared
with the model learned after the application of the interventions. This comparison
would reveal the meta-mechanism.

6. Compressibility of the Minimal Bayesian Network

In this section we will dig deeper. We will investigate the consequences for cases in
which the minimal Bayesian network does not describe the KMSS. Then, the DAG is
not the only meaningful information. There exists a simpler description of the distribu-
tion than given by the minimal Bayesian network. First we will consider the compres-
sibility of an individual CPD and then we consider the compressibility of several CPDs
taken together.

6.1. Compressibility of a Single CPD

Compressibility of individual CPDs is called local structure (Friedman and Goldszmidt,
1996). In this terminology, the DAG describes the global structure, the CPDs the lo-
cal structure. On top of the independencies following from the causal structure the

137



LEMEIRE STEENHAUT

Figure 3: O-structure in which A is independent from D (a). A Markov network (b)
and one of the minimal Bayesian networks describing the same system (c).

individual CPDs exhibits additional regularities. For discrete models for example, the
conditional probability tables can be described shorter by decision trees when so-called
context-specific independencies appear (Boutilier et al., 1996).

A specific type of local structure is the decomposition of a CPD into independent
components. In general, a CPD describes the mechanism by which all direct causes
together produce the state of a single variable. Various authors report on independent
cause-effect relations. They study representations in which the causal influences of the
direct causes of a variable are independent, for example by a factorized representation
of a CPD (Madsen and D’Ambrosio, 2000). Hausman and Woodward (1999, p. 547)
call it disjunctive causes. On top of the decomposition given by Equation 8, the parts
of the decomposition can be further decomposed.

In these cases, the decomposition according to Equation 8 is still valid. Modularity
is still valid, in the descriptive and causal sense. The same conclusions as those of the
previous section apply.

6.2. Compressibility of the Concatenation of CPDs

When the description of some CPDs together can be compressed, the regularity indi-
cates that the CPDs are in some way related. The following counter examples show
that this often invalidates the causal interpretation.

6.2.1. O-STRUCTURE

The most-known counter example of causal inference is when in the model of Figure
3(a), A and D appear to be independent (Spirtes et al., 1993). This happens when the
influences along the paths A! B! D and A! C! D exactly balance, so that they
cancel each other out and the net effect results in an independence. This cancellation is
similar to the vitamin D example of Section 5.3. Except that in this case the DAG of the
minimal Bayesian network corresponds to the structure of the model. The CPDs and the
mechanisms are, however, not independent. Pearl considers the exact cancellation of
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Figure 4: Bayesian network (a) of a system that calculates the quotient and remainder
of two integers. The decomposition it represents (b) and a single mechanism
calculating both outputs together (c).

the parameters as a measure zero event, since the probability of such a coincidence can
therefore be regarded as nearly zero (Pearl, 2000, p. 48). This is true as long as there
not a kind of meta-mechanism controlling the mechanisms such that the parameters are
calibrated until they neutralize. This confirms our conclusions of the previous section
that the existence of such mechanisms must be taken into consideration. Then, the
likelihood of a cancellation is not zero.

Modularity becomes invalid when the meta-mechanism acts instantly. In the vita-
min D case, evolution works slowly. On short term, the mechanisms are independent.
It is only on the long term that the calibration will be reestablished.

6.2.2. MARKOV NETWORK

Consider a system that is minimally described by a Markov network, as shown in Figure
3 (b). Variables which are connected by a path in the network are dependent, unless
each path is blocked by one of the conditioning variables. So is B 2C | A, but B??C |
{A,D}. For describing the same network with a DAG, we have to orient the edges of
the network. For acyclicity, we have to create at least one v-structure. We can choose
for example B�D�C. But then, for keeping the same dependencies, we have to add
an edge, as shown in Figure 3 (c). Without B!C we would have B??C | A. Clearly,
this Bayesian network is not minimal; the description is longer than that of a Markov
network. The parameterizations of the CPDs contain redundancies. In the model of 3
(c), the parameterizations must ensure that B??C | {A,D}, an independency which is
not captured by the DAG. When such a distribution is observed, the causal interpretation
of the CPDs of the minimal Bayesian networks is incorrect.

6.2.3. MULTIPLE-OUTPUT FUNCTIONS

Consider a system that calculates the quotient and remainder of two integers. Figure
4(a) shows the minimal Bayesian network of the system. The model describes the
system as two different mechanisms, one for calculating the quotient and one for the
remainder, shown in Figure 4(b). Both mechanisms, however, are related; there is a
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lot of overlap in calculating the quotient and the remainder. A model describing the
system by one component which calculates both outputs together, as shown in Figure
4(c), is more compact than a Bayesian network which only allows components with
single outputs. In that case, the CPDs of the minimal Bayesian network cannot be
considered as independent. If the output variables are clearly separated quantities, a
mechanism setting the values of multiple variables should be taken into consideration.

6.2.4. OBJECT-ORIENTED NETS

Another regularity is the repetition of similar mechanisms in a system. This results in
a causal model in which identical CPDs appear. The model is therefore compressible.
The compressibility does not necessarily result in a dependence of the CPDs in terms
of manipulability. It depends on the meta-mechanism responsible for the regularities
in the system. The system could, for example, be designed by an engineer, such as
a digital circuit. Then, modularity holds; one mechanism can be replaced by another
without affecting the rest of the model. Object-Oriented nets provide a representation
format that explicitly capture similarities of mechanisms (Koller and Pfeffer, 1997).

7. Conclusions

We showed that the meaningful information described by a Bayesian network about a
probability distribution is the decomposition of the distribution into CPDs. We argue
that if the shortest description of the joint distribution is given by separate descriptions
of conditional distributions, it is the top-ranked causal hypothesis:

(1) The Bayesian network gives a correct description of the behavior of system.
The qualitative properties, namely the conditional independencies, are incorporated in
the DAG. This only becomes invalid by accidental (in)dependencies due to for instance
a limited sample size.

(2) The likelihood that the CPDs correspond to independent mechanisms of the
system (modularity) depends on the likelihood of a kind of meta-mechanism. A meta-
mechanism could result in a system which is more complex than suggested by its behav-
ior. In that case, the behavior of the system when subjected to an external intervention
will not be correctly predicted by the minimal model. Nonetheless, the minimal Baye-
sian network can serve as a reference model that has to be compared with the behavior
of the system after applying the interventions.

By applying the principle of KMSS, we did not only look for the minimal Baye-
sian network in the set of all Bayesian networks. We also took into consideration the
presence of other regularities than the conditional independencies following from the
system’s causal structure. These regularities might invalidate the above conclusions. If
such regularities appear in individual CPDs, the mapping of CPDs onto independent
mechanisms still holds (in the above sense). The DAG of the Bayesian network does
not have to be the KMSS. The decomposition should be correct. It becomes incorrect
if the concatenation of the description of the CPDs is compressible. Then the CPDs are
no longer independent and modularity might become invalid. The dependence might be
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caused by a meta-mechanism that governs the dependent mechanisms, or a mechanism
affecting the state of multiple variables.
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Abstract
We present two Bayesian algorithms CD-B and CD-H for discovering unconfounded
cause and effect relationships from observational data without assuming causal suffi-
ciency which precludes hidden common causes for the observed variables. The CD-B
algorithm first estimates the Markov blanket of a node X using a Bayesian greedy
search method and then applies Bayesian scoring methods to discriminate the par-
ents and children of X . Using the set of parents and set of children CD-B constructs a
global Bayesian network and outputs the causal effects of a node X based on the iden-
tification of Y arcs. Recall that if a node X has two parent nodes A,B and a child node
C such that there is no arc between A,B and A,B are not parents of C, then the arc from
X to C is called a Y arc. The CD-H algorithm uses the MMPC algorithm to estimate
the union of parents and children of a target node X . The subsequent steps are similar
to those of CD-B. We evaluated the CD-B and CD-H algorithms empirically based
on simulated data from four different Bayesian networks. We also present compara-
tive results based on the identification of Y structures and Y arcs from the output of
the PC, MMHC and FCI algorithms. The results appear promising for mining causal
relationships that are unconfounded by hidden variables from observational data.
Keywords: Causal data mining, Markov blanket, Y structures

1. Introduction and Background

Causal knowledge enables us to plan interventions leading to predictable, measurable
and desirable outcomes. Experimental data is typically generated for ascertaining cause
and effect relationships. However, experimental studies may not be feasible in many
situations due to ethical, logistical, cost, technical or other reasons. This study intro-
duces two new Bayesian algorithms CD-B and CD-H for ascertaining causality from

c� 2010 S. Mani, C.F. Aliferis & A. Statnikov.
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observational data. There are many algorithms available for learning the underlying
causal structure from data such as GS (Margaritis and Thrun, 2000), PC (Spirtes et al.,
2000, page 84–85), HITON (Aliferis et al., 2003a), OR (Moore and Wong, 2003) and
FCI (Spirtes et al., 2000). However, all of these algorithms except FCI make an as-
sumption of causal sufficiency which maintains that there are no unobserved common
causes for any two or more of the observed variables. Even though FCI does not make
such an assumption its usefulness is limited in practical settings due to its scalability
limitation.

The Bayesian algorithms proposed in this paper are based on a computationally
feasible score-based search to identify some causal effects in the large sample limit
while allowing for the possibility of unobserved common causes, and without making
any assumptions about the true causal structure (other than acyclicity). There is also no
need to assign scores explicitly to causal structures with unobserved common causes in
this framework.

We now define some terms that are needed for our causal datamining framework.
Our framework for causal discovery is based on causal Bayesian networks (CBNs). A
CBN is a Bayesian network in which each arc is interpreted as a direct causal influence
between a parent node (variable) and a child node, relative to the other nodes in the
network (Pearl, 1991). We proceed to introduce the concept of a Y structure and a Y
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⇤⇤

W1 W2
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H1

BB
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\\

oo

Z Z
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Figure 1: A Y structure G1 and a Y equivalent structure G1H (H1 and H2 denote hidden
variables).

arc in a Bayesian network. Let W1! X  W2 be a V structure (there is no arc between
W1 and W2). If there is a node Z such that there is an arc from X to Z, but no arc from
W1 to Z and no arc from W2 to Z, then the nodes W1,W2,X and Z form a Y structure
(see Figure 1, G1). If such a Y structure over four measured variables V is learned
from an observational dataset D, the arc from X to Z in the Y structure represents an
unconfounded causal relationship (Mani et al., 2006). Since G1 also has the same set
of independence/dependence relationships over the observed variables (I-map) as G1H
(see Figure 1), the arcs W1! X and W2! X in G1 cannot be interpreted as necessarily
representing causal relationships. The arc from X to Z in a Y structure is referred to as
a Y arc (YA).

We now define the concept of a Markov blanket which is needed for an understan-
ding of the CD-B and CD-H algorithms. The Markov blanket (MB) of a node X in a
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causal Bayesian network G is the union of the set of parents of X , the children of X ,
and the parents of the children of X .

2. Algorithms

In this section we introduce the algorithms in this study for discovering cause and effect
relationships from observational data. We first introduce the Bayesian algorithms CD-
B and CD-H that learn global CBN models and output the set of Y arcs which represent
cause and effect relationships unconfounded by hidden variables. We then provide short
descriptions of the PC, FCI and MMHC algorithms and the post-processing procedure
that we use to identify the unconfounded causal arcs from the output of PC and MMHC.

2.1. CD-B algorithm

The CD-B algorithm first induces the Markov blanket (MB) of each node X 2V (where
V is the set of domain variables) using the Bayesian Markov blanket induction (MBI)
procedure (Mani, 2005). The MBI procedure finds the Markov blanket of a node X
under the assumptions of Markov, faithfulness and large sample size. It uses a greedy
forward and backward search in seeking the Markov blanket of X , which we denote
MB(X). The set MB(X) is the estimated Markov blanket of X in a data generating
network. From the MB of each node X the spouse nodes (parents of children of a node
X are referred to as the spouse nodes of X) are excluded by a Bayesian dependence
heuristic (Cooper, 1997) to obtain the set of parents and children of X (denoted as
PC(X)). Using PC(X) we generate all possible DAGs such that the only arcs are from
each parent to X and from X to each child. We refer to these DAGs as PC DAGs.

The key insight is that there are exactly 2k such PC DAGs where k = |PC(X)|. The
highest scoring DAG from each node set PC(X)[X is used to get the P(X) and the
C(X), that is, the parents and children of X respectively. Using P(X) from the highest
scoring PC DAGs with two or more parents a global directed graph is constructed. Note
that a PC DAG G with P(X) as set of parents and C(X) as set of children of the node
X is unique (the only member of its Markov equivalence class) if |P(X)|� 2. Since all
the PC DAGs are scored, this step is exponential in the size of the set of parents and
children. To the best of our knowledge the PC DAG method introduced here is the only
Bayesian method to partition a set of parents and children (P(X)[C(X)) into the set of
parents P(X) and the set of children C(X).

The global directed graph created using the set of parents may contain directed cy-
cles. A directed cycle is a directed path starting from a node A and ends in node A after
traversing two or more nodes. The cycles in the graph are broken iteratively by remov-
ing the “weakest” arc using a greedy search heuristic till all cycles are eliminated. The
C(X) edges from the highest scoring PC DAGs with two or more parents are inserted
based on a set of constraints (rules). The union of the edges of the highest scoring PC
DAGs with less than two parents are inserted using a different set of constraints. As
already mentioned, when the PC DAG has two or more parents it is unique, that is, it
is the only member of its Markov equivalence class. On the other hand the PC DAGs
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with less than two parents are not unique (there is at least one additional member in its
Markov equivalence class). Hence the arcs belonging to the two categories of PC DAGs
are inserted into the global DAG using different sets of constraints. The resulting DAG
is used to identify all the Y arcs. The pseudocode for the CD-B algorithm is provided
in Appendix A.1.

2.2. CD-H algorithm

The CD-H algorithm replaces the initial steps of the CD-B algorithm for finding the
PC(X) with the MMPC algorithm (Tsamardinos et al., 2003, 2006). The MMPC uses
a two-phase search procedure based on tests of independence/dependence. In the first
phase of search a candidate set of parents and children called CPC is estimated which
is a superset of the parents and children (PC) set. The second phase of the search
procedure prunes the CPC set yielding the PC set. A proof of correctness and empirical
results showing the validity of the MMPC algorithm are provided in (Tsamardinos et al.,
2003). The subsequent steps of the CD-H algorithm are similar to CD-B.

2.3. PC algorithm

The PC algorithm takes as input a dataset D over a set of observed random variables V,
a conditional independence test, and an a level of significance threshold for a test of
statistical independence and then outputs an essential graph. PC also makes an assump-
tion of causal sufficiency. This means that all the variables of the causal network are
measured and there is no attempt to discover latent (hidden) variables. Hence PC is not
designed to discover hidden variables that are common causes of any pair of observed
variables. In the worst case, PC is exponential in the largest degree (size of the set of
parents and children of a node) in the data generating DAG. See (Spirtes et al., 2000,
page 84–85) for more details on the PC algorithm. The PC algorithm outputs both
directed and undirected edges. A post-processing step (procedure YA) that we add is
performed on the set of arcs to identify the Y structures. The pseudocode for procedure
YA is given in Appendix A.1.3.

2.4. FCI algorithm

The FCI algorithm takes as input a dataset D over a set of random variables V and out-
puts a graphical model consisting of edges between variables that have a cause and ef-
fect interpretation. While the PC algorithm outputs only directed and undirected edges,
the FCI algorithm outputs a richer set of edges to denote the presence of hidden (un-
measured) confounding variables and various levels of uncertainty in the orientation
of the edges (Spirtes et al., 2000). The FCI algorithm can handle hidden variables and
sample selection bias that are likely to be present in real-world datasets. It is possible to
obtain causal relationships that are unconfounded by hidden variables from the partial
ancestral graph (PAG) output of the FCI algorithm. The edges oriented as A! B in the
FCI output can be interpreted as an unconfounded causal arc similar to a Y arc.
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2.5. MMHC algorithm

The max-min hill-climbing (MMHC) Bayesian network structure learning algorithm is
a hybrid algorithm that combines ideas from constraint-based and score-based meth-
ods (Tsamardinos et al., 2006). MMHC has been extensively evaluated on a variety of
structure learning tasks from different datasets and outperformed PC, FCI, the Sparse
Candidate, Optimal Reinsertion and the Greedy Equivalence Search algorithms. The
MMHC algorithm estimates the set of parents and children of a node X denoted by
PC(X) using the MMPC algorithm (Tsamardinos et al., 2003) to first obtain an undi-
rected skeleton of the output graph. MMHC then uses greedy steepest-ascent TABU
search and the Bayesian scoring measure BDeu (Heckerman et al., 1995) to orient the
edges.

3. Experimental methods

In this section we describe the experimental methods used to evaluate our causal dis-
covery approach. We used expert-defined CBNs to (1) generate data from those models,
(2) apply the causal discovery algorithm to the data, and (3) evaluate the causal rela-
tionships output by the algorithm relative to the data generating CBNs that serve as
gold standards. The output of the algorithm was compared with the data generating
structure and scored as explained below. CD-B and CD-H algorithms were imple-
mented in Matlab. The PC and FCI algorithms implemented in Tetrad IV (http:
//www.phil.cmu.edu/projects/tetrad) were used. The MMHC imple-
mentation in the Causal Explorer package (Aliferis et al., 2003b) was used. For PC,
MMHC, CD-B and CD-H algorithms the Y arcs output by the algorithms were com-
pared with the Y arcs of the data generating networks and for FCI the fully oriented
arcs were used. Recall that a post-processing step was required for PC and MMHC
algorithms to obtain the Y arcs. Precision, recall and F-measure were computed for the
algorithms as follows:

Precision: (# of Y arcs correctly identified) / (# of total Y arcs output).

Recall: (# of Y arcs correctly identified) / (# of total Y arcs present in the data gener-
ating network).

F measure: (2 * recall * precision) / (recall + precision).

Four Bayesian networks built by domain experts in such varied fields as medicine,
atmospheric sciences and agriculture were identified. These networks are Alarm (Bein-
lich et al., 1990), Hailfinder (Abramson et al., 1996), Barley (Kristensen and Ras-
mussen, 2002), and Munin (Andreassen et al., 1987). For causal discovery, we ge-
nerated simulated training instances by stochastic sampling (Henrion, 1986). Varying
sample sizes in the range of 1,000 to 20,000 instances were used in our causal discov-
ery experiments. Table 1 gives the distribution of the nodes, arcs and Y structures for
the various networks used in our study. Typically default parameters were used to
run the algorithms with some adjustments made for uniformity. The PC algorithm was
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Table 1: Nodes, arcs and Y structures in the Alarm, Hailfinder, Barley, and Munin
networks

Category Alarm Hailfinder Barley Munin

Nodes 37 56 48 189
Arcs 46 66 84 282
Y structures 13 20 44 147

run with default parameters (significance level 0.05). CD-B was also run with default
parameters (maximum MB size 12, dependency threshold for spouse elimination 0.9).
CD-H was run with the following parameters: maximum size of conditioning set 10 and
significance threshold 0.05. All the algorithms were run on each of the sample sizes
using the ACCRE (Linux) cluster in Vanderbilt University consisting of x86 processors
with 3.8 GB memory. Each job was assigned to a single processor with a time limit of
48 hours.

4. Results

The results presented below are based on sample sizes of 1K, 2K, 5K, 10K and 20K
instances for each of the four domain datasets that were generated. We present a sum-
mary performance of all the four algorithms based on Y arcs present in all the data
generating networks using precision, recall and F-measure as explained below. The
aggregate results are presented based on the following two methods.

1. The various data generating networks are given equal weight in the analysis irre-
spective of the number of Y arcs.

2. The data generating networks are weighted by the number of Y arcs present in
each network.

Table 2: Averages without FCI table weighted by # of Y arcs.
Weighted by the number of Y-arcs

F-measure Precision Recall

Sample CD-B CD-H PC MMHC Sample CD-B CD-H PC MMHC Sample CD-B CD-H PC MMHC
1k 0.34 0.27 0.15 0.32 1k 0.79 0.28 0.90 0.43 1k 0.21 0.27 0.08 0.25
2k 0.41 0.30 0.22 0.33 2k 0.84 0.31 0.93 0.40 2k 0.27 0.29 0.13 0.29
5k 0.47 0.34 0.29 0.34 5k 0.82 0.31 0.95 0.40 5k 0.33 0.38 0.17 0.29
10k 0.47 0.38 0.30 0.52 10k 0.83 0.39 0.79 0.57 10k 0.33 0.38 0.18 0.48
20k 0.52 0.44 0.34 0.44 20k 0.81 0.39 0.65 0.45 20k 0.38 0.50 0.23 0.44

Weighted equally

F-measure Precision Recall

Sample CD-B CD-H PC MMHC Sample CD-B CD-H PC MMHC Sample CD-B CD-H PC MMHC
1k 0.32 0.41 0.20 0.40 1k 0.76 0.44 0.93 0.61 1k 0.29 0.39 0.14 0.32
2k 0.39 0.50 0.35 0.46 2k 0.78 0.52 0.93 0.59 2k 0.32 0.49 0.26 0.40
5k 0.49 0.51 0.45 0.38 5k 0.76 0.51 0.97 0.51 5k 0.39 0.57 0.36 0.32
10k 0.48 0.52 0.38 0.60 10k 0.76 0.54 0.78 0.69 10k 0.39 0.55 0.33 0.56
20k 0.54 0.55 0.45 0.58 20k 0.80 0.59 0.73 0.60 20k 0.44 0.57 0.43 0.58

Altogether there were 224 YA in the four domain CBNs. The results presented are
based on averages over all the four networks unless specified otherwise (see Tables 2, 3
and Figures 2, 3). The highest precision of 0.97 (equal weight) and 0.95 (weighted by #
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Table 3: Averages without FCI table weighted equally.

Weighted by the number of Y-arcs

F-measure Precision Recall

Sample CD-B CD-H PC MMHC Sample CD-B CD-H PC MMHC Sample CD-B CD-H PC MMHC
1k 0.34 0.27 0.15 0.32 1k 0.79 0.28 0.90 0.43 1k 0.21 0.27 0.08 0.25
2k 0.41 0.30 0.22 0.33 2k 0.84 0.31 0.93 0.40 2k 0.27 0.29 0.13 0.29
5k 0.47 0.34 0.29 0.34 5k 0.82 0.31 0.95 0.40 5k 0.33 0.38 0.17 0.29
10k 0.47 0.38 0.30 0.52 10k 0.83 0.39 0.79 0.57 10k 0.33 0.38 0.18 0.48
20k 0.52 0.44 0.34 0.44 20k 0.81 0.39 0.65 0.45 20k 0.38 0.50 0.23 0.44

Weighted equally

F-measure Precision Recall

Sample CD-B CD-H PC MMHC Sample CD-B CD-H PC MMHC Sample CD-B CD-H PC MMHC
1k 0.32 0.41 0.20 0.40 1k 0.76 0.44 0.93 0.61 1k 0.29 0.39 0.14 0.32
2k 0.39 0.50 0.35 0.46 2k 0.78 0.52 0.93 0.59 2k 0.32 0.49 0.26 0.40
5k 0.49 0.51 0.45 0.38 5k 0.76 0.51 0.97 0.51 5k 0.39 0.57 0.36 0.32
10k 0.48 0.52 0.38 0.60 10k 0.76 0.54 0.78 0.69 10k 0.39 0.55 0.33 0.56
20k 0.54 0.55 0.45 0.58 20k 0.80 0.59 0.73 0.60 20k 0.44 0.57 0.43 0.58
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Figure 2: Averages without FCI graph
weighted by # of Y arcs.
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Figure 3: Averages without FCI graph
weighted equally for all net-
works.

of Y arcs) were achieved at the sample size of 5,000 with PC. In general PC and CD-B
had higher precision (� 0.65) across all the sample sizes tested. The best recall was
obtained by MMHC (0.58 equally weighted) and CD-H (0.50 when weighted by # of Y
arcs) with a sample size of 20,000. The best F-measure (when equally weighted) of 0.60
was achieved by MMHC (sample size 10K) followed by 0.55 for CD-H (sample size
20K). The best F-measure (weighted by # of Y arcs) of 0.52 was achieved by MMHC
(sample size 10K) and CD-B (sample size 20K).

FCI could be run without going out of memory or exceeding the time limit of 48
hours on all sample sizes only for the Alarm dataset. Out of 20 experiments (5 sample
sizes x 4 datasets), FCI ran out of memory in 9 cases (for all sample sizes in Barley
network and for sample sizes 1K, 5K, 10K, and 20K in Munin network), ran out of
time in 1 case (sample size 20K for Hailfinder network), and completed with results in
the remaining 10 experiments (see Tables 4, 5 and Figures 4, 5). Based on F measure
FCI performance is generally lower when compared with the other algorithms across
all the sample sizes. Figure 6 shows total run time for all algorithms for the latter 10
experiments. As can be seen, FCI is the second slowest algorithm after CD-H. However,
CD-H was able to complete with results in all 20 experiments, thus it is more useful for
practitioners despite being one of the slowest algorithms in the comparison. CD-H runs
slow primarily because it includes false positives in the estimated PC sets which makes
PC DAG search much more computationally expensive. Table 6 provides the runtimes
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of the various algorithms for the Alarm dataset. FCI runtime is an order of magnitude
higher compared to the other algorithms on the Alarm dataset.

Table 4: Averages with FCI table weighted by # of Y arcs.

2k 0.46 0.26 0.23 0.35 0.31 2k 0.84 0.27 0.92 0.39 0.79 2k 0.32 0.25 0.13 0.32 0.19

FͲmeasure Precision Recall

Sample CDͲB CDͲH PC MMHC FCI Sample CDͲB CDͲH PC MMHC FCI Sample CDͲB CDͲH PC MMHC FCI
1k 0.48 0.39 0.30 0.50 0.22 1k 0.71 0.41 0.86 0.80 0.42 1k 0.36 0.36 0.18 0.36 0.15
2k 0.46 0.26 0.23 0.35 0.31 2k 0.84 0.27 0.92 0.39 0.79 2k 0.32 0.25 0.13 0.32 0.19
5k 0.53 0.63 0.68 0.51 0.49 5k 0.70 0.53 1.00 0.64 0.65 5k 0.42 0.79 0.52 0.42 0.39
10k 0.58 0.63 0.48 0.72 0.46 10k 0.73 0.56 0.62 0.84 0.57 10k 0.48 0.73 0.39 0.64 0.39
20k 0.77 0.81 0.88 0.93 0.75 20k 0.77 0.79 0.92 0.87 0.63 20k 0.77 0.85 0.85 1.00 0.92

Table 5: Averages with FCI table weighted equally.

Weighted by the number of Y-arcs

F-measure Precision Recall

Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI
1k 0.54 0.51 0.30 0.50 0.04 1k 0.62 0.54 0.86 0.80 0.42 1k 0.48 0.48 0.18 0.36 0.02
2k 0.43 0.53 0.23 0.35 0.25 2k 0.67 0.54 0.92 0.39 0.79 2k 0.32 0.52 0.13 0.32 0.15
5k 0.51 0.74 0.68 0.51 0.11 5k 0.60 0.65 1.00 0.64 0.65 5k 0.45 0.85 0.52 0.42 0.06
10k 0.64 0.75 0.48 0.72 0.11 10k 0.78 0.67 0.62 0.84 0.57 10k 0.55 0.85 0.39 0.64 0.06
20k 0.79 0.81 0.88 0.93 0.10 20k 0.79 0.76 0.92 0.87 0.63 20k 0.79 0.86 0.85 1.00 0.05

Weighted equally

F-measure Precision Recall

Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI
1k 0.44 0.46 0.29 0.51 0.22 1k 0.62 0.54 0.90 0.75 0.42 1k 0.45 0.41 0.18 0.42 0.15
2k 0.47 0.52 0.46 0.54 0.42 2k 0.77 0.52 0.90 0.62 0.77 2k 0.39 0.51 0.32 0.49 0.32
5k 0.53 0.75 0.69 0.51 0.50 5k 0.67 0.66 1.00 0.68 0.65 5k 0.48 0.88 0.53 0.43 0.41
10k 0.59 0.72 0.49 0.73 0.49 10k 0.72 0.65 0.62 0.83 0.65 10k 0.53 0.83 0.42 0.70 0.41
20k 0.77 0.81 0.88 0.93 0.75 20k 0.77 0.79 0.92 0.87 0.63 20k 0.77 0.85 0.85 1.00 0.92

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1k 2k 5k 10k 20k

FͲ
m
ea
su
re

FͲmeasure

CDͲB

CDͲH

PC

MMHC

FCI

Figure 4: Averages with FCI graph
weighted by # of Y arcs.
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Figure 5: Averages with FCI graph
weighted equally for all
networks.

We also present results of causal discovery in the presence of hidden variables based
on randomly assigning “hidden” status to 25% of the variables for the Alarm dataset
(see Tables 7 and 8). The results presented in Table 8 are averaged over 5 such ran-
dom Alarm networks with with 25% of the nodes hidden. The results show that there
is a degradation in performance for all the algorithms when a subset of the variables
are unobserved (see Table 9). CD-B and FCI appear more robust in the presence of
hidden variables when compared to CD-H, PC and MMHC based on the magnitude
of reduction in F measure when hidden variables are introduced. Additional evalua-
tion is needed to understand the effect of hidden variables for causal discovery from
observational data.
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Table 6: Alarm original network runtimes in minutes for all the algorithms.

Sample CD-B CD-H PC MMHC FCI
1k 0.20 0.30 0.10 0.10 5.00
2k 0.30 0.30 0.10 0.10 1.00
5k 0.50 0.50 0.10 0.20 5.00
10k 0.70 0.70 0.10 0.20 5.00
20k 1.10 0.90 0.20 0.40 58.00
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ALARM

Sample CD-B CD-H PC MMHC FCI
1k 0.20 0.30 0.10 0.10 5.00
2k 0.30 0.30 0.10 0.10 1.00
5k 0.50 0.50 0.10 0.20 5.00
10k 0.70 0.70 0.10 0.20 5.00
20k 1.10 0.90 0.20 0.40 58.00

BARLEY

Sample CD-B CD-H PC MMHC FCI
1k - - - - M
2k - - - - M
5k - - - - M
10k - - - - M
20k - - - - M

HAILFINDER

Sample CD-B CD-H PC MMHC FCI
1k 6.00 26.00 0.20 0.60 6.00
2k 8.30 36.00 4.60 1.10 61.00
5k 22.50 92.50 31.40 4.00 150.00
10k 57.50 222.50 126.10 12.10 261.00
20k - - - - T

MUNIN

Sample CD-B CD-H PC MMHC FCI
1k - - - - M
2k 12.80 622.90 2.60 70.80 66.00
5k - - - - M
10k - - - - M
20k - - - - M
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Figure 6: Runtimes for all the algorithms over all the four datasets based on FCI com-
pletion.

Table 7: Alarm original.

F-measure Precision Recall

Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI
1k 0.79 0.73 0.27 0.78 0.21 1k 0.73 0.89 1.00 0.90 0.33 1k 0.85 0.62 0.15 0.69 0.15
2k 0.77 0.92 0.70 0.85 0.60 2k 0.77 0.92 1.00 0.85 0.86 2k 0.77 0.92 0.54 0.85 0.46
5k 0.77 0.93 0.76 0.46 0.55 5k 0.77 0.88 1.00 0.46 0.67 5k 0.77 1.00 0.62 0.46 0.46
10k 0.77 0.90 0.58 0.93 0.60 10k 0.77 0.81 0.64 0.87 0.86 10k 0.77 1.00 0.54 1.00 0.46
20k 0.77 0.81 0.88 0.93 0.75 20k 0.77 0.79 0.92 0.87 0.63 20k 0.77 0.85 0.85 1.00 0.92

F-measure Precision Recall

Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI
1k 0.60 0.38 0.22 0.49 0.19 1k 0.75 0.53 0.70 0.75 0.28 1k 0.52 0.31 0.13 0.38 0.15
2k 0.60 0.50 0.32 0.43 0.40 2k 0.73 0.57 0.80 0.52 0.41 2k 0.52 0.46 0.21 0.38 0.39
5k 0.51 0.65 0.49 0.27 0.43 5k 0.67 0.65 1.00 0.38 0.51 5k 0.42 0.67 0.35 0.22 0.38
10k 0.57 0.54 0.54 0.47 0.58 10k 0.64 0.58 0.69 0.53 0.51 10k 0.52 0.52 0.45 0.44 0.67
20k 0.58 0.61 0.56 0.57 0.66 20k 0.65 0.60 0.80 0.66 0.58 20k 0.54 0.62 0.47 0.54 0.79

Table 8: Alarm 75 percent observed.

F-measure Precision Recall

Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI
1k 0.79 0.73 0.27 0.78 0.21 1k 0.73 0.89 1.00 0.90 0.33 1k 0.85 0.62 0.15 0.69 0.15
2k 0.77 0.92 0.70 0.85 0.60 2k 0.77 0.92 1.00 0.85 0.86 2k 0.77 0.92 0.54 0.85 0.46
5k 0.77 0.93 0.76 0.46 0.55 5k 0.77 0.88 1.00 0.46 0.67 5k 0.77 1.00 0.62 0.46 0.46
10k 0.77 0.90 0.58 0.93 0.60 10k 0.77 0.81 0.64 0.87 0.86 10k 0.77 1.00 0.54 1.00 0.46
20k 0.77 0.81 0.88 0.93 0.75 20k 0.77 0.79 0.92 0.87 0.63 20k 0.77 0.85 0.85 1.00 0.92

F-measure Precision Recall

Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI
1k 0.60 0.38 0.22 0.49 0.19 1k 0.75 0.53 0.70 0.75 0.28 1k 0.52 0.31 0.13 0.38 0.15
2k 0.60 0.50 0.32 0.43 0.40 2k 0.73 0.57 0.80 0.52 0.41 2k 0.52 0.46 0.21 0.38 0.39
5k 0.51 0.65 0.49 0.27 0.43 5k 0.67 0.65 1.00 0.38 0.51 5k 0.42 0.67 0.35 0.22 0.38
10k 0.57 0.54 0.54 0.47 0.58 10k 0.64 0.58 0.69 0.53 0.51 10k 0.52 0.52 0.45 0.44 0.67
20k 0.58 0.61 0.56 0.57 0.66 20k 0.65 0.60 0.80 0.66 0.58 20k 0.54 0.62 0.47 0.54 0.79

151



MANI ALIFERIS STATNIKOV

Table 9: Alarm 75 performance degradation.

Original

F-measure Precision Recall

Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI
1k 0.79 0.73 0.27 0.78 0.21 1k 0.73 0.89 1.00 0.90 0.33 1k 0.85 0.62 0.15 0.69 0.15
2k 0.77 0.92 0.70 0.85 0.60 2k 0.77 0.92 1.00 0.85 0.86 2k 0.77 0.92 0.54 0.85 0.46
5k 0.77 0.93 0.76 0.46 0.55 5k 0.77 0.88 1.00 0.46 0.67 5k 0.77 1.00 0.62 0.46 0.46
10k 0.77 0.90 0.58 0.93 0.60 10k 0.77 0.81 0.64 0.87 0.86 10k 0.77 1.00 0.54 1.00 0.46
20k 0.77 0.81 0.88 0.93 0.75 20k 0.77 0.79 0.92 0.87 0.63 20k 0.77 0.85 0.85 1.00 0.92

75%

F-measure Precision Recall

Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI Sample CD-B CD-H PC MMHC FCI
1k 0.60 0.38 0.22 0.49 0.19 1k 0.75 0.53 0.70 0.75 0.28 1k 0.52 0.31 0.13 0.38 0.15
2k 0.60 0.50 0.32 0.43 0.40 2k 0.73 0.57 0.80 0.52 0.41 2k 0.52 0.46 0.21 0.38 0.39
5k 0.51 0.65 0.49 0.27 0.43 5k 0.67 0.65 1.00 0.38 0.51 5k 0.42 0.67 0.35 0.22 0.38
10k 0.57 0.54 0.54 0.47 0.58 10k 0.64 0.58 0.69 0.53 0.51 10k 0.52 0.52 0.45 0.44 0.67
20k 0.58 0.61 0.56 0.57 0.66 20k 0.65 0.60 0.80 0.66 0.58 20k 0.54 0.62 0.47 0.54 0.79

F-measure

Sample CD-B CD-H PC MMHC FCI
1k -0.18 -0.35 -0.04 -0.30 -0.02
2k -0.17 -0.43 -0.38 -0.42 -0.20
5k -0.26 -0.28 -0.27 -0.19 -0.11
10k -0.20 -0.36 -0.05 -0.45 -0.02
20k -0.18 -0.21 -0.32 -0.36 -0.09

5. Discussion

In this section we discuss the results and present the implications of our research for
discovering causal relationships from observational data. This research has highlighted
the role of Y structures for causal discovery from observational data and introduced two
new algorithms CD-B and CD-H based on identification of Y structures.

Precision varied within a narrow range of 0.76 to 0.84 for CD-B and between 0.65
and 0.97 for PC (see Tables 2 and 3). The relatively narrow precision range for the
different sample sizes combined with a monotonic increase in recall throughout the
sample range shows that the performance of CD-B and PC is robust across a wide
range of sample sizes. In general precision values are higher compared to recall values
for all the sample sizes except for the CD-H algorithm. Note that a higher precision
translates to lower number of false positives even though some causal relationships
may not be reported. A desirable goal in causal discovery is to keep the proportion of
false positives low even if it entails a trade-off in terms of recall.

FCI and CD-H had longer runtimes when compared with PC, MMHC and CD-B.
It is possible to use symmetry correction in the MMPC step of the CD-H algorithm to
reduce the number of false positives in the PC set and decrease runtime.

The causal discovery framework that we presented for identifying direct causal re-
lationships is dependent on the presence of Y structures in the data generating process.
The two medical (Alarm, Munin) and two non-medical (Hailfinder, Barley) networks
that were used to generate data had varying numbers of Y structures. These networks
were created by domain experts capturing the probabilistic dependencies and indepen-
dencies in the domain. Hence it seems plausible that Y structures occur in the data
generating process of many real-world domains. Presence of Y structures have also
been shown in a real world infant birth and death dataset (Mani and Cooper, 2004).

CD-B and CD-H are unique in differentiating the set of parents and the set of chil-
dren of a node X from the union of the set of parents and children of X . Identification of
the parents and children of a node will give us the candidate set of direct causes and the
candidate set of direct effects of a node. Due to the presence of hidden variables all the
parents cannot be interpreted as direct causes and all the children cannot be interpreted
as direct effects. However, the candidate set of parents and children can be used to rule
out hypothesized causes or effects. Also, when experimental studies are feasible the
candidate sets can act as the first filter and provide the experimenter with a preliminary
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set of potential causes and effects. Moreover, the set of parents or the set of children of
a node completely specify a directed acyclic graph which can be used to approximate
the data generating model.

5.1. Related work

The most related algorithm to the CD-B algorithm is the BLCD (Mani and Cooper,
2004; Mani, 2005). BLCD estimates the Markov blanket of a variable and uses it for
the identification of Y structures from sets of four variables. BLCD does not specifically
identify the sets of parents and children from the Markov blanket.

Aliferis et al. have introduced HITON, an algorithm to determine the MB of an out-
come variable (Aliferis et al., 2003a). Tsamardinos et al. have described an algorithm
called MMMB and they discuss that since the MB contains direct causes and direct
effects of a variable X , the MB has causal interpretability (Tsamardinos et al., 2003).
Note that both HITON and MMMB do not specifically distinguish between causes and
effects of a node; however, they do output the variables that have direct edges during
the operation of the algorithm. Additional processing (or experimentation) of HITON
and MMMB output is required to determine causal directionality.

5.2. Limitations and future work

There are two main types of limitations of this work. The first set of limitations results
from the framework and assumptions we have chosen for causal discovery. The second
set of limitations is due to the specifics of the algorithm and the experimental methods
that were used.

The CBN framework imposes a directed acyclic graph structure on all causal phe-
nomena. Discovering causal mechanisms that incorporate feedback cycles can be prob-
lematic unless time is represented explicitly and cycles are “unfolded” to provide a
DAG structure (Cooper, 1999). The causal discovery approach we have taken is not
complete in the sense that we can discover only causal relationships represented in na-
ture as Y structures. The algorithms also currently requires that the modeled variables
be discrete.

The evaluation measures of precision, recall and F measure that were used are struc-
tural. Hence the evaluation of the purported causal relationships were structural, leaving
out the parametric components. That is, we evaluated how well the algorithm can dis-
cover the presence of a causal influence, but leave to future work the characterization
of how well the algorithm captures the functional relationships among the causes and
effects.

We plan to apply the CD-B and CD-H algorithms to real-world datasets as part of
our future work.

Acknowledgments

We thank professor Greg Cooper for helpful discussions. We thank Yerbolat Dosbayev
for implementing CD-B and CD-H and Yukun Chen for running the experiments and

153



MANI ALIFERIS STATNIKOV

generating the results presented in the paper. We also thank the anonymous reviewers
for their critical comments and suggestions for improving the paper.

References

Bruce Abramson, John Brown, Ward Edwards, Allan Murphy, and Robert L. Winkler.
Hailfinder: A Bayesian System for Forecasting Severe Weather. International Jour-
nal of Forecasting, 12:57–71, 1996.

Constantin F. Aliferis, Ioannis Tsamardinos, and Alexander Stanikov. HITON, A novel
markov blanket algorithm for optimal variable selection. In Proceedings of the AMIA
Fall Symposium, 2003a.

Constantin F. Aliferis, Ioannis Tsamardinos, Alexander Stanikov, and Laura E. Brown.
Causal Explorer: A causal probabilistic network learning toolkit for biomedical dis-
covery. In Proceedings of the 2003 International Conference on Mathematics and
Engineering Techniques in Medicine and Biological Sciences (METMBS), 2003b.

Steen Andreassen, Marianne Woldbye, Bjorn Falck, and Stig K. Andersen. MUNIN
— A causal probabilistic network for interpretation of electromyographic findings.
In Proceedings of the Tenth International Joint Conference on Artificial Intelligence,
pages 366–372, San Mateo, CA, 1987. Morgan Kaufmann.

Ingo A. Beinlich, H.J. Suermondt, R. Martin Chavez, and Gregory F. Cooper. The
ALARM monitoring system: A case study with two probabilistic inference tech-
niques for belief networks. In Proceedings of the Second European Conference
on Artificial Intelligence in Medicine, pages 247–256, London, 1990. Chapman and
Hall.

Gregory F. Cooper. A simple constraint-based algorithm for efficiently mining obser-
vational databases for causal relationships. Data Mining and Knowledge Discovery,
1:203–224, 1997.

Gregory F. Cooper. An Overview of the Representation and Discovery of Causal Rela-
tionships Using Bayesian Networks. In Clark Glymour and Gregory F. Cooper, ed-
itors, Computation, Causation, and Discovery, pages 3–62. MIT Press, Cambridge,
MA, 1999.

David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian net-
works: The combination of knowledge and statistical data. Machine Learning, 20
(3):197–243, 1995.

Max Henrion. Propagating uncertainty in bayesian networks by probabilistic logic
sampling. In Proceedings of the 2nd Annual Conference on Uncertainty in Artificial
Intelligence (UAI-86), New York, NY, 1986. Elsevier Science Publishing Company,
Inc.

154



CAUSAL DATA MINING

K. Kristensen and I.A. Rasmussen. The use of a Bayesian network in the design of a
decision support system for growing malting barley without use of pesticides. Com-
puters and Electronics in Agriculture, 33:197–217, 2002.

Subramani Mani. A Bayesian Local Causal Discovery Framework. PhD thesis, Uni-
versity of Pittsburgh, 2005.

Subramani Mani and Gregory F. Cooper. Causal discovery using a Bayesian local
causal discovery algorithm. In M. Fieschi et al. editor, Proceedings of MedInfo,
pages 731–735. IOS Press, 2004.

Subramani Mani, Peter Spirtes, and Gregory F. Cooper. A theoretical study of Y struc-
tures for causal discovery. In Rina Dechter and Thomas S. Richardson, editors, Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence, pages 314–323,
Corvallis, OR, 2006. AUAI Press.

Dimitris Margaritis and Sebastian Thrun. Bayesian network induction via local neigh-
borhoods. In S.A.Solla, T.K.Leen, and K.R.Muller, editors, Advances in neural in-
formation processing systems, volume 12, pages 505–511, Cambridge, MA, 2000.
MIT Press.

Andrew Moore and Weng-Keen Wong. Optimal reinsertion: A new search operator for
accelerated and more accurate bayesian network structure learning. In T. Fawcett and
N. Mishra, editors, Proceedings of the 20th International Conference on Machine
Learning (ICML ’03), pages 552–559, Menlo Park, California, August 2003. AAAI
Press.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Francisco, California, 2nd edition, 1991.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and
Search. MIT Press, Cambridge, MA, 2nd edition, 2000.

Ioannis Tsamardinos, Constantin F. Aliferis, and Alexander Stanikov. Time and sample
efficient discovery of markov blankets and direct causal relations. In Proceedings of
the 9th CAN SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 673–678, 2003.

Ioannis Tsamardinos, Laura Brown, and Constantin Aliferis. The max-min hill-
climbing Bayesian network structure learning algorithm. Machine Learning, 65:
31–78, 2006.

Appendix A. CD-B Pseudocode

In this section we provide the pseudocode for the CD-B algorithm and the details of the
various procedures called by CD-B, specifically the Markov blanket induction (MBI)
procedure and the Y arc (YA) finding procedure.
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A.1. CD-B algorithm

/* Note: When the PC DAG has 0 or 1 parent Gmax is not unique. We pick any Gmax
PC DAG from its equivalence class. This implies that in the data generating DAG the
edges of such PC DAGs can have either A! B or A B orientation. */

Input : Dataset D and the set of variables X.

Output : Pairwise causal influences of the form A! B representing Y arcs.

The following are the steps of the algorithm:

1. For each variable X 2X estimate MB(X) using the Bayesian MB induction (MBI)
procedure.

2. For each variable X 2 X DO

(a) Update MB(X). If A is in the MB of B, but B is not in the MB of A, we add
B to the MB of A.

(b) Remove the spouse nodes from MB(X) to obtain PC(X). Any node inde-
pendent of X is excluded from MB(X). Let B denote PC(X).

(c) From B[X generate all possible DAGs such that the only arcs are from
each parent to X and from X to each child. Let this set of DAGs be G.

(d) From the set of DAGs G identify the maximally scoring DAG G using the
BDeu scoring measure (Heckerman et al., 1995). Let this DAG be Gmax. If
there is a tie for Gmax, it is broken randomly.

(e) If the Gmax has 2 or more parents mark the Pa(X) and Ch(X) as oriented
(Pao(X) and Cho(X)).

(f) If the Gmax has less than 2 parents mark the Pa(X) and Ch(X) as unoriented
(Pau(X) and Chu(X)).

(g) OD

3. Using Pao(X) of all the nodes with 2 or more parents construct a global directed
graph G’. G’ may contain cycles.

4. Construct DAG G from G’ using Procedure RC.

5. Let E be the union of all the arcs from Cho(X) of all the nodes with 2 or more
parents.

6. While E not /0, insert the edge e 2 E in G iff it satisfies the following conditions
(a), (b) and (c).

(a) Not already present in G.

(b) No cycle is introduced in G.
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(c) Insert the e that maximizes the score for G.

(d) Remove e from E.

(e) OD

7. Let E be the union of all the edges ignoring direction from Pau(X) and Chu(X) of
all the nodes with less than 2 parents.

8. While E not /0, insert the edge e 2 E (A! B or A B) in G iff it satisfies the
following conditions (a), (b) , (c) and (d).

(a) Not already present in G ignoring direction.

(b) No new V structure is introduced in G.

(c) No cycle is introduced in G.

(d) Insert the e that maximizes the score for G.

(e) Remove e from E.

(f) OD

9. Remove cycles from G using Procedure RC.

10. Identify all the Y arcs (YA) in G using Procedure YA and output the YA.

A.1.1. PROCEDURE MBI

We derive an estimate of the Market blanket (MB) of a node (designated as H) using a
greedy forward and backward heuristic search which we refer to as the Procedure MBI.

Input: Dataset D over observed random variables X and a variable X 2 X.

Output: Markov blanket of X in a data generating network, which we denote MB(X)
i.e. the union of estimated parents, children and spouses (parents of children) of
node X , under the assumption the data is being generated by a faithful Bayesian
network on measured variables X.

The following are the steps of the MBI procedure:

• Identify the set H’ ✓ X \ X that maximizes the BDeu score for the structure
H’! X based on a one-step forward greedy search.

• Perform a one step backward greedy search that prunes H’ to yield set H ✓ H’
that maximizes the score for the structure H! X .

• Output H which represents MB(X).
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A.1.2. PROCEDURE RC

This procedure removes the cycles from a directed graph. The “weakest” arc is removed
iteratively till all cycles are eliminated.

Input: A directed graph G’.

Output: A directed acyclic graph G.

The following are the steps of the procedure:

1. Check for cycle(s) in G’. If no cycle assign G’ to G and return G.

2. Identify all the arcs forming cycle(s). Let these set of arcs be E.

3. Identify the weakest arc E 2 E by iteratively removing each arc from E and
scoring the graph using the BDeu scoring measure. The arc causing the least
reduction in the BDeu score is determined to be the weakest.

4. Remove E from G’. Let the resulting graph be G’. GOTO Step 1.

A.1.3. PROCEDURE YA

We identify all the unique Y arcs (YA) in a DAG G using this procedure. The procedure
looks for all the embedded Y structures (EYS) in G. We say that G contains an embed-
ded Y structure involving the variables W1,W2,X and Z, iff all and only the following
adjacencies hold among the variables W1,W2,X and Z (A⇤B means that there is no arc
between A and B):

• W1⇤W2; W1⇤Z; W2⇤Z

• W1! X ; W2! X ; X ! Z

Input: A DAG G and a set of nodes X in G.

Output: A set of Y arcs denoted as Y.

Initialize set of YA as Y := {}.
For each X 2 X
DO

Determine Pa(X) for X .
If |Pa(X)| 1

Continue /* Next iteration */
Determine Ch(X) for X .
If |Ch(X)|< 1

Continue /* Next iteration */

/* Look for Y structure */
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For each pair of parents W1,W2 of X
DO

If W1 and W2 are adjacent then Continue
For each child Z 2 Ch(X)
DO

If (W1,Z) or (W2,Z) adjacent then Continue
If (X ! Z) /2 Y

Y := Y [{X ! Z}
OD

OD
OD
Return Y
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Abstract
Recent evaluations have indicated that in practice, general methods for prediction
which do not account for changes in the conditional distribution of a target varia-
ble given feature values in some cases outperform causal discovery based methods
for prediction which can account for such changes. We investigate some possibil-
ities which may explain these findings. We give theoretical conditions, which are
confirmed experimentally, for when particular manipulations of variables should not
affect predictions for a target. We then consider the tradeoff between errors related
to causality, i.e. not accounting for changes in a distribution after variables are ma-
nipulated, and errors resulting from sample bias, overfitting, and assuming specific
parametric forms that do not fit the data, which most existing causal discovery based
methods are particularly prone to making.
Keywords: causal discovery, prediction, interventions

1. Introduction

Most methods in machine learning are intended primarily for prediction. Given training
data for a target variable T to be predicted and a set of associated predictor variables X,
the goal is to use the training data to learn a prediction function T = f (X) that can be
used to predict values for the target given values for the predictor variables, assuming
the conditional distribution P(T |X) does not change after the training data is collected.
In general, we are not concerned with whether the prediction function actually depicts
true causal relationships between variables in the underlying data generating mecha-
nism; we care only whether it makes accurate predictions.

The advantage of causal discovery methods is that they can be be used to learn
models that depict true data generating mechanisms. We can discover particular causal
relationships between variables to determine which variables should be manipulated
when setting policies to achieve a desired effect. We can use the resulting causal mo-

c� 2010 R.E. Tillman & P. Spirtes.
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dels to predict the effects of such manipulations or make predictions for a target variable
when we have data for the predictor variables even if some variables have been manip-
ulated since the training data was collected.

Evaluations of causal discovery methods have focused primarily on how closely
the resulting causal models resemble true data generating mechanisms obtained either
through simulations or data from controlled experiments. There has been little focus
on how accurate predictions made using causal discovery methods after variables are
manipulated are relative to known values for a predicted variable, i.e. using test data
from the manipulated population, which is the primary means for evaluating most other
methods in machine learning. Recent results from a causality challenge1 have raised
questions as to whether existing causal discovery methods are useful for making such
predictions. In the challenge, some participants used prediction methods which ig-
nored causality to predict a target variable after predictor variables were manipulated,
i.e.. applying support vector machines trained using the unmanipulated data to make
predictions for the manipulated data without any adjustments to account for the manip-
ulations, and in some cases achieved results that were better than any of the participants
who used causal discovery based methods for prediction.

One possible explanation for these results is that there is a noticeable tradeoff when
using causal discovery methods to make such predictions: while causal discovery meth-
ods may make the proper adjustments to account for the change in a distribution after
variables are manipulated, prediction with causal discovery based methods may result
in significant errors due to overfitting and sampling bias as well as parametric assump-
tions, i.e. linearity, Gaussianity, which do not hold. There is nothing inherent in causal
models or causal inference that requires parametric assumptions that are more restric-
tive than other machine learning methods; however, most2 existing causal discovery
algorithms do require such assumptions. Thus, most causal discovery methods for pre-
diction may result in considerably more of this second type of error than many other
nonparametric methods in machine learning, such as support vector machines. Further-
more, in many cases, manipulating a particular variable in a causal system will have
no effect on the predicted value of a particular target, e.g. if the manipulated variable
is conditionally independent of the target variable given the set of predictor variables.
Thus, if certain parametric assumptions made by causal discovery algorithms do not
hold for some data, then we should expect nonparametric methods for predictions and
methods which make less strict parametric assumptions to outperform causal discovery
based methods for predictions even for some cases where variables are manipulated
after the training data is collected.

In this paper, we begin to investigate this tradeoff. We review the relevant termi-
nology in section 2. In section 3, we present theoretical conditions which distinguish
manipulations which do affect predictions for a target from those which do not and
demonstrate how causal discovery methods used for prediction can account for the

1. See http://www.causality.inf.ethz.ch/challenge.php for details.
2. There have been several recent proposals which require less restrictive parametric assumptions, i.e.

Shimizu et al. (2006), Hoyer et al. (2008), Hoyer et al. (2009).
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change in distribution. In section 4, we then experimentally test these conditions using
synthetic data to confirm that they at least hold in the cases favorable for casual discov-
ery methods. Conclusions are offered in section 5.

2. Formal preliminaries

We first introduce some terminology. A directed graph G = hV,Ei is a set of nodes V ,
which represent variables, and a set of directed edges E connecting distinct nodes. For
a node V 2 V , PaGV refers to the set of nodes that are parents of V (nodes with an edge
directed into V ), ChG

V refers to the children of V (nodes with an edge directed out of
V ), and CoGV refers to the coparents (spouses) of V (parents of children of V other than
V ). A trail in G is a sequence of nodes such that each adjacent pair in the sequence is
connected by an edge (ignoring directions), and no node appears more than once in the
sequence. A trail is a directed path if every edge points in the same direction. G is a
directed acyclic graph (DAG) if for every pair {X ,Y}✓ V , there are not directed paths
from both X to Y and Y to X (no directed cycles). X is an ancestor (descendant) of Y if
there is a directed path from X to Y (Y to X). A v-structure (collider) is a triple of nodes
hX ,Y,Zi such that X and Z are parents of Y .3 A trail is active given a conditioning set
C✓ V if (i) for every v-structure hX ,Y,Zi in the trail either Y 2 C or some descendant
of Y is in C and (ii) no other node in the trail is in C. For disjoint sets of nodes, X, Y,
and Z, X is d-separated from Y given Z if and only if there are no active trails between
any X 2 X and any Y 2 Y given Z.

A Bayesian network B is a pair hG,Pi, where G = hV ,Ei is a DAG and P is a joint
probability distribution over the variables represented by the nodes in V such that P
can be factored as follows:

P(V) = ’
V2V

P(V |PaGV )

If X is d-separated from Y given Z in G, then X is conditionally independent of Y given
Z in P (Pearl, 1988). For disjoint sets of nodes, X, Y, and Z in V , P is faithful to G if X
is d-separated from Y given Z in G whenever X is conditionally independent of Y given
Z in P (Spirtes et al., 2000). B is said to be a causal Bayesian network if an edge from
X to Y indicates that X is a direct cause of Y relative to V . When performing causal
inference, it is generally assumed that the distribution over the observed variables P
factors according to a DAG G in a causal Bayesian network B= hG,Pi and P is faithful
to G. In this paper, we assume that there are no unmeasured common causes of variables
in V .

For a Bayesian network B = hG,Pi, where G = hV ,Ei, a Markov blanket for some
node V 2 V in G, MBG

V , is a minimal set of variables in V/{V} such that V is con-
ditionally independent of V/{MBG

V [ {V}} given MBG
V . If P is faithful to G, then

MBG
V = PaGV [ChG

V [CoGV , for any V 2 V (Pearl, 1988).

3. We are using the definition given in Koller and Friedman (2008). Other sources use v-structure to
refer to only such triples where X and Z are not adjacent (an immorality or unshielded collider).
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We represent manipulations of variables Z ✓ V in a causal Bayesian network B =
hG,Pi where G = hV,Ei, by forming the new DAG G(Policy(Z)), where we introduce
a new exogenous node (node without parents) Policy(Z) to G that is a parent of only Z,
for each Z 2Z. For disjoint sets of non-policy nodes X and Y, a conditional distribution
P(Y|X) is invariant under the manipulation of Z if P(Y|X) is the same when the varia-
bles in Z are manipulated and the variables in Z are unmanipulated. If Policy(Z), the
set of all policy nodes, is d-separated from Y given X in G(Policy(Z)), then P(Y|X) is
invariant under manipulation of Z (Spirtes et al., 2000). PM, the distribution resulting
from manipulating the variables in Z, factors according to the DAG GM, which is G
changed by removing every edge that is directed into some Z 2 Z (Spirtes et al., 2000).

3. Invariance of predictions under manipulations

In some cases, it is obvious that manipulations of certain variables will not affect pre-
dictions for other variables. Consider the simple case of two variables X and Y , where
X causes Y and there are no common causes of X and Y . If X is manipulated, this does
not change the distribution of P(Y |X), which produces the Bayes optimal prediction for
Y . Thus, a classifier or regression method trained using data from a population where X
is not manipulated should correctly make predictions for Y using test data from a popu-
lation where X is manipulated without any adjustments to account for the manipulation.
The following theorem distinguishes the more complicated cases where manipulations
do not affect predictions for a target variable from those where manipulations do affect
predictions.

Theorem 1 Let B = hG,Pi be a Bayesian network over variables V , T 2 V a target
predicted variable, X✓ V a set of predictor variables, and Z✓ V a set of variables that
are manipulated. If 8Y 2 Y, Y 6= T and Y /2 ChG

T , then P(T |X) is invariant under the
manipulation.

Proof Let P be a trail between T and Policy(Y ) for some Y 2 Y. If P is into T , e.g.
some node Z in P is a parent of T , then Z and T do not form a v-structure with some
parent or child of Z in P and Z 2X since Z 2 PaGT so P is not an active trail for T given
X. If P is out of T , e.g. some node Z in P is a child of T , and some child U of Z is in
P, then hU,Z,T i is not a v-structure and Z 2X since Z 2ChG

T so P is not an active trail
for T given X. If P is out of T and some parent U of Z other than T is in P, then U and
Z do not form a v-structure with some parent or child of U and Z 2 X and U 2 X since
Z 2 PaGT and U 2 CoGT so P is not an active trail for T given X. This exhausts all cases
so Policy(Y ) and T are d-separated given X.

Thus, as long as a set of predictors includes the Markov blanket for a target node, pre-
diction will be unaffected by any manipulation which does not change the value of a
child of the target, even if the manipulation changes the value of another variable in the
Markov blanket. In such cases, causal knowledge will not improve the accuracy of pre-
dicted values in any way (though we will not know whether prediction is affected by a
manipulation unless we know the causal relationships in the underlying data generating
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mechanism). While this is a straightforward result, it is important in practice. Most
methods for prediction which do an explicit or implicit feature selection will likely
assign high weight to (at least most of) the features in the Markov blanket. Since in
most cases, the children of a particular target will consist of only a small percentage
of the nodes in a graph, it is unlikely that the target will have many children that are
manipulated to unlikely values, which would lead to high error in prediction. In many
cases, errors resulting from manipulated children of a target that are used as features
may be negligible and canceled out by other gains made by a prediction method that
combats overfitting well or does not make restrictive parametric assumptions. In other
cases where we may expect many children to be manipulated to unlikely values, we can
use causal knowledge to select the correct set of predictors for the manipulated distri-
bution and avoid errors resulting from manipulated children of a target that are used as
features.

Theorem 2 Let B = hG,Pi be a Bayesian network over variables V , T 2 V a target
predicted variable, X✓ V a set of predictor variables, and Z✓ V a set of variables that
are manipulated. If X = MBGM

T , then P(T |MBGM
T ) is invariant under the manipulation

of Z if 8Z 2 {Z\ChG
T}, Z is not an ancestor of some X 2 ChG

T such that X /2 Z.

Proof If P(T |MBGM
T ) is not invariant under the manipulation of Z, then there is an

active trail R between T and Policy(Z) for some Z 2 Z given MBGM
T in G(Policy(Z)).

Let X be the node in R connected to T , and U the node connected to X in R other than
T . If X is a parent of T , then X 2MBGM

T and hU,X ,T i is not a v-structure so R is not
active. Thus, X is a child of T . We have the following 2 cases. Case 1: hU,X ,T i is
not a v-structure. R is active given MBGM

T so X /2MBGM
T . X 2 ChG

T and X /2MBGM
T so

X 2 Z. Policy(Z) and T are both parents in R, so X is an ancestor of the middle node of
a v-structure in R. R is active so the middle node of this v-structure either is contained
in or has a descendant in MBGM

T . Thus, X is an ancestor of some W 2MBGM
T . Case 2:

hU,X ,T i is a v-structure in R. R is active given MBGM
T so U /2MBGM

T . U 2 CoGT and
U /2MBGM

T so X 2 Z. R is active given MBGM
T so X is either contained in or has a de-

scendant in MBGM
T . Thus, for cases 1 and 2, X 2 Z and either X is an ancestor of some

W 2MBGM
T or X 2MBGM

T . If W 2 PaGT (X 2 PaGT ), then there is a directed path from
T to W (X) and a directed path from W (X) to T . G is acyclic so W (X) 2 ChG

T [CoGT
and either W (X) /2 Z or W (X) is a parent of some Q 2 ChG

T such that Q /2 Z. But
since X 2 Z, there are only three cases: (i) X 2 ChG

T [CoGT and X is a parent of some
Q 2 ChG

T such that Q /2 Z, (ii) W 2 ChG
T [CoGT and W /2 Z and (iii) W 2 ChG

T [CoGT
and W is a parent of some Q 2ChG

T such that Q /2 Z. In all three cases X is an ancestor
of some S 2 ChG

T such that S /2 Z.

As long as we are using the the Markov blanket for the manipulated structure, e.g. after
policy nodes are added, as our set of predictors, which requires causal knowledge, pre-
dictions will not be affected by manipulated children unless there is some manipulated
child of the target that is an ancestor of an unmanipulated child of the target. When
it is the case that a manipulated child of the target is an ancestor of some unmanipu-
lated child, we can still make predictions using the Markov blanket for the manipulated
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Figure 1: (a) causal structure used in the simulations, (b) averaged squared differences
in predictions using the ground truth regression equations for the manipulated
and unmanipulated datasets

structure, but a correction4 needs to be made to subtract out the influence from the ma-
nipulated variable. In practice, however, failure to make this correction usually has little
effect on predictions. The importance of this theorem is that it allows us to select the
correct set of predictors to account for changes in a distribution resulting from manip-
ulations, regardless of what variables are manipulated. Thus, we should expect causal
discovery based methods for prediction to perform increasingly better than methods for
prediction which ignore causality as we increase the number of children of a target va-
riable that are manipulated if the parametric assumptions made by the causal discovery
methods are reasonable for some given data and error due to overfitting and sampling
bias are reasonably low, even if such instances are not representative of the majority of
cases. This hypothesis is evaluated in the next section.

4. Experimental results

We first constructed the graph of the causal environment around the target node T
shown in figure 1a to use in the following experiments. The graph was constructed
to be similar to the causal environment we learned for the target variable in one of the
challenge datasets. We chose random linear Gaussian parameters for the variables in
this structure and used forward sampling to generate a synthetic training dataset of size
N = 1000. We then generated test datasets of sizes N = 1000 after various manipula-
tions were made to variables in the structure. We first manipulated 0, 5, and 10 random

4. To compute this correction, we (i) replace the original equations for predicting the manipulated varia-
bles with the new manipulated equations (e.g. if Z is manipulated to 3, then the new equation is Z =
3), (ii) calculate the implied covariance matrix for the manipulated set of equations, and (iii) use the
implied covariance matrix for the manipulated set of equations to calculate the equation for predicting
the target variable in the usual way.
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non-children of T and then for each we also manipulated from 0 to 9 children of T .
In our simulations, we manipulated variables by setting each manipulated variable’s
dependency with all parents to 0, its mean to an unlikely value, and its variance to a
small value. Each simulation described below was repeated 100 times and the results
averaged.

Before considering a realistic prediction scenario, we first show the isolated causal
component of prediction errors to confirm that the distributions are changing as varia-
bles are manipulated in our simulations according to the theorems from section 3. Using
the chosen parameters for the models, we calculated ground truth regression equations
for the target variable in the unmanipulated model and each manipulated model. We
then calculated predicted values for T using the values of all predictor variables in each
test dataset with these ground truth equations. Figure 1b shows the average squared dif-
ference between the predicted values using the equations for the unmanipulated model
and each manipulated model. When the number of manipulated variables in ChG

T is 0,
there is no difference between the predictions, even when 5 or 10 non-children of T are
manipulated. However, as we increase the number of variables in ChG

T that are manipu-
lated, the difference between the predicted values increases at approximately the same
rate regardless of the number of non-children of T that are manipulated. This confirms
theorem 1. To confirm theorem 2, we repeated this procedure using only the variables
in MBGM

T as predictors for T and made corrections for manipulated children of T that
are ancestors of unmanipulated children of T in a given simulation. In each of these
cases, there was no difference in the predictions for T when using the ground truth re-
gression equations for either the unmanipulated or manipulated models, indicating that
the change in the distribution was correctly accounted for using the causal information.

We now consider the scenario from the causality challenge where we have only
training data from the unmanipulated population and test data from some manipulated
population and we know the variables that were manipulated. We used two simple
causal discovery based methods for prediction: LR-MB/C and LR-MB/C*. For both
of these methods we used the training data to calculate parameters for the model, then
made the appropriate changes to the model and parameters to account for the manipu-
lations, and finally used the parameters to calculate a regression equation for T using
only the variables in MBGM

T , which was used to obtain a predicted value for T . For
LR-MB/C* we added the additional step of correcting for manipulated nodes that are
ancestors of unmanipulated nodes, as described in section 3. We used six other methods
for prediction where causality was ignored: LR-ALL, LR-MB, LASSO, SVR-RBF, and
RVR-RBF. In each case, a prediction function for T was learned using the training data
and then applied to the manipulated test data without accounting for the manipulated
variables in any way. LR-ALL and LR-MB are simply linear regression using all of the
variables other than T as predictors and only the variables in MBG

T as predictors, re-
spectively. LASSO is the “least absolute shrinkage and selection operator”, which uses
the L1 penalty to obtain a sparse linear regression model (Tibshirani, 1996). SVR-RBF
is support vector regression with a Gaussian RBF kernel (Smola and Schölkopf, 1998),
RVR-RBF is relevance vector regression with a Gaussian RBF kernel (Tipping, 2001).

167



TILLMAN SPIRTES

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

Number of manipulated children of T

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 

 
LR−ALL
LR−MB
LASSO
SVR−RBF
RVR−RBF
LR−MB/C
LR−MB/C*

Figure 2: Mean squared error when 0 non-children of T are manipulated

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

Number of manipulated children of T

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 

 
LR−ALL
LR−MB
LASSO
SVR−RBF
RVR−RBF
LR−MB/C
LR−MB/C*

Figure 3: Mean squared error when 5 non-children of T are manipulated

Figures 2, 3, and 4 show the mean squared errors for the predicted values for T for each
method as the number of manipulated children increases from 0 to 9, when 0, 5, and 10
non-children of T are manipulated, respectively.

As expected, the methods which take advantage of the causal structure perform
no better than the methods that ignore causality when we manipulate 0, 5, or 10 non-
children of T as long as no children of T are manipulated. If fact, when no variables are
manipulated, the causal methods show the highest error. However, as we manipulate
children of T , the accuracy of the causal methods does not change, but the non-causal
methods begin to perform progressively worse. The trend as the number of manipulated
children increases appears relatively constant for the 0, 5, and 10 manipulated non-
children cases. We also note that the difference between LR-MB/C and LR-MB/C* are
not noticeable in any case, indicating that the correction applied with the LR-MB/C*
method does not make a considerable difference in practice. We attempted the same
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Figure 4: Mean squared error when 10 non-children of T are manipulated

simulations after adding nonlinear dependencies between the variables to test a case
where the parametric assumptions made by the causal methods do not hold, but the
results were not very informative. We simply note that the nonparametric SVR-RBF
and RVR-RBF methods performed best, as we might expect, but made slightly more
errors when children of T were manipulated.

5. Conclusions

The conditions from section 3, confirmed experimentally in section 4, may help to
explain the surprising results from the recent causality challenge. There is a tradeoff
between gains resulting from using the correct causal set of predictors and losses re-
sulting from overfitting and sample bias as well as when parametric assumptions made
by causal discovery algorithms do not hold. While the results given in section 4 indi-
cate that there are cases where we should expect causal discovery based methods for
prediction to strongly outperform prediction methods which do not account for causal-
ity, these cases, where many variables of a target node are manipulated, may not arise
frequently in practice, and the exact parametric forms used when generating the data
in the experiments may not be reflective of real world data. Thus, in practice, we
may see greater performance when nonparametric methods and methods which make
less restrictive assumptions about parametric forms and combat overfitting well that ig-
nore causality are used, since even though these methods may make errors related to
causality, i.e. not accounting for changes in a distribution after variables are manipu-
lated, these errors may be small when compared to errors resulting from overfitting and
sampling bias and when parametric assumptions do not reflect the data when causal
discovery algorithms are used.

One possibility for achieving accurate results while still accounting for causality is
to use methods which perform well in the prediction scenario with only the causally
correct set of variables for each particular setting where certain variables are manip-
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ulated, e.g. retrain support vector machines using different sets of “causal” features
for each prediction setting where manipulations vary. While using more sophisticated
methods for prediction with such causal features may certainly produce models that are
less likely to make errors related to sampling bias and overfitting, this still may not over-
come problems resulting from assuming a parametric form which does not fit the data.
In the experiments in section 4, we assumed that we were able to learn the correct Baye-
sian network for the data using a causal discovery algorithm, since the variables were
linear Gaussians. However, if the data are very nonlinear then the DAG learned may
be far from the truth. Thus, it would make more sense to use the features selected by a
nonparametric method which does not account for causality, since the causally relevant
set of variables for a particular setting where variables are manipulated that is indicated
by the DAG may remove important variables and include problematic variables due to
errors made by the causal discovery algorithm when a parametric form which does not
fit the data is assumed. Fortunately, there has been much recent work in developing
causal discovery algorithms which make less restrictive assumptions about the para-
metric forms, i.e. Shimizu et al. (2006), Hoyer et al. (2008), Hoyer et al. (2009). This
may indeed become a possibility for obtaining accurate predictions that are sensitive to
changes in a distribution when variables are manipulated in the future.

There are also many other factors which can affect prediction in these contexts. We
merely highlighted a few factors relevant for the causality challenge. In particular, we
considered only structural or perfect manipulations. In practice, manipulations may not
completely break edges into a manipulated node and instead only change the condi-
tional distribution of the node, and may affect other variables as well. We also have not
considered the effects of unobserved variables which are causes of more than one of the
observed variables on predictions or how well the children of a target variable predict
the target compared to other variables in the Markov blanket. A more thorough inves-
tigation which considers some of these factors and uses more realistic data for testing
may provide a more complete understanding of when causality is useful for making
predictions.
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Abstract
We describe eight data sets that together formed the CauseEffectPairs task in
the Causality Challenge #2: Pot-Luck competition. Each set consists of a sample of
a pair of statistically dependent random variables. One variable is known to cause
the other one, but this information was hidden from the participants; the task was to
identify which of the two variables was the cause and which one the effect, based
upon the observed sample. The data sets were chosen such that we expect common
agreement on the ground truth. Even though part of the statistical dependences may
also be due to hidden common causes, common sense tells us that there is a significant
cause-effect relation between the two variables in each pair. We also present baseline
results using three different causal inference methods.
Keywords: causal inference, benchmarks

1. Introduction

Arguably, the most elementary problem in causal inference is to decide whether statis-
tical dependences between two random variables X ,Y are due to (a) a causal influence
from X to Y , (b) an influence from Y to X , or (c) a possibly unobserved common cause
Z influencing X and Y . Most of the state-of-the-art causal inference algorithms address
this problem only if X and Y are part of a larger set of random variables influencing
each other. In that case, conditional statistical dependences rule out some causal di-
rected acyclic graphs (DAGs) and prefer others (Spirtes et al., 1993; Pearl, 2000).

Recent work (Kano and Shimizu, 2003; Sun et al., 2006; Shimizu et al., 2006;
Sun et al., 2008; Hoyer et al., 2009; Janzing and Schölkopf, 2008) suggests that the
shape of the joint distribution shows asymmetries between cause and effect, which often
indicates the causal direction with some reliability, i.e., one can distinguish between
cases (a) and (b).

To enable more objective evaluations of these and other (future) proposals for iden-
tifying cause and effect, we have tried to select real-world data sets with pairs of varia-
bles where the causal direction is known. The best way to obtain the ground truth of
the causal relationships in the systems that generated the data would be by performing

c� 2010 J. Mooij & D. Janzing.
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Data set Number of samples Variable 1 Variable 2 Causal relationship

pairs01 349 Altitude Temperature 1! 2
pairs02 349 Altitude Precipitation 1! 2
pairs03 349 Longitude Temperature 1! 2
pairs04 349 Sunshine hours Altitude 1 2
pairs05 4177 Length Age 1 2
pairs06 4177 Age Shell weight 1! 2
pairs07 4177 Diameter Age 1 2
pairs08 5000 Age Wage per hour 1! 2

Table 1: Data sets in the CauseEffectPairs task.

interventions on one of the variables and observing whether the intervention changes
the distribution of the other variable. Unfortunately, these interventions cannot be made
in practice for many of the existing data sets because the original data-generating sys-
tem is no longer available, or because of other practical reasons. Therefore, we have
selected some data sets in which the causal direction should be clear by common sense.

In selecting the data sets for the CauseEffectPairs task, we applied the follo-
wing selection criteria:

• the minimum number of data points should be a few hundred;

• the variables should have continuous values;

• there should be a significant cause–effect relationship between the two variables;

• the direction of the causal relationship should be known or obvious from the
meaning of the variables;

We collected eight data sets satisfying these criteria, which we refer to as pairs01,
. . . , pairs08. They can be downloaded from Mooij et al. (2008). Some properties of
the data sets are given in Table 1.

In this article, we describe the various data sets in the task and provide our “common
sense” interpretation of the causal relationships present in the variables. We also present
baseline results of all previously existing applicable causal inference methods that we
know of.

2. Climate data

The first four pairs were obtained from climate data provided by the Deutscher Wetter-
dienst (DWD) and are available online at Deutscher Wetterdienst (2008). We merged
several of the original data sets to obtain data for 349 weather stations in Germany,
selecting only those weather stations with no missing data. After merging the data sets,
we selected the following six variables: altitude, latitude, longitude, and annual mean
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values (over the years 1961–1990) of sunshine duration, temperature and precipitation.
We converted the latitude and longitude variables from sexagesimal to decimal nota-
tion. Out of these six variables, we selected four different pairs with “obvious” causal
relationships: altitude–temperature, altitude–precipitation, longitude–temperature and
sunshine–altitude. We will now discuss each pair in more detail.

2.1. Altitude and temperature

As an elementary fact of meteorology, places with higher altitude tend to be colder than
those that are closer to sea level (roughly 1 centigrade per 100 meter). There is no
doubt that altitude is the cause and temperature the effect: one could easily think of an
intervention where the thermometer is lifted by a balloon to measure the temperature at
a higher point of the same longitude and latitude. On the other hand, heating or cooling
a location does not change its altitude.

The altitudes in the DWD data set range from 0 m to 2960 m, which is sufficiently
large to detect significant statistical dependences. The data is plotted in Figure 1(a).

One potential confounder is latitude, since all mountains are in the south and far
from the sea, which is also an important factor for the local climate. The places with
the highest average temperatures are therefore those with low altitude but lying far in
the south (Upper Rhine Valley). Hence this confounder should induce positive correla-
tions between altitude and temperature as opposed to the negative correlation between
altitude and temperature which is already evident from the scatter plot. This suggests
that the direct causal relation between altitude and temperature dominates over the con-
founder.

2.2. Altitude and precipitation

Altitude and precipitation form the second pair of variables that we selected from the
DWD data; their relation is plotted in Figure 1(b).

It is known that altitude is also an important factor for precipitation since rain often
occurs when air is forced to rise over a mountain range and the air becomes oversatu-
rated with water due to the lower temperature (orographic rainfall). This effect defines
an indirect causal influence of altitude on precipitation via temperature. These causal
relations are, however, less simple than the causal influence from altitude to tempera-
ture because gradients of the altitude with respect to the main direction of the wind are
more relevant than the altitude itself. The hypothetical intervention that defines a causal
relation could be to build artificial mountains and observe orographic rainfall.

2.3. Longitude and temperature

For the dependence between longitude and temperature, shown in Figure 1(c), a hypo-
thetical intervention could be to move a thermometer between west and east. Even if
one could adjust for altitude and latitude, it is unlikely that temperature would remain
the same since the climate in the west is more oceanic and less continental than in the
east of Germany. Therefore, longitude causes temperature.
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(a) (b)

(c) (d)

Figure 1: Scatter plots of the German climate data: (a) altitude–temperature,
(b) altitude–precipiation, (c) longitude–temperature, (d) altitude–sunshine
hours.
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2.4. Sunshine hours and altitude

The fourth and final pair of DWD variables are sunshine duration and altitude, shown
in Figure 1(d). Linear regression between both quantities shows a slight increase of
sunshine duration with altitude. Possible explanations are that higher cities are some-
times above low-hanging clouds. Cities in valleys, especially if they are close to rivers
or lakes, typically have more misty days. Moving a sunshine sensor above the clouds
clearly increases the sunshine duration whereas installing an artificial sun would not
change the altitude. The causal influence from altitude to sunshine duration can be con-
founded, for instance, by the fact that there is a simple statistical dependence between
altitude and longitude in Germany as explained in Subsection 2.1.

3. Abalone data

Another three pairs of variables were selected from the Abalone data set (Nash et al.,
1994) in the UCI Machine Learning Repository (Asuncion and Newman, 2007). The
data set contains 4177 measurements of several variables concerning the sea snail
Abalone. The original data set contains the nine variables sex, length, diameter, height,
whole weight, shucked weight, viscera weight, shell weight and number of rings. The
number of rings in the shell is directly related to the age of the snail: adding 1.5 to the
number of rings gives the age in years. Of these variables, we selected three pairs with
obvious cause-effect relationships, which we now discuss in more detail.

3.1. Length and age

The data for the first Abalone pair, length and age, is plotted in Figure 2(a). For the
variable “age” it is not obvious what a reasonable intervention would be since there
is no possibility to change the time. However, waiting and observing how the length
changes or how it changed from the past to the present can be considered as equivalent
to the hypothetical intervention (provided that the relevant background conditions do
not change too much). Clearly, this “intervention” would change the probability distri-
butions of the length, whereas changing the length of snails (by a complicated surgery)
would not change the distribution of age. Regardless of the difficulties of defining
interventions, we expect common agreement on the ground truth (age causes length).

3.2. Age and shell weight

The data are plotted in Figure 2(b). Similar considerations as in Subsection 3.1 hold for
the ground truth: age causes shell weight but not vice versa.

3.3. Diameter and age

For the final pair, shell diameter and age, the data are plotted in Figure 2(c). Again, age
causes diameter and not the other way around.
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(a) (b)

(c)

Figure 2: Scatter plots of the Abalone data: (a) length–age, (b) age–shell weight, (c)
diameter–age.

4. Age and wage per hour of employees in the USA

Our final data source was the Census Income data set (Kohavi, 1996) in the UCI
Machine Learning Repository (Asuncion and Newman, 2007). We have selected the
following variables: 1 AAGE (age), and 7 AHRSPAY (wage per hour) and selected
the first 5000 instances for which wage per hour was not equal to zero. The scatter plot
for this pair is shown in Figure 3. It clearly shows an increase of wage up to about 45
and decrease for higher age.

As already argued in the Abalone case, interventions on the variable “age” are dif-
ficult to define. Compared to the discussion in the context of the Abalone data set, it
seems more problematic to consider waiting as a reasonable “intervention” since the
relevant (economical) background conditions change rapidly compared to the length of
the human life: If someone’s salary is higher than the salary of a 20 year younger col-
league because of his/her longer job experience, we cannot conclude that the younger
colleague 20 years later will earn the same money as the colleague earns now. Pos-
sibly, the factory or even the branch of industry he/she was working in does not exist
any more and his/her job experience is no longer appreciated. However, we know that
employees sometimes indeed do get a higher income because of their longer job experi-
ence. Pretending longer job experience by a fake certificate of employment would be a
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Figure 3: Scatter plot of Census data: age–wage per hour.

possible intervention. On the other hand, changing the wage per hour is an intervention
that is easy to imagine (though difficult for us to perform) and this would certainly not
change the age.

5. Baseline results

At the time the challenge was held, only three methods existed for deciding upon the
causal direction between two real-valued variables, to the best of our knowledge: the
method proposed by Friedman and Nachman (2000), LiNGAM (Shimizu et al., 2006)
and the causal inference method of Hoyer et al. (2009). In this Section, we report the
results of applying these three methods to the data sets of the challenge task. These
results may serve as baseline results for future evaluations.

5.1. Comparing marginal likelihood of Gaussian Process regression fits

The basic idea behind the method of Friedman and Nachman (2000) (when applied to
the special case of only two variables X and Y ) is fitting a Gaussian Process (Rasmussen
and Williams, 2006) to the data twice: once with X as input and Y as output, and once
with the roles of X and Y reversed. If the former fit has a larger marginal likelihood, this
indicates that X causes Y , and otherwise, one concludes that Y causes X . We adopted
a squared exponential covariance function and used the GPML code (Rasmussen and
Williams, 2007).

The results are shown in Table 2. Only three out of eight causal direction inferences
are correct.

5.2. LiNGAM

The causal inference method LiNGAM (an acronym for Linear, Non-Gaussian, Acyclic
causal Models) assumes that effects are linear functions of their causes, plus indepen-
dent additive noise. Shimizu et al. (2006) showed that if all (or all except one of the)
noise distributions are non-Gaussian, the correct causal (data-generating) structure can
be identified asymptotically using Independent Component Analysis. We have applied
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Dataset S1!2 S1 2 Decision Ground truth Correct?

pairs01 2.183⇥1002 2.171⇥1002 1! 2 1! 2 +
pairs02 3.355⇥1002 3.385⇥1002 1 2 1! 2 -
pairs03 4.858⇥1002 4.603⇥1002 1! 2 1! 2 +
pairs04 4.821⇥1002 4.889⇥1002 1 2 1 2 +
pairs05 5.141⇥1003 4.291⇥1003 1! 2 1 2 -
pairs06 4.568⇥1003 4.801⇥1003 1 2 1! 2 -
pairs07 5.086⇥1003 4.243⇥1003 1! 2 1 2 -
pairs08 6.842⇥1003 6.869⇥1003 1 2 1! 2 -

Table 2: Baseline results for distinguishing the cause from the effect, using the method
of Friedman and Nachman (2000); S denotes the logarithm of the marginal
likelihood of the Gaussian Process fit.

Dataset Diagnostic Decision Ground truth Correct?

pairs01 OK 1 2 1! 2 -
pairs02 Not really triangular at all 1 2 1! 2 -
pairs03 Not really triangular at all 1! 2 1! 2 +
pairs04 Only somewhat triangular 1! 2 1 2 -
pairs05 OK 1! 2 1 2 -
pairs06 OK 1 2 1! 2 -
pairs07 OK 1! 2 1 2 -
pairs08 OK 1! 2 1! 2 +

Table 3: Baseline results for distinguishing the cause from the effect, using LiNGAM
Shimizu et al. (2006).
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the implementation provided by the authors at (Hoyer et al., 2006) on the data sets of
our challenge task.

The results are shown in Table 3. Only two out of eight causal direction inferences
are correct.

5.3. Additive noise models

The basic idea of the recent method by Hoyer et al. (2009) is to assume that the effect
can be written as some (not necessarily linear) function of the cause, plus additive noise,
which is independent of the cause. In practice, one tests the causal model “X causes Y ”
as follows:

• perform regression of Y on X in order to estimate the function f : R! R that
best approximates the functional relationship between X and Y , i.e., such that
Y ⇡ f (X),

• calculate the residuals Y � f (X) for all data points,

• check whether these residuals are independent of X , i.e., whether (Y� f (X))??X .

For the regression, we used standard Gaussian Process Regression (Rasmussen and
Williams, 2006) using the GPML code (Rasmussen and Williams, 2007), with a squared
exponential covariance function. For the independence test, we used the independence
test based on the Hilbert Schmidt Independence Criterion (also known as HSIC) (Gret-
ton et al., 2005), using the gamma approximation and Gaussian kernels with heuristi-
cally chosen kernel widths. The statistical test assumes independence as a null hypothe-
sis and calculates corresponding p-values. Now in order to decide whether “X causes
Y ” or, alternatively, “Y causes X”, one simply takes the model with the highest p-value
for independence between residuals and regressor.

We report the results in Table 4. By using this method, we correctly classify six out
of eight data sets. The small p-values may indicate that the assumption of additive noise
is violated in these data sets, even in the correct causal direction. Still, by comparing
the p-values in both directions, the correct decision is made in most cases.1

6. Discussion and remarks on submitted solutions

Finding data sets satisfying the criteria mentioned in Section 1 turned out to be chal-
lenging, which explains why the number of data sets in our task is relatively small
(another reason is that we only decided to submit a task to the challenge just shortly be-
fore the deadline). For future evaluations, the number of data sets should be increased
in order to obtain more significant conclusions when used as benchmarks for comparing
causal inference algorithms.

1. Meanwhile, we have improved the method by replacing the regression step by a dependence mini-
mization procedure, which yields similar qualitative results, but with more plausible p-values (Mooij
et al., 2009).
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We received 6 submissions as suggested solutions of this task. The number of
correctly identified pairs were 2,8,5,3,5,7, while the submission with 7 correct solu-
tions was (unfortunately) later changed to 5 correct ones. The winner team (Zhang and
Hyvärinen) correctly identified 8 out of 8 causal directions. Their method will be des-
cribed in the paper Distinguishing causes from effects using nonlinear acyclic causal
models, published elsewhere in this workshop proceedings. One group (not the winning
group) used the fact that the pairs contained common variables and used conventional
methods in addition to a new method. Since the goal of our task was to consider only
pairs of variables at a time, it was a weakness of our task to allow for such a solution
strategy (the submission was accepted nevertheless, of course).

An additional desideratum for data sets used in similar future challenges would
therefore be that all variable pairs should be disjoint. On the other hand, the constraint
that the variables should have continuous values could be removed, which would make
the task more challenging for the participants (and would also make it easier to find
suitable data).
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Dataset p1!2 p1 2 Decision Ground truth Correct?

pairs01 1.64⇥10�02 9.43⇥10�15 1! 2 1! 2 +
pairs02 1.50⇥10�13 2.88⇥10�16 1! 2 1! 2 +
pairs03 7.89⇥10�03 7.02⇥10�04 1! 2 1! 2 +
pairs04 5.50⇥10�05 1.08⇥10�02 1 2 1 2 +
pairs05 1.13⇥10�70 7.79⇥10�23 1 2 1 2 +
pairs06 1.56⇥10�210 1.98⇥10�113 1 2 1! 2 -
pairs07 2.66⇥10�82 5.85⇥10�26 1 2 1 2 +
pairs08 0.00⇥10+00 1.60⇥10�80 1 2 1! 2 -

Table 4: Baseline results for distinguishing the cause from the effect, using the method
of Hoyer et al. (2009).
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Abstract
Distinguishing causes from effects is an important problem in many areas. In this
paper, we propose a very general but well defined nonlinear acyclic causal model,
namely, post-nonlinear acyclic causal model with inner additive noise, to tackle this
problem. In this model, each observed variable is generated by a nonlinear function of
its parents, with additive noise, followed by a nonlinear distortion. The nonlinearity
in the second stage takes into account the effect of sensor distortions, which are usu-
ally encountered in practice. In the two-variable case, if all the nonlinearities involved
in the model are invertible, by relating the proposed model to the post-nonlinear in-
dependent component analysis (ICA) problem, we give the conditions under which
the causal relation can be uniquely found. We present a two-step method, which is
constrained nonlinear ICA followed by statistical independence tests, to distinguish
the cause from the effect in the two-variable case. We apply this method to solve
the problem “CauseEffectPairs" in the Pot-luck challenge, and successfully identify
causes from effects.
Keywords: causal discovery, sensor distortion, additive noise, nonlinear independent
component analysis, independence tests

1. Introduction

Given some observable variables, people often wish to know the underlying mechanism
generating them, and in particular, how they are influenced by others. Causal discovery
has attracted much interest in various areas, such as philosophy, psychology, machine
learning, etc. There are some well-known algorithms for causal discovery. For example,
conditional independence tests can be exploited to remove unnecessary connections
among the observed variables and to produce a set of acyclic causal models which are
in the d-separation equivalence class (Pearl, 2000; Spirtes et al., 2000).

c� 2010 K. Zhang & A. Hyvärinen.
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Recently, some methods have been proposed for model-based causal discovery of
continuous variables (see, e.g., Shimizu et al., 2006; Granger, 1980). Model-based
causal discovery assumes a generative model to explain the data generating process.
If the assumed model is close to the true one, such methods could not only detect
the causal relations, but also discover the form in which each variable is influenced by
others. For example, Granger causality assumes that effects must follow causes and that
the causal effects are linear (Granger, 1980). If the data are generated by a linear acyclic
causal model and at most one of the disturbances is Gaussian, independent component
analysis (ICA) (Hyvärinen et al., 2001) can be exploited to discover the causal relations
in a convenient way (Shimizu et al., 2006).

However, the above causal models seem too restrictive for real-life problems. If the
assumed model is wrong, model-based causal discovery may give misleading results.
Therefore, when the prior knowledge about the data model is not available, the assumed
model should be general enough such that it could be adapted to approximate the true
data generating process. On the other hand, the model should be identifiable such
that it could distinguish causes from effects. In a large class of real-life problems, the
following three effects usually exist. 1. The effect of the causes is usually nonlinear. 2.
The final effect received by the target variable from all its causes contains some noise
which is independent from the causes. 3. Sensors or measurements may introduce
nonlinear distortions into the observed values of the variables. To address these issues,
we propose a very realistic model, called post-nonlinear acyclic causal model with
inner additive noise. In the two-variable case, we show the identifiability of this model
under the assumption that the involved nonlinearities are invertible. We conjecture that
this model is identifiable in very general situations, as illustrated by the experimental
results.

2. Proposed Causal Model

Let us use a directed acyclic graph (DAG) to describe the generating process of the ob-
served variables. We assume that each observed continuous variable xi, corresponding
to the ith node in the DAG, is generated by two stages. The first stage is a nonlinear
transformation of its parents pai, denoted by fi,1(pai), plus some noise (or disturbance)
ei (which is independent from pai). In the second stage, a nonlinear distortion fi,2 is
applied to the output of the first stage to produce xi. Mathematically, the generating
process of xi is

xi = fi,2( fi,1(pai)+ ei). (1)

In this model, we assume that the nonlinearities fi,2 are continuous and invertible. fi,1
are not necessarily invertible. This model is very general, since it accounts for the
nonlinear effect of the causes pai (by using fi,1), the noise effect in the transmission
process from pai to xi (using ei), and the nonlinear distortion caused by the sensor or
measurement (using fi,2). In particular, in this paper we focus on the two-variable case.
Suppose that x2 is caused by x1. The relationship between x1 and x2 is then assumed to
be

x2 = f2,2( f2,1(x1)+ e2), (2)
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where e2 is independent from x1.

3. Identifiability1

3.1. Relation to post-nonlinear mixing ICA

We first consider the case where the nonlinear function f2,1 is also invertible. Let s1 ,
f2,1(x1) and s2 , e2. As e2 is independent from x1, obviously s1 is independent from
s2. The generating process of (x1,x2), given by Eq. 2, can be re-written as

⇢
x1 = f�1

2,1 (s1),
x2 = f2,2(s1 + s2).

(3)

We can see that clearly x1 and x2 are post-nonlinear (PNL) mixtures of independent
sources s1 and s2 (Taleb and Jutten, 1999). The PNL mixing model is a nice special
case of the general nonlinear ICA model.

ICA is a statistical technique aiming to recover independent sources from their ob-
served mixtures, without knowing the mixing procedure or any specific knowledge of
the sources (Hyvärinen et al., 2001). The basic ICA model is linear ICA, in which the
observed mixtures, as components of the vector x = (x1,x2 · · · ,xn)T , are assumed to
be generated from the independent sources s1,s2 · · · ,sn, with a linear transformation A.
Mathematically, we have x = As, where s = (s1,s2 · · · ,sn)T . Under weak conditions on
the source distribution and the mixing matrix, ICA can recover the original independent
sources up to the permutation and scaling indeterminacies with another transformation
W, by making the outputs as independent as possible. That is, the outputs of ICA, as
components of y = Wx, produce an estimate of the original sources si. In the gen-
eral nonlinear ICA problem, x is assumed to be generated from independent sources
si with an invertible nonlinear mapping F , i.e., x = F(s), and the separation system is
y=G(x), where G is another invertible nonlinear mapping. Generally speaking, nonlin-
ear ICA is ill-posed: its solutions always exist but they are highly non-unique (Hyväri-
nen and Pajunen, 1999). To make the solution to nonlinear ICA meaningful, one usually
needs to constrain the mixing mapping to have some specific forms (Jutten and Taleb,
2000).

The PNL mixing ICA model plays a nice trade-off of linear ICA and general nonlin-
ear ICA. It is described as a linear transformation of the independent sources s1,s2, ...,sn
with the transformation matrix A, followed by a component-wise invertible nonlinear
transformation f = ( f1, f2, ..., fn)T . Mathematically,

xi = fi

⇣ n

Â
k=1

Aiksk

⌘
.

1. When this paper was finalized, a systematic investigation of the identifiability of the proposed causal
model was already reported in Zhang and Hyvärinen (2009), which contains some different results
from this paper. Please refer to Zhang and Hyvärinen (2009) for more rigorous results on the identifi-
ability.
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In matrix form, it is denoted as x = f(Ax), where x = (x1,x2, ...,xn)T and s =
(s1,s2, · · · ,sn)T . In particular, from Eq. 3, one can see that for the causal model Eq. 2,

the mixing matrix is A =

✓
1 0
1 1

◆
, and the post-nonlinearity is f = ( f�1

2,1 , f2,2)T .

3.2. Identifiability of the Causal Model

The identifiability of the causal model Eq. 2 is then related to the separability of the
PNL mixing ICA model. The PNL mixing model (A, f) is said to be separable if the in-
dependent sources si could be recovered only up to some trivial indeterminacies (which
includes the permutation, scaling, and mean indeterminacies) with a separation system
(g,W), The output of the separation system is y = W · g(x), where g is a component-
wise continuous and invertible nonlinear transformation. The separability of the PNL
mixing model has been discussed in several contributions. As Achard and Jutten (2005)
proved the separability under very general conditions, their result is briefly reviewed
below.

Theorem 1 (Separability of the PNL mixing model, by Achard & Jutten) Let
(A, f) be a PNL mixing system and (g,W) the separation system. Let hi , gi� fi. Assume
the following conditions hold.

• Each source si appears mixed at least once in the observations.
• h1,h2, ...,hn are diffenrentiable and invertible (same conditions as f1, f2, ..., fn).
• There exists at most one Gaussian source.
• The joint density function of the sources si is differentiable, and its derivative is

continuous on its support.
Then the output of the separation system (g,W) has mutually independent components
if and only if each hi is linear and WA is a generalized permutation matrix.

The above theorem states that under the conditions stated above, by making the out-
puts of the separation system (g, W) mutually independent, the original sources si and
the mixing matrix A could be uniquely estimated (up to some trivial indeterminacies).
If f2,1 is invertible, the causal model Eq. 2, as a special case of the PNL mixing model,
can then be identified. Thus, the theorem above implies the following proposition.

Proposition 1 (Identifiability of the causal model with invertible nonlinearities)
Suppose that x1 and x2 are generated according to the causal model Eq. 2 with both
f2,2 and f2,1 differentiable and invertible. Further assume that at most one of f2,1(x1)
and e2 is Gaussian, and that their joint density is differentiable, with the derivative
continuous on its support. Then the causal relation between x1 and x2 can be uniquely
identified.

In the discussions above, we have constrained the nonlinearity f2,1 to be invertible.
Otherwise, f�1

2,1 does not exist, and the causal model Eq. 2 is no longer a PNL mixing
one. A rigorous proof of the identifiability of the causal model in this situation is
under investigation. But it seems that it is identifiable under very general conditions, as
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verified by various experiments. It should be noted that when all the nonlinear functions
fi,2 are constrained to be identity mappings, the proposed causal model is reduced to the
nonlinear causal model with additive noise which was recently investigated by Hoyer
et al. (2009). Interestingly, for this model, it was shown that in the two-variable case,
the identifiability actually does not depend on the invertibility of the nonlinear function
f2,1.

4. Method for Identification

Given two variables x1 and x2, we identify their causal relation by finding which one
of the possible relations (x1! x2 and x2! x1) satisfies the assumed causal model. If
the causal relation is x1 ! x2 (i.e., x1 and x2 satisfy the model Eq. 2), we can invert
the data generating process Eq. 2 to recover the disturbance e2, which is expected to
be independent from x1. One can then examine if a possible causal model is preferred
in two steps: the first step is actually a constrained nonlinear ICA problem which aims
to retrieve the disturbance corresponding to the assume causal relation; in the second
step we verify if the estimated disturbance is independent from the assume cause using
statistical tests.

4.1. A two-step method

Suppose the causal relation under examination is x1 ! x2. According to Eq. 2,
if this causal relation holds, there exist nonlinear functions f�1

2,2 and f2,1 such that
e2 = f�1

2,2 (x2)� f2,1(x1) is independent from x1. Thus, we first perform nonlinear
ICA using the structure in Figure 1. The outputs of this system are y1 = x1, and
y2 = g2(x2)� g1(x1). In our experiments, we use multi-layer perceptrons (MLP’s) to
model the nonlinearities g1 and g2. Parameters in g1 and g2 are learned by making y1
and y2 as independent as possible, which is achieved by minimizing the mutual infor-
mation between y1 and y2. The joint density of y = (y1,y2)T is py(y) = px(x)/|J|,
where J is the Jacobian matrix of the transformation from (x1,x2) to (y1,y2), i.e.,
J =

⇥
∂ (y1,y2)

�
∂ (x1,x2)

⇤
. Clearly |J|= |g02|. The joint entropy of y is then

H(y) =�E{log py(y)}=�E{log px(x)� log |J|}= H(x)+E{log |J|}.

Finally, the mutual information between y1 and y2 is

I(y1,y2) = H(y1)+H(y2)�H(y)
= H(y1)+H(y2)�E{log |J|}�H(x)
= �E{py1(y1)}�E{py2(y2)}�E{log |g02|}�H(x),

where H(x) does not depend on the parameters in g1 and g2 and can be considered as
constant. One can easily find the gradient of I(y1,y2) w.r.t. the parameters in g1 and
g2, and minimize I(y1,y2) using gradient-descent methods. Details of the algorithm are
skipped.
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+
-

g2
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y2

Figure 1: The constrained non-
linear ICA system
used to verify if the
causal relation x1! x2
holds.

y1 and y2 produced by the first step are the as-
sumed cause and the estimated corresponding dis-
turbance, respectively. In the second step, one
needs to verify if they are independent, using sta-
tistical independence tests. We adopt the kernel-
based statistical test (Gretton et al., 2008), with the
significance level a = 0.01. If y1 and y2 are not in-
dependent, indicating that x1 ! x2 does not hold,
we repeat the above procedure (with x1 and x2 ex-
changed) to verify if x2 ! x1 holds. If y1 and y2
are independent, usually we can conclude that x1
causes x2, and that g1 and g2 provide an estimate of
f2,1 and f�1

2,2 , respectively. However, it is possible that both x1! x2 and x2! x1 hold,
although the chance is very small. Therefore, for the sake of reliability, in this situation
we also test if x2 ! x1 holds. Finally, we can find the relationship between x1 and x2
among all four possible scenarios: 1. x1! x2, 2. x2! x1, 3. both causal relations are
possible, and 4. there is no causal relation between x1 and x2 which follows our model.

4.2. Practical considerations

The first issue that needs considering in practical implementation of our method is the
model complexity, which is controlled by the number of hidden units in the MLP’s
modelling g1 and g2 in Figure 1. The system should have enough flexibility, and at the
same time, to avoid overfitting, it should be as simple as possible. To this end, two
ways are used. One is 10-fold cross-validation. The other is heuristic: we try different
numbers of hidden units in a reasonable range (say, between 4 and 10); if the resulting
causal relation does not change, we conclude that the result is feasible.

The second issue is the initialization of the nonlinearities g1 and g2 in Figure 1. If
the nonlinear distortions f2,2 and f2,1 are very strong, it may take a long time for the
nonlinear ICA algorithm in the first step to converge, and it is also possible that the
algorithm converges to a local optimum. This can be avoided by using reasonable ini-
tializations for g1 and g2. Two schemes are used in our experiments. One is motivated
by visual inspection of the data distribution: we simply use a logarithm-like function to
initialize g1 and g2 to make the transformed data more regular. The other is by making
use of Gaussianization (Zhang and Chan, 2005). Roughly speaking, the central limit
theorem states that sums of independent variables tend to be Gaussian. Since f�1

2,2 (x2) in
the causal model Eq. 2 is the sum of two independent variables, it is expected to be not
very far from Gaussian. Therefore, for each variable which is very far from Gaussian,
its associated nonlinearity (g1 or g2 in Figure 1) is initialized by the strictly increasing
function transforming this variable to standard Gaussian. In all experiments, these two
schemes give the same final results.
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Data Set #1 #2 #3 #4 #5 #6 #7 #8
Result x1! x2 x1! x2 x1! x2 x1 ‡ x2 x1 x2 x1! x2 x1 x2 x1! x2

Table 1: Causal directions obtained. (‡ indicates that the causal relation is not signifi-
cant.)

5. Results

The proposed nonlinear causal discovery method has been applied to the “CauseEffect-
Pairs" task proposed by Mooij et al. (2008) in the Pot-luck challenge. In this task, eight
data sets are given; each of them contains the observed values of two variables x1 and
x2. The goal is to distinguish the cause from the effect for each data set. Figure 2 gives
the scatterplots of x1 and x2 in all the eight data sets. Table 1 summaries our results. In
particular, below we take data sets 1 and 8 as examples to illustrate the performance of
our method.
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Figure 2: Scatterplot of x1 and x2 in each data set of the “CauseEffectPairs" task (Mooij
et al., 2008).

The variable x1 in Data set 1 is non-negative and extremely non-Gaussian. We ini-
tialized the nonlinearity g1 with the transformation log(2+ x1) (Gaussianization was
also tested and it finally produced the same causal relation). The scatterplot of y1 and
y2 (as outputs of the constrained nonlinear ICA system in Figure 1) under each hypo-
thesis (x1! x2 or x2! x1) is given in Figure 3(a,b). Clearly y1 and y2 are much more
independent under hypothesis x1! x2. This is verified by the independence test results
in the third row of Table 2. Note that a large test statistic tends to reject the null hypo-
thesis (the independence between y1 and y2). Figure 4 shows the result on Data set 8. In
this case, we applied the transformation log(x2 + 50) for initialization. By comparing
(a) and (b) in Figure 4, also by inspecting the independence test results in the fourth
row of Table 2, one can see clearly that x1! x2.
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Figure 3: Result on Data set 1. (a) y1 vs. y2 under hypothesis x1! x2. (b) that under
x2! x1. (c & d) x1 vs. g1(x1) and x2 vs. g2(x2) under hypothesis x1! x2.
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Figure 4: Result on Data set 8. For captions of the sub-figures, please refer to Figure 3.

Data Set x1! x2 assumed x2! x1 assumed
Threshold (a = 0.01) Statistic Threshold (a = 0.01) Statistic

#1 2.3⇥10�3 1.7⇥10�3 2.2⇥10�3 6.5⇥10�3

#8 1.2⇥10�4 1.2⇥10�4 1.1⇥10�4 7.4⇥10�4

Table 2: Result of independence test on y1 and y2 for Data sets 1 and 8 under different
assumed causal directions. For both data sets, the independence hypothesis is
accepted in the scenario x1! x2, and rejected in the other scenario, with the
significance level a = 0.01.
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6. Conclusion

We proposed a very general nonlinear causal model for model-based causal discovery.
This model takes into account the nonlinear effect of the causes, inner noise effect, and
the sensor distortion, and is capable of approximating the data generating process of
some real-life problems. We presented the identifiability of this model under the as-
sumption that the involved nonlinearities are invertible. Experimental results illustrated
that based on this model, one could successfully distinguish the cause from the effect,
even if the nonlinear function of the cause is not invertible. An on-going work is to
investigate the identifiability of this model under more general conditions.
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Abstract
Cyclic graphical models are unnecessary for accurate representation of joint pro-

bability distributions, but are often indispensable when a causal representation of va-
riable relationships is desired. For variables with a cyclic causal dependence struc-
ture, DAGs are guaranteed not to recover the correct causal structure, and therefore
may yield false predictions about the outcomes of perturbations (and even inference.)
In this paper, we introduce an approach to generalize Bayesian Network structure
learning to structures with cyclic dependence. We introduce a structure learning algo-
rithm, prove its performance given reasonable assumptions, and use simulated data to
compare its results to the results of standard Bayesian network structure learning. We
then propose a modified, heuristic algorithm with more modest data requirements, and
test its performance on a real-life dataset from molecular biology, containing causal,
cyclic dependencies.

c� 2010 S. Itani, M. Ohannessian, K. Sachs, G.P. Nolan & M.A. Dahleh.
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1. Introduction

Bayesian network models encode probabilistic relationships among random variables,
providing a framework for tasks such as inference and decision making. In some set-
tings, it is useful for model edges to represent probabilistic dependence resulting from
causal mechanisms. This is the case when the goal is structure recovery for the sake of
revealing causal interactions for prediction of perturbation effects in some domain, for
instance, when learning the structure of molecular pathways from biological measure-
ments.

Causal Bayesian network models have been described Pearl (2000), relying on the
framework of causation, which enables causal interpretation under proper assumptions
Spirtes et al. (1993). These models may be learned from observational data, i.e. passive
observations of the domain. However, such methods yield entire equivalence classes,
leaving the causal direction of many edges unknown. A solution to this problem is
offered by the framework of intervention, where interventions effectively override va-
riables, and halt the influence of the network on them, enabling the use of interventional
or experimental data Pearl (1995) and Pearl (2000). In this framework, it is possible to
ask: “how can the graphical structure of the causal model be recovered from observa-
tional and experimental data?”

Research in Bayesian networks has predominantly focused on directed acyclic
graphs (DAGs), even when the acyclicity assumption is knowingly violated Friedman
et al. (2000). Within that context, solutions to this question abound, e.g. Cooper and
Yoo (1999). In cyclic domains, DAGs represent an inaccurate causal structure, con-
sequently, prediction of perturbation effects will fail, as in Figure 1. To avoid these
inaccuracies, a representation which encompasses cycles must be employed.

Figure 1: Cyclic causal networks. A. Risk assessment network for predicting the effect of behavior
interventions. Smoking positively influences diagnosis of lung cancer, while eating healthy
does so negatively. A cancer diagnosis may influence eating and smoking choices, though
cessation of smoking can deteriorate eating habits. B. In protein networks, feedback loops
are ubiquitous modes of positive and negative regulation of biological processes. C. A DAG
representation of the cyclic structure in B. The dotted line indicates an incorrectly oriented
edge: perturbing protein 3 would inaccurately be assessed as having no effect on proteins 1
and 2.

BN models with directed cyclic graphs (DCGs), though inherently possible, Pearl
(1988), had unclear interpretation and applicability Spirtes et al. (1993). Cycles also
occur in an alternative modeling paradigm called structural equation models (SEMs),
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which model functional dependence directly. Key developments Spirtes (1995) and
Koster (1996), endowed DCGs with some of the properties of their DAG counter-
parts, and it was also shown that some SEMs are amenable to the same analysis Spirtes
(1995); Pearl and Dechter (1996). Based on these, Richardson (1996) established an
algorithm for discovering a partial structure on DCGs. Recently, Lacerda et al. (2008)
provided an alternative algorithm. Both procedures lie in the framework of causation,
and use solely observational data to output equivalence classes, rather than a single
DCG.

In this paper, we are interested in modeling cycles, yet tapping into the power of
experimental data. At the extreme of exhaustive interventions, the problem appears
trivial. However, discovering structure by such brute force is a daunting task, and in
truth one is constrained by the number and type of interventions at hand. We address
the problem through the following contributions:

- In Section 2, we give a novel formalization of cyclic networks by characteri-
zing them locally with stochastic kernels, which bridge the SEM context with
that of BNs by replacing deterministic equations with exogenous variables by a
direct probabilistic description. We call the resulting models generalized Baye-
sian networks (GBNs). The framework of intervention extends directly to such a
description, resulting in causal GBNs (CGBNs).

- In Section 3, we prove that interventions allow us to discover descendants and
children. Such discovery is robust, in that in general it does not result in false
discovery and, given natural properties, it always succeeds as the size of the data
grows to infinity. Interventions can affect either the abundance or the activity
of variables (corresponding to ingoing or outgoing edges, respectively). How-
ever, in this work, we assume the activity of a perturbed variable is affected. We
elaborate in Section 2.3.

- In Section 4, we cast these results into an algorithm for structure learning. Rather
than searching over all causal interactions by brute force, we first discover cy-
cle breakers. Upon intervention on these quantities, we reduce the task into an
acyclic problem which can be learned generically. Finally we close cycles to re-
cover the cyclic structure. We illustrate these results on synthetic data with 14
nodes, 2 cycles and 3 interventions.

- In Section 5, we develop a modified heuristic algorithm for the structure lear-
ning from more limited data, containing only one perturbation per sample. This
algorithm is inspired by our previous one, and is motivated by limitations on
experiment technologies. We illustrate the usefulness of this algorithm by study-
ing a biological dataset of 11 variables from the MAPK/AKT pathway (CYTO)
Sachs et al. (2005).

Finally, a related research area is that concerned with structure learning with time
course data. In this case, alternative representations exist in the form of dynamic Baye-
sian networks (DBNs) Friedman et al. (1999) and continuous-time Bayesian networks
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(CTBNs) Nodelman et al. (2002, 2003). These models represent cycles by ‘unrolling’
them in time. As with other efforts to learn static representations of underlying dy-
namic systems Friedman et al. (2000); Sachs et al. (2005), what we propose here can
be interpreted as learning a DBN or CTBN in the absence of time-course data, or from
single time-point data (constituting a snapshot of a dynamic system).

2. Problem formulation

2.1. Generalized Bayesian networks

Definition 1 (Generalized Bayesian network) We define a generalized Bayesian net-
work (GBN) as a pair (G,F), where G is a directed graph G = (V,E) and F is a set of
stochastic kernels (conditional probability tables) fi : X ⇥X |pi| ! R+ indexed by all
nodes i 2 V , for a finite set X . Here, pi is the set of parents of i in G. With each node
i of the GBN we associate a random variable Xi. In this paper, we restrict ourselves
to discrete random variables taking values in a common alphabet X . 1 The GBN then
induces a joint distribution on X1, · · · ,XN satisfying the following characterizations:

1. Local characterization:

P(Xi = xi,Xpi = x
pi) = P(X

pi = x
pi) fi(xi;x

pi), 8i 2V. (1)

2. Independence under d-separation: Given any two nodes i and j in G, if i and j
are d-separated Pearl (1988) by a set Z ⇢V , then Xi and Xj given {Xk,k 2 Z}.

We make the following assumption:
Assumption [Existence and Uniqueness] For every F that we consider, there exists

a unique induced (global) joint distribution that satisfies all the local characterizations
in Equation (1).

Since GBN’s are generalizations of BN’s to the cyclic case, the previous assumption
doesn’t hold for any graph G and stochastic kernels { fi}. This is just like the fact that
a dynamic system with feedback (cycle) is not necessarily causal even if all of the
subsystems are causal. Of course, it is expected that in the applications of interest, the
variables measured do come from a unique underlying joint distribution.. Another view
of this assumption is that it is the same as the one in the case of the Gibb’s sampler: for
the sampling to guarantee convergence, a unique joint that is compatible with the given
conditionals must exist.

When the graph of a GBN is acyclic, the product of all the stochastic kernels gives
a valid joint distribution satisfying (1). Thus, by uniqueness, an acyclic GBN reduces
to a BN:

P(X1 = x1, · · · ,XN = xN) = ’
i2V

fi(xi;x
pi). (2)

1. Although we restrict ourselves to discrete variables, this is in general not restrictive since any contin-
uous variable can approximated arbitrarily well by a discrete variable.
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2.2. Causal generalized Bayesian networks

Let an intervention (I,x ) be a pair, where I ⇢ V is a subset of the nodes of a graph G,
and x 2 X |I| is a tuple of values in an alphabet X .

Definition 2 (Causal generalized Bayesian network) We define a causal generalized
Bayesian network (CGBN) as a GBN with which we associate a collection of joint
distributions P(I,x ) indexed by all interventions (I,x ), for each of which it satisfies:

P(I,x )(Xi = xi,X
pi\I = x

pi\I) = P(I,x )(Xpi\I = x
pi\I) fi(xi;x

pi\I,xpi\I), 8i 2V. (3)

When x is implicit we only use I as subscript, and when I =? we drop the subscript
altogether. Below, we provide more intuition about this definition. Meanwhile, we
extend the assumption of existence and uniqueness to CGBNs by taking it to hold for
every intervention (I,x ). With this, an acyclic CGBN reduces to a causal BN, in the
sense of interventions Pearl (2000):

P(I,x )(X1 = x1, · · · ,XN = xN) = ’
i2V

fi(xi;x
pi\I,xpi\I). (4)

2.3. s -µ characterization

By carefully examining Equation (3), we can see how interventions effectively decouple
nodes into seen and measured values. Just as in the do-calculus of Pearl, the interven-
tion value supersedes the node variable itself as far as its influence on the network goes,
and can thus be interpreted as what is (internally) seen by all descendants. The value
of the seen variable is determined solely by the intervention. However, and this is in
contrast to traditional intervention models, we (externally) measure or observe the va-
lue (i.e. abundance) of the intervention variables. These can be thought of as shadow
copies, which are still influenced by the network but no longer influence it, because its
activity is externally set by the intervention. This formulation is motivated by some
inhibition models in molecular biology, where the inhibitors do not change the amount
of a given protein but rather halt its activity. Thus the correct modeling of this situation
is to separate the inhibited node from its children. The s -µ characterization simply
does that while staying in the framework of probability theory. All of our results extend
to the case when measured values are lost, by eliminating the variables intervened at.

We can capture this decoupling via an explicit characterization which reduces a
CGBN with an intervention to a GBN. In particular, given a CGBN (G,F) describing N
variables and an intervention (I,x ), one can construct a GBN (G0,F 0) which describes
N + |I| variables, such that the restriction to the first N of the variables has a joint
distribution evaluating to P(I,x ). We call this construction the s -µ characterization of
a CGBN. We do not elaborate on this further, and leave its illustration to the second
example below.
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2.4. Examples

2.4.1. CYCLE WITH 2 NODES

Consider the GBN with binary-valued variables X1 and X2 described in Figure 2. The
local characterizations of the joint distribution P induced by the GBN are as fol-
lows: P(X1 = x1,X2 = x2) = P(X2 = x2) f1(x1;x2), and P(X1 = x1,X2 = x2) = P(X1 =
x1) f2(x2;x1), for all binary configurations of x1 and x2. Under the proper choice of f1
and f2, these yield linearly independent equations, in which case a distribution satisfy-
ing the local characterizations exists and is unique.

Figure 2: A GBN with two nodes. Figure 3: A CGBN with an intervention at node 2.

2.4.2. BREAKING CYCLES

Consider the CGBN described in Figure 3a. In Figure 3b, we illustrate what happens
when node 2 is intervened at. We use the s -µ characterization, and represent the seen
node with a s subscript and the measured node with a a µ subscript. Note how node
2

µ

is effectively a leaf under intervention. As such, the resulting graph is a DAG. It
follows that, the product of all the fi’s is a valid characterization, and by uniqueness it
is the distribution induced by the CGBN under the intervention. The resulting network
is thus exactly equivalent to a BN. We say that the cycle has been broken. This notion,
in more generality, will be used throughout our algorithm (Section 4).

3. Interventions and Descendent Detection

We now introduce analytical results which we subsequently use to justify the correct-
ness of our algorithm for structure learning. For conciseness, we state and prove only
the forward direction of the results. The converses hold under some natural properties
of the network and interventions. Please see supporting materials for additional proofs
and associated assumptions.

Theorem 3 Consider a CGBN, and let the existence and uniqueness assumption hold.
Intervene at a single node i, that is let (I,x ) = (i,xi) and consider a node j. If j is not
a descendant of i then P(Xj = x j) = P(i,x i)(Xj = x j) for all x j 2 X .
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Proof Partition V into two: Vi (nodes that are descendants of i, including i) and
Vi (nodes that are not descendants of i). Consider the network restricted to Vi, by
restricting the graph. Since there are no incoming edges from Vi to Vi, we can also
restrict F to contain only f j, j 2 Vi. Since none of the local characterizations of the
distribution induced by the restricted network depend on the intervention, and by the
uniqueness of the solution, the restricted distribution is unchanged. Thus the marginal
distributions of all j 2Vi is unchanged.

In other words, Theorem 3 states that if a node j experiences a change in marginal
distribution when i is intervened at, then it is a descendant of i. As mentioned, the
converse also holds under proper assumptions, detailed in the supporting materials.
One of these assumptions states that a child variable must be sensitive to perturbations
imposed upon its parent variables, an assumption which may in general be violated,
particularly if the network compensates in the face of perturbations. Such insensitive
descendants may still be detectable with the use of multiple perturbations.

Theorem 4 Consider a CGBN, an intervention (I1,x 1), and an incremental interven-
tion (I2,x 2) by a single node i, as in I2 \ I1 = {i}. Let the existence and uniqueness
assumption hold. Define P := P(I1,x 1) and Q := P(I2,x 2). Consider a node j and let
p̃ j = p j \ I2. If j is not a child of i then P(Xj = x j|Xp̃ j = x

p̃ j) = Q(Xj = x j|Xp̃ j = x
p̃ j)

for all x j 2 X and x
p̃ j 2 X |p̃ j|.

Proof We shall split the parents of j into three groups: i itself if it is a parent, the never-
intervened-at parents p̃ j, and the always-intervened-at parents p̂ j. When j is not a child
of i the inclusion pattern for the parents of j in the local characterization is unchanged.
Hence:

P(Xj = x j|Xp̃ j = x
p̃ j) =

P(Xj = x j,Xp̃ j = x
p̃ j)

P(X
p̃ j = x

p̃ j)
= f j(x j;x

p̃ j ,x
1
p̂ j
),

Q(Xj = x j|Xp̃ j = x
p̃ j) =

Q(Xj = x j,Xp̃ j = x
p̃ j)

Q(X
p̃ j = x

p̃ j)
= f j(x j;x

p̃ j ,x
2
p̂ j
).

But since x

1 and x

2 agree on p̂ j, the claim follows.

In other words, Theorem 4 states that if a node j experiences a change in marginal
conditional distribution given the never-intervened-at parents p̃ j when i is intervened
at, then it is a child of i. Again, the converse also holds under proper assumptions.

4. Algorithm for structure learning

Consider a CGBN from which we can sample both observational and experimental
data, from an intervention set I and its subsets. Assume that I is ‘rich’, in the sense that
it has at least one representative node from every cycle in the underlying graph. The
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following algorithm effectively guides the experimental procedure (or uses previously
collected data) and recovers the CGBN’s structure. In what follows, we elaborate the
subroutines that are used, and show correctness.

Algorithm: Learn CGBN structure

0: Start with a CGBN and an intervention set I.

1: [Probing experiments] Collect sets of i.i.d. samples under no-intervention and single-intervention
data, i.e. when node i is intervened at, for each i in I.

2: Call subroutine ‘detect descendants’ to recover descendant information for all nodes in I.

3: Identify the minimal subset of nodes in I which are sufficient to break all cycles, and denote it by IC .

4: [Cycle-breaking experiment] Collect i.i.d. samples when all nodes in IC are intervened at.

5: Recover an embedded DAG.

6: [Leave-one-out experiments] Collect sets of i.i.d. samples when nodes in IC \{i} are intervened at,
for each i 2 IC .

7: Call subroutine ‘detect children’ to recover child information for all nodes in IC .

8: Recover all missing edges in the DAG, and complete the DCG structure of the CGBN.

The following is the subroutine that obtains descendant information based on no-
intervention and single-intervention i.i.d. data. The correctness of the subroutine
follows from Theorem 3 and the convergence of empirical distributions, since non-
descendants will exhibit no change of marginal, whereas descendants will. The choice
of distance is not critical, and thresholding can be automated.

Subroutine: Detect descendants

0: Start with sets of n i.i.d. samples generated by a CGBN, under no interventions as well as single-
interventions at each i in I. Initialize a binary |V |⇥ |I| descendant information matrix.

1: For each j 2V :

2: Compute P̂n(Xj), the empirical marginal of Xj under no interventions.

3: For each i 2 I:

4: Compute P̂n
i (Xj), the empirical marginal of Xj under the single-intervention i.

5: Evaluate some distance between P̂n(Xj) and P̂n
i (Xj).

6: If the distance exceeds a threshold, mark j as a descendant of i.
7: Next i.
8: Next j.
9: Compute the transitive closure of the descendant information matrix, and return it.

IC can then be identified as the set of all self-descendants. Since the intervention
set I has at least one node from each cycle in the underlying graph, IC constitutes a
cycle-breaking intervention set, meaning that if all nodes in IC are intervened at, the
CGBN behaves like a BN. Thus with i.i.d. data obtained as such, we can recover the
corresponding embedded DAG using generic BN structure learning, which we do not
elaborate further on. Note that I itself is a cycle-breaking intervention set, the merit
here being that IC can be much smaller.

Note that the only edges that are in the underlying graph but are missing from
the embedded DAG are those from cycle breakers to their children. The following
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subroutine obtains a child information matrix, based on IC-intervention and leave-one-
out from IC intervention i.i.d. data. Once this information is obtained, all cycles can be
closed in a straightforward fashion, recovering the underlying structure. Once again, the
correctness of the subroutine follows from Theorem 4 and the convergence of empirical
distributions, since only children will exhibit a change in marginal conditional.

Subroutine: Detect children

0: Start with the recovered DAG, and sets of n i.i.d. samples generated by the CGBN, under IC -
intervention as well as leave-one-out interventions, i.e. on IC \{i} for each i in IC . Initialize a binary
|V |⇥ |IC | child information matrix. Denote by p̃ j the parents of node j according to the recovered
DAG.

1: For each j 2V :

2: For each a 2 X |p̃ j |:

3: Compute the empirical marginal conditional P̂n
IC (Xj|X

p̃ j = a), call it Q1.

4: For each i 2 IC :

5: Compute the empirical marginal conditional P̂n
IC\{i}(Xj|X

p̃ j = a), call it Q2.

6: Evaluate some distance between Q1 and Q2.

7: If the distance exceeds a threshold, mark j as a child of i.
8: Next i.
9: Next a .

10: Next j.
11: Return the completed child information matrix.

To illustrate the algorithm, we simulated a GBN that has fourteen variables,shown
in Figure 4, each with three states X = {0,1,2}, two cycles 5! 6! 7! 5 and 8!
9! 10! 11! 8, and nodes 7, 8 and 10 available for intervention. The stochastic
kernels were sampled continuously from the 3-simplex. The simulation was performed
using Gibbs-like sampling Chou et al. (1991); Sharma et al. (1989), and up to 4000 data
points were sampled for every required intervention.

Figure 4: Test net-
work,
recovered
exactly
by GBN
learning
algorithm

Figure 5: Best net-
work
recovered
by BN
structure
learning

GBN algorithm
Data Correct Inverted Added
1000 14 0 0
2000 15 0 0
4000 16 0 0

BN structure learning
Data Correct Inverted Added
1000 9 3 0
2000 9 7 0
4000 12 4 2

Figure 6: Performance
tables
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In the tables of Figure 6, we compare the performance of our algorithm to a plain
BN structure learning algorithm for the various data sizes. In particular, the tables
document the number of true edges that the algorithms uncover, the number of reversed
edges that they give, and the number of edges that they add but which are absent in
the original graph. Observe that the GBN algorithm recovers the network exactly with
4000 data points. The comparison is inherently unfair, because BN structure learning
does not handle cycles, but the emphasis here is on illustrating the type of pitfalls in
using BNs to capture data that is generated by a GBN. Using the best recovered DAG
in Figure 5, for instance, will mistakenly predict that an intervention at node 9 will not
affect node 8.

5. Single Perturbations

In this section we introduce an algorithm that is inspired by our previous one but doesn’t
require data with multiple simultaneous perturbations. Due to practical considerations,
sometimes multiple inhibition data-sets are not available. This is why we are interested
in an algorithm that can recover the causal structure (even when it’s cyclic) without the
need for multiple simultaneous perturbations. We assume that the interventions that are
available are activity interventions, and so the amount of the variable x can be measured
when x is intervened at. The algorithm we have when such perturbations are available
is as follows:

Algorithm: Learn CGBN structure without multiple simultaneous perturbations

0: Start with a CGBN and an intervention set I.

1: [Probing experiments] Collect sets of i.i.d. samples under no-intervention and single-intervention
data, i.e. when node i is intervened at, for each i in I.

2: Call subroutine ‘detect descendants’ to recover descendant information for all nodes in I.

3: Identify the subset of all nodes in I which are in cycles, and denote it by IC .

4: Use a regular CBN learning algorithm to recover an approximation of the structure of the causal
relations. This is done with the standard structure learning algorithm using the complete dataset,
as in Sachs et al. (2005).

5: For every variable i in IC :

a- Recover the paths from i’s descendants in the cycle back to it using BN learning on the data
where i was perturbed. As in the original algorithm, this recovers the linearized structure
with the perturbed node as a leaf.

b- Overwrite the paths from i’s descendants in the BN approximate graph. This step may alter
the parent set of i as well as the direction of edges among i’s ancestors. Because the
approximate graph is expected to have incorrect edge directionality imposed by the cycles,
the graph under perturbations is considered more accurate.

6: Call subroutine ‘detect children’ to recover child information for all nodes in IC . Use the data with
no perturbations and the data with i inhibited for all i 2 IC .

7: Recover all missing edges in the DAG, and complete the DCG structure of the CGBN. This proceeds
as in the original algorithm, using only the observational data to detect direct edges and indirect
paths from each variable in IC to its descendants.
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This algorithm is a heuristic, although it inherits some of the intuition and reasoning
of our previous algorithm: It recovers the structure of every cycle by first breaking it
and finding its partial structure. To illustrate the performance of this algorithm, we
applied it to a real data set from the MAPK/AKT pathway Sachs et al. (2005).

6. Results from the CYTO dataset

The heuristic algorithm from Section 5 was applied to the CYTO dataset Sachs et al.
(2005), a real-life dataset of eleven protein measurements, which employs single per-
turbations (per sample), including three activity inhibitors and one abundance inhibitor.
Model results (figure 6) show the edges from regular BN structure learning in blue
(solid lines), novel edges resulting from the GBN approach in purple (broken lines).
To assess this model’s accuracy in representing the true underlying causal structure,
as compared to the original model, we turned to the biological literature. There are
seven edges unique to the GBN model, of which three represent canonical, well es-
tablished causal connections that were completely missed by standard BN structure
learning efforts. One of these, the connection between PIP2 and Akt, our model repre-
sents somewhat inaccurately, shifting the canonical edge (PIP3! Akt). PIP2 and PIP3
are precursors of each other, so this edge incorrectly assigns the parent of Akt as the
precursor of the actual parent, perhaps due to confounding effects of the dynamics of
the system (i.e. PIP2 abundance may more accurately represent the quantity of PIP3
that influenced the current level of Akt, see Itani et al. (2009). An additional pertur-
bation, or a more idealized one, may have helped resolved this inaccuracy. It can be
argued that the GBN model with the shifted edge comes closer to representing the true
structure than the BN model that fails to represent this interaction all together. Another
canonical edge present only in the GBN model is PKC ! Plcg , known in the classic
literature, but in the reverse orientation. While this may be an inaccuracy in direction
of the edge, the data clearly support this connection (with the Plcg distribution strongly
affected by PKC perturbation), and it has been reported by previous studies Xu et al.
(2001); Quinlan et al. (2003), leading us to believe it is a correct edge. Like its BN
counterpart, the GBN model misses the edge in the Plcg ! PKC direction, but unlike
the BN model, it successfully represents the dependence between these two proteins.
Finally, the canonical edge (PIP2! PKC) is missed by the BN model but correctly re-
presented in the GBN model. For these canonical edges, the GBN model is somewhat
imperfect but nevertheless strongly outperforms the BN model.

Of the remaining four edges, both p38 ! PKC and PKA ! PIP3 are supported
by previous literature findings Shimizu et al. (1999); Deming et al. (2008). We did not
find specific evidence for the edges from Erk to PKC and PKA, though several studies
report feedback on PKA and PKC, with potential roles for Erk Geritsa et al. (2008).
Although confirmation of all model results requires experimental validation, compari-
son to literature studies indicates a clear improvement in accuracy for the GBN model.
Additionally, the GBN model improves on the BN result by accurately representing all
causal connections and conditional independencies found in the data, something the
standard BN model is unable to achieve.
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Figure 7: Application of the heuristic algorithm to real-life protein dataset. Application
of the heuristic structure learning algorithm to this dataset from Sachs et al. (2005)
yields this cyclic structure. Edges found in the original graph, resulting from stan-
dard Bayesian network structure learning, are in blue (solid lines), edges unique
to the GBN result are in purple (broken lines). Several of the cycles in this result
structure are supported by literature findings (see text).

7. Conclusion and future work

In this paper we reviewed previous work in incorporating both causality and cyclic
structure within the context of Bayesian networks. We then presented the formalism
of generalized BNs, which preserves only the local characterizations with stochastic
kernels, applying it equally well to the cyclic case, under an existence and uniqueness
assumption for the joint distribution. In the acyclic case, this reduces to BNs. The
framework of interventions easily extends to this formalism, resulting in causal GBNs.
We present an algorithm that uses no-intervention and single- intervention data to de-
tect cycle breakers, then uses multiple simultaneous interventions to learn an embedded
DAG, close cycles, and recover the underlying DCG. This algorithm relies on a mini-
mal set of perturbations. We illustrate the procedure via a numerical example. Finally,
we present a modified algorithm with more modest, one-intervention-at-a-time data
requirements and demonstrate its performance on a real-life biological dataset, suc-
cessfully recovering many known connections, and strongly outperforming standard
structure learning with respect to recovery of the known causal structure. This work
can be extended in several directions. We are currently expanding its application to
biological data by extending the algorithm to one which explicitly handles the imper-
fect specificity and efficacy of biological inhibitors. A more theoretical direction is that
of relating snapshot structure embodied in GBNs to that of underlying time-dynamics.
For that, one needs to start with a dynamic hypothesis of data generation, e.g. CTBNs,
stochastic differential equations, etc. Conditions under which the static and dynamic
structures coincide would further motivate the current paradigm.
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Abstract
Causal learning methods are often evaluated in terms of their ability to discover a
true underlying directed acyclic graph (DAG) structure. However, in general the true
structure is unknown and may not be a DAG structure. We therefore consider eva-
luating causal learning methods in terms of predicting the effects of interventions on
unseen test data. Given this task, we show that there exist a variety of approaches to
modeling causality, generalizing DAG-based methods. Our experiments on synthetic
and biological data indicate that some non-DAG models perform as well or better
than DAG-based methods at causal prediction tasks.
Keywords: Bayesian Networks, Graphical models, Structure Learning, Causality,
Interventions, Cell signalling networks, Bioinformatics.

1. Introduction

It is common to make causal models using directed acyclic graphs (DAGs). However,
one problem with this approach is that it is very hard to assess whether the graph struc-
ture is correct or not. Even if we could observe “nature’s graph”, it probably would
not be a DAG, and would contain many more variables than the ones we happened to
have measured. Realistic mechanistic (causal) models of scientific phenomena are usu-
ally much more complex, involving coupled systems of stochastic partial differential
equations, feedback, time-varying dynamics, and other complicating factors.

In this paper, we adopt a “black box” view of causal models. That is, we define
causality in functional terms, rather than by committing to a particular representation.
Our framework is as follows. Suppose we can measure d random variables, Xi, for
i= 1:d. For example, these might represent the phosphorylation levels of different
proteins. Also, suppose we can perform k different actions (interventions), A j, for
j= 1:k. For example, these might represent the application of different chemicals to
the system. For simplicity, we will think of the actions as binary, A j 2 {0,1}, where a

c� 2010 D. Duvenaud, D. Eaton, K. Murphy & M. Schmidt.
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value of 1 indicates that we performed action A j. We define a causal model as one that
can predict the effects of actions on the system, i.e., a conditional density model of the
form p(x|a). These actions may or may not have been seen before, a point we discuss
in more detail below. Note that our definition of causal model is even more general than
the one given in Dawid (2009), who defines a causal model as (roughly speaking) any
model that makes conditional independence statements about the X and A variables; as
Dawid points out, such assumptions may or may not be representable by a DAG.

To see that our definition is reasonable, note that it includes the standard approach
to causality (at least of the non-counterfactual variety) as a special case. In the standard
approach (see e.g., (Spirtes et al., 2000; Pearl, 2000; Lauritzen, 2000; Dawid, 2002)),
we assume that there is one action variable for every measured variable. We further
assume that p(x|a) can be modeled by a DAG, as follows:

p(X1, . . . ,Xd |A1 = 0, . . . ,Ad = 0,G, f ) =
d

’
j=1

f j(Xj,Xp j) (1)

where G is the DAG structure, p j are the parents of j in G, and f j(Xj,Xp j)= p(Xj|Xp j ,A j =
0) is the conditional probability distribution (CPD) for node j, assuming that node j is
not being intervened on (and hence A j = 0). If node j is being intervened on, we modify
the above equation to

p(X1, . . . ,Xd |A j = 1,A� j = 0,G, f ,g) = g j(Xj,Xp j)’
k 6= j

fk(Xk,Xpk) (2)

where g j(Xj,Xp j) = p(Xj|Xp j ,A j = 1) is the CPD for node j given that node j is being
intervened on. In the standard model, we assume that the intervention sets the variable
to a specific state, i.e., g j(Xj,Xp j) = I(Xj = S j), for some chosen target state S j. This
essentially cuts off the influence of the parents on the intervened-upon node. We call
this the perfect intervention assumption. A real-world example of this might be a gene
knockout, where we force Xj to turn off (so S j = 0). The crucial assumption is that
actions have local effects, and that the other f j terms are unaffected.

If we do not know which variables an action affects, we can learn this; we call this
the uncertain intervention model (Eaton and Murphy, 2007). In particular, this allows
us to handle actions which affect multiple nodes. These are sometimes called “fat hand”
actions; the term arises from thinking of an intervention as someone “sticking their
hand” into the system, and trying to change one component, but accidently causing side
effects. Of course, the notion of “fat hands” goes against the idea of local interventions.
In the limiting case in which an action affects all the nodes, it is completely global.
This could be used to model the effects of a lethal chemical that killed a cell, and hence
turned all genes “off”.

If we model p(x|a) by a DAG, and make the perfect intervention assumption, then
we can make predictions about the effects of actions we have never seen before. To
see this, suppose we have collected N samples from the non interventional regime,
D= {xn}N

n=1, where xn⇠ p(x|a= 0) (this is called observational data). We can use this
data to learn the non-interventional CPDs f j. Then we make a prediction about what
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would happen if we perform a novel action, say turning A j on, by simply replacing
f j with g j, which we assume is a delta function, I(Xj = S j). Of course, if the data is
only observational, we will not, in general, be able to uniquely infer the DAG, due to
problems with Markov equivalence. However, if some of the data is sampled under
perfect interventions, then we can uniquely recover the DAG (Eberhardt et al., 2005,
2006).

The key question is: is the assumption of DAGs and perfect interventions justified
in any given problem? What other models might we use? It seems that the only way
to choose between methods in an objective way, without reference to the underlying
mathematical representation, is to collect some real-world data from a system which
we have perturbed in various ways, partition the data into a training and test set, and
then evaluate each model on its ability to predict the effects of interventions. This is
what we do in this paper.

An important issue arises when we adopt this functional view of causality, which
has to do with generalizing across actions. In the simplest case, we sample training data
from regimes p(x|a1), . . . , p(x|ar), for r different action combinations, and then sample
test data from the same regimes. We will see an example of this in Section 3.1, where we
discuss the intracellular flow cytometry dataset analyzed in Sachs et al. (2005). In this
setup, we sample data from the system when applying one chemical at a time, and then
ask the model to predict the protein phosphorylation levels when the same chemical is
applied.

A more interesting task is to assume that the test data is drawn from a different
sampling regime than the training data. This clearly requires that one make assumptions
about how the actions affect the variables. We will see an example of this in Section 3.2,
where we discuss another flow cytometry dataset, used in the Dream 2008 competition.
In this setup, we sample data from the system when applying one inhibitory chemical
and one excitatory chemical at a time, but then ask the model to predict the protein
phosphorylation levels when a novel pair of chemicals is applied. For example, we
train on data sampled from p(x|a1 = 1,a2 = 1,a3 = 0) and p(x|a1 = 0,a2 = 1,a3 = 1),
and test on data sampled from p(x|a1 = 1,a2 = 0,a3 = 1). That is, we have seen A1 and
A2 in combination, and A2 and A3 in combination, and now want to predict the effects
of the A1,A3 combination. Another variation would be to train on data from p(x|a1 =
1,a2 = 0) and p(x|a1 = 0,a2 = 1), and test on data sampled from p(x|a1 = 1,a2 = 1).
This is similar to predicting the effects of a double gene knockout given data on single
knockouts.

The most challenging task is when the testing regime contains actions that were
never tried before in the training regime, neither alone nor in combination with other
actions. For example, suppose we train on data sampled from p(x|a1 = 1,a2 = 0) and
test on data sampled from p(x|a1 = 0,a2 = 1). In general, these distributions may
have nothing to do with each other. Generalizing to a new regime is like predicting the
label of a novel word in a statistical language model. In general, this is impossible,
unless we break the word down into its component pieces and/or describe it in terms
of features (e.g., does it end in “ing”, does it begin with a capital letter, what is the
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language of origin, what is the context that it was used in, etc). If we represent actions
as “atomic”, all we can do is either make the DAG plus perfect intervention assumption,
or assume that the action has no affect, and “back-off” to the observational regime. We
will compare these approaches below.

2. Methods

In this section, we discuss some methods for learning conditional density models to
represent p(x|a), some based on graphs, others not. We will compare these methods
experimentally in the next section. Code for reproducing these experiments is available
at www.cs.ubc.ca/~murphyk/causality.

2.1. Approaches to Modeling Interventions

We consider several classes of methods for creating models of the form p(x|a):

1. Ignore: In this case, we simply ignore A and build a generative model of P(X).
This has the advantage that we gain statistical strength by pooling data across
the actions, but has the disadvantage that we make the same prediction for all
actions.

2. Independent: In this case, we fit a separate model P(X |A) for each unique joint
configuration of A. This is advantageous over the ignore model in that it makes
different predictions for different actions, but the disadvantage of this model is
that it does not leverage information gained between different action combina-
tions, and can not make a prediction for an unseen configuration of A.

3. Conditional: In this case, we build a model of P(X |A), where we use some
parametric model relating the A’s and X’s. We give the details below. This will
allow us to borrow strength across action regimes, and to handle novel actions.

2.2. Approaches based on DAGs

In the ignore case, we find the exact MAP DAG using the dynamic programming algo-
rithm proposed in (Silander and Myllmaki, 2006) applied to all the data pooled together.
We can use the same algorithm to fit independent DAGs for each action, by partitioning
the data. In the conditional case, there are two ways to proceed. In the first case, which
we call perfect, we assume that the interventions are perfect, and that the targets of
intervention are known. In this case, it is simple to modify the standard BDeu score to
handle the interventional data, as described in Cooper and Yoo (1999). These modified
scores can then be used inside the same dynamic programming algorithm. In the second
case, which we call uncertain, we learn the structure of an augmented DAG containing
A and X nodes, subject to the constraint that there are no A!A edges or X!A edges.
It is simple to modify the DP algorithm to handle this; see (Eaton and Murphy, 2007)
for details.
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2.3. Approaches based on undirected graphs

DAG structure learning is computationally expensive due to the need to search in a
discrete space of graphs. In particular, the exact dynamic programming algorithm men-
tioned above takes time which is exponential in the number of nodes. Recently, compu-
tationally efficient methods for learning undirected graphical model (UGM) structures,
based on L1 regularization and convex optimization, have become popular, both for
Gaussian graphical models (Meinshausen and Buhlmann, 2006; Friedman et al., 2007;
Banerjee et al., 2008), and for Ising models (Wainwright et al., 2006; Lee et al., 2006).
In the case of general discrete-state models, such as the ternary T-cell data, it is neces-
sary to use a group L1 penalty, to ensure that all the parameters associated with each
edge get “knocked out” together. Although still convex, this objective is much harder
to optimize (see e.g., (Schmidt et al., 2008) and (Duchi et al., 2008) for some suitable
algorithms). However, for the small problems considered in this paper, we found that
using L2 regularization on a fully connected graph did just as well as L1 regularization,
and was much faster. The strength of the L2 regularizer is chosen by cross validation.

To apply this technique in the ignore scenario, we construct a Markov random field,
where we create factors for each Xi node and each Xi�Xj edge. For the independent
scenario, one such Markov random field is learned for each action combination in the
training set. In the interventional scenario, we construct a conditional random field, in
which we additionally create factors for each Xi�A j edge, and for each Xi,Xj,Ak triple
(this is similar to a chain graph; see (Lauritzen and Richardson, 2002) for a discussion.)
Since it does not contain directed edges, it is harder to interpret from a causal perspec-
tive. Nevertheless, in Section 3.1, we show that the resulting model performs very well
at the task of predicting the effects of interventions.

2.4. Other methods

There are of course many other methods for (conditional) density estimation. As a
simple example of a non graph based approach, we considered mixtures of K multino-
mials. In the ignore case, we pool the data and fit a single model. In the independent
case, we fit a separate model for each action combination. In the conditional case, we
fit a mixture of independent logistic regressions:

p(x|a) = Â
k

p(z = k)
d

’
j=1

p(x j|z = k,a) (3)

where p(z = k) is a multinomial, and p(xk|a,z = k) is multinomial logistic regression.
This is similar to a mixture of experts model (Jordan and Jacobs, 1994).

2.5. Summary of methods

In summary, we have discussed 10 methods, as follows: 3 models (Mixture Model,
UGM or DAG), times 3 types (ignore, independent, conditional), plus perfect interven-
tion DAGs. We did not try independently trained DAGs, because it was substantially
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Figure 1: T-cell data. 3-state training data from (Sachs et al., 2005). Columns are the
11 measured proteins, rows are the 9 experimental conditions, 3 of which
are “general stimulation” rather than specific interventions. The name of the
chemical that was added in each case is shown on the right. The intended
primary target is indicated by an E (for excitation) or I (for inhibition). There
are 600 measurements per condition. This figure is best viewed in colour.

slower than other methods (using exact structure learning), so we only consider 9 meth-
ods in total.

3. Experimental results

In the introduction, we argued that, in the absence of a ground truth graph structure
(which in general will never be available), the only way to assess the accuracy of a
causal model is to see how well it can predict the effects of interventions on unseen test
data. In particular, we assume we are given a training set of (a,x) pairs, we fit some
kind of conditional density model p(x|a), and then assess its predictive performance on
a different test set of (a,x) pairs.

3.1. T-cell data

Flow cytometry is a method for measuring the “status” of a large number of proteins (or
other molecules) in a high throughput way. In an influential paper in Science in 2005,
Sachs et al. used flow cytometry to collect a dataset of 5400 samples of 11 proteins
which participate in a particular pathway in T-cells. They measured the protein phos-
phorylation levels under various experimental conditions. Specifically, they applied 6
different chemicals separately, and measured the status of the proteins; these chemicals
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Figure 2: 10-fold cross-validated negative log likelihood on the T-cell data (lower is
better). The methods are divided based on their approach to modeling in-
terventions (Ignore the interventions, fit Independent models for each inter-
vention, fit a Conditional model that conditions on the interventions, or as-
sume Perfect interventions). Within each group, we sub-divide the methods
into MM (mixture of multinomials), UGM (undirected graphical model), and
DAG (directed acyclic graphical model).
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Figure 3: Average (per-case) negative log-likelihood on the T-cell test data as a func-
tion of the amount of training data for one particular action regime, given
the data from all other action regimes. Results when choosing other actions
for the “sparse training regime” are similar. “DAG Cond” is a DAG with
uncertain interventions. “UGM Ind” is a UGM fit independently for each
action.
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Figure 4: Negative log-likelihood on the T-cell data for different methods when pre-
dicting a novel action, using data from all the other actions as training. The
boxplot shows the variation when different actions are chosen as the predic-
tion targets. We plot performance relative to the mean over all methods for
each chosen action, since some actions are easier to predict than others.
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were chosen because they target the state of individual proteins. They also measured
the status in the unperturbed state (no added chemicals).1 Sachs et al. then discretized
the data into 3 states, representing low, medium and high activation (see Figure 1), and
learned a DAG model using simulated annealing and the scoring function described in
(Cooper and Yoo, 1999). The resulting DAG was quite accurate, in that it contained
most of the known edges in the biological network, and few false positives. However, it
is known that the “true” graph structure contains feedback loops, which cannot be mo-
deled by a DAG. In addition, there are many variables in the “true” model that are not
measured in the data. Hence assessing performance by looking at the graph structure is
not ideal. Instead, we will measure predictive accuracy of the learned models.

We used the same discretized version of the data as in the original Sachs paper.
There are 600 samples in each interventional regime, and 1800 samples in the observa-
tional regime, for a total of 5400 samples. There is no pre-specified train/test split in the
T-cell data, so we have to make our own. A natural approach is to use cross validation,
but a subtlety arises: the issue is whether the test set folds contain novel action combi-
nations or not. If the test data contains an action setting that has never been seen before,
in general we cannot hope to predict the outcome, since, for example, the distribution
p(x|a1 = 0,a2 = 1) need have nothing in common with p(x|a1 = 1,a2 = 0).

Initially we sidestep this problem and follow the approach taken by Ellis and Wong
(2008), whereby we assess predictive performance using 10-fold cross validation, where
the folds are chosen such that each action occurs in the training and test set. Hence each
training set has 540 samples and each validation set has 60 samples.

The results of evaluating various models in this way are shown in Figure 2. We see
that the methods which ignore the actions, and pool the data into a single model, do
poorly. This is not surprising in view of Figure 1, which indicates that the actions do
have a substantial affect on the values of the measured variables. We also see that the
approach that learns the targets of intervention (the conditional DAG) is significantly
better than learning a DAG assuming that the interventions are perfect (see last two
columns of Figure 2). Indeed, as discussed in Eaton and Murphy (2007), the structure
learned by the uncertain DAG model indicates that each intervention affects not only its
suspected target, but several of its neighbors as well. The better prediction performance
of this model indicates that the perfect intervention assumption may not be appropriate
for this data set. However, we also see that all the independent and conditional models
not based on DAGs do as well or better than the DAG methods.

It was somewhat surprising how well the independent models did. This is pre-
sumably because we have so much data in each action regime, that it is easy to learn
separate models. To investigate this, we considered a variant of the above problem in
which we trained on all 600 samples for all but one of the actions, and for this remaining
action we trained on a smaller number of samples (and tested only on this remaining
action). This allows us to assess how well we can borrow statistical strength from the
data-rich regimes to a data-poor regime. Figure 3 shows the results for several of the

1. This original version of the data is available as part of the 2008 Causality Challenge. See the CYTO
dataset at http://www.causality.inf.ethz.ch/repository.php.
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Figure 5: Dream 3 phosphoprotein data. See text for details.

models on one of the actions (the others yielded largely similar results). We see that the
conditional models need much less training data when faced with a novel action regime
than independent models, because they can borrow statistical strength from the other
regimes. Independent models need much more data to perform well. Note that even
with a large number of samples, the perfect DAG model is not much better than fitting
a separate model to each regime.

The logical extreme of the above experiment is when we get no training samples
from the novel regime. That is, we have 600 training samples from each of the follo-
wing: p(x|1,0,0,0,0,0), p(x|0,1,0,0,0,0), ... p(x|0,0,0,0,1,0), and we test on 600
samples from p(x|0,0,0,0,0,1), where the bit vector on the right hand side of the con-
ditioning bar specifies the state of the 6 A j action variables. We can then repeat this
using leave-one-action out. The results are shown in Figure 4. (We do not show results
for the independently trained models, since their predictions on novel regimes will be
based solely on their prior, which is essentially arbitrary.) We see that all methods do
about the same in terms of predictive accuracy. In particular, the perfect DAG model,
which is designed to predict the effects of novel actions, is actually slightly worse than
conditional DAGs and conditional UGMs in terms of its median performance.

3.2. DREAM data

One weakness of the CYTO dataset discussed above is that the actions are only per-
formed one at a time. A more recent dataset has been collected which measures the sta-
tus of proteins under different action combinations.2 This data is part of the DREAM
3 competition, which took place in November 2008. (DREAM stands for “Dialogue
for Reverse Engineering and Assessment of Methods”.) The data consists of measure-

2. This data is available from http://wiki.c2b2.columbia.edu/dream/index.php/
The_Signaling-Response_Prediction_Challenge._Description.
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Figure 6: The dream 3 training data represented as a design matrix. We treat each
cell type and time point separately, and show the response of the 17 phos-
phoproteins to 58 different action combinations (58 is 8⇥8 minus the 6 test
conditions shown in Figure 5.) Each 14-dimensional action vector has 0, 1
or 2 bits turned on at once. For example, the last row corresponds to stimu-
lus=LPS, inhibitor = GSK3.

Team MSE
PMF 1483
Linear regression 1828
Team 102 3101
Team 106 3309
Team 302 11329

Figure 7: Mean squared error on the DREAM 3 dataset, using the training/test set sup-
plied with the challenge. Also listed is the performance of the three other
teams who competed in the challenge.

ments (again obtained by flow cytometry) of 17 phosphoproteins and 20 cytokines at
3 time points in 2 cell types under various combinations of chemicals (7 stimuli and 7
inhibitors). In the challenge, the response of the proteins under various stimulus/ in-
hibitor pairs is made available, and the task is to predict the response to novel stimulus/
inhibitor combinations. In this paper, we focus on the phosphoprotein data. The data is
illustrated in Figure 5. Another way to view this data is shown in Figure 6.

The DREAM competition defines a train/test split, and evaluates methods in terms
of their mean squared error for predicting the responses of each variable separately to 6
novel action combinations. In Table 7, we show the scores obtained by the 3 entrants to
the competition in November 2008. The method used by these teams has not yet been
disclosed, although the organizer of the Dream competition (Gustavo Stolovitzky) told
us in a personal communication that they are not based on graphical models. We also
show two approaches we tried. The first uses simple linear regression applied to the 14-
dimensional binary action vector a to predict each response Xj (since the methods are
evaluated in terms of mean squared-error, this is equivalent to using a conditional DAG
model with linear-Gaussian CPDs) We see that this beats all the submitted entries by a
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Figure 8: Negative log-likelihood for novel action combinations on synthetic data ge-
nerated from a fully visible SEM. We plot NLL relative to the mean perfor-
mance over all methods on each action.

large margin. However, the significance of this result is hard to assess, because there
is only a single train/test split. We also tried probabilistic matrix factorization, using
K = 3 latent dimensions. This is similar to SVD/PCA but can handle missing data (see
Salakhutdinov and Mnih (2008) for details). This choice was inspired by the fact that
the data matrix in Figure 5 looks similar to a collaborative filtering type problem, where
the goal is to “fill in” holes in a matrix. We see that PMF does even better than linear
regression, but again it is hard to assess the significance of this result. Hence in the
next section, we will discuss a synthetic dataset inspired by the design of the DREAM
competition.

3.3. Synthetic Data

Since the DREAM data uses population averaging rather than individual samples, it
does not contain enough information to learn a model of the underlying system. Thus,
we sought to validate some of the approaches discussed here on a synthetic data set.
To this end, we generated synthetic data sets that simulate the DREAM training/testing
regime (i.e., where we train on pairs of actions and test on novel pairs).

We sought to generate a data set that has a clearly defined notion of intervention,
but that is not a DAG. To do this we simulated data from a discrete structural equation
model (SEM) (see Pearl (2000)). In particular, we generated a data set where each
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variable Xj is updated based on

p(Xj = 1|x
p j ,✓ j) = s(w0 j +wT

j x
p j) (4)

p(Xj =�1|x
p j ,✓ j) = 1� p(Xj = 1|x

p j ,✓ j) (5)

where s() is the sigmoid function s(x), 1/(1+exp(�x)), and ✓ j = (w0 j,w j) are the
paramters for each node; here w0 j is the bias term and w j are the regression weights.
We generated each w0 from a standard Normal distribution, and to introduce strong
dependencies between nodes we set each element of each w vector to U1 + 5sgn(U2),
where U1 and U2 were generated from a standard Normal distribution. For each node
j, we included each other node in its parent set p j with probability 0.25. To generate
samples that approximate the equilibrium distribution of the model, we started by sam-
pling each node’s value based on its bias w0 alone, then we performed 1000 updates,
where in each update we updated all nodes whose parents were updated in the pre-
vious iteration. We assume perfect interventions, which force a variable into a given
state. In the special case where the dependency structure between the nodes is acyclic,
this sampling procedure is exactly equivalent to ancestral sampling in a DAG model
(and the update distributions are the corresponding conditional distributions), and these
interventions are equivalent to perfect interventions in the DAG. However, we do not
enforce acyclicity, so the distribution may have feedback cycles (which are common in
biological networks).

We considered 2 variants of this data, one where all variables are visible, and one
with hidden variables (as is common in most real problems). In the visible SEM data set,
we generated from an 8-node SEM model under all 28 pairs of action combinations. In
our experiments, we trained on 27 of the action pairs and tested on the remaining action
pair, for all 28 pairs. In the hidden SEM data set, we generated from a 16-node SEM
model under the 28 pairs of actions combinations for the first 8 nodes, but we treat the
odd-numbered half of the nodes as hidden (so half of the actions affect a visible node in
the model, and half of the actions affect a hidden node). We think that this is a slightly
more realistic synthetic data set than a fully visible DAG with perfect interventions,
due to the presence of hidden nodes and feedback cycles, as well as interventions that
affect both visible and hidden nodes. When the data is visualized, it looks qualitatively
similar to the T-cell data in Figure 1 (results not shown).

The results on the visible data are shown in Figure 8. Since we are only testing on
new action combinations, independent models cannot be applied. As expected, condi-
tional models do better than ignore models. However, amongst the conditional models
there does not appear to be a clear winner. In particular, DAG models, even perfect
DAGs which are told the target of intervention, do no better than non-DAG models.

The results on the hidden data are not shown, since they are qualitatively similar to
the visible case. Note that in this setting, we cannot use the perfect intervention model,
since some of the interventions affected hidden nodes; hence the target of intervention
is not well defined. We have obtained qualitatively similar results on other kinds of
synthetic data.
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4. Conclusions

In this paper, we have argued that it is helpful to think of causal models in functional
terms, and to evaluate them in terms of their predictive performance, rather than in
terms of graph structures that they learn. In particular, we view causal modeling as
equivalent to learning a conditional density model of the form p(x|a).

A criticism of this work could be that we are not really doing causality because
we can’t predict the effects of new actions. However, in general, this is impossible un-
less we know something (or assume something) about the new action, since in general
p(x|a1 = 1,a2 = 0) need have nothing to do with p(x|a1 = 0,a2 = 1). Indeed, when
we tested the ability of various methods, including causal DAGs, to predict the effects
of a novel action in the T-cell data, they all performed poorly — not significantly better
than methods which ignore the actions altogether. This is despite the fact that the DAG
structure we were using was the globally optimal DAG, which had previously been
shown to be close to the “true” structure, and that we knew what the targets of the novel
action were.

We think a promising direction for future work is to describe actions, and/or the
variables they act on, in terms of feature vectors, rather than treating them as atomic
symbols. This transforms the task of predicting the effects of new actions into a stan-
dard structured prediction problem, that could be addressed with CRFs, M3Ns, etc. Just
like predicting the labeling of a new sentence or image given only its features, if there
is some regularity in the action-feature space, then we can predict the effects of a new
action given only the features of the action, without ever having to perform it.
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Abstract
For a given target node T and a given depth k � 1, we propose an algorithm for
discovering a local causal network around the target T to depth k. In our algorithm,
we find parents, children and some descendants (PCD) of nodes stepwise away from
the target T until all edges within the depth k local network cannot be oriented further.
Our algorithm extends the PCD-by-PCD algorithm for prediction with intervention
presented in Yin et al. (2008). Our algorithm can construct a local network to depth
k, has a more efficient stop rule and finds PCDs along some but not all paths starting
from the target.
Keywords: Causal network, Local structural learning

1. Introduction

In some applications, we may be interested in discovering a local causal network around
a target variable rather than the whole network over all variables. For example, we
want to predict the target in the cases with external interventions, or we are interested
in direct and indirect causes of a disease and further discriminate direct causes from
other indirect causes. There are many algorithms for structural learning, but most of
them are for constructing a whole network over all variables, such as Pearl (2000);
Spirtes et al. (2000); Heckerman (1999); Tsamardinos et al. (2006); Xie et al. (2006)
and Xie and Geng (2008). To discover a local causal network, however, it is inefficient
to construct the whole network over a large number of variables. In Causation and
Prediction Challenge of IEEE WCCI2008, Yin et al. (2008) proposed local structural
learning approaches for prediction with external interventions, in which only edges
connecting to the target are discovered and oriented. But it cannot be used to discover
a larger local structure or more indirect causes of the target.

In this paper, for a given target node T and a given depth k � 1, we propose an
algorithm for discovering a local causal network around the target T to depth k. Our al-

c� 2010 Y. Zhou, C. Wang, J. Yin & Z. Geng.
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gorithm extends the PCD-by-PCD algorithm for prediction with intervention presented
in Yin et al. (2008). First our algorithm can construct a depth k local network, and
Yin’s PCD-by-PCD algorithm is a special case of the depth 1. Second, our algorithm
has a more efficient stop rule than Yin’s algorithm. In Yin’s algorithm, a main stop
condition is ‘until all edges connecting the target are oriented’, but in our algorithm, we
make this condition weaker so that our algorithm can stop earlier than Yin’s algorithm
without loss of validity. Third, our algorithm continues to find PCDs along only some
paths away from the target which are necessary to orient the undirected edges within
the depth k local network, while Yin’s algorithm continues to find PCDs along all paths
starting from the target.

In Section 2, we propose the local structural learning algorithm. In Section 3, we
theoretically show the correctness of our algorithm. Section 4 gives definitions of scores
to be used for evaluation of algorithm performance. In Section 5, we compare our algo-
rithms with other algorithms via simulation. We discuss the challenge task: LOCANET
in Section 6. Discussion is given in Section 7. Proof of theorem is shown in Appendix.

2. Learning a local structure around the target to a given depth

Let U denote the full set of all nodes. For a node u, let PC(u) denote the set of all
parents and all children of u, and let PCD(u) denote a set which contains PC(u) and
may contain some descendants of u. There are several algorithms which can be used to
find PCD(u), such as Min Max Parent and Children (MMPC) algorithm Tsamardinos
et al. (2006).

Let T be the target node. Suppose that we are interested in the local network around
the target T to a depth k. In our algorithm, we first find parents, children and some
descendants (PCD) of the target T to obtain a local skeleton with a radius 1, and then
repeatedly find PCDs of nodes in the previous PCDs until the radius of the local skeleton
is up to the given depth k. To orient the edges in the local skeleton, we may need to find
more PCDs further away from the target T along some but not all paths. We expect to
orient all undirected edges within the local network, but some of the undirected edges
cannot be oriented essentially from observational data even if we construct a correct
global network, which is an equivalence class of causal networks. Thus we propose
a stopping rule so that the process of finding PCDs can stop early even if some edges
within the local network are unoriented. Our stopping rule is based on the fact that
when the unoriented edges are surrounded by directed edges, they cannot be oriented
by finding further structures. We theoretically show that our algorithm can correctly
obtain the local causal network with the given depth. Our algorithm does not need to
construct the global network and thus it can greatly reduce computational complexity
of structural learning.

In the following algorithm, we separate the process into two parts. Part 1 is to find
edges within length k�1 from the target T . Part 2 is to find edges at the outer layer k
and to orient undirected edges within the local network with depth k. When k = 1, we
only need to run Part 2 but no need to run Part 1.
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Algorithm 1: Local structural learning around the target T to depth k
Part 1: Find edges within length k�1 from the target T .

1 Initialization: Find the PCD of T , PCD(T ).
V = {T} (V is a set of variables whose PCDs have been obtained)
Layer(0) = {T}, Layer(i) = /0 for i = 1, . . .k (Layer(i) is the node set on layer i)
TotalLay = {T}, (The total set of nodes on all layers)
depth = 1, (the counter of depth)
canU(1) = PCD(T ), canU(i) = /0 for i = 2, . . . ,k;
(canU(i) is an ordinal waiting list for layer i whose PCD will be found.)
Repeat

2 Take X from the head of list canU(depth) out.
3 If X /2V (i.e., PCD(X) has not been gotten before) then

Find PCD(X), and set V =V [{X}.
For each Y 2V , if [X 2 PCD(Y ) and Y 2 PCD(X)],

then create an undirected edge (X ,Y ).
Find v-structures within V including X :

{Within V , find possible v-structures only for the triple of X and other
two variables in V if an intermediate node is not in the separator set of two
nonadjacent nodes.}

Orient undirected edges within V :
{Orient other edges between nodes in V if each opposite of them
creates either a directed cycle or a new v-structure Meek (1995).}

End if
4 If X /2 TotalLay and X /2 Layer(depth) and X is adjacent to

a node in Layer(depth�1) then
Layer(depth) = Layer(depth)[{X},
add PCD(X)\TotalLay to the tail of list canU(depth+1)

End if.
5 If canU(depth) = /0 then

TotalLay = TotalLay[Layer(depth) and depth = depth+1
End if

6 Until canU(depth) = /0 or depth� k.
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Algorithm 1 (continued)
Part 2: Find edges at layer k and orient undirected edges within the local structure.

1 Initialization. Set the list of nodes at the layer k�1
whose PCDs will further be found:

canV = {struct(0lea f 0,v,0 length0,1,0 path0,u) : u 2 Layer(depth = k�1),
v 2 PCD(u)\TotalLay}

Repeat
2 Take X from the head of the list canV out.
3 If all edges on path X.path are undirected then

If X .lea f /2V then
find PCD(X .lea f ) and set V =V [{X .lea f};
for each Y 2V , if X .lea f 2 PCD(Y ) and Y 2 PCD(X .lea f ),

then create an undirected edge (X.leaf,Y);
find v-structures within V including X .lea f ;
orient undirected edges within V .

End if.
If there is an undirect edge between X.leaf and the last node u of X .path then

add {struct(0lea f 0,v,0 length0,X .length+1,0 path0, [X .path,X .lea f ])
: v 2 PCD(X .lea f )\X .path\TotalLay} to the tail of canV

End if.
End if.

4 Until canV = /0.
Return

Example. Consider the revised ALARM network in Figure 1 where the arrows
16! 20 and 25! 20 in the original ALARM Beinlich et al. (1989) are reversed as
16 20 and 25 20 respectively. The revision makes more edges unoriented in its
Markov equivalence class and thus it becomes more complicated for structural learning.
Suppose that we want to discover a local network around node 20 to depth 2, denoted
as G2(20). Applying Part 1 of our algorithm, we obtain a local network with all edges
undirected as shown in Figure 2. Applying Part 2, we first obtain the local network
with depth = 2 in Figure 3. Since there are some edges unoriented, we extend the
network along undirected paths to orient these undirected edges. Finally Part 2 returns
a local network as shown in Figure 4, which is larger than G2(20) and has four nodes
9, 13, 19 and 21 outside G2(20). Nodes 19 and 21 are used to find two v-structures
19! 15 18 and 21! 17 16 respectively, and thus they help to orient edges
17 16 and 15 18 within G2(20). Nodes 9 and 13 are used to find a v-structure
13! 9 14 such that all undirected edges within G2(20) are surrounded by directed
edges, and thus the algorithm stops.

3. Theoretical result for algorithm’s correctness

We show below the correctness of the algorithm proposed in the previous section.
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Figure 1: A revised ALARM

Figure 2: Network by Part 1 Figure 3: Network to depth = 2 by Part 2

Figure 4: Network returned by Part 2
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Theorem 1 Suppose that a causal network is faithful to a probability distribution and
all conditional independencies are correctly checked by using data. Then the algorithm
proposed in the previous section can correctly discover the edges within the depth k
local causal network around the target variable T . Further it can obtain the same
orientations of these edges as a partially directed graph for the Markov equivalence
class of the underlying global causal network.

The proof of this theorem is given in Appendix. Under the suppositions of the
faithfulness and correctness of conditional independence tests, the above result ensures
that our algorithm can return the correct local network. Notice that some edges in the
local network may not be oriented. It is because these edges cannot be oriented by using
data from observational studies, but it is not because our algorithm does not finish the
learning process of the whole network.

4. The scores for evaluation

In this section, we introduce the two kinds of evaluation methods that are used in the
causal challenge to evaluate the performance for discovering a local causal network
(Guyon et al., 2008). The first method uses the average edit distance score. In the
causal challenge, the task is to construct a depth 3 causal network around a given target
variable. Thus the relationship of a variable to the target variable is encoded as a string
of up (u) and down (d) arrows from the target:

• Depth 1 relatives: parents (u) and children (d);

• Depth 2 relatives: spouse (du), grand-children (dd), siblings (ud), grand-parents
(uu); and

• Depth 3 relatives: great-grand-parents (uuu), uncles/aunts (uud), nices/nephews
(udd), parents of siblings (udu), spouses of children (ddu), parents in law (duu),
children of spouses (dud), great-grand-children (ddd).

A confusion matrix C = {Ci j} is defined to record the number of relatives confused for
another type of relative among 14 types of relatives in a depth 3 network. A cost matrix
A = {Ai j} is defined to account for the distance between the true and obtained relatives,
as shown in Table 1. The edit distance score is defined as

S = Â
i, j

Ai jCi j.

The second method uses a score-pair (precision, recall) for each kind of variable
subsets: parents, children, Markov blanket, all depth 1 variables, all depth 2 variables,
all depth 3 variables. Precision and recall (also called sensitivity) are defined respec-
tively as:

• Precision = # of true positive found/# of found, and
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Depth Desired 1 1 2 2 2 2 3 3 3 3 3 3 3 3 X
Obtained Relationship P C Sp GC Si GP GGP uud N PS SC IL CP GGC Other

u d du dd ud uu uuu uud udd udu ddu duu dud ddd

1 Parents u 0 1 1 2 1 1 2 2 2 2 2 2 2 3 4
1 Children d 1 0 1 1 1 2 3 2 2 2 2 2 2 2 4
2 Spouse du 1 1 0 1 2 1 2 2 2 1 1 1 1 2 4
2 Gchildren dd 2 1 1 0 1 2 3 2 1 2 1 2 1 1 4
2 Siblings ud 1 1 2 1 0 1 2 1 1 1 2 2 1 2 4
2 Gparents uu 1 2 1 2 1 0 1 1 2 1 2 1 2 3 4
3 Ggparents uuu 2 3 2 3 2 1 0 1 2 1 2 1 2 3 4
3 Uncles/Aunts uud 2 2 2 2 1 1 1 0 1 2 3 2 1 2 4
3 Nieces/Nephews udd 2 2 2 1 1 2 2 1 0 1 2 3 2 1 4
3 ParentsOfSiblings udu 2 2 1 2 1 1 1 2 1 0 1 2 2 2 4
3 SpousesOfChildren ddu 2 2 1 1 2 2 2 3 2 1 0 1 2 1 4
3 ParentsInLaw duu 2 2 1 2 2 1 1 2 3 2 1 0 1 2 4
3 ChildrenOfSpouses dud 2 2 1 1 1 2 2 1 2 2 2 1 0 1 4
3 GgChildren ddd 3 2 2 1 2 3 3 2 1 2 1 2 1 0 4
X Other 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

Table 1: A cost matrix A = {Ai j}.

• Recall = # of true positive found/ # of true positive.

In the cases with a 0 denominator, a very small number are added to both the numerator
and the denominator.

5. Simulation

In this section, we compare the algorithm proposed in this paper with other algorithms
via simulations. Consider again the example in Section 2 and the goal is to get the depth
3 network around node 20. In Table 2, we show the simulation results for the revised
ALARM network depicted in Figure 1. We compare our algorithm (PCD-path) with the
PC algorithm, the MMHC algorithm proposed by Tsamardinos et al. (2006) and the re-
cursive algorithm proposed by Xie and Geng (2008). The ‘distscore’ is the edit distance
score defined for the task LOCANET to measure the difference between the obtained
local network and the true local network. We consider several cases with different sig-
nificance levels and different sample sizes. In the simulation, we do 1000 repetitions
and obtain average values for each case of different sample size n and significance
level a . For each repetition, we draw a training data set from the distribution whose
parameters for the unchanged structures are obtained from the FullBNT code pack-
age: http://www.cs.ubc.ca/~murphyl/Software/BNT/bnt.html, and
parameters for the changed structure are set by chance. All of our computations are
performed on a computer with CPU 2.1 GHz⇥2 and 2 GB RAM. ‘CPU time’ is the
total CPU time of 1000 repetitions for each algorithm. It can be seen from Table 2 that
our algorithm takes much less CPU times and it has also less distscores than other three
algorithms for every case.
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n a Algorithm distscore CPU time (second)
PCD-path 1.0305 881

0.05 Recursive 1.1635 3,293
MMHC 1.1162 3,405
PC 1.2213 11,638
PCD-path 1.0993 1,175

500 0.10 Recursive 1.2057 3,404
MMHC 1.1692 3,515
PC 1.3150 11,979
PCD-path 1.1621 1,489

0.15 Recursive 1.2498 3,509
MMHC 1.1919 3,949
PC 1.4083 12,457
PCD-path 0.8573 993

0.05 Recursive 1.1205 3,739
MMHC 1.1133 3,864
PC 1.0804 8,823
PCD-path 0.8836 1,204

1000 0.10 Recursive 1.2958 3,889
MMHC 1.1431 4,326
PC 1.1241 9,635
PCD-path 0.9082 1,415

0.15 Recursive 1.3702 4,008
MMHC 1.1724 4,823
PC 1.1508 10,440

Table 2: Comparison of algorithms for the revised ALARM network.
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In Table 3, we give the total (precision, recall) scores in 1000 simulations and the
average scores can be obtained by dividing it by 1000. By the (precision, recall) scores,
there is no algorithm which always is better than others. The Recursive one seems
to be better averagely. In some cases, the PCD-path algorithm seems to be better at
‘pa’ and ‘ch’ than the MMHC algorithm, but worse at ‘pc’ and ‘mb’. From Tables 2
and 3, it can be seen that the PCD-path algorithm proposed in this paper runs fastest
among the four algorithms without loss of performance. The main advantage of the
PCD-path algorithm is to construct a local network around the given target, and this is
more important for the cases with a large number of variables.

n a Algorithm precision recall
pa ch pc mb D2 D3 pa ch pc mb D2 D3

PCD-path 41 883 904 873 755 669 93 364 713 640 686 402
0.05 Recursive 282 747 971 824 751 692 971 705 780 876 788 573

MMHC 50 768 944 933 833 777 21 652 928 887 909 656
PC 41 932 836 822 823 901 222 441 861 839 713 377
PCD-path 145 836 894 853 812 780 307 472 836 751 782 502

500 0.10 Recursive 262 750 967 822 750 692 934 717 789 880 802 597
MMHC 56 749 943 935 829 738 28 651 945 900 918 688
PC 74 882 815 818 823 891 426 393 921 876 728 435
PCD-path 174 821 879 839 816 774 409 519 882 796 809 542

0.15 Recursive 246 750 962 816 742 676 893 725 794 880 806 605
MMHC 64 739 941 933 818 707 35 657 955 908 925 703
PC 80 848 804 808 806 846 485 378 949 893 735 469
PCD-path 263 968 990 894 847 657 68 652 643 754 814 576

0.05 Recursive 196 782 961 819 862 840 812 866 894 969 883 681
MMHC 55 740 986 958 909 804 23 574 911 873 932 769
PC 49 952 990 810 931 822 190 701 767 817 861 534
PCD-path 315 911 983 900 895 780 160 722 776 824 905 688

1000 0.10 Recursive 169 765 935 815 845 813 755 872 904 965 863 689
MMHC 71 748 980 953 904 801 30 617 943 914 956 804
PC 88 906 980 802 943 882 359 759 847 879 911 627
PCD-path 318 893 974 899 898 811 174 745 826 853 930 737

0.15 Recursive 158 753 917 806 822 774 737 877 911 962 850 693
MMHC 73 751 976 950 892 785 32 639 959 936 965 814
PC 99 884 970 796 942 907 422 781 890 906 925 670

Table 3: Precision and recall of algorithms for the revised ALARM network.

6. Challenge task LOCANET

We applied the algorithm to three data sets: REGED, CINA and MARTI to find lo-
cal structures around targets to depth 3. The data set MARTI is preprocessed in the
way proposed by Yin et al. (2008), which is available at http://clopinet.com/
isabelle/Projects/WCCI2008/MARTI/JY/We summarize our results for the
Potluck challenge task LOCANET in Table 4. ‘NoNode’ denotes the number of nodes
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for a data set, ‘NoNodeLN’ denotes the number of nodes in the local network around
the target to depth 3, ‘NoPcds’ denotes the number of PCDs found by our algorithm,
and we give CPU times for every data set. Our algorithm takes so much longer on the
dataset CINA than other datasets. First, the sample size of CINA is much larger than
REGED and MARTI. Second, the independence tests of discrete variables for CINA
runs much slower than the tests of continuous variables for REGED and MARTI un-
der the assumption of Gaussian distribution. For the data set SIDO, there are 4933
variables, the observed frequencies are very unbalanced, some cells have very small
frequencies, and some have very large ones. In this case, the approach for finding par-
ents and children sets is not so efficient as the approach for finding Markov blankets.
Thus the recursive algorithm via Markov blankets proposed by Xie and Geng (2008)
is used to find a local networks including the target and 400 nodes which are strongly
associated with the target.

Data set NoNodes NoNodeLN NoPcds CPU time
REGED 1000 136 212 10 minutes
CINA 133 108 116 4 hours
MARTI 1025 224 309 10 minutes

Table 4: Results for the challenge task LOCANET.

The (precision, recall) scores and the edit distance scores of our performance on the
four datasets of LOCANET are shown in Figure 5. For the (precision, recall) scores,
the more the symbols are in the upper right corner, the better the performance is. We
have about 7 symbols in the upper right quadrant. Most of the symbols in the lower left
corner are for the MARTI dataset which are generated by adding noises to the dataset
REGED. The performance for the dataset REGED is quite better, and thus the noises
in MARTI may not be filtered throughout in our algorithm. Since there are no known
parents in the CINA task, it is not surprising that our result for the parents in the CINA
is on the vertical axis (which means we have a recall 1 while precision 0). Thirteen in
total 24 symbols are close to the right boundary which presents a high precision, and
this means that the results we found are mostly true.

7. Conclusion

We proposed an algorithm for local structural learning of a causal network around a
given target node to depth k. Our algorithm finds PCDs stepwise starting from the target
node and stops the process when the local structure is obtained, and thus it can reduce
the computational complexity. We theoretically show its correctness. The algorithm
can be used for prediction with external interventions and for local causal discovery.
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Figure 5: (Precision, Recall) scores and edit-distance scores for four datasets of LO-
CANET.
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Appendix

In this appendix we prove Theorem 1 presented in Section 3.
Proof We first show the correctness of Part 1. Step 1 is initialization. We take X from
list canU(depth) to find PCD(X) at step 2. At Step 3, we obtain an undirect edge X�Z
if and only if both Z 2 PCD(X) and X 2 PCD(Z), and thus all edges can be created
correctly if independence tests for finding PCD are correctly performed. After finding
a new edge connecting node X newly taken at Step 2, we can determine whether there
is a v-structures with X as one node and other two nodes in V , such as X�Y �Z with X
and Z nonadjacent and all X , Y and Z in the set V . It is because X , Y and Z are all in the
set V , and edges between them have been correctly determined. We can correctly find a
v-structure X ! Y  Z if Y is not in the separator X and Z (that is, X Z|S and Y /2 S).
Note that the separator S has been obtained during finding PCD(X) if Z /2 PCD(X) or
during finding PCD(Z) if X /2 PCD(Z). After finding a new v-structure or adding a new
undirected edge, we need to orient again undirected edges within V using Meek’s rules.

At Step 4, we add X to Layer(depth) because X is adjacent to a node in Layer(depth�
1) and not in the previous layers. Thus Layer(depth) can correctly be formed if
Layer(depth� 1) was correctly formed. Nodes in PCD(X) \ TotalLay are added to
the list canU(depth+1) as candidate nodes in the next layer. Thus we can make sure
all nodes which have length depth+1 from T in canU(depth+1) if Layer(depth) are
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correct. Inductive, we showed the correctness of Layer(i) for all i since at the initiation
step, Layer(0) = T is correctly set.

At step 5, we obtain the final Layer(depth), add it to TotalLay and add 1 to depth
after we treated all nodes in canU(depth).

Finally, we stop Part 1 if (1) all nodes having a path to T have a distance shorter
than k or (2) the first k�1 Layers have been obtained.

Next we show the correctness of Part 2. In Part 2 of the algorithm, we sequen-
tially search nodes outside TotalLay along an undirected path starting from a node in
Layer(k� 1) through finding PCDs of the terminal node of the path until a directed
edge is found. By Part 2, we obtain a network G which covers the local network Gk(T )
we want to find. The network G has mixed types of directed and undirected edges and
has directed edges as its boundary. Define A as a set which contains all undirected
edges and the first k� 1 layers in the local network finally obtained by the algorithm,
that is, A = {u 2 V : u has an undirected path starting from a node in Layer(k� 1)}[
TotalLay. Then any edge (u,v) which connects a node u 2 A and a node v /2 A must be
a directed edge otherwise v should be contained in A. Define B as a set of nodes which
surrounds A, that is, B = {v 2 PCD(u) \A : u 2 A}. Define E as a set of edges each
of which has at least one node in A, that is, E = {(u,v) : u 2 A, v 2 A[B}. We can
have that all undirected edges within E cannot be oriented even if the global network is
obtained. It is because any undirected (u,v) in E must have both of its two nodes u and
v contained in A and all undirected edges in E must be surrounded by directed edges.
Thus, if these undirected edges cannot be oriented by applying Meek’s rules to E, then
they cannot still be oriented by finding more edges outside E.
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Abstract
Current methods for causal structure learning tend to be computationally intensive or
intractable for large datasets. Some recent approaches have speeded up the process
by first making hard decisions about the set of parents and children for each variable,
in order to break large-scale problems into sets of tractable local neighbourhoods.
We use this principle in order to apply a structure learning committee for orientating
edges between variables. We find that a combination of weak structure learners can
be effective in recovering causal dependencies. Though such a formulation would
be intractable for large problems at the global level, we show that it can run quickly
when processing local neighbourhoods in turn. Experimental results show that this
localized, committee-based approach has advantages over standard causal discovery
algorithms both in terms of speed and accuracy.
Keywords: Bayesian Network, feature ranking, relevance learning, committee method

1. Introduction

Current methods for causal structure learning tend to be computationally intensive or
intractable for large datasets. Most approaches towards causal structure learning can
be categorized into two classes: constraint-based approaches that use independence
tests and score-based techniques that search for Bayesian networks. The former are
slow because independence has to be tested between variables under many different
conditioning sets. The latter are slow because of the possible number of Bayesian
networks; a naïve scoring with just 10 variables would have to consider around 1018

configurations (Robinson, 1977).
Some recent approaches have speeded up the process by finding the network skele-

ton first and then doing local neighborhood learning to orient the skeleton edges, such
as MMHC (Tsamardinos et al., 2006). Building the skeleton of a network is an easier
task than orientating the edges as we only look at associations between variables and
not the causal relationships between them.

c� 2010 E. Mwebaze & J.A. Quinn.
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In this paper we propose a method for fast structure learning based on finding the
set of parents and children for each variable, and then applying a committee of structure
learners to make a joint decision about edge orientation. Some of the structure learning
methods we use would be intractible when applied globally to a dataset with many
variables, but can run rapidly at neighbourhood level. When the structure learners are
based on different principles (e.g. a mixture of constraint-based and score-based) it is
significant when they agree with each other, and in particular we find that this strategy
gives good worst-case accuracy.

The contributions of this paper are:

• We generalise previous work on restricting the search space to speed up structure
learning;

• We present a novel local structure learning algorithm, EPC, specifically intended
for analysing a target variable and its immediate neighbourhood;

• We show how different structure learners can be combined in a committee to give
results with better consistency.

The rest of the paper is organized as follows. In Section 2 we discuss the initial-
ization step for finding the skeleton of a network of variables. Section 3 discusses
the causal discovery committee. We present experimental evidence in Section 4, and
summarise our findings in Section 5.

2. Skeleton Discovery

The overall aim of skeleton discovery is to consider each variable in a dataset and find
the set of directly neighbouring variables. To find the neighbourhood of one varia-
ble, we begin by considering all variables as potential neighbours and then filtering
down this set in two phases. We first employ Relevance Learning Vector Quantization
(RLVQ), a fast prototype-based classification method, to do an initial feature selection
for each variable. The variables found to have low relevance during this stage are re-
moved from the estimated set of neighbours. We then apply the HITON algorithm on
the resulting variables to narrow down this set.

LVQ and RLVQ are prototype-based classification methods applied in supervised
learning. They employ a distance measure (typically Manhattan distance or quadratic
Euclidean distance) that quantifies the similarity of a given feature vector with a proto-
type (representative) of any particular class. The distance measure (Manhattan distance)
for two arbitrary vectors x,y 2 RN can be defined as:

d(x,y) =
N

Â
j=1

��x j� y j
�� . (1)

Because the features have varied meanings and magnitudes in the data, quantifying their
similarity by a uniform distance measure tends to be problematic. These differences
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are accounted by relevance learning schemes like RLVQ that employ adaptive scaling
factors that scale the features based on their relevance for classification. This takes the
form

di
l

�
wi,x

�
=

N

Â
j=1

l

i
j
��wi

j�x j
�� (2)

where w denotes a prototype or representative vector of a particular class, x denotes a
data vector and the adaptive relevance factors l

i
j are restricted to non-negative values

and obey the normalization ÂN
j=1 l

i
j = 1. The special case l

i
j = 1/N for all j = 1, . . .N

is analogous to the original LVQ measure. The RLVQ adapts the prototypes and the rel-
evance factors for each training run through the data until the error rate is at a minimum.
Further details on LVQ and RLVQ can be obtained from Bojer et al. (2001).

These methods have been used is several applications because on top of being intu-
itively easy to understand they are easy to implement and their complexity is controlled
by the user. For our purposes however we draw from the fact that they are fast and
have been shown to give high accuracy in identifying relevant features for classification
(Biehl et al., 2007).

HITON is a standard algorithm for feature selection that, assuming the joint data
distribution is faithful to a Bayesian Network, carries out statistical tests on the data to
determine the Markov boundary and the Markov blanket of a target variable. HITON
has been proven to accrue two main advantages over other feature selection algorithms:
1) it reduces the number of variables in the prediction models roughly by three orders of
magnitude relative to the original variable set while improving or maintaining accuracy,
and 2) it outperforms the baseline algorithms by selecting smaller variable sets than the
baselines (Aliferis et al., 2003). Because HITON takes several hours to run for datasets
with hundreds or thousands of variables, the RLVQ preprocessing step is useful to speed
the process of obtaining Markov boundaries for each variable.

To summarise, for each variable in the local neighbourhood a set of features relevant
for its classification are obtained using RLVQ (phase 1). For each of these sets of
relevant features, the HITON algorithm is used to further narrow down the set of parents
and children of the variable under consideration. Given this skeleton of undirected
edges between variables, a committee of structure learning methods is then used to
vote on the causes (parents) and effects (children), as described in the next section.

3. Causal Discovery Committees

Once a skeleton of the network is found we apply a structure learning committee for
orientating edges between variables. We find that a combination of weak structure
learners can be effective in recovering causal dependencies. Though such a formulation
would be intractable for large problems at the global level, we show that it can run
quickly when processing local neighbourhoods in turn.

The structure learning committee method takes the neighbourhood of each variable
and applies different algorithms to determine whether each neighbour of that variable is
a cause or an effect. If the majority of the algorithms determine that a given neighbour
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is a cause, then we classify it as a cause. Effects are classified in the same way. We do
not apply any conflict resolution at the moment; our method might return bi-directional
causes. Algorithm 1 shows the committee voting method.

Algorithm 1: Localized causal discovery committee.

1: input: c1 . . .cN , data vectors for variables C1, . . . ,CN
PC (i), set of parents and children for each variable Ci.

2: for each variable Ci, i = 1 . . .N do
3: for each algorithm Algo j do /* PC, EPC, GES, MWST, LiNGAM, K2 */
4: causes(Ci, j),e f f ects(Ci, j) Algo j (Ci,PC (i))
5: Ci majorityVote(causes(Ci, :))
6: Ei majorityVote(e f f ects(Ci, :))
7: return: {C,E}, causes and effects of variables C1, . . . ,CN .

In the remainder of this section, we first introduce a novel structure learning algo-
rithm, EPC, and then list the other committee members.

3.1. Expected Partial Correlation (EPC) Method

EPC is a simple local neighborhood structure discovery algorithm. Given the set of
parents and children of a target variable, it returns a probability of each neighbourhood
variable being either a cause or an effect. It is based on partial correlation as a measure
of conditional independence, which is true in certain cases such as binary or linear
Gaussian networks (Baba et al., 2004). We denote the Pearson correlation coefficient
between A and B as rAB, and the partial correlation between A and B conditioned on C
as rAB·C.

The algorithm works by considering different three-variable subsets of the tar-
get and neighbourhood. We divide 3-variable acyclic connected models into
three interesting classes: the collider or V-structure (A!C B); the chain
(A!C! B,A C B); and the fork (A C! B), as shown in Figure 1(i-iii). The
chain and the fork have the same conditional independency A ?? B | C, while the V-
structure has the unique property A ?? B but A 6?? B | C. We only consider variables B
which are not directly connected to A, as this would imply a cycle, which we cannot
make any inferences about.

Given a particular sample size and type of distribution, we can work out what
distribution of empirical correlation and partial correlation we expect from each dif-
ferent class. We show histograms of correlation and partial correlation in simulated
networks in Figure 2. 10,000 binary models in each class (collider, chain, fork) were
randomly created, with conditional probability tables sampled from the uniform dis-
tribution. We can see that the V-structure is the only case where conditioning on the
variable C increases the scale of the correlation between A and B, from the distribution
of |rAB·C|� |rAB| in Figure 2 (right).

The histogram in Figure 2(right) therefore gives us a probability distribution on
the likelihood P(dABC|class(A,B,C)), where dABC = |rAB·C|� |rAB| and class(A,B,C)
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Figure 1: Possible 3-variable structures: (i) collider, (ii) chain, (iii) fork. Panel (iv)
shows an example local neighbourhood for a variable C. The EPC algorithm
orientates the edge AC by looking at the supporting evidence from each of
the Bi’s.

Figure 2: Histograms of correlation and partial correlation from 10,000 simulated 3-
variable binary networks of each class, with 1000 samples drawn from each.
Chains and forks have indistinguishable correlation distributions.

243



MWEBAZE QUINN

can be “collider” or “chain/fork” as in Figure 1(i-iii). By specifying priors on
P(class(A,B,C)) we can then calculate the probability that A is a cause of C, using
the assumption that in the “collider” class A is always a cause of C, whereas in
the “chain/fork” class, there are 3 possible orientations, in only one of which A
is a cause of C. While trying to calculate whether A is a cause or an effect,
we incorporate evidence from each of the Bi’s in the neighbourhood and obtain
P
�
Cause(A,C)|dAB1C,dAB2C, . . . ,dABN�1C

�
for a neighbourhood of size N and threshold

at 0.5 to determine whether A is a cause or an effect. Algorithm 2 shows the steps of
this calculation.

The algorithm is limited to certain distributions, such as binary or Gaussian net-
works, where partial correlation is a measure of conditional independence. The method
would fail in non-linear relationships between variables such as an XOR function. We
also do not have an analytical form for the likelihood function; we currently have to
estimate the distribution through simulations.

However the advantages of the algorithm are as follows. First, it is cheap to run:
O(N2) in the neighbourhood size and O(M) in the sample size. Second, it provides
probabilities rather than categorical outputs – most methods based on CI constraints
simply accept or reject a causal hypothesis. Third, we have the ability to incorporate
prior beliefs about the orientations of edges. Fourth, it is useful as a committee member,
as it gives high confidence when there is a V-structure and low confidence otherwise.

The performance of the EPC algorithm in recovering true causes and effects is
evaluated in section 4.

Algorithm 2: EPC Algorithm to distinguish between local causes and effects.

1: input: c,b1, . . . ,bN, data vectors for target variable C and
set of parents/children B1, . . . ,BN .

2: P(Cause(Bi,C)) for all i, priors for each Bi being a cause of C.
3: for each variable Bi do
4: for each variable B j 6=i (Bi not a neighbour of B j) do
5: di j |rBiB j·C|� |rBiB j |
6: Compute likelihoods L(di j|class(Bi,B j,C))

where class(Bi,B j,C) 2 {“collider’, “chain/fork”}
7: causeodds(i) P(Cause(Bi,C))’i 6= j (L(di j|collider)+L(di j|chain/fork))
8: e f f ectodds(i) (1�P(Cause(Bi,C)))’i 6= j 2L(di j|chain/fork)
9: P(Cause(Bi,C)|c,b1, . . . ,bN) causeodds(i)

causeodds(i)+e f f ectodds(i)
10: return: P(Cause(Bi,C)|c,b1, . . . ,bN) for each i, posterior probabilities that

each Bi is a cause of C.

3.2. Other Committee Members

Standard algorithms were used in conjunction with EPC to form the structure learning
committee. The strength of the committee method is derived from applying each of
these methods to the same skeleton obtained from Section 2 for each dataset. These
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methods were selected to include methods based on different principles. These methods
were as follows1.
PC : This is a common benchmark constraint-based causal discovery algorithm, intro-
duced by Spirtes et al. (1993). A confidence level of 0.05 was used with this method.
MWST : The MWST algorithm as introduced by Chow and Liu (1968) is based on
the maximum weight spanning tree. It essentially associates a weight with each edge
obtained according to some similarity criterion (mutual information between variables
or BDeu score) and then builds the maximum spanning tree of the obtained graph. For
our experiments we used the mutual information between variables as a measure of
(conditional) dependence.
GES : The greedy search (GS) algorithm is an implementation of a standard optimiza-
tion heuristic. Greedy Equivalent Search is an extension of the GS algorithm that op-
timizes searching the DAG space by searching in the Markov equivalent space. This
method initially starts with an empty graph, adds arcs until the score cannot be im-
proved then tries to suppress some irrelevant arcs (Munteanu and Bendou, 2002). For
our experiments we used the Bayesian Information Criterion (BIC) as our scoring func-
tion with an instantiation cache of 300.
K2 : The K2 algorithm (Cooper and Herskovits, 1992) is a probabilistic algorithm
that maximizes structure probability given the data. It defines the Bayesian mea-
sure(BIC/BDeu) which is a quality measure of the network given the data. We use
it in the committee to vote on whether a feature is an effect of the target variable only
and not a cause because it is easier to specify a node order for the former. For our
experiments we used the Bayesian Score (BIC) as our scoring function.
LiNGAM : LiNGAM (Shimizu et al., 2006) is a more specific technique that attempts
to discover the causal structure in linear non-Gaussian acyclic models. We include it in
the committee because it provides a relatively different technique form the rest of the
committee members and hence can account for certain distributions on which the other
members may produce poor results. For our experiments default settings were used, as
provided in the author’s implementation.

4. Experiments

We test our methods on several standard datasets with known generating structures. The
causal structures found by our methods are evaluated using the same edit distance score
based evaluation method used to evaluate the NIPS 2008 causality challenge entries. In
this method, a confusion matrix Ci j that specifies the number of relatives confused for
another type of relative is computed. It evaluates the 14 types of relatives in a depth-3
network. A cost matrix Ai j is also computed to account for the edit distance between the
relatives. The edit distance specifies the number of substitutions, insertions, or deletions
to go from one string to another. A score for a particular structure is then computed as

1. Implementations from four packages were used: BNT (http://www.ai.mit.edu/~murphyk/
Software/BNT/bnt.html), BNT-SLT (http://bnt.insa-rouen.fr/), LiNGAM
(http://www.cs.helsinki.fi/group/neuroinf/lingam/) and Causal Explorer
(http://discover.mc.vanderbilt.edu/discover/public/causal_explorer/)
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S = Âi j Ai jCi j. The results are summarised in Table 1 for the different datasets. In
this table, we first show the performance of different standard methods and the EPC
algorithm when applied in a local neighbourhood setting. Each of the algorithms in
Table 1 are applied on the same skeleton (for each dataset) obtained using feature se-
lection/reduction techniques discussed in Section 2. We then show the performance
of all methods when combined in committee, using a majority voting scheme. As a
benchmark we then show performance of the PC algorithm when applied as standard
to the whole datasets (no localization).

Table 2 (a-f) shows confusion matrices for the committee output of three datasets.
The confusion matrices give an idea of the recall and precision rates of the method.
An ideal confusion matrix would be a diagonal matrix indicating the true positives and
true negatives. The figures that are not on the diagonal represent the numbers of false
positives (spurious causes, bottom left) and the numbers of false negatives (spurious in-
dependencies, top right).The performance of our committee method in the LOCANET
challenge is given in Table 2 (g), compared to other participants. Execution time for
HAILFINDER using the standard PC algorithm for example was 4452.4 seconds, while
for the committee this time was 190 seconds for obtaining the skeleton and 13.3 seconds
for obtaining the local graph from the committee.

Table 3 shows other performance metrics used for datasets where we know the
ground truth. We calculate precision (ratio of true causes found to total causes found),
recall (proportion of true causes found to actual number of causes), and Fmeasure =
2⇥Precision⇥Recall

Precision+Recall .

Method LUCAS LUCAP ALARM ASIA INSURANCE HAILFINDER
(2000) (2000) (5000) (2000) (2000) (20000)

PC 1.91 2.14 2.43 2.08 2.81 1.79
EPC 0.91 1.81 0.57 2.94 2.2 2.2
GES 1.86 2.14 1.5 2.96 3.38 2.58

MWST 2.86 2.46 2.21 1.7 2.7 1.68
K2 2.18 1.95 2.1 1.78 2.15 1.79

LiNGAM 1.73 3.08 1.93 1.38 2.81 1.43
Committee (M) 1.65 1.9 1.07 2.86 2.46 2.39

PC‡ 2.91 3.38 2.72 3.29 2.81 2.73

Table 1: Evaluation of edit distances for various algorithms with known networks
(sample size in brackets). Committee (M) denotes the committee decision
with Majority Voting. PC‡ represents results obtained on running the standard
PC on the whole dataset.
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! X

! 66 123
X 89 20458
(a) Lucap-EPC

! X

! 78 236
X 178 20244

(b) Lucap-Committee

! X

! 10 22
X 74 1263
(c) Alarm-EPC

! X

! 18 18
X 131 1202

(d) Alarm-Committee

! X

! 2 27
X 28 3079
(e) LiNGAM

! X

! 7 27
X 45 3057
(f) Committee

Dataset Score Others(range)
CINA 2.32 1.70 - 3.31

REGED 0.22/0.439 0.27 - 0.50
SIDO 3.46 3.31 - 3.48
(g) Results on challenge datasets

Table 2: (a-g) Confusion matrices showing the algorithms with the winning edit dis-
tance and the corresponding majority committee decisions in terms of true
causes found (top left), spurious causes (bottom left), true independencies
(bottom right) and spurious independencies (top right) for Lucap (a-b), Alarm
(c-d), and Hailfinder (e-f). (g) LOCANET challenge results.

Dataset/Method PRECISION RECALL FMEASURE

Lucap-EPC 0.43 0.54 0.47
Lucap-Committee 0.30 0.33 0.32

Alarm-EPC 0.12 0.45 0.19
Alarm-Committee 0.12 1.00 0.22

Hailfinder-LiNGAM 0.07 0.07 0.07
Hailfinder-Committee 0.13 0.26 0.18

Table 3: Evaluation of Precision, Recall and Fmeasure scores for three of the datasets
contrasting different individual algorithms with the committee

5. Discussion

From the challenge results we can see that our method gives performance comparable
to other entries , while employing a method designed to give fast inference time. We
provide two scores for the REGED dataset; the first one represents the initial submis-
sion where our method failed to find causes but due to the bias in the scoring statistic,
this did quite well, the second represents a score obtained by the committee with the
voting threshold decreased. For the benchmark datasets we find that the quality of
the committee decisions is close to the best committee member in each case. Results
obtained for applying PC to whole datasets without localization generally indicate a
lower accuracy rate than either PC with localization or the causal discovery committee.
In principle to increase precision (at the expense of recall) we can increase the voting
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threshold upwards towards the unanimous voting level. Conversely it is also possible
to increase the recall rate by altering the voting threshold in the opposite fashion. For
applications where a causal relationship needs to be established with high precision, a
unanimous voting scheme may be used though we have not so far analysed the accuracy
of this approach.

The confusion matrices in Table 2 indicate that the committee generally obtains
more true positives (higher recall - Table 3) than the corresponding committee member
with the best average edit distance score. However the committee also generally obtains
more false positives (lower precision) which accounts for the committee score not being
as good as that of the best algorithm in each case.

Currently our method does not explicitly handle conflict of orientation so it is possi-
ble to have a situation where we find that P!Q and also Q P. The output is therefore
not a DAG. We conjecture that finding bi-directional causes P$ Q may indicate the
presence of a hidden variable which influences both P and Q.

We have used our local committee framework with particular structure learning
algorithms, but anticipate that other algorithms can be used in future work. Future
research will also look at weighting the committee members based on derived properties
of the dataset.

Acknowledgments

We would like to thank Michael Biehl for helpful discussions on relevance learning.
The work was supported in part by the Dutch NUFFIC NPT project.

References

C. F. Aliferis, I. Tsamardinos, and A. Statnikov. HITON, A Novel Markov Blanket
Algorithm for Optimal Variable Selection. In Proc. of the 2003 American Medical
Informatics Association (AMIA) Annual Symposium, pages 21–25, 2003.

K. Baba, R. Shibata, and M. Sibuya. Partial Correlation and Conditional Correlation
as Measures of Conditional Independence. Australian and New Zealand Journal of
Statistics, 46(4):657–664, 2004.

M. Biehl, R. Breitling, and Y. Li. Analysis of Tiling Microarray Data by Learning
Vector Quantization and Relevance Learning. In Proc. of the 2007 IDEAL, 2007.

T. Bojer, B. Hammer, D. Schunk, and Tluk von Toschanowitz. Relevance determination
in learning vector quantization. In Verleysen M, editor, European Symposium on
Artificial Neural Networks, pages 271–276. d-facto publications, 2001.

C. K. Chow and C. N. Liu. Approximating discrete probability distribution with depen-
dence trees. IEEE Transactions on Information Theory, 14(3):462–467, 1968.

G. F. Cooper and E. H. Herskovits. The induction of probabilistic networks from data.
Machine Learning, 9(4):309–347, 1992.

248



FAST COMMITTEE-BASED STRUCTURE LEARNING

P. Munteanu and M. Bendou. The EQ framework for learning equivalence classes of
Bayesian networks. In First IEEE International Conference on Data Mining (IEEE
ICDM), San Jose, 2002.

R. W. Robinson. Counting unlabeled acyclic digraphs. In C.H.C. Little, editor, Com-
binatorial Mathematics V, volume 622 of Lecture Notes in Mathematics. Springer,
Berlin, 1977.

S. Shimizu, P. O. Hoyer, A. Hyvarinen, and A. Kerminen. A Linear Non-Gaussian
Acyclic Model for Causal Discovery. Machine Learning Research, 7:2003–2030,
2006.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search, volume 81.
Springer Verlag, Berlin, 1993.

I. Tsamardinos, L.E Brown, and C.F. Aliferis. The max-min hill-climbing Bayesian
network structure learning algorithm. Machine Learning, 65:31–78, 2006.

249



MWEBAZE QUINN

Appendix A. Pot-luck challenge: FACT SHEET.

(for a task solved)

Title: LOCANET
Ernest Mwebaze & John A. Quinn
Faculty of Computing & IT
Makerere University
(emwebaze, jquinn)@cit.mak.ac.ug
Task(s) solved: Local Structure Discovery

Method:
Our method uses a relevance learning algorithm (RLVQ) and the HITON algorithm to
reduce the feature set to parents and children of each feature. A novel partial correlation
algorithm in a committee of standard structure learning algorithms then votes on which
of the features are parents and which are children for each Markov boundary obtained
from the feature reduction step. Because we employ feature reduction initially, the
method is fast and because a committee votes on the edge directions, the method yields
high accuracy.

• Preprocessing : None

• Causal discovery : Use of novel probabilistic partial correlation algorithm in
committee of standard structure learning algorithms ; PC, GES, MWST, K2 and
LiNGAM.

• Feature selection : Use of Relevance Learning Vector Quantization and HITON
algorithms

• Classification : None

• Model selection/hyperparameter selection : Majority vote of committee of
algorithms

Results:

Dataset/Task Score 1
CINA 2.32

REGED 0.22/0.439
SIDO 3.46

Table 4: Result table.

Advantages:
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• Quantitative advantages : Our method employs feature selection techniques to
obtain relevant features for classification from which we can obtain relevant fea-
tures for causality. This reduces the processing time as indicated in our paper.

• Qualitative advantages : We employ a novel method, Expected Partial Correla-
tion (EPC), that offers comparable results when compared with other standard
algorithms on known datasets as illustrated in Table 1 in the paper.

Method Implementation:
We implemented our method in matlab on an Intel Duo CPU T7100 laptop computer
with 1024 MB or RAM.
The standard algorithms were implemented using standard packages from different in-
dividuals/organizations these included :-

- Bayesian Network Toolkit (http://www.ai.mit.edu/m̃urphyk/Software/BNT/bnt.html),

- Structure Learning Toolkit (http://bnt.insa-rouen.fr/),

- LiNGAM package (http://www.cs.helsinki.fi/group/neuroinf/lingam/)

- Causal Explorer (http://discover.mc.vanderbilt.edu/discover/public/causal_explorer/).

The whole application is built up into two modules, one that does the feature reduction
and the other that does the structure learning based on the novel algorithm EPC and a
host of standard algorithms including PC, MWST, GES, LiNGAM and K2.
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Abstract
This paper describes the SIGNET dataset generated for the Causality Challenge. Cel-
lular signaling pathways are most elusive types of networks to access experimentally
due to the lack of methods for determining the state of a signaling network in an in-
tact living cell. Boolean network models are currently being used for the modeling of
signaling networks due to their compact formulation and ability to adequately repre-
sent network dynamics without the need for chemical kinetics. The problem posed
in the SIGNET challenge is to determine the set of Boolean rules that describe the
interactions of nodes within a plant signaling network, given a set of 300 Boolean
pseudodynamic simulations of the true rules. The two solution methods that were
presented revealed that the problem can be solved to greater than 99% accuracy.
Keywords: Boolean pseudodynamics, plant signaling network

1. Introduction

Development of accurate models to predict cellular response to stimulus must begin
with a proper characterization of the interaction between the various cellular processes.
It is estimated that each individual gene or protein, on average, interacts with four to
eight other genes and is involved in ten biological functions (Arnone and Davidson,
1997; Miklos and Rubin, 1996). A seamless interaction between all cellular processes
is essential for a living cell to thrive.

Kinetic models have been successfully applied to the analysis of a wide variety of
biological systems, recent examples include neuronal signaling and the role of synaptic
plasticity (Ajay and Bhalla, 2006), phase sensitivity in circadian rhythms (Gunawan
and F. J. Doyle, 2007), and prediction of IL-2 response from T-cell receptor activation
(Kemp et al., 2007). By providing a global view of the underlying system, a kinetic
model can be used to interpret new experimental data in the proper biological context
(von Dassow et al., 2000), provide mechanistic explanations for counter-intuitive obser-
vations (Fallon and Lauffenburger, 2000), and facilitate the formulation of experimen-
tally testable hypotheses (Abouhamad et al., 1998; Endy et al., 2000). Unfortunately,
accurate descriptions of underlying chemical kinetics are difficult to determine in vivo,
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with reliable kinetic coefficient estimation being a non-trivial and frequently impossible
challenge due to a lack of identifiability (Yao et al., 2003).

Experimental observations of cellular function indicate that the input-output behav-
ior of signaling networks has a sigmoidal time dependence, and often can be adequately
explained using the Heaviside, or step function (Thomas, 1973). This observation sug-
gests that a two state Boolean model could be employed to represent signaling network
nodes, with nodal values being determined using an associated logical rule, representing
network edges. Recent research has focused on applying rule-based Boolean models
to the challenging problem of predicting biological network dynamics (Li et al., 2006).
In a Boolean network model, the nodes of the network represent biological entities and
the edges represent the interactions between them. The nodes can have a value of 0 or
1, representing an inactive or an active state, respectively. The network dynamics are
determined by Boolean rules for each node, that determine the state of the node at the
next time-step based on the state of the upstream nodes, and the nodal update strategy.
Rule-based Boolean network models have been successfully used to aid in explaining
experimentally observed robustness of cellular networks (Albert and Othmer, 2003;
Kauffman et al., 2003; Thomas, 1973), and to determine the effects of an alteration in
the network components and individual reaction rates (Chaves et al., 2005).

At CFDRC, we have developed an augmented Boolean pseudo-dynamics approach
to identify and quantitatively rank the importance of a node using a Boolean descrip-
tion of a cellular interaction network. The approach, known as the Boolean Network
Dynamics and Target Identification (BNDTI), combines network topology and dynamic
state information to determine the relative importance of a particular node with respect
to the overall response of the network (Soni et al., 2008). In order to perform a demon-
stration of the utility of the newly developed approach, the guard cell signaling network
in plant cells was selected (Li et al., 2006). This signaling network has been painstak-
ingly translated into a Boolean network, and centers around abscisic acid (ABA) signal
transduction, which for many decades has been known to play a role in ABA induced
stomatal closure, regulating the plant water balance and imparting drought resistance.
Two major secondary messengers involved in the closure of the stomata via ABA signal
transduction are cytosolic calcium and the cytosolic pH. These two messengers are in
turn regulated by a variety of other enzymes, secondary messengers, small molecules,
and membrane channels. Figure 1 is a rendering of the interaction network, illustrating
the complex regulatory interactions between species.

In the remainder of the paper, Section 2 provides a statement of the particular prob-
lem posed in the SIGNET challenge, along with some comments on the importance of
the problem and how researchers addressed the problem. Section 3 includes a summary
of the challenge results along with relevant comments.

2. SIGNET Challenge Problem Description

The problem posed in the SIGNET challenge is to determine the set of Boolean rules
that describe the interactions of nodes within a plant signaling network, given a set of
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Figure 1: A Schematic of the Guard Cell Signaling Network. Inhibition reactions are
shown with red edges and inverse arrowheads, whereas activation interac-
tions are shown as black edges.
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300 Boolean pseudodynamic simulations of the true rules. The relevance of this prob-
lem arises from the trend in the biological sciences toward the increased availability
of large datasets generated using high-throughput, high-content experimental technolo-
gies (such as gene expression microarrays). Experimental methods are currently able
to probe the interactions of many thousands of cellular components simultaneously.
However, cellular signaling pathways are still one of the most challenging and illusive
types of networks to access experimentally due to the lack of methods for determining
the state of a signaling network in an intact living cell. The SIGNET problem antici-
pates that experimental techniques for signaling network measurements will continue
to progress, and assumes the availability of a large set of high throughput data that will
be used to determine the set of Boolean rules describing the signaling network.

The expense and time in signaling measurements necessitate that the majority of
signaling network models in the published literature are manually constructed using the
relatively sparse literature data. The typical methodology includes a thorough assimi-
lation of all relevant literature, followed by the construction of a table that formalizes
the nodes (components) and edges (interactions) of the network. Using the table, a ne-
cessary and sufficient network capable of predicting the relevant behavior is generated.
Often times the network is manually generated, introducing human bias and utilizing a
significant amount of time and resources.

Automated methods for Boolean network inference have focused a significant amount
of attention to the problem of identifying gene networks. The REVEAL (REVerse Engi-
neering ALgorithm) was one of the first algorithms designed for this purpose (Liang
et al., 1997), which combines information-theory tools with an exhaustive search to ge-
nerate a network that is consistent with the data. An alternative algorithm is the BOOL-
1 algorithm (Akutsu et al., 1999), which consists of examining all possible k-tuples
of inputs and testing all Boolean function for each k-tuple until a consistent network
is generated. The difficulty has motivated the utilization of heuristic approaches. An
example of a heuristic approach is ID3 (Quinlan, 1986), which is a well known algo-
rithm in Machine Learning. ID3 is based on the incremental construction of the input
set for each variable using a greedy search. The approach presented in next section
is based on the synergistic utilization of evolutionary algorithms and existing heuris-
tics such as ID3. More recent approaches include the p-ary transitive reduction (TRp)
(Albert et al., 2007), have been demonstrated that produce an optimal network given
the constraints of minimal false positive inferences. Unfortunately, due to the lack of
the necessary quantities of experimental data little effort has been expended for the
automated identification of cellular signaling networks. Therefore, the overall goal of
the SIGNET challenge was, therefore, to increase awareness of this problem area and
stimulate interest in novel methods of solution.
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Figure 2: Effect of the presence and ab-
sence of abscisic acid on the per-
centage of closed stomata in the
plant guard cell signaling model.

The SIGNET dataset was generated
using the procedure that follows. Nodes,
edges, and Boolean rules were obtained
from the work of Li et al. (2006). The
network consists of a total of 43 nodes.
Five nodes are input nodes (nodes that
have only out-degree), and are the initia-
tors of network action. The state of the
input nodes ABA, GCR, ABH1, ERA1
was fixed at a value of ‘1’ throughout the
simulation. The state (‘0’ or ‘1’) of the
remaining 38 variable nodes was selected
at random at the start of each simulation.
300 Boolean pseudodynamic (BPD) si-
mulations were then generated using the
asynchronous update strategy. The choice
of BPD update scheme depends on the distribution of kinetic timescales within the net-
work. The two most popular update schemes are synchronous and asynchronous. The
synchronous method updates nodes in a fixed order at each time step, the order being
determined at the start of the simulation. Synchronous updating assumes that the phy-
sical interactions within the network all occur at approximately the same time scale.
Though synchronous updating is an efficient simulation method, it is rarely used for
realistic systems due to the limiting assumption of similar time scales. In contrast,
the asynchronous update method randomly determines the update order at each time
step, which is equivalent to the assumption that the kinetic time scales within the net-
work have a Gaussian distribution. Asynchronous updating is known to mimic realistic
events in complex networks, and has been shown to effectively capture rare events
(Chaves et al., 2005; Li et al., 2006). Figure 2 is a plot of the response of the CLO-
SURE node averaged over the 300 randomly selected initial conditions with ABA=1
and ABA=0.

The overall objective of the SIGNET challenge was to determine the set of Boolean
rules that describe the interactions of the nodes within this plant signaling network. The
dataset includes 300 separate Boolean pseudodynamic simulations of the true rules,
using an asynchronous update scheme. The results for 300 separate simulations are
included in the dataset. Each simulation consists of a matrix of 0’s and 1’s, with 21
rows and 43 columns. The first row is the randomly generated initial condition for
the particular simulation, with the next 20 rows being the output from the Boolean
pseudodynamics simulation. Each of the 43 columns represents the transient response
of a particular node. The nodal names are identified at the top of the data file.

3. Summary of SIGNET Challenge Results

Solutions to the SIGNET challenge were submitted by Mehreen Saeed of the Depart-
ment of Computer Science at the National University of Computer and Emerging Sci-
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ences (Lahore Campus, Pakistan) (Saeed, 2009), and Cheng Zheng of the School of
Mathematical Sciences at Peking University (Beijing, China) (Zheng and Geng, 2009).

3.1. Performance Assessment

Solution methodology performance was assessed using the original SIGNET case, and
for a second case generated by Prof. Isabelle Guyon. The organizers of the challenge
provided a Matlab code for the evaluation of the algorithm performance. The evaluation
code consisted of the generation of a truth table for each true rule and computing a
prediction error by comparing output values of the extracted rule to the output from the
true rule. The error is computed by averaging over all rules. In addition to calculating
the overall error rate of prediction, Prof. Saeed also calculated the training set error
of the inferred rules. This was done by applying each rule to the individual Boolean
vectors of the simulation data and predicting the output value. The output value was
compared with the actual value to obtain the overall training accuracy rate.

3.2. Bernoulli Mixture Model (BMM)

The paper submitted by Prof. Saeed develops a Bernoulli distribution-based probabi-
listic model for the data, and combines this with the mixture densities to identify the
Boolean rules from the SIGNET dataset. Parameters for the underlying Bernoulli dis-
tribution are estimated from the raw data using the expectation maximization (EM)
algorithm. This methodology is stated to be ideal for estimating the probability distri-
bution of non uni-modal data. Prof. Saeed has considerable experience applying this
same methodology to the problem of dimensionality reduction and feature selection.

Optimal values for the number of mixtures as well as the probability thresholding
value are given. The number of mixtures determines the underlying Bernoulli distri-
bution, and the complexity of parameter extraction for estimating priors. Probability
thresholding values are used to identify high data density areas on the corners of a hy-
percube. Each corner represents a conjunct of Boolean variables and together the set,
of all the corners, forms a disjunction of rules, yielding a disjunctive normal form of a
Boolean rule.

The results presented indicate that three mixtures produced the optimal training and
evaluation accuracy of 94.55% and 82.98%, respectively, for the original SIGNET set.
The dataset generated by Prof. Isabelle Guyon yielded a training accuracy of 95.88%
and an evaluation accuracy of 87.61% for the three mixture model. A thresholding
value of 0.70 produced good results for the case of a single mixture, but poor results for
2 and 3 mixtures. A thresholding value of 0.80 produced optimal results for 3 mixtures,
and showed good accuracy for 1 and 2 mixtures. Thresholding values of 0.90 produced
low accuracy results due to the number of results being ignored.

3.3. Minimum Explanatory Set and Maximum Likelihood (MESML)

The paper submitted by C. Zheng uses a method for finding the minimum explanatory
set for a particular node (Ideker et al., 2000), and then determines a Boolean func-
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tion that generates maximal log likelihood for a particular node. The methodology is
specifically modified for the reconstruction of asynchronous Boolean networks, where
the nodal update order is selected at random.

Accuracy of the method was assessed in the same manner as with Prof. Saeed’s
solution. The accuracy of the proposed method was evaluated on the original SIGNET
dataset and two other datasets generated by C. Zheng. Accuracy rates as a function of
the number of assumed parent nodes are given for evaluation of the method. Interest-
ingly, C. Zheng finds that as the number of parent nodes increases, the accuracy rate
also decreases. This result is in agreement with the expectation that the average nodal
accuracy should exhibit a maximum around the most probable in-degree, which for this
network is 1 (58% of nodes). The averaged accuracy rate for a single parent node is
95%, which is excellent.

3.4. Discussion

The primary strength of the BMM methodology is the straight forward, novel approach
of converting a probabilistic model into a rule based model in an intuitive manner. Infor-
mation concerning the total runtime to expect in practice was not provided in the final
manuscript, which would have aided the reader in making an implementation decision.
However, the only bottleneck to performance would be the expectation maximization
and I would not anticipate that it scales poorly with the number of mixtures.

The MESML method demonstrated by C. Zheng is the most accurate, with an av-
erage accuracy of 95%. The major drawback of the methodology is that the compu-
tational time scaling is roughly proportional to 10n (see Table 2 of Zheng and Geng
(2009)), where n is the number of parent nodes. This is likely to cause a potential prob-
lem for networks that contain a large number of hub nodes, where the most probable
in-degree is larger than one.

As experimental techniques become more sophisticated, computational methods
will be called upon to provide biologically relevant insight into cellular behavior and
interactions. Boolean networks will continue to play an ever increasing role in signal-
ing network modeling due to their simplicity and predictive capability. Based upon the
accuracy of the predictions, the results of the SIGNET challenge should provide signif-
icant confidence to researchers seeking to unravel the secrets of signaling networks.
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Abstract
This paper describes the use of Bernoulli mixture models for extracting boolean rules
from data. Bernoulli mixtures identify high data density areas on the corners of a
hypercube. One corner represents a conjunction of literals in a boolean clause and the
set of all identified corners, of the hypercube, indicates disjuncts of clauses to form a
rule. Further class labels can be used to select features or variables, in the individual
conjuncts, that are relevant to the target variable. This method was applied to the
SIGNET dataset of the causality workbench challenge. The dataset is derived from
a biological signaling network with 21 time steps and 43 random boolean variables.
Results indicate that Bernoulli mixtures are quite effective at extracting boolean rules
from data.
Keywords: boolean networks, boolean rules, Bernoulli mixture models, feature se-
lection

1. Introduction

Recently, the causality workbench team launched a challenge that involved many tasks
related to causal discovery (see http://www.causality.inf.ethz.ch/
pot-luck.php). One of the tasks, called ‘SIGNET’, was to discover boolean rules
from raw data. The data was generated by the simulation of boolean rules, which
describe the interaction of various variables in a boolean network representing a plant
signaling network (Li et al., 2006). This is an interesting problem involving not only the
modeling of time series data but also developing feature selection algorithms to explain
the causes of a target variable.

The SIGNET data was derived by simulating an asynchronous boolean network.
Boolean networks find important applications in many areas, especially for modeling
biological systems such as plant signaling networks, genetic regulatory networks, signal
transduction pathways, etc. In the past many scientists have modeled boolean networks
using various techniques. A well established method was developed by Ideker et al.
(2000) for inferring a genetic network from gene expression data. They used a method,
called the predictor method, to infer a set of genetic networks. The genetic networks
were derived using the concept of minimum set covering. A ‘chooser’ method, based
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upon entropy, was then used to discriminate between various networks, generated by
the predictor. The predictor and chooser were used iteratively to derive the final gene
network.

Other methods for modeling regulatory networks include graphical models like
Bayesian networks (Friedman et al., 2000), which are directed graphs representing
joint probabilities of the variables in the network and also captures the conditional in-
dependences between them. Neural networks have also been used for gene expression
analysis and representing regulatory relationships between genes in a genetic network
(Weaver et al., 1999). Such networks have also been constructed using the information
theoretic measure, i.e., mutual information criterion between the input and output states
(Liang et al., 1998).

This paper describes a novel technique for extracting boolean rules from the ‘SIGNET’
dataset by converting a probabilistic model of variable relationships into a rule based
system. The probabilistic model is governed by a mixture of Bernoulli distributions.
Mixture densities determine different groups or clusters, within data, based upon the
various observational characteristics of data. They are ideal for estimating the overall
probability distribution of data when the data is not uni-modal. The use of Bernoulli
mixture models in machine learning and pattern classification is not new. The basic for-
mula for a Bernoulli mixture model was first proposed by Duda and Hart (1973). They
have been successfully used for OCR tasks by Juan and Vidal (2004) and Grim et al.
(2000) and in supervised text classification tasks (Juan and Vidal, 2002). Bernoulli
mixtures have also been used for supervised dimensionality reduction tasks (Sajama
and Orlitsky, 2005). Prior to this work we used them for dimensionality reduction and
feature selection (Saeed, 2008; Saeed and Babri, 2008) tasks.

Bernoulli mixture models identify areas of high data density in the form of probabi-
lity vectors. We threshold these probabilities to obtain points that lie on the corners of a
hypercube. Each corner of the hypercube represents a clause containing the conjunction
of literals in a binary rule. Together the set of different corners specify the disjunction
of various clauses to specify a complete rule. For feature selection within these rules
we partition the data into 0 and 1 class labels and generate Bernoulli mixtures from
these rules separately. We then discard features in the corresponding mixtures, based
upon their probability values. The results obtained on the SIGNET dataset show that
this method is quite effective in rule extraction from raw data.

The outline of this paper is as follows: Section 2 introduces the reader to the notion
of Bernoulli mixture models and how they can be used for boolean rules extraction.
Section 3 describes the results of applying this method to the ‘SIGNET’ task. Finally,
the paper concludes via Section 4.

2. Multivariate Bernoulli Mixtures

A probability mixture model represents an overall probability distribution of data via
a convex combination of various component probability distributions also called mix-
tures. Each mixture is a probability distribution over a discrete or continuous variable
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and has its own set of parameters. A mixture model with D components is descri-
bed by a probability function given by p(x) = ÂD

d=1 pd p(x|d). Here, pd is the prior or
the mixing proportion of each mixture so that Âd pd = 1 and p(x|d) is its component-
conditional probability function.

A multivariate Bernoulli mixture model assumes that each component of the model
is an n-dimensional multivariate Bernoulli probability distribution. Suppose we have
data given by X = {x1,x2, . . . ,xm}. For a single binary vector xk 2 {0,1}n, the form of
this distribution, in the dth mixture is given by (Bishop, 2006):

p(xk|d) =
n

’
i=1

(pdi)
xki(1� pdi)

1�xki 8k,1 k  m,8d,1 d  D

Here, pdi 2 [0,1] is the probability of success of the ith component of vector xk for the
dth mixture, i.e., pdi = p(xki = 1|d). We assume that the n-dimensional vector x has
n independent component attributes. The parameter q governing this distribution is
the probability of success for each attribute of vector x, i.e., q = p where p 2 [0,1]n.
We can use any appropriate optimization algorithm to estimate the parameters of these
mixtures. For our work we used expectation maximization (EM) algorithm to estimate
these parameter values from raw data.

2.1. Bernoulli Mixtures For Identifying Edges of a Hypercube and Extracting
Boolean Rules from Data

In essence, one Bernoulli mixture is a vector of probabilities, each component repre-
senting the probability/chances of success of an individual feature or attribute. A single
Bernoulli distribution over the entire data does not tell us anything about the inter-
relationship of variables with each other. However, a mixture of such distributions can
be used to determine the covariances and hence the correlations between pairs of at-
tributes. They can also be used to identify high data density areas on the corners of a
hypercube by thresholding the probability vector. We extract a vector vd from a proba-
bility vector pd and call it the main vector. The value of an attribute in a main vector
can be taken as a 1 (0) if its probability is greater (less) than a certain threshold. The
probability values around 0.5 can be taken as don’t cares. So mathematically,

vdi =

8
<

:

1 if pdi > a

0 if pdi < 1�a

f otherwise
(1)

where f represents a don’t care value. As an example consider Figure 1. Here, we
have two mixtures extracted from three dimensional data and two corresponding main
vectors. The figure shows the corners of the hypercube represented by these vectors
and the corresponding boolean rule extracted from the 2 mixtures.

Looking at Figure 1, we can see that it is easy to infer boolean rules from data
once the corners of the hypercube are identified. Each corner represents a conjunct of
boolean variables and together the set, of all the corners, forms a disjunction of rules
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Figure 1: An example with two mixtures

to give us a disjunctive normal form of a boolean rule. The variables with a don’t care
value do not form a part of the rule.

2.2. Feature Selection in Rules

Once we have inferred the various disjuncts of a boolean rule we need to further identify
the features that are irrelevant to our target variable. Suppose our training data is given
by a set of m input vectors, X = {x1,x2, . . . ,xm}, xk 2 {0,1}n. Each vector xk is assigned
a boolean label, yk 2 {0,1}, called the target variable. We partition the data into the
two corresponding classes of 0 and 1 labels and generate D and D0 Bernoulli mixture
models from both these sets separately. Let M = {pd ;⇡d}D

d=1 be the mixtures extracted
from instances with target variable equal to 1 and M0 = {p0d ;⇡0d0}D0

d0=1 be the mixtures
estimated from data with 0 class labels.

Let r = {vd}D
d=1 be the main vectors for mixtures in M and r0 = {v0d0}D0

d0=1 be the
corresponding main vectors for mixtures in M0. A feature, which has don’t care values
in all vectors of r (r’) is eliminated automatically for the rules for target variable = 1 (0).
Also, if a feature’s value does not change in both r and r0 then it means that its value
doesn’t affect the target variable and hence this variable is irrelevant for its prediction.
Hence, we can discard the literal/feature f from a rule if its value is the same in both
the 0 and 1 labels. This variable is, therefore, assigned a don’t care value, i.e.,

vd f = v0d0 f = f if vd f = vd0 f 8d,8d0

Figure 2 illustrates the generation of rules for 0 and 1 class labels. Here we can see that
the value of feature 2 does not vary in the main vector for both the classes and hence
we can assign it a don’t care value and eliminate it from the rules.

The above mentioned procedure gives us rules for both 0 and 1 class labels for a
target variable. Ideally, one rule should be the negation of the other. However, it is not
the case as we treat the data with 0 and 1 labels separately. Out of the two rules, we
choose the rule, which gives us better accuracy over the training set. A point to note here
is that, our current model does not make any use of mixture priors. The mixture priors
in a way represent the proportion of data being generated by a particular distribution.
So even if part of the data (say a larger percentage, e.g., 80%) was generated by one
mixture and a part of it (say a smaller percentage, e.g., 20%) by another mixture, we
should still take both mixtures into account in the DNF of the rule for that feature
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M  = { p
1
, p

2
     ;0.6,0.4}

M’  = { p’
1
, p’

2
   ;0.55,0.45}

 p
1
 = (0.1,0.9,0.5)

 p
2
 = (0.1,0.9,0.5)

 p’
1
 = (0.9,0.9,0.2)

 p’
2
 = (0.1,0.9,0.1)

 v’
1
 = (1,φ,0)

 v’
2
 = (0,φ,0)

 v
1
 = (0,φ,φ)

 v
2
 = (0,φ,φ)

not f
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not
((f

1
 and not f

3
)
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1
 and not f

3
))

 v’
1
 = (1, 1 ,0)

 v’
2
 = (0, 1 ,0)

 v
1
 = (0, 1 ,φ)

 v
2
 = (0, 1 ,φ)

f
2
 can be ignored

Figure 2: An example with two classes. The second rule is a negation as it is derived
from 0 class labels.

as both the mixtures account for the generation of data and constitute the individual
clauses in the rule.

Now we briefly outline the main steps of our algorithm:

1. For each variable i in the dataset repeat the following:

i. Build the training data by using variable i as the target/class and the values of the rest of
variables as input data.

ii. Partition the data into 0 and 1 class labels

iii. Generate mixtures M0 and M for the corresponding 0 and 1 class labels

iv. Generate the set of main vectors r0 and r from both M0 and M

v. Discard features, which have the same values in the main vectors for both class labels

vi. Generate two boolean rules from 0 and 1 class labels

vii. Check the training accuracy for both classes and output the rule with maximum training
accuracy

3. Simulations

The method described in this paper was applied to the causality workbench’s ‘SIGNET’
data describing the interaction of variables inside a plant signaling network (Li et al.,
2006). The dataset includes 300 pseudo dynamic simulations of 43 boolean rules. Each
simulation starts with a randomly generated boolean vector representing the initial state
and is depicted by a 21x43 sized matrix. The next 20 vectors in a simulation are output
by the boolean pseudo dynamic simulation using an asynchronous update scheme. Our
task is to extract 43 boolean rules from the simulation data.

We applied the algorithm of Section 2.2 to extract boolean rules from the SIGNET
data. Since all simulations result in stable values after a number of time steps, the
dataset includes many repetitive training instances. To alleviate this problem, we re-
moved duplicate entries. We emphasize that we are not using only stable states to
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generate the mixtures. All states present in the training data are used. Our data prepa-
ration only avoids biasing the data distribution in favor of stable states. For evaluation
of the extracted rule, the organizers, of the challenge, suggested generating the truth
tables for each true rule and computing a prediction error rate by comparing the output
values of the extracted rule to the output value of the actual rule. The overall error rate
is thus calculated by averaging over all the rules. The corresponding Matlab code for
evaluating the system was also provided to us. In addition to calculating the overall
error rate of prediction, we also calculated the training set error of the inferred rules.
This was done by applying each rule to the individual boolean vectors of the simulation
data and predicting the output value. The output value was compared with the actual
value of simulation to get the overall training accuracy rate.

The main parameter of our model is the number of mixtures for positive and nega-
tive classes and the threshold a of Eq. (1). If the number of data points in a particular set
were less than 100 then we generated only one mixture for this data and if the total data
points were less than 350 then we generated only 2 mixtures from this set. The table
and graph of Figure 3 show the training accuracy and overall accuracy of our method
when generating different number of mixtures and using a threshold value of 0.8 on
the original provided data. The results obtained after varying the threshold values are
shown in Table 1 and discussed later.

Mixtures % Training % Evaluation
Accuracy Accuracy

1 95.19 87.80
2 93.89 79.49
3 94.55 82.98
4 91.23 81.03
5 92.72 76.86
6 93.09 75.23
7 93.12 76.29
8 93.23 75.19
10 91.94 76.25
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Evaluation Accuracy

Figure 3: Results with different mixtures using original data (threshold = 0.8)
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When generating the rules we noticed that some rules cannot be inferred from data
alone. For example, consider the following true rules:

MALATE = PEPC and not ABA and not AnionEM
ABA = 1

Since ABA is 1, hence, MALATE = 0, no matter what the values of the other variables
are. However, when evaluating this rule, the system will generate the truth tables for
three variables for MALATE and match the output of this rule with ours, resulting in
very low accuracy. Hence, we replaced the constants ABA and AGB with 1 in the actual
rules. In light of this, the organizers of the challenge generated a new dataset using our
new rules. We repeated our experiments on the new dataset and the results obtained are
illustrated in Figure 4.

Mixtures % Training % Evaluation
Accuracy Accuracy

1 95.41 86.97
2 95.60 85.61
3 95.88 87.61
4 95.37 81.72
5 95.44 83.68
6 94.65 81.04
7 94.63 82.32
8 94.83 79.2
10 94.42 80.87
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Figure 4: Results with different mixtures using new data (threshold = 0.8)

Figure 3 shows that the best result on the original data was obtained by using only
one mixture. This shows that generating different mixtures is not exactly necessary
for inferring a rule based systems. However, as pointed out earlier the data is not
consistent with the original set of rules. When we repeated our experiments with the
new data generated according to the new set of rules we get the accuracies shown in
Figure 4. Here, we can see that using 3 mixtures gives us the best results. As we
increase the number of mixtures to 10 the accuracy deteriorates considerably owing to
the generation of too many clauses for a rule.
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To see the effect of threshold a on the quality of the generated rules, we repeated
our experiments for different values of a using 1, 2 and 3 mixtures. The results are
illustrated in Table 1. Here, we can see that the best overall results are obtained for
a threshold value of 0.8. The results for a threshold of 0.7 are good for only a single
mixture, but the accuracy for 2 and 3 mixtures is low as compared to the corresponding
threshold of 0.8. When a is increased to 0.9 the accuracies deteriorate considerably.
This is owing to the fact that too many values are being converted to don’t care values
for high threshold. In this case it is not possible to capture the actual rules governing
the data.

threshold 0.7 threshold 0.8 threshold 0.9
Mix- % Train % Evaluation % Train % Evaluation % Train % Evaluation
tures Acc Acc Acc Acc Acc Acc
1 95.84 87.98 95.41 86.97 93.68 76.04
2 95.31 81.47 95.60 85.61 93.68 77.32
3 95.36 81.66 95.88 87.61 94.11 75.82

Table 1: Results with different threshold values on the new dataset

Our method of converting a probabilistic model into a rule based system is quite in-
tuitive and its usefulness is confirmed from experimental results on the SIGNET dataset.
We can see that with a threshold value of 0.8 we get a good rule base with three mix-
tures, showing that most of the attributes can be modeled with rules that have three
conjuncts inside them. Also, we get a good result with a single mixture at a threshold
of 0.7.

All the results, demonstrated in this section, are, so far, based upon the algorithm
described in Section 2.2. According to Step vi and vii of the algorithm, we generate two
boolean rules for both the class 0 and class 1 labels. Out of these two rules we select
the rule, which has a higher training set accuracy. This may not be the best strategy as
the training set data might overestimate the accuracy of a rule. In order to explore this
further, we generated new data using the code provided by the organizers of the chal-
lenge. We varied the number of simulations in each experiment. For each simulation,
we performed rule selection based upon training set accuracy, and then repeated the ex-
periment by performing rule selection based upon validation set accuracy. For the later
experiment, we set aside 20% simulations to constitute the validation set and generated
the rules using the rest of 80% data. The results of the two methods, as a function of the
number of simulations, are shown in Figure 5. Interestingly, for a smaller number of si-
mulations, the method of selection based upon the validation set accuracy outperforms
that of selection based upon the training set accuracy. As we increase the number of
simulations, the method of selecting a rule based upon training set accuracy gives better
results. This is because for smaller datasets, the rule is overfitting the data and hence
gives poor performance. In general, we can see that the accuracy of the rule based sys-
tem does not vary much with the increase in the number of simulations. It is drastically
low for 20 simulations (74% using validation set) and then reaches the highest for 400
simulations (85% using validation set). The average accuracy (accuracy averaged over
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all the simulations) of rules selected via the training set and the validation set is the
same, i.e., around 81%. Hence the validation set does not give us any added advantage
over selection with the training set. The important thing to note here is that we can use
rule selection based upon training set accuracy for large dataset sizes.
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Figure 5: Results with different simulations using 3 mixtures (threshold = 0.8)

4. Discussion and Conclusions

Bernoulli mixtures provide a simple and intuitive method for inferring rules from raw
data. The method, described in this paper, is simple and easy to implement. Our ap-
proach is novel as it shows how we can convert a probabilistic model into a rule based
system. The concept applied here is different from the one adopted by Ideker et al.
(2000). They are using only the stable values to infer boolean networks. Here, we are
also making use of unstable values to deduce boolean rules. We use mixture models
for feature selection and rule deduction. Ideker et al. , on the other hand, have used the
concept of minimum set covering using greedy searches to determine various perturba-
tions of genetic networks and entropy based measures to select the best network out of
these networks.

Zheng and Geng (2008) were the other participants of the causality challenge who
presented a solution for the SIGNET task. They have defined a methodology for iden-
tifying asynchronous networks. Their method is based upon the concept of finding the
minimum explanatory set for a node, similar to Ideker et al. (2000)’s idea of finding
minimum set covering. The log likelihood for a particular node is then maximized to
determine its corresponding boolean function. Their method depends upon the number
of assumed parent nodes and its complexity increases as the number of assumed parent
nodes is increased. They achieved an impressive average accuracy of above 99% for
a single parent node. However, this method might be too expensive to implement for
networks where the in-degree of a node is more than one.
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Currently we are converting a probabilistic model into a rule based system. The
probabilistic model based on Bernoulli mixtures is a continuous model which is dis-
cretized to infer the boolean rules governing data. The priors of mixtures are completely
ignored and not used. Another possibility could be to retain the continuous properties
of our model and make predictions based on this model. The predictions can then be
thresholded to attain truth tables and consequently the DNF of the individual rules.

x1 x2 x1 XOR x2
0 0 0
0 1 1
1 0 1
1 1 0

�!

Rule from class label 0:
not((not x1 and not x2) or (x1 and x2))

Rule from class label 1:
((x1 and not x2) or (not x1 and x2))

Figure 6: The XOR problem and rule extraction

A critical parameter of our model is the actual number of mixtures to generate from
data. If we can correctly identify this parameter, then it will increase our chances of
inferring rules, from data, that have a higher degree of accuracy. As an example con-
sider the truth table for the XOR problem in Figure 6. The corresponding rules are also
shown in the figure. If we know in advance that our data can be modeled by two mix-
tures for each class then we can come up with accurate rules to represent the data. The
rules extracted from both the zero and one class labels are also logically equivalent.
However, for this problem one mixture will not be sufficient to infer the rules accu-
rately. We need to come up with a good model selection technique that determines the
actual number of mixtures to generate from data. There are several possibilities like the
minimum message length (MML) criterion as suggested by Figueiredo and Jain (2002)
is based upon concepts from information/coding theory. Minimum description length
(MDL) and MML formally coincide with Bayesian inference criterion (BIC) (Schwarz,
1978), which is another possible approach to model selection.

In this paper, we have illustrated how a probabilistic model based upon Bernoulli
mixtures can be converted into a rule based system. Two critical parameters of our
method are the number of mixtures used to generate the rules and probability threshold
value used to determine don’t care values in rules. We evaluated the performance of our
method by varying both these parameters and achieved good results when generating 3
mixtures with a threshold value of 0.8. We also evaluated the behavior of our method
by varying the number of simulations or experiments to generate the raw data from
which mixtures are learnt. We found that for very small number of simulations the
performance of our rule based system is not very good. However, as we increase the
number of simulations, the performance of the system also improves. Here, we have
presented some preliminary work and showed how the basic concept of converting a
mixture model into a rule based system can be used to give good performance. The
method presented here is straightforward and intuitive and can be easily implemented.
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Appendix A. Pot-luck causality challenge: FACT SHEET (SIGNET)

Title: The Use of Bernoulli Mixture Models for Identifying Corners of a Hyper-
cube and Extracting Boolean Rules From Data

Participant name, address, email and website: Mehreen Saeed, FAST Na-
tional University of Computer and Emerging Sciences, Lahore Campus, Pakistan.

email: mehreen.saeed@nu.edu.pk

Task(s) solved: SIGNET

Reference: Not yet published

Method:
Profile of the method:

• Preprocessing : None

• Causal discovery: None

• Feature selection: Bernoulli mixtures were generated from data and the
probabilities in the mixtures were thresholded to identify corners of the
hypercube that represent the data. From there, only those features were
selected which had varying values in class 1 and class 2.

• Classification : The task did not involve classification, only rule genera-
tion.
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Mixtures % Training % Evaluation
Accuracy Accuracy

1 95.41 86.97
2 95.60 85.61
3 95.88 87.61
4 95.37 81.72
5 95.44 83.68
6 94.65 81.04
7 94.63 82.32
8 94.83 79.2
10 94.42 80.87

Table 2: Results with different mixtures and threshold of 0.8)

• Model selection/hyperparameter selection: None

Results: Shown in Table 2

• quantitative advantages: Simplicity, computationally easy, intuitive

• qualitative advantages: Converts a probabilistic model into a rule based
model which is novel.

Implementation: Code for Bernoulli mixtures was written in C++. The code for
boolean rule generation was implemented in Matlab

Keywords:

• Preprocessing or feature construction: None

• Causal discovery: None

• Feature selection: Bernoulli mixtures

• Classifier: None

• Hyper-parameter selection: None

• Other: Boolean rule generation using Bernoulli mixtures
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Abstract
In this paper, we propose an approach for reconstructing asynchronous Boolean net-
works from observed data. We find the causal relationships in Boolean networks
using an asynchronous evolution approach. In our approach, we first find a minimum
explanatory set for a node to reduce complexity of candidate Boolean functions, and
then we choose a Boolean function for the node based on the maximum likelihood.
This approach is stimulated by the task SIGNET of the causal challenge #2 pot-luck
Jenkins (2009). Besides the data set SIGNET, we also applied our approach to two
other datasets to evaluate our approach: one is generated by Professor Isabelle Guyon
and the other generated ourselves from the signal transduction network of Abscisic
acid in guard cell.
Keywords: Boolean network, Reverse engineering, Structural learning

1. Introduction

Boolean network is a useful model in many applications, such as gene regulation net-
works Thomas (1973) and signal pathway Davidich and Bornholdt (2008). To simulate
real biological networks better, various types of Boolean networks are developed, such
as probabilistic Boolean networks Shmulevich et al. (2002), and asynchronous Boolean
networks Kauffman et al. (2003); Harvey and Bossomaier (1997). Because of the de-
ficiency of knowledge about related chemical reaction speeds, physicists often use the
asynchronous evolution approach to study the general dynamic characteristic of these
networks Chaves et al. (2005). By using the asynchronous approach, the relative tim-
ing of each reaction is chosen randomly for each update round, which is defined as the
longest time for a node to respond to a change of its parent nodes. In studies of gene
regulation networks, the environmental factors may change during the experiment pro-
cess, and thus the reaction velocity may be affected by some external variables. Such
problems can be treated by using an asynchronous Boolean network. Although many

c� 2010 C. Zheng & Z. Geng.
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approaches have been developed for learning Boolean networks from steady states data,
which are equivalent to learning the synchronous networks Ideker et al. (2000); Nam
et al. (2006), there are a few of approaches for reconstructing asynchronous Boolean
network Jenkins (2009); Saeed (2009). In this paper, we propose an approach for re-
constructing asynchronous Boolean networks.

In Section 2, we describe the model of asynchronous networks, and we briefly des-
cribe the format of the dataset generated from a guard cell signaling network given
in Li et al. (2006). In Section 3, we discuss identification of asynchronous Boolean
networks. In Section 4, we first give the definition of candidate explanatory sets and
propose an algorithm for finding the minimum explanatory set. Then we propose a
method for choosing a Boolean function of parent nodes for each node from all pos-
sible functions based on the maximum likelihood method. Algorithm complexity and
simulation results are given in Section 5. Some possible improvement of our approach
and the disadvantage of our approach are discussed in Section 6. The result for the
challenge problem is given in Appendix B.

2. Model of Asynchronous Boolean Networks

A Boolean network is represented as a directed graph with N nodes where the orienta-
tion of the edges shows the causal relationship among variables. Suppose that the state
of each node is determined by a Boolean regulatory function of the states of its parent
nodes. For an asynchronous Boolean network, the order to update all nodes in every
update round is random. The Boolean updating rules of an asynchronous network can
be described as

St
i = Bi(S

t�I(Rt�1
i1

>Rt�1
i )

i1 ,S
t�I(Rt�1

i2
>Rt�1

i )

i2 , · · · ,S
t�I(Rt�1

ini
>Rt�1

i )

ini
) (1)

for node i = 1, . . . ,N, where St
i denotes the state of node i in round t, Bi(·) denotes the

Boolean function for node i, Rt
i with the domain {1, · · · ,N} denotes the update order of

node i in round t, ni is the number of parent nodes of node i, and I(A) is defined as

I(A) =
(

1, A = True;
0, A = False.

(2)

We write the formula (1) simply as

S⇤i = Bi(Si1 ,Si2 , · · · ,Sini
). (3)

The observed data generated from different initial values are sequentially arranged in a
matrix E with N columns and (T + 1)M rows, where T denotes the number of update
rounds for every initial value and M denotes the number of initial values. The first T +1
rows are the first initial value and the data updated consequently in T rounds, the next
T +1 rows are the data for the second initial value, and finally the last T +1 rows are
the data for the Mth initial value.
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3. Identifiability of Asynchronous Boolean Networks

For an asynchronous update rule, we can obtain more states of a network than a syn-
chronous update rule. Thus more observed states can be used to reconstruct an asyn-
chronous network. However, a disadvantage for an asynchronous network is that we
cannot know from the data at which time point the state of a node is affected by the
states of its parents. As shown in the following example, there is a network struc-
ture which cannot be identified from observed data if the data are generated from an
asynchronous network, but which can be identified if the data are generated from a
synchronous network.

Example 1 Consider the following two Boolean networks

S⇤A = SB, S⇤B = ¬SA, S⇤C = (SA^SB)_ (¬SA^¬SB), S⇤D = SE , S⇤E = ¬SD,

S⇤A = SB, S⇤B = ¬SA, S⇤C = (SD^SE)_ (¬SD^¬SE), S⇤D = SE , S⇤E = ¬SD.

The two networks cannot be distinguished if they are treated as asynchronous rules
since St

C is independent of (St
A,S

t�1
A ,St

B,St�1
B ) and (St

D,St�1
D ,St

E ,St�1
E ), which is shown

in Appendix A. However, these two networks can easily be distinguished when they are
treated as synchronous rules. It is because, for the initial value (SA,SB,SC,SD,SE) =
(1,1,0,1,0), the first network has the updated value (1,0,1,0,0) after one update round,
while the second network has the value (1,0,0,0,0).

We guess that if an asynchronous network has a steady state for each initial value,
then the network may be identifiable. The identification means that if we obtain enough
initial states and enough update processes, we can discover the structure and Boolean
rules for the whole network correctly.

4. Reconstruction of Asynchronous Boolean Networks

As shown in formula (1), the state of node i in round t can be affected only by the state
of its parents in round t or round t� 1. For each time point t, we combine the states
of N nodes in both rounds t and t� 1 into one row, and we get a data matrix with 2N
columns and T ⇥M rows for M initial values and T rounds. In this section, we propose
an algorithm MESML for finding Boolean functions in which for a particular node,
first the Minimum Explanatory Set is found, and then a Boolean function that has the
Maximum Likelihood is chosen.

4.1. Find the minimum explanatory set

Ideker et al. (2000) proposed an algorithm for reconstructing a synchronous Boolean
network. The network contains N nodes: a1, · · · ,aN , and each node ai has a Boolean
function fi. Observed data are given in a matrix E 0, whose each row is for an individual
and each column is for a variable. For every node ai, assume that a Boolean function
ai = fi(ai1 , · · · ,aini

) always holds for all rows. Their algorithm has the following three
steps. For every node ai,
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1. consider every pair of rows (t1, t2) in E 0 such that the states of ai differs. For each
pair, find the set Vt1,t2 of all other nodes whose states are different for these two
rows, i.e., Vt1,t2 = { j : St1

j 6= St2
j };

2. find the minimum set of nodes Vmin which intersects all Vj,k obtained at Step 1,
i.e., Vmin\Vj,k 6= /0; Vmin is used to find a Boolean rule fi;

3. find a truth table from the data. For a deterministic Boolean network, fi can be
obtained from the observed data of variables in Vmin. For a combination of levels
of variables in Vmin that does not appear in the data, we cannot get the truth value
of node ai for this combination.

For asynchronous networks, it seems that a difference set Vt1,t2 for node i at a pair
(t1, t2) of time points could be defined similarly to the above case by comparing a va-
riable at two consecutive time points simultaneously. That is, Vt1,t2 = { j : St1

j 6= St2
j

or St1�1
j 6= St2�1

j }. In the following example, we show that such a difference set is
improper.

Example 2 Consider the asynchronous Boolean network

S⇤A = 1, S⇤B = ¬SA, S⇤C = ¬SB.

For the single value (0,0,0) of (St
A,St

B,St
C), we may get the following two different

data (1,1,0) or (1,1,1) after one update round. By the above definition of a difference
set, we get for variable C that Vt1,t2 = /0 for these two data, and thus we cannot get Vmin,
which means that no variable can explain variable C.

To avoid the above mistake, we can revise the definition of the difference set for
node i as Vt1,t2 = { j : St1

j 6= St2
j or St1�1

j 6= St2�1
j or St1

j 6= St1�1
j }. By the revised defini-

tion, we get Vt1,t2 = {A,B} for Example 2. We say that V is an explanatory set for node
i if V \Vt1,t2 6= /0 for all pairs (t1, t2). In our approach, we find the minimum explana-
tory set V as a candidate set of parent nodes of node i. This is called the minimum set
covering and can be calculated by the branch and bound technique Nemhauser (1988).
By the revised difference set, it may be shown that the parent set of node i can be found
by using an explanatory set. If a node has n parents, then the algorithm can stop before
we search all sets with not more than n elements. Unfortunately, for an explanatory
set V , we cannot ensure the existence of a Boolean function that can explain the whole
data (see Example 3). Thus unlike the approach for synchronous networks, to decide
whether an explanatory set is appropriate, we need to check the existence of a Boolean
function which can explain the whole data. If there does not exist such a function, we
try the next minimum explanatory set V that satisfies V \Vt1,t2 6= /0 for all t1 and t2. We
repeat this process until finding a Boolean function.

Example 3 This example illustrates that an explanatory set V may not ensure the
existence of a Boolean function for explaining all data from an asynchronous network.
Consider the following asynchronous network

S⇤A = 1, S⇤B = SA, S⇤C = ¬SA.
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From it, we may get the following data of (St
A,St

B,St
C;St+1

A ,St+1
B ,St+1

C ) at three update
rounds

(1,1,0;1,1,0) for t = t1, (0,0,0;1,0,0) for t = t2, (0,1,0;1,0,1) for t = t3.

It is obvious that {B} is an explanatory set of C. From the data at t1 and t2, we find
that C is a constant 0 for B = 0 and 1, and thus we get the function C = 0. But for the
data at t3, we have Ct3+1 = 1. This means that there does not exist a Boolean function
S⇤C = BC(SB).

4.2. Find a Boolean Function

To find a Boolean function, we propose the following process. Given the minimum
explanatory set V = { j1, j2, · · · , jni} for node i obtained with the approach presented
in the previous subsection, first we extract those rows that satisfy St�1

jm = St
jm for all

m, and we can directly get a value of the Boolean function from these rows. We ex-
tract all different states and calculate a log likelihood for each of possible functions
Bi(S j1 , · · · ,S jni

)

l[S⇤i = Bi(S j1 , · · · ,S jni
),data]

=Â
t

lnP[St
i = Bi(S

t�I(Rt�1
j1

>Rt�1
i )

j1 , · · · ,S
t�I(Rt�1

jni
>Rt�1

i )

jni
)]

=Â
t

ln{ Â
(Rt�1

j1
,··· ,Rt�1

jni
,Rt�1

i )

[I(St
i = Bi(S

t�I(Rt�1
j1

>Rt�1
i )

j1 , · · · ,S
t�I(Rt�1

jni
>Rt�1

i )

jni
))

⇥P(Rt�1
j1 , · · · ,Rt�1

jni
,Rt�1

i )]}

=Â
t

ln{ Â
(at�1

j1
,··· ,at�1

jni
)

[I(St
i = Bi(S

t�at�1
j1

j1 , · · · ,S
t�at�1

jni
jni

))P(at�1
j1 , · · · ,at�1

jni
)]},

(4)

where at�1
jk = I(Rt�1

jk > Rt�1
i ), which has value 0 or 1. The maximum log likelihood

equal to �• implies that there is not any function Bi such that S⇤i = Bi(S j1 , · · · ,S jni
).

We find a function Bi which has the maximum log likelihood. Assume that (Rt
1, · · · ,Rt

N)
has a uniform distribution over all permutations of {1,2, · · · ,N} for all t. Then we have

P(at
1, · · · ,at

ni
) =

(Âni
m=1 at

m)!⇥ (ni� (Âni
m=1 at

m))!
(ni +1)!

. (5)

4.3. Algorithm MESML for finding Boolean functions

Let W = {1,2, . . . ,(T + 1)M} denote a set of row indexes for the data matrix E. Let
WI = {1,(T + 1)+ 1,2(T + 1), . . . ,(M� 1)(T + 1)+ 1} denote the set of row indexes
for M initial values, and let WNI = W\WI denote the set of row indexes for non-initial
data.

For each node i 2 {1, . . . ,N}, we find a Boolean function Bi(V ) as follows:
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Step 1 If all non-initial values of variable i are constant, that is, St
i = St 0

i for all t and
t 0 2WNI , then return a constant function Bi(V ) = St

i .

Step 2 For each t 6= t 0, calculate the difference set Vt,t 0 if St
i 6= St 0

i .

Step 3 Find a minimum set V which intersects all Vt,t 0 obtained at Step 2, that is, V
T

Vt,t 0 6=
/0 for all t and t 0 2WNI .

Step 4 Find a Boolean function Bi(V ) which maximizes the log likelihood l[Bi(V ),data].

Step 5 If l[Bi(V ),data] =�•, then we cannot obtain a Boolean function of the current
set V for the node i and go to Step 3 to try the next minimum set V .

Step 6 Otherwise, output the Boolean function Bi(V ).

Example 4 This example illustrates the algorithm MESML. Consider the following
Boolean network with N = 3 nodes A, B and C:

S⇤A = 1, S⇤B = SA, S⇤C = ¬SA.

Suppose that we have M = 3 initial vectors of (SA,SB,SC): (1,1,0), (0,0,0) and
(0,1,0). After one update round for each initial vector, we get the following data of
(St

A,St
B,St

C;St+1
A , St+1

B ,St+1
C ):

1. (1,1,0;1,1,0) for the first initial value labeled as t = 1,

2. (0,0,0;1,0,0) for the second initial value labeled as t = 3, and

3. (0,1,0;1,0,1) for the third initial value labeled as t = 5,

where the first three numbers in each bracket are an initial vector, and the last three
numbers are the vector obtained after one update round. To clearly separate the initial
values from the updated data, the data matrix E is revised by combining two rows into
one as follows

0

@
S1

A S1
B S1

C S2
A S2

B S2
C

S3
A S3

B S3
C S4

A S4
B S4

C
S5

A S5
B S5

C S6
A S6

B S6
C

1

A=

0

@
1 1 0 1 1 0
0 0 0 1 0 0
0 1 0 1 0 1

1

A ,

where the left parts in the above matrixes are for the initial values and the right parts
are for the data obtained after one update round. First we use the algorithm MESML to
find the Boolean function for node A. At Step 1, since WNI = {2,4,6} and S2

A = S4
A =

S6
A = 1, we output S⇤A = 1.

Next we try to find a Boolean function for node B. Since S2
B 6= S4

B, the condition at
Step 1 does not hold. At step 2, there are two pairs of (t, t 0): (2,4) and (2,6) such that
St

B 6= St 0
B . We calculate the difference set for the pair (2,4). Since S1

A = S2
A = S4

A = 1 6=
0 = S3

A and S1
C = S2

C = S3
C = S4

C = 0, by definition of difference set, we get V2,4 = {A}.
Then we calculate the difference set for the pair (2,6). Since S1

A = S2
A = S6

A = 1 6= 0 =
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S5
A and S1

C = S2
C = S5

C = 0 6= 1 = S6
C, we get V2,6 = {A,C}. At Step 3 we find that for

each set that has one element, only {A} is an explanatory set. At Step 4, we find the
truth table for A and B, and we can obtain the Boolean function S⇤B = SA. At Step 6, we
output the result.

Finally we want to find a Boolean function for node C. Since S2
C 6=S6

C, the condition
at Step 1 does not hold. At step 2, there are also two pairs of (t, t 0): (2,6) and (4,6) such
that St

C 6= St 0
C . First we calculate the difference set for the pair (2,6). Since S5

A = 0 6=
1 = S1

A = S2
A = S6

A and S1
B = S2

B = S5
B = 1 6= 0 = S6

B, we get V2,6 = {A,B}. Then we
calculate the difference set for the pair (4,6). Since S4

A = S6
A = 1 6= 0 = S3

A = S5
A and

S3
B = S4

B = S6
B = 0 6= 1 = S5

B, we have V4,6 = {A,B}. At Step 3, we find that for each
set with a single element, both {A} and {B} are explanatory sets. At Step 4, we search
the Boolean rules for them separately. As shown in Example 3, there does not exist a
Boolean rule of {B} that can explain the data, which means that l[BC(SB),data] =�•.
So go back to Step 3 to try the next minimum set. Since there exists a boolean rule of
A and C, we get S⇤C = ¬SA such that l[BC(SB),data] 6= �•, and then go to Step 6 for
output.

5. Simulation and Algorithm Analysis

5.1. Simulation results

From the result obtained by our approach, we find that if the parents of a variable are
found correctly, then the Boolean regulatory rule is always obtained correctly. Thus our
method based on the maximum likelihood is an efficient way for selecting the Boolean
regulatory rule. For our results, the average error rate defined by the challenge organiz-
ers is 0.14 for the original SIGNET dataset, 0.06 for our dataset and 0.05 for the dataset
generated by Professor Guyon. We also find that the error rate increases as the the
number of parent nodes increases. The dataset generated by Professor Guyon is used
for further simulation, and the error rate, the number of real parent nodes and CPU time
for various cases are shown in Table 1. All of our computations are performed on a
computer with CPU 1.73 GHz and 1.00 GB RAM and the algorithm is implemented
with R language. The CPU times do not include the data preprocess and the preprocess
takes about an hour. In our algorithm, we limit the maximum size of the set of parent
nodes up to 4 since the CPU time for more than 5 parent nodes may take more than
30 days. For the last line in Table 1, the number of real parents is 5, but we limit the
number of parents to be found up to 4. Thus the CPU time is almost the same as the
case with 4 real parents, but the average error rate is much larger than the case with 4
real parents.

5.2. Algorithm Analysis

To find the minimum set, we need to calculate Vt,t 0 for all t and t 0 2 WNI . The com-
plexity is 2N(T ⇥M)2. If a node has K parents, the total computational complexity
for finding the minimum explanatory set V is not more than ÂK

k=1Ck
N times. Given a

minimum set V with K nodes, we need to calculate not more than 22K log likelihoods.
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Number of real parents Average error rate CPU Time
0 0.000 0.1 seconds
1 0.000 10 seconds
2 0.063 10 minutes
3 0.150 12 hours
4 0.110 2.5 days
5 0.281 2.5 days

Table 1: Error rate and CPU time for the different number of parents of a node.

But if we search on the whole space of Boolean functions without using the minimum
set, the complexity is about ÂK

k=1(22k ⇥Ck
N). So our algorithm can greatly reduce the

complexity for a large network with large N and K. However, when K and N are small
but M and T are large, it takes much times to find the minimum set, and so we directly
try all possible sets V with sizes equal to 1 and 2 without finding the minimum set.

The advantages of our algorithm are that our approach takes full use of the informa-
tion in the data, especially the information on the dynamic evolution processes. Thus
our algorithm can have a higher accuracy for learning structures and Boolean functions,
especially for those sparse structures with circles and without steady states.

6. Discussion

In the algorithm MESML, we stop the process as long as we find a single minimum
parent set which has a Boolean function that maximizes the likelihood and can explain
the whole data set. If we do not consider the computational complexity, we should
try all possible minimum parent sets to find a Boolean function which maximizes the
likelihood or some other scores over all sets. To compare the models with different
numbers of parent nodes, we can use AIC score or other scores for model selection.
Pearson’s c

2 test can be used to check whether the Boolean regulatory function fits the
observed data. The c

2 test is described as follow. The hypotheses are

H0 : St
i = Bi(S

t�I(Rt�1
j1

>Rt�1
i )

j1 , · · · ,S
t�I(Rt�1

jni
>Rt�1

i )

jni
),

H1 : St
i 6= Bi(S

t�I(Rt�1
j1

>Rt�1
i )

j1 , · · · ,S
t�I(Rt�1

jni
>Rt�1

i )

jni
).

An asynchronous rule St
i = Bi(·) may take multiple values depending the orders of

parent nodes before or after the order of node i. Under the assumption that the orders
have a uniform distribution, we can obtain the distribution of St

i conditional on its
parent nodes, which is given in the likelihood (4) (i.e., the argument of ln function).
Thus we can test the hypothesis using Pearson’s c

2 statistic:

c

2 = Â
l

Til = Â
l

1

Â
j=0

(Oi jl �Ei jl )
2

Ei jl
,
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where l denotes a state of the conditional set (St
j1 , · · · ,S

t
jni

; St�1
j1 , · · · ,St�1

jni
), Oi jl is an

observed frequency

Oi jl = Â
t
I(St

i = j,(St
j1 , · · · ,S

t
jni

;St�1
j1 , · · · ,St�1

jni
) = l ),

Ei jl is the expectation

Ei jl = n
l

P(St
i = j|(St

j1 , · · · ,S
t
jni

;St�1
j1 , · · · ,St�1

jni
) = l ;H0),

which can be calculated by (4) and (5), and the total frequency is

n
l

= Â
t
I((St

j1 , · · · ,S
t
jni

;St�1
j1 , · · · ,St�1

jni
) = l ).

The statistics Til for all states of the conditional set are mutually independent. The
statistic c

2 asymptotically has a c

2 distribution with F degrees of freedom, where F is
the number of different states of (St

j1 , · · · ,S
t
jni

; St�1
j1 , · · · ,St�1

jni
).

To evaluate the test, we did a simulation on the above test for checking whether
a Boolean rule can be accepted or rejected correctly. Using the dataset of the task
SIGNET, we obtain the results shown in Table 2. The significance level a for the test
is 0.001. The test results illustrate that Pearson’s c

2 test can be used to improve the
accuracy for learning Boolean rules.

Rule Accept Reject
True 34 2
False 1 6

Table 2: Simulation results of c

2 tests for Boolean rules.

The deficiency of our approach is that the accuracy may decrease if the network
contains too many hub nodes. We limit the number of parent nodes up to 4 and stop our
algorithm after searching all sets with not more than four nodes even if no explanatory
set is found. This is a tradeoff between time cost and the error rate.

In our approach, we use a conditional likelihood for a single node i instead of the
full likelihood for all nodes to reduce the computational complexity. Thus our approach
may not obtain the optimal result. Since we consider a Boolean regulatory rule for each
node i separately, the update order we obtained may not be suitable for other Boolean
regulatory rules although it maximizes the likelihood of the Boolean rule for node i.
Below we give an example to illustrate this.

Example 5 Suppose that the observed data of (S0
A,S0

B,S1
A,S1

B) are (1,1,0,0). First
consider A only, and the rule S⇤A = ¬SB can explain the data under the order (R1

A =
1,R1

B = 2). Next consider B only, and the rule S⇤B = ¬SA can also explain the data
under another update order (R1

A = 2,R1
B = 1). So it seems that the rules S⇤A = ¬SB and
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S⇤B = ¬SA could explain the data. However, from the rules, we find that possible data
are either (1,1,0,1) or (1,1,1,0), which do not contain the observed data (1,1,0,0).
Thus we must add one more step after our algorithm to check whether all the Boolean
rules we learned can explain the observed data.
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Appendix A. Proof of Example 1

Below we show the statement for Example 1: St
C is independent of (St

A,S
t�1
A ,St

B,St�1
B ).

Since all information on the network is contained by the conditional probabilities
P(St

A,S
t
B, St

C|S
t�1
A ,St�1

B ,St�1
C ), we first calculate these probabilities, and then we can

calculate the conditional probabilities P(St
C|S

t�1
A ,St�1

B ,St
A,S

t
B). It is easy to get that

P(St
C = 1|St�1

A = i,St�1
B = j,St

A = k,St
B = l) = 0.5 for all i, j, k and l =0 and 1. Thus we

showed that St
C is independent of (St

A,S
t�1
A ,St

B,St�1
B ). By the symmetry of (A,B) and

(D,E), we have that St
C is independent of (St

D,St�1
D ,St

E ,St�1
E ).

Appendix B. Pot-luck challenge: FACT SHEET

Method:

• Preprocessing
First, we combine the state vectors at two consequent time points into one vector.
Then for each variable i, we find a difference set Vt1,t2 of variables for a pair of
two combined vectors.

• Possible Explanatory Set finding and Boolean Rule Finding
Since all initial values for the variable ABA are 1 in the original SIGNET dataset,
each node which has a single parent ABA will have a constant value, and then the
node is determined incorrectly as a root node. Thus we assume that the five root
nodes are known for the dataset. For our dataset and Isabelle’s dataset, we have
different initial values of root nodes, and thus we need not make this assumption.
To reduce the computational complexity, we limit the number of parents of each
variable not more than 4. For each variable i that is not a root, we first find a
minimum explanatory set V that satisfies V \Vt,t 0 6= /0 for all t and t 0, and then we
find the Boolean rule of the parent set V for the variable i based on the maximum
likelihood. If there is no such Boolean rules, then we try the next minimum
explanatory set and repeat this process until finding a Boolean rule.

• Post Process
If all minimum sets with not more than 4 nodes cannot explain the data, then we
select a set V and a Boolean rule that contradict with the data set at the least.

Results:
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Dataset/Task Score
SIGNET/original dataset generated by Jenkins 0.14

SIGNET/dataset generated by Isabelle 0.05
SIGNET/my dataset 0.06

Table 3: Average error rates for three data sets.

• Quantitative advantages (e.g., compact feature subset, simplicity, computational
advantages) The computational complexity is too high to utilize fully observed
data from the dynamic process of an asynchronous network. But it is easy to
implement our algorithm since our algorithm uses conditional likelihoods and it
treats nodes one-by-one. See Section 5.2 for the complexity analysis.

• Given a parent set of a node, its Boolean rule is found based on the maximum
likelihood. We use the conditional likelihood for a single node to reduce the
computational complexity. When the network is not too complexity (i.e., the
number of parent nodes for each node is less than 5), our method can run fast and
it may be improved by using the full maximum likelihood of all nodes and using
Pearson’s c

2 test or other model-selection scores to check whether a Boolean rule
fits observed data well. Besides, our method takes full use of the information in
the data, especially the information on the dynamic evolution processes. Using
the information, we can discover many structures that cannot be found only from
the information on steady states.

Now we briefly explain our implementation. First, we change the names of variables to
be numerical style and transform the original data to a matrix. Then for each node, we
use R program to process the preprocessed data to find its parent set and its truth table.
Finally, we find a Boolean rule from the truth table. Contact us via email to ask for the
code.
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Abstract
We present an artificially simulated dataset (TIED) constructed so that there are many
minimal sets of variables with maximal predictivity (i.e., Markov boundaries) and
likewise many sets of variables that are statistically indistinguishable from the set of
direct causes and direct effects of the response variable. This dataset was used in
the Potluck Causality Challenge to determine all statistically indistinguishable sets of
direct causes and direct effects and all Markov boundaries of the response variable
and also to predict the response variable in the independent test data. We also present
baseline results of application of several algorithms to this dataset.
Keywords: local causal discovery, Markov boundary induction, variable selection,
classification

1. Introduction

The problem of variable/feature selection is of fundamental importance in machine
learning and applied statistics, especially when it comes to analysis, modeling, and
discovery from high-dimensional data (Guyon and Elisseeff, 2003; Kohavi and John,
1997). In addition to the promise of cost-effectiveness, two major goals of variable
selection are to improve the prediction performance of the predictors and to provide a
better understanding of the data-generative process (Guyon and Elisseeff, 2003). An
emerging class of algorithms proposes a principled solution to the variable selection
problem by identification of a Markov blanket of the response variable of interest (Al-
iferis et al., 2009, 2003; Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003). A
Markov blanket is a set of variables conditioned on which all the remaining variables
excluding the response variable are statistically independent of the response variable.
A related concept is a Markov boundary (or non-redundant Markov blanket) that is a
Markov blanket such that no proper subset of it is a Markov blanket (Pearl, 1988). Un-
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der assumptions about the learner and loss function, a Markov boundary is the solution
to the variable selection problem (Tsamardinos and Aliferis, 2003).

An important theoretical result states that if the distribution satisfies the intersec-
tion property1, then it is guaranteed to have a unique Markov boundary of the response
variable (Pearl, 1988). Furthermore, if the distribution satisfies common causal assump-
tions such as faithfulness, Markov condition, and causal sufficiency, then the Markov
boundary is also unique and consists only of direct causes, direct effects, and direct
causes of direct effects (also known as “spouses”) of the response variable in the un-
derlying causal graph (Tsamardinos and Aliferis, 2003). Even though there are several
well-developed algorithms for learning a Markov boundary either in faithful distribu-
tions or in distributions where the intersection property holds (Aliferis et al., 2009; Peña
et al., 2007; Aliferis et al., 2003; Tsamardinos and Aliferis, 2003; Tsamardinos et al.,
2003), little research has been done in development of algorithms for learning multiple
Markov boundaries from the same dataset when the above assumptions do not hold.

We present an artificially simulated dataset (TIED) that contains multiple Markov
boundaries (and thus violates the intersection and faithfulness properties) and like-
wise many sets of variables that are statistically indistinguishable from the set of direct
causes and direct effects of the response variable. This dataset was used in the Potluck
Causality Challenge to determine all statistically undistinguishable sets of direct causes
and direct effects and all Markov boundaries of the response variable and also to predict
the response variable in the independent test data. We also present baseline results of
application of several algorithms to this dataset.

2. Dataset

Using the principles from (Lemeire, 2006), we constructed a discrete Bayesian net-
work TIED with 1,000 variables (including a response variable T ). Figure 1 shows a
fragment of the network structure and specifies which variables contain the same in-
formation about T by the color of highlighting. The parameterization of the network
fragment shown in Figure 1 is provided in Table 1. The network fragment contains a re-
sponse variable T , all variables that participate in all Markov boundaries of the response
variable T , and some other variables. The full network can be obtained by adding 10
children to each variable from the set {X5,X6,X7,X8,X9,X11,X12,X13,X18,X19,X20} (a
total of 110 variables) with conditional probability distribution defined in Table 2 and
860 variables that do not have a path to T in the network. If variables X and Y are
shown with the same color in Figure 1, then (a) for every combination of values of
X and T such that P(T = t|X = x) = p, there exists a value y of variable Y such that
P(T = t|Y = y) = p, and (b) for every combination of values of Y and T such that
P(T = t|Y = y) = p, there exists a value x of variable X such that P(T = t|X = x) = p.
Such variables are interchangeable for prediction of T , and therefore if X belongs to a

1. We use notation X ? Y|Z to denote that subset of variables X is independent of Y given Z in the
underlying probability distribution. Let X, Y, Z, and W be any four disjoint subsets of variables. Then
the probability distribution satisfies the intersection property if X?Y|(Z[W) and X?W|(Z[Y))
X? (Y [W)|Z.
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Markov boundary M1 of T , then M2 = (M1 \{X})[{Y} is another Markov boundary
of T . The work of Lemeire (2006) specifically describes why such variables violate the
intersection property of the probability distribution. In summary, the network contains
72 Markov boundaries of T . Each of these Markov boundaries contains 5 variables: (i)
X9, (ii) X4 or X8, (iii) X11 or X12 or X13, (iv) X18 or X19 or X20, and (v) X1 or X2 or X3 or
X10. Similarly, there are 72 sets of variables that are statistically indistinguishable from
the set of direct causes and direct effects of T . These sets of variables coincide with the
Markov boundaries of T .

The dataset TIED was obtained by sampling 3,750 instances from the above Baye-
sian network. 750 (20%) instances were used for discovery of multiple Markov bound-
aries (or sets of variables that are statistically indistinguishable from the set of direct
causes and direct effects) of T , and the remaining 3,000 (80%) instances were used
for validation of classification performance of T . We also computed the optimal Bayes
classification performance of T which is 0.9663 weighted accuracy2.

Table 1: Parameterization of the TIED network for variables
shown in Figure 1 {T,X1,X2,X3,X4, . . . ,X29}. Only nonzero prob-
abilities are shown in the table.

T : P(T = 0|X10 = 0) = 1.0 X5: P(X5 = 0|X4 = 0) = 0.6 X10: P(X10 = 0|X3 = 0) = 1.0
P(T = 0|X10 = 1) = 1.0 P(X5 = 1|X4 = 0) = 0.2 P(X10 = 0|X3 = 1) = 1.0
P(T = 0|X10 = 2) = 1.0 P(X5 = 2|X4 = 0) = 0.2 P(X10 = 1|X3 = 2) = 0.3
P(T = 1|X10 = 3) = 0.3 P(X5 = 0|X4 = 1) = 0.5 P(X10 = 2|X3 = 2) = 0.7
P(T = 2|X10 = 3) = 0.3 P(X5 = 1|X4 = 1) = 0.25 P(X10 = 3|X3 = 3) = 1.0
P(T = 3|X10 = 3) = 0.4 P(X5 = 2|X4 = 1) = 0.25

P(X5 = 0|X4 = 2) = 0.8
P(X5 = 1|X4 = 2) = 0.1
P(X5 = 2|X4 = 2) = 0.1

X1: P(X1 = 0) = 0.25 X6: P(X6 = 1|X4 = 0) = 0.5 X11: P(X11 = 0|T = 0) = 1.0
P(X1 = 1) = 0.25 P(X6 = 2|X4 = 0) = 0.5 P(X11 = 0|T = 1) = 1.0
P(X1 = 2) = 0.25 P(X6 = 0|X4 = 1) = 0.8 P(X11 = 0|T = 2) = 1.0
P(X1 = 3) = 0.25 P(X6 = 1|X4 = 1) = 0.2 P(X11 = 1|T = 3) = 0.5

P(X6 = 0|X4 = 2) = 0.2 P(X11 = 2|T = 3) = 0.5
P(X6 = 1|X4 = 2) = 0.3
P(X6 = 2|X4 = 2) = 0.5

(continued on the next page)

2. Weighted accuracy is defined as the average proportion of correct classifications in each category/class
of the response variable.
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Table 1: continued from previous page

X2: P(X2 = 0|X1 = 0) = 0.8 X7: P(X7 = 0|X4 = 0) = 0.9 X12: P(X12 = 0|X11 = 0) = 1.0
P(X2 = 1|X1 = 0) = 0.2 P(X7 = 1|X4 = 0) = 0.1 P(X12 = 1|X11 = 1) = 0.5
P(X2 = 0|X1 = 1) = 0.1 P(X7 = 0|X4 = 1) = 0.7 P(X12 = 2|X11 = 1) = 0.5
P(X2 = 1|X1 = 1) = 0.9 P(X7 = 1|X4 = 1) = 0.2 P(X12 = 1|X11 = 2) = 0.5
P(X2 = 2|X1 = 2) = 1.0 P(X7 = 2|X4 = 1) = 0.1 P(X12 = 2|X11 = 2) = 0.5
P(X2 = 3|X1 = 3) = 1.0 P(X7 = 0|X4 = 2) = 0.6

P(X7 = 1|X4 = 2) = 0.3
P(X7 = 2|X4 = 2) = 0.1

X3: P(X3 = 0|X2 = 0) = 0.3 X8: P(X8 = 1|X4 = 0) = 1.0 X13: P(X13 = 0|X12 = 0) = 1.0
P(X3 = 1|X2 = 0) = 0.7 P(X8 = 2|X4 = 1) = 1.0 P(X13 = 1|X12 = 1) = 0.5
P(X3 = 0|X2 = 1) = 0.8 P(X8 = 0|X4 = 2) = 1.0 P(X13 = 2|X12 = 1) = 0.5
P(X3 = 1|X2 = 1) = 0.2 P(X13 = 1|X12 = 2) = 0.5
P(X3 = 2|X2 = 2) = 1.0 P(X13 = 2|X12 = 2) = 0.5
P(X3 = 3|X2 = 3) = 1.0

X4: P(X4 = 1|T = 0) = 0.9 X9: P(X9 = 0|T = 0) = 0.1 X14: P(X14 = 0|X1 = 0) = 0.8
P(X4 = 2|T = 0) = 0.1 P(X9 = 1|T = 0) = 0.8 P(X14 = 1|X1 = 0) = 0.1
P(X4 = 0|T = 1) = 0.8 P(X9 = 2|T = 0) = 0.1 P(X14 = 2|X1 = 0) = 0.1
P(X4 = 1|T = 1) = 0.1 P(X9 = 1|T = 1) = 0.1 P(X14 = 0|X1 = 1) = 0.1
P(X4 = 2|T = 1) = 0.1 P(X9 = 2|T = 1) = 0.9 P(X14 = 1|X1 = 1) = 0.8
P(X4 = 0|T = 2) = 0.1 P(X9 = 0|T = 2) = 0.1 P(X14 = 2|X1 = 1) = 0.1
P(X4 = 1|T = 2) = 0.8 P(X9 = 1|T = 2) = 0.8 P(X14 = 0|X1 = 2) = 0.8
P(X4 = 2|T = 2) = 0.1 P(X9 = 2|T = 2) = 0.1 P(X14 = 1|X1 = 2) = 0.1
P(X4 = 0|T = 3) = 0.1 P(X9 = 0|T = 3) = 0.2 P(X14 = 2|X1 = 2) = 0.1
P(X4 = 1|T = 3) = 0.1 P(X9 = 1|T = 3) = 0.7 P(X14 = 0|X1 = 3) = 0.1

P(X4 = 2|T = 3) = 0.8 P(X9 = 2|T = 3) = 0.1 P(X14 = 1|X1 = 3) = 0.1
P(X14 = 2|X1 = 3) = 0.8

X15: P(X15 = 0|X14 = 0) = 1.0 X20: P(X20 = 0|X19 = 0) = 1.0 X25: P(X25 = 0) = 0.5
P(X15 = 0|X14 = 1) = 1.0 P(X20 = 1|X19 = 1) = 1.0 P(X25 = 1) = 0.5
P(X15 = 1|X14 = 2) = 0.5 P(X20 = 2|X19 = 2) = 1.0
P(X15 = 2|X14 = 2) = 0.5

(continued on the next page)
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Table 1: continued from previous page

X16: P(X16 = 0|X1 = 0) = 0.2 X21: P(X21 = 0|X5 = 0) = 0.2 X26: P(X26 = 0|X25 = 0) = 0.1
P(X16 = 1|X1 = 0) = 0.6 P(X21 = 1|X5 = 0) = 0.6 P(X26 = 1|X25 = 0) = 0.9
P(X16 = 2|X1 = 0) = 0.2 P(X21 = 2|X5 = 0) = 0.2 P(X26 = 0|X25 = 1) = 0.3
P(X16 = 0|X1 = 1) = 0.1 P(X21 = 0|X5 = 1) = 0.1 P(X26 = 1|X25 = 1) = 0.7
P(X16 = 1|X1 = 1) = 0.3 P(X21 = 1|X5 = 1) = 0.3
P(X16 = 2|X1 = 1) = 0.6 P(X21 = 2|X5 = 1) = 0.6
P(X16 = 0|X1 = 2) = 0.5 P(X21 = 0|X5 = 2) = 0.5
P(X16 = 1|X1 = 2) = 0.1 P(X21 = 1|X5 = 2) = 0.1
P(X16 = 2|X1 = 2) = 0.4 P(X21 = 2|X5 = 2) = 0.4
P(X16 = 0|X1 = 3) = 0.3
P(X16 = 1|X1 = 3) = 0.5
P(X16 = 2|X1 = 3) = 0.2

X17: P(X17 = 0) = 0.25 X22: P(X22 = 0|X6 = 0) = 0.3 X27: P(X27 = 0|X25 = 0) = 0.4
P(X17 = 1) = 0.25 P(X22 = 1|X6 = 0) = 0.2 P(X27 = 1|X25 = 0) = 0.6
P(X17 = 2) = 0.25 P(X22 = 2|X6 = 0) = 0.5 P(X27 = 0|X25 = 1) = 0.8
P(X17 = 3) = 0.25 P(X22 = 0|X6 = 1) = 0.8 P(X27 = 1|X25 = 1) = 0.2

P(X22 = 1|X6 = 1) = 0.1
P(X22 = 2|X6 = 1) = 0.1
P(X22 = 0|X6 = 2) = 0.6
P(X22 = 1|X6 = 2) = 0.2
P(X22 = 2|X6 = 2) = 0.2

X18: P(X18 = 1|T = 0) = 0.1 X23: P(X23 = 0|X7 = 0) = 0.5 X28: P(X28 = 0) = 0.33
P(X18 = 2|T = 0) = 0.9 P(X23 = 1|X7 = 0) = 0.1 P(X28 = 1) = 0.33
P(X18 = 0|T = 1) = 0.1 P(X23 = 2|X7 = 0) = 0.4 P(X28 = 2) = 0.33
P(X18 = 2|T = 1) = 0.9 P(X23 = 0|X7 = 1) = 0.6
P(X18 = 0|T = 2) = 0.8 P(X23 = 1|X7 = 1) = 0.3
P(X18 = 1|T = 2) = 0.1 P(X23 = 2|X7 = 1) = 0.1
P(X18 = 2|T = 2) = 0.1 P(X23 = 0|X7 = 2) = 0.7
P(X18 = 0|T = 3) = 0.1 P(X23 = 1|X7 = 2) = 0.1
P(X18 = 1|T = 3) = 0.8 P(X23 = 2|X7 = 2) = 0.2
P(X18 = 2|T = 3) = 0.1

X19: P(X19 = 1|X18 = 0) = 1.0 X24: P(X24 = 0|X8 = 0) = 0.8 X29: P(X29 = 0|X15 = 0) = 1.0
P(X19 = 2|X18 = 1) = 1.0 P(X24 = 1|X8 = 0) = 0.1 P(X29 = 1|X15 = 1) = 0.5
P(X19 = 0|X18 = 2) = 1.0 P(X24 = 2|X8 = 0) = 0.1 P(X29 = 2|X15 = 1) = 0.5

P(X24 = 0|X8 = 1) = 0.6 P(X29 = 1|X15 = 2) = 0.5
P(X24 = 1|X8 = 1) = 0.2 P(X29 = 2|X15 = 2) = 0.5
P(X24 = 2|X8 = 1) = 0.2
P(X24 = 0|X8 = 2) = 0.5
P(X24 = 1|X8 = 2) = 0.3
P(X24 = 2|X8 = 2) = 0.2
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Figure 1: Graphical visualization of the fragment of a discrete Bayesian network TIED.
Variables that contain exactly the same information about T are highlighted
with the same color, e.g. variables X11, X12, and X13 provide exactly the same
information about T and thus are interchangeable for prediction of T .

Table 2: Conditional probability distribution of each of 110 variables (denoted
by Z) mentioned in Section 2 that have a single parent from the set
{X5,X6,X7,X8,X9,X11,X12,X13,X18,X19,X20} (denoted by X).

P(Z|X) X = 0 X = 1 X = 2
Z = 0 0.3 0.4 0.3
Z = 1 0.3 0.3 0.4
Z = 2 0.4 0.3 0.3
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3. Experiments and Results

The experiments involved running several algorithms for discovery of multiple Markov
boundaries:

• Four resampling-based techniques that apply a variable selection algorithm to
bootstrap samples from the original dataset: The following variable selection
methods were used: (i) SVM-based recursive feature elimination (SVM-RFE)
(Guyon et al., 2002); (ii) SVM-RFE with additional application of McNemar’s
test (Everitt, 1977) to identify the most parsimonious variable set with classi-
fication performance statistically indistinguishable from the observed best one;
(iii) backward wrapping with linear SVM classifier based on univariate ranking
of variables by Kruskal-Wallis non-parametric ANOVA (Hollander and Wolfe,
1999); and (iv) backward wrapping with linear SVM classifier based on Kruskal-
Wallis ANOVA with additional statistical comparison step, as in (ii). The above
four methods are denoted as Resampling-SVM-RFE1, Resampling-SVM-RFE2,
Resampling-Univariate1, Resampling-Univariate2, respectively. Since there is
no natural termination criterion of these methods, they were run on 5,000 boot-
strap samples from the original dataset.

• Three instantiations of KIAMB algorithm (Peña et al., 2007): KIAMB was ap-
plied with G2 test, parameter K = 0.8, and three statistical thresholds a = 0.01,
a = 0.005, and a = 0.001 (denoted as KIAMB1, KIAMB2, KIAMB3, respec-
tively). The first threshold was used by inventors of the method in the paper that
introduced it (Peña et al., 2007). Since there is no natural termination criterion
of these methods, they were run 5,000 times.

• Iterative Removal method (Natsoulis et al., 2005): This method works as follows:
First, it extracts a Markov boundary from the original dataset and estimates its
classification performance. Second, it removes all variables from the original
dataset that were found to participate in the Markov boundaries, extracts a new
tentative Markov boundary from the modified dataset, and estimates its classifica-
tion performance. Finally third, if the classification performance of the tentative
Markov boundary is statistically indistinguishable from the Markov boundary
obtained in the first step, then this is also a true Markov boundary and the second
and third steps of the algorithm are repeated. The implementation of this method
used an algorithm HITON-PC (Aliferis et al., 2009, 2003) to learn a Markov
boundary and McNemar’s test to compare linear SVM classification performance
of resulting variable sets (Everitt, 1977).

All methods were applied to the 750-instance training dataset to indentify Markov
boundaries of the response variable T . Once the Markov boundaries were indentified,
a linear SVM classifier was trained with these variable sets in the training dataset and
it was applied to the 3,000-instance validation dataset. The classification performance
was measured by the weighted accuracy metric (Guyon et al., 2006). In independent
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tests (not shown here) the choice of a linear SVM versus non-linear one was validated
as not compromising classification performance.

The results of experiments are presented in Table 3. The following are observed:
(i) Iterative Removal identifies only one Markov boundary because all other Markov
boundaries have a common variable (X9) and thus cannot be detected by this method.
This is s structural deficiency of that method. (ii) KIAMB fails to identify any true
Markov boundaries due to its sample inefficiency (its sample requirements are of ex-
ponential order to the number of variables in the Markov boundary), and because of
the same reason its output Markov boundaries have poor predictivity; (iii) Resampling-
based methods either miss many true Markov boundaries and/or output many false
positive variables in the identified Markov boundaries.

Table 3: Results of experiments with artificial dataset TIED. All experiments were ex-
ecuted on a cluster with Intel 2.4 GHz Xeon CPU’s.

Method Total
number of

output
Markov

boundaries

Number of
variables in an
average output

Markov
boundary

Number of true
Markov boundaries Average number

of false positive
variables in

identified true
Markov

boundaries

Average
classification
performance
in validation

data

CPU
time in
minutesidentified

exactly

identified
with false
positive
variables

Iterative
Removal 3 5.67 0 1 2.00 0.959 0.04

KIAMB1 5000 2.82 0 0 — 0.798 285.42
KIAMB2 5000 2.81 0 0 — 0.796 285.45
KIAMB3 5000 2.80 0 0 — 0.796 285.48
Resampling +
Univariate1 5000 11.10 0 72 12.29 0.942 5999.64

Resampling +
Univariate2 5000 5.58 0 0 — 0.934 6000.41

Resampling +
RFE1 5000 8.70 0 72 6.38 0.952 6235.28

Resampling +
RFE2 5000 4.24 0 29 5.76 0.947 6235.93

4. Conclusion

This report introduced an artificially simulated dataset (TIED) with multiple Markov
boundaries and multiple sets of variables that are statistically indistinguishable from
the set of direct causes and direct effects of the response variable. We also presented
baseline results of several algorithms in this dataset. The results demonstrate that TIED
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is a challenging problem and many methods fail to discover multiple Markov bound-
aries from this dataset. Therefore, there is a need to create new algorithms to identify
multiple Markov boundaries.
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Abstract
One of the fundamental purposes of causal models is using them to predict the effects
of manipulating various components of a system. It has been argued by Dash (2005,
2003) that the Do operator will fail when applied to an equilibrium model, unless the
underlying dynamic system obeys what he calls Equilibration-Manipulation Com-
mutability. Unfortunately, this fact renders most existing causal discovery algorithms
unreliable for reasoning about manipulations. Motivated by this caveat, in this paper
we present a novel approach to causal discovery of dynamic models from time series.
The approach uses a representation of dynamic causal models motivated by Iwasaki
and Simon (1994), which asserts that all “causation across time" occurs because a
variable’s derivative has been affected instantaneously. We present an algorithm that
exploits this representation within a constraint-based learning framework by numeri-
cally calculating derivatives and learning instantaneous relationships. We argue that
due to numerical errors in higher order derivatives, care must be taken when lear-
ning causal structure, but we show that the Iwasaki-Simon representation reduces the
search space considerably, allowing us to forego calculating many high-order deriva-
tives. In order for our algorithm to discover the dynamic model, it is necessary that the
time-scale of the data is much finer than any temporal process of the system. Finally,
we show that our approach can correctly recover the structure of a fairly complex
dynamic system, and can predict the effect of manipulations accurately when a ma-
nipulation does not cause an instability. To our knowledge, this is the first causal
discovery algorithm that has demonstrated that it can correctly predict the effects of
manipulations for a system that does not obey the EMC condition.
Keywords: Causal discovery, dynamic systems, manipulations.

c� 2010 M. Voortman, D. Dash & M.J. Druzdzel.
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1. Introduction

One of the fundamental purposes of causal models is the prediction of the effects of ma-
nipulating various components of a system. It has been argued by Dash (2005, 2003)
that the Do operator will fail when applied to an equilibrium model unless the under-
lying dynamic system obeys what he calls Equilibration-Manipulation Commutabil-
ity (EMC), a principle which is illustrated by the graph in Figure 1. In this figure, a
dynamic system S, represented by a set of differential equations, is depicted on the
upper-left. S has one or more equilibrium points such that, under the initial exogenous
conditions, the equilibrium model S̃, represented by a set of equilibrium equations, will
be obtained after sufficient time has passed. There are thus two approaches for making
predictions of manipulations on S on time-scales sufficiently long for the equilibrations
to occur. One could start with S̃ and apply the Do operator to predict manipulations.
This is path A in Figure 1, and is the approach taken whenever a causal model is built
from data drawn from a system in equilibrium. Alternatively, in path B the manipu-
lations are performed on the original dynamic system which is then allowed to equili-
brate; this is the path that the actual system takes. The EMC property is satisfied if and
only if path A and path B lead to the same causal structure.

Figure 1: Equilibration-Manipulation Commutability provides sufficient conditions for
an equilibrium causal graph to correctly predict the effect of manipulations.

As an example of a system that obeys the EMC condition, consider a body of mass
m dangling from a damped spring. The mass will stretch the spring to some equilibrium
position x = mg/k where k is the spring constant. As we vary m and allow the system
to come to equilibrium, the value of x gets affected according to this relation. The
equilibrium causal model S̃ of this system is simply m! x. If one were to manipulate
the spring directly and stretch it to some displacement x = x̂, then the mass would be
independent of the displacement, and the correct causal model is obtained by applying
the Do operator to this equilibrium model.

Alternatively, one could have started with the original system S of differential equa-
tions of the damped simple-harmonic oscillator by explicitely modeling the acceleration
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a = mg� kx�av, where a is the dampening constant, and the velocity v. S can like-
wise be used to model the manipulation of x by applying the Do operator to a, v, and
x simultaneously, ultimately giving the same structure as was obtained by starting with
the equilibrium model. For examples of systems that do not obey the EMC condition,
we refer the reader to Dash (2005, 2003) and the model shown later in this paper.

Unfortunately, requiring a system to obey the EMC condition renders most exist-
ing causal discovery algorithms unreliable for reasoning about manipulations, unless
the details of the underlying dynamics of the system are explicitly represented in the
model. Most classical causal discovery algorithms in AI make use of the class of inde-
pendence constraints found in the data to infer causality between variables, assuming
the faithfulness assumption (e.g., Spirtes et al., 2000; Pearl and Verma, 1991; Cooper
and Herskovits, 1992). These methods will not be guaranteed to obey EMC if the
observation time-scale of the data is long enough for some process in the underlying
dynamic system to go through equilibrium. On the other hand, there have been previ-
ous approaches for learning dynamic causal models and Bayesian networks. Friedman
et al. (1998) learn the structure of first-order Markov model by using time series data,
and it would be straightforward to extend these approaches to higher-order Markovian
models. However, the search space rapidly gets very large when searching for arbitrary
dependencies across time.

Our approach, by contrast, uses an alternative representation of a dynamic system,
explicitely modeling derivatives (or differences) of variables. It is beyond the scope of
this paper to perform a quantitative comparison of prediction to these other approaches,
however, we argue here that the representation that we learn helps us constrain the
search space, and we expect that this reduction in complexity will make our algorithm
perform better in practice and be more efficient than methods that try to learn fixed-
order Markov structures for all variables.

2. Representation and Assumptions

Our approach uses a representation of dynamic causal models inspired by Iwasaki and
Simon (1994), which asserts that all “causation across time" occurs because a variable’s
derivative has been affected instantaneously. Iwasaki and Simon called these models
“mixed causal structures". We use a slightly modified version of them and we call them
“differential-based dynamic causal models" (DBD causal models, for short).

We use the notation X (n) to denote the n-th order derivative (or discrete version
thereof) of variable X , and we use the convention that X (0) = X .

Definition 1 (DBD graphs) Differential-based dynamic causal graphs over a set of
time-dependent variables X are discrete-time directed acyclic causal graphs, in which
all “change across time" of a variable X occurs because there exists some n such that
X (n) is being caused contemporaneously. That is, an edge exists from variable Yt!Xt+1

only if Yt = X (1)
t or Yt = Xt, in which case the parent set of Xt+1 is {Xt ,X

(1)
t }.
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The reason we constrain the parent set of Xt+1 to be {Xt ,X
(1)
t } when X1

t is determined,
is simply that, by definition,

Xt+1 = Xt +X (1)
t dt.

DBD models are unique in that they focus on uncovering contemporaneous causal
relations that impact derivatives of some variables. They are motivated by real physical
systems based on classical mechanics. For example, systems governed by Newton’s
2nd Law are archetypical causal systems: some “force" acts on a body, “causing" it to
accelerate. The acceleration of the object, in turn, causes it to change velocity, which
can cause the object to change position. The DBD reprentation assumes that all causa-
tion can be described in terms of “forces" causing a variable to change by impacting a
derivative of some order instantaneously.

We show an example DBD graph in Figure 2. We will also use this example to
illustrate the algorithm in one of the next sections. In the graph, two kinds of arcs

Figure 2: The DBD graph we used to simulate data.

are used: solid arcs that denote instantaneous causation, and dashed arcs that denote
causation across time. The dashed arcs were called integration links by Iwasaki and
Simon (1994) because they always point from a derivative of order n to a derivative
of order n� 1. The variables that have derivatives in the model are called dynamic,
as they are solely responsible for the dynamics of the system. Assuming this repre-
sentation, the learning algorithm has to find out which variables are dynamic and find
the instanteneous causal arcs between variables and derivatives. It is important to note
that our algorithm only learns contemporaneous causality, all dynamic behavior is then
determined by integration over time.

In a dynamic structure, different causal equilibrium models may exist over different
time-scales. Which equilibrium models will be obtained over time are determined by
the time-scales at which variables equilibrate. The causal structures are derived from
the equations by applying the causal ordering algorithm (Iwasaki and Simon, 1994) and
by assuming that at fast time-scales, the slower moving variables are relatively constant.
In the example of Figure 2, the time-scales could be such that t6⌧ t3⌧ t1, where ti is
the time-scale of variable Xi, in which case, at time t ⇠ t6 it would be safe to assume that
X3 and X1 are approximately constant. Under these time-scale assumptions, Figure 3
shows the different (approximate) models that exist for the graph in Figure 2.
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Figure 3: The different equilibrium models that exist in the sytem over time. (a) The
independence constraints that hold when t ⇠ 0. (b) The independence con-
straints when t ⇠ t6. (c) The independence constraints when t ⇠ t3. (d) The
independence constraints after all the variables are equilibrated, t & t1.

One obvious approach to learning the graph of Figure 2 (assuming no derivative
variables are present in the data), is to try to learn an arbitrary-order dynamic Bayesian
network, for example using the method of Friedman et al. (1998). Figure 4 shows the
second order Markov graph that a perfect DBN oracle would produce for this system.
The problem with learning an arbitrary Markov model to represent this dynamic system
is that there are no constraints as to which variables may affect other variables across
time, so in principle, the search space could be unneccessarily large. The DBD repre-
sentation, on the other hand, implies specific rules for when variables can affect other
variables in the future (when they instantaneously effect some derivative of the varia-
ble). Given that a derivative X (n) is being instantaneously caused, DBDs also provide
constraints on what variables can effect all X (i) for i 6= n.

We now state three conjectures concerning DBD models that are useful in explicat-
ing these constraints. Conjecture 2 is used to constrain the search space by limiting the
number of possible dynamic variables. Conjecture 3 states that only one of the deriva-
tives of a variable, or the variable itself, can have an incoming arc. Conjecture 4 is used
to direct additional edges that are not oriented by the regular PC algorithm: If one of the
derivatives of a variable has an incoming edge and the variable itself has an undirected
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Figure 4: The second order Markov graph of the system. Thick dashed lines repre-
sent first-order Markov relations. Thin dotted lines represent second-order
relations.

edge, then the edge of the variable must be outgoing. This is necessary, otherwise it
would conflict with Conjecture 3.

Conjecture 2 Every non-exogenous root node that is present in the independence struc-
ture at time t = 0 is a dynamic variable.

Conjecture 3 Let A, B and C be different variables in a DBD model, and Ȧ any order
derivative of A. If the model contains an arc A B, then it does not contain the arc
Ȧ C.

We use the standard notation X�Y to indicate that either X ! Y or Y ! X .

Conjecture 4 Let A, B and C be different variables in a DBD model, and Ȧ any order
derivative of A. If A�B and Ȧ�C, then the edge A�B must be oriented A! B.

Our algorithm is based on the PC algorithm (Spirtes et al., 2000), although we could
have used any other causal discovery algorithm as well. Besides the assumptions re-
quired for the PC algorithm, we make several additional assumptions. First, we assume
that the system is stable, i.e., every dynamic variable must be part of a feedback loop.
This implies that the highest order derivative of each dynamic variable must have at
least one incoming arc. Second, exogenous variables are held constant over time and
thus easily detectable in a data set. Third, in order for our algorithm to discover the
dynamic model, it is necessary that the time-scale of the data is much finer than any
temporal process of the system. This ensures that we are learning the dynamic model
and not an equilibrium model. Finally, we assume that, apart from variable derivatives,
the system is causally sufficient (i.e., there are no latent common causes).
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3. The Algorithm

We present an algorithm that exploits the DBD representation within a constraint-based
learning framework. The aim is to learn DBD models like the one given in Figure 2
directly. The input data1 consisted of multiple time series that were generated first by
parametrizing the model of Figure 2 with linear equations with independent Gaussian
error terms, then by choosing different initial conditions for exogenous and dynamic
variables and simulating 10000 discrete time steps. The integral equations have no
noise, because they involve a deterministic relationship.

All derivatives of variables have been omitted from the data; thus, part of the chal-
lenge was that our method had to infer from the data which variables were changing
due to the presence of derivatives and which were changing due to contemporaneous
causation. Since calculating higher order derivatives using differences is sensitive to
numerical errors, we opt for an incremental approach that gradually adds derivatives
to the data set only when necessary, and exploits constraints given by our conjectures
about feasible structures in these DBD graphs.

Our algorithm can be described in a few sentences: First we start with the original
variables given in the data set and try to learn the instantaneous independence structure
S0

0 beteween non-derivative variables. This structure (plus our conjectures above) con-
strain which variables may be affected by derivatives. There may be multiple possible
sets S1

0,S
1
1, . . . ,S

1
m of variables that could be consistent with S0

0 and our conjectures. We
then try to learn additional structure Si+1

j with these new sets of variables assuming all
links in Si

j are correct. We recursively traverse the tree until we reach a set of maximum-
order derivative models Sn

j , where n is an input into the algorithm. In instances where
the structure from Si+1

j contradicts structure from Si
j, we assume Si

j is correct. The
output of the algorithm is then the complete set of consistent n-th order graphs.

To illustrate the algorithm, we will use the example model from Figure 2. To find
out which variables are dynamic, we run the PC algorithm on a data set containing only
non-derivative variables. The resulting structure will be the graph in Figure 3-a. The
following four disconnected graphs will be discovered, and using Conjecture 2 we can
find which variables are dynamic:

• X1; this variable has to be dynamic, because it is not exogenous.

• X8; this variable is exogenous and, therefore, not dynamic.

• X5! X7 X3; X5 is exogenous, X7 is instanteneously caused and not dynamic,
X3 is not exogenous and, therefore, dynamic.

• X2�X6! X4 X9; either X2 or X6 is dynamic, X4 is not, and X9 is exogenous.

Summarizing, X1, X3, and either X2 or X6 are dynamic variables so there are only two
competing models.

1. Downloadable from http://www.causality.inf.ethz.ch/repository.php?id=16
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In the second step, for each of the competing models, the first order derivatives of
the dynamic variables are added to the data set and the PC algorithm is executed again.
The competing model in which X2 is a dynamic variable will lead to an inconsistent
structure, because there will be a v-structure into X2, namely dX3 ! X2  X6. This
violates Conjecture 3 and so the structure is inconsistent. The other competing model
is consistent, although no derivative of X3 has an incoming edge. Therefore, as the last
step, we add the second derivative of X3 to the data set and run PC again to retrieve the
original structure. We used Conjecture 4 as an extra rule to orient edges.

4. Prediction of Manipulations

The following results2 were obtained by using the data and applying the instructions
described in Appendix A. After running our algorithm on the data to obtain a causal
structure, we estimated the coefficients in the equations in order to be able to make
quantitative predictions. In the next step, we used the model and the values of the first
four time steps in the data set to make predictions for time steps {5, 50, 100, 500, 1000,
2000, 4000, 10000}. We do not attempt to correct our predictions by using the data
at times t > 4 when predicting later times, although doing this is possible and should
improve our results.

The results are shown in Figure 5. Due to space constraints we chose not to present
six tables, but instead calculated the average RMSE per time step for each manipulated
variable. The graph shows that the error for the first few time steps is relatively small,
but for all variables (except X1) grows large in later times. Three variables in particular
(X2, X7 and X4) had astronomical errors in later times. These huge RMS errors are not
indicative that our model was poor. In fact, in our case, since we generated the model,
we could verify that the structure was exactly correct and the linear Gaussian parameters
were very well identified. The reason for the unstable errors is that in the model of
Figure 2, manipulating any variable except X1 will approximately break the feedback
loop of a dynamic variable and thus will in general result in an instability (Dash, 2003).
Feedback variable X1 is a relatively slow process, so breaking this feedback loop does
not have a large effect on the feedback loops of X3 and X6. Thus our absolute rms
error is expected to also be unstable all manipulations but X1, simply because we are
predicting such large values.

More important than getting the correct RMS error for these manipulations is the
fact that our learned model correctly predicts that an instability will occur when any
variable except X1 is manipulated. In the absence of instability, our method has very low
RMS error, as indicated by the curve of variable X1 in Figure 5. This fact is significant,
because the model retrieved from our system when variable X1 is allowed to come to
equilibrium will not obey the EMC condition (Dash, 2005). Thus, to our knowledge,
we have presented the first algorithm that has demonstrated that it can correctly predict
the effects of manipulations on systems that do not obey this condition.

2. Results can be downloaded from http://pittsburgh.intel-research.net/~dhdash/
causalitydata/rmse.zip.
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Figure 5: Average RMSE for each manipulated variable.

5. Conclusions

We have described a first effort to construct an algorithm that can predict the effects
of manipulations on systems that do not obey the EMC condition. We accomplish this
by learning dynamic causal graphs in a representation very similar to that of Iwasaki
and Simon. We have proposed a set of conjectures which are effective at constraining
the search space for high-order Markovian relationships, which we expect will make
this method more reliable and more efficient than other methods for learning temporal
models, especially when higher-order relationships are present. We have shown that
on a benchmark dataset generated from a fairly sophisticated dynamic system having
multiple inter-related processes operating at widely varying time-scales, we were able
to correctly learn the structure of the underlying system, and were able to predict that
manipulating some variables in that system would result in an instability. Finally, in
the absence of instabilities, we were able to predict with high accuracy the results of
manipulating a variable, even far into the future. Future work will involve perform-
ing quantitative comparisons to other time-series methods. Also, although our conjec-
tures formed useful heuristics for this method, we have been able to construct counter-
examples where at least one of them is incorrect, so more work is needed to prove our
existing conjectures and finding additional constraints on the search for derivatives.
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Appendix A. Pot-luck challenge: FACT SHEET .
Repository URL: http://www.causality.inf.ethz.ch/repository.php?
id=16

Title: Mixed Dynamic Systems
Authors: Denver Dash, Mark Voortman, Marek Druzdzel
Contact name, address, email and website: Denver Dash, denver.h.dash@intel.com,
http://pittsburgh.intel-research.net/~dhdash

Key facts:
Simulated time series data of 9 variables based on linear Gaussian models with no latent com-
mon causes, but with multiple dynamic processes at varying time-scales.
Training Data: 9 Variables, 10000 time series, each time series sampled at 12 distinct times
(relative to when exogenous variables were first manipulated).
Testing Data: Manipulation data. Each of the 6 non-exogenous variables is manipulated and
held fixed for the duration of the time series. This is repeated 100 times for each of the 6
variables.

Summary: A Mixed Dynamic System is one that consists of multiple dynamic processes
operating at widely different time-scales. This data represents a 9 variable (labeled X1 . . .X9)
dynamic system with several dynamic processes acting on qualitatively different time scales
from one another. The goal is to learn a causal model of the system with the training data,
and then correctly predict the effects of various manipulations on the system (using the testing
data for a quantitative measure of performance). This dataset was meant to be both simple and
extremely challenging. All relations are linear with independent Gaussian error terms. There
are no hidden confounders. However, we believe the inter-related dynamic processes will make
prediction of manipulations challenging.

Training Data: The training data consists of 9 tab-separated text files (labelled X1.tsv,
X2.tsv, etc.) one for each variable, and is arranged so that the rows in each file represent distinct
time series for each variable (there are 10000 of these). That time series has been sampled
at a few points in time after the exogenous variables of the system have been manipulated (all
exogenous variables are held fixed for the duration of the time series). Specifically, the variables
have been measured at the following discrete time intervals: t = {1, 2, 3, 4, 5, 50, 100, 500, 1000,
2000, 4000, 10000}, so there are 12 columns in each data file. Variables X8, X5 and X9 are all
exogenous as can be verified by looking at X9.tsv, etc.

Test Data: The test data is organized into several (6x9 = 54) data files labeled Xi-manipj.tsv
(For example X2-manip3.tsv shows the values of variable X2 when X3 has been manipulated
and held fixed). Each variable in the set of endogenous variables {X1, X2, X3, X4, X6, X7}
is manipulated 100 times for the entire 10000 time-step duration of each time series while the
remaining variables are measured once at each of the 12 predetermined time-intervals. Thus
each Xi-manipj.tsv file has 100 rows and 12 columns, and there are 9 files for each variable
manipulated from the set {X1, X2, X3, X4, X6, X7}.

Evaluation: The objective of this problem is to use the first set of data labeled X*.tsv to
build a model which is then able to predict the effects of manipulation on the system as given by
the X*-manipN.tsv files. When predicting the effect of the manipulations, the goal is to predict
the values of non-manipulated variables at times 5–10000 (columns 5 – 12) using the values
of the previous times as input. For example, when predicting time 100 (column 7), you could
use times 1, 2, 3, 4, 5, 50 (columns 1-6) as input. The output of the evaluation should be one
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table for each variable in the set {X1, X2, X3, X4, X6, X7} of manipulated variables. Each
table should have 5 rows and 8 columns, one row for each variable in {X1, X2, X3, X4, X6,
X7}\X j, (where X j is the manipulated variable), and one column for each time in the set {5,
50, 100, 500, 1000, 2000, 4000, 10000}. The entry of the table is the RMS error (over the 100
runs) between the predicted value of the variable at that time and the actual value in the test
data.

310



JMLR: Workshop and Conference Proceedings 6:267–276, 2010 NIPS 2008 workshop on causality

Comparison of Granger Causality and Phase Slope Index

Guido Nolte GUIDO.NOLTE@FIRST.FRAUNHOFER.DE
Intelligent Data Analysis Group, Fraunhofer FIRST
Kekuléstr. 7, 12489 Berlin, Germany

Andreas Ziehe ZIEHE@FIRST.FRAUNHOFER.DE
Intelligent Data Analysis Group, Fraunhofer FIRST
Kekuléstr. 7, 12489 Berlin, Germany

Nicole Krämer NKRAEMER@CS.TU-BERLIN.DE
Machine Learning Group, TU Berlin
Franklinstr. 28/29, 10587 Berlin, Germany

Florin Popescu FLORIN.POPESCU@FIRST.FRAUNHOFER.DE
Intelligent Data Analysis Group, Fraunhofer FIRST
Kekuléstr. 7, 12489 Berlin, Germany

Klaus-Robert Müller KRM@CS.TU-BERLIN.DE

Machine Learning Group, TU Berlin
Franklinstr. 28/29, 10587 Berlin, Germany

Editors: Isabelle Guyon, Dominik Janzing and Bernhard Schölkopf

Abstract
We recently proposed a new measure, termed Phase Slope Index (PSI), It es-

timates the causal direction of interactions robustly with respect to instantaneous
mixtures of independent sources with arbitrary spectral content. We compared this
method to Granger Causality for linear systems containing spatially and temporarily
mixed noise and found that, in contrast to PSI, the latter was not able to properly
distinguish truly interacting systems from mixed noise. Here, we extent this analy-
sis with respect to two aspects: a) we analyze Granger causality and PSI also for
non-mixed noise, and b) we analyze PSI for nonlinear interactions. We found a) that
Granger causality, in contrast to PSI, fails also for non-mixed noise if the memory-
time of the sender of information is long compared to the transmission time of the
information, and b) that PSI, being a linear method, eventually misses nonlinear in-
teractions but is unlikely to give false positive results.
Keywords: Phase Slope Index, Granger Causality, Noise, Nonlinearity

1. Introduction

To understand the direction of information flow in interacting systems, it is of fun-
damental importance to distinguish the driver from the recipient. Granger Causality
proposed by Granger (1969) is probably the most prominent method to estimate the
direction of causal influence in time series analysis.

c� 2010 G. Nolte, A. Ziehe, N. Krämer, F. Popescu & K.-R. Müller.



NOLTE ZIEHE KRÄMER POPESCU MÜLLER

Apart from Granger Causality, many other methods have been proposed to estimate
the direction of information flow both for bivariate and multivariate data. Baccala and
Sameshima (1998) suggested to interpret autoregressive matrices in the frequency do-
main to estimate directionality for bivariate data, which was generalized to multivariate
data by Baccala and Sameshima (2001). The approach of Kaminski and Blinowska
(1991) is equivalent to the preceding ones for bivariate data, but differs for multivari-
ate data most notably with regard to the question whether estimated information flux
is direct or indirect. An information theoretic approach was taken by Schreiber (2000)
by analyzing entropies of conditional probabilities (rather than the mean as implicitly
done with Granger Causality). A model based method valid for nonlinear and weakly
coupled oscillators was proposed by Rosenblum and Pikovsky (2001). With the notable
exception of Rosenblum and Pikovsky (2001), all these methods are variations of the
highly popular Granger causality, and this will serve as a comparison to our proposed
method.

Granger Causality is based on asymmetric prediction accuracies of one time series
on the future of another. The difficulty in realistic measurements is that asymmetries
can also arise due to other factors, specifically independent background activity having
nontrivial spectral properties and eventually being measured in unknown superposition
in the channels. In this case the interpretation of the asymmetry as a direction of in-
formation flow can lead to significant albeit false results as demonstrated e.g. by Albo
et al. (2004). To overcome this difficulty Nolte et al. (2008) recently proposed a method
based on a frequency-average of the slope of the phase of coherence defined in such way
that it is strictly robust with respect to instantaneous mixtures of independent sources
of otherwise arbitrary nature.

In this paper we address two new aspects in more detail. First, in many situations
one could argue that, while the measurements are noisy, this noise is not a mixture, and
Granger Causality might work for this case. Second, the beneficial properties of PSI
might disappear if interactions are nonlinear. We will first shortly recall both methods
and then study both mentioned aspects with simulations.

2. Methods

2.1. Granger Causality

The fundamental basis of estimates of causal relations using Granger Causality is the
fact that a cause precedes the effect. Probably the simplest way to exploit this idea
is to use linear prediction of future values of bivariate data xi(t) for i = 1,2 with AR-
modeling:

x(t) =
P

Â
p=1

A(p)x(t� p)+x

x

x (t) (1)

where A(p) are the AR-matrices up to order P and x (t) is white Gaussian noise with
estimated covariance matrix S.

The diagonal elements of S (i.e Sii for i = 1,2) measure the remaining error when
future values of xi(t) are modeled with both time series’, simultaneously. Instead of
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one multivariate model one can also model the data by two separate univariate models:

xi(t) =
P

Â
p=1

Ai(p)xi(t� p)+xi(t) (2)

for i = 1,2, and where xi(t) has estimated variance Si.
Note that Si  Sii because the univariate models do not use information contained

in the other time series. The additional information contained in x j about the future of
xi for j 6= i can be quantified as

G j!i = log
✓

Si

Sii

◆
(3)

If G j!i > 0 one says that channel j ’Granger causes’ channel i.
For a unidirectional information flow one has G1!2 = 0 or G2!1 6= 0 or vice versa

with obvious direction of information flux. In practice, results are rarely that clear and
one can define the effective information flux from the first to the second channel as

G̃ = G1!2�G2!1 (4)

We here normalize G̃ by its standard deviation estimated by the Jackknife proce-
dure. The validity was confirmed in simulations where the same examples were re-
peated many times. Finally, we define the Granger Causality as

G =
G̃

std(G̃)
(5)

With this normalization we consider any result with absolute value larger than 2 as
statistically significant corresponding to a ’pseudo-z-score’. It enables us to compare
Granger Causality with Phase Slope Index to defined in the next section.

2.2. Phase Slope Index

In an alternative approach we first divide the whole data set into K segments of duration
T (in physical units) and estimate the cross-spectral density as

Si j( f ) =
1
K Â

k
zi( f ,k)z⇤j( f ,k) (6)

where zi( f ,k) is the Fourier transform of the Hanning-windowed, i.e. multiplied by a
raised cosine function, data in channel i and segment k. The ’Phase Slope Index’ (PSI)
is now defined as (Nolte et al. (2008))

Ỹi j = ¡

 

Â
f2F

C⇤i j( f )Ci j( f +d f )

!
(7)
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where
Ci j( f ) =

Si j( f )p
Sii( f )S j j( f )

(8)

is the complex coherency, d f = 1/T is the frequency resolution, and ¡(·) denotes
taking the imaginary part. F is the set of frequencies over which the slope is summed.
Typically, F contains all frequencies, but it can also be restricted to a specified band for
rhythmic activities.

To see that the definition of Ỹi j corresponds to a meaningful estimate of the average
slope it is convenient to rewrite it as

Ỹi j = Â
f2F

ai j( f )ai j( f +d f )sin(F( f +d f )�F( f )) (9)

with Ci j( f )=ai j( f )exp(iF( f )) and ai j( f )= |Ci j( f )| being frequency dependent weights.
For smooth phase spectra, sin(F( f + d f )�F( f )) ⇡ F( f + d f )�F( f ) and hence Ỹ
corresponds to a weighted average of the slope.

Let us list the most important qualitative properties of Ỹ:

1. For an infinite amount of data and for arbitrary instantaneous mixtures of an
arbitrary number of independent sources, Ỹ is exactly zero, because mixtures of
independent sources do not induce an imaginary part of coherencies (Nolte et al.
(2004)) which in turn is necessary to generate a non-vanishing Ỹ. For finite data,
Ỹ will then fluctuate in this case around zero within error bounds. A special
case of this are phase jumps from 0 to ±p which can arise also for mixtures of
independent sources.

2. Ỹ is expressed in terms of coherencies, only. The standard deviation of a co-
herency is approximately constant and approximately only depends on the num-
ber of averages which is equal for all frequencies. Thus, large but meaningless
phase fluctuations in frequency bands containing essentially independent signals
are implicitly suppressed.

3. If the phase F( f ) is linear in f and provided that the frequency resolution is
sufficient (i.e. d f is sufficiently small), the argument in the sum has the same
sign across all frequencies and then Ỹ will have the same sign as the slope of
F( f ).

Finally, as for Granger Causality it is convenient to normalize Ỹ by an estimate of
its standard deviation

Y =
Ỹ

std(Ỹ)
(10)

with std(Ỹ) being estimated by the Jackknife method, which was validated in simu-
lations. In the examples below we consider absolute values of each larger than 2 as
significant.
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3. Simulations and Causality Challenge

3.1. Uncorrelated noise

Granger Causality is based on the assumption that a sender possesses information about
the future of the recipient which is not available at the recipient itself, because, roughly
speaking, this information has not yet arrived. In contrast, the recipient cannot access
any information about the sender other than that already contained in the present and
past of the sender because causal interactions are necessarily forward in time.

However, the situation changes when the measurements, especially of the sender,
are noisy. In that case the signal of the recipient contains delayed but cleaner informa-
tion about the sender which is masked/hidden to the sender itself due to the noise. Thus,
the slightly outdated information of the receiver may help to predict the future of the
sender and yet lead to wrong results in a Granger test. In other words, the disadvantage
of the recipient of receiving only old information might have been compensated or even
overcompensated by the advantage of being measured in a much cleaner way.

Apparently, the impact of this trade-off depends on the memory time of the sender:
If the sender has a long memory and the transmission time is short then the time delay
of the interaction is largely irrelevant.

To show this explicitly we simulated clean data of the sources using an AR(1) model
with coefficient matrix

A(1) =
✓

a 0
1 .5

◆
(11)

This system models a unidirectional information flow from channel 1 to channel 2. The
memory of the first channel, the sender, is controlled by a: any input decays after n
time points as a

n = exp(�n log(1/a)) and has hence a decay rate of �1/ log(a).
Let us denote the output of this clean system for the i.th source (i.e. true signal of

interest) as xi(t). Then we assume the measurements yi(t) to be y1(t) = x1(t)+bh(t)
and y2(t) = x2(t) with h(t) being white Gaussian noise and b a free parameter which
controls the relative strength of true signal and noise. Results for these systems are
shown in Figure 1 for various values of a . We observe that Granger Causality results in
significant wrong direction estimates for long memory times of the sender. In contrast,
the Phase Slope Index always results in the correct directionality. We note, that with
a also the magnitude of the sender changes which also has an impact on the results.
However, normalizing the sender leads to essentially identical results provided that
influence of the sender on the recipient is at least as large as the innovation process of
the recipient, i.e. of ⇠2(t). This leads to the somewhat paradoxical situation that for
noisy measurements the larger the causal drive from A to B the more likely Granger
Causality estimates a drive from B to A.

In a second example, we simulated the situation based on real EEG data. Results
for power and autocorrelation function are shown in Figure 2. The memory time of the
system is about 0.5 seconds which is large compared to typical transmission times along
neuronal fibers. Neuronal signals in axons in white brain matter, which are relevant for
long distance information transfer, travel with a speed of about 1cm/msec and need
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Figure 1: Granger Causality and PSI as a function of noise level for systems with dif-
ferent memory. The memory time in bins is roughly given by 1/(1�a).
Values outside the narrow horizontal strip are statistically significant.

only a few milliseconds to cross the whole brain. The simulation was identical to the
previous one with the exception that the real data x(t), normalized to unit standard
deviation, were taken as sender and the recipient was assumed to be y(t) = 2x(t�3)�
.5y(t � 1)+h(t) with h(t) being white Gaussian noise with unit standard deviation.
Since the sampling rate was 256 Hz, the delay corresponds to a transmission time of
about 12ms. Results again showed that already a fairly small amount of noise put on the
measurement of the sender is sufficient to result in significant false direction estimates
of Granger Causality while PSI always predicted the correct direction.

3.2. Nonlinear interactions

To test Granger Causality and PSI for bivariate nonlinear systems we included a non-
linearity of specific order into the interaction term and generated 500 examples as ran-
domly as possible. The data z(t) were generated as

z(t) = (1� g)
x(t)
||X || + g

By(t)
||BY || (12)
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Figure 2: Top panels: Power and autocorrelation of a single channel for a real EEG
experiment. Bottom: Granger Causality and PSI as a function of noise level
using the real EEG data as driver and adding noise to the sender. The noise
level is measured as the power ratio at the peak frequency. The vertical bars
correspond to two estimated standard deviations and indicate significance if
they do not cross the zero line.

where x is a unidirectional and in general nonlinear system and y are two independent
noise sources which are mixed into channels by a random matrix B. The parameter g

was set randomly between 0 and 1, || · || denotes Frobenius matrix norm, and X and Y
denote the full data as a matrix, e.g. X = (x(1),x(2), ...,x(N)) for N data points. The
noise y(t) was generated with an AR(10)-model with diagonal but otherwise random
parameters. The signal x(t) was generated in the following way. If, e.g., the first
channel was the sender then x1(t) was generated with a random AR-model of order 10,
and x2(t) was generated as

x2(t) = Â
p

A22(p)x2(t� p)+ f (x1(t�1), ...,x1(t�P)) (13)

where P was set to 10 and f is a in general nonlinear function of specific order chosen
in the most general way. E.g., for order 4 the function f was given by

f (x1(t�1), ...,x1(t�P)) = Â
i jkl

ai jklx1(t� i)x1(t� j)x1(t� k)x1(t� l) (14)

with random parameters ai jkl . The construction for other orders is analogous.
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Results for PSI and Granger Causality are shown in Figure 3 and Figure 4, respec-
tively. We observe that PSI, in contrast to Granger Causality, hardly ever results in false
significant direction estimates. We also observe that for even order of nonlinearity PSI
is also not able to detect any interaction at all. However, this can be explained by the
sign symmetry of the interaction and is due to the linear nature of PSI.
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Figure 3: Results for PSI for 500 random systems as a function of noise level times the
sign of true direction for different orders of nonlinearity (order=1 is linear).
All results in the narrow horizontal strip are insignificant, and the others are
as indicated in the lower right panel. For each panel, left and right borders,
i.e. 1�g = 1, correspond to zero noise and the center, i.e. g = 1, corresponds
to only noise.

3.3. Causality Challenge

We submitted a dataset to the Causality Challenge1 which consists of 1000 examples
identical to the ones in the previous section for the order = 1 case except for two
minor details: for the challenge we chose uniformly distributed innovation processes
(i.e. x

x

x (t) in Eq.(1)) instead of Gaussian distributed input, and we chose three noise
sources instead of two.

1. “NOISE”, http://www.causality.inf.ethz.ch/repository.php?id=17
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Figure 4: Same as Figure 3 for Granger Causality.

The task is to estimate the causal direction for as many examples as possible. The
counting is as follows: +1 point for each correct result, -10 points for each wrong
results, and 0 points for each missed example. For the top left panel of Figure 3 this
means that one gets +1 point for each dot in the lower left or upper right box, -10 points
for each point in the lower right or upper left box, and 0 points for each point in the
narrow horizontal stripe.

For the challenge data, Granger causality leads to 736 correct and 100 wrong results
scoring a total of -264 points. Note, that 164 insignificant results are not counted. In
comparison, PSI2 leads to 638 correct and 6 wrong results scoring a total of +578 points.

This counting was introduced to address the importance of evidence for scientific
claims. A finding which was just guessed right has little value. In many cases conclu-
sions cannot be drawn with the given data measured in a specific situation. Researchers
must be able to also recognize these cases and should then not draw conclusions at all.

In a second set of data sets we provided real EEG data for 10 subjects measured
at rest in eyes closed condition. A specific feature of this measurement is a strong
10Hz rhythm predominantly in the back part of the brain. Using our methods we found
information flow from front to back, i.e. from channels with low signal to ratio to
channels with high signal to ratio.

2. The Matlab code can be downloaded at http://ml.cs.tu-berlin.de/causality/
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The real data used in section 3.1 were taken from one of these subjects. We showed
in that section that Granger Causality has a bias to estimate direction from clean to
noisy signals, and a finding using Granger Causality stating that information is flowing
from back to front is possibly caused by the different signal to noise ratios rather than
by true information flow.

For the challenge we can only put this to discussion since the ground truth is not
known. We therefore just presented our own results and provided excellent data sets to
let people apply their own methods to this case.

4. Conclusion

The paper presents novel insights on causality measures and carefully evaluates their
domain of applicability. In particular, we present simulations that contrast Granger
Causality and our new Phase Slope Index.

Interestingly, under noise the classical Granger Causality can fail, even to an extent
that a wrong causal direction is inferred with a high significance level and even if noise
is uncorrelated.

We could show that the PSI approach does not suffer from such a shortcoming
including in simulations modeling random and highly nonlinear interactions. Clearly
real-world data are always noisy and many complex technical or biological systems
contain nonlinear elements. Therefore inference on causal structure in data is required
to be robust, a property that is inherent to our proposed new method.

Appendix. Pot-luck challenge: FACT SHEET .
(for a donated dataset)

Repository URL: http://www.causality.inf.ethz.ch/repository.php?id=
17

Dataset name: NOISE

Title: Causal Directions in Noisy Environment
Author: Guido Nolte
Address: Fraunhofer FIRST, Kekulestr. 7, 12489 Berlin, Germany
Email: guido.nolte@first.fraunhofer.de
Homepage: http://ida.first.fraunhofer.de/~nolte/

Key facts:
A: 1000 examples of real valued bivariate data with 6000 time points each. B: Real EEG data
of 10 subjects.

Abstract:
This challenge has two parts, a simulation and real data.
Simulation: Data are simulated as superposition of bivariate unidirectional interaction plus ad-
ditive mixed and non-white noise. The simulations were done with AR-models with uniformly
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distributed input. The challenge is to estimate the causal direction. For each out of 1000 exam-
ples you get +1 point for the correct answer, -10 points for the wrong answer, and 0 points for
no answer.
Real Data: These are high quality EEG data for 10 subjects for 19 channels. The data contain
a prominent peak at around 10 Hz predominantly in occipital (back) channels. No ground truth
is known. A submission must be a single 19x19 matrix corresponding to a causality estimate
between all pairs of channels averaged across subjects. Any submission will be visualized and,
with the agreement of the authors, put on the net for an open discussion.

Keywords:
Time series, mixed noise, bivariate, EEG

References
Z. Albo, G.V. Di Prisco, Y. Chen, G. Rangarajan, W. Truccolo, J. Feng, R.P. Vertes, and

M. Ding. Is partial coherence a viable technique for identifying generators of neural os-
cillations? Biol. Cybern., 90:318–326, 2004.

L.A. Baccala and K. Sameshima. Directed coherence: a tool for exploring functional inter-
actions among brain structures. Methods for Simultaneous Neuronal Ensemble Recordings,
CRC Press, Boca Raton, pages 179–192, 1998.

L.A. Baccala and K. Sameshima. Partial directed coherence: a new concept in neural structure
determination. Biol Cybern., 84:463–74, 2001.

C.W.J. Granger. Investigating causal relations by economic models and cross-sprectal methods.
Econometrica, 37:424–438, 1969.

M. Kaminski and K.J. Blinowska. A new method of the description on information flow.
Biol.Cybern., 65:203–210, 1991.

G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett. Identifying true brain
interaction from eeg data using the imaginary part of coherency. Clin. Neurophysiol., 115:
2292–2307, 2004.

G. Nolte, A. Ziehe, V.V. Nikulin, A. Schlögl, N. Krämer, T. Brismar, and K.R. Müller. Robustly
estimating the flow direction of information in complex physical systems. Phys Rev Lett,
100:234101, 2008.

M.G. Rosenblum and A.S. Pikovsky. Detecting direction of coupling in interacting oscillators.
Phys. Rev. E, 64:045202, 2001.

T. Schreiber. Measuring information transfer. Phys. Rev Let., 85:461–4, 2000.

321



322



JMLR: Workshop and Conference Proceedings 6:277–288, 2010 NIPS 2008 workshop on causality

Causality Challenge: Benchmarking relevant signal
components for effective monitoring and process control

Michael McCann MCCANN-M15@EMAIL.ULSTER.AC.UK

Yuhua Li Y.LI@ULSTER.AC.UK

Liam Maguire LP.MAGUIRE@ULSTER.AC.UK

Adrian Johnston A.JOHNSTON@EMAIL.ULSTER.AC.UK

Intelligent Systems Research Centre
University of Ulster
Derry
N.Ireland

Editors: Isabelle Guyon, Dominik Janzing and Bernhard Schölkopf

Abstract
A complex modern manufacturing process is normally under consistent surveillance
via the monitoring of signals/variables collected from sensors. However, not all of
these signals are equally valuable in a specific monitoring system. The measured sig-
nals contain a combination of useful information, irrelevant information as well as
noise. It is often the case that useful information is buried in the latter two. Engineers
typically have a much larger number of signals than are actually required. If we con-
sider each type of signal as a feature, then feature selection may be used to identify
the most predictive signals. Once these signals have been identified causal relevance
may then be investigated to try and identify the causal features. The Process Engi-
neers may then use these signals to ensure a small scrap rate further downstream in the
process, increase the throughput and reduce the per unit production costs. Working
in partnership with industry we aim to address this complex problem as part of their
process control engineering in the context of wafer fabrication production and en-
hance current business improvement techniques with the application of causal feature
selection as an intelligent systems technique.
Keywords: Causal discovery, feature selection, semi-conductor manufacturing, in-
dustry, business improvement techniques

1. Introduction

In high volume manufacturing close control and monitoring of production processes are
required to ensure quality control and efficiency (Jeong and Cho, 2006). Considering
the number of process steps in wafer fabrication, typically over 500, and the amount of
data recorded during the entire production process, this produces a vast amount of mon-
itoring data. However not all of this data is equally relevant for process control moni-
toring. Within this environment industry standard business improvement techniques are
the tools that are used to try and solve this complex problem. Currently within industry

c� 2010 M. McCann, Y. Li, L. Maguire & A. Johnston.
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Six Sigma is one of the main business improvement strategies employed to improve the
manufacturing process, although this is a well proven technique throughout industry
there are a number of weaknesses inherent within its approach (Johnston, 2007). The
application of new computational intelligence techniques is now being introduced in
manufacturing environments. The introduction of feature selection techniques is pro-
posed as an intelligent systems approach to solving this issue. These techniques are
prevalent in high volume data environments, in this application domain they may be
deployed to identify the desired Key Process Input Variables (KPIVs) and assess their
causal relevance. Once identified process engineers may then use these KPIVs to sig-
nificantly reduce the time required to reach mature product target line yield figures for
new product integration with an overall impact on bottom line production costs. The
aims and objectives are to investigate and understand the nature of the complex process
control issues faced on a daily basis by the semi conductor industry particularly in high
volume manufacturing, with a view to research and develop a causal feature selection
methodology that can be combined in a hybrid approach to business improvement in
this domain. This solution will address the impact of KPIVs on production line yield
figures failure rates and hence improve efficiency specifically in the area of new product
development (NPD).

Section 2 provides an introduction to how intelligent systems are being deployed
within industry to enhance their current business improvement strategies. Section 3
gives an overview of feature selection and causal relevance. Section 4 describes the
SECOM dataset that has been put forward for the challenge along with some baseline
results and Section 5 outlines conclusions and future work proposing how feature se-
lection and causal relevance may be applied to process control engineering within the
semi conductor industry.

2. Business Improvement and Intelligent Systems

Within an industrial context there has been a growing requirement for the introduction
of intelligent system techniques over the past 10 years to assist process engineers with
their decision-making (Johnston, 2007; Peretto, 1999). The advances in hardware au-
tomation and control systems have impacted the overall importance of utilizing these
new techniques within manufacturing (Harrison and Petty 2002). One of the issues
faced by engineers in a modern manufacturing environment is how experiential know-
ledge is utilized within the decision making process. The use of intelligent systems to
aid in this decision-making process helps to overcome this problem, current techniques
include Fuzzy Logic (FL), Artificial Neural Networks (ANNs) and Genetic Algorithms
(GAs). Cus and Balic (2003) propose the use of GAs for use in metal cutting processes
to optimize parameters in machine operation and FL combined with ANNs are pro-
posed for grinding processes by Chen and Kumara (1998) for automation of design. As
each of these intelligent techniques have different advantages and disadvantages, see
Table 1, hybrid combinations are often used to address complex systems. An example
of a hybrid system is proposed by Guh et al. (1999) for use in Statistical Process Control
(SPC) combining neural networks and expert systems.
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Table 1: Intelligent System Techniques Properties (Johnston, 2007)
Properties

Reasoning Generalisation Decision-
making Adaption Rule

Visibility
Neural Networks 8 4 8 4 8
Fuzzy Logic 4 8 4 8 4
Genetic Algorithms 8 8 4 4 8
Expert Systems 4 8 4 8 4
Case Based Reasoning 4 4 4 4 4

Six Sigma is one of the main business improvement strategies employed in the
manufacturing process. The determining factor within Six Sigma is its aim to identify
causal KPIVs and therefore ensure that process outputs remain in control (Flott, 2000;
Card, 2000; Rao et al., 2000; Schmidt et al., 1998). One of the major issues in applying
Six Sigma as an improvement strategy within a high volume production environment,
where time to full production for integration products is such a critical milestone, is
that due to the nature of Six Sigma projects they tend to be time consuming and project
centric (Johnston, 2007). Thus although it is an industry standard technique in certain
circumstances it is not always a feasible solution. The Six Sigma process flow for
project implementation is shown in Figure 1. Once a project has been defined the
initial measure phase is typically conducted by a project team consisting of all parties
that have the relevant expertise and a stake hold in the overall project definition.

Figure 1: Six Sigma Process Flow (Johnston, 2007)

Therefore this phase and hence the overall success of the project is highly depen-
dent on project team experiential knowledge, which unfortunately can be lost, forgotten
or invalid for new projects. The advantage of considering intelligent systems such as
causal feature selection methods to solve a similar problem is the fact that it does not
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rely on this experiential knowledge as much to narrow down the processes that are under
consideration (Patterson et al., 2005). This allows all the data that is relevant to the over-
all scope of the project definition to be considered when trying to discover the desired
KPIVs. This also overcomes another issue known as the “anchoring effect” wherein
project teams tend to focus on impact processes that have previously displayed con-
cerns within similar project types. Hence this form of human conditioning can lead to
previously undiscovered KPIVs being excluded from investigation. During the analysis
phase of the project statistical tools are employed to analyze the data that has been iden-
tified from the measure phase. Once again this phase is dependent upon the engineer
applying the appropriate statistical analysis techniques for the extraction and interpre-
tation of the data such as hypothesis testing on individual process input variables. This
entire phase is extremely time and labour intensive and therefore is not always appro-
priate for time critical projects (Johnston, 2007). The improvement phase then requires
the consideration of implementing the appropriate actions from these findings to be in-
tegrated into the current process flow. This may require optimisation with procedures
such as design of experiment (DOE) and potentially failure modes and effects analysis
(FMEA). Unfortunately this type of procedure is practically unfeasible in a high vol-
ume manufacturing environment because of the amount of data and time required to run
trials which has an impact on production and scrap rates. It would be much more desir-
able to introduce an intelligent systems approach that was able to identify causal KPIVs
and apply this methodology in tandem with overall business improvement strategies.

3. Feature Selection

In recent years the nature of feature selection has changed in terms of the complexity of
the application. For example in 1997 the applications explored in this field seldom con-
tained more than 40 features (Chiang and Pell, 2004; Kohavi and John, 1997), whereas
in recent years this has changed as feature selection methods are required for domains
with in excess of tens of thousands of features such as in gene selection (Guyon et al.,
2002), text categorisation (Liu et al., 2005) and other various engineering applications
(Guyon and Elisseeff, 2003). The selection of relevant features, and the elimination of
irrelevant ones, is one of the central problems in machine learning (Blum and Langley,
1997). There have been significant advances in feature selection development in re-
cent years and there are a significant number of methods that can be utilised to try and
achieve the optimum results. In pattern recognition, the goal of feature selection is to
find a feature subset that has the most discriminative information from a given set of a
candidate features (Abe and Kudo, 2006).

Data representations tend to be very domain specific (Guyon and Elisseeff, 2003).
Once data is available for machine learning it is often required to manipulate this “raw”
data into a format that is conducive to the methodology that is to be applied. This is
known as feature construction and may involve simple data manipulation or the ap-
plication of data transformations. This is often achieved through what is known as
pre-processing steps some simple examples of which are (Guyon et al., 2006):
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Standardisation e.g. measurements that have different scales

Normalisation e.g. pixel intensity values in image processing

Signal enhancement e.g. smoothing or sharpening

Principal component analysis and multidimensional scaling projecting data into a lower
dimensional space whilst retaining the information.

Feature selection then is primarily performed to select the most informative features
but other motivations include (Guyon et al., 2006):

General data reduction for storage requirements and processing speed

Feature set reduction to save resources

Performance improvement to gain predictive accuracy

Data understanding to gain knowledge of the process that generated the data or visu-
alisation

3.1. Causal Considerations

Although feature selection on its own is mainly concerned with making accurate pre-
dictions with as few variables as possible it does not follow that these variables are nec-
essarily causal within a specific domain. The issue faced by semi conductor manufac-
turing is not a typical predictive or classification one, it has a large causal element to the
problem. For high volume manufacturing the key requirement is to determine which of
the variables selected prove causal in terms of affecting failure rates on the factory line
yield. So the optimum results would involve identifying these KPIVs giving process
engineers insight into the hidden causal relationships within individual manufacturing
process steps and overall line yield pass/fail rates. Obviously in real life terms valida-
tion of results is not always feasible because of the financial impact of experimental
alterations on production processes and the associated unknowns on yield excursions.
For this reason it is proposed that any intelligent systems approach to process control be
sanitised by inclusion in existing business improvement techniques such as Six Sigma.

4. SECOM: SEmiCOnductor Manufacturing dataset

This challenge aims to investigate a range of feature selection techniques and how ap-
propriate they are to identifying the causal effects faced by process control engineering
in semi conductor manufacturing. “In the manufacturing process of semiconductor
products one deals with a great number of production steps that involve many different
machines. Malfunctions can usually not be ruled out or identified in each processing
step” (Pfingsten et al., 2007). Operating conditions can change frequently in a process
control environment both intentionally and unintentionally identification of the KPIVs
allows rapid recovery, optimisation and control (Chiang and Pell, 2004). The goal of
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this case study is to develop a causal feature selection approach that applies to this do-
main, helps to solve process control issues and enhance overall business improvement
strategies.

Consider in more detail at the nature of the wafer fabrication production process.
In the case of integration products it takes time to tweak the processes to achieve target
yield figures. Feature selection techniques may be applied to the production process to
provide the process control engineers with the necessary intelligence to decrease this
integration time and achieve target yield figures earlier in the product life cycle and
hence proceed into full production quicker. As highlighted earlier current strategies
depend heavily on experiential knowledge which limits the data under investigation
and is time consuming. Figure 2 shows “time to yield” baseline trends for integration
products i.e. the time required to get new products up to target yield figures hence
improving time to market. Good line yields mean:

• Low cost per product

• Predictable schedule adherence and starts planning

• Can run the factory leaner (fewer starts)

• Better throughput at critical tools

• Better quality downstream

• Better product predictability

• No ‘firefighting’ – more resource for project work

• Less waste – less use of consumables

By enabling process engineers to identify KPIVs earlier in the production process
it should enable them to affect yield figures more accurately and increase productivity
using a more efficient strategy and hence achieving target yield figures for integration
products.

4.1. Data Structure

The SECOM dataset presented in this paper, (for a summary see Appendix A), re-
presents a selection of process related data taken from a production line. The dataset
is presented with features in columns each representing a recorded measurement and
product examples in rows. Within the production cycle there are several major check
points for in house line testing to ensure product functionality as demonstrated in Fig-
ure 3. The labels file then represents a simple pass/fail classification corresponding to
each row in the dataset, where �1 corresponds to a pass and 1 corresponds to a fail. A
date-time stamp for each pass/fail is also provided in the labels file corresponding to a
selected functionality test.
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Figure 2: Line Yield Trends

The data consists of 2 files, the dataset file SECOM consisting of 1567 examples
each with 591 features, a 1567⇥591 matrix, and a labels file containing the classifica-
tions and date time stamp for each example. As with any real life data situations this
data contains null values varying in intensity depending on the individual features cor-
responding to data-points with no recorded measurement in the original data. This may
be taken into consideration when investigating the data either through pre-processing or
within the technique applied. Using feature selection techniques it is desired to obtain a
sub-set of the most predictive features and then consider the causal relationships within
these features and how they impact on the overall pass/fail rates for the product. It is
suggested that cross validation be used for generalization performance. Some baseline
results are given below.

Figure 3: Production Cycle
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Baseline Results: Preprocessing objects were applied to the dataset simply to stan-
dardize the data and remove the constant features. Then a number of simple statistical
feature-ranking techniques were applied with a simple Naïve-Bayes classifier to achieve
some initial baseline results. 40 features were selected in each case. 10 fold cross vali-
dation was used and the balanced error rate (BER) generated as an initial performance
metric to help investigate this dataset. The results are shown in Table 2 below. The
desired goals at this stage are to improve upon these error rates for models selecting no
more than 40 features and investigate the causal relationships with the target values.

Table 2: SECOM Dataset: 1567 examples 591 features, 104 fails
FSmethod (40 features) BER % True + % True �%
No feature selection 36.9 ±2.4 43.8 ±4.7 82.4 ±1.5
S2N (signal to noise) 34.5 ±2.6 57.8 ±5.3 73.1 ±2.1
Ttest 33.7 ±2.1 59.6 ±4.7 73.0 ±1.8
Relief 40.1 ±2.8 48.3 ±5.9 71.6 ±3.2
Pearson 34.1 ±2. 0 57.4 ±4.3 74.4 ±4.9
Ftest 33.5 ±2.2 59.1 ±4.8 73.8 ±1.8
Gram Schmidt 35.6 ±2.4 51.2 ±11.8 77.5 ±2.3

Initial findings and baseline results suggest it may be desirable to increase the size
of the dataset significantly to improve performances and allow for separate final tests
sets.

5. Conclusion and Future Work

Introducing intelligent system techniques such as causal feature selection within a high
volume manufacturing environment would overcome many of the difficulties that have
been outlined. Research by Pfingsten et al suggests the use of feature selection to con-
sider the complete assembly line and detect key processes that affecting yield (Pfingsten
et al., 2007). Previously undiscovered KPIVs could then potentially be identified earlier
in the product integration life cycle where time is of critical consideration. Although
intelligent techniques have seen significant advances in deployment, feature selection
has not been seen wide spread use within the semi conductor industry. By investigat-
ing how causal feature selection can be deployed within a process control environment,
it is proposed that a hybrid approach employing the appropriate feature selection tech-
niques and existing business improvement techniques be designed. This enhanced busi-
ness improvement strategy may then be deployed to achieve more effective monitoring
and process control. This should allow engineers to consider all of the possible KPIVs
across the complete production process and overcome some of the disadvantages asso-
ciated with current methods.
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Method:

At the preprocessing step, the original continuous data are discretized into 3 levels by
using the information-preserving technique (Hartemink, 2001).

We propose an approach for discovering causal networks from multiple data bases
with external interventions. In our approach, we first find a skeleton or a Markov equi-
valence class of networks, in which there are undirected and directed edges. Then we
orient undirected edges in terms of information on causality from data sets with exter-
nal interventions. Intuitively intervening a cause affects its effects, but intervening an
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effect does not affect its causes. For each undirected edge, we determine its orientation
using data sets with external interventions to its nodes.

Results:

The path matrix of the causal network obtained by using our approach for the CYTO
data set is shown in Table 1, where ‘0’ in cell (i, j) denotes no edge between nodes i and
j, ‘1’ denotes a directed edge i! j, ‘�1’ denotes a directed edge i j, and ‘2’ denotes
an unoriented edge. Our causal network includes 11 directed edges and 5 undirected
edges. The network depicted in Figure 1 shows a comparison between our network G
with the classic network G0 mentioned by Sachs et al. (2005), where the black edges are
consistent in both G and G0, the red edges are those with reversed orientation in both
networks, the blue edges are those in G but not in G0, and the dashed ones are those not
in G but in G. The network after drawing the dashed edges is our result G. Our network
G is quite different to G0. It may be because our G is constructed as a whole network.

Table 1: The path matrix of the network obtained by our approach for the CYTO data
set

praf pmek plcg PIP2 PIP3 Erk Akt PKA PKC P38 pjnk
praf 0 2 0 0 0 0 0 -1 0 0 0

pmek 2 0 0 0 1 0 0 0 0 0 0
plcg 0 0 0 -1 2 0 0 0 0 0 0
PIP2 0 0 1 0 1 0 0 0 0 0 0
PIP3 0 -1 2 2 0 2 -1 -1 0 2 2
Erk 0 0 0 0 2 0 1 -1 0 0 0
Akt 0 0 0 0 1 -1 0 1 0 0 0
PKA 1 0 0 0 1 1 -1 0 0 0 0
PKC 0 0 0 0 0 0 0 0 0 1 0
P38 0 0 0 0 2 0 0 0 -1 0 2
pjnk 0 0 0 0 2 0 0 0 0 2 0

Advantages of our approach: We propose an approach for structural learning from
multiple data bases with external interventions. Comparing with the Bayesian approach
via MCMC proposed by Sachs et al. (2005), our approach have higher computational
efficiency. The Bayesian approach is a score-based method, and our approach is a
constraint-based method. Since it is difficult to find posteriors for all possible causal
networks in Bayesian approach, it uses MCMC to find posteriors of edges and then
combines those edges with high posteriors together to construct a network, but such a
network may not have the maximum posterior. Different to this, our approach deter-
mines orientation of undirected edges selecting data sets with external interventions,
and thus this approach can also be used for intervention design. Our approach is based
on conditional independence test, which can be easily executed when the number of
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variables is small. According to our simulation, we find that our approach has high
accuracy when the sample size is small.

Keywords: Active learning, Causal Network, Structural learning

Figure 1: Results of our approach on CYTO data.
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Task(s) solved: CYTO

Reference:

Method:

1. Preprocessing: We used the discretized data in Sachs et al. (2005) consisting of
5400 samples with 600 samples per condition.

2. Causal discovery: We used the Bayesian approach to learn causal Bayesian net-
works from mixed observational and experimental data. We computed the max-
imum a posteriori (MAP) network using the dynamic programming algorithm in
(Silander and Myllymaki, 2006).

Results:

The MAP network (Figure 1).

Keywords:

• Causal discovery: Bayesian Network.
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Figure 1: The MAP network
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Task name: LOCANET
Title: LOcal CAusal NETwork
Authors: Isabelle Guyon, Alexander Statnikov, Constantin Aliferis
Contact: Isabelle Guyon, isabelle@clopinet.com, http://clopinet.com/isabelle

Key facts:

Data sets for discovering the local structure around a target variable. Time independent
tasks. Learning causal structure from observational data. Four semi-artificial datasets
(two using re-simulated data and two using real data augmented with artificial probe
variables):

Dataset Domain Type Features Feat. # Train # Test #
REGED Genomics Re-simulated Numeric 999 500 20000
SIDO Pharmacology Real + probes Binary 4932 12678 10000
CINA Econometrics Real + probes Mixed 132 16033 10000
MARTI Genomics Re-simulated Numeric 999 500 20000

Abstract:

We designed four datasets for the purpose of benchmarking local causal discovery algo-
rithms. These include two “re-simulated” datasets obtained from artificially generated
data from models trained with real data and two datasets including real variables inter-
mixed with artificial variables (called probes). There is no time dependency in the sam-
ples. We chose applications in marketing, pharmacology and bio-medicine spanning
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a high diversity of types of distributions. The datasets were used in two challenges in
2008 organized for the WCCI and NIPS conferences. A detailed technical report on the
dataset design is available (Guyon et al., 2009). The website of the challenges remains
open for post-challenge submissions (http://clopinet.com/causality).

Design:

We focused on some specific aspects of causal discovery:

Causality between random variables. We address causal relationships between ran-
dom variables, as opposed to causal relationships between events, or objects.

No time dependency. Our everyday-life concept of causality is very much linked to
time dependencies (the causes precede their effects). However, many machine
learning problem are concerned with stationary systems or “cross-sectional stud-
ies”, which are studies where many samples are drawn at a given point in time.
Thus, sometimes the reference to time is replaced by the notion of “causal or-
dering”. Causal ordering can be understood as fixing a particular time scale and
considering only causes happening at time t and effects happening at time t +d t,
where d t can be made as small as we want. In practice, this means that the sam-
ples in our various training and test sets are drawn independently, according to a
given distribution, which changes only between training and test set versions.1

Learning from observational data. Only training data from a “natural” pre-manipulation
distribution (observational data) is available for training. In other settings, exper-
imental data may be available as well. Relatively small training sets are provided,
making it difficult to infer conditional independencies and learning distributions.

Discovering local causal relationships. We focus on one particular variable of inter-
est called “target” and design tasks requiring to uncover the variables, which are
most closely related (e.g., direct causes and consequences, Markov blanket, depth
3 network). The problem of local causal relationships is closely related to that of
variable selection: (1) variables closely related to the target in a causal graph may
be highly predictive; (2) the knowledge of causal relationships is useful to select
the variables, which will remain predictive in post-manipulation distributions.

Predicting the consequences of manipulations. There is no predictive task in the pot-
luck challenge LOCANET tasks, but our datasets were previously used for pre-
diction tasks in theWCCI 2008 “causation and prediction challenge” (Guyon et
al., 2008). They include test samples drawn from a “natural” pre-manipulation
distribution and test samples drawn from various post-manipulation distributions,

1. When manipulations are performed, we must specify whether we sample from the distribution before
or after the effects of the manipulation have propagated. Here we assume that we sample after the
effects have propagated.
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which can be used to assess predictive performances of the target variable. Post-
challenge submissions can be made online at http://www.causality.inf.
ethz.ch/challenge.php.

The type of causal relationships under consideration have often been modeled as
Bayesian causal networks or structural equation models (SEM) (Pearl, 2000; Spirtes
et al., 2000; Neapolitan, 2003). In the graphical representation of such models, an ar-
row between two variables A! B indicates the direction of a causal relationship: A
causes B. A node in of the graph, labeled with a particular variable X , represents a
mechanism to evaluate the value of X given the parent node variable values. For Baye-
sian networks, such evaluation is carried out by a conditional probability distribution
P(X |Parents(X)) while for structural equation models it is carried out by a function of
the parent variables, plus some noise. Learning a causal graph can be thought of as a
model selection problem: Alternative graph architectures are considered and a selection
is performed, either by ranking the architectures with a global score (e.g., a marginal
likelihood, or a penalty-based cost function), or by retaining only graphs, which fulfill
a number of constraints such as dependencies or independencies between subsets of
variables. Bayesian networks and SEM provide a convenient language to talk about the
type of problem we are interested in, but we made an effort to design tasks, which do
not preclude of any particular model.

We have adopted two strategies to design datasets suitable for benchmarks:

• Re-simulated data: We train a causal model (a causal Bayesian network or a
structural equation model) with real data. The model is then used to generate
artificial training and test data for the challenge. Truth values of causal rela-
tionships are known for the data generating model and used for scoring causal
discovery results.

• Real data with probe variables: We use a dataset of real samples. Some of the
variables may be causally related to the target and some may be predictive but
non-causal. The nature of the causal relationships of the variables to the target is
unknown (although domain knowledge may allow us to validate the discoveries
to some extent). We add to the set of real variables a number of distractor va-
riables called “probes”, which are generated by an artificial stochastic process,
including explicit functions of some of the real variables, other artificial variables,
and/or the target. All probes are non-causes of the target, some are completely
unrelated to the target. The identity of the probes in concealed.

The LOCANET datasets include two re-simulated datasets and two real datasets
with probes. They nicely complement each other: Re-simulated data provide us with
full control over the data generative process and the truth values of all causal relation-
ships, while real data with probes provide us with actual data distributions. The fact that
truth values of causal relationships are known only for the probes affects the evaluation
of causal discovery, which is less reliable than for artificial data.
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Dataset description:

We formatted four datasets, including two re-simulated datasets (REGED and MARTI)
and two real datasets with probes (CINA and SIDO). All datasets are thoroughly doc-
umented (including origin of the raw data, data preparation, past usage, and baseline
results) in a Technical Report (Guyon et al., 2009). We briefly describe them:

REGED (REsimulated Gene Expression Dataset): The problem is to find genes,
which could be responsible of lung cancer. The data are generated by a model derived
from real human lung-cancer microarray gene expression data. From the causal discov-
ery point of view, it is important to separate genes whose activity causes lung cancer
from those whose activity is a consequence of the disease. The data include no hidden
variable or missing data. The target variable is binary: it separates malignant samples
(adenocarcinoma) from control samples (squamous).

SIDO (SImple Drug Operation mechanisms) contains descriptors of molecules
which have been tested against the AIDS HIV virus. The target values indicate the
molecular activity (+1 active, �1 inactive). The causal discovery task is to uncover
causes of molecular activity among the molecule descriptors. This would help chemists
in the design of new compounds, retaining activity, but having perhaps other desirable
properties (less toxic, easier to administer). The molecular descriptors were genera-
ted programmatically from the three dimensional description of the molecule, with
several programs used by pharmaceutical companies for QSAR studies (Quantitative
Structure-Activity Relationship). For example, a descriptor may be the number of car-
bon molecules, the presence of an aliphatic cycle, the length of the longest saturated
chain, etc.

CINA (Census Is Not Adult) is derived from census data (the UCI machine-learning
repository Adult database). The data consists of census records for a number of indi-
viduals. The causal discovery task is to uncover the socio-economic factors affecting
high income (the target value indicates whether the income exceeds 50K). The 14 origi-
nal attributes (features) including age, workclass, education, marital status, occupation,
native country, etc. are continuous, binary, or categorical. Categorical variables were
converted to multiple binary variables (as we shall see, this preprocessing, which facil-
itates the tasks of some classifiers, complicates causal discovery).

MARTI (Measurement ARTIfact) is obtained from the same data generative pro-
cess as REGED, a source of simulated genomic data. Similarly to REGED the data do
not have hidden variables or missing data, but a noise model was added to simulate the
imperfections of the measurement device. The goal is still to find genes, which could
be responsible of lung cancer. The target variable is binary; it indicates malignant sam-
ples (adenocarcinoma) vs. control samples (squamous). The feature values represen-
ting measurements of gene expression levels are assumed to have been recorded from
a two-dimensional microarray 32⇥32. The training set was perturbed by a zero-mean
correlated noise model (?).

For the “causation and prediction challenge” (Guyon et al., 2008), the participants
had to return predictions for the binary target variable on test data for three test set
versions (version 0 from the unmanipulated distribution and versions 1, and 2 from the
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manipulated distribution). For the “pot-luck challenge”, the participants needed only
the training data (the same in all three versions) to produce the local causal structure.

Task of the LOCANET challenge:

The participants were asked to provide a depth 3 causal network (oriented graph struc-
ture) around the target, using only training data only for causal discovery. The submis-
sion format is via a text file containing the list of parents of the features of interest. The
target is numbered 0. All other features are numbered with their column number in the
data tables. Provide a file named: <yourlastname>_<dataname>_feat.localgraph.
Example Guyon_LUCAS_feat.localgraph:

0: 1 5
1: 3 4
2: 1
6: 5
8: 6 9
9: 0 11
11: 0 10

Evaluation:

The participants of LOCANET were ranked on the basis of an average edit distance to
the true causal relationship between the target and variables in the depth three network.
Specifically, we considered only local directed acyclic graphs and encoded the relation-
ship of a variable to the target variable as a string of up (u) and down (d) arrows, from
the target:
Depth 1 relatives: parents (u) and children (d).
Depth 2 relatives: spouses (du), grand-children (dd), siblings (ud), grand-parents (uu).
Depth 3 relatives: great-grand-parents (uuu), uncles/aunts (uud), nices/nephews (udd),
parents of siblings (udu), spouses of children (ddu), parents in law (duu), children of
spouses (dud), great-grand-children (ddd).

A confusion matrix Ci j was computed, recording the number of relatives confused
for another type of relative, among the 14 types of relatives in depth 3 networks. A cost
matrix Ai j, was applied to account for the distance between relatives (computed with an
edit distance as the number of substitutions, insertion, or deletion to go from one string
to the other, using the string description described above). The score of the solution
was computed as:

S = Â
i j

Ai jCi j

There are additional details on how to handle ties. We provide the Matlab code to com-
pute this score (Guyon, 2009). For artificially generated data (REGED and MARTI),
the ground truth for the target local neighborhood was determined by the generative
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model. For real data with artificial “probe” variables (SIDO and CINA), we do not
have ground truth for the relationships of the real variables to the target. The score was
therefore computed on the basis of the artificial variables only.

After the challenge, we also computed other metrics of evaluation. For particular
features subsets (parents, children, parents and children, Markov blanket2, all relatives
up to depth 2, all relatives up to depth 3), we computed precision and recall (aka sensi-
tivity or true positive rare), defined as follow:
Precision: NumberGoodFound / NumberFound
Recall: NumberGoodFound / NumberGood.

We also evaluated the predictive power of the Markov blanket by training a refe-
rence classifier (linear ridge regression) and testing on unmanipulated test data.

Results and conclusions:

Ten participants entered the challenge. All the details of the analysis and fact sheets
for some of the entries are available on-line at: http://www.causality.inf.
ethz.ch/data/LOCANET.html.

The methods included: Structure learning using independence tests (Brown & Tsamardi-
nos and Zhou, Wang, Yin & Geng), combinations of score-based and structure learning
methods (de-Prado-Cumplido & Antonio Artes-Rodrigues and Tillman & Ramsey),
combinations of feature selection and structure methods (Olsen, Meyer & Bontempi),
and ensemble methods (Mwebaze & Quinn).

The edit distance scores of the participants were fairly poor. On REGED and
MARTI, the best ranking entries were empty graphs. On CINA, the best ranking entry
had results worse than the fully connected graph (with symmetric connections). On
SIDO, the best result was barely better than that of the empty graph. From the point
of view of the precision and recall metrics, structure learning methods gave the most
promising results (highest precision), but all methods gave a poor recall, particularly
for SIDO. We performed additional qualitative analyses in CINA using the semantics
of the identifiers of the true variables to see whether the uncovered relationships made
sense. It is unclear whether using the tools of causal discovery brought us a lot more
information that simple correlation would have:

• most features cited as cause or effect of the target rank among the most correlated
features,

• there is usually no consensus on the causal direction among the participants,

• when there is a large consensus on the causal direction, the result is sometimes
suspicious given the semantics of the feature,

• a simple ranking in order of correlation yields nested feature subsets always more
predictive than the Markov blanket.

2. We call Markov blanket the set of parents, children, and spouses of the target variable.
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Overall these results point to the need to improve the reliability of causal discovery
from observational data.
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Reference:

• Bach’s – Bach, F.R. and Jordan, M.I. NIPS, 2002
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for Making Predictions Under Manipulation” 2008

• MMHC – Tsamardinos, I. et al. Machine Learning, 2006

• MMPC, MMMB – Tsamardinos, I. et al. SIGKDD, 2003

Method:

Our submission for the LOCANET challenge relied on the results and procedures of
the first causality challenge, from which the local networks were pruned. Details to
the approach used for the first causality challenge are available in the paper for that
challenge (available at the DSL website) but a general overview of the method and how
the results are used for this task are presented.

Preprocessing: The preprocessing was tailored to each data set. For the REGED data
set each variable was normalized so its mean was zero and standard deviation was
one. For the SIDO data set, the variables were binary and no preprocessing was
performed. For the CINA data set, variables that were not binary were treated
as continuous and normalized; binary variables were all set to values of zero and
one. For the MARTI data set, the preprocessed data by Dr. Guyon available on
the challenge website was used.
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Causal discovery: Once the initial data sets have been pre-processed, the next step
of our procedure was to identify the skeleton structure of the Bayesian Network
around the target variable recursively using the MMPC algorithm, up to three
edges away from the target. This region of interest makes it practical to apply
causal algorithms that cannot scale up to the sizes of all the networks in the
challenge. The selection of a depth 3 in this case was for the previous challenge
where we focused on identifying the Markov Blanket. For future work on the
LOCANET challenge which focuses on learning a region out to depth 3, the
MMPC recursion should run out to depth 4 and then be pruned back as a final
step. In the next step of our analysis we tried to orient the edges of the region.
For the case of continuous or mixed data, an adaptation of Bach’s algorithm
was used. For the case of binary data, MMHC was used to find the top scoring
network. From the learned network, the region of depth 3 was extracted and
submitted for analysis.

Feature selection: The recursive selection of variables to include in the region can be
thought of as performing several iterations of feature selection.

Classification: None

Model selection/hyperparameter selection: Currently, a default set of parameters are
used in the edge orientation procedure (parameters for score calculation either via
BDeu score in MMHC or parameters for the kernel in Bach’s algorithm). Future
work for this challenge could also involve using many different parameters and
perform model averaging over the results.

Results:

Table 1: Result table. The score of our method along with the top and lowest score
for each data set are given. Three reference scores are also presented where
applicable for comparison. The scores for REGED and MARTI are the second
best submitted.

REGED SIDO CINA MARTI
Brown/Tsamardinos 0.27 3.46 2.23 0.36
Best Overall 0.22 3.31 1.70 0.21
Worst Overall 0.52 3.48 3.31 0.93
Reference A 0.01 0.64 0.64 0.02
Reference B 0.16 1.92 1.89 0.16
Reference C 3.08 1.67 3.01

Reference A: Truth graph with 20% of the edges flipped at random.
Reference B: Truth graph with connections symmetrized.
Reference C: Variables in the truth graph, fully connected.

348



A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

Advantages:

The method gains in efficiency by rather than learning the entire network and pruning
out the region it uses the recursive application of a local neighborhood identification
method (MMPC) in a breadth-first search then orients the graph.

Limitations:

The results on CINA may be low because of the inappropriateness of the statistical
tests used in MMPC for the mixed data. The MMPC algorithms have statistical tests
provided for when the data is entirely binary or continuous (with a binary target); the
mixed data set did not therefore match well to these methods. Also, as stated above the
performance of the method may be improved by allowing the recursive procedure to
run to a depth of 4 in order to better facilitate identification of all edges in the region of
depth 3.

Implementation:

The methods are implemented in Matlab. The MMPC and MMHC algorithms are avail-
able from the Causal Explorer library, www.dsl-lab.org (please note, we were in
part the developers of these methods and may have slightly extended or modified the
code from the precise implementation available in Causal Explorer). Our method com-
bined many algorithms and used the results from the previous challenge which are not
available as a push-button application although the code and executables are available
at the above website.

Keywords:

• Preprocessing or feature construction: normalization.

• Causal discovery: Bayesian Network,

• Feature selection: filter
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PROMO Dataset

Jean-Philippe Pellet

Pot-luck challenge: Fact Sheet for the PROMO Dataset

Repository URL: http://www.causality.inf.ethz.ch/repository.php?
id=2

Dataset name: PROMO

Title: Detecting simple causal effects in time series
Authors: Causality workbench team
Contact: Jean-Philippe Pellet, jep@zurich.ibm.com
Website: http://www.zurich.ibm.com/~jep/causality/promo.html

Key facts

This dataset contains artificial data about product sales and promotions as time series.
There are 1000 binary promotions variables and 100 continuous product sales variables.
The goal is to predict a 1000⇥100 boolean influence matrix, indicating for each (i, j)
entry whether the ith promotion has a causal influence of the sales of the jth product.

Each of the 100 products has a defined seasonal baseline, repeating over the years.
The seasonal effect can vary from almost inexistent to major. On top of this baseline
are promotions. Each product is influenced by between 1 and 50 promotions out of
the 1000 promotions available. Promotions usually increase the sales with respect to
the baseline, but can occasionally reduce them (e.g., when a similar competing product
is promoted, that promotion might have a negative effect on the sales of the current
product). On top of that are daily variations.

Each of the 1000 promotions can be seasonal or not; i.e., they can have the same
pattern from one year to another or be completely different. The average time a promo-
tion stays active or inactive, however, is constant for each promotion.

The weighted normalized influence matrix is provided for result evaluation. It is
normalized so that the maximum positive contribution is 1 and the maximum negative
contribution is �1, and each nonzero (i, j) entry is weighted by how much promotion i
affects product j.

Note that, as this matrix is provided, the participants are trusted to use it for evalu-
ation purposes only, and not to tune potential hyperparameter of their approaches.

Keywords: time series, structural equation models
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Data Generation

The data is generated in three steps:

1. Generate the 1000 promotion variables;

2. Generate the product baselines (without the promotion effect);

3. Generate the end product sales, including the promotion effect.

We denote promotion variables by Pi, 1 i 1000, and the baselines and product sales
by B j and S j, respectively, 1 j  100. The value generated for variable Pi on day t is
denoted by pit .

The promotion variables are all generated according to a Markov chain whose pa-
rameters are randomly chosen. The Markov chain has two states, ON and OFF. The two
transition probabilities are determined by the inverse of the average number of days in
each state tON and tOFF, which are drawn from a probability distribution covering from
1 day to 300 days This fully determines the Markov chain:

pON!OFF = 1/tON pOFF!ON = 1/tOFF

pON!ON = 1�1/tON pOFF!OFF = 1�1/tOFF.

Then, for each promotion variable, with probability 0.5, it is set to repeat each year in
the same pattern as the previous year, and with probability 0.5, not to repeat automati-
cally. In the former case, a full year (i.e., 365 values, one for each day) is sampled by
determining the state of the variable according to the Markov chain, and then replicated
twice, to obtain the time series over 1095 days. In the latter case, the full 1095 days are
sampled with the Markov chain, resulting with high probability in different sequences
for each year. In each case, the initial state is determined to be ON with probability
pON = tON/(tON + tOFF), and accordingly off with probability pOFF = 1� pON. This is
show in Figure 1.

Figure 1: The Markov chain generating the promotion variables

8i : pit = time series sampled with Markov chain

Product baselines are the sum of a constant factor c j and of a seasonal effect. The
seasonal effect repeats over the years. The baselines indicate what the sales would be,
without promotions and without random noise. The constant factor is drawn randomly,
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and the seasonal effect is determined as a superposition of n sines whose amplitude ak
phase fk, and pulse wk are drawn randomly. The number of sines n is drawn uniformly
between 2 and 10. The seasonal effect is then shifted so that its minimum is 0. This is
indicated with the shift(·) function, which we define as shift(xt) = xt �mint 0 xt 0 .

8 j : b jt = c j + shift

 

Â
k=1

nak sin(wk · t/365�fk)

!

The end sales are generated as follows: for each product, a set I j of influencing
promotion variables is drawn at random, with its cardinality m uniformly distributed
between 1 and 50. The influence f jl of each influencing promotion I jl , 1  l  m, is
drawn randomly between 0.2 and 0.8, and negated with probability 0.1. For each day,
the total promotion factor t jt is determined as the square root of the sum of the factors
of all influencing promotions whose state is ON. Random Gaussian noise with mean
0 and standard deviation 0.1 is then added to this promotion factor. The end sales are
then the product baseline multiplied by the total noisy promotion factor (not that this
means that the promotion effect is thus multiplicative rather than additive).

8 j : I j = random set of m promotion variables
8 j,m : f jl = factor of influence for the lth promotion in I j

8 j : t jt =
r

Â
l=1

m f jl ·1pind j(l),t=1

8 j : u jt = t realizations of a variable U ⇠N (0,1)
8 j : s jt = b jt · (t jt +u jt)

The value of 1pind j(l),t=1 is 1 whenever the lth promotion for product j is ON on day t,
and 0 otherwise (the notation ind j(l) just converts the product-specific promotion index
l for product j to the global, product-independent promotion index).

The final data available to challenge participants are the end sales sit and the pro-
motion variables pit ; all other intermediary values remain hidden.

Discussion

There are several ambiguities in the data. For instance, all promotions that repeat year-
to-year can be seen as seasonality. Further assumptions are needed here to tell if some
observed recurring effect is due to seasonality or to a seasonal promotions. Another
problem is that some promotion with a nonzero effect might be ON or OFF all the time,
preventing learning algorithms from assessing its effect.

These points are deliberate and correspond to real-life scenarios. Often, products
both have a seasonality, and often, the promotions applied to these products in the
past also had a certain seasonality. It is therefore important to include an appropriate
criterion for to tell these two effects apart. It is also necessary to have an algorithm that
can correctly identify promotions whose effect cannot be assessed.
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Note that the promotion effect is straightforwardly applied to the end sales: only
the current day is used. A given promotion can only have an impact the day it is ON;
the sale history has no memory of past promotions. This information was not given to
the challenge participants.

Approaches Used by Participants

Two approaches were proposed to solve the PROMO task. They are briefly sum-
marized here; more details can be found on their respective fact sheets at http:
//www.clopinet.com/isabelle/Projects/NIPS2008/home.html.

The first approach, A1, first tries to extract the baseline by modeling it as an offset-
plus-sine for each product, to which is then added the promotion effect:

8 j : b jt = c j +a j sin(w jt +f j)

8 j : s jt = b jt +But ,

where B is the influence matrix and ut represents the state of the promotions. This is
solved in two steps: first, the parameters c j, a j, w j, f j are estimated by fitting the data
with the offset-plus-sine model; then, fixing those parameters to the obtained value, B
is estimated solving j independent convex problems, subject to a sparsity constraint on
B: for each promotion, the number of nonzero entries in B should not be greater than
50 (The number 50 is given in the problem description as upper bound on the number
of relevant promotion variables). See Markovsky (2008) for more details as well as the
whole source code to reproduce the results listed below.

The second approach, A2, also consists of two steps, where first the seasonal com-
ponent is removed, and then the relevant promotion variables are determined. The
baseline is modeled as a constant plus a superposition of 16 sines and cosines with
different frequencies. Denote a design matrix Z = [z1,z2, · · · ,z1095]T , where

zt =(1 sin(2pt/365) cos(2pt/365) · · · sin(10pt/365) cos(10pt/365))T ,

then the baseline is estimated as B̂ = (b jt) = Z(ZT Z)�1ZT S, where S = (s jt) is the
matrix containing the end sales. The input to the second step of the method is the
residuals of this regression, namely Y = S�B. The second step selects the relevant
promotion variables for each product: this is done with an iterative stepwise selection.
The hyperparameters of this selection is then chosen according to an EBIC criterion.
See Yin et al. (2008) for more details about this method.

Results

To compare the results of the participants, we used the following metrics: for each of
the 100 products, we determine the precision, recall, and F-score of the participants’
solution.

The precision is a real value between 0 and 1 determining, out of the set of pro-
motion variables proposed by a participant as influencing product j, what proportion of
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them are actually promotion variables that were in I j ; i.e., which were also used in the
generating model to determine the end sales. The precision for product j is then:

pr j =
number of correctly identified promotion variables

total number of identified variables
.

The recall is a also a real value between 0 and 1 determining how complete the
participants’ solution were. It is defined similarly as:

re j =
number of correctly identified promotion variables

total number of promotion variables used in the generating model
.

A perfect solution has precision = recall = 1. A solution with precision = 1, recall
= 0.5, for instance, means that all identified promotion variables were indeed correct,
but that they only constituted 50% of those actually used in the generating model. Con-
versely, a solution with precision = 0.5 and recall = 1 is such that although all relevant
variables were identified, 50% of all identified variables were not used by the generating
model.

Finally, the F-score is the harmonic mean of precision and recall:

Fj =
2 · pr j · re j

pr j + re j
.

For the two participants, using approaches A1 and A2, the precision, recall, and F-
score was evaluated for each product. Table 1 shows the mean and standard deviation
of those measures aggregated over all products.

Table 1: Mean and standard deviation of the precision, recall, and F-score for the two
participants

A1 (Markovsky, 2008) A2 (Yin et al., 2008)
Precision 0.38±0.24 0.89±0.14

Recall 0.32±0.23 0.78±0.17
F-score 0.31±0.19 0.82±0.13

Clearly, A2 performs much better, getting twice as good both precision and recall.
This can be due to a number of reasons: probably, extracting a baseline as a superposi-
tion of several sines and cosines rather than a single sine can better recover the original
baseline as generated by the model, as the model used a superposition of sines with dif-
ferent amplitudes, phases, and pulses. The residuals obtained after baseline extraction
by A1 still contain a bigger part of the seasonal components than the residuals obtained
by A2. Taking in more promotion variables to try and compensate for a baseline detec-
tion that could be better then lowers the precision, while at the same time, not detecting
the baseline correctly will tend to lower the recall, as it becomes less likely to be able
to make out well the effect of the truly influencing promotion variables.
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PASCAL PROMO Challenge

Ivan Markovsky

Pot-luck causality challenge: FACT

Title: Results on the PASCAL PROMO challenge

Participant name, address, email and website:
Ivan Markovsky
Building 1, Highfield campus
Southampton, SO17 1BJ, UK

Telephone: +44 (0)23 8059 8715
Fax: +44 (0) 23 8059 4498
Email: im@ecs.soton.ac.uk
WWW: http://users.ecs.soton.ac.uk/im/homepage.html

Task(s) solved: PASCAL PROMO challenge

Reference: http://eprints.ecs.soton.ac.uk/16779/

Method:

The data is modeled as a sum of a constant-plus-sin term and a term that is a linear
function of a small number of inputs. The problem of identifying such a model from
the data is nonconvex in the frequency and phase parameters of the sin and is com-
binatorial in the number of inputs. The proposed method is suboptimal and exploits
several heuristics. First, the problem is split into two phases: 1) identification of the
autonomous part and 2) identification of the input dependent part. Second, local opti-
mization method is used to solve the problem in the first phase. Third, l1 regularization
is used in order to find a sparse solution in the second phase.

Results:

Please refer to the technical report (http://eprints.ecs.soton.ac.uk/16779/)
for table with results. In addition, the web page has a link to Matlab software that re-
produces the presented results.

Comment about the following:
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• quantitative advantages (e.g. compact feature subset, simplicity, computational
advantages)

The algorithm is computationally simple: the full model is identified in 3 hours
on a standard PC.

• qualitative advantages (e.g. compute posterior probabilities, theoretically moti-
vated, has some elements of novelty).

The tools used to solve the subtasks (leading to the full identification method)
are not new however their combination and application for causality detection is
novel.

Briefly explain your implementation.

We use Matlab. The one variable nonconvex optimization problem is solved using
the Optimization Toolbox (fminsearch function) and the L1 optimization problem is
translated to a standard convex optimization problem, using CVX (http://www.
stanford.edu/~boyd/cvx/).

Provide a URL for the code (if available).

http://eprints.ecs.soton.ac.uk/16779/2/challenge.tar

Precise whether it is a push-button application that can be run on benchmark data to
reproduce the results, or resources such as modules or libraries.

1. Unpack the archive (it creates a directory called “challenge”).

2. Download and unpack in the same directory the challenge data

http://www.zurich.ibm.com/~jep/causality/PROMO.zip

3. If not already installed, download and install CVX

http://www.stanford.edu/~boyd/cvx/

4. Make sure that the Optimization Toolbox of Matlab is installed.

5. Change directory to “challenge” and run the function “test” from the Matlab
command line. The model is identified in approximately 3 hours and the results
reported in paper (figures and numerical data) are available.

Keywords: Put at least one keyword in each category. Try some of the following
keywords and add your own:

• Preprocessing or feature construction: redundant input removal.
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• Causal discovery: prediction, least squares fitting.

• Feature selection: L1 norm regularization.
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Abstract
When we explore the causal relationship among time series variables, we first remove
the potential seasonal term then we deal with the problem in the feature selection
framework. For a time series with seasonal term, we use several sequences of sin(t)
and cos(t) functions with different frequencies to design a ‘pseudo’ design matrix, and
the seasonal term is removed by getting the regression residual of the original series
on this ‘pseudo’ design matrix. An iterative stepwise subset selection and threshold
method are then applied. The cut-value for the threshold is selected by an EBIC
criterion. Some simulations are performed to assess our method. In the PROMO task
of the Potluck challenge, we apply our method and obtain a specificity of above 77%
while keep the sensitivity of around 89% on the PROMO task.
Keywords: functional data, iterative threshold, linear model, seasonal term, stepwise
subset selection, structural equation model, time series.

1. Introduction

In the Potluck challenge, we try to select the causal processes from the 1000 promotions
for each product sales series separately. For a time series Y (t) with seasonal terms, we
can decompose it into three parts:

Y (t) = S(t)+T (t)+N(t) (1)

where S(t) denotes the seasonal term, T (t) denotes the trend term which may be in-
fluenced by the other processes and N(t) is the noise part. There exist many methods
to model the seasonal term S(t) in the literature (see Brockwell & Davis, 1991; Box
et al., 1994). Here we treat S(t) as a continuous periodic function and approximate it
by a series of periodic functions bases in the sin and cos functions. We use a linear
structure equation model (SEM) to model the other processes’ causal influence on the
target process. That is,

T (t) = b0 +b1 ⇤ x1(t)+ · · ·+bp ⇤ xp(t) (2)
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where xi(t), i = 1, · · · , p stands for the other processes which may also be influenced
by the seasonal factor. So we also apply the same model of seasonal term on each
xi(t) process. Equation (2) is then treated as a simple linear regression model and a
stepwise selection (Weisberg, 1985) procedure is applied to screening out the influential
independent variables. This stepwise selection is applied iteratively to eliminate the
possible “boundary” variables (see the next section). To get a sparse model, we further
use a kind of threshold on the regression coefficients to select the significant subset.
This procedure is also applied iteratively to get a converged subset. And the hyper-
parameter of the cut-point is selected by an extended BIC criterion. Some simulation
study shows that our method can get the consistent result under different kinds of S(t)
and N(t) process. This paper is organized as following. In Section 2, the preprocessing
for the seasonal term is described, in Section 3 the stepwise selection procedure is
mentioned and the iterative threshold method with its hyper-parameter selection method
is introduced. Section 4 is the numerical study. Finally Section 5 gives some discussion
on our method.

2. Preprocessing: Filtering the seasonal term

For a given time series, we use a series of continuous periodic functions to filter out the
seasonal term. Suppose that the period length is T while in our problem, T = 365. Then
we generate the periodical sequences sin(2pt/k),cos(2pt/k), for t = 1, · · · ,1095 and
k = T,T/2,T/3,T/4,T/5. It is obvious that the period for each sequence is k. Denote
a design matrix Z = [z1,z2, · · · ,z1095]T , where

zt = (1 sin(2pt/T ) cos(2pt/T ) · · · sin(10pt/T ) cos(10pt/T ))T

S = (S(1), · · · ,S(1095))T is estimated as Ŝ = Z(ZT Z)�1ZTY . Then we remove the sea-
sonal term expressed in the regression value on this design matrix to get the residual as
the input of our next analysis. Y ⇤ =Y � Ŝ, x⇤i = xi�Z(ZT Z)�1ZT xi for i = 1, · · · ,1000.
Here Y is the realization of 1095 days of certain product sales in our problem and xi is
the realization of 1095 days for some promotion method. To simplify the notation, we
still use the Y for Y ⇤ and xi for x⇤i respectively. The k is selected up to T/5 is deter-
mined by experience. We assume that the continuous periodic seasonal function can be
approximated well enough by its Fourier expansion up to the fifth order.

3. Feature Selection

Since we have reduce our time series problem into a simple linear feature selection
problem after removing the seasonal term, we can omit the subindex t and write our
model

y = Xpbp + e (3)

where p is the dimension of the original feature space.
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3.1. Iterative stepwise subset selection

We use the stepwise selection (SW) to select the influential xi(t)s for each Y (t) through
relation (1) and (2). When the significant level for entering (penter) is different from
the one for removing (premove), there exists certain situation that some features on the
“boundary” (here we mean that the significant level is between the penter and premove)
can be dropped in the next round of stepwise selection on the remained feature set. For
example, if x2 is only significant for the response when x1 is in the model; suppose x1
enters first, then x2 can enter, but later x1 is removed and x2 is not removed (if it is on
the “boundary”). For the next round of SW selection, x2 will be removed. So for the
purpose of sparsity, we use the stepwisefit procedure in Matlab iteratively to select the
feature set with penter = 0.05 and premove = 0.1.

3.2. Iterative threshold selection

Before the following analysis, each column of Xp is standardized to have zero mean
and unit variance. Suppose that the true model has a dimension d and denoted as Xd ,
then the above relation (3) can be represented as

y = Xdb

⇤
d + e (4)

where b

⇤
d = {b j : b j 6= 0,1  j  p} with a dimension d < p. Initialize M(0) as the

output of the iterative SW selection. M(i) is obtained in an iteratively manner:

M(i) =

(
1 j  kM(i�1)k : |b̂ (i�1)

j |� a

⇤ max
1kkM(i�1)k

⇣
|b̂ (i�1)

k |
⌘)

(5)

where b̂

(i�1) is the least square estimate for regression coefficient vector of y on XM(i�1)

and k ·k denotes the cardinality of a set. Intuitively, we drop those features whose ab-
solute values of regression coefficients are smaller than a ⇤100% of the current largest
one (in absolute value).

Denote the true feature set as MT = {1 j p : b j 6= 0}. And use the note |b |min =
min1 jp |b j|. In order to justify our selection procedure, we need the following two
assumptions on the underlying model.

• Assumption1 There exists a constant number c0 > 0, such that |b ⇤|min/|b ⇤|max 
c0

• Assumption2 For any sub-model of the true model Ms⇢MT , |b s|min/|b s|max,c0,
where c0 is the same constant in assumption 1.

Remark 1 Assumption 1 says that the ratio of the two extremes of the true coefficients
is significantly apart from 0. Assumption 2 want to regulate the behavior of the load on
every feature subset. It’s not the possible weakest requirement.

Under the above assumptions, we have the following results.
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Theorem 2 Suppose assumptions 1 and 2 are true, under our model setup (3)–(5), then
with probability tending to one (as n�! •) that there exists a constant a such that
(I) If M(i) )MT , then kM(i+1)k< kM(i)k.
(II) If M(i) ✓MT , then kM(i+1)k= kM(i)k.
Proof The a can be chosen as a positive number that 0<a < c0, where c0 = |b ⇤|min/|b ⇤|max.
For case (I), since the estimate b̂

(i) is an unbiased consistent estimator for bp, then with
probability tending to one |b̂ (i)|max⇡ |b ⇤|max and |b̂ (i)|min⇡ 0. Then |b̂ (i)|min/|b̂ (i)|max <
a , so at least we can drop one variable. Similarly, for case (II), with assumption 2, we
can see that the same a is also appropriate here for |b̂ (i)|min/|b̂ (i)|max > a

From the above theorem, one can see that from an over-fit model including the true
features, threshold on the regression coefficients can remove the unrelated features and
the iteration can repeat this process until it converges to the true model or its subset.
And it will not continue to delete variables as long as it is covered by the true subset.
But what is the case when we begin from a subset that M(i) ) MT ? There is no
assertion can be made here, but from the experience we have, the iteration converges in
finite steps under this case.

3.3. Extended-BIC criterion for model selection

Ordinary BIC is likely inconsistent when p >
p

n (Chen & Chen, 2008). We used the
extended-BIC (EBIC) criterion (Chen & Chen, 2008) to select the hyper-parameter a .
From the simulation study in the next section, we can see that the EBIC outperforms
the ordinary BIC and prediction MSE criterion in measure of SN. The extended-BIC is
defined as:

EBIC(M) = log(ŝ2
(M))+n�1kMk⇥ (logn+2log p)

Then we search the minimum value for this EBIC (M
a

) index by a in an interval.
Denote M̂= argmin

a2[a,b] EBIC(M
a

). In practice, we choose [a,b] = [0.1,0.3].

4. Numerical Studies

In the simulation study, a linear additive model of (1) is considered. We consider three
types of S(t), extra lag-effect in the relationship between T (t) and xi(t)s rather than (2),
and an ARMA noise with an acceptable signal-to-noise ratio for N(t).The simulation
result shows that our approaches have a good robust performance although we never
take into account the lagged effect in T (t) and ARMA in N(t). We use the specificity
(shorted as SP) and sensitivity (shorted as SN) to evaluate. To write them out explicitly,

SP =
#{ j : b̂ j 6= 0&b j 6= 0}

#{ j : b j 6= 0} SN =
#{ j : b̂ j 6= 0&b j 6= 0}

#{ j : b̂ j 6= 0}

364



ITERATIVE STEPWISE SELECTION AND THRESHOLD FOR LEARNING CAUSES IN TIME SERIES

4.1. Simulation method

We simulate the similar model configurations compared to our PROMO task under
model (1). For the S(t), we select three types of periodic continuous function to repre-
sent it.

Type(1) S(t;n,m,f1,f2,T ) = Ân
i=1 sin(2pit/T +f1)+Âm

j=0 cos(2p jt/T +f2)

Type(2) S(t;a1,a2,a3,T ) = t(T � t)[(t�a1)(t�a2)(t�a3)�200].

Type(3) Twice moving average of a random N(0,s2) series with smoothing window
width h which is sampled from [50, 80] uniformly.

We generate a total of 50 S(t)s for each seasonal type on the domain t 2 [0,365] and
then extend them to span in [0,1095] periodically. The parameters in the three types are
randomly assigned except T which is set to 365.

For T (t), firstly we generate 1000 binary series xi(t) for t = 1, · · · ,1095, i= 1, · · · ,1000
which are potential causes of each Y (t) series through the relation (1) and (2). We ge-
nerate 500 seasonal xi(t)s (with period 365) and 500 non-seasonal xi(t)s. For each
point in xi(t), a binary number is generated from a binomial distribution B(p) where
p is sampled uniformly on [0.2,0.8]. The seasonal one is the triplication of the func-
tion defined in [0,365]. Then the coefficients b in (2) are defined as following: the
number of non-zero b j is uniform sampled from [1,50] while the non-zero values are
sampled uniformly from interval [0.4,1] and assigned a negative sign with probability
0.2. Besides, we suppose covariates xi(t)s may have lagged effect on the target T (t),
which often exists in the real world. Inspired by the power decay lagged effect model in
Box & Tiao (1975), we use the backward operator w ⇤Âlag(

1
2 B)lag�1 on xi(t)s, where

w represents the lagged effect coefficients randomly taking a smaller absolute value
than the corresponding major effect but a possible opposite sign. The lag length lag is
randomly selected in {0,1,2,3,4,5}. We add the lagged effect to the T (t).

We model the noise term N(t) as an ARMA model whose parameter (p,d) is ran-
domly assigned. Finally, we get the simulated target series Y (t) from the summation
of the above three series multiplied with appropriate scale parameters, such that the
signal-to-noise rate is around 4. Then we apply an iterative SW procedure followed by
an iterative threshold procedure proposed above to select the significant subset. Diffe-
rent kinds of criterion for a are compared in their accuracy measures.

4.2. Simulation results

Table 1 tells us that the model selected by EBIC is comparably good in SP while is
over-whelmingly better than BIC and MSE criterion in SN.

From Table 2 we can see that the iterative SW process is necessary for there are
more than 30% of the case that there are ‘boundary’ variables in our selected model.
Table 3 also supports that the iteration for Threshold process is necessary although they
finally converge with large probability.
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Table 1: Comparison of three criterions.
Seasonal Function criterion SP SN

BIC 0.98 0.76
Type (1) EBIC 0.96 0.99

MSE 0.99 0.59
BIC 0.96 0.57

Type (2) EBIC 0.92 0.94
MSE 0.97 0.46
BIC 0.96 0.57

Type (3) EBIC 0.93 0.93
MSE 0.96 0.47

Table 2: Iteration number distribution for iterative SW process.
Seasonal Function 1 2 3 > 4

Type (1) 0.7 0.3 0 0
Type (2) 0.58 0.38 0.04 0
Type (3) 0.62 0.36 0.02 0

Table 3: Iteration number distribution for the iterative Threshold process.
Seasonal Function criterion 1 2 3 4 5 6 7 > 8

BIC 0 0.14 0.28 0.22 0.06 0.14 0.04 0.12
Type (1) EBIC 0 0.24 0.38 0.24 0.12 0 0 0.02

MSE 0.38 0.26 0.14 0.08 0.04 0.06 0.02 0.02
BIC 0 0.06 0.26 0.28 0.12 0.08 0.02 0.18

Type (2) EBIC 0 0 0.44 0.34 0.16 0.04 0.02 0
MSE 0.44 0.08 0.24 0.12 0.04 0.02 0.02 0.04
BIC 0 0.04 0.24 0.26 0.16 0.18 0.06 0.06

Type (3) EBIC 0 0.04 0.28 0.38 0.1 0.14 0.02 0.04
MSE 0.42 0.12 0.12 0.16 0.02 0.1 0.04 0.02
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4.3. Results on the PROMO task

We apply our algorithm to the PROMO task and get a specificity of above 77% and
sensitivity around 89%.

5. Discussion

One may doubt that whether only the iterative threshold process can do the variable se-
lection job well enough. When feature space is of high dimension, from our experience,
only the iterative threshold without stepwise selection can lead to terrible results. The
stepwisefit procedure in Matlab is very efficient in computation, and the computation
for one time of iterative threshold can be negligible.
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Manufacturing data: SEMI tool level fault isolation

Advanced Analytics, Intel, LTD EUGENE.TUV@INTEL.COM

5000 W. Chandler Blvd
CH5-295
Chandler, AZ, 85226, USA

Background

In semiconductor manufacturing process the basic manufacturing unit is a silicon disk
called wafer. During the fabrication process each wafer goes through a product (chip
type) specific sequence of operations (hundreds). Each operation in the sequence is
identified by its operation number. Some of these operations include adding a layer
to the wafer, drawing a pattern on the wafer, covering the pattern with a photo layer,
etching the pattern, etc. Wafers travel through manufacturing line in batches or lots.
Every lot goes through each operation in the sequence. At each operation a lot could go
through only one of many tools performing the same function. Maximum number of
tools ⇠ 25, and the number of tools could be different from operation to operation. At
the end of the manufacturing line many performance metrics are measured to monitor
deviations from the desired target specifications. Often observed variation of a per-
formance metric is caused by a subset of tools with effects of the problematic tools
potentially changing in time.

1. Problem statement

The simulated dataset closely reproduces the nature and complexity of the tool level
fault isolation problem engineers face in the semiconductor manufacturing. It records
every tool and time stamp at every operation every lot went through (predictors), and
the corresponding numeric performance measure (target). The goal is to recover a small
subset of influential/problematic operations/tools and the corresponding contributions
in time (if the effect is not constant) to the variation of the numeric performance met-
ric. Examples of problematic tools generating non-constant offsets are shown on the
figures 1, 2.
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1.1. Data generative model — regression

ObservedPerformanceMetric(t) = TargetedPerformance+ Â
i j2I

OFFSETi j(t)+

Â
kl ,rs2M

OFFSETkl ,rs + e

where ObservedPerformanceMetric(t) is observed at the end of line performance met-
ric; TargetedPerformance is targeted by the process specification performance metric; I
is a subset of operations where tool j at operation i causes OFFSETi j(t) from the per-
formance target; M is a subset of operations (different from I) where tools l and s from
operations k and r produce a constant OFFSETkl ,rs (pure interactions). The noise e was
generated from the normal distribution with zero mean and variance adjusted to give a
1/1 signal-to-noise ratio for a tool (or combination of tools) with the weakest signal.

E|e|= min
i

Et |OFFSETi(t)�median
t

OFFSETi(t)|

1.2. Data description and desirable results

Commonalityx4000 dataset has 602 variables and 4000 observations (lots); RES is the
target — the performance metric measured at the end of line; LOT coded as LOTID (to
be ignored); the rest are predictors: LOCNi and TDATEi. Every lot goes through each
of 300 operations: LOCNi (operation ID) at time TDATEi, i=1–300. At each operation
it could go through only one of the tools. Hence LOCNi are categorical predictors with
number of levels= number of tools used, TDATEi are numeric variables (coded times
through operation-tool). Approximately 25% of the data is missing.

The desirable result of the study is to identify problematic operations/tools and the
corresponding offset patterns in time. The performance metrics for the evaluation of
submissions will include the number of correctly identified operations/tools and number
of false positives. Furthermore, to quantify the accuracy of offset pattern predictions
the following metric will be used

Â
i=1:300

Â
j=1:4000

|PredictedOffseti(tool j, time j)�ActualOffseti(tool j, time j))|

It is expected that submission would have at most 50 identified influential operations
(the actual number is smaller), the rest of the operations will be assumed having no ef-
fect (OFFSET(tool, time)⌘ 0). The submitted prediction matrix would have at most 50
columns corresponding to OFFSETSi(tool, time) caused by a subset of tools at opera-
tion i calculated for 4000 observations (lots) from the provided dataset. Thus the metric
above will be evaluated over union of actual OFFSETSa and predicted OFFSETSp. Fi-
nally, submissions would include identified pairs of pure operation/tools interactions
(no time effect).
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Figure 1: Sawtooth offset pattern caused by the tool=2 at operation=099. The rest of
the tools stayed on target

Figure 2: Trend offset patterns caused by the tools=2,3 at operation=047. The rest of
the tools stayed on target
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Pot-luck challenge: TIED

Advanced Analytics, Intel, LTD EUGENE.TUV@INTEL.COM

5000 W. Chandler Blvd
CH5-295
Chandler, AZ, 85226, USA

Task(s) solved:

• Using training data, find all minimal sets of features with optimal predictivity

• For each of the feature set identified, build a classifier model of the target variable
using training data and apply it to the testing data.

Method:Rule induction on relevant features

Feature selection method (ACE - Artificial Contrasts with Ensembles) was used to re-
move irrelevant features. Two rule induction techniques were used to find sets of fea-
tures with optimal predictability: CART with surrogate splits and a supervised APRI-
ORI. Both point to the same optimal sets of features.

• Feature selection: ACE is a combination of three ideas: A) Estimating variable
importance using RF ensemble of trees of a fixed depth (3–6 levels) with the
split weight re-estimation on OOB samples (gives more accurate and unbiased
estimate of variable importance in each tree), B) comparing variable importance
against artificially constructed noise variables using a formal statistical test, and
C) Iteratively removing the effect of identified important variables to allow de-
tection of less important variables. ACE method is outlined in Tuv et al. (2006).
The more comprehensive paper is submitted to JMLR (currently under review).
The results of ACE applied to the TIED dataset are shown on the Figure 1. The
algorithm stopped after 3 iterations (no new relevant features found), and the
resulting set of selected relevant (strongly and weakly) features is shown in the
last column.

• Classification tree (Breiman et al., 1984) built on selected features shown on Fig-
ure 1. Optimal tree has four terminal nodes, and gave CV BER ⇠ 0.02. The
tree was used for the prediction on the test data. Figure 2 presents surrogate
scores tables shown for each of the three splits. Note that for the first split on
Column10 there are three surrogates with equivalent splits (Column1/2/3). Sim-
ilarly for the second and the third splits equivalent splits are achieved by using
Column11/12/13 and Column18/19/20 correspondingly.
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• Supervised Apriori: we customized Apriori (Agrawal et al., 1993) algorithm to
produce rules with known consequent - specific class of a categorical target. We
use conditional support (fraction of the data from the specified class covered by
the rule) to dramatically simplify APRIORI rule tree construction. As a prepro-
cessing step numeric predictors are discretized, and levels of categorical predic-
tors are optionally clustered with respect to the target class using decision tree
with MDL based pruning. The preprocessing is done on each variable indepen-
dently, and could result in suboptimal rules (this is the case for the target class=2,
TIED). The set of the best rules found by the algorithm is shown on Figures 3–4,
and involve the same set of variables {1,2,3,10}⇥ {11,12,13}⇥ {18,19,20}
found by a single tree (with surrogate splits).

Implementation:

All the methods described above are implemented in C++ within Intel Statistical Lear-
ning framework - IDEAL. It is not publicly available.

Results:

• Minimal sets of features with optimal predictivity: 36 sets of vars�! {1,2,3,10}⇥
{11,12,13}⇥{18,19,20}

• Model: Single 4-node classification tree built using any triple from the above
cartesian product (see Figure 1) results in the equivalent model with CV BER
⇠ 0.02

Keywords: feature selection, tree classifier, rule induction, supervised Apriori
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TIED

Figure 1: Left graph: The results of ACE applied to the TIED dataset. The algorithm
stopped after 3 iterations (no new relevant features found), and the resulting
set of selected relevant (strongly and weakly) features sorted by relative im-
portance is shown in the last column. Right Graph: Classification tree built
on the set of the relevant features identified by ACE. For each split surrogate
scores are calculated for each variable (see the Figure 2)
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Figure 2: Surrogate scores tables shown for each of three splits for the tree model
built to classify TIED target. Note that for the first split on Column10
there are three surrogates with equivalent splits (Column1/2/3). Similarly
for the second and the third splits equivalent splits are achieved by using
Column11/12/13 and Column18/19/20 correspondingly.
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Figure 3: Rules for the target class=0 (upper table). Perfect discrimination is achieved
with one of the variables 1/2/3/10. Rules for the target class=3 (lower table).
Perfect discrimination is achieved with one of the variables 11/12/13.
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Figure 4: Rules for the target class=1 (upper table, a subset is shown). The best
36 equivalent rules found by the algorithm involve triples from the set
{1,2,3,10}⇥{11,12,13}⇥{18,19,20}. Rules for the target class=2 (lower
table). The best 9 equivalent rules found by the algorithm involve tuples from
the set {11,12,13}⇥{18,19,20}.
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