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Foreword

Data mining (and knowledge discovery) is the art and science of finding useful and valid patterns
in data.

Humans have a built-in ability to detect patterns. During our long evolution, those who were
better able to figure out when an animal is dangerous, what food is edible, and so on were more
successful in surviving and passing on their genes.

Unfortunately, humans have not evolved a good ability to separate valid patterns from spuri-
ous observations when dealing with large data. We tend to confuse coincidences with causality,
and pay more attention to some coincidences then others. As a result, we are subject to super-
stitions (different in every culture), astrology, belief in miracle cures, climate change denials,
and similar ill effects. Even I, a card-carrying data miner, succumb to consoling superstitions
and jinxes, especially when the Red Sox play baseball in the World Series.

In the grand scale of things, the mission of knowledge discovery is to help scientists, biolo-
gists, doctors, politicians, intelligence agencies, climate change debaters, and all people to make
correct inferences from data. Good data mining and knowledge discovery can have profound
implications for medicine, politics, security, climate policy, and many other fields.

First, data miners need good examples of real world data on which to learn how to extract a
few valid patterns from many false positives and avoid overfitting the data.

In the 1990s there were test datasets available in the UCI Machine Learning Repository, but
most of them were quite small, toy examples. They did not have the complexity, large numbers
of records, hundreds of attributes, noisy data, and “false predictors” (fields that “predict” target
variables in the data, but after the fact, and cannot be used for real predictions).

There was a real need to have a real-world test set which was publicly available.
In 1997 as the head of KDD (Knowledge Discovery in Data) steering committee, I helped

to start the first such test — the first KDD Cup, ably organized by Ismail Parsa. Parsa was able
to get data from a charity on past responders to fund-raising (with appropriate anonymization
and removal of target variable). The goal was to predict the most likely responders for a new
campaign. The task was quite difficult since the response rate was only 1.4%, and there were
over 300 variables, most of them quite useless.

The first KDD Cup had 45 participants of which only 16 turned in their predictions, and
only a few of them had results significantly better than random. One of the winners was a large
company that used a very complex method, while the second winner used a simple Naive Bayes
algorithm that carefully avoided overfitting.

One submitted prediction from a well-known company was actually worse than random —
probably as a result of poor data processing.

The following KDD Cups have covered such diverse topics as network intrusion detection,
online retailer clickstream analysis, molecular biology, biomed documents, particle physics
and protein homology prediction, search query categorization, medical image recognition, and
Netflix movie recommendations.

The KDD Cup has achieved the status of a kind of World Championship of data mining and
spawned many other data mining competitions, most notably a recent $1 million Netflix prize.
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Having all the past data and results available (see KDD Cup Center www.sigkdd.org/
kddcup/index.php) helped to raise the standards and significantly improved the average
quality of predictions, compared to the first KDD Cup.

The 2009 KDD Cup centered around modeling the behaviour of telecom customers, includ-
ing attrition, cross-sell, and up-sell. The data and prizes were provided by Orange, a French
telecom company. One novel aspect was fast scoring — coming up with the results in 5 days of
less.

The KDD Cup and associated KDD-09 workshop were ably organized by Isabelle Guyon,
Vincent Lemaire, Marc Boullé, Gideon Dror, and David Vogel. Large prizes and effective
advertising helped attract over 450 participants from 46 countries — the largest KDD Cup par-
ticipation so far.

This book presents the papers from KDD Cup 2009. One of the principal technical conclu-
sions from this KDD Cup (as well as from the Netflix prize) was that ensemble methods are
very effective.

The data and the platform of the challenge remain available for research and educational
purposes at http://www.kddcup-orange.com/.

The results and presentations in this book will undoubtedly help researchers and industry
data miners to come up with better solutions under real constraints.

Gregory Piatetsky-Shapiro
www.kdnuggets.com/gps.html
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Preface

The annual ACM SIGKDD conference on Knowledge Discovery and Data Mining (KDD) is
dedicated to facilitating interactions between data mining researchers and practitioners from
academia, industry, and government. The 15th edition took place in Paris, France, and hosted
the KDD Cup competition, which attracted a very large number of participants, three times
more than any KDD Cup in the past. The organizing team of the KDD Cup 2009 is pleased
to welcome you to this edition of the proceeding of the workshop, where the challenge results
were presented and analyzed.

We organized the KDD cup 2009 around a marketing problem with the goal of identifying
data mining techniques capable of rapidly building predictive models and scoring new entries
on a large database. Customer Relationship Management (CRM) is a key element of modern
marketing strategies. The KDD Cup 2009 offered the opportunity to work on large marketing
databases from the French Telecom company Orange to predict the propensity of customers to
switch provider (churn), buy new products or services (appetency), or buy upgrades or add-
ons proposed to them to make the sale more profitable (up-selling). The most practical way to
build knowledge on customers in a CRM system is to produce scores. A score (the output of a
model) is an evaluation for all target variables to explain (i.e., churn, appetency or up-selling).
Tools producing scores provide quantifiable information on a given population. The score is
computed using customer records represented by a number of variables or features. Scores are
then used by the information system (IS), for example, to personalize the customer relationship.
Building tens to hundreds CRM scores can be a key element in a marketing application. In this
context, the automation of the data preparation and modeling steps of the data mining process is
a challenging issue. The three CRM tasks of the KDD Cup 2009 related to the data donated by
Orange encompass several scientifically or technically challenges: large datasets with 100,000
samples and 15,000 variables, noisy data, mixed types with numerical and categorical variables
containing up to thousands of values, many missing values, unbalanced classes. In practice,
scoring methods have to fulfill several objectives, such as full automation, effectiveness, time
efficiency both for training and deployment, understandability of the models. Full automation is
necessary in order to meet the increasing demand for building numerous scores. Effectiveness
involves the accuracy of the scores, and has a direct impact on the marketing payoff: the better
customers are targeted, the higher the response rate. The standard scientific accuracy indicator
for scores is the area under the ROC curve (AUC), evaluated on test data. In practice, the mar-
keting quality indicator is the payoff of a campaign which includes modeling costs, campaign
costs (by mail, email, phone) and revenue related to the response. Training time efficiency al-
lows to frequently update the scores, and involves modeling with train datasets up to hundred
of thousands of samples and thousands of variables. Deployment time efficiency permits the
scoring of tens of millions of customers in order to select the most responsive customers. Fi-
nally, the understandability of the models provides useful information to marketing teams. In a
challenge, the tasks must be approachable and we chose to focus on effectiveness given training
time constraints. The performance indicator is the AUC on test data. The participants had one
month to get familiar with the data tables without the target values, and then fives days to submit
their test results once the training target values were made available. The participant exploited
a wide variety of preprocessing, feature selection, classification, model selection and ensemble
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methods, providing a large and significant evaluation of the techniques effective for problems
with large numbers of samples and variables, mixed types of variables, lots of missing values
and unbalanced classes.

This volume gathers the material of the challenge on Fast Scoring on a Large Marketing
Database organized for the conference on Knowledge Discovery and Data Mining, June 28,
2009 in Paris. The book contains a collection of papers first published in JMLR W&CP, in-
cluding a paper summarizing the results of the challenge and contributions of the top ranking
entrants. The book is complemented by a web site from which the datasets can be down-
loaded and post-challenge submissions can be made to benchmark new algorithms, see http:
//www.kddcup-orange.com/
December 2009

The KDD challenge team :

Gideon Dror
Academic College of Tel-Aviv-Yaffo, Tel Aviv, Israel
gideon@mta.ac.il

Marc Boullé
Orange Labs, Lannion, France
marc.boulle@orange-ftgroup.com

Isabelle Guyon
Clopinet, California, USA
isabelle@clopinet.com

Vincent Lemaire
Orange Labs, Lannion, France
vincent.lemaire@orange-ftgroup.com

David Vogel
Data Mining Solutions, Orlando, Florida, USA
dvogel@dataminingsolutions.net
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Abstract
We organized the KDD cup 2009 around a marketing problem with the goal of identifying
data mining techniques capable of rapidly building predictive models and scoring new entries
on a large database. Customer Relationship Management (CRM) is a key element of modern
marketing strategies. The KDD Cup 2009 offered the opportunity to work on large marketing
databases from the French Telecom company Orange to predict the propensity of customers
to switch provider (churn), buy new products or services (appetency), or buy upgrades or add-
ons proposed to them to make the sale more profitable (up-selling). The challenge started on
March 10, 2009 and ended on May 11, 2009. This challenge attracted over 450 participants
from 46 countries. We attribute the popularity of the challenge to several factors: (1) A generic
problem relevant to the Industry (a classification problem), but presenting a number of scientific
and technical challenges of practical interest including: a large number of training examples
(50,000) with a large number of missing values (about 60%) and a large number of features
(15,000), unbalanced class proportions (fewer than 10% of the examples of the positive class),
noisy data, presence of categorical variables with many different values. (2) Prizes (Orange
offered 10,000 Euros in prizes). (3) A well designed protocol and web site (we benefitted from
past experience). (4) An effective advertising campaign using mailings and a teleconference to
answer potential participants questions. The results of the challenge were discussed at the KDD
conference (June 28, 2009). The principal conclusions are that ensemble methods are very
effective and that ensemble of decision trees offer off-the-shelf solutions to problems with large
numbers of samples and attributes, mixed types of variables, and lots of missing values. The
data and the platform of the challenge remain available for research and educational purposes
at http://www.kddcup-orange.com/.

Keywords: challenge, classification, customer management, fast scoring

c�2009 Isabelle Guyon, Vincent Lemaire, Marc Boullé, Gideon Dror, David Vogel
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1. Introduction
Customer Relationship Management (CRM) is a key element of modern marketing strategies.
The KDD Cup 2009 offered the opportunity to work on large marketing databases from the
French Telecom company Orange to predict the propensity of customers to switch provider
(churn), buy new products or services (appetency), or buy upgrades or add-ons proposed to
them to make the sale more profitable (up-selling).

The most practical way to build knowledge on customers in a CRM system is to produce
scores. A score (the output of a model) is an evaluation for all target variables to explain
(i.e., churn, appetency or up-selling). Tools producing scores provide quantifiable information
on a given population. The score is computed using customer records represented by a number
of variables or features. Scores are then used by the information system (IS), for example, to
personalize the customer relationship. The rapid and robust detection of the most predictive
variables can be a key factor in a marketing application. An industrial customer analysis plat-
form developed at Orange Labs, capable of building predictive models for datasets having a
very large number of input variables (thousands) and instances (hundreds of thousands), is cur-
rently in use by Orange marketing. A key requirement is the complete automation of the whole
process. The system extracts a large number of features from a relational database, selects a
subset of informative variables and instances, and efficiently builds in a few hours an accurate
classifier. When the models are deployed, the platform exploits sophisticated indexing struc-
tures and parallelization in order to compute the scores of millions of customers, using the best
representation.

The challenge was to beat the in-house system developed by Orange Labs. It was an oppor-
tunity for participants to prove that they could handle a very large database, including hetero-
geneous noisy data (numerical and categorical variables), and unbalanced class distributions.
Time efficiency is often a crucial point. Therefore part of the competition was time-constrained
to test the ability of the participants to deliver solutions quickly. The fast track of the challenge
lasted five days only. To encourage participation, the slow track of the challenge allowed par-
ticipants to continue working on the problem for an additional month. A smaller database was
also provided to allow participants with limited computer resources to enter the challenge.

2. Background and motivations
This challenge uses important marketing problems to benchmark classification methods in a
setting, which is typical of large-scale industrial applications. A large database was made avail-
able by the French Telecom company, Orange with tens of thousands of examples and variables.
This dataset is unusual in that it has a large number of variables making the problem particularly
challenging to many state-of-the-art machine learning algorithms. The challenge participants
were provided with masked customer records and their goal was to predict whether a customer
will switch provider (churn), buy the main service (appetency) and/or buy additional extras
(up-selling), hence solving three binary classification problems. Churn is the propensity of cus-
tomers to switch between service providers, appetency is the propensity of customers to buy a
service, and up-selling is the success in selling additional good or services to make a sale more
profitable. Although the technical difficulty of scaling up existing algorithms is the main em-
phasis of the challenge, the dataset proposed offers a variety of other difficulties: heterogeneous
data (numerical and categorical variables), noisy data, unbalanced distributions of predictive
variables, sparse target values (only 1 to 7 percent of the examples examples belong to the
positive class) and many missing values.
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3. Evaluation
There is value in a CRM system to evaluate the propensity of customers to buy. Therefore,
tools producing scores are more usable that tools producing binary classification results. The
participants were asked to provide a score (a discriminant value or a posterior probability P(Y =
1|X)), and they were judged by the area under the ROC curve (AUC). The AUC is the area under
the curve plotting sensitivity vs. (1− specificity) when the threshold θ is varied (or equivalently
the area under the curve plotting sensitivity vs. specificity). We call “sensitivity” the error rate
of the positive class and “specificity” the error rate of the negative class. The AUC is a standard
metric in classification. There are several ways of estimating error bars for the AUC. We used
a simple heuristic, which gives us approximate error bars, and is fast and easy to implement:
we find on the AUC curve the point corresponding to the largest balanced accuracy BAC = 0.5
(sensitivity + specificity). We then estimate the standard deviation of the BAC as:

σ =
1
2

�
p+(1− p+)

m+
+

p−(1− p−)
m−

, (1)

where m+ is the number of examples of the positive class, m− is the number of examples of
the negative class, and p+ and p− are the probabilities of error on examples of the positive
and negative class, approximated by their empirical estimates, the sensitivity and the specificity
(Guyon et al., 2006).

The fraction of positive/negative examples posed a challenge to the participants, yet it was
sufficient to ensure robust prediction performances (as verified in the beta tests). The database
consisted of 100,000 instances, split randomly into equally sized train and test sets:

• Churn problem: 7.3% positive instances (3672/50000 on train).

• Appetency problem: 1.8% positive instances (890/50000 on train).

• Up-selling problem: 7.4% positive instances (3682/50000 on train).

On-line feed-back on AUC performance was provided to the participants who made cor-
rectly formatted submissions, using only 10% of the test set. There was no limitation on the
number of submissions, but only the last submission on the test set (for each task) was taken
into account for the final ranking.

The score used for the final ranking was the average of the scores on the three tasks (churn,
appetency, and up-selling).

4. Data
Orange (the French Telecom company) made available a large dataset of customer data, each
consisting of:

• Training : 50,000 instances including 15,000 inputs variables, and the target value.

• Test : 50,000 instances including 15,000 inputs variables.

There were three binary target variables (corresponding to churn, appetency, and up-selling).
The distribution within the training and test examples was the same (no violation of the i.i.d.
assumption - independently and identically distributed). To encourage participation, an easier
task was also built from a reshuffled version of the datasets with only 230 variables. Hence, two
versions were made available (“small” with 230 variables, and “large” with 15,000 variables).
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The participants could enter results on either or both versions, which corresponded to the same
data entries, the 230 variables of the small version being just a subset of the 15,000 variables
of the large version. Both training and test data were available from the start of the challenge,
without the true target labels. For practice purposes, “toy” training labels were available to-
gether with the training data from the onset of the challenge in the fast track. The results on
toy targets did not count for the final evaluation. The real training labels of the tasks “churn”,
“appetency”, and “up-selling”, were later made available for download, half-way through the
challenge.

The database of the large challenge was provided in several chunks to be downloaded more
easily and we provided several data mirrors to avoid data download congestion. The data were
made publicly available through the website of the challenge http://www.kddcup-orange.
com/, with no restriction of confidentiality. They are still available to download for bench-
mark purpose. To protect the privacy of the customers whose records were used, the data were
anonymized by replacing actual text or labels by meaningless codes and not revealing the mean-
ing of the variables.

EXTRACTION AND PREPARATION OF THE CHALLENGE DATA:

The Orange in-house customer analysis platform is devoted to industrializing the data mining
process for marketing purpose. Its fully automated data processing machinery includes: data
preparation, model building, and model deployment. The data preparation module was isolated
and used to format data for the purpose of the challenge and facilitate the task of the participants.
Orange customer data are initially available in a relational datamart under a star schema. The
platform uses a feature construction language, dedicated to the marketing domain, to build tens
of thousands of features to create a rich data representation space.

For the challenge, a datamart of about one million of customers was used, with about ten
tables and hundreds of fields. The first step was to resample the dataset, to obtain 100,000
instances with less unbalanced target distributions. For practical reasons (the challenge partici-
pants had to download the data), the same data sample was used for the three marketing tasks. In
a second step, the feature construction language was used to generate 20,000 features and obtain
a tabular representation. After discarding constant features and removing customer identifiers,
we narrowed down the feature set to 15,000 variables (including 260 categorical variables). In a
third step, for privacy reasons, data was anonymized, discarding variables names, randomizing
the order of the variables, multiplying each continuous variable by a random factor and recod-
ing categorical variable with randomly generated category names. Finally, the data sample was
split randomly into equally sized train and test sets. A random subset of 10% of the test set was
designated to provide immediate performance feed-back.

5. Beta tests
The website of the challenge http://www.kddcup-orange.com/ was thoroughly tested
by the KDD cup chairs and volunteers. The datasets were downloaded and checked. Baseline
methods were tried to verify the feasibility of the task. A Matlab R� version of the data was
made available and sample code were provided to format the results. A sample submission of
random results was given as example and submitted to the website. The results of the Naïve
Bayes method were also uploaded to the website to provide baseline results.
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Figure 1: Toy problem test results.

TOY PROBLEM:

The Toy problem on the LARGE dataset consisted of one single predictive continuous vari-
able (V5963) uniformly distributed on the interval [0,2.0]. The target value was obtained by
thresholding V5963 at 1.6 and adding 20% noise. Hence for 80% of the instances, lying in in-
terval [0,1.6], the fraction of positive examples is 20%; for the remaining 20% lying in interval
]1.6,2.0], the fraction of positive examples is 80%. The expected value of the AUC (called “true
AUC”) can easily be computed1. Its value is approximately 0.7206. Because of the variance
in the sampling process, the AUC effectively computed using the optimal decision rule (called
“optimal AUC”) is 0.7196 for the training set and a 0.7230 for the test set. Interestingly, as
shown in Figure 1, the optimal solution was outperformed by many participants, up to 0.7263.
This illustrates the problem of multiple testing and shows how the best test performance over-
estimates both the expected value of the AUC and the performance of the optimal decision rule,
increasingly with the number of challenge submissions.

BASIC NAÏVE BAYES CLASSIFIER:

The basic Naïve Bayes classifier (see e.g., Mitchell, 1997) makes simple independence assump-
tions between features and votes among features with a voting score capturing the correlation
of the feature to the target. No feature selection is performed and there are no hyper-parameters
to adjust.

For the LARGE dataset, the overall score of the basic Naïve Bayes classifier is 0.6711, with
the following results on the test set:

• Churn problem : AUC = 0.6468;

1. If we call T the total number of examples, the (expected value of) the total number of examples of the positive
class P is the sum of the number of positive examples in the first and the second intervals, i.e., P = (0.2× 0.8+
0.8×0.2) T = 0.32 T . Similarly, the total number of negative examples is N = (0.8×0.8+0.2×0.2) T = 0.68 T .
If we use the optimal decision rule (a threshold on V5963 at 1.6) the number of true positive examples is the sum
of the number of true positive examples in the two intervals, i.e., T P = 0+(0.2×0.8) T = 0.16 T . Similarly, the
number of true negative examples is T N = (0.8×0.8) T = 0.64 T . Hence, the true positive rate is T PR = T P/P =
0.16/0.32 = 0.5 and the true negative rate is T NR = T N/N = 0.64/0.68 � 0.9412. The balanced accuracy (or the
AUC because BAC = AUC in this case) is therefore: BAC = 0.5 (T PR+T NR) = 0.5 (0.5+0.9412) = 0.7206.

5
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• Appetency problem : AUC = 0.6453;

• Up-selling problem : AUC=0.7211;

As per the rules of the challenge, the participants had to outperform the basic Naïve Bayes
classifier to qualify for prizes.

ORANGE IN-HOUSE CLASSIFIER:

The Orange in-house classifier is an extension of the Naïve Bayes classifier, called “Selective
Naïve Bayes classifier” (Boullé, 2007). It includes an optimized preprocessing, variable selec-
tion, and model averaging. It significantly outperforms the basic Naïve Bayes classifier perfor-
mance, which was provided to the participants as baseline, and it is computationally efficient:
The results were obtained after 3 hours using a standard laptop, considering the three tasks as
three different problems. The models were obtained by applying the training process Khiops R�

only once since the system has no hyper-parameter to adjust. The results of the in-house system
were not revealed until the end of the challenge. An implementation of the method is available
as shareware from http://www.khiops.com; some participants downloaded it and used
it.

The requirements placed on the in-house system are to obtain a high classification accuracy,
under the following constraints:

• Fully automatic: absolutely no hyper-parameter setting, since hundred of models need to
be trained each month.

• Fast to train: the three challenge marketing problems were trained in less than 3 hours on
a mono-processor laptop with 2 Go RAM.

• Efficient after deployment: models need to process rapidly up to ten million instances.

• Interpretable: selected predictive variables must provide insight.

However, for the challenge, the participants were not placed under all these constraints
for practical reasons: it would have been both too constraining for the participants and too
difficult to enforce for the organizers. The challenge focused on maximizing accuracy under
time constraints.

For the LARGE dataset, the overall score of the Orange in-house classifier is 0.8311, with
the following results on the test dataset:

• Churn problem : AUC = 0.7435;

• Appetency problem : AUC = 0.8522;

• Up-selling problem : AUC=0.8975;

The challenge was to beat these results, but the minimum requirement to win prizes was
only to outperform the basic Naïve Bayes classifier.

6. Challenge schedule and protocol
The key elements of our design were:

• To make available the training and test data three weeks before the start of the “fast chal-
lenge” to allow participants to download the large volume of data, read it and preprocess
it without the training labels.

6
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• To make available “toy” training labels during that period so participants could finalize
their methodology and practice using the on-line submission system.

• To put participants under time pressure once the training labels were released (produce
results in five days) to test their ability to produce results in a timely manner.

• To continue the challenge beyond this first milestone for another month (slow challenge)
to give the opportunity to participants with less computational resources to enter the chal-
lenge.

• To provide a down-sized version of the dataset for the slow challenge providing an op-
portunity for participants with yet less computational resources to enter the challenge.

• To provide large prizes to encourage participation (10,000 Euros donated by Orange),
without any strings attached (no legal constraint or commitment to release code or meth-
ods to download data or participate).

The competition rules are summarized below are inspired from previous challenges we or-
ganized (Clopinet):

1. Conditions of participation: Anybody who complied with the rules of the challenge
(KDD cup 2009) was welcome to participate. Only the organizers listed on the Credits
page were excluded from participating. The participants were not required to attend the
KDD cup 2009 workshop and the workshop was open to anyone.

2. Anonymity: All entrants had to identify themselves by registering on the KDD cup 2009
website. However, they could elect to remain anonymous during the development period.
To be eligible for prizes the had to publicly reveal their identity. Teams had to declare
a team leader and register their members. No individual could be part of two or more
teams.

3. Data: The datasets were available for download from the Dataset page to registered
participants. The data were available in several archives to facilitate downloading.

4. Challenge duration and tracks: The challenge started March 10, 2009 and ended May
11, 2009. There were two challenge tracks:

• FAST (large) challenge: Results submitted on the LARGE dataset within five days
of the release of the real training labels counted towards the fast challenge.

• SLOW challenge: Results on the small dataset and results on the large dataset not
qualifying for the fast challenge, submitted before the KDD cup 2009 deadline May
11, 2009, counted toward the SLOW challenge.

If more than one submission was made in either track and with either dataset, the last
submission before the track deadline was taken into account to determine the ranking of
participants and attribute the prizes.

5. On-line feed-back: During the challenge, the training set performances were available
on the Result page as well as partial information on test set performances: The test set
performances on the “toy problem” and performances on a fixed 10% subset of the test
examples for the real tasks (churn, appetency and up-selling). After the challenge was
over, the performances on the whole test set were calculated and substituted in the result
tables.
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6. Submission method: The method of submission was via the form on the Submission
page, following a designated format. Results on the “toy problem” did not count as part
of the competition. Multiple submissions were allowed, but limited to 5 submissions
per day to avoid congestion. For the final entry in the slow track, the participants could
submit results on either (or both) small and large datasets in the same archive.

7. Evaluation and ranking: For each entrant, only the last valid entry, as defined in the
Instructions counted towards determining the winner in each track (fast and slow). We
limited each participating person to a single final entry in each track. Valid entries had to
include results on all three real tasks. Prizes could be attributed only to entries performing
better than the baseline method (Naïve Bayes). The results of the baseline method were
provided to the participants.

8. Reproducibility: Participation was not conditioned on delivering code nor publishing
methods. However, we asked the participants to voluntarily fill out a fact sheet about
their methods and contribute papers to the proceedings.

The full rules are available from the website of the challenge http://www.kddcup-
orange.com/. The rules were designed to attract a large number of participants and were
successful in that respect: Many participants did not participate in the fast challenge on the
large dataset, but entered in the slow track, either on the small or the large dataset (or both).
There was one minor design mistake: the small dataset was derived from the same data as the
large one and, despite our efforts to disguise the identity of the features, it was possible for some
entrants to match the features and entries in the small and large dataset. This provided a small
advantage, in the slow track only, to the teams who did that data “unscrambling”: they could
get feed-back on 20% of the data rather than 10%.

The schedule of the challenge was as follows (Dates in 2009):

• March 10 - Start of the FAST large challenge. Data tables without target values were
made available for the large dataset. Toy training target values were made available for
practice purpose. Objective: participants can download data, ask questions, finalize their
methodology, try the submission process.

• April 6 - Training target values were made available for the large dataset for the real
problems (churn, appetency, and upselling). Feed-back: results on 10% of the test set
available on-line when submissions are made.

• April 10 - Deadline for the FAST large challenge. Submissions had to be received before
midnight, time zone of the challenge web server.

• April 11 - Data tables and training target values were made available for the small dataset.
The challenge continued for the large dataset in the slow track.

• May 11 - Deadline for the SLOW challenge (small and large datasets). Submissions had
to be be received before midnight, time zone of the challenge web server.

7. Results
The 2009 KDD Cup attracted 1299 teams from 46 different countries. From those teams, 7865
valid entries were submitted by 453 different teams. The participation was more than three
times greater than any KDD Cup in the past. Figure 2 represents the KDD Cup participation by
year. A large participation was a key element to validate the results and for Orange to have a
ranking of its in-house system; the challenge was very successful in that respect.
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Figure 2: KDD Cup Participation by year (number of teams).

Table 1: Winning entries.

Prize Team Country Fast track Slow track
Rank Score Rank Score

1 IBM Research USA 1 0.8493 1 0.8521
2 ID Analytics USA 2 0.8448 3 0.8479
3 David Slate & Peter Frey USA 3 0.8443 8 0.8443
1 University of Melbourne Australia 27 0.8250 2 0.8484
2 Financial Engineering Group, Inc. Japan 4 0.8443 4 0.8477
3 National Taiwan University Taiwan 20 0.8332 5 0.8461

7.1 Winners

The overall winner is the IBM Research team (IBM Research, 2009) who ranked first in both
tracks. Six prizes were donated by Orange to top ranking participants in the fast and the slow
tracks (see Table 1). As per the rules of the challenge, the same team could not earn two prizes.
If the ranking of a team entitled it to two prizes, it received the best of the two and the next best
ranking team received the other prize.

All the winning teams scored best on the large dataset (and most participants obtained bet-
ter results on the large dataset then on the small dataset). IBM Research, ID Analytics, and
National Taiwan University (NTU) “unscrambled” the small dataset. This may have provided
an advantage only to NTU since “unscrambling” affected only the slow track and the two other
teams won prizes in the fast track. We briefly comment on the results of the winners.

FAST TRACK:

• IBM Research: The winning entry (IBM Research, 2009) consisted of an ensemble of
a wide variety of classifiers, following (Caruana and Niculescu-Mizil, 2004; Caruana
et al., 2006). Effort was put into coding (most frequent values coded with binary features,
missing values replaced by mean, extra features constructed, etc.)

• ID Analytics, Inc.: One of the only teams to use a wrapper feature selection strategy,
following a filter (Xie et al., 2009). The classifier was built from the commercial TreeNet
software by Salford Systems: an additive boosting decision tree technology. Bagging was
also used to gain additional robustness.

9
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• David Slate & Peter Frey (Old dogs with new tricks): After a simple preprocessing
(consisting in grouping of modalities or discretizing) and filter feature selection, this team
used ensembles of decision trees, similar to Random Forests (Breiman, 2001).

SLOW TRACK:

• University of Melbourne: This team used for feature selection a cross-validation method
targeting the AUC and, for classification, boosting with classification trees and shrinkage,
using a Bernoulli loss (Miller et al., 2009).

• Financial Engineering Group, Inc.: Few details were released by the team about their
methods. They used grouping of modalities and a filter feature selection method using
the AIC criterion (Akaike, 1973). Classification was based on gradient tree-classifier
boosting (Friedman, 2000).

• National Taiwan University: The team averaged the performances of three classifiers
(Lo et al., 2009): (1) The solution of the joint multiclass problem with an L1-regularized
maximum entropy model. (2) AdaBoost with tree-based weak learners (Freund and
Schapire, 1996). (3) Selective Naïve Bayes (Boullé, 2007), which is the in-house classi-
fier of Orange (see Section 5).

7.2 Performance statistics

We now turn to the statistical analysis of the results of the participants. The main statistics are
summarized in Table 2.

In the figures of this section, we use the following color code:

1. Black: Submissions received.

2. Blue: Overall best submissions received. Referred to as TestAUC∗∗.

3. Red: Baseline result, obtained with the basic Naïve Bayes classifier or NB, provided by
the organizers (see Section 5). The organizers consider that this result is easy to improve.
They imposed that the participants would outperform this result to win prizes to avoid
that a random submission would win a prize.

4. Green: Orange system result, obtained by the in-house Orange system with the Selec-
tive Naïve Bayes classifier or SNB (see Section 5).

PROGRESS IN PERFORMANCE

Figure 3.a presents the results of the first day. A good result, better than the baseline result, is
obtained after one hour and the in-house system is slightly outperformed after seven hours.
The improvement during the first day of the competition, after the first 7 hours, is small: from
0.8347 to 0.8385.

Figure 3.b presents the results over the first 5 days (FAST challenge). The performance
progresses from 0.8385 to 0.8493. The rush of submissions before the deadline is clearly ob-
servable. Considering only the submission with Test AUC > 0.5 in the first 5 days, 30% of the
submissions had worse results than the baseline (basic Naïve Bayes) and 91% had worse results
than the in-house system (AUC=0.8311). Only and 9% of the submissions had better results
than the in-house system.
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Table 2: Best results and baselines. The first four lines show the best score TAUC∗ (aver-
aged over the three tasks), over increasing periods of time [0 : t]. For comparison
we give the results of the basic Naïve Bayes classifier (NB) and the in-house Orange
system (SNB). The best overall performance is TAUC∗∗ = TAUC∗(36d). The rela-
tive performance difference δ ∗ = (TAUC∗∗ − TAUC)/TAUC∗∗ is given in parenthe-
sis (in percentage). The two last lines represent the relative performance difference
δ = (TAUC∗(t)−TAUC)/TAUC∗(t) for the two reference results.

TAUC (δ ∗%) TAUC∗ 12h TAUC∗ 24h TAUC∗ 5d TAUC∗∗ TAUC NB TAUC SNB
Churn 0.7467 (2.40) 0.7467 (2.40) 0.7611 (0.52) 0.7651 (0) 0.6468 (15.46) 0.7435 (2.82)
Appetency 0.8661 (2.17) 0.8714 (1.57) 0.8830 (0.26) 0.8853 (0) 0.6453 (27.11) 0.8522 (3.74)
Up-selling 0.9011 (0.89) 0.9011 (0.89) 0.9057 (0.38) 0.9092 (0) 0.7211 (20.69) 0.8975 (1.29)
Average 0.8380 (1.65) 0.8385 (1.60) 0.8493 (0.33) 0.8521 (0) 0.6711 (21.24) 0.8311 (2.46)
δ NB % 19.92 19.96 20.98 21.24 - -
δ SNB % 0.82 0.88 2.14 2.46 - -

(a) Test AUC - hour ∈ [0:24] (b) Test AUC - day ∈ [1:5]

(c) Test AUC - day ∈ [0:36]

Figure 3: Participant results over time. “Test AUC” is the average AUC on the test set for the
three problems. Each point represents an entry. The horizontal bars represent: basic
Naïve Bayes, selective Naïve Bayes, and best participant entry.

Figures 3.a and 3.b show that good results were obtained already the first day and only
small improvements were made later. These results, and an examination of the fact sheets of
the challenge filled out by the participants, reveal that:
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• There are available methods, which can process fast large databases using today’s avail-
able hardware in both academia and industry.

• Several teams were capable of adapting their methods to meet the requirements of the
challenge and reach quickly good performances, yet the bulk of the participants did not.

• The protocol of the challenge was well designed: the month given to download the data
and play with the submission protocol (using the toy problem) allowed us to monitor
progress in performance, not the time required to get ready for the challenge.

This last point was important for Orange to assess the time taken for generating state-of-the-
art models, since speed of model generation is a key requirement in such applications. The fact
that performances do not significantly improve after a few hours is further confirmed in Figure
3.c: very small improvements (from 0.8493 to 0.8521) were made after the 5th day (SLOW
challenge)2.

Rapidity of model building

Figure 4.d gives a comparison between the submissions received and the best overall result over
increasing periods of time: 12 hours, one day, 5 days, and 36 days. We compute the relative
performance difference

δ ∗ = (TestAUC∗∗ −TestAUC)/TestAUC∗∗ , (2)

where TestAUC∗∗ is the best overall result. The values of δ ∗ for the best performing classifier
in each interval and for the reference results are found in Table 2. The following observations
can be made:

• there is a wide spread of results;

• the median result improves significantly over time, showing that it is worth continuing
the challenge to give to participants an opportunity of learning how to solve the problem
(the median beats the baseline on all tasks after 5 days but keeps improving);

• but the best results do not improve a lot after the first day;

• and the distribution after 5 days is not very different from that after 36 days.

Table 2 reveals that, at the end of the challenge, for the average score, the relative perfor-
mance difference between the baseline model (basic Naïve Bayes) and the best model is over
20%, but only 2.46% for SNB. For the best ranking classifier, only 0.33% was gained between
the fifth day (FAST challenge) and the last day of the challenge (SLOW challenge). After just
one day, the best ranking classifier was only 1.60% away from the best result. The in-house
system (selective Naïve Bayes) has a result less than 1% worse than the best model after one
day (δ = (1−0.8311/0.8385) = 0.88%).

We conclude that the participants did very well in building models fast. Building com-
petitive models is one day is definitely doable and the Orange in-house system is competitive,
although it was rapidly beaten by the participants.

2. This improvement may be partly attributed to “unscrambling”; unscrambling was not possible during the fast track
of the challenge (first 5 days).
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(a) Churn (b) Appetency

(c) Up-selling (d) Average

Figure 4: Performance improvement over time. Delta∗ represents the relative difference in
Test AUC compared to the overall best result TestAUC∗∗: Delta∗ = (TestAUC∗∗ −
TestAUC)/TestAUC∗∗. On each box, the central mark is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend to the most extreme data
points not considered to be outliers; the outliers are plotted individually as crosses.

INDIVIDUAL TASK DIFFICULTY

To assess the relative difficulty of the three tasks, we plotted the relative performance difference
δ ∗ (Equation 2) for increasing periods of time, see Figure4.[a-c].

The churn task seems to be the most difficult one, if we consider that the performance at
day one, 0.7467, only increases to 0.7651 by the end of the challenge (see Table 2 for
other intermediate results). Figure 4.a shows that the median performance after one day
is significantly worse than the baseline (Naïve Bayes), whereas for the other tasks the
median was already beating the baseline after one day.

The appetency task is of intermediate difficulty. Its day one performance of 0.8714 increases
to 0.8853 by the end of the challenge. Figure 4.b shows that, from day one, the median
performance beats the baseline method (which performs relatively poorly on this task).

The up-selling task is the easiest one: the day one performance 0.9011, already very high,
improves to 0.9092 (less that 1% relative difference). Figure 4.c shows that, by the end
of the challenge, the median performance gets close to the best performance.
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CORRELATION BETWEEN TestAUC AND ValidAUC:

The correlation between the results on the test set (100% of the test set), TestAUC, and the
results on the validation set (10% of the test set used to give a feed back to the competitors),
ValidAUC, is really good. This correlation (when keeping only AUC test results > 0.5 consider-
ing that test AUC < 0.5 are error submissions) is of 0.9960 ± 0.0005 (95% confidence interval)
for the first 5 days and of is of 0.9959 ± 0.0003 for the 36 days. These values indicate that
(i) the validation set was a good indicator for the online feedback; (ii) the competitors have not
overfitted the validation set. The analysis of the correlation indicator task by task gives the same
information, on the entire challenge (36 days) the correlation coefficient is for the Churn task:
0.9860 ±0.001; for the Appetency task: 0.9875 ±0.0008 and for the Up-selling task: 0.9974
±0.0002.

Several participants studied the performance estimation variance by splitting the training
data multiple times into 90% for training and 10% for validation. The variance in the results that
they obtained led them to use cross-validation to perform model selection rather than relying
on the 10% feed-back. Cross-validation was used by all the top ranking participants. This may
explain why the participants did not overfit the validation set.

We also asked the participants to return training set prediction results, hoping that we could
do an analysis of overfitting by comparing training set and test set performances. However,
because the training set results did not affect the ranking score, some participants did not re-
turn real prediction performances using their classifier, but returned either random results or
the target labels. However, if we exclude extreme performances (random or perfect), we can
observe that (i) a fraction of the models performing well on test data have a good correlation
between training and test performances; (ii) there is a group of models performing well on
test data and having an AUC on training examples significantly larger. Large margin models
like SVMs (Boser et al., 1992) or boosting models (Freund and Schapire, 1996) behave in this
way. Among the models performing poorly on test data, some clearly overfitted (had a large
difference between training and test results).

7.3 Methods employed

We analyzed the information provided by the participants in the fact sheets. In Figures 5,6,7,
and 8, we show histograms of the algorithms employed for preprocessing, feature selection,
classifier, and model selection. We briefly comment on these statistics:

• Preprocessing: Few participants did not use any preprocessing. A large fraction of the
participants replaced missing values by the mean or the median or a fixed value. Some
added an additional feature coding for the presence of a missing value. This allows lin-
ear classifiers to automatically compute the missing value by selecting an appropriate
weight. Decision tree users did not replace missing values. Rather, they relied on the
usage of “surrogate variables”: at each split in a dichotomous tree, if a variable has a
missing value, it may be replaced by an alternative “surrogate” variable. Discretization
was the second most used preprocessing. Its usefulness for this particular dataset is justi-
fied by the non-normality of the distribution of the variables and the existence of extreme
values. The simple bining used by the winners of the slow track proved to be efficient.
For categorical variables, grouping of under-represented categories proved to be useful
to avoid overfitting. The winners of the fast and the slow track used similar strategies
consisting in retaining the most populated categories and coarsely grouping the others in
an unsupervised way. Simple normalizations were also used (like dividing by the mean).
Principal Component Analysis (PCA) was seldom used and reported not to bring perfor-
mance improvements.
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Figure 5: Preprocessing methods.

• Feature selection: Feature ranking and other filter methods were the most widely used
feature selection methods. Most participants reported that wrapper methods overfitted
the data. The winners of the slow track method used a simple technique based on cross-
validation classification performance of single variables.

• Classification algorithm: Ensembles of decision trees were the most widely used classi-
fication method in this challenge. They proved to be particularly well adapted to the na-
ture of the problem: large number of examples, mixed variable types, and lots of missing
values. The second most widely used method was linear classifiers, and more particularly
logistic regression (see e.g., Hastie et al., 2000). Third came non-linear kernel methods
(e.g., Support Vector Machines, Boser et al. 1992). They suffered from higher compu-
tational requirements, so most participants gave up early on them and rather introduced
non-linearities by building extra features.

• Model selection: The majority of the participants reported having used to some extent
the on-line performance feed-back on 10% of the test set for model selection. However,
the winners all declared that they quickly realized that due to variance in the data, this
method was unreliable. Cross-validation (ten-fold or five-fold) has been the preferred
way of selecting hyper-parameters and performing model selection. But model selection
was to a large extent circumvented by the use of ensemble methods. Three ensemble
methods have been mostly used: boosting (Freund and Schapire, 1996; Friedman, 2000),
bagging (Breiman, 1996, 2001), and heterogeneous ensembles built by forward model
selection (Caruana and Niculescu-Mizil, 2004; Caruana et al., 2006).

Surprisingly, less than 50% of the teams reported using regularization (Vapnik, 1998). Per-
haps this is due to the fact that many ensembles of decision trees do not have explicit regu-
larizers, the model averaging performing an implicit regularization. The wide majority of ap-
proaches were frequentist (non Bayesian). Little use was made of the unlabeled test examples
for training and no performance gain was reported.

We also analyzed the fact sheets with respect to the software and hardware implementation
(Figure 9):
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Figure 6: Feature selection methods.

Figure 7: Classification algorithms.

• Hardware: While some teams used heavy computational apparatus, including multiple
processors and lots of memory, the majority (including the winners of the slow track) used
only laptops with less than 2 Gbytes of memory, sometimes running in parallel several
models on different machines. Hence, even for the large dataset, it was possible to provide
competitive solutions with inexpensive computer equipment. In fact, the in-house system
of Orange computes its solution in less than three hours on a laptop.

• Software: Even though many groups used fast implementations written in C or C++,
packages in Java (Weka) and libraries available in Matlab R� or “R”, presumably slow
and memory inefficient, were also widely used. Users reported performing first feature
selection to overcome speed and memory limitations. Windows was the most widely used
operating system, closely followed by Linux and other Unix operating systems.
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Figure 8: Model selection methods.

Figure 9: Implementation.

8. Significance Analysis
One of the aims of the KDD cup 2009 competition was to find whether there are data-mining
methods which are significantly better than others. To this end we performed a significance
analysis on the final results (last submission before the deadline, the one counting towards the
final ranking and the selection of the prize winners) of both the SLOW and FAST track. Only
final results reported on the large dataset were included in the analysis since we have realized
that submissions based on the small dataset were considerably inferior.

To test whether the differences between the teams are statistically significant we followed
a two step analysis that is specifically designed for multiple hypothesis testing when several
independent task are involved (Demšar, 2006): First we used the Friedman test (Friedman,
1937), to examine the null hypothesis H0, which states that the AUC values of the three tasks,
(Churn, Appetency and Up-Selling) on a specific track (FAST or SLOW) are all drawn from a
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(a) FAST

(b) SLOW

Figure 10: Sorted final scores: The sorted AUC values on the test set of each of the three
tasks, together with the average of AUC on the three tasks. Only final submissions
are included. (a) FAST track and (b) SLOW track. The baselines for the basic Naïve
Bayes and selective Naïve Bayes are superposed on the corresponding tasks.

single distribution. The Friedman test is a non-parametric test, based on the average ranking of
each team, where AUC values are ranked for each task separately. A simple test-statistic of the
average ranks is sufficient to extract a p-value for H0; In the case when H0 is rejected, we use
a two tailed Nemenyi test (Nemenyi, 1963) as a post-hoc analysis for identifying teams with
significantly better or worse performances.

Not surprisingly, if one takes all final submissions, one finds that H0 is rejected with high
certainty (p-value < 10−12). Indeed, significant differences are observed even when one in-
spects the average final AUCs (see Figure 10), as some submissions were not substantially
better than random guess, with an AUC near 0.5. Of course, Figure 10 is much less informa-
tive than the significance testing procedure we adopt, which combines the precise scores on the
three tasks, and not each one separately or their averages.

Trying to discriminate among the top performing teams is more subtle. When taking the
best 20 submissions per track (ranked by the best average AUC) - the Friedman test still rejects
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H0 with p-values 0.015 and 0.001 for the FAST and SLOW tracks respectively. However, the
Nemenyi tests on these reduced data are not able to identify significant differences between
submissions, even with a significance level of α = 0.1!

The fact that one does not see significant differences among the top performing submis-
sions is not so surprising: during the period of the competition more and more teams have
succeeded to cross the baseline, and the best submissions tended to accumulate in the tail of the
distribution (bounded by the optimum) with no significant differences. This explains why the
number of significant differences between the top 20 results decreases with time and number of
submissions.

Even on a task by task basis, Figure 10 reveals that the performance of the top 50% AUC
values lie on an almost horizontal line, indicating there are no significant differences among
these submissions. This is especially marked for the SLOW track.

From an industrial point of view, this result is quite interesting. In an industrial setting many
criteria have to be considered (performance, automation of the data mining process, training
time, deployment time, etc.). But this significance testing shows using state-of the art tech-
niques, one is unlikely to get significant improvement of performance even at the expense of a
huge deterioration of the other criterions.

9. Conclusion
The results of the KDD cup 2009 exceeded our expectations in several ways. First we reached
a very high level of participation: over three times as much as the most popular KDD cups so
far. Second, the participants turned in good results very quickly: within 7 hours of the start of
the FAST track challenge. The performances were only marginally improved in the rest of the
challenge, showing the maturity of data mining techniques. Ensemble of decision trees offer
off-the-shelf solutions to problems with large numbers of samples and attributes, mixed types
of variables, and lots of missing values. Ensemble methods proved to be effective for winning,
but single models are still preferred by many customers. Further work include matching the
performances of the top ranking participants with single classifiers.
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Abstract
We describe our wining solution for the KDD Cup Orange Challenge.

1. Introduction and Task Description
The KDD Cup 2009 challenge was to predict, from customer data provided by the French
Telecom company Orange, the propensity of customers to switch providers (churn), buy new
products or services (appetency), or buy upgrades or add-ons (up-selling). The competition had
two challenges: the Fast challenge and the Slow challenge. For the Fast challenge, after the
targets on the training set were released, the participants had five days to submit predictions on
the test set. For the Slow challenge, participants were given an additional month to submit their
prediction.

The data set consisted of 100000 instances, split randomly into equally sized training and
test sets. 15000 variables were made available for prediction, out of which 260 were categori-
cal. Most of the categorical variables, and 333 of the continuous variables had missing values.
To maintain the confidentiality of customers, all variables were scrambled. There was no de-
scription of what each variable measured.

For the Slow challenge, a reduced version of the data set was also provided, consisting of
a subset of 230 variables, 40 of which were categorical. The small data set was scrambled
differently than the large one, and the rows and columns were shuffled. Many participants,
including ourselves, easily found the correspondence between instances in the small and large
data sets. Uncovering this correspondence, however, provided us little benefit, if any.

Submissions were scored based on the Area Under the ROC Curve (AUC) performance,
with the average AUC across the three tasks being used to rank the participants. Feedback was
provided in terms of performance on a fixed 10% of the test set. While multiple submissions
per team were allowed, the competition rules stated that only the last submission from the team
leader will count towards the final ranking, so the participants had to face the burden of model
selection. The slow challenge presented one additional twist in terms of evaluation. Participants
were allowed to make two sets of submissions, one on the large and one on the small data set,
and the best of the two was considered toward the final ranking.

c�2009 IBM Research
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Table 1: Our journey.

CLASSIFIER TYPE FEAT. SET CHLNG. CHURN APPETENCY UP-SELLING AVERAGE
SLOW CHALLENGE SUBMISSION (ES) FS3 SLOW 0.7651 0.8816 0.9091 0.8519
ENSEMBLE SELECTION FS3 SLOW 0.7629 0.8805 0.9091 0.8509
FAST CHALLENGE SUBMISSION (ES) FS2 FAST 0.7611 0.8830 0.9038 0.8493
ENSEMBLE SELECTION FS2 FAST 0.7611 0.8793 0.9047 0.8484
BEST COMPETITOR, SLOW SLOW 0.7570 0.8836 0.9048 0.8484
ENSEMBLE SELECTION FS1 FAST 0.7563 0.8771 0.9038 0.8457
BEST COMPETITOR, FAST FAST 0.7565 0.8724 0.9056 0.8448
BEST SINGLE CLASSIFIER FS3 SLOW 0.7511 0.8794 0.9025 0.8443
BEST SINGLE CLASSIFIER FS2 FAST 0.7475 0.8779 0.9000 0.8418
BEST SINGLE CLASSIFIER FS1 FAST 0.7354 0.8779 0.9000 0.8378

As a final note, we want to emphasize that the results we present in this paper reflect the
particular choices we have made and directions we have explored under the limited time of the
competition. They are not a careful empirical study of the different methods we have used. So,
while we will make a few comparative statements throughout the paper, we caution the reader
against generalizing these results beyond the scope of this competition.

2. Our Story
Our overall strategy was to address this challenge using Ensemble Selection (Caruana and
Niculescu-Mizil, 2004). In a nutshell Ensemble Selection is an overproduce-and-select en-
semble building method that is designed to generate high performing ensembles from large,
heterogeneous libraries of classifiers. Ensemble Selection has several desirable properties that
made it a good fit for this challenge. First, it has been proven to be a robust ensemble building
technique that yields excellent performance. Second, the generated ensembles can be optimized
to any easily computable performance metric, including AUC. Third, it allows for loose coordi-
nation of the team members, as everyone can independently train classifiers using their preferred
techniques, and add those classifiers to the library. And fourth, it is an anytime method, in the
sense that when the time to make predictions comes, an ensemble can be generated very fast
using whatever classifiers made it into the library at that time.

Our results are summarized in Table 1. The first column indicates the classifier type (the
best individual classifier we have trained, an ensemble generated by Ensemble Selection, or
the submission of our competitors). The second column indicates what feature set was used
(FS1 indicates the set of features provided, after some standard preprocessing summarized in
Section 2.1; FS2 indicates the use of additional features created to capture some non-linearity
in the data, as described in Section 2.2.3; FS3 indicates the use of even more additional features
described in Section 2.3.1). The next columns show the test set AUC on the three problems,
and the average AUC. Entries are ordered by average AUC.

In the following sections we will present our work in close to chronological order to motivate
our choices as we went along.

2.1 Preprocessing, Cleaning and Experimental Setup

Since the feature values were available prior to the targets, we spent our initial time on some
fairly standard preprocessing. The data set posed a number of challenges here: many features,
missing values, and categorical variables with a huge number of possible values.

Missing categorical values are typically less of a problem as they can be considered just a
separate value. Missing numeric values on the other hand are more concerning. We followed
a standard approach of imputing missing values by the mean of the feature. We considered
that the ‘missingness’ itself might predictive and added, for each of the 333 variables with
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missing values, an additional indicator variable indicating missingness. Another advantage of
this approach is that some class of models (e.g. linear) can now estimate the optimal constant
to replace the missing value with, rather than relying on the means.

Most of the learning algorithms we were planning to use do not handle categorical variables,
so we needed to recode them. This was done in a standard way, by generating indicator vari-
ables for the different values a categorical attribute could take. The only slightly non-standard
decision was to limit ourselves to encoding only the 10 most common values of each categorical
attribute, rather than all the values, in order to avoid an explosion in the number of features from
variables with a huge vocabulary.

Finally, the features were normalized by dividing by their range, and the data was cleaned
by eliminating all the features that were either constant on the training set, or were duplicates
of other features. In the end we were left with 13436 features.

To evaluate the performance of the classifiers, and build ensembles via Ensemble Selection,
we adopted a 10-fold cross-validation approach. While we would have liked to perform all the
10 iterations of the cross-validation, considering, in turn, each fold as a validation fold, this was
unrealistic in the allotted time. Ultimately we only finished two iterations for the Fast challenge,
giving us a total of 10000 validation instances, and four iterations for the Slow challenge, for a
total of 20000 validation instances. To make predictions on the test set, given that we now had
a version of a classifier for each fold (two for the Fast challenge and four for the Slow one),
we averaged the predictions of the corresponding models. This has a bagging like effect that
should lead to a performance boost.

In order to avoid overfitting the test set of the leader board, we decided not to rely on the
feedback on the 10% for anything but sanity checks and final guidance in picking an ensemble
building strategy.

2.2 The Fast Challenge

2.2.1 MANY DIFFERENT CLASSIFIERS

The first step in building an ensemble classifier via Ensemble Selection is to generate a library
of base classifiers. To this end, we trained classifiers using using a range of learning meth-
ods, parameter settings and feature sets. We looked for learning algorithms that were efficient
enough to handle a data set of this size in the allotted time, while still producing high perform-
ing models. Guided in part by the results of (Caruana et al., 2008), we generated classifier
libraries using random forests (Breiman, 2001) and boosted trees (Schapire, 2001) trained us-
ing the FEST package (Caruana et al., 2008), logistic regression trained using the BBR package
(Genkin et al., 2007), SVMs trained using SVMPerf (Joachims, 2005), LibLinear (Fan et al.,
2008) and LibSVM (Chang and Lin, 2001), decision trees, TANs and Naïve Bayes trained using
Weka (Witten and Frank, 2005), Sparse Network of Winnows trained using the SNoW pack-
age (Carlson et al., 1999), and k-NN, regularized least squares regression and co-clustering
(Sindhwani et al., 2008) trained using in house code. We also trained some of these learning
algorithms on several reduced feature sets obtained through PCA and through feature selec-
tion using filter methods based on Pearson correlation and mutual information. For a complete
description of the trained classifiers see Appendix A. To make all base models “talk the same
language” we applied post training calibration using Platt Scaling (Niculescu-Mizil and Caru-
ana, 2005). For classifiers that make predictions between 0 and 1 we also put the uncalibrated
classifiers in the library.

Little or no attempt was made to optimize the performance of the individual models; all
models, no matter their performance, were added to the model library. The expectation is that
some of the models will yield good performance, either in isolation or in combination with other
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(a) Churn (b) Appetency

(c) Up-Selling

Figure 1: Performance obtained by boosting decision trees of various depths.

models. In total, the classifier libraries were composed of 500-1000 individual models for each
of the three problems problem.

Judging from the two folds of internal cross-validation we performed up to this point, the
best individual classifiers on churn were boosted trees followed by regularized logistic regres-
sion, and random forests. On appetency, the best single method was random forests, followed
by boosted trees and logistic regression, while on up-selling, boosted trees were best, followed
by random forests and logistic regression. At this point, using the best single classifiers, as
deemed by the internal cross-validation, yielded a test set AUC of 0.7354 for churn, 0.8779 for
appetency, and 0.9000 on up-selling, for an average AUC of 0.8378 (last line in Table 1). This
was lower than the AUC obtained by many of the competing teams.

Interestingly, on all three problems, boosting clearly overfit with more rounds of boosting
(see Figure 1), yielding peak performance after only about 10-20 rounds and decreasing signif-
icantly after that (except for boosted stumps on the up-selling problem). Also boosting shallow
trees performed better than boosting deeper trees. One trend, that we actually did not notice dur-
ing the competition, is that boosting deeper trees (more than 10 levels) has a dip in performance
during early stages of boosting, but recovers later. It is conceivable that higher performance
could have been obtained by boosting deeper trees for longer.

For the linear models, we tried optimizing four different loss functions: hinge loss and AUC,
with L2 regularized SVMs, squared error with L2 regularized least squares, and cross-entropy
(log-loss, log-likelihood), with logistic regression using both L1 and L2 regularization. As ex-
pected, optimizing hinge loss yielded significantly lower AUC scores than directly optimizing
AUC. What was less expected was that optimizing cross-entropy with L2 regularization did
as well as, or even slightly better than directly optimizing AUC. Using L1 regularization with
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logistic regression further improved the AUC performance and using feature selection on top
provided yet another slight performance boost.

One worry one might have would be that training all these base level models would be very
resource demanding. Training all the base level models for all three problems took little more
than one day per cross-validation fold on a cluster of nine dual Opteron nodes (2 GHz) with
3Gb memory. So, while training all these models is by no means cheap, the computational load
can be easily handled with fairly modest resources.

2.2.2 ENSEMBLE SELECTION

Once a classifier library is generated, Ensemble Selection builds an ensemble by selecting from
the library the subset of classifiers that yield the best performance on the target optimization
metric (AUC in our case). Models are selected for inclusion in the ensemble using greedy for-
ward stepwise classifier selection. The performance of adding a potential model to the ensemble
is estimated using a hillclimbing set containing data not used to train the base classifiers. At
each step ensemble selection adds to the ensemble the classifier in the library that maximizes
the performance of the ensemble on this held-aside hillclimbing data. Classifiers can be added
to the ensemble multiple times, allowing for a crude weighting of the different classifiers in the
ensemble.

When there are a large number of base classifiers to select from, the chances of overfitting
increase dramatically. Caruana and Niculescu-Mizil (2004) describe two methods to combat
overfitting. The first is to initialize the ensemble with a set of N classifiers that have the best uni-
model performance on the hillclimbing set. The second performs classifier bagging—multiple
ensembles are built from random subsets of classifiers, and then averaged together. The aim
of the classifier bagging is to increase performance by reducing the variance of the forward
stepwise selection process.

We built an AUC optimized ensemble classifier for each of the three problems using En-
semble Selection. Following (Caruana et al., 2006), we combined the two validation folds from
our internal cross-validation and used them as the Ensemble Selection hillclimbing set. Both
overfitting prevention techniques described above were used. The test set performance of the
ensemble models was 0.7563 on churn, 0.8771 on appetency and 0.9038 on up-selling, for an
average AUC of 0.8457. This performance was already better than that of the other competitors
on the Fast challenge. It is notable that this performance was obtained through fairly standard
techniques without much need for human expertise or intervention, or tailoring to the particu-
lar problems addressed in this competition. One can easily imagine all these techniques being
incorporated in a general purpose push-button application.

At the time of the competition, however, we did not know that we had the best performance.
In fact, on the 10% of the test set that was used for feedback our performance was below that of
other participants.

2.2.3 MORE FEATURES

We had one more day to push forward. This was when we realised that there were notable
discrepancies between measuring the quality of individual variables via mutual information
with the targets, and via rank correlation with the targets. Some of the features with the highest
mutual information (calculated by binning numeric variables into 20 bins) had quite a poor
rank correlation. This was most likely due to some form of non-monotonic dependence, so,
while these features were very predictive, linear models could not take advantage of them. Our
solution was to construct new features to allow expressing non-linear relationships in a linear
model. To this extent we explored two approaches:
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• Binning: As explained earlier, we observe higher predictive performances in terms of
mutual information when binning was used. So the obvious solution was to include, for
each such feature, 20 additional binary features corresponding to the 20 bins. However,
it is unlikely that the equal size binning is optimal.

• Decision Tree: The second approach was to use a decision tree to identify the optimal
splitting points. We recode each feature by training a decision tree of limited depth (2,3
or 4) using that feature alone, and let the tree directly predict the target. The probabilistic
predictions of this decision tree were used as an additional feature, that now was linearly
(or at least monotonically) correlated with the target.

The addition of these new features had a significant impact on the performance of linear
models, with L1 regularized logistic regression becoming the best model on churn and improv-
ing the test set performance of the best base level churn model by 0.0121 to 0.7475. It also
had a positive impact on the performance of the ensembles build by Ensemble Selection for all
three problems, resulting in a test set performance of 0.7611 on churn, 0.8793 on appetency,
and 0.9047 on up-selling.(See entries using FS2 in Table 1.)

2.2.4 SUBMISSION FOR THE FAST CHALLENGE

Before the final submission for the Fast challenge, we analysed in more detail the ensembles
built by Ensemble Selection. We realized that on appetency, after the initialization phase (where
models with high uni-model performance were added to the ensemble), the first model Ensem-
ble Selection was adding was some poor performing decision tree. We were worried that this
indicates that Ensemble Selection was actually overfitting the hillclimb set. So, for appetency,
we decided to use the ensemble model generated right after the initialization phase, containing
only the six best models (as measured on the hillclimb set), and not continue with the forward
stepwise classifier selection. The results on the 10% of the test set were also in accord with this
hypothesis. In hindsight, it turned out to be the right decision, as it significantly improved our
performance on the test set.1

We have also investigated whether classifier bagging was necessary, by running Ensemble
Selection with this option turned off. We noted that, on the 10% of the test set we received feed-
back on, classifier bagging provided no benefit on churn and up-selling, and was only increasing
performance on appetency (which was consistent with our hypothesis that Ensemble Selection
overfit on this problem). Being also guided by the results in (Caruana et al., 2006), which stated
that, once the hillclimbing set is large enough, classifier bagging is unnecessary, we decided to
use ensembles built without classifier bagging as our final submissions for churn and up-selling.
In hindsight, this was not a good decision, as the test set performance on up-selling was slightly
worse than if we were to use classifier bagging.

2.3 Slow Challenge

For the slow challenge, we first increased the hillclimbing/validation set to 20000 instances by
training on two extra folds, bringing us to four corss-validation folds.

Encouraged by the improvements we obtained in the last day of the Fast challenge, the main
thrust of our efforts was towards creating new and better features. The addition of these features,
described below, in combination with the move from two to four folds, yielded an increase in
test set performance for the best individual models to 0.7511 on churn, 0.8794 on appetency

1. This was not the case for the other two problems, churn and up-selling, where the forward stepwise classifier
selection improved the performance significantly.
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and 0.9025 on up-selling (0.8443 average across the three problems). The performance of the
Ensemble Selection built ensembles rose to 0.7629 for churn, 0.8805 for appetency, and 0.9091
for up-selling (0.8509 average).

2.3.1 EVEN MORE FEATURES

Explicit Feature Construction: For a number of features with typical characteristics, we were
able to isolate the signal directly: The positive rate of churn for all rows with 0 value was up
to twice the positive rate for all other numeric values. This happened for a number of numeric
features that overall seemed to be close to normally distributed, but, under close inspection,
showed certain regularities, such as frequency spikes for certain values. The effect is not overly
strong; typically only a few thousand examples have a zero value and a zero indicator for a
single such numeric feature only has an AUC of up to 0.515. However, counting the number of
times an example had a zero within one of these numeric features had an validation AUC of 0.62.

Features From Tree Induction: We extended the decision tree based recoding approach to
pairs of attributes in order to get two way non-additive interactions between pairs of variables.
To this end, for each pair of attributes, we trained a decision tree of limited depth (3,4) to pre-
dict the target from only the two attributes. We then used the predictions of the tree as an extra
feature. We only used the constructed features that outperformed, by a significant margin, both
individual attributes.

Co-clustering: We have also tried a new feature generation approach. When looking at missing
values, we noticed that they were missing for groups of features at once. That is, for every in-
stance, the values for all the features in the group were either all missing or all present. Inspired
by this observation, we extend the idea to other categorical/numerical values. For example,
suppose that features f1, f2, and f3 take values a,b, and c respectively across instances i1, i2, i3,
and i4. We can then generate a feature, that takes 1 on i1, i2, i3, and i4 and 0 on all other in-
stances. The problem of identifying subsets of features/instances with this property, is known
as the constant bi-clusters problem in the bio-informatics domain. We ran a fast probabilistic
bi-clustering algorithm (Xiao et al., 2008) to identify promising bi-clusters which we then used
to generate new indicator features.

2.3.2 SMALL DATA SET

We quickly trained all our models on the small data set, but the internal cross-validation results
suggested that the performance obtained from the small data set was significantly worse than
what we obtained from the large one. So we decided not to pursue the small data set any more,
and focused our attention on the large data set. Nevertheless, we did unscramble the small data
set for two main reasons: to get feedback on about 20% of the test data instead of only 10%,
and to be able to make two distinct submissions using models trained on the better performing
large data set (per competition rules, the best of the two submissions would count towards the
Slow challenge ranking). In the end, however, it turned out that unscrambling the small set did
not give us any significant advantage as the feedback on the 20% of the data was barely used,
and the two submissions we ended up making were very similar to each other.

2.3.3 SUBMISSION FOR SLOW CHALLENGE

Finally, we again analyzed the ensembles produced by Ensemble Selection in more detail, and
noticed some strange behaviour with the ensemble initialization phase. Because the model
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libraries contained a large number of high performing, but very similar logistic regression clas-
sifiers, in the initialization phase, Ensemble Selection was adding all these classifiers to the
ensemble, essentially overemphasizing the logistic regression models. Given that we also had
a larger hillclimb set, overfitting was less of a concern, so we decided to turn off the ensem-
ble initialization. With the initialization turned off, we gained, on average, another 0.001 in
test set AUC, for a final performance of 0.7651 on churn, 0.8816 on appetency, and 0.9091 on
up-selling (0.8519 average AUC).

3. Conclusions
Our winning solution for the 2009 KDD Cup Orange Challenge was to use Ensemble Selec-
tion to generate and ensemble model from a large library of 500-1000 base classifiers for each
problem. While it is hard to give a definite answer, we believe that our success was mainly due
to three factors. The first factor was the exploration of a large variety of learning methods. As
the results show, different learning methods were best for different problems. The second factor
was the use of an ensemble building technique that is able to take advantage of the large variety
of base classifiers without overfitting. The third factor was the creation of additional features
capturing non-linearities and other helpful signals in the data.
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Appendix A. Base Level Models and Other Things We Tried
Random Forests: We trained random forests using the FEST package (Caruana et al., 2008).
We varied the number of features considered at each split from 0.5 ·

√
# f eatures to 64 ·

√
# f eatures

by factors of 2. For the smaller numbers we trained random forests of 500 trees, and went down
to 300 trees as training became more computationally expensive at higher numbers of consid-
ered features. Since the code supported example weighting, we used a weight of 0.1 for the
negative class on all problems, to account for class imbalance. We did not try to vary this
parameter, or to run without example weighting. Random forests worked well, especially on
appetency, where they had the best performance.
Boosted Decision Trees: The FEST package was also used to train boosted decision trees. We
boosted decision trees 1, 2, 3, 4, 5, 7, 10 and 20 levels deep. We varied the number of rounds of
boosting between 1 and 128. As with random forests, we used a weight of 0.1 on the negative
examples. Boosted decision trees had the best performance on the up-selling problem, and
good performance on the other problems as well. Boosting, however, clearly overfit on all three
problems, with the best performance being obtained after less than 20 rounds. Also, boosting
shallower trees performed better than boosting deeper trees, although there is a chance that if
we had boosted even deeper trees for longer we would have obtained better performance. (See
Figure 1).
Regularized Logistic Regression: For logistic regression we used the BBR package (Genkin
et al., 2007). We used both L1 and L2 regularization, varying the regularization parameter from
10−3 to 100 by factors of 10. We also used the feature selection capability implemented in
the BBR package and selected subsets of 100, 200, 500, 1000, 2000 and 5000 features using
Pearson’s Correlation. L1 regularization worked better than L2 on all problems. Feature se-
lection provided another slight improvement in performance, made the results less sensitive to
the regularization parameter, and reduced the gap between L1 and L2 regularization. Logistic
regression also was a well performing technique, providing the top performance on the churn
problem after the addition of the extra features meant to capture non-linearities in the data.
SVM: We trained linear SVMs using the SVMPerf (Joachims, 2005), LibLinear (Fan et al.,
2008) and LibSVM (Chang and Lin, 2001) packages.2 The regularization parameter was varied
from 10−5 to 100 by factors of 10. Besides training regular SVMs that optimize hinge loss, we
also directly optimized AUC with SVMPerf. Directly optimizing AUC did indeed yield sig-
nificantly better AUC performance than optimizing hinge loss. It is interesting, however, that
optimizing to cross-entropy (log-likelihood, log-loss) via logistic regression not only outper-
formed optimizing to hinge loss, but also slightly outperformed optimizing AUC directly.

We also tried training kernel SVMs using the LaSVM package (Bordes et al., 2005) but we
were unable to get them to perform well so we abandoned them early on.
Regularized Least Squares: We trained linear Regularized Least Squares Classifiers (RLSC)
that often perform competitively with linear Support Vector Machines and other regularized
risk minimization methods on classification tasks (see e.g., (Rifkin, 2002)). The training was
done with efficient sparse matrix computations in Matlab using the conjugate gradient algo-
rithm (with a tolerance of 1e-4 and 500 maximum iterations). To handle class imbalance, our
loss terms measured squared error over positive and negative examples separately. We then
conducted feature selection using mutual information between the features and the class vari-
able. Mutual information (MI) was computed by discretizing continuous features into 20 bins.
Our MI implementation was adapted from the Spider machine learning toolbox (Weston et al.,
2005). We generated models with 1000 to 2000 features that showed improved performance.

2. SVMs proved to be a popular method in our team, with multiple team members training them using different
packages.
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Naive Bayes: We used a Naïve Bayes classifier with kernel density estimation for continuous
variables (John and Langley, 1995). In our pilot experiments we found that kernel density
estimation worked better than alternative supervised and unsupervised approaches to deal with
the continuous variables in the data. We used an online implementation of the Naïve Bayes
classifier, which makes it highly scalable. Only one pass over the data is required, and the
classifier can be quickly updated one instance at a time. This makes it possible to process the
full data set with minimal memory usage.
Tree Augmented Naive Bayes: We used the WEKA package (Witten and Frank, 2005) to
train Tree Augmented Naive Bayes (TAN) models using the 50, 100 and 200 attributes with
the highest information gain. The TAN models were learned using an entropy score to measure
network quality, and applying a Markov blanket correction to the learnt structure. Additional
improvement was obtained through bagging. Using the top 100 or 200 attributes, did not result
in any improvement over those learned using just the top 50 attributes.
Sparse Network of Winnows: We used the Sparse Network of Winnows (SNoW) learning
architecture introduced in (Roth, 1998). SNoW builds a sparse network of linear functions, and
is specifically designed for domains with a large number of features that may be unknown a
priori. It has been applied successfully to a variety of large-scale natural language and visual
processing tasks. The key strength of SNoW comes from exploiting the fact that using the Win-
now update rule the number of examples needed to learn a linear function grows linearly with
the number of relevant features and only logarithmically with the total number of features (Lit-
tlestone, 1991; Kivinen and Warmuth, 1995). Winnow is known to learn any linear threshold
function efficiently and is resilient to various kinds of noise. We trained SNoW with 50 learning
iterations of Perceptron and Winnow, and combined the output of the two.
k-NN: With respect to k-NN we wrote C++ code optimized for fast working with sparse repre-
sentations. To compute distances we used weighted Euclidian distance for continuous variables,
and Hamming distance for categoricals. For the slow challenge we replaced the Hamming dis-
tance by the inverse of the second power of the frequency of the value of the feature. In the
version used for the fast challenge we weighted the features by their mutual information with
labels (3 different weight sets, one for each problem). For the slow challenge we used instead
the AUC score obtained by using k-NN with only this column as an input. Those weights turned
out to be better than mutual information, especially in case of churn. The final prediction was a
distance-weighted median of the neighbors. The optimal number of neighbors turned out to be
rather low, between 100 and 500.
Co-Clustering: We trained models using the graph-based co-clustering technique in (Sind-
hwani et al., 2008). The motivation behind trying this technique is two fold: 1) since the
features are extremely high dimensional, co-clustering methods could benefit from implicit di-
mensionality reduction, and 2) because these techniques naturally make use of un-labeled data
in the clustering process, they could potentially take advantage of the test data that are available
during training.

We performed column-wise shifting and rescaling of the data to ensure all feature values
are non-negative (a requirement of bi-partite graph based co-clustering methods), and raw-
normalization so that each row adds up to one. These two preprocessing steps proved critical to
ensure a decent outcome from the graph-based co-clustering methods. We also experimented
with column normalization, which did not seem to help in this case.

Since the original method described in (Sindhwani et al., 2008) is not scalable to the size
of the data, we experimented with two scalable versions of the algorithm. We first used a
transductive version of the algorithm which had been previously applied to document-word co-
regularization (equation 6 in (Sindhwani and Melville, 2008)). We varied the parameters µ
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(weight of the graph-based co-clustering regularizer) and p (order of the Laplacian operator).
We found that, for these problems, the results were not very sensitive to µ in the range of 0.01
to 100, and p in the range of 1 to 10.

The transductive version, however, produced inferior results to a well tuned supervised clas-
sifier. We thus decided to try another variation of the original algorithm which combines trans-
ductive learning with a linear model (equation 8 in (Sindhwani and Melville, 2008), with the
last term dropped since there are no feature labels). While this lead to much more competi-
tive results, the graph-based co-clustering techniques still failed to produce the benefits we had
hoped for.
Missing Value Imputation: We have also tried imputing the missing values in the hope it
will provide an additional benefit. For each of the numerical features with missing values, we
trained a model to predict the respective feature from the rest of the attributes. To this end we
used two learning techniques: least squares and k-NN. For k-NN we used k=500 and calcu-
lated distances between instances using only the top 1000 features ranked by their respective
linear SVM weights. Both sets of imputed values seemed to yield only small improvements in
performance, if any. In the end neither of them was extensively used.
PCA: Given the large dimension of the feature space, we explore reducing the dimension using
principle component anlaysis (PCA). We use the package SVDpack (Berry, 1992) to reduce the
dimension to 500 and run logistic regression, SVM and k-NN classifiers. The performance of
these models, however, was mediocre at best.
Multi-Task Learning: We also explore the idea of multi-task learning, in which we assume the
three tasks are not independent (which seems true for this particular application). One easy way
to make use of the dependencies between tasks is to use the labels (or predicted labels) from
other tasks as additional features and train another layer of classifiers. We explore this idea and
find that using the true labels from other tasks are able to improve the performance by 3-5%,
but there is no improvement when using the predicted labels.
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Abstract
We present the ideas and methodologies that we used to address the KDD Cup 2009 challenge
on rank-ordering the probability of churn, appetency and up-selling of wireless customers. We
choose stochastic gradient boosting tree (TreeNet R�) as our main classifier to handle this large
unbalanced dataset. In order to further improve the robustness and accuracy of our results, we
bag a series of boosted tree models together as our final submission. Through our exploration
we conclude that the most critical factors to achieve our results are effective variable prepro-
cessing and selection, proper imbalanced data handling as well as the combination of bagging
and boosting techniques.

Keywords: KDD Cup, bagging, boosting, data mining, ensemble methods, imbalanced data

1. Introduction
The task of the KDD Cup 2009 is to build three Customer Relationship Management (CRM)
models to predict three different wireless customer behaviors: 1) loss of interest toward cur-
rent provider (churn), 2) propensity to purchase new products or services (appetency), and 3)
tendency for upgrades or add-ons (up-selling).

Several aspects of data mining and statistical modeling have been addressed in this chal-
lenge:

• Handling a large dataset. The organizers provided 15000 variables, 14740 numerical and
260 categorical, to test the ability of participants in handling a large dataset. Although a
downsized version with only 230 variables was made available in the second phase of the
challenge, all the top teams also descrambled the variable mapping and used information
from the large set.

c�2009 Xie, Rojkova, Pal & Coggeshall
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• Rapidity of model building. Participating teams were required to complete all three mod-
els in 5 days in order to win the fast track, which has a higher priority than the slow
track.

• Variable preprocessing and selection. Variables were populated by unnormalized values.
Missing entries and outliers are significant. Some categorical variables have a huge num-
ber of distinct entries. Effective variable preprocessing and selection is a must for any
modeling algorithm to achieve the best results.

All three tasks are binary classification problems. There are several well established model-
ing algorithms available and suitable: Logistic Regression, Neural Networks, Decision Trees,
SVM etc. Nowadays, ensemble learning schemes are widely used to enhance the overall per-
formance of a single classifier by combining predictions from multiple classifiers (Breiman,
1996; Dietterich, 2000). In the family of decision tree classifiers, Random Forest uses bagging
to combine many decision trees by bootstrap sampling (Breiman, 2001). TreeNet R� uses the
stochastic gradient boosting (Friedman, 1999a,b) which constructs additive regression trees by
sequentially fitting a base learner to current pseudo-residuals by least squares at each iteration.
The pseudo-residuals are the gradient of the loss functional being minimized, with respect to
the model values at each training data point evaluated at the current step.

In this competition we use TreeNet R� as our main classifier.The log-likelihood loss function
has been chosen since all 3 tasks are binary classification problems. In order to further enhance
the results, we combine bagging and boosting together. We bag a total of 5 boosted tree models
for each task and take the average of all scores as the final prediction.

The results of each model are evaluated by area under receiver operating characteristic
(ROC) curve, so called AUC. The AUC measurement does not require the models to produce
the true probability of the predicted class as long as the model score can rank order the positive
class and negative class effectively. This gives us more freedom of using sampling techniques
to tackle the imbalance issue without worrying about converting the score back to a real proba-
bility.

We organize this paper as follows. Data analysis and preprocessing on training and testing
datasets are described in Section 2. After establishing a gradient boosting tree as the main
classifier, we proceed with variable selection and sampling the imbalanced data. These steps
together with final bagging of different boosting decision tree models are described in Section
3. In Section 4 we explain our exploration on the small dataset. Finally, we summarize our final
submissions and how they are compared with others in Section 5.

2. Data Analysis and Preprocessing
Data analysis is an important step of any data mining and modeling task. It helps for deep un-
derstanding the modeling task and in selecting the proper modeling technique. One illustrative
example is KDD Cup 2008. The Patient ID was found to be a predictive variable: essentially
a target leakage which was introduced into the training data by mistake. It was overlooked by
everybody except for the winner (Perlich et al., 2008).

2.1 Histogram Analysis

The frequency distributions of all 15000 variables of the training and testing datasets are an-
alyzed to establish the “equality” between training and testing samples. The binning for the
histogram is performed around every discrete entry. Based on the histogram results we con-
clude that there is no substantial sampling bias between the training and testing data sets. In the
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Figure 1: Example of histogram analysis: variable 1194 and variable 8981.

Figure 2: Distribution of discrete value frequencies in (a) numerical variable and (b) categorical
variable.

slow track, we utilize histogram results of the large and small datasets to unscramble the small
dataset. More details of the unscrambling process will be described in Section 4.1.

We find that most of the numerical variables have skewed distributions as shown in Figure 1.
By checking the histograms of the variables, we discover that many of the numerical variables
are populated by values that have a common factor, for example in Figure 1(a) the data values
are all multiples of 7. This could be an indicator that these variables were artificially encoded.

Another observation is that many variables only have a few discrete values. For example,
about 50% of all numerical variables have 1 or 2 discrete values as shown in Figure 2(a). Nearly
80% of all categorical variables have fewer than 10 categories, as shown in Figure 2(b). It can
also be seen in Figure 2 that 12% of numerical variables and 28% of categorical variables are
constant (only have a single entry). Furthermore, numerical values are heavily populated by 0s.
We find that 80% of the numerical variables have more than 98% of their population filled by 0.
These results suggest that a large number of variables can be removed since they are constant
or close to constant.

Label frequencies for all three tasks are presented in Table 1. We can see that all of them
are highly unbalanced. Appetency has extremely low positive rate. The imbalance of the class
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Table 1: Histogram analysis on labels of churn, appetency and up-selling.

Churn Appetency Up-selling Frequency Percentage

-1 -1 -1 41756 83.51%
-1 -1 1 3682 7.36%
-1 1 -1 890 1.78%
1 -1 -1 3672 7.34%

distribution has to be taken into account in the model building step. There is no overlap between
any pair of labels, they are exclusive to each other. This motivated us to incorporate the other
2 scores for a given model to improve the performance. However, we did not see significant
improvement as described in Section 4.3.

2.2 Discretization and Grouping (Binning)

Even though most of numerical variables are populated by a limited number of discrete values,
the population on each value differs significantly. We discretize 10 selected numerical variables
that have strong correlation with the target. We consolidate the extremely low populated entries
(having fewer than 200 examples) with their neighbors to smooth out the outliers. Similarly, we
group some categorical variables which have a large number of entries (> 1000 distinct values)
into 100 categories. This procedure of univariate groupings is frequently referred to as binning.
Every category is replaced by a numerical risk factor (mean positive rate).

2.3 Missing Value Handling

A significant amount of variables are poorly populated, that is, for some variables many of the
input values are missing. There are known techniques to approach the missing value problem
which include mean substitution, multiple regression, maximum likelihood estimation, multiple
imputation etc (Little and Rubin, 1987). In this work, we perform a simple substitution. We
either replace them by a risk factor (for binned numerical variables and categorical variables)
or treat them as a standalone entry (“missing” is simply another category of the input variable).

3. Modeling on Fast Track
3.1 Variable Selection

First, we removed 1531 constant variables and 5874 quasi-constant variables (where a single
value occupies more than 99.98% population) based on our data analysis step. This left us
a dataset with 7595 variables which is still a quite large number. We then went on with a
multi-round wrapper approach. We first split the reduced training set into 3 chunks for each
label and built 3 preliminary models for each task. The parameters used in TreeNet model
were set as the following: learning rate = 0.02, number of nodes = 6, number of trees = 600.
At every step TreeNet uses exhaustive search by trying all 7595 variables and split points to
achieve the maximum reduction of impurity. Therefore, the tree construction process itself can
be considered as a type of variable selection and the impurity reduction due to a split on a
specific variable could indicate the relative importance of the variable in the tree model.

For a single decision tree a measure of variable importance can be calculated by (Breiman
et al., 1984)
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Table 2: Down-sampling rate for each modeling task.

Label Sampling rate of negative records Positive rate after sampling

Churn 70% 10.17%
Appetency 20% 8.31%
Up-selling 90% 8.12%

V I (xi,T ) = ∑
t∈T

�I (xi,T ) ,

where �I (xi,T ) = I (t)− pLI (tL)− pRI (tR) is the decrease in impurity to the actual or
potential split on variable xi at a node t of optimally pruned tree T . pL and pR are proportion of
cases sent to the left or right by xi.

The variables entered into the model based on their contribution to the impurity reduction
at each split. We removed all variables with relative importance less than 2.0% for each model.
We then merged all variables selected by these preliminary models for each task together as a
pool. We got a total of 1720 variables for the next round selection. The final variable set was
obtained by using 75% of all training data. The rest was reserved as testing. We kept removing
variables that have the least importance until the model performance on the 25% test dataset
started dropping. We narrowed down our final variable set to less than 300 for all 3 labels.

3.2 Down Sample Negative Population

As listed in Table 1, the distribution of labels for the 3 models are highly unbalanced. There are
several popular ways to handle such an unbalanced dataset, for example, cost sensitive learning
(Domingos, 1999), and a variety of sampling techniques (Van Hulse et al., 2007). Here we take
the approach of down sampling the negative population. Table 2 lists the down sampling rate we
used in our model. Since the model performance is measured by AUC which is the rank order
of each record, the absolute value (scaling) of the score will not affect the results. Therefore,
we directly used the raw score without any sampling correction.

3.3 Build the Best Boosting Tree Model via Cross Validation

We started building the best boosting tree models by adjusting the training parameters after
variable selection. The factors we considered include the down sampling rate on the negative
population, learning rate, number of trees, and minimum number of nodes. The model perfor-
mance was evaluated by 5-fold cross validation. We also used the feedback on 10% test data
as a reference. Not always was the 10% test feedback in agreement with the cross validation
results. Upon checking the AUC results for each fold validation, we discovered large variations.
Table 3 lists the AUC results for each fold and total of 5 folds for Upselling model. We can see
that the variation among each fold can be as large as 0.02 which is big enough to drop your
ranking by more than 20 in this very close competition. This makes us believe that the 10%
feedback is not reliable to judge the performance of a model. We did not change our strategy
even though we saw other team’s results were better than ours based on the 10% test feedback.
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Table 3: AUC results for Upsell model in 5-fold cross validation.

Fold Number 1 2 3 4 5 Total
AUC 0.8956 0.9112 0.9037 0.9182 0.9085 0.9071

3.4 Bagging the Selected Boosting Tree Models

After we determined the final variable set, learning rate, and other tree parameters we were
convinced that the best strategy for improvement of model performance was consistent bagging.
This is an essential part of our solution, since we take a down sampling approach on the negative
class to improve the label balance, so as a result some of the records are never seen in the training
set. By creating the training dataset 5 times using different random seeds, we built a total of
5 boosted tree models for each label. Our final model is a simple average of all these boosted
tree models. We noticed after the competition that an ensemble of TreeNet classifiers won the
2003 Duke/NCR Teradata Churn model contest (Cardell et al., 2003). Ensembles of multiple
TreeNet models usually outperform a single model.

4. Modeling on the Slow Track
We processed the small dataset in a similar way as we did for the large. We quickly realized
that unscrambling the small dataset, mapping and combining it with the large might be the most
beneficial strategy in the slow track. First, the rule of this year’s KDD Cup competition requires
the results on small dataset to compete with the large. Next, after experimenting in this direction
we discovered that results on small dataset did not outperform the results on the large. Finally,
a combination of small and large datasets gives us an additional 10% testing feedback on the
same model.

4.1 Unscramble the Small Dataset

It turns out that unscrambling the small dataset is quite straightforward. There are two unscram-
bling steps: first is to unscramble the variable mapping, second is to unscramble the example
order. Step 1 can be done by comparing the frequency distribution of each variable in the small
and large datasets. This simple comparison maps 194 out of 230 variables in the small dataset
to the large dataset. It is found that most of the numerical variables of the small dataset are
simply scrambled as a constant fraction of the corresponding numerical variable in the large.
The remaining variables typically have a one-to-many or many-to-many correspondence, which
can be solved after Step 2.

In Step 2, we selected some mapped variables from the small and large and place them
together as a key in the format of vari, varj, vark ... varn. We then cut them out from the small
file in their original order. To ensure the uniqueness of the key enough variables have to be
pulled. We create a file that has 2 fields, a sequence IDsmall and a key. Then we created the
same file using the mapped variables from the large data in the format of the sequence IDlarge
and key (consists of the corresponding variables from large dataset). The value is unscrambled
so that the key will be same for both the large and small. Sort both files by key and then paste
them together, and you get a map for the sequence IDs between the small and large data.

With this mapping table we converted one set of score files of the large dataset into the
small data order and submitted for evaluation. Results on the 10% test feedback confirms that
1) there is a large variation of the AUC on the 10% test sample (we saw the same file geting
0.88 AUC on one 10% test sample and 0.79 AUC on another 10% test sample), and 2) the small
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Table 4: AUC results of our final models on KDD Cup test dataset.Winner’s final results are
also listed for comparison.

Dataset Churn Appetency Up-selling Scores

10% 100% 10% 100% 10% 100% 10% 100%
Large (fast) 0.7333 0.7565 0.8705 0.8724 0.9308 0.9025 0.8354 0.8448
Large (slow) 0.7390 0.7614 0.8714 0.8761 0.9023 0.9061 0.8376 0.8479
Small (slow) 0.7612 0.7611 0.8544 0.8765 0.9155 0.9057 0.8437 0.8478
Winner’s fast - 0.7611 - 0.8830 - 0.9038 - 0.8493
Winner’s slow - 0.7651 - 0.8819 - 0.9092 - 0.8520

dataset does not have all the information needed to beat the large dataset. Therefore we stopped
building models on the small dataset and focused on the large dataset only.

4.2 Combine Small and Large

We compared the variables selected from the small dataset and the large dataset, then added
back several variables not present in the model on the large dataset and rebuilt the models on
the large data. To improve the robustness of the model we binned all the top 10 numerical
variables (if they were not discretized in the previous steps) for each task and then added them
back to the variable list. We made 5 iterations of bagging on the final model. The final results
are obtained by averaging the final score from the slow track and the score from the fast track.

4.3 Test of Using Scores from Other Models

As discussed in Section 2, the exclusive nature of the 3 tasks motivated us to incorporate scores
from the other 2 tasks as variables in the 3rd task. We explored this strategy in the appetency
model which has the most imbalanced distribution of target class. We did find a little improve-
ment over the model without using other scores. However, this nested structure complicates the
modeling process: update of the other models then requires the rebuilding of the underlying
model.

5. Results and Discussions
Table 4 lists our final submissions for both the fast track and the slow track. The winner’s
results are also listed for comparison. Looking back to our submission history, we find that we
did submit our best model as final, which confirms the correctness of our model improvement
process. The difference between the 10% test and the 100% test is significant, which is in line
with what we found in our cross validation process. The results on the small dataset are results
of the model built on the large dataset bagged with one set of scores obtained from the real
small data model. It actually decreases the overall performance from 0.8479 to 0.8478. In fact,
all the top teams in the slow track descrambled the small dataset. In our view, the large dataset
has more predictive information than the small.

We tried two other modeling techniques, logistic regression and SVM (Chang and Lin,
2001). Both of them require converting all categorical variables to proper numerical values.
Logistic regression gives slightly worse results than boosted decision tress on same dataset we
prepared. SVM can achieve similar accuracy but with much slower computing speed.
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Comparing our results with the others in the contest, our overall performance ranked second
in the fast track and third in the slow track. Our weakest model comparing with the winner was
Appetency which has the most imbalanced class label. This might be an effect of our aggressive
down-sampling and not enough number of bagging iterations.

In conclusion, we find through our practice that effective variable preprocessing and selec-
tion, proper imbalanced data handling and the combination of bagging and boosting are the
important factors for achieving our results on the KDD Cup 2009 challenge.
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1. Introduction
The KDD Cup 20091 was organised by Orange Labs, France. The data consisted of information
about telecommunication customers, with 15,000 predictor variables. The competition involved
producing binary classifiers for three types of consumer behaviour:

• churn, which is whether someone ceases to be a customer,
• appetency, being the propensity to buy a service or product, and
• upselling, where a more profitable or additional service is sold to a customer.

Competitors were provided with a training set of 50,000 observations, with an additional 50,000
in the test set, which was used by the organisers for model evaluation. The measure for pre-
dictive accuracy was the area under the ROC curve (AUC), which integrates sensitivity over all
possible specificities of the model. The average of the AUC for the three different classifica-
tion tasks was used to rank competitors. A reduced dataset of 230 variables was also available,
which our team did not make use of for our primary entry.

The challenge had a fast component, with predictions for the test data due within 5 days of
the full data being released, and a slow component, where predictions had to be submitted within
5 weeks. IBM Research produced the best model for both components, but as the competition
rules stated that no team could win both parts, The University of Melbourne team won first prize
in the slow component, having the second best model. Table 1 shows the final results for both
IBM research and The University of Melbourne. Our model was based entirely on the large
dataset, making no use of the other smaller dataset provided to competitors.

Table 1: Final model performance for IBM research and The University of Melbourne.

Model
Team Churn Appetency Upselling Average
IBM Research 0.7651 0.8819 0.9092 0.85206
Univ. Melbourne 0.7570 0.8836 0.9048 0.84847

The dataset provided for the KDD Cup 2009 is typical of many contemporary data-mining
problems. There are a large number of observations, which enables many signals to be resolved
through the noise, allowing complex models to be fit. There are also a large number of pre-
dictors, which is common since companies and other organisations are able to collect a large
amount of information regarding customers. However many of these predictors will contain
little or no useful information, so the ability to exclude redundant variables from a final anal-
ysis is important. Many of the predictors have missing values, some are continuous and some
are categorical. Of the categorical predictors, some have a large number of levels with small
exposure; that is, a small number of observations at that level. For the continuous variables,
the distribution among the observations can have extreme values, or may take a small number
of unique values. Further, there is potential for significant interaction between different predic-
tors. Finally, the responses are often highly unbalanced; for instance only 7% of the upselling
observations were labelled “1”. All these factors need to be considered in order to produce a
satisfactory model. Sections 2 to 4 detail the stages of our modelling for the KDD Cup, while
Section 5 makes some comment on the computational resources used.

1. www.kddcup-orange.com
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2. Feature selection
As mentioned in the introduction, many of the predictors were irrelevant for predictive purposes
and thus needed to be excluded. In fact, some variables were absolutely redundant, having the
same entry in all cells. Over 3,000, about 20%, of the variables had either entirely identical
observations, or had fewer than 10 observations different to the baseline, so these were obvious
candidates for removal.

For those features remaining, we assessed the individual predictive power with respect to
the three responses (churn, appetency and upselling). To do this we split the data into two
halves, one to make predictions and the other to measure the resulting AUC, so that the measure
of predictor performance was directly related to the measure used in the competition. For
categorical values, the proportion of positive responses for each level was used as the prediction
that was applied to the second half of the data. For continuous variables we separated the
observations into bins based on 1% quantiles and used the proportion of positive responses for
each quantile bin as the prediction. In both cases missing values were treated as a separate level.
An AUC score could then be calculated for each variable using the second half of the training
data and the process was repeated to increase reliability

The above feature selection technique is very simple; it involves taking the mean of the
responses for each level, and so amounts to a least squares fit on a single categorical variable
against a 0-1 response, with the categories in the continuous case defined by quantiles. Despite
its simplicity, it had a number of advantages:

• Speed: Computing means and quantiles is direct and efficient
• Stability with respect to scale: Extreme values for continuous variables do not skew

predictions as they would in many models, especially linear models, and the results are
invariant under any monotone transformation of the continuous variables. Therefore this
is robust to unusual distribution patterns.

• Comparability between continuous and categorical variables: Predictive performance
of the two types of variables is measured in a similar way and so they are directly com-
parable.

• Accommodation of nonlinearities: Since a mean is estimated for every quantile in the
continuous case, nonlinear dependencies are just as likely to be detected as a linear pat-
tern.

Naturally there were some drawbacks to this approach as well. For instance, by under-
emphasising linear patterns, any genuine linear or nearly linear patterns were less likely to
be detected. Also, the choice of 1% for the quantiles was somewhat arbitrary, but judged to
maintain a reasonable balance between shape flexibility and reliability. Figure 1 shows the
quantile fit for the most important variable in the churn model, as recorded in Table 4, against
the response. Although the fit does exhibit substantial noise when compared to the smoothed
overlay, created using a local kernel regression fit, there remains a strong detectable signal and
the noise is mitigated by testing on a separate portion of the data. It is also noteworthy that this
variable exhibits significant nonlinearity.

This method of feature selection can be considered as a special case of generalised corre-
lation as in Hall and Miller (2009). There the generalised correlation of the jth variable is the
maximum correlation of the response with a nonlinear transformation of that variable:

ρ j = sup
h∈H

cor{h(Xj),Y} ,

where H is the allowable set of nonlinear transformations. When this set has a finite basis
then the choice of h is equivalent to the least squares fit under the basis of H . In our case the
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Figure 1: Quantile and smooth fits for variable V8981 against the churn response.

finite basis was the collection of quantile based indicator functions (in the continuous case), or
indicator functions for each category (for categorical variables). Thus the feature selection may
be thought of as maximising the nonlinear correlation between each variable and the response,
making use of a large number of degrees of freedom, as permitted by the relatively large number
of observations.

The above rankings were reasonably effective in capturing all the interesting behaviour for
the churn and appetency models. However for the upselling model, spurious variables tended to
appear high in the variable ranking. In this case, the list of top variables needed to be adjusted
in the later, more sophisticated modelling stages to produce competitive results.

Figure 2 shows the sorted AUC scores for all the variables using the churn response. The
plot is typical of the three different models, with the bulk of predictors having AUC close
to 0.5, implying no relationship with the response. The dotted line represents our cutoff for
admission into the boosted model of Section 4. The cutoff is reasonably aggressive, but there
did not appear to be much gain in admitting more variables. Even if a more conservative cutoff
was adopted, considering more than the top 2,000 variables for the final model appears to be
unnecessary, so a substantial dimensionality reduction is possible and preferred.

We also compared the results of this feature selection with a F-score based feature selection
method as described in Chen and Lin (2006). In general, agreement was good, although this
alternative method suggested a small number of new variables to also include at the modelling
stage.

3. Treatment of categorical variables with a large number of levels
Many of the categorical variables had a large number of levels—some even having over 10,000—
and some of these ranked high in our feature selection. In many modelling contexts such an
abundance of levels is undesirable, since it encourages overfitting on the small exposure levels.
This is particularly true of decision trees, which we used for building our final models. Another
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Figure 2: AUC scores for feature selection using churn response.

problem is that some levels appear in the training set but not the test set and vice versa. While
some of the levels that had a large exposure were important, the other levels needed aggregation.

Our initial attempt to aggregate was to collapse the levels with less than 1,000 correspond-
ing observations into 20 levels, with grouping based on the response. Thus levels with small
exposure and a large proportion of positive responses were grouped together, while those with
small exposure but lower proportion would be aggregated in a different level. This was the
aggregation we used for the fast part of the challenge. Unfortunately this exacerbated the over-
fitting problem because we were artificially creating good predictors of the training set which
depressed model performance on the test set, so an alternative means of aggregation was neces-
sary.

To prevent this kind of overfitting, our second attempt at aggregation was completed in-
dependently of the response. If a categorical variable had more than 25 levels, we created a
replacement variable by:

• keeping any levels that had at least 1000 observations worth of exposure,
• aggregating any levels with exposure between 500-999 into a new level,
• aggregating any levels with exposure between 250-499 into a new level, and
• aggregating any levels with exposure between 1-250 into a new level.

This removed the overfitting problem. It is not entirely clear whether the aggregating into three
levels based on exposure did in fact provide any improvement compared to using a single level,
although there is some supporting evidence. For instance some variables, such as V14788 and
V14904, had only levels corresponding to the different exposures and were judged significant in
some of our models. Also, Table 2 gives AUC scores on 5-fold cross-validated training set pre-
dictions for our final models using the exposure aggregation compared to a single aggregation.
The churn and appetency models in particular seem to support the exposure based aggregation.
While not conclusive, it is worth noting that if the differences in the table are representative then
not including the exposure levels would have lowered the team’s ranking.
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Table 2: AUC scores comparing aggregation approaches for categorical variables

Model Exposure-based Single level Difference
aggregation

Churn 0.7493 0.7478 0.0015
Appetency 0.8790 0.8784 0.0006
Upselling 0.9062 0.9063 -0.0001

Another advantage of this approach compared to the initial attempt was that the processed
categorical variables were the same across the three consumer behaviours.

4. Modelling with decision trees and boosting
The basic approach for constructing the final models involved the collection of shallow decision
trees with boosting and shrinkage as in gradient boosting machines. Friedman (2001) serves as a
primary reference for this approach; other literature on boosting includes Freund and Schapire
(1997), Ridgeway (1999), Friedman et al. (2000) and Friedman (2002). Decision trees have
been studied for many years, and include the work of Morgan and Sonquist (1963), Breiman
et al. (1984) and Quinlan (1993). The basic principle is to fit a relatively simple tree-based
model many times, each time focusing on the observations that are hardest to classify correctly
by means of a weighting scheme. Bernoulli loss was used to compute the deviance, and the
class weights were chosen so that the two classes had roughly equal weight. For example the
churn model used a weight of 12 for the positive class, to better balance the trees.

Decision trees have a number of advantages which suited this year’s KDD data, in particular.
These are well-known, but worth restating here:

• Predictions are possible even when an important predictor has a missing value, through
the use of surrogate variables.

• They are not affected by extreme values or strange distributions in continuous variables.
In fact, they are invariant under monotone transformations of the predictors.

• They can easily handle both continuous and categorical variables.
• They can effectively model interactions between predictors.
• They allow for nonlinear dependencies.

Model validity was tested both by cross-validation and using the online feedback on the 10%
test sample provided by the organisers. We aimed to build a model using about 200 predictors,
partly for computational reasons and partly because adding extra predictors to our final subsets
did not appear to noticeably improve performance. These variables were chosen on the basis
of the feature selection ranking. However an important part of tuning the models involved
discarding variables that did not appear useful in the model and adding some lower down the
feature selection ranking. Here usefulness refers to the relative amount of deviance (Bernoulli
loss) reduction each variable contributes to the model. Details of the variables used in each
of the models are given in Appendix A. Model parameters for each of the fits are presented in
Table 3. These were selected to maximise the AUC performance, using the test set feedback
and cross-validation.

The final models suggest that there are some significant interactions between predictors in
the models, most strikingly between continuous and categorical variables. Figure 3 shows one
example of this, plotting the partial dependence between the two most important variables in
the appetency model, V9045 and two levels of V14990. Note that this is not the change in the
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Table 3: Model parameters for boosted tree models

Model
Churn Appetency Upselling

Number of variables 198 196 201
Class weight 12 20 12
Shrinkage parameter 0.01 0.01 0.01
Number of trees 1300 1300 3000
Tree depth 5 3 5

response excluding the effect of all the other variables, but rather integrating over them. The
different behaviour in the continuous variable for the different levels is visible.

Figure 3: Partial dependence plots in the appetency model for variables V9045 and two levels
of V14990. The different shapes, particularly for higher values of V9045, suggest
interactions are present.

5. Computational details
The analysis and modelling work was performed almost entirely in the free open source program
R.2 We say “almost”, because the original data chunks were too large to be read into R with our
limited hardware, so it was first read into SAS3 and exported in batches of 200 variables, each
of which could then be read into and then deleted from R.

All modelling was conducted on individual desktop and laptop computers; the computer
that did the most modelling was a mass-market laptop running Windows XP with 2Gb of RAM,
a 2.66GHz Intel Core 2 Duo processor and a 120Gb hard drive. The feature selection and

2. http://cran.r-project.org/
3. http://www.sas.com/
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categorical collapsing was programmed ourselves, while the boosted decision tree used the
“gbm” package, also freely downloadable2.

The feature selection stage took a few hours of computing time for each response, while the
boosted decision tree models typically took just over an hour to fit, depending on the number of
trees and variables involved. This demonstrates that a linux cluster is not necessary to produce
strong predictive results, although the authors suspect it would help; in our case, it would have
enabled more comprehensive investigation of the effect of choices in category collapsing and
feature selection. Interested readers are encouraged to contact the first author regarding any
questions of coding or computation, or with any suggestions and comments.
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Appendix A. Tables relating to final models

Table 4: Relative influence of top 20 variables in final models

Rank Churn Appetency Upselling
Name Rel. Inf. Name Rel. Inf. Name Rel. Inf.

1 V8981 20.13 V9045 23.78 V9045 45.52
2 V14990 10.25 V8032 13.56 V14990 7.86
3 V10533 4.65 V14995 10.79 V8981 5.32
4 V14970 4.60 V14990 6.07 V12507 4.96
5 V5331 2.36 V5826 3.72 V6808 4.65
6 V14995 2.19 V8981 3.23 V1194 2.58
7 V14822 2.10 V10256 3.03 V14970 2.16
8 V9045 2.00 V12641 2.72 V14871 1.33
9 V2570 2.00 V14772 1.72 V1782 1.15
10 V14923 1.88 V14939 1.68 V10256 1.05
11 V14765 1.19 V14867 1.62 V5026 0.96
12 V14904 1.14 V14970 1.42 V8032 0.91
13 V5702 1.13 V11781 1.14 V14786 0.81
14 V11047 1.12 V14871 0.89 V7476 0.62
15 V14778 0.97 V14788 0.86 V11781 0.59
16 V14795 0.90 V13379 0.81 V14795 0.57
17 V990 0.90 V5216 0.71 V6255 0.57
18 V12580 0.86 V14795 0.70 V5216 0.50
19 V9075 0.86 V11315 0.66 V2591 0.50
20 V647 0.85 V12702 0.62 V12641 0.46
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Table 5: Variables used in final models

Churn Appetency Upselling
V47 V5216 V10447 V28 V5723 V11315 V28 V5216 V10136
V173 V5245 V10513 V83 V5808 V11322 V169 V5405 V10256
V384 V5277 V10533 V134 V5826 V11392 V173 V5462 V10402
V559 V5331 V10557 V182 V5873 V11396 V182 V5521 V10443
V621 V5360 V10589 V193 V5899 V11642 V213 V5576 V10521
V635 V5365 V10687 V282 V6003 V11777 V542 V5632 V10538
V647 V5559 V10808 V647 V6016 V11781 V559 V5723 V10687
V698 V5613 V10985 V698 V6238 V11916 V749 V5815 V11051
V706 V5666 V11047 V855 V6310 V12058 V941 V5826 V11083
V724 V5702 V11068 V941 V6424 V12102 V959 V5840 V11092
V749 V5723 V11172 V959 V6468 V12147 V975 V5985 V11115
V843 V5808 V11247 V1026 V6503 V12252 V1004 V6032 V11135
V941 V5820 V11315 V1075 V6565 V12264 V1045 V6228 V11160
V953 V5833 V11322 V1204 V6620 V12321 V1194 V6246 V11196
V990 V5895 V11392 V1275 V6659 V12483 V1362 V6255 V11277
V1036 V5982 V11480 V1476 V6735 V12507 V1376 V6503 V11315
V1095 V6016 V11671 V1514 V6751 V12517 V1596 V6514 V11369
V1227 V6049 V11731 V1543 V6812 V12548 V1623 V6565 V11566
V1254 V6255 V11985 V1596 V6825 V12638 V1782 V6637 V11781
V1392 V6310 V12199 V1969 V7004 V12641 V1853 V6735 V11832
V1428 V6468 V12200 V2120 V7055 V12670 V1925 V6778 V11859
V1501 V6534 V12264 V2157 V7180 V12702 V2095 V6808 V12011
V1565 V6551 V12370 V2284 V7212 V12747 V2120 V6837 V12058
V1604 V6636 V12381 V2334 V7335 V12840 V2157 V6892 V12147
V1996 V6653 V12580 V2352 V7356 V12884 V2249 V6894 V12199
V2284 V6722 V12702 V2413 V7575 V13084 V2321 V7004 V12221
V2315 V7071 V12840 V2418 V7579 V13104 V2434 V7014 V12264
V2370 V7146 V12993 V2453 V7651 V13362 V2453 V7029 V12507
V2450 V7212 V13008 V2531 V7653 V13379 V2531 V7055 V12539
V2453 V7229 V13038 V2544 V7904 V13492 V2591 V7230 V12548
V2456 V7425 V13053 V2591 V7950 V13653 V2849 V7308 V12641
V2570 V7500 V13153 V2715 V7960 V13871 V2852 V7476 V12702
V2773 V7511 V13210 V2822 V8003 V13952 V2890 V7485 V12884
V2822 V7670 V13350 V2849 V8032 V14221 V2892 V7521 V12952
V2852 V7706 V13571 V2852 V8343 V14246 V2985 V7522 V13038
V2961 V7758 V13572 V2966 V8458 V14334 V3128 V7575 V13135
V3080 V7817 V13573 V3000 V8591 V14344 V3219 V7579 V13153
V3104 V7964 V13644 V3128 V8619 V14362 V3305 V7631 V13162
V3264 V8032 V13663 V3130 V8787 V14374 V3487 V7737 V13287
V3305 V8181 V13714 V3199 V8936 V14377 V3558 V7874 V13362
V3339 V8375 V13849 V3202 V8981 V14517 V3568 V7987 V13379
V3439 V8484 V14087 V3219 V9001 V14643 V3711 V8032 V13467
V3508 V8605 V14187 V3249 V9045 V14696 V3962 V8070 V13469
V3515 V8621 V14226 V3305 V9248 V14721 V3999 V8122 V13592
V3624 V8709 V14274 V3339 V9311 V14732 V4048 V8181 V13653
V3719 V8717 V14334 V3704 V9408 V14772 V4075 V8338 V13705
V3759 V8854 V14359 V3719 V9409 V14786 V4221 V8458 V13727
V3766 V8863 V14429 V3759 V9655 V14788 V4316 V8505 V13952
V3886 V8981 V14487 V3863 V9671 V14795 V4566 V8561 V14015
V3905 V9001 V14502 V4186 V9704 V14834 V4585 V8591 V14138
V3972 V9037 V14765 V4248 V10032 V14846 V4614 V8619 V14157
V4028 V9045 V14778 V4340 V10130 V14867 V4659 V8833 V14170
V4088 V9075 V14788 V4347 V10212 V14871 V4665 V8981 V14362
V4098 V9342 V14791 V4585 V10256 V14878 V4686 V9045 V14721
V4218 V9375 V14795 V4590 V10333 V14923 V4735 V9051 V14773
V4389 V9408 V14822 V4614 V10343 V14928 V4802 V9069 V14778
V4393 V9498 V14846 V4665 V10405 V14939 V4856 V9230 V14786
V4563 V9536 V14871 V4902 V10415 V14970 V4996 V9294 V14795
V4669 V9608 V14904 V4957 V10443 V14974 V5021 V9311 V14862
V4735 V9616 V14906 V5026 V10450 V14980 V5026 V9386 V14871
V4856 V9686 V14923 V5065 V10521 V14990 V5053 V9409 V14890
V4986 V9704 V14970 V5185 V10589 V14995 V5065 V9431 V14928
V5025 V9711 V14990 V5213 V10594 V5097 V9574 V14946
V5026 V9799 V14995 V5216 V10739 V5138 V9658 V14965
V5031 V10073 V5405 V10843 V5144 V9708 V14970
V5166 V10183 V5462 V11196 V5182 V9797 V14990
V5170 V10256 V5554 V11247 V5213 V10097 V14995
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Abstract
This paper describes our ensemble of three classifiers for the KDD Cup 2009 challenge. First,
we transform the three binary classification tasks into a joint multi-class classification problem,
and solve an l1-regularized maximum entropy model under the LIBLINEAR framework. Sec-
ond, we propose a heterogeneous base learner, which is capable of handling different types of
features and missing values, and use AdaBoost to improve the base learner. Finally, we adopt
a selective naïve Bayes classifier that automatically groups categorical features and discretizes
numerical ones. The parameters are tuned using cross-validation results rather than the 10%
test results on the competition website. Based on the observation that the three positive labels
are exclusive, we conduct a post-processing step using the linear SVM to jointly adjust the
prediction scores of each classifier on the three tasks. Then, we average these prediction scores
with careful validation to get the final outputs. Our final average AUC on the whole test set is
0.8461, which ranks third place in the slow track of KDD Cup 2009.

Keywords: Heterogeneous large dataset, regularized maximum entropy model, AdaBoost, se-
lective naïve Bayes

1. Introduction
The KDD Cup 2009 challenge1 aims at developing a predictive model for the customer rela-
tionship management. It consists of three tasks: predicting the churn, appetency and up-selling
characteristics of each customer. The dataset is provided by Orange, a French telecom com-
pany. There are two versions of the dataset: the large version contains 15,000 feature variables
and the small version contains only 230. In both versions, there is a training set and a test set,
each containing 50,000 examples. The performance of the predictions is evaluated according
to the area under the ROC curve (AUC). Below we describe some important properties of the
dataset:

1. http://www.kddcup-orange.com/

c�2009 Lo et al.
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1. Many of the features, in particular for the large version, are irrelevant or redundant and
there is a significant amount of missing values.

2. The datasets are heterogeneous. In other words, they contain both numerical and cate-
gorical features. The number of distinct categories varies sharply on different categorical
features. It can range from two to more than ten thousand.

This paper describes our solutions to handle the above challenges. Our approach combines
three classifiers. The first classifier transforms the three binary classification tasks into a single
multi-class classification problem, and solves an l1-regularized maximum entropy model by
coordinate decent under the LIBLINEAR framework. We feed the classifier with pre-processed
features that are constructed by adding categorical indicators and missing indicators and using
both linear and log scaling strategies. The second classifier couples the AdaBoost algorithm
with a heterogeneous base leaner that trains with the original dataset without pre-processing.
The third classifier is a selective naïve Bayes classifier that automatically groups categorical
features and discretizes numerical ones. We also conduct post-processing to adjust the predic-
tion scores across the three tasks. Our final model is composed by averaging the predictions
from the three classifiers.

The next section describes details of our methods. In Section 3, we show the experimental
settings and results. Then, we discuss some other observations and ideas in Section 4, and
conclude in Section 5.

2. Method
In this section, we discuss our feature pre-processing method, three main classifiers, and the
post-processing strategy. We first define the following notations. The training set is (xi,yi)l

i=1,
where xi ∈ Rn is the feature vector and yi ∈ {1,−1} is the class label. The j-th feature of x is
denoted by x j.

2.1 Feature Pre-processing

Some learning models such as boosting can directly deal with heterogeneous data and missing
values. However, some models such as the maximum entropy model assume no missing values
in the data. With a proper pre-processing approach, it is possible to improve not only the test
performance but also the training speed. This section introduces how we handle heterogeneous
data and missing values for the maximum entropy model. The other two classifiers deal with
those issues in different manners, which will be described in the corresponding sections.

2.1.1 FEATURE WITH MISSING VALUES

In the training data, 371 numerical and 243 categorical features contain at least one missing
value. All missing values are filled with zero while we add 371+243 binary features to indicate
the missing status. That is, we add a 0/1 indicator for any feature with at least one missing value.
Experiments show that this strategy improves the test performances considerably. Consider the
linear model with the weight vector w Assume that there is only one feature t with missing
values and we add one feature so the final model looks like ŵT = [wT ŵt ]. Then, the decision
value of any instance x is

ŵT x =

�
wT x+ ŵt , if xt is missing,
wT x, otherwise.
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This is equivalent to setting xt =
ŵt
wt

when xt is missing. In other words, the indicator allows the
linear model to fill in the missing values automatically.

2.1.2 CATEGORICAL FEATURE

We transform each categorical feature to several binary ones. A binary feature corresponds to
a possible value of the categorical feature. This setting induces a large number (111, 670) of
additional features. Furthermore, for numerical features with less than five values, we treat them
as if they are categorical and also add binary indicators for them.

2.1.3 SCALING

We observe that in the training data, features are in quite different ranges. More specifically,
some feature values are extremely large, which not only cause numerical difficulties but also
hurt the classification performance. To tackle this problem, we scale both the training and test
instances. After several experiments, we decide to use both log scaling (scale each value by
the logarithm function) and linear scaling (scale each feature to the range [0,1] linearly) for the
numerical features. Both types of scaled features are included for training and testing.

2.2 Classification

2.2.1 REGULARIZED MAXIMUM ENTROPY MODEL

In the training data, we observe that the positive labels (i.e., yi = 1) for the three tasks (churn, ap-
petency, and upselling) are exclusive. That is, the label of each example falls into the following
four classes:

Label of churn Label of appetency Label of upselling
class 1 1 0 0
class 2 0 1 0
class 3 0 0 1
class 4 0 0 0

This observation inspires us to transform the three independent binary classification tasks into a
joint multi-class classification problem. We then propose the following multi-class l1-regularized
maximum entropy model:

min
w1,...,wk

k

∑
y=1

n

∑
t=1

|wyt |+C log
l

∑
i=1

ewT
ȳi

xi

∑k
y=1 ewT

y xi
, (1)

where k is the number of classes (k = 4 here), and ȳi = {1,2,3,4} indicates the transformed
class of xi. We consider an l1-regularized solver here because it is suitable for noisy datasets.
We choose the maximum entropy model since it delivers the probabilistic interpretation of data.
To predict the probability of a test instance x̄, we use:

p(ȳ|x̄) = ewT
ȳ x̄

∑k
y=1 ewT

y x̄
. (2)

Several techniques are available to solve (1). We use a coordinate descent method under the
LIBLINEAR framework (Fan et al., 2008).
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2.2.2 ADABOOST WITH A HETEROGENEOUS BASE LEARNER

We design a heterogeneous base learner and couple it with AdaBoost (Freund and Schapire,
1997). The advantage of this method is that it does not need to make any assumption on the
values of the missing features. Our proposed base learner combines two different base learners:
a categorical tree classifier and a numerical tree classifier. Figure 1 shows an example of the
numerical and the categorical tree classifiers.

xi > 3.5? or
xi = missing?

−1 +1

(a) Numerical tree classifier

xj = C2?

xj = C4?

+1 −1

+1

(b) Categorical tree classifier

Figure 1: Example of numerical and categorical tree classifiers

Our AdaBoost model utilizes the base learner to form a more accurate predictive model
by calling the learner repeatedly on different distributions over the training instances. At each
iteration, our model searches for all features and selects one (numerical or categorical) feature
to grow a (numerical or categorical) tree. During training, the numerical base learner tries to
identify a threshold of the numerical feature, and the nodes in the categorical tree is branched
according to if a certain category is matched or not. The missing value is also treated as a
category. Furthermore, we have observed that some of the categorical features contain lots of
distinct categories. For example, both the 14,784-th and 14,868-th features in the large version
contain 15,416 distinct categories. The tree classifier trained on these highly-branching features
tends to overfit the data. Thus, we decide to regularize the model complexity of the categorical
tree by setting a parameter B that limits the maximal height of the tree.

Our classifiers select features inherently in the manner of wrapper methods. Nevertheless,
to speed up the training of AdaBoost, we calculate the F-scores of the original features to pre-
select a feature subset from the large version as the actual training inputs.

2.2.3 SELECTIVE NAÏVE BAYES

Another classifier we exploit is the selective naïve Bayes (SNB) (Boullé, 2007). There are three
steps in SNB. First, the Minimum Optimized Description Length criterion is applied to perform
numerical feature value discretization and categorical feature value grouping (Hue and Boullé,
2007). Second, a heuristic search with the MODL criterion is utilized to select a subset of
features. Finally, a naïve Bayes classifier is used to classify the examples.

2.3 Post-processing

As discussed in Subsection 2.2.1, each instance is associated with at most one positive la-
bel among the three tasks (churn, appetency or upselling). Therefore, we decide to add a
post-processing procedure to adjust the classifier’s prediction scores if an instance receives
high scores for more than one task. We exploit a linear support vector machine for the post-
processing. For each classifier, we use the normalized log-transformed prediction scores, the
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entropy of the score (i.e., assuming a multi-class problem with four outcomes) and the predicted
rank within each task as the features. We then build a post-processing model with the actual
label as the target for each task. The adjusted scores are used to form the final ensemble.

3. Experiments
We discuss model selection and present experimental results.

3.1 Model Selection and Analysis of the 10% Testing Data

Machine learning classifiers are sometimes sensitive to parameters. We select them using cross-
validation on the training set. However, prediction results on the 10% test data are worse than
cross-validation results. For example, Table 1 shows that the test AUC is drop notably on two
classifiers (LIBLINEAR and RankLR, which will be described in Section 4.1). As we can submit
various models to the competition website and improve the testing result, we must decide if
fitting the 10% test data is beneficial or not.

We design an experiment with RankLR to analyze the 10% test set:

1. We train a randomly selected subset of 40,000 samples and obtain the weight vector w.

2. Use the w to predict the scores of the test set and submit them to the website to get
AUC(Dtest). Here Dtest denotes the test set.

3. Randomly select 5,000 examples denoted as the set (Dval) from the remaining 10,000
samples for validation and use the same w to calculate AUC(Dval).

4. Repeat step 3 for 1,000 times and obtain 1,000 values of AUC(Dval).

Table 1: AUC Results on the validation set and the website

Churn Appetency Upselling
on validation on website on validation on website on validation on website

RankLR 0.7174 0.6553 0.8367 0.7562 0.8977 0.8753
LIBLINEAR 0.7539 0.6970 0.8706 0.8442 0.9033 0.8735

Figure 2 shows the histogram for the distribution of AUC(Dval) of each task. The vertical
axis indicates the number of times that AUC(Dval) falls into each interval. The website re-
sults AUC(Dtest) of churn, appetency and upselling are the dashed lines in the graph and are
0.6388, 0.7498 and 0.8682, respectively. We see that most AUC(Dval) values are higher than
AUC(Dtest). Thus the 10% test set might be quite different from the rest 90%. Therefore, we
decide not to overfit the 10% test set but use parameters from the cross-validation procedure.
Interestingly, we have learned that such a difference is not as significant for the other classifiers
we have tried, and eventually we did not include RankLR and LIBLINEAR in the final ensemble.

Parameters used in the post-processing stage are also chosen by cross-validation.

3.2 Experimental Results

Our experimental results are summarized in Table 2. We observe that cross-validation AUC on
the training data is similar to the result on the test data, which is released after the competition
ends. Each classifier performs differently on the three tasks and none is apparently superior to
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(a) Churn (b) Appetency

(c) Upselling

Figure 2: Histogram for the distribution of AUC(Dval)

the others. We combine the best two models for each task (according to the cross-validation
results) by averaging the rank of their prediction scores as the merged model shown in Table 2.
We also observe that the performance on the appetency task improves significantly after post-
processing. The merged model with post-processing produces our best result and is selected as
the third place in the slow track of KDD Cup 2009.

Table 2: Performance (AUC) of single classifiers and the merged model using cross-validation
and the test set for the three tasks.

Churn Appetency Upselling
Base Classifier CV Test CV Test CV Test Score

Maximum Entropy 0.7326 0.7428 0.8669 0.8786 0.9001 0.8975 0.8396
Heterogeneous AdaBoost 0.7350 0.7395 0.8660 0.8623 0.9030 0.9021 0.8347

Selective Naïve Bayes 0.7375 0.7428 0.8560 0.8529 0.8593 0.8564 0.8174

Merged Model (w./o. PP) 0.7557 0.8671 0.9036 0.8421
Merged Model (w. PP) 0.7558 0.8789 0.9036 0.8461

The winner of the slow track 0.7570 0.8836 0.9048 0.8484

4. Discussion
In this section, we discuss some other ideas and interesting findings.
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4.1 RankLR

It is known that maximizing AUC is equivalent to maximizing the pair-wise ranking accuracy
(Cortes and Mohri, 2003). We tried Rank-Logistic-Regression (RankLR) which is similar to
RankSVM (Herbrich et al., 2000) but replacing the SVM part by Logistic Regression. Let xi
denote an example with label yi = +1 (positive) and x j denote an example with label y j = −1
(negative). Assume that there are N+ positive examples and N− negative ones. We solve the
following optimization problem.

min
w

E(w) =
1

N+×N−

N+

∑
i=1

N−

∑
j=1

Ei j(w)

where Ei j(w) = log

�
1+ exp

�
−wT (xi − x j)

��
.

We use stochastic gradient descent (Zhang, 2004) which updates the weight vector w by

w ←− w−η∇Ei j(w), where η is the learning rate.

After training, wT x is taken as the scoring function. The results, however, are at best similar to
the maximum entropy model. Hence, we do not include RankLR in the final ensemble.

4.2 Discovery of Missing Patterns

We find that the training and test instances can be categorized into 85 groups according to the
pattern of their missing numerical features. All instances in a group share the same missing
numerical features. The number of instances varies from group to group, and the largest group
contains 13,097 training instances and 13,352 test instances. We can then train and test each
group separately.

Based on this finding, we build a tree-based composite classifier with several group-specific
classifiers. The composite classifier delegates each test instance to its group, and uses the group-
specific classifier to make the prediction. Unfortunately, the performance of this composite
classifier is not significantly better than other classifiers we have tried, and thus this classifier is
not included in the final ensemble.

5. Conclusions
We combine three diverse classifiers and exploit their specialties to carefully design steps that
deal with heterogeneous and partially missing data. We couple categorical and missing fea-
ture expansion with the linear model to fill in the missing values and to choose the numerical
meaning of the categorical values automatically. We combine the heterogeneous information
using AdaBoost with separate categorical and numerical decision trees that handles the miss-
ing values directly. We compress the numerical and the categorical features and discover their
probabilistic relations with the selective naïve Bayes. Furthermore, the observation about the
connections between different tasks are used both in model design and in post-processing. Fi-
nally, overfitting is carefully prevented during the individual training and the post-processing
steps using cross-validation.
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Abstract
We describe the method used in our final submission to KDD Cup 2009 as well as a selection
of promising directions that are generally believed to work well but did not justify our expec-
tations. Our final method consists of a combination of a LogitBoost and an ADTree classifier
with a feature selection method that, as shaped by the experiments we have conducted, have
turned out to be very different from those described in some well-cited surveys. Some methods
that failed include distance, information and dependence measures for feature selection as well
as combination of classifiers over a partitioned feature set. As another main lesson learned, al-
ternating decision trees and LogitBoost outperformed most classifiers for most feature subsets
of the KDD Cup 2009 data.

Keywords: Feature selection, classifier combination, LogitBoost, Alternating Decision Trees.

1. Introduction
The KDD Cup 2009 task targeted for the propensity of customers to switch provider (churn),
buy new products or services (appetency), or buy upgrades or add-ons proposed to them to make
the sale more profitable (up-selling). For 50,000 anonymous customers a small data set of 230
and a large of 15,000 features was provided; in this paper we describe our various successful
and failed attempts mostly over the large data set.

Telephone customer behavior analysis appears less frequently in publications of the data
mining community. Some exceptions include machine learning methods for churn prediction on
real data (evolutionary algorithm, Au et al. (2003); classifier combination by linear regression,
Wei and Chiu (2002); Naive Bayes, Nath and Behara (2003); graph stacking, Csalogány et al.
(2007)). The area is explored in more depth in marketing research including small sample
survey results of Kim and Yoon (2004) and rule extraction and behavior understanding over
a small 21-feature data by Ultsch (2002). Of closest interest, Neslin et al. (2006) present the
overview of a churn classification tournament very similar to the KDD Cup 2009 task but with
emphasis also on managerial meaningfulness and model staying power.

The difference in the KDD Cup 2009 large data set compared to typical classification prob-
lems is the abundance of features. For this end we had prepared feature selection and parti-
tioning methods before the training label release. By the lessons we have learned from Web
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Spam Challenges (Siklósi et al. (2008)), we had expected that feature partitioning and classifier
combination would perform better than global classifiers.

Due to the large number of features it was also clear that feature selection methods are
required. Our best performing methods have turned out to be very different from those described
in some well-cited surveys as e.g. by Dash and Liu (1997): feature evaluation could only be used
for a weak pre-selection while wrapper methods failed due to slow convergence and overfitting.
Our final feature selection method is the union of the best features selected by LogitBoost of
Friedman et al. (2000) over the feature partition that we have originally devised for classifier
combination.

Our classifier implementation choice was mostly determined by the possibilities of the ma-
chine learning toolkit Weka of Witten and Frank (2005) that has wide variety in logistic regres-
sion, decision tree, neural nets mostly considered applicable for churn prediction described e.g.
in Neslin et al. (2006). In addition we tested the SVM implementation of Chang and Lin (2001)
considered most powerful for several classification tasks as well as Latent Dirichlet Allocation,
a dimensionality reduction and generative modeling approach by Blei et al. (2003) that is be-
lieved to work well for skewed features. In our experiments the ultimate method turned out to
be the combination of LogitBoost Friedman et al. (2000) and ADTrees of Freund and Mason
(1999).

Next we describe our method and experimental results in detail including some partial re-
sults that appeared promising but did not perform as expected. In Section 2.1 we describe the
way we partitioned features by their global properties. Then we describe successful and un-
successful attempts first for feature selection (Sections 2.2–2.3), then for classifier ensemble
construction along with the detailed AUC evaluation in Sections 2.4–2.5.

2. Experiments and Results
We describe our experiments, but successful and unsuccessful, over the large data set of KDD
Cup 2009. The sole exception of a small data set experiment is one described in Section 2.2.
As the key step of our final result, we have managed to select a powerful small feature subset
by a LogitBoost based method described in Section 2.3.

An important ingredient of our method consists of an expert partitioning of the feature set
(Section 2.1). While in our initial plans described in Section 2.5, the purpose of this partitioning
was to train separate models and combine them, this approach was outperformed by our final
submissions in Section 2.4. The partitioning however proved useful for our feature selection
procedure in Section 2.3.

For classification we applied Weka implementations with intensive parameter search. In
order to avoid overfitting for the online feedback from the 10% test set, we typically we tested
performance over a random 10% heldout set set aside for method combination and another
10% validation set internal testing.

The heldout and validation sets were fixed once for the entire experiment. These test typi-
cally performed 2-3% better than the on-line feedback but more or less kept the relative order
of the predictors. Note that our final submission consisted of two classifiers combined by tak-
ing the average score. In this case the final training was performed over the entire training set,
including both the heldout and the validation set.

In our experiments we managed to avoid overfitting for the feedback on the 10% test set:
except for a single task (appetency with the difference in the number of LogitBoost iterations)
among all of our submissions, the relative order over the 10% and 100% test set was identical.
Up to now however we are not able to explain why the relative order compared to other teams
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A Cont1000 feature

A DenseExp feature

Another DenseExp feature A NonExp feature Another NonExp feature

Figure 1: The feature partitioning tree obtained by investigating elementary properties, with
some sample histograms. Over the tree the “yes” branch is always on the left side.

have changed; note that over 10% of the large test set our submission performed best with an
AUC score 0.8457 while our final result is behind the winner by 0.0065.

We note that we did not apply feature preprocessing and did not try to capture the interaction
effects between variables. While some internal tests involved cross-validation, due to time con-
straints we used our predefined heldout and validation sets since we observed no inconsistencies
in their predicted performance.

We ran our tests on standalone multicore machines with more than 32GB RAM and a condor
driven cluster of some older dual-core machines. We run in parallel different algorithms on
different machines.

In what follows, in Section 2.1 we describe the expert feature partitioning. In Section 2.2 we
briefly describe unsuccessful attempts for feature selection based on several methods generally
considered effective in the literature as e.g. in the survey of Dash and Liu (1997). Our successful
feature selection procedure is based on the expert partitioning and LogitBoost and is described
in Section 2.3. The final submissions based on the combination of LogitBoost and ADTrees
is found in Section 2.4. Finally in Section 2.5, we describe some unsuccessful attempts and
in particular the most promising one consisting of a large classifier ensemble based on our
expert feature partition. For reference, the parameters used in our procedures are summarized
in Table 3 at the end of the paper.
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2.1 Feature exploration and partitioning

As first step before test set release, we explored feature properties and partitioned the data.
The partition is based on observable properties of the distributions that we have identified in
the attempt of understanding the actual source of the features. Some sample histograms for
a few less obvious classes along with the selection steps are found in Fig. 1. Our motivation
of partitioning stems from our Web spam classifier of Siklósi et al. (2008) where for example
content and link based features are best classified separately with the results combined by e.g.
random forest. Although classification along the same lines as it will be described in Section 2.5
is outperformed by other methods, we used this partitioning for feature selection as described
in Section 2.3.

The rules for defining the feature partition as also seen in Fig. 1 are the following.

Bad: the most frequent or missing value has frequency at least 49500 (10500).

Nomin: nominal with at least 500 non-missing values that is not Bad (269).

BinNum: numeric binary feature that is not Bad (1190).

Missing: numeric with missing values that is not BinNum or Bad (330).

Neg100: numeric with at least 100 negative values that is not Missing or Bad (85).

Cont10000: numeric with continuous range (at least 10,000 distinct values) that is not Missing
or Neg100 (503).

Unbalanced: numeric with the most frequent value appearing at least 48500 times that is nei-
ther Bad, Missing nor Neg100 (540).

DenseExp: numeric with good fit to the exponential distribution that has more than 100 distinct
values and neither Bad, Neg100, Cont10000, Missing or Unbalanced (530).

SparseExp: numeric with good fit to the exponential distribution that has at most 100 distinct
values and neither Bad, Neg100, Cont10000, Missing or Unbalanced (445).

NonExp: numeric that is not Bad, Neg100, Cont10000, Missing, Unbalanced, DenseExp and
SparseExp (587).

2.2 Feature selection

Our first feature selection attempt relied on well known feature evaluation methods such as In-
formation Gain, Gain Ratio, and Chi Squared Probe. These methods turned out to be useful only
as a pre-selection of still a relative large number of features and we have completely dropped
this approach from consideration. Information Gain and Chi Squared Probe tends to overscore
features with many unique values while Gain Ratio that normalizes scores proportional to the
number of unique values tends to overscore features with few unique values. We observed the
following problems with this selection:

• Non-predictive features were selected in a high number.

• The threshold to drop features was generally hard to decide and justify.

• These methods tended to select highly correlated features.

Our second attempt was the classifier-driven approach. One possibility is to start a random
walk in the feature space, starting from a preselected feature set, and at each step choose a
feature to add or drop. The evaluation of every feature set can be made by a given classifier.
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Figure 2: A sample 35,000 feature subset performance selected by our random walk wrapper
method biased towards better AUC over the small data set.

Although this method ran efficiently in our parallel environment, it still took a long time to find
a generally good feature set. In addition in our experiments the method was prone to overfitting:
the difference between the exceptionally best and overall good feature subsets diminished when
we switched between our heldout and validation sets. A sample run over 170 features of the
small data set selected by feature evaluation is shown in Fig. 2.

2.3 The final feature selection procedures

For our final submissions, LogitBoost as feature selection proved to be the most effective
method. For each partition of features from Section 2.1, after preselection by feature evalu-
ation we run LogitBoost of Friedman et al. (2000) with Decision Stump base classifier. This
composite classifier chooses only a few (in our case 10–60) features to build a model. We run
LogitBoost for all partitions of Section 2.1 with the following parameters:

• We used 60 iterations of boosting;

• We used bagging over 90% of the data with 10 iterations;

• We selected the best 10 features; the actual figure varies as LogitBoost tends to select the
best features more than once but bagging yields multiple sets;

• For the largest partition BinNum we selected 40 features instead of 10.

We created our feature set from the union of those selected over the partition. After this pro-
cedure we were left with 75 features for churn, 90 for appetency and 65 for upselling. These
figures reflect the hardness of classifying appetency: in this case there were no real best features
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Figure 3: The measured running time of the LogitBoost implementation of Weka with decision
stump as base classifier, 60 iterations, as the function of the number of features.

and LogitBoost selected the same feature multiple times less often than for the other two tasks.
We remark that these final features still contained 3-4 features with both zero IG and χ2 and
these could have been removed with no performance difference.

One rationale for running feature selection separately for each partition is that the running
time grew superlinearly with the number of features, as seen in Fig. 3. A linear fit to the log-log
plot of the Figure produces a slope of 1.2911. Even without point before the leftmost, which is
probably an outlier, the slope is 1.1338.

Another reason for the expert partitioning of the features is that we could even achieve
marginal improvement (see Table 2 in Section 2.4) over random partitioning. For comparison
we also tested a random partition of about 250-300 features in each set that could fit into single
lower capacity machines of our cluster. Since the number of sets in the partition was large, we
had to iterate selection until only a smaller number of approximately 200 features remained.
Note that this method was also much slower since we could not count on an appropriate group-
ing of the features and we had to keep larger candidate subsets in intermediate steps. For this
reason we did not even compute results for all tasks with this method.

We found that the two methods find almost the same features. We observed that the features
with great imbalance are generally non-predictive: they were only exceptionally selected into
the final feature sets.

We also identified some problems with our LogitBoost-based feature selection method:

• Some discarded features could have been useful for other classifiers—this is a common
problem for classifier driven feature selection.

• Non-predictive features can still be selected, although unlikely.
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Table 1: The AUC value of selected final methods over the test set. LogitBoost with and without
ADTree is trained over the entire training label set and by using the features selected
within each of the partitions of Fig. 1. The last entry consists of the combination of
individual classifiers over this same partition as described in Section 2.5.

churn appetency upselling score
Slow Track Winner (U Melbourne) 0.7570 0.8836 0.9048 0.8484
LogitBoost + ADTree by partition (final) 0.7567 0.8736 0.9065 0.8456
Fast Track Winner (IBM Research) 0.7611 0.8830 0.9038 0.8493
LogitBoost by partition (final fast) 0.7496 0.8683 0.9042 0.8407
Combination LogitBoost 0.7409 0.8561 0.8894 0.8288

• Uneven distribution of predictive features in partitions may cause dropping some of them,
although unlikely.

2.4 The final classifier ensemble

After the feature selection procedure of Section 2.3, over less than a hundred features, we used
LogitBoost of Freund and Mason (1999) with decision stump as base classifier for the fast track
and additionally ADTree classifiers of Friedman et al. (2000) for the slow track. Both classifiers
were used with 10 iterations of bagging over 90% of the data points. Cost matrices improved
performance for appetency only where the optimal false negative to false positive cost ratio
was 30. The actual values were tuned over our predefined 10% heldout set. For a summary of
parameters, see also Table 3.

We summarize our results for the KDD Cup large test set, both 10% and the whole, in
Table 1. Classifiers over the best features selected over our expert partition performed best. The
combination of LogitBoost and ADTree improved performance. Best combination turned out
to be the plain average that constitutes our final submission of AUC 0.8456 ranking sixth in the
competition.

2.5 Combination over the feature partition

In this section we describe our unsuccessful attempt of defining a classifier ensemble over our
expert partition as well as the behavior of the individual feature subsets. We summarize the
results for our 10% heldout and validation sets in Table 2. Note that over these sets the final
ensemble method (top row of Table 2) outperformed LogitBoost on this set, but LogitBoost
trained over the entire set performed better for the Cup test set as seen in Table 1.

For all feature subsets we have tested a variety of Weka classifiers, and libsvm with various
kernels. The top part of Table 2 shows performance by using all features while the bottom part
by using given subsets only. No classifier has managed to outperform LogitBoost for any of the
feature subsets nor did they yield improvement in any combination.

Algorithm 1 Classifier ensemble method.
for all feature subsets do

train models on training - heldout - validation (80%)
tune parameters on the heldout set
compute log-odds for the entire training set∗

end for
combine over the validation set
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Table 2: The AUC value of different classification methods over the whole set (top) and certain
feature subsets (bottom) for the three subtasks.

churn appetency upselling
heldout valid heldout valid heldout valid

Ensemble combin. by LogitBoost 0.7667 0.8537 0.9100
LogitBoost by expert selection 0.7557 0.7649 0.8668 0.8509 0.9122 0.9099
LogitBoost random selection 0.7540 0.7612 0.9064 0.9069
Ensemble log-odds by LogitBoost 0.7583 0.8361 0.9026
Linear SVM 0.6764 0.7026 0.8028 0.7987 0.8845 0.8760
Ensemble combin. by BayesNet 0.7012 0.7905 0.8057
LDA with BayesNet 0.6008 0.6246 0.5995 0.6278 0.7598 0.7539
Churn predictor 0.5995
Missing w/ LogitBoost 0.7232 0.7318 0.8394 0.8217 0.8855 0.8931
NonExp w/ AdaBoost 0.7188 0.7359 0.8551 0.8332 0.8835 0.8815
Nominal w/ LogitBoost 0.6657 0.6696 0.8385 0.7868 0.7623 0.7649
Cont10000 w/ LogitBoost 0.6465 0.6631 0.6564 0.6712 0.7419 0.7474
BinNum 0.6369 0.6187 0.7204 0.7233 0.8016 0.8126
DenseExp w/ LogitBoost 0.6294 0.6473 0.6398 0.6591 0.7251 0.7391
NonExp w/ Bayes 0.6230 0.6531 0.5870 0.6393 0.7330 0.7224

We describe the best performing ensemble combination method in Algorithm 1. The op-
tional line marked with ∗ corresponds to the log-odds based combination proposed by Lynam
et al. (2006). The results correspond to the first and fourth rows of Table 2 that show a sur-
prisingly deteriorated performance of log-odds. In these cases the heldout set was used for
combination and hence results for the validation set are given. Ensemble combination with
BayesNet performed much worse.

In comparison to the ensemble methods, the second and third rows of Table 2 show a single
LogitBoost classifier applied to the features of the two different successful feature selection
methods (Section 2.3). Note that in the final submission, we trained LogitBoost over the entire
test set that changed the relative order of the two methods for the final submissions in Table 1.

Among the individual feature subsets surprisingly those with missing values performed best.
In our guesses these may include responses to questionnaire or call center operators with pre-
dictive value stronger than generated features based on service usage. These were followed
by the “regular” numeric features with non-exponential distribution, the only exception in that
here AdaBoost performed better than LogitBoost. Other classifiers performed much worse for
all subsets.

Global classifiers such as BayesNet of linear SVM performed poor. Latent Dirichlet Al-
location for dimensionality reduction as in Bíró et al. (2009) performed surprisingly weak as
well.

The only successful feature evaluation method, in the sense of Section 2.2, turned out AUC
itself. In this run we passed 95 features with best individual AUC to LogitBoost.

As a final unsuccessful trial we experimented with using training data from one task to
improve prediction for the other. A simplest example is the application of the churn predictor
for appetency in Table 1. The rationale is that a user who churns will not buy upgrades and vice
verse. We have also observed that positive labels were disjoint for the three tasks. We tested
two methods but could not improve our results:
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Table 3: The AUC value of different classification methods over the whole set (top) and certain
feature subsets (bottom) for the three subtasks.

parameter value
iterations, LogitBoost 60
bagging data fraction 90%
bagging iterations 10
final feature set size, churn 75
final feature set size, appetency 90
final feature set size, upselling 65
FN/FP cost ratio, appetency 30

Classifier combination: We used the results of several final and partial classifiers across tasks
in combination. Note that the AUC of one classifier for another task never reached even
close to 0.6 and hence failure is no surprise.

Case weighting: If we classify appetency, those who churn are “more negative” than those
who just do not buy new services. For a decision stump classifier we may introduce three
classes and use a cost matrix with penalties higher for classifying churned customers
positive for appetency than non-churned negatives. In this way decision stump acts as
regression for the outcome 1 for appetency, 0 for no appetency, and a larger negative
value for churn.

Conclusion

In our experiments we observe a clear gain of two classifiers, LogitBoost with decision stump
and ADTrees. LogitBoost also performed well for feature selection. We used a feature partition-
ing method based on statistical properties. The combination of the classifiers over this partition
performed close to best (in some cases even better on our heldout sets) and thus we believe
that a partition relying also on the meaning of the features (e.g. traffic, sociodemographic or
neighborhood based) may outperform the blind anonymous classifiers of the Cup participants.
We also expect the call graph extracted from the call detail record can boost performance via
the graph stacking framework as e.g. in Csalogány et al. (2007).
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Abstract
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1. Introduction
In the following we describe our approach to the “Small Challenge” of the KDD cup 2009. The
task was to predict customer behavior for a mobile phone network provider. While exploring
several classification and regression methods, we focused on tree-based models. Our most
successful approaches were a variant of Logistic Model Trees (Landwehr et al. (2005)) and
boosted decision stumps (Schapire and Singer (2000)).

Our final submission used these classifiers in combination and was ranked 35th in the slow
challenge and was the best solution that did not use data from other data sets to aid classification
(“unscrambling”).

Our team was formed within a student Data Mining lab course at the Chair for Computer
Science 6 of RWTH Aachen University. Eight students took part in the lab.

This paper is organized as follows: We briefly describe the task of the KDD cup 2009 in
Section 2. In Section 3 we explain our preprocessing steps. In Section 4 the classification
methods are described, while the model combination techniques are described in Section 5.
Experimental results are given in Section 6. Finally, conclusions are drawn in Section 7.

2. Task
The task of the KDD cup 2009 was to improve marketing strategies in the context of customer
relationship management using data provided by the French telecom company Orange. Three
binary target variables had to be predicted: Churn (propensity of customers to switch providers),
Appetency (propensity of customers to buy new products or services) and Up-selling (propen-
sity of customers to buy upgrades or add-ons). The challenge was split into a fast and a slow
track. The fast track required predictions to be submitted after 5 days, the slow track lasted for
one month. For the slow track there were two separate data sets with different number of fea-
tures: a small data set with 230 features (190 numerical and 40 categorical) and a large data set
with 15,000 features. Both sets contained 50,000 labeled train instances and 50,000 unlabeled
test instances. We participated in the slow track and used only the small data set.

Neither the feature names nor the values allowed any intuitive interpretation of the data. In
211 out of 230 features values were missing and 18 features contained no values at all. Since
the target classes were disjoint in the training data, we reformulated the classification task as a
four-class problem. Experimental results have shown an average improvement of about 0.015
AUC score compared to performing three binary predictions separately. The class distribution
of the data was imbalanced. Only 16.5% of the training instances were labeled positive in one
of the three classes and 1.8% of the data belonged to the class Appetency.

Evaluation The Area Under the Curve (AUC) was the evaluation criterion of the predicted
ranking. According to Bradley (1997), this ranking measure is defined as the area under the
curve obtained by plotting the specificity against the sensitivity. Sensitivity is the percentage
of correctly classified positives, whereas specificity is the percentage of correctly classified
negatives.

The organizers of the KDD cup provided an opportunity to upload the predicted rankings
during the cup to check performance on 10% of the test data. For internal evaluation and
parameter tuning we split the training data as described in the following section.
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3. Preprocessing
3.1 Cross-validation

The full training set consisting of 50,000 data samples was split into a holdout set of 10,000
samples and a training set of 40,000 samples for internal evaluation. For training and optimiza-
tion we used a 5-fold cross validation. Each fold consisted of 32,000 training and 8,000 test
samples. The AUC score on the test part of the individual folds was averaged and used as eval-
uation criterion. We used the cross validation data to optimize the parameters of the algorithms
and the holdout set to evaluate this parametrization on unseen data.

3.2 Missing Values

A large number of values was missing in the data. 18 features contained no values at all and for
five features only one value was observed. These features were discarded. Among the remaining
207 features only 19 were fully observed. Features with less than 5% of missing values were
handled by inserting the mean or mode for numerical features or the most frequent value for
categorical features. We divided the remaining features into three categories and handled each
category separately.

Selection Criterion To select an adequate method to address the missing values for the fea-
tures with different fractions of missing values, we introduced the following measure: Given
a set of features fi, . . . , fI , let fi be a feature with missing values and Mfi the number of dis-
tinct feature values in fi. Further assume that there are Nfi observations in our data set where
the value of this feature is not missing. Then we define the Missing Value Ratio (MVR) as
Nf /(Mf · (I − 1)), where I is the total number of features. The value of MVR( fi) gives the
average number of samples per possible target value and feature available to predict missing
values in fi. A small value of MVR( fi) indicates that it will be difficult to predict the feature
from the given data. We use the MVR to divide features into three categories. 37 features with
MVR( f ) ≥ 3 belong to category A, 25 features with 1 ≤ MVR( f ) < 3 belong to category B
and the remaining 126 features belong to category C. These thresholds were chosen based on
initial experiments and experience from other tasks. Most features are contained in the category
C. These features cannot be addressed by simple imputation techniques, so we tried different
algorithms to estimate the values as described below.

Imputation Methods Missing values can be treated as a prediction problem, so we formu-
lated the search for the missing values for each category as classification problem or as regres-
sion problem. All samples where the corresponding feature is not missing were used as training
data to impute the values of this feature in the remaining samples. The algorithms we used to
solve this classification or regression task were all parametrized. To optimize these parameters
empirically, we created a development set for each feature. This set contained about 5% of the
data where the particular feature is not missing.
Category A features provided a sufficiently large number of occurrences per value and we clas-
sified their missing values with support vector machines using an RBF kernel and cost penalties
between 1 and 2. Category B and C were imputed by a regression tree implemented in MAT-
LAB. We declared all features with less than ten distinct feature values to be categorical. The
implementation used an entropy split criterion and the minimum number of observations for
splitting a node was set to 200.

For category C features, we additionally used the full information maximum likelihood
method (FIML, Myrtveit et al. (2001)), where the missing values are replaced by estimating
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a normal distribution. To choose between different imputation methods for each feature from
category C we used ranking methods described in Subsection 3.3.

Feature Extraction Beside the features created by the imputation methods described above,
we produced additional features, such as flags for missing values or features describing the
length of the textual values. Class-specific thresholding of features yielded useful binary indi-
cators. For instance, the value of -30 in feature 126 supported Up-selling. While the features
improved the performance of log-linear models and neural networks by up to 10% relative, tree
induction methods were able to find such relations by themselves. We produced 5,318 new fea-
tures in this way. Since most of our classifiers only support numerical input, categorical ones
had to be binarized, resulting in more than 10,000 features in total.

3.3 Feature Selection

In order to build feature sets with a high predictive potential we analyzed correlation matri-
ces, performed forward selection and backward elimination of features, and implemented two
ranking algorithms to create class-specific feature sets.

For one, we used a ranking based on information gain ratio (Quinlan (1986)) in order to find
most relevant features. In addition, we used the likelihood-ratio test (Duda et al. (2000)) as a
ranking criterion. We only looked at features with a class-dependent support of more than 100
within the first cross-validation fold. The value of -30 in feature 126 mentioned above given
the Up-selling class label had the highest likelihood-ratio. Although this approach led to good
binary features, the tree-based learning algorithms described in Section 4 were able to extract
those indicators automatically.

With these selection techniques we produced a feature set consisting of the 206 features
from the original set described above with imputed missing values and additionally a selection
of highly ranked features. In the following this set will be denoted by XO , while the same
features without imputation of missing values will be denoted by XM .

4. Modeling
Given the setup described in Section 3 we evaluated the performance of various standard clas-
sifiers. This included parameter optimization as well as the selection of an appropriate set of
features and preprocessing steps for each classifier. We briefly describe the used classifiers in
this section.

4.1 MLP

One of our first experiments on the KDD cup 2009 task was done using multilayer perceptrons
(MLP) implemented in the Netlab (Nabney (2001)) toolbox with GNU Octave. The MLPs
provided one input node for each feature, one layer of hidden nodes and four output nodes, one
for each class. Using the logistic activation function in the nodes, the MLPs were trained with
different numbers of hidden nodes and training iterations. Due to the nature of the nonconvex
optimization problem and random initialization of the weights, 10 runs with identical parameter
sets were made in order to find different local optima. Subsequently, the outputs of these runs
were averaged class-wise to construct the final outputs.
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4.2 SVM

Several methods to incorporate the AUC as an optimization criterion in SVMs have been pro-
posed with implementations available online. We used SVMperf (Joachims (2005)), an imple-
mentation that can optimize a number of multivariate performance measures including AUC.
Due to the large amount of generated features all experiments were done using a linear kernel.

4.3 LMT

We used our own implementation of the Logistic Model Tree (LMT) (Landwehr et al. (2005)),
which is available for free download on the website of our chair1. In this algorithm a tree is
grown similar to the C4.5 approach where each node estimates a LogitBoost model (Friedman
et al. (1998)) on the assigned data, i.e. it performs an iterative training of additive logistic re-
gression models. At each split, the logistic regressions of the parent node are passed to the child
nodes. The final model in the leaf nodes accumulates all parent models and creates probability
estimates for each class. After growing the whole tree, pruning was applied to simplify the
model and to increase the generalization capability.

The LogitBoost algorithm creates an additive model of least-squares fits to the given data
for each class c, which has the following form:

Lc(x) = β0 +
F

∑
i=1

βixi

where F is the number of features and βi is the coefficient of the ith component in the observa-
tion vector x. The posterior probabilities in the leaf nodes can then be computed by the method
of linear logistic regression (Landwehr et al. (2005)):

p(c|x) = exp(Lc(x))
∑C

c�=1 exp(Lc�(x))

where C is the number of classes and the least-squares fits Lc(x) are transformed in a way that
∑C

c=1 Lc(x) = 0.
For the task of the KDD cup 2009 we modified the algorithm to use AUC as split criterion.

Ferri et al. (2003) introduced the AUC split criterion for decision trees, where each leaf is
labeled by one class. Each possible labeling corresponds to one point on the curve obtained by
plotting the specificity against the sensitivity. The search for a split point then corresponds to
finding an optimal labeling of the resulting leaves. This can be done efficiently, as shown by
Ferri et al. (2002): Let Nc

l be the number of training examples in leaf l assigned to class c. For
each pair of classes ci and c j, i �= j, we define the local accuracy (LA) in leaf l as:

LAl(ci,c j) =
Nci

l

Nci
l +Nc j

l

Given the two classes ci, c j and a possible split point S with the corresponding leaves lleft
and lright, we calculate the LA for each leaf and sort them by this value in decreasing order.
According to Ferri et al. (2003), this ordering creates the path of labelings on the curve obtained
by plotting the specificity against the sensitivity. Finally the metric defined by Ferri et al. (2002)
is used to compute the AUC:

AUCS(ci,c j) =
1

2QR

�
Nci

1 Nc j
1 +Nci

2 (2Nc j
1 +Nc j

2 )
�

(1)

1. http://www-i6.informatik.rwth-aachen.de/web/Teaching/LabCourses/DMC/lmt.
html
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where Q = Nci
1 +Nci

2 and R = Nc j
1 +Nc j

2 . We select the split point that maximizes Eq. (1) aver-
aged over all class pairs. Our implementation of the LMT supported only numerical features,
so each split always generated two child nodes and there were no leaves which did not contain
any observation. Therefore, Eq. (1) considers only the two distinct labelings of these two child
nodes, while Ferri et al. (2002) give a general form of this equation.

To increase the generalization ability of the model, pruning was applied to the fully grown
tree. We used a two fold cross validation within the tree to calculate the pruning values for
each node. The pruning procedure originally calculated the pruning value for a node based on
the tree error of its subtrees. For this purpose the tree is grown using one fold of the internal
cross validation. Then the corresponding test set is evaluated and each node saves the number
of samples misclassified by its LogitBoost model as local error EL. If v is a node of the LMT
and vleft and vright are its child nodes, the tree error ET of v is EL(v) if v is a leaf and ET (vleft)+
ET (vright) otherwise.

Finally, the pruning values are calculated by the ratio of the local error and the tree error in
a node. This was modified for the AUC criterion, but we did not observe an improvement using
this pruning procedure. Unpruned trees with about 7,500 observations in each leaf also led to
comparable results to pruned trees, as shown in Section 6. The computational complexity of
building a logistic regression model is quadratic in the number of features F . The complexity
of building an LMT is O(NF2d+v2), where N denotes the number of training samples, d is the
depth of the tree, and v the number of nodes in the unpruned tree. Note that the internal K-fold
cross-validation generates a large constant factor in the complexity, such that training unpruned
trees is about K times faster.

4.4 Boosted Decision Stumps

Since boosting and tree induction methods performed well on the given task, we also made
experiments with boosted decision stumps. For this purpose we used BoosTexter, which was
developed for text categorization and is a particular implementation of the AdaBoost algorithm
(Freund and Schapire (1999)) with decision stumps as weak learners. In our experiments we
used the Adaboost.MH version of the algorithm. For categorical features, the weak learners
pose simple “questions” whether the given feature value occurs in the sample or not. As in the
LMT, numerical features are thresholded by a split point. Missing values are ignored in this
procedure. For each split point we compute weights W lc

+ and W lc
− for each class c and leaf l

generated by that split, where + and − indicate whether the observations in leaf l belong to
class c or not according to these weights. As usual, the computation is based on the distribution
estimated by the boosting procedure (Eq. (4) in Schapire and Singer (2000)). Given these
weights, we select the split point minimizing 2∑l ∑C

c=1

�
W lc

+ W lc
− , where C is the number of

classes. For details and other versions of the AdaBoost algorithm implemented in BoosTexter,
see Schapire and Singer (2000).

The algorithm creates a ranked scoring of the classes for a given test sample. The absolute
value of this score can be interpreted as unnormalized “confidence“ measure of the prediction.
A negative score indicates that the sample does not belong to the specific class.

In our experiments we used a reimplementation called icsiboost2. The implementation is
able to handle categorical features, numerical features, and missing values in the weak learners
as described above. The AUC evaluation could directly be applied to the class scores produced
by the implementation, but for the combination methods described in Section 5 we normalized
them to obtain posterior probabilities. Therefore, a sigmoid function is fit to the resulting scores.
Let m be the number of iterations performed during training and score(x,c) the output of the

2. http://code.google.com/p/icsiboost

76



LOGISTIC MODEL TREES WITH AUC SPLIT CRITERION FOR THE KDD CUP 2009

classification procedure for the test sample x and class c. Then the posterior probability defined
by Niculescu-Mizil and Caruana (2005) is given by

p(c|x) =
�
1+ exp

�
−2m · score(x,c)

��−1

Boosted decision stumps performed best on all 206 features described in Section 3 with
no further preprocessing and a selection of binary features (see Section 6 for details). After
about 25 iterations the AUC converged, while the test error still decreased. A direct optimiza-
tion on AUC was not implemented. The algorithm can be implemented with a time-per-round
complexity of O(NC), so it is linear in the number of classes C and training samples N.

5. Combinations
We combined the approaches described in Section 4 to improve the overall result. Simple
accumulation of multiple predictions showed no improvements in performance compared to
the results obtained by boosted decision stumps. Thus we implemented two other combination
methods, which are presented in this section.

Rank combination In order to aggregate different models, we transformed their output into
a new ranking r(c|x). We first assumed that the predictions obtained from a certain classifier k
for an observation x and class c could be interpreted as posterior probabilities pk(c|x). While
this is not true for e.g. SVMs, it enabled us to compute the average of posteriors as a baseline
for classifier combination.

The posteriors can also be interpreted as votes for a relative ranking. pk(c|x) > pk(c|y)
would indicate one vote for x to be ranked higher than y. By counting all votes and normalizing
for each classifier we can derive a total ranking by accumulating all votes for each observation
x:

rvote(c|x) =
1
|K| ∑k

1
Zk

∑
y

δ
�

pk(c|x)− pk(c|y)
�

where Zk is a normalization constant so that maxx 1/Zk ∑y δ
�

pk(c|x)− pk(c|y)
�
= 1 and δ (x) is

1 if x > 0 and 0 otherwise. The normalization is needed to give equal influence to each classifier
and not to penalize predictions with few distinct values. Both of the methods described above
can be extended to a weighted linear combination by using a weight wk for each classifier k. We
implemented a general gradient descent and the downhill simplex method by Nelder and Mead
(1965) to optimize the weights wk with respect to the AUC evaluation criterion.

Stacking As further combination approach we used the outputs of one classifier as features
for another classifier (Smyth and Wolpert (1999)). We created stacking features from boosted
decision stumps described in Section 4. With these features we were able to improve the raw
results of boosted decision stumps with an LMT, which is presented in the next section. In
the following, the feature set XO extended by these additional stacking features will be denoted
as XS .

6. Results
All results were averaged over all folds of our 5-fold cross validation. The feature sets were
optimized for each classifier. Table 4 shows the comparison of their performance on a common
feature set.

77



DOETSCH ET AL.

Table 1: AUC scores of boosted decision stumps on the XM set

Features Missing values Appetency Churn Up-selling
original imputation methods 0.7928 0.6389 0.8401
original internal handling 0.8013 0.6758 0.8503
original + binary imputation methods 0.7913 0.6452 0.8425
original + binary internal handling 0.8024 0.6945 0.8538

Table 2: AUC scores of Logistic Model Trees on the XO set

Features Configuration Appetency Churn Up-selling Average

original

entropy 0.7578 0.6857 0.7565 0.7333
entropy + pruning 0.7595 0.6894 0.7555 0.7348
AUC 0.7564 0.6834 0.8443 0.7614
AUC + pruning 0.7844 0.6803 0.8417 0.7688

MLP As described in Section 4, one of our first attempts were MLPs. The number of hidden
nodes and number of iterations maximizing the average AUC for all classes and folds were
found by grid search. The highest AUC score for Appetency was achieved with 100, for Churn
with 300, and for Up-selling with 500 hidden nodes. This behavior indicates different complex-
ities for the classification on each separate class. The best result with an AUC score of 0.78 was
achieved on the data set XO with a selection of binary features. Therefore, MLPs were discarded
as a single approach for the KDD cup 2009 task.

Boosted decision stumps As starting point for the best of our final submissions we used
boosted decision stumps, described in Section 4. In the experiments presented in Table 1 we
declared all features with less than 10 distinct values as categorical and performed 25 boosting
iterations. In our first attempt we did not apply any missing value imputation methods, since
the algorithm is able to handle them internally. We repeated the experiment with the same
feature set, but missing values were imputed by the techniques described in Section 3. Table 1
shows the class-specific results. Furthermore, we found binary features as described in Section
3 which were able to improve the resulting AUC.

Table 1 shows that the internal handling of missing values outperforms our imputation
method. As described in Section 4, the missing values are simply ignored in the split point
search of the weak learners. So our imputed values often belong to the wrong partitions ob-
tained by these splits. The binary features mainly improved the results of Churn and Up-selling.
Since these features indicate particular values of numerical features, they were not considered
by the decision stumps.

LMT Based on the predictions by boosted decision stumps we generated stacking features as
described in Section 5 and appended them to the XM set used in the boosted decision stumps
to create the XS set. In our experiments, the LMT was the only classifier that could benefit
from the stacking features. All experiments in Table 2 and 3 were done using 50 LogitBoost
iterations and splitting only was applied to nodes with at least 7,500 observations. The Tables 2
and 3 compare the entropy split criterion to the AUC split criterion described in Section 4 and
show the effect of pruning in this task. To show the benefit of the stacked feature set XS , we
additionally applied the algorithm to the original features XO .

Notice that pruning had a low impact on the resulting AUC when applied to the XO feature
set. Many tree induction methods were suitable to the given problem. Since the stacked fea-
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Table 3: AUC scores of Logistic Model Trees on the XS set

Features Configuration Appetency Churn Up-selling Average

stacked

entropy 0.7096 0.6730 0.8090 0.7305
entropy + pruning 0.7950 0.7037 0.8457 0.7815
AUC 0.7652 0.6938 0.8349 0.7646
AUC + pruning 0.8050 0.7037 0.8557 0.7881

Table 4: Comparison of classifiers on a common feature set of 399 numerical features, sorted
by averaged AUC score

Classifier Appetency Churn Up-selling Score
Boosted decision stumps 0.8172 0.7254 0.8488 0.7971
LMT 0.8176 0.7161 0.8450 0.7929
MLP 0.8175 0.7049 0.7741 0.7655
SVMPerf 0.8102 0.7000 0.7495 0.7532

tures were better than any other subset of the XO features, the tree growing procedure tend to
split only on the XS features in the first levels. Therefore, pruning indeed increased the gener-
alization performance of the model and led to improved results. Trees with an entropy based
split criterion resulted in degenerated trees, while trees with the AUC split criterion produced
balanced tree structures. Especially on Up-selling, these balanced tree structures yielded an
improvement. While on the XO data set the difference to the entropy criterion was rather small,
a benefit could be observed when applied to the XS feature set.

In the presented experiments the feature sets were selected separately for each classifier.
To isolate the classification performance from the effect of the feature selection, we conducted
experiments on a common feature set. Table 4 shows the results on this data.

Combination Methods Finally, we combined results from different models, which produced
our second best result. In the presented experiments we combined the predictions of four clas-
sifiers. In particular, boosted decision stumps, an MLP, an SVM, and an LMT were passed to
the algorithm. The results obtained by the individual classifiers are shown in Table 4. With the
Downhill-Simplex method an average AUC of 0.8018 was achieved on the common feature set,
which is an improvement of +0.0047 compared to the boosted decision stumps. The weighted
posteriors described in Section 5 were able to improve the result of boosted decision stumps by
+0.0054 with an average AUC score of 0.8025. Further results are presented in Table 5.

Table 5: Combination of boosted decision stumps, MLP, SVM and LMT on a common feature
set of 399 numerical features, sorted by averaged AUC score

Combination method Appetency Churn Up-selling Score
combined posteriors 0.8263 0.7283 0.8355 0.7967
combined votes 0.8246 0.7285 0.8344 0.7958
weighted posteriors 0.8242 0.7325 0.8507 0.8025
weighted votes 0.8225 0.7331 0.8516 0.8024
Downhill-Simplex 0.8256 0.7306 0.8493 0.8018
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Table 6: Winners of the KDD cup 2009

Rank Team Name Appetency Churn Up-selling Score
Fast track

1 IBM Research 0.8830 0.7611 0.9038 0.8493
2 ID Analytics, Inc 0.8724 0.7565 0.9056 0.8448
3 David Slate, Peter W. Frey 0.8740 0.7541 0.9050 0.8443

Slow track
1 IBM Research 0.8819 0.7651 0.9092 0.8521
2 Uni Melb 0.8836 0.7570 0.9048 0.8484
3 ID Analytics, Inc 0.8761 0.7614 0.9061 0.8479
35 RWTH Aachen 0.8268 0.7359 0.8615 0.8081

7. Conclusions
As part of a Data Mining lab course at the Chair of Computer Science 6 of RWTH Aachen
University, we participated in the “Small Challenge” of the KDD cup 2009. The task was the
prediction of three aspects of customer behavior: Churn, Appetency and Up-Selling. In our
submission, we restricted ourselves to the provided feature set and did not use additional data
from other tracks.

Given the large amount of missing values in the data, techniques for handling missing values
were important in this task. While imputation methods are helpful and can improve results, our
experiments showed that tree-based methods are more capable of handling or ignoring missing
values. Our most successful method was a Logistic Model Tree with AUC as split criterion
using predictions from boosted decision stumps as features. With the final AUC score of 0.8081,
this was the best submission for the “Small Challenge” of the KDD cup 2009 that did not use
additional data from other feature sets. It was ranked 35th among 89 submissions for this track.
A second approach using an AUC-optimized weighted linear combination of several rankings
scored slightly worse with an average AUC of 0.8074. The final results of the competition are
summarized in Table 6.
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Abstract
With imbalanced data a classifier built using all of the data has the tendency to ignore the mi-
nority class. To overcome this problem, we propose to use an ensemble classifier constructed
on the basis of a large number of relatively small and balanced subsets, where representatives
from both patterns are to be selected randomly. As an outcome, the system produces the ma-
trix of linear regression coefficients whose rows represent the random subsets and the columns
represent the features. Based on this matrix, we make an assessment of how stable the influ-
ence of a particular feature is. It is proposed to keep in the model only features with stable
influence. The final model represents an average of the base-learners, which is not necessarily
a linear regression. Proper data pre-processing is very important for the effectiveness of the
whole system, and it is proposed to reduce the original data to the most simple binary sparse
format, which is particularly convenient for the construction of decision trees. As a result, any
particular feature will be represented by several binary variables or bins, which are absolutely
equivalent in terms of data structure. This property is very important and may be used for fea-
ture selection. The proposed method exploits not only contributions of particular variables to
the base-learners, but also the diversity of such contributions. Test results against KDD-2009
competition datasets are presented.

Keywords: ensemble classifier, gradient-based optimisation, boosting, random forests, deci-
sion trees, matrix factorisation

1. Introduction
Ensemble (including voting and averaged) classifiers are learning algorithms that construct a
set of many individual classifiers (called base-learners) and combine them to classify test data
points by sample average. It is now well-known that ensembles are often much more accurate
than the base-learners that make them up (Biau et al., 2007). The tree ensemble called “random
forests” (RF) was introduced in (Breiman, 2001) and represents an example of a successful
classifier. In another example, the bagged version of the support vector machine (SVM) (Zhang
et al., 2007) is very important because direct application of the SVM to the whole data set may
not be possible. In the case of the SVM, the dimension of the kernel matrix is equal to the
sample size, which thus needs to be limited.

c�2009 Vladimir Nikulin and Geoffrey J. McLachlan
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Our approach was motivated by (Breiman, 1996), and represents a compromise between two
major considerations. On the one hand, we would like to deal with balanced data. On the other
hand, we wish to exploit all available information. We consider a large number n of balanced
subsets of available data where any single subset includes two parts (a) nearly all ‘positive’
instances (minority) and (b) randomly selected ‘negative’ instances. The method of balanced
random sets (RS) is general and may be used in conjunction with different base-learners.

Regularised linear regression (RLR) represents the most simple example of a decision func-
tion. Combined with quadratic loss function it has an essential advantage: using a gradient-
based search procedure we can optimise the value of the step size. Consequently, we will
observe a rapid decline in the target function.

By definition, regression coefficients may be regarded as natural measurements of influence
of the corresponding features. In our case we have n vectors of regression coefficients, and we
can use them to investigate the stability of the particular coefficients.

Proper feature selection (FS) may reduce overfitting significantly. We remove features with
unstable coefficients, and recompute the classifiers. Note that stability of the coefficients may
be measured using different methods. For example, we can apply the t-statistic given by the
ratio of the mean to the standard deviation (Nikulin, 2008).

Matrix factorisation, an unsupervised learning method, is widely used to study the structure
of the data when no specific response variable is specified. In principle, it would be better
to describe the data in terms of a small number of meta-features, derived as a result of matrix
factorisation, which could reduce noise while still capturing the essential features of the data. In
addition, latent factor models are generally effective at estimating overall structure that relates
simultaneously to most or all items.

Note that the methods for non-negative matrix factorisation (NMF) which were introduced
in (Lee and Seung, 2001) are valid only under the condition that all the elements of all input
and output matrices are non-negative. In Section 3.4 we formulate a general method for matrix
factorisation, which is significantly faster compared with NMF. Note also that some interesting
and relevant ideas for the stochastic gradient descent algorithm were motivated by methods used
in the well-known Netflix Cup; see, for example, (Paterek, 2007).

The proposed approach is flexible. We do not expect that a single specification will work
optimally on all conceivable applications and, therefore, an opportunity of tuning and tailoring
the algorithm is important.

Results which were obtained during the KDD-2009 Data Mining Competition are presented.

2. Task Description
The KDD Cup 20091 offered the opportunity to work on large marketing databases from the
French Telecom company Orange to predict the propensity of customers to switch provider
(churn), buy new products or services (appetency), or buy upgrades or add-ons proposed to
them to make the sale more profitable (up-selling).

Churn (Wikipedia definition) is a measure of the number of individuals or items moving
into or out of a collection over a specific period of time. The term is used in many contexts, but
is, most widely, applied in business with respect to a contractual customer base. For instance,
it is an important factor for any business with a subscriber-based service model, including mo-
bile telephone networks and pay TV operators. The term is also used to refer to participant
turnover in peer-to-peer networks. Appetency is the propensity to buy a service or a product.
Up-selling (Wikipedia definition) is a sales technique whereby a salesman attempts to have the

1. http://www.kddcup-orange.com/
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customer purchase more expensive items, upgrades, or other add-ons in an attempt to make a
more profitable sale. Up-selling usually involves marketing more profitable services or prod-
ucts, but up-selling can also be simply exposing the customer to other options that he or she may
not have considered previously. Up-selling can imply selling something additional, or selling
something that is more profitable or, otherwise, preferable for the seller instead of the original
sale.

Customer Relationship Management (CRM) is a key element of modern marketing strate-
gies. The most practical way in a CRM system to build knowledge on customer is to produce
scores. The score (the output of a model) is computed using input variables which describe
instances. Scores are then used by the information system (IS), for example, to personalize
the customer relationship. There is also an industrial customer analysis platform able to build
prediction models with a very large number of input variables (known as explanatory variables
or features).

Generally, all features may be divided into two main parts: primary (collected directly from
the customer) and secondary, which may be computed as a functions of primary features or
may be extracted from other databases according to the primary features. Usually, the number
of primary features is rather small (from 10 to 100). On the other hand, the number of secondary
features may be huge (up to a few thousands). In most cases, proper design of the secondary
features requires deep understanding of the most important primary features.

The rapid and robust detection of the features that have most contributed to the output pre-
diction can be a key factor in a marketing applications. Time efficiency is often a crucial point,
because marketing patterns have a dynamic nature and in a few days time it will be necessary
to recompute parameters of the model using fresh data. Therefore, part of the competition was
to test the ability of the participants to deliver solutions quickly.

3. Main Models
Let X=(xt ,yt) , t = 1, . . . ,n, be a training sample of observations where xt ∈R� is �-dimensional
vector of features, and yt is binary label: yt ∈ {−1,1}. Boldface letters denote vector-columns,
whose components are labelled using a normal typeface.

In supervised classification algorithms, a classifier is trained with all the labelled training
data and used to predict the class labels of unseen test data. In other words, the label yt may be
hidden, and the task is to estimate it using vector of features. Let us consider the most simple
linear decision function

ut = u(xt) =
�

∑
j=1

w j · xt j +b,

where wi are weight coefficients and b is a bias term.
We used AUC as an evaluation criterion, where AUC is the area under the receiver operating

curve. By definition, ROC is a graphical plot of true positive rates against false positive rates.

3.1 RLR Model

Let us consider the most basic quadratic minimization model with the following target function:

L(w) = Ω(φ ,n,w)+
n

∑
t=1

ξt · (yt −ut)
2 , (1)

where Ω(φ ,n,w) = φ ·n ·�w�2 is a regularization term with ridge parameter φ ; the ξt are non-
negative weight coefficients.
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Remark 1 The aim of the regularization term with parameter φ is to reduce the difference
between training and test results. Value of φ may be optimized using cross-validation; see Mol
et al. (2009) for more details.

3.1.1 GRADIENT-BASED OPTIMISATION

The direction of the steepest decent is defined by the gradient vector

g(w) = {g j(w), j = 1, . . . ,�},

where

g j(w) =
∂L(w)

∂w j
= 2φ ·n ·w j −2

n

∑
t=1

xt jξt (yt −ut) .

Initial values of the linear coefficients wi and the bias parameter b may be arbitrary. Then,
we recompute the coefficients by

w(k+1) = w(k) +δk ·g(w(k)), b(k+1) = b(k) +
1
n

n

∑
t=1

ξt · (yt −ut),

where k is the iteration number. Minimizing (1), we find the size of the step according to the
formula

δ =
L1 −L2 −φ ·n∑�

j=1 w jg j

∑n
t=1 ξt s2

t +φ ·n∑�
j=1 g2

j
,

where

L1 =
n

∑
t=1

ξt styt , L2 =
n

∑
t=1

ξt stut , st =
�

∑
j=1

xt jg j.

3.2 Random Sets

According to the proposed method, we consider large number of classifiers, where any particu-
lar classifier is based on a relatively balanced subset with randomly selected (without replace-
ment) ‘positive’ and ‘negative’ instances. The final decision function was calculated as the
sample average of the single decision functions or base-learners.

Definition 2 We refer to the above subsets as random sets RS(α,β ,m), where α is the number
of positive cases, β is the number of negative cases, and m is the total number of random sets.

This model includes two very important regulation parameters: m and q = α
β ≤ 1, where q

is the proportion of positive to negative cases. In practice, m must be big enough, and q can not
be too small.

We consider m subsets of X with α positive and β = k ·α negative data-instances, where
k ≥ 1,q = 1

k . Using gradient-based optimization (see Section 3.1.1), we can compute the matrix
of linear regression coefficients: W = {wi j, i = 1, . . . ,m, j = 0, . . . ,�}.

3.3 Mean-Variance Filtering

The mean-variance filtering (MVF) technique was introduced in (Nikulin, 2006), and can be
used to reduce overfitting. Using the following ratios, we can measure stability of the contribu-
tions of the particular features by

r j =
|µ j|
λ j

, j = 1, . . . ,�, (2)
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Figure 1: MVF, ratios (2): (a-b) Churn, (c-d) Appetency and (e-f) Upselling. In order to im-
prove visibility, we displayed two fragments (out of 9586) with 500 ratios each.

where µ j and λ j are the mean and standard deviation corresponding to the j-column of the
matrix W .

A low value of r j indicates that the influence of the jth binary secondary feature is not
stable. We conducted feature selection according to the condition: r j ≥ γ > 0. The sum of the
r j corresponding to the original feature f will give us a stability rating for the feature f .

3.4 Learning from the Test Data with Matrix Factorisation

Unlike classification and regression, matrix decomposition requires no response variable and
thus falls into the category of unsupervised learning methods. Using this fact as a motivation,
we can merge training and test datasets into one matrix X+. There are possible differences
between training and test sets, and we can expect that the matrix factorisation will be able to
smooth such differences.

In this section, we describe the procedure for undertaking the matrix factorisation,

X+ ∼ AB, (3)

where matrices A = {ai f , i = 1, . . . ,2n, f = 1, . . . ,k,} and B = {b f j, f = 1, . . . ,k, j = 1, . . . ,�}.
After the factorisation, the first n rows of the matrix A will used for training and the last n rows
will be used for testing.

The matrix factorisation represents a gradient-based optimisation process with the objective
to minimise the following squared loss function,

L(A,B) = 1
2n · �

2n

∑
i=1

�

∑
j=1

E2
i j, (4)
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Algorithm 1 Matrix factorisation.
1: Input: X+ - dataset.
2: Select ν - number of global iterations; k - number of factors; λ > 0 - learning rate, 0< τ < 1

- correction rate, LS - initial value of the target function.
3: Initial matrices A and B may be generated randomly.
4: Global cycle: repeat ν times the following steps 5 - 17:
5: samples-cycle: for i = 1 to 2n repeat steps 6 - 17:
6: features-cycle: for j = 1 to � repeat steps 7 - 17:
7: compute prediction S = ∑k

f=1 ai f b f j;
8: compute error of prediction: E = xi j −S;
9: internal factors-cycle: for f = 1 to k repeat steps 10 - 17:

10: compute α = ai f b f j;
11: update ai f ⇐ ai f +λ ·E ·b f j (see (5a));
12: E ⇐ E +α −ai f b f j;
13: compute α = ai f b f j;
14: update b f j ⇐ b f j +λ ·E ·ai f (see (5b));
15: E ⇐ E +α −ai f b f j;
16: compute L = L(A,B);
17: LS = L if L < LS, and λ ⇐ λ · τ, otherwise.
18: Output: A and B - matrices of latent factors.

where Ei j = xi j −∑k
f=1 ai f b f j.

The above target function (4) includes in total k(2n+ �) regulation parameters and may be
unstable if we minimise it without taking into account the mutual dependence between elements
of the matrices A and B.

As a solution to the problem, we can cycle through all the differences Ei j, minimising them
as a function of the particular parameters which are involved in the definition of Ei j. Compared
to usual gradient-based optimisation, in our optimisation model we are dealing with two sets of
parameters, and we therefore mix uniformly updates of these parameters, because the latter are
dependent.

The following partial derivatives are necessary for Algorithm 1:

∂E2
i j

∂ai f
=−2Ei jb f j, (5a)

∂E2
i j

∂b f j
=−2Ei jai f . (5b)

Similarly, as in Section 3.1, we can optimise here the value of the step-size. However, taking
into account the complexity of the model, it will be better to maintain fixed and small values
of the step size or learning rate. In all our experiments, we conducted matrix factorisation with
the above Algorithm 1 using 300 global iterations with the following regulation parameters:
λ = 0.01 - initial learning rate, ξ = 0.75 -correction rate. We conducted experiments with
Algorithm 1 against the datasets in a binary format, and Figure 2 illustrates convergence of the
algorithm.
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Figure 2: Convergence of Algorithm 1: (a) Churn, � = 477; (b) Appetency, � = 532; and (c)
Upselling, �= 385, where blue lines correspond to k = 8 and red lines correspond to
k = 20.

4. Experiments
4.1 Pre-processing Technique

The sizes of the training and test datasets are the same and are equal to 50000. There are
14740 numerical and 260 categorical features in the large dataset. The training data are very
imbalanced. The numbers of positive cases were 3672 (Churn), 890 (Appetency) and 3682
(Upselling) out of a total number of 50000.

Firstly, we conducted a basic checking of the categorical data. We detected 72 variables with
only one value. In addition, we removed 74 variables, where the number of missing variables
was greater than 49500. The number of the remaining variables was 184. As a next step, we
considered all possible values for the latter 184 variables, and found that 1342 values occurred
frequently enough to be considered as independent binary variables (otherwise, values were
removed from any further consideration).

An effective way to link information contained in numerical and categorical variables is to
transfer the numerical variables to binary format (as it was before in the application to the cate-
gorical variables). We used a technique similar to that used before in converting the categorical
variables to binary format. We removed all variables with numbers of missing and zeros greater
than 49500. The number of the remaining variables was 3245. Next, we split the range of values
for any particular variable into 1000 subintervals, and computed the numbers of occurrences for
any subinterval. These numbers were considered later as weights of the bins.

Then, we split all subintervals for the particular variable into 10 consecutive bins with ap-
proximately the same size (in terms of weights). In many cases, where weights of some subin-
tervals were too big, the numbers of bins were smaller than 10.
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Table 1: Training and test in terms of AUC with averaged score 0.8059 (initial results); 0.8373
(fast and slow tracks results); 0.8407 (best results); 0.851 (post-challenge results). The
column FS indicates the number of variables, which were used in the model, where by
� we indicate the number of binary variables

Status Data Method Train Test FS

Initial Churn RLR 0.8554 0.7015 9586�
Initial Appetency LinearSVM 0.9253 0.8344 9586�
Initial Upselling RLR 0.9519 0.8819 9586�
Initial Toy RLR 0.7630 0.7190 645�

Fast Churn LogitBoost 0.7504 0.7415 39
Fast/Best Appetency BinaryRF 0.9092 0.8692 145�
Fast Upselling LogitBoost 0.9226 0.9012 28
Slow/Best Churn LogitBoost 0.7666 0.7484 41
Slow Appetency LogitBoost 0.9345 0.8597 33
Slow Upselling LogitBoost 0.9226 0.904 54
Best Upselling LogitBoost 0.9208 0.9044 44
Best Toy Special 0.7354 0.7253 1 (N5963)
Post Churn Ensemble 0.8772 0.7618 278
Post Appetency Ensemble 0.9586 0.8835 348
Post Upselling Ensemble 0.9628 0.9077 285

Finally, we got a totally binary dataset in a sparse format with 13594 variables. After sec-
ondary trimming, we were left with 9586 binary features.

Remark 3 It is a well-known fact that the exact correspondence between small and large
datasets may be found. We managed to find such a correspondence as some other teams (it
was rather a response to the findings of other teams). However, we can not report any signifi-
cant progress (in the sense of the absolute scores), which was done by the help of this additional
information.

4.2 Results

The initial experiments, which were conducted against the vector of toy labels, were interesting
and helpful for further studies. The system clearly detected all binary variables, which are
secondary to the only one important original variable N5963 (see Table 1). The definition of the
transformation function between two known variables is a rather technical issue, which may be
solved easily using two steps procedure: (1) sorting according to the explanatory variable, and
(2) smoothing using sample averages in order to reduce noise.

As a first step (after labels for the Churn, Appetency and Upselling were released), we
applied regularised linear regression model as described in Section 3.1. The number of the
random sets was 100 and the ridge parameter was φ = 0.01. In order to form any random set,
we used about 90% of positive cases and k = 1. That is, any random set contains equal number
of positive and negative instances. Note that in the case of Appetency, we considered initially
the use of the SVM with a linear kernel; see the first 3 lines of Table 1.

Further, we employed mean-variance filtering, and reduced the number of features to 145
for Appetency, 151 for Churn, and 68 for Upselling (see Figure 1).
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The participants received feedback against 10% of the test dataset (named leaderboard). In
addition, we used cross-validation (CV) with up to 20 folds. Any CV-fold was formed under
the strict condition that relation of the patterns is exactly the same as in the training dataset.
Based on our CV-experiments, we observed a close relationship between the leaderboard and
CV-results.

Remark 4 After publication of the final results, we found that the relationship between the
leaderboard and test results is also tight. It appears that in this particular case an “excessive”
submissions against the leaderboard dataset did not lead to overfitting of the model. This prior
knowledge may be very helpful for the second (slow) part of the competition.

The binary (sparse) format gives a significant advantage in the sense of computational speed.
But, it is not very important for the R-based packages in difference to the memory allocation.
Accordingly, we returned to the original variables by replacing the binary features by their
sequential indices (within the group corresponding to the particular original feature) before
loading the new datasets into the R-environment.

We used mainly in our experiments five models RLR, LinearSVM, BinaryRF, LogitBoost
and RF, where the last two models were implemented in R, the other models were written in C.
For example, the following settings were used for the BinaryRF (Appetency case, see Table 1):
(1) decision trees with up to 14 levels; (2) the number of features were selected randomly out
of the range between 12 and 17 for any particular split; (3) the splitting process was stopped if
improvement was less than 0.1% or number of data in the node was less than 100; 4) number
of RS was 100 and number of trees for any RS was 400 (that means, the total number of trees
was 40000).

5. Post-challenge Submissions
Firstly, we decided to rebuild completely all the databases. It was an extension of the previous
databases based on the MVF feature selections ratings. Also, we took into account ratings
from the KDD-preprint of the University of Melbourne team - winner of the slow track (see
Table 3). We were working in two mutually dependent directions: binary databases for our
own software binaryRF, and the corresponding integer databases of indexes for R packages
named randomForest, ADA and GBM (for the last one we would like to thank the University of
Melbourne team again, as they reported this package in their KDD-preprint).

Table 2: Selected pure results

Data Model Test Weight Data Model Test Weight

Appetency BinaryRF 0.8784 10 Churn GBM 0.7613 -
Appetency GBM 0.878 9 Upselling GBM 0.9072 20
Appetency ADA 0.8742 3 Upselling ADA 0.9071 19

5.1 Ensemble Constructor

Using results of Table 2 separately we can achieve the score of 0.8489. Now, we shall describe
a general framework how using ensemble technique we can increase the score to 0.851 based on
the results of the above Table 2 and without any additional information. Note that the particular
solutions, which were produced using different software may have approximately the same
AUC, but they are very different in the structural sense and we can not link them directly.
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Table 3: Results of the winners

Track Team Churn Appetency Upselling Score

Fast IBM Research 0.7611 0.883 0.9038 0.8493
Slow Uni. Melb. 0.7542 0.8836 0.9047 0.8475
Overall - 0.7651 0.8836 0.9092 0.8526

Figure 3: Histograms with 300 bins illustrating the structural similarities between training and
test trajectories, where the right columns corresponds to the score 0.8509: (a-b)
Churn, (c-d) Appetency and (e-f) Upselling.

Suppose we have k solutions, which may be represented by the squared matrix T with k
columns. By S we shall denote the matrix, which was derived from the original matrix of
solutions T by sorting on any column in an increasing order. In order to define the ensemble
constructor we also need a matrix R of indices defining an exact correspondence between the
elements of T and S. More precisely, sri j j = ti j.

Let us denote by β j the quality measurement of the solution with index j = 1, . . . ,k. In
order to simplify the following notation and without loss of generality we shall assume that (a)
solution i is better comparing with solution j if βi > β j, (b) the top solution corresponds to the
index 1, that means β1 ≥ β j, j = 2, . . . ,k. Then, we can accept solution N1 as a base solution, and
shall adjust remaining k−1 solutions according to the rule: qi j = sri j1, i = 1, . . . ,n, j = 2, . . . ,k.
Note that the first column in the matrix Q coincides with the first column of the original matrix
T (base solution).

We shall define vector-column of the weight coefficients w j = ψ(β j),∑k
j=1 w j = 1, where

ψ is an increasing function. In line with the proposed method, the ensemble solution will be
computed according to the formula: f = QW.

92



CLASSIFICATION OF IMBALANCED MARKETING DATA

We can report a significant progress with above technique in application to the Appetency
case. Our ensemble solution was constructed using three pure solutions as it is displayed in
Table 2, where the weight coefficients are shown without normalisation. Also, we achieved
some modest progress in application to the Upselling case. However, in the case of Churn we
were not able to improve GBM-solution using above technique.

On the other hand, we were trying to exploit mutual dependences between different cases.
For example, higher combined score in relation to the Appetency and Upselling cases most
likely indicates lower score in application to the Churn case:

new.scoreC = old.scoreC − c1scoreA − c2scoreU , (6)

where c1 and c2 are non-negative constants. In fact, using above method (6) we managed
to achieve some small improvement only in application to the Churn case. Possibly, some
interesting results may be achieved using multinomial logistic regression (MLR) (Bohning,
1992), as this model explore a hidden dependencies between labels. In our case we have four
different labels: 1) Churn, 2) Appetency, 3) Upselling and 4) Other. In the case of MLR, we
shall be dealing with the 3�-dimensional Hessian matrix of second derivatives. We can expect
that the matrix factorisation, as it is described in Section 3.4, will be effective to reduce original
dimensionality � to k - number of the latent factors.

It is interesting to note that the histograms displayed on Figure 3 illustrate remarkable sim-
ilarity between left (training) and right (test) columns. The structure of the histograms corre-
sponding to the Upselling case is far from simple and it will be very important to find explana-
tions in the terms of the particular features.

6. Concluding Remarks
The main philosophy of our method may be described as follows. We can not apply fairly com-
plex modelling systems to the original huge and noisy database, which contains more than 90%
of useless information. So we conducted the FS step with three very simple and reliable meth-
ods, namely RS, RLR, and MVF. As an outcome, we produced significantly smaller datasets,
which are able to be used as an input for more advanced studies.

In general terms, we have found that our results are satisfactory, particularly, for the most
important fast track. Based on the results of our post-challenge submission, we can conclude
that significant progress may be achieved using more advanced pre-processing and feature se-
lection techniques. Also, it will be a good idea not to rely completely on any particular model or
software, and conduct cross-validation experiments with several different models. In this way,
the performance of the final solution might be improved using various ensemble techniques.
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Abstract
This paper describes a field trial for a recently developed ensemble called Additive Groves
on KDD Cup’09 competition. Additive Groves were applied to three tasks provided at the
competition using the “small” data set. On one of the three tasks, appetency, we achieved the
best result among participants who similarly worked with the small dataset only. Postcompe-
tition analysis showed that less successfull result on another task, churn, was partially due to
insufficient preprocessing of nominal attributes.

Code for Additive Groves is publicly available as a part of TreeExtra package. Another part
of this package provides an important preprocessing technique also used for this competition
entry, feature evaluation through bagging with multiple counts.

Keywords: Additive Groves, feature evaluation, KDD Cup 09.

1. Introduction
Additive Groves is a powerful ensemble of regression trees (Sorokina et al. (2007)). It is orig-
inally developed for regression problems and is shown to outperform state-of-the-art methods
on medium-size regression data sets. The data sets for the KDD Cup competition presented
new challenges for the algorithm due to the following differences from the data sets used in the
original paper:

• Binary classification problems

• ROC performance metric

• Large size of the train set (50000 data points)

• High-dimensional data (260 features in the small, 15000 in the large data set)

• Presence of nominal features with extremely high arity

Binary classification and ROC. Several modifications were attempted to tailor original
regression algorithm to classification problem and ROC performance metric. However, it turned
out that binary classification combined with ROC is a favorable setting for the original Additive
Groves. In the end, only minor changes were applied to create the classification version of the
algorithm.
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Large high-dimensional data set. The size of data was too large to be processed by Ad-
ditive Groves in reasonable time. Therefore, a feature selection technique had to be applied.
From our experience, “white-box” feature evaluation techniques based on analyzing a structure
of bagged trees provide good sets of features for tree-based ensembles in general and therefore
are useful as a preprocessing step for Additive Groves. We used “multiple counts”, a simple
technique described in (Caruana et al. (2006)).

Nominal features. We have converted each nominal feature into a single integer feature,
with different integer values corresponding to different nominal values. We discovered later
that such preprocessing was not sufficient to prevent overfitting in at least one of the three
competition tasks.

In the end, Additive Groves proved its applicability to large classification problems by pro-
ducing the absolute best score on one of the three tasks in the “small” challenge.

2. Data preprocessing
There were two versions of the data set at the competition, “large” and “small”. Both data sets
contain 50000 data points in the train set. The “large” data set includes 15000 features and due
to the lack of computing resources was not used in this entry. The “small” data set consists of
260 features: 190 numerical and 40 nominal. Labels were provided for three tasks on the same
data: churn, appetency and upselling.

2.1 Nominal features

Our implementation of decision trees does not have a built-in technique to deal with nominal
(also called categorical or non-numerical) features. We had to convert them to binary or integer
features during the data preprocessing stage. As some nominal features contained thousands
of values, each nominal feature was converted into a single integer feature, where each integer
value corresponded to a single nominal value. The values were ordered by the number of data
points taking on this value. See Section 6 on useful improvements for this type of preprocessing.

2.2 Initial parameter tuning

Our feature selection technique described in the next section requires training an ensemble of
bagged trees. Bagging is a well-known ensemble method introduced by Breiman (1996). It
creates a set of diverse models by sampling from the training set, and then decreases variance
by averaging the predictions of these models. Decision tree is a common choice for the model
in the bagging ensemble.

We would like to calculate feature scores from the version of ensemble that produces the
best performance. Bagged trees have an important parameter: size of tree. Our implementation
controls the size of the tree through an external parameter α . α defines the percentage of
training data in a leaf, so in some sense it is reverse to the size of the tree. We have tried
the following set of values of α: 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0. See (Sorokina
et al. (2007)) for the table of approximate correspondence between different values of α and the
number of nodes in the resulting trees.

Another parameter is the number of trees in the ensemble. We have opted for a fixed value
of 100 trees.

In the competition framework we have a limited labeled data set, so we have to decide on
another important parameter: train/validation set ratio. Our data contains 50000 data points.
We have considered train sets of 1,2,5,10,20,30,40,45,48 and 49 thousands of data points.
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Table 1: Parameters producing the best result for bagged trees

task α train set size
churn 0.1 48 000

appetency 0.05 45 000
upselling 0.05 40 000

Table 1 shows the combination of parameters that produced the best performance on vali-
dation set for bagged trees on each task.

2.3 Feature evaluation: multiple counts technique

The simple idea behind the “white-box” feature importance evaluation is the following: let us
run a fast tree-based ensemble - bagging - and see which features are actually used by the trees.
We discuss a number of such techniques in our earlier work (Caruana et al. (2006)). For this
entry we used one of the methods producing good results - multiple counts. We define a score
of a tree node as the number of the data points in the train set passing through this node during
training. Then, the score of the feature is defined as the sum of the scores of the internal tree
nodes that use this feature. For convenience the score is scaled by the number of data points in
the train set as well as the number of trees. Multiple in the name of this method refers to the
fact that a data point can be counted several times towards the same score if the same feature is
used several times along one branch. For example, the tree on Fig. 1 will produce scores of 1.6,
0.8 and 0.2 for features A, B and C respectively.

For every task we created ensembles of bagged trees using the whole train set and the best
values of α from Table 1. These ensembles were used to calculate the multiple counting scores.
In each case, top 20 features were selected to compose a data set for applying Additive Groves.
The list of selected features and their scores is shown in Table 2.

3. Additive Groves
3.1 Regression ensemble

Additive Groves is a tree ensemble algorithm based on regression trees, additive models and
bagging and is capable of both fitting additive structure of the problem and modelling nonlinear
components with large trees at the same time. Combination of these properties makes it superior

30

A (100)

C (20) B (80)

10 10 20 A (60)

30

Figure 1: Sample decision tree splits the data using features A, B and C. Node labels show the
percentage of the train set data points passing through each node.
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Table 2: Top 20 features and their importance scores

churn appetency upselling
Var126 1.22 Var126 1.32 Var126 1.57
Var29 1.00 Var29 1.00 Var28 1.36
Var130 0.99 Var130 0.99 Var130 0.99
Var201 0.98 Var201 0.94 Var201 0.97
Var90 0.85 Var90 0.85 Var29 0.96
Var192 0.72 Var218 0.76 Var211 0.84
Var138 0.64 Var217 0.67 Var90 0.83
Var113 0.52 Var138 0.64 Var217 0.70
Var74 0.44 Var125 0.53 Var138 0.59
Var189 0.37 Var199 0.48 Var73 0.42
Var205 0.29 Var211 0.47 Var113 0.27
Var73 0.28 Var202 0.46 Var94 0.24
Var211 0.25 Var28 0.44 Var216 0.23
Var199 0.23 Var193 0.39 Var214 0.22
Var212 0.21 Var73 0.34 Var6 0.21
Var217 0.11 Var94 0.34 Var202 0.20

Var2 0.11 Var57 0.33 Var192 0.20
Var13 0.11 Var192 0.31 Var197 0.19
Var218 0.09 Var200 0.30 Var125 0.19
Var81 0.09 Var189 0.28 Var57 0.18

in performance to other existing tree ensemble methods like bagging, boosting and Random
Forests.

Additive Groves consists of bagged additive models, where every element of an additive
model is a tree. A single grove is trained similar to an additive model: each tree is trained on
the residuals of the sum of the predictions of the other trees. Trees are discarded and retrained
in turn until the overall predictions converge to a stable function. In addition, each grove of a
non-trivial size is iteratively built from smaller models: either a tree is added to a grove with
fewer trees or the size of trees is increased in a grove with smaller trees; which of the two steps
happen in each particular case is defined by comparing models on out-of-bag data.

A size of a single grove (single additive model) is defined by two parameters: the size of
tree and the number of trees. A single grove consisting of large trees can and will overfit heavily
to the training set, therefore bagging is applied on top in order to reduce variance.

Algorithm 1 gives pseudo-code for training a grid of groves of different sizes during one
bagging iteration. We refer the reader to the paper where Additive Groves were introduced
(Sorokina et al. (2007)) for more detailed description of the algorithm.

3.2 Modification for classification problems

In Additive Groves, models of different sizes are naturally produced during the training phase.
These models are evaluated on the validation set in order to determine the combination of pa-
rameters producing the best model. The only modification we ended up using for the classifi-
cation problems is the use of ROC metric insted of original RMSE (root mean squared error)
during this final model evaluation. We still use RMSE for fitting single trees and building addi-
tive models.
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Algorithm 1 Training Additive Groves

// Tree(α j ,n)
i denotes an ith tree in the grove with the parameters (α j,n)

function TrainGrove(α ,N,trainSet)
(
α0 = 0.5,α1 = 0.2,α2 = 0.1, . . . ,αmax = α
for j = 0 to max do

for n = 1 to N do

for i = 1 to n−1 do
Treeattempt1,i = Tree(α j ,n−1)

i
end for
Treeattempt1,n = 0
Converge(α j,n,train,Treeattempt1,1, . . . ,Treeattempt1,n)

if j > 0 then
for i = 1 to n do

Treeattempt2,i = Tree(α j−1,n)
i

end for
Converge(α j,n,train,Treeattempt2,1, . . . ,Treeattempt2,n)

end if

winner = Compare ∑i Treeattempt1,i and ∑i Treeattempt2,i on out-of-bag data
for i = 1 to n do

Tree(α j ,n)
i = Treewinner,i

end for
end for

end for
)
function Converge(α ,N,{x,y},Tree(α,N)

1 , . . . ,Tree(α,N)
N )

(
repeat

for i = 1 to N do
newTrainSet = {x,y−∑k �=i Tree(α,N)

k (x)}
Tree(α,N)

i = TrainTree(α,newTrainSet)
end for

until (change from the last iteration is small)
)

Several modifications were tried in an attempt to tune Additive Groves better for classifi-
cation problems evaluated by ROC metric. None of them demonstrated any improvements and
eventually these modifications were discarded. They include:

• Using ROC instead of RMSE when comparing different models of the same size during
training

• Clipping predictions of each additive model at 0 and 11 while fitting models

1. Predictions greater than 1 become 1, predictions less than 0 become 0

99



SOROKINA

• Clipping predictions of the whole bagged ensemble at 0 and 1 after the training is com-
pleted

The last two modifications were attempted because additive model-based algorithms sometimes
can predict a value greater than 1 or smaller than 0, which does not make much sense in binary
0− 1 classification. Such prediction will generate a negative residual during training even if
it is technically correct (that is, actual true values are 1 or 0 respectively). Some performance
metrics, for example RMSE, will count such predictions as errors. However, ROC does not have
this problem, because it does not evaluate the actual prediction numbers. ROC is interested only
in the ordering of predictions, and it does not matter if the true positive prediction is greater than
1 as long as it is larger than predictions for negative cases. In this sense ROC is a very convenient
metric for evaluating models such as Additive Groves on classification problems.

4. Final models
Additive Groves have 3 crucial parameters: α (controls size of tree), N (number of trees in each
grove) and number of bagging iterations. The last parameter is conservative - the more bagging
iterations the better, while for the other two parameters there usually exist some optimal level
of complexity.

In order to evaluate the models and to find the optimal values of α and N, we reused the
train/validation splits of data from the earlier experiments (Table 1). Table 3 provides best
performance of Additive Groves on our validation sets and parameters of correspondent models.

Table 3: Performance on validation set

task α N # of bagged models ROC on validation set
churn 0.05 6 140 0.762

appetency 0.2 5 100 0.832
upselling 0.05 4 100 0.860

We have trained final models using the whole labeled data set, (α , N) values from the
Table 3 and 1000 bagging iterations. It is worth noting that our implementation allows to train
the models much faster once the desired values of N and α are fixed.

5. Competition results
KDD Cup’09 competition consisted of several separate challenges: fast, slow(large) and slow(small).
More, there were two types of submission for small challenge: with unscrambling and without.
Submissions of the first type made use of both large and small data set and therefore are not
comparable to the submissions that used the small data set only.

Additive Groves competed in the small challenge without unscrambling. Table 4 shows 47
entries from the official results table (Guyon (2009)) that fall into this category.

The good news is that Additive Groves defeated every other entry on the appetency task
with the score of 0.8311. The second best score in this category is 0.8268. This result shows
that Additive Groves can be as superior for classification as it is for regression at least on some
tasks.

On the upselling task Additive Groves got the score of 0.8605. The best result was 0.8644.
Unfortunately, the result for churn was much worse - Additive Groves achieved ROC of

0.7135 while the best result was 0.7406. With more than half competitors ahead, it was clear
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Table 4: Competition results for small data set without unscrambling

team churn appetency upselling average
creon 0.7359 0.8268 0.8615 0.80808
LosKallos 0.7398 0.8204 0.8621 0.80745
FEG_BOSS 0.7406 0.8149 0.8621 0.80583
Lenca 0.7348 0.8175 0.8629 0.80506
M 0.7319 0.8153 0.8644 0.80384
FEG ATeam 0.7325 0.8160 0.8610 0.80313
pavel 0.7358 0.8130 0.8591 0.80266
Additive Groves 0.7135 0.8311 0.8605 0.80171
nikhop 0.7359 0.8098 0.8589 0.80153
mi 0.7365 0.8090 0.8569 0.80079
java.lang.OutOfMemoryError 0.7360 0.8090 0.8572 0.80075
Lajkonik 0.7323 0.8073 0.8600 0.79986
FEG CTeam 0.7321 0.8062 0.8596 0.79930
Celine Theeuws 0.7230 0.8147 0.8584 0.79871
zlm 0.7232 0.8175 0.8544 0.79835
FEG B 0.7354 0.8031 0.8544 0.79760
CSN 0.7282 0.8051 0.8594 0.79757
TonyM 0.7249 0.7996 0.8596 0.79471
Sundance 0.7244 0.8172 0.8400 0.79387
Miner12 0.7264 0.7973 0.8484 0.79072
FEG D TEAM 0.7219 0.8077 0.8422 0.79060
DKW 0.7153 0.8015 0.8547 0.79050
idg 0.7146 0.8041 0.8507 0.78980
homehome 0.7176 0.8062 0.8416 0.78848
Mai Dang 0.7167 0.8099 0.8372 0.78795
parramining.blogspot.com 0.7134 0.8056 0.8438 0.78756
bob 0.7053 0.8052 0.8520 0.78751
muckl 0.7239 0.8195 0.8180 0.78714
C.A.Wang 0.7067 0.8043 0.8502 0.78707
KDD@PT 0.7081 0.7989 0.8528 0.78660
decaff 0.7120 0.7916 0.8498 0.78446
StatConsulting 0.7137 0.7605 0.8501 0.77477
Dr. Bunsen Honeydew 0.7170 0.8052 0.7954 0.77254
Raymond Falk 0.6905 0.7744 0.8465 0.77045
vodafone 0.7258 0.6915 0.8582 0.75853
K2 0.7078 0.7670 0.7931 0.75600
Claminer 0.6665 0.7785 0.8199 0.75499
rw 0.7257 0.6928 0.8369 0.75178
Persistent 0.6416 0.7167 0.7370 0.69843
Louis Duclos-Gosselin 0.6168 0.7571 0.6792 0.68434
Chy 0.6027 0.7201 0.6936 0.67214
Abo-Ali 0.6249 0.6425 0.7218 0.66305
sduzx 0.6057 0.6465 0.6167 0.62295
MT 0.5494 0.5378 0.6873 0.59149
Shiraz University 0.5077 0.5047 0.7000 0.57082
Klimma 0.5283 0.5231 0.5909 0.54745
thes 0.5016 0.4993 0.4982 0.49969

that we failed to extract some important information from the data in this case. In the next
section we discuss one of the possible reasons.

6. Post-competition improvements
We have reconsidered several aspects of preprocessing of nominal values after the competition.
First, we modified the way of ordering the values while converting a nominal feature to a nu-
merical. During the competition we have been ordering values by the number of data points
taking on this value. Later we have adopted a potentially more useful technique: ordering the
values by the ratio of positive responses among the data points taking on each value (Hastie
et al., 2001, chapter 9.2.4).

Second, in order to understand the reasons for failing on churn problem, the author has
contacted Hugh Miller, the leader of Uni Melb team. This team achieved much better results on
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churn in the small challenge. We learned that they also used 20 features, however, the exact set
of features they were using did not help to improve the results in our case. Further, we learned
that they used a more elaborate preprocessing of the nominal features.

“For those categorical variables with more than 25 categories, levels with fewer than 100
instances in the training data were aggregated into a small category, those with 100-500 in-
stances were aggregated into a medium category, and those with 500-1000 instances aggregated
into a large category.” - Uni Melb factsheet

Such preprocessing decreases the chance for the trees to overfit by making too many splits
on a nominal feature.

We have incorporated the techniques mentioned above into preprocessing and repeated ex-
periments for churn with Additive Groves on the improved version of the data. This helped to
boost our best performance on the official test set from 0.7135 to 0.7157.

Therefore, it seems that at least a part of our problem with churn task was caused by insuf-
ficient data preprocessing.

7. TreeExtra package
Both Additive Groves and bagged trees with multiple counts feature evaluation are available as
parts of TreeExtra package. TreeExtra is a set of command line tools written in C++/STL. You
can find binaries, code and manuals at

www.cs.cmu.edu/~daria/TreeExtra.htm
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Abstract
This paper explores how multi-armed bandits (MABs) can be applied to accelerate AdaBoost.
AdaBoost constructs a strong classifier in a stepwise fashion by adding simple base classifiers
to a pool and using their weighted “vote” to determine the final classification. We model this
stepwise base classifier selection as a sequential decision problem, and optimize it with MABs.
Each arm represents a subset of the base classifier set. The MAB gradually learns the “utility”
of the subsets, and selects one of the subsets in each iteration. ADABOOST then searches only
this subset instead of optimizing the base classifier over the whole space. The reward is defined
as a function of the accuracy of the base classifier. We investigate how the well-known UCB
algorithm can be applied in the case of boosted stumps, trees, and products of base classifiers.
The KDD Cup 2009 was a large-scale learning task with a limited training time, thus this
challenge offered us a good opportunity to test the utility of our approach. During the challenge
our best results came in the Up-selling task where our model was within 1% of the best AUC
rate. After more thorough post-challenge validation the algorithm performed as well as the best
challenge submission on the small data set in two of the three tasks.

Keywords: AdaBoost, Multi-Armed Bandit Problem, Upper Confidence Bound

1. Introduction
ADABOOST (Freund and Schapire, 1997) is one of the best off-the-shelf learning methods de-
veloped in the last decade. It constructs a classifier in a stepwise fashion by adding simple clas-
sifiers (called base classifiers) to a pool, and using their weighted “vote” to determine the final
classification. The simplest base learner used in practice is the decision stump, a one-decision
two-leaf decision tree. Learning a decision stump means to select a feature and a threshold, so
the running time of ADABOOST with stumps is proportional to the number of data points n, the
number of attributes d, and the number of boosting iterations T . When trees (Quinlan, 1993)
or products (Kégl and Busa-Fekete, 2009) are constructed over the set of stumps, the compu-
tational cost is multiplied by an additional factor of the number of tree levels N or the number
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of terms m. Although the running time is linear in each of these factors, the algorithm can be
prohibitively slow if the data size n and/or the number of features d is large.

There are essentially two ways to accelerate ADABOOST in this setting: one can either limit
the number of data points n used to train the base learners, or one can cut the search space by us-
ing only a subset of the d features. Although both approaches increase the number of iterations
T needed for convergence, the net computational time can still be significantly decreased. The
former approach has a basic version when the base learner is not trained on the whole weighted
sample, rather on a small subset selected randomly using the weights as a discrete probability
distribution (Freund and Schapire, 1997). A recently proposed algorithm of the same kind is
FILTERBOOST (Bradley and Schapire, 2008), which assumes that an oracle can produce an
unlimited number of labeled examples, one at a time. In each boosting iteration, the oracle gen-
erates sample points that the base learner can either accept or reject, and then the base learner
is trained on a small set of accepted points. The latter approach was proposed by (Escudero
et al., 2000) which introduces several feature selection and ranking methods used to accelerate
ADABOOST. In particular, the LAZYBOOST algorithm chooses a fixed-size random subset of
the features in each boosting iteration, and trains the base learner using only this subset. This
technique was successfully applied to face recognition where the number of features can be
extremely large (Viola and Jones, 2004).

In this paper we aim to improve the latter approach by “aiding” the random feature selection.
It is intuitively clear that certain features are more important than others for classification. In
specific applications the utility of features can be assessed a-priori (e.g., on images of characters,
we know that background pixels close to the image borders are less informative than pixels in
the middle of the images), however, our aim here is to learn the importance of features by
evaluating their empirical performance during the boosting iterations. Our proposed method is
similar in spirit to the feature extraction technique described recently by (Borisov et al., 2006;
Tuv et al., 2009). The objective of their method is to use tree-based ensembles for feature
selection whereas our goal is more restrictive: we simply want to accelerate ADABOOST. To
avoid harming the generalization ability of ADABOOST it is important to keep a high level of
base learner diversity, which is the reason why we opted for using multi-armed bandits (MAB)
that are known to manage the exploration-exploitation trade-off very well.

MAB techniques have recently gained great visibility due to their successful applications
in real life, for example, in the game of GO (Gelly and Silver, 2008). In the classical bandit
problem the decision maker can select an arm at each discrete time step (Auer et al., 2002b).
Selecting an arm results in a random reward, and the goal of the decision maker is to maximize
the expected sum of the rewards received. Our basic idea is to partition the base classifier
space into subsets and use MABs to learn the utility of the subsets. In each iteration, the bandit
algorithm selects an optimal subset, then the base learner finds the best base classifier in the
subset and returns a reward based on the accuracy of this optimal base classifier. By reducing
the search space of the base learner, we can expect a significant decrease of the complete running
time of ADABOOST. We use the UCB algorithm (Auer et al., 2002a) by assigning each feature
to a subset. In the case of trees and products we use UCB by considering each tree or product as
a sequence of decisions, and using the same partitioning as with decision stumps at each inner
node.

The paper is organized as follows. First we describe the ADABOOST.MH algorithm and the
necessary notations in Section 2. Section 3 contains our main contribution of using MABs for
accelerating the selection of base classifiers. In Section 4 we present experiments conducted
during the development period of the competition, our competition results, and some post-
challenge analysis. Closing discussions are in Section 5.
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Figure 1: The pseudocode of the ADABOOST.MH algorithm. X is the observation matrix, Y
is the label matrix, W(1) is the initial weight matrix, BASE(·, ·, ·) is the base learner
algorithm, and T is the number of iterations. α(t) is the base coefficient, v(t) is the vote
vector, ϕ(t)(·) is the scalar base classifier, h(t)(·) is the vector-valued base classifier,
and f(T )(·) is the final (strong) classifier.

2. ADABOOST.MH
For the formal description let X = (x1, . . . ,xn) be the n× d observation matrix, where x( j)

i are
the elements of the d-dimensional observation vectors xi ∈Rd . We are also given a label matrix
Y = (y1, . . . ,yn) of dimension n×K where yi ∈ {+1,−1}K . In multi-class classification one
and only one of the elements of yi is +1, whereas in multi-label (or multi-task) classification yi
is arbitrary, meaning that the observation xi can belong to several classes at the same time. In
the former case we will denote the index of the correct class by �(xi).

The goal of the ADABOOST.MH algorithm ((Schapire and Singer, 1999), Figure 1) is to
return a vector-valued classifier f : X → RK with a small Hamming loss

RH
�
f(T ),W(1)�=

n

∑
i=1

K

∑
�=1

w(1)
i,� I

�
sign

�
f (T )� (xi)

�
�= yi,�

�
1

by minimizing its upper bound (the exponential margin loss)

Re
�
f(T ),W(1)�=

n

∑
i=1

K

∑
�=1

w(1)
i,� exp

�
− f (T )� (xi)yi,�

�
, (1)

where f�(xi) is the �th element of f(xi). The user-defined weights W(1) =
�
w(1)

i,�
�

are usually set

either uniformly to w(1)
i,� = 1/(nK), or, in the case of multi-class classification, to

w(1)
i,� =

�
1
2n if �= �(xi) (i.e., if yi,� = 1),

1
2n(K−1) otherwise (i.e., if yi,� =−1)

(2)

to create K well-balanced one-against-all classification problems. ADABOOST.MH builds the
final classifier f as a sum of base classifiers h(t) : X →RK returned by a base learner algorithm
BASE(X,Y,W(t)) in each iteration t. In general, the base learner should seek to minimize the
base objective

E
�
h,W(t)�=

n

∑
i=1

K

∑
�=1

w(t)
i,� exp

�
−h�(xi)yi,�

�
. (3)

1. The indicator function I{A} is 1 if its argument A is true and 0 otherwise.
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Using the weight update formula of line 4 (Figure 1), it can be shown that

Re
�
f(T ),W(1)�=

T

∏
t=1

E
�
h(t),W(t)�, (4)

so minimizing (3) in each iteration is equivalent to minimizing (1) in an iterative greedy fashion.
By obtaining the multi-class prediction

��(x) = argmax
�

f (T )� (x),

it can also be proven that the “traditional” multi-class loss (or one-error)

R
�
f(T )

�
=

n

∑
i=1

I
�
�(xi) �= ��(xi)

�
(5)

has an upper bound KRe
�
f(T ),W(1)� if the weights are initialized uniformly, and

√
K −1Re

�
f(T ),W(1)�

with the multi-class initialization (2). This justifies the minimization of (1).

2.1 Learning the base classifier

In this paper we use discrete ADABOOST.MH in which the vector-valued base classifier h(x)
is represented as

h(x) = αvϕ(x),

where α ∈ R+ is the base coefficient, v ∈ {+1,−1}K is the vote vector, and ϕ(x) : Rd →
{+1,−1} is a scalar base classifier. It can be shown that for minimizing (3), one has to choose
ϕ that maximizes the edge

γ =
n

∑
i=1

K

∑
�=1

wi,�v�ϕ(xi)yi,�, (6)

using the votes

v� =

�
1 if ∑n

i=1 wi,�I
�

ϕ(xi) = yi,�
�
> ∑n

i=1 wi,�I
�

ϕ(xi) �= yi,�
�
,

−1 otherwise,
�= 1, . . . ,K. (7)

The optimal coefficient is then

α =
1
2

ln
1+ γ
1− γ

.

It is also well known that the base objective (3) can be expressed as

E
�
h,W

�
=
�

(1+ γ)(1− γ) =
�

1− γ2. (8)

The simplest scalar base learner used in practice is the decision stump, a one-decision two-
leaf decision tree of the form

ϕ j,b(x) =

�
1 if x( j) ≥ b,

−1 otherwise,

where j is the index of the selected feature and b is the decision threshold. If the features are
pre-ordered before the first boosting iteration, a decision stump maximizing the edge (6) can be
found very efficiently in Θ(ndK) time (making the total running time Θ

�
nd(logn+KT )

�
).
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Although boosting decision stumps often yields satisfactory results, state-of-the-art perfor-
mance of ADABOOST is usually achieved by using decision trees as base learners. In this paper
we use an “in-house” implementation that calls the decision stump optimizer as a subroutine.
The learner is similar to Quinlan’s C4.5 algorithm (Quinlan, 1993), except that we use the edge
improvement (instead of Quinlan’s entropy-based criterion) to select the next node to split and
the threshold b. The base learner has one hyperparameter, the number of the leaves N, which
also shows up as a linear factor in the running time.

We also test our approach using a recently proposed base learner that seems to outperform
boosted trees (Kégl and Busa-Fekete, 2009). The goal of this learner is to optimize products of
simple base learners of the form

h(·) = α
m

∏
j=1

v jϕ j(·), (9)

where the vote vectors v j are multiplied element-wise. The learner also calls the decision stump
optimizer as a subroutine but in an iterative rather than a recursive fashion. The hyperparameter
m, again, appears as a linear factor in the total running time.

3. Using multi-armed bandits to reduce the search space
In this section we will first describe the MAB framework and next we show how bandit algo-
rithm UCB can be used to accelerate the base learning step in ADABOOST.

3.1 Multi-armed bandits

In the classical bandit problem there are M arms that the decision maker can select at discrete
time steps. Selecting arm j in iteration t results in a random reward r(t)j ∈ [0,1] whose (unknown)
distribution depends on j. The goal of the decision maker is to maximize the expected sum of
the rewards received. Intuitively, the decision maker’s policy has to balance between using arms
with large past rewards (exploitation) and trying arms that have not been tested enough times
(exploration). The UCB algorithm (Auer et al., 2002a) manages this trade-off by choosing the
arm that maximizes the sum of the average reward

r(t)j =
1

T (t)
j

t

∑
t �=1

I{arm j is selected}r(t
�)

j

and a confidence interval term

c(t)j =

�
2ln t

T (t)
j

,

where T (t)
j is the number of times when arm j has been selected up to iteration t. To avoid the

singularity at T (t)
j = 0, the algorithm starts by selecting each arm once. We use a generalized

version, denoted by UCB(k), in which the best k arms are selected for evaluation, and the one
that maximizes the actual reward r(t)j is finally chosen.

3.2 The application of UCB(k) for accelerating ADABOOST

The general idea is to partition the base classifier space into (not necessarily disjunct) subsets
and use MABs to learn the utility of the subsets. In each iteration, the bandit algorithm selects
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an optimal subset (or, in the case of UCB(k), a union of subsets). The base learner then finds
the best base classifier in the subset, and returns a reward based on this optimal base learner.
By reducing the search space of the base learner, we can expect a significant decrease of the
complete running time of ADABOOST.

The upper bound (4) together with (8) suggest the use of − 1
2 log(1− γ2) for the reward. In

practice we found that
r(t)j = 1−

�
1− γ2

works as well as the logarithmic reward; it was not surprising since the two are almost identical
in the lower range of the [0,1] interval where the majority of the edges are. The latter choice has
another advantage of always being in the [0,1] interval which is a formal requirement in MABs.

The actual partitioning of the base classifier set depends on the particular base learner. In the
case of decision stumps, the most natural choice for UCB is to assign each feature to a subset,
i.e., jth subset is {ϕ j,b(x) : b ∈ R}. In principle, we could also further partition the threshold
space but that would not lead to further savings in the linear computational time since, because
of the changing weights wi,�, all data points and labels would have to be visited anyway. On the
other hand, subsets that contain more than one feature can be efficiently handled by UCB(k).

In the case of trees and products we use UCB by considering each tree or product as a
sequence of decisions, and using the same partitioning as with decision stumps at each inner
node. In this setup we lose the information in the dependence of the decisions on each other
within a tree or a product.

4. Experiments
4.1 Data set description and data preparation

In KDD Cup 2009 we were provided with two data sets referred as Small and Large. These two
data sets differed only in the number of features they consisted of. In the Small data set there
were 190 numerical and 40 categorical features and the Large data consisted of 14740 numerical
and 260 categorical features for a total of d = 15000. Both data sets contained the same 50000
training and 50000 test instances. Each instance had three different labels corresponding to the
three tasks of Churn, Appetency, and Up-selling. About 65.4% (2%) of the values were missing
in the Small (Large); we treated them by using an out-of-range value (i.e., we set all missing
value to ∞).

Since the three tasks used the same instances, we experimented with both a single-task and
a multi-task approach. In the former, the three classifiers were trained completely separately,
whereas in the latter we trained one classifier with a three-element binary label.

First, we trained all of our models using the large feature set, only deleting features with
one singular value. We also investigated the utility of the features. Using the info-gain based
feature ranker of WEKA package (Witten and Frank, 2005), we found that only a relatively
small number of features have positive score for any of task. In the single-task setup we used
only those features which had positive score for the given task, and in the multi-task case we
used those features which had positive score for at least one of the three tasks. The numbers of
remaining features after feature selection are shown in Table 1. We also performed experiments
where we applied PCA, but this do not results improvement in performance.

All of the three KDD tasks were very imbalanced in size of classes: all three label sets
contained only a small number of positive labels compared to the size of the whole data set.
In order to handle this imbalance problem we tried a few initial weighting scheme beside the
uniform weighting described in Eq. 2. We found that the best-performing weighting scheme
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Table 1: The number of features after applying feature selection.

single-task multi-task
Churn Appetency Up-selling

Small 51 45 65 71
Large 2839 2546 4123 5543

was when both classes received half of the total weight, which meant that the instances from
the positive class had higher initial weights than the instances form the negative class.

4.1.1 VALIDATION

During the challenge we validated only the number of iterations using a 60%− 40% simple
validation on the training set. Figure 2 shows the AUC curves for the three tasks. Due to the
time limit in the Fast Track we did not validate the number of tree leaves N and number of
product terms m. We set the N = 8 and m = 3 based on the former experiments using our
program package (Kégl and Busa-Fekete, 2009). The only remaining hyperparameter we had
to choose was the number of best arms to be evaluated in the case of UCB(k). We set k to 50.
We also carried out some experiments with a lower value (k = 20), but we found that this only
slightly influenced the results.

Table 2 shows our official results. The Churn and Up-selling tasks were evaluated by ROC
analysis and the Appetency task was evaluated using Balanced Accuracy2.

Figure 2: The ROC values vs. number of iterations on the validation set using ADABOOST.MH
with Stump, Product, and Tree base learners.

As a post-challenge work we carried out a more comprehensive validation. We used the
same 60%− 40% validation scheme but this time we validated all the parameters in a wide
range: 2 ≤ N ≤ 32, 2 ≤ m ≤ 10, T ≤ 10000. Similarly to other teams (Miller et al., 2009;

2. http://www.kddcup-orange.com/
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Table 2: The validation and evaluation results in Fast Track. The bold face values indicate our
final submission.

learner \ data set Churn (AUC) Appetency (B. Acc.) Up-selling (AUC)
Validation Evaluation Validation Evaluation Validation Evaluation

STUMP 0.7424 0.6833 0.7051 0.7359 0.8938 0.8917
PRODCT 0.6702 0.6377 0.6999 0.6398 0.8888 0.8665
TREE 0.7088 0.6819 0.7424 0.7216 0.8956 0.8891
BEST – 0.7611 – 0.883 – 0.9038

IBM Research, 2009), we found that, relatively to other benchmarks, smaller trees and products
worked better on this challenge. In the case of products, it turned out that the optimal number
of terms m is in only a few times more than two (see in Tables 3 and 5). The optimal number of
iterations was chosen based on the maximum of the ROC values on the validation set calculated
in each iteration. In the multi-task case we used the average of the ROC values of the three tasks.
Both in the single- and multi-task setup, the ROC values can have a large fluctuation from one
iteration to another so we smoothed the learning curves using a moving average filtering with
a relative window size of 20%. In general, the optimal numbers of iterations are also relatively
small compared to the parameters of the experiments of (Kégl and Busa-Fekete, 2009).

4.2 Combination technique

We also tried to combine the three (stump, product, tree) learners. In case of Appetency we
applied a simple majority voting. In the tasks where scores were required, we used the dis-
criminant output f(x) rescaled into [0,1] of the trained models as posterior probabilities and we
simply multiplied them.

4.3 Performance evaluation

4.3.1 LARGE DATA SET

Our official results in Fast Track on the Large data set using multi-task approach are shown in
Table 2. Without the full knowledge of the validation we found that the multi-task approach
using feature selection achieves better than single-task one.

Table 3 shows our post-challenge results and the validated parameters. The first four blocks
(single/multi-task, feature selection on/off) are followed by results obtained using the combined
models. We tried combining only the multi-task or only the single-task classifiers, then we
combined all of them. The results revealed a few general trends. The single-task approach
was superior in solving the Churn task whereas the Appetency task seemed to prefer the multi-
task approach. In the Up-selling problem both were competitive, and compared to the winning
results we scored the best on this task.

4.3.2 SMALL DATA SET

In the Slow Track we concentrated only on the Small data set. During the challenge our best
results were obtained by single-task models using feature selection. Table 4 shows our offi-
cial submission results and Table 5 shows our post-challenge results together with the validated
parameters. We found that the multi-task approach did not work very well; our explanation
for this is that the three tasks had different complexities and they needed very different num-
ber of iterations, so a single shared stopping time harmed the results. On the other hand, the
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Table 3: The post-challenge results for Large data set with the validated parameters.

Churn (AUC) Appetency (B. Acc.) Up-selling (AUC)
Parameters Evaluation Parameters Evaluation Parameters Evaluation

MULTI-TASK
STUMP T = 1671 0.6808 0.7176 0.8844

PRODUCT
T = 1664

m = 2 0.6877 0.7388 0.8817

TREE
T = 4090

N = 3 0.6918 0.7158 0.8870

MULTI-TASK/FEATURE SELECTION
STUMP T = 369 0.6802 0.7514 0.8804

PRODUCT
T = 946

m = 2 0.6749 0.6406 0.8818

TREE
T = 1501

N = 4 0.6871 0.6165 0.8822

SINGLE-TASK
STUMP T = 1528 0.7002 T = 682 0.5403 T = 431 0.7685

PRODUCT
T = 448

m = 2 0.6873 T = 401
m = 2 0.5726 T = 344

m = 4 0.7558

TREE
T = 1362

N = 2 0.6350 T = 241
N = 5 0.6719 T = 1201

N = 2 0.7784

SINGLE-TASK/FEATURE SELECTION
STUMP T = 427 0.7052 T = 255 0.5981 T = 2260 0.6449

PRODUCT
T = 348

m = 2 0.6887 T = 9177
m = 4 0.6875 T = 410

m = 2 0.8840

TREE
T = 296

N = 2 0.71 T = 2514
N = 3 0.6836 T = 296

N = 2 0.8762

COMBINED CLASSIFIERS
MULTI-TASK 0.7197 0.7362 0.8920
SINGLE-TASK 0.7126 0.6312 0.8832
ALL 0.7245 0.7013 0.8944

WINNERS
BEST/Fasta – 0.7611 – 0.8830 – 0.9038
BEST/Slowb – 0.7570 – 0.8836 – 0.9048

a. IBM Research (IBM Research, 2009)
b. University of Melbourne (Miller et al., 2009)

single task approach worked very well in these experiments. In fact, the combined single-task
post-challenge classifiers outperformed the best official results (among teams that did not used
unscrambling).
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Table 4: The validation and evaluation results in the Slow Track. The bold face values indicate
our final submission.

learner \ data set Churn (AUC) Appetency (B. Acc.) Up-selling (AUC)
Validation Evaluation Validation Evaluation Validation Evaluation

STUMP 0.716862 0.7258 0.6712 0.7243 0.85747 0.8582
PRODCT 0.692894 0.6816 0.78055 0.6915 0.842176 0.8512
TREE 0.695429 0.7158 0.778751 0.6174 0.840568 0.8549
BEST – 0.7375 – 0.8245 – 0.8620

Table 5: The post-challenge results for Small data set with the validated parameters.

Churn (AUC) Appetency (B. Acc.) Up-selling (AUC)
Parameters Evaluation Parameters Evaluation Parameters Evaluation

MULTI-TASK
STUMP T = 600 0.7046 0.7045 0.8542

PRODUCT
T = 150

m = 2 0.7128 0.6677 0.8500

TREE
T = 600

N = 2 0.7255 0.7214 0.8578

MULTI-TASK/FEATURE SELECTION
STUMP T = 740 0.6273 0.5000 0.6872

PRODUCT
T = 191

m = 2 0.6188 0.5000 0.6805

TREE
T = 194

N = 3 0.6223 0.5006 0.6842

SINGLE-TASK
STUMP T = 465 0.7303 T = 20 0.5000 T = 250 0.8590

PRODUCT
T = 191

m = 2 0.7210 T = 10
m = 2 0.6135 T = 174

m = 2 0.8543

TREE
T = 200

N = 2 0.7278 T = 100
N = 3 0.6494 T = 185

N = 2 0.8571

SINGLE-TASK/FEATURE SELECTION
STUMP T = 300 0.7353 T = 20 0.5162 T = 540 0.8612

PRODUCT
T = 154

m = 2 0.7237 T = 10
m = 4 0.5318 T = 345

m = 2 0.8551

TREE
T = 188

N = 2 0.7317 T = 191
N = 2 0.7207 T = 203

N = 2 0.8606

COMBINED CLASSIFIERS
MUTLI-TASK 0.7040 0.6600 0.8241
SINGLE-TASK 0.7369 0.6033 0.8630
ALL 0.7316 0.5918 0.8538

WINNERS
BESTa – 0.7375 – 0.8245 – 0.8620

a. University of Melbourne (Miller et al., 2009)
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4.4 Time complexity

Since out goal was to accelerate ADABOOST, we show in Table 6 the time (in minutes) needed
for training and testing for 8000 iterations. The numbers indicate that all the models can be
trained and tested in less than 10 hours on the Large database. For the Small data set the whole
training time is typically less than an hour.

Table 6: Training and testing running times (in minutes) on the Large data set. The number of
iterations is T = 8000.

Base learner STUMP PRODUCT TREE
Time requirements 274 456 384

5. Discussion and Conclusions
The goal of this paper was to accelerate ADABOOST using multi-armed bandits. Recently,
machine learning applications have become the center of interest in which millions of training
examples and thousands of features are not uncommon. In this scenario, fast optimization
becomes more important than the asymptotic statistical optimality (Bottou and Bousquet, 2008).
From this point of view, our approach has solved the tasks well because it reduced greatly
the computational complexity of the learning phase. In the official competition our approach
achieved competitive results only on the Up-selling task. Based on our post-challenge analysis
it seems that on small data set we could also have been competitive also on the Churn task,
but since there was a confusion during the competition (people merged the small and large
data sets), we decided to concentrate on the Large set. Our post-challenge results nevertheless
confirmed that ADABOOST is among the best generic classification methods on large, real-
world data sets.
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APPENDIX I. KDD CHALLENGE FACT SHEETS

Links to the fact sheets :

• Winning the KDD Cup Orange Challenge with Ensemble Selection — IBM Research —
URL : http://www.kddcup-orange.com/factsheet.php?id=66

• A Combination of Boosting and Bagging for KDD Cup 2009 — Fast Scoring on a Large
Database — Xie, Rojkova, Pal, Coggeshall — URL : http://www.kddcup-orange.
com/factsheet.php?id=58

• Predicting customer behaviour: The University of Melbourne’s KDD Cup report —
Hugh Miller, Sandy Clarke, Stephen Lane, Andrew Lonie, David Lazaridis, Slave Petro-
vski, Owen Jones — URL : http://www.kddcup-orange.com/factsheet.
php?id=21

• An Ensemble of Three Classifiers for KDD Cup 2009: Expanded Linear Model, Hetero-
geneous Boosting, and Selective Naive Bayes — Hung-Yi Lo, Kai-Wei Chang, Shang-
Tse Chen, Tsung-Hsien Chiang, Chun-Sung Ferng, Cho-Jui Hsieh, Yi-Kuang Ko, Tsung-
Ting Kuo, Hung-Che Lai, Ken-Yi Lin, Chia-Hsuan Wang, Hsiang-Fu Yu, Chih-Jen Lin,
Hsuan-Tien Lin, Shou-de Lin — URL : http://www.kddcup-orange.com/
factsheet.php?id=78

• KDD Cup 2009 @ Budapest: feature partitioning and boosting — Miklós Kurucz,
Dávid Siklósi, István Bíró, Péter Csizsek, Zsolt Fekete, Róbert Iwatt, Tamás Kiss, Adri-
enn Szabó — URL : http://www.kddcup-orange.com/factsheet.php?id=
63

• Logistic Model Trees with AUC Split Criterion for the KDD Cup 2009 Small Challenge —
P. Doetsch, C. Buck, P. Golik, N. Hoppe, M. Kramp, J. Laudenberg, C. Oberdörfer,
P. Steingrube, J. Forster, A. Mauser — URL : http://www.kddcup-orange.com/
factsheet.php?id=86

• Classification of Imbalanced Marketing Data with Balanced Random Sets — Vladimir
Nikulin, Geoffrey J. McLachlan — URL : http://www.kddcup-orange.com/
factsheet.php?id=95

• Application of Additive Groves Ensemble with Multiple Counts Feature Evaluation to
KDD Cup’09 Small Data Set — Daria Sorokina — URL : http://www.kddcup-
orange.com/factsheet.php?id=7

• Accelerating AdaBoost using UCB Róbert Busa-Fekete, Balázs Kégl — URL : http:
//www.kddcup-orange.com/factsheet.php?id=79
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