
Causation and Prediction Challenge
Challenges in Machine Learning, Volume 2

Causation and Prediction Challenge
Challenges in Machine Learning, Volume 2

Isabelle Guyon, Constantin Aliferis,
Greg Cooper, André Elisseeff,
Jean-Philippe Pellet, Peter Spirtes, and
Alexander Statnikov, editors

Nicola Talbot, production editor

Microtome Publishing
Brookline, Massachusetts
www.mtome.com

Causation and Prediction Challenge
Challenges in Machine Learning, Volume 2

Isabelle Guyon, Constantin Aliferis,
Greg Cooper, André Elisseeff,
Jean-Philippe Pellet, Peter Spirtes, and
Alexander Statnikov, editors

Nicola Talbot, production editor

Collection copyright c� 2010 Microtome Publishing, Brookline, Massachusetts, USA.
Copyright of individual articles remains with their respective authors.

ISBN-13: 978-0-9719777-2-3

Causality Workbench
�http://clopinet.com/causality�

Foreword

For someone like me, who 20 years ago was laboring to get anyone in any discipline to take
causal Bayes networks seriously, the work described in the book signals a major victory, a battle
that will be looked back on as a turning point, even if the war is still undecided.

Much of the mathematical representation of causal systems that underlies the work de-
scribed in this book was worked out in the late 1980s and early 1990s. For fully a decade,
however, only a handful of serious scientists worked on developing, testing, and applying al-
gorithms for causal discovery based on this representation. As a result, the techniques and
even the representational ideas are still unknown in large swaths of the academy, even those
areas devoted primarily to causal science. Most statisticians don’t know or teach it, only a few
economists work in the area, and in epidemiology, which is almost single mindedly devoted to
using observational studies to learn about causal hypotheses, Sir Bradford Hill’s 1964 “criteria
for causality” are still the standard and if you mention ideas like d-separation and the collider
problem you risk getting thrown out of the conference dinner with no dessert. Thank goodness
for computer science.

What the causality workbench team has done here is singular—the team has managed to
engage the massive talent of the machine learning and computer science community—and then
set them to work on the daunting task of causal discovery in realistic scientific settings. To do
this, the team constructed a web-based “Causality Workbench” and populated it with simulated
and real data sets, discovery challenges (with prizes!) for these datasets, and a Matlab library of
causal discovery software (the Causal Explorer Software Library). The data sets include gene
expression data, drug discovery data, and census data, and the challenges involve using ob-
servational data to predict the effect of specific interventions, using mixed data (observational
and interventional) to predict the effect of interventions not yet performed, and other predic-
tion tasks that require inference not only from a sample to the population from which it was
drawn, but to other populations from which we have no sample (because intervention changes
the population). Unlike toy problems that we use to teach causal discovery, these datasets in-
volve complicated dependencies, interactions, non-linear relationships, and sets of variables
that include discrete, continuous, ordinal, and categorical variables. The work on these prob-
lems, which is described more than ably by the editors and the authors, combines techniques
from machine learning, e.g., support vector machines, classical statistics, e.g., ridge regression
and Bernoulli mixture models, and causal discovery (collider discovery and Markov blankets),
to produce real advances in causal discovery.

Besides the obvious quality and ingenuity of the work, I was struck by how wide a commu-
nity of scholarship the Causality Challenge has created. The authors of featured articles or of
competition winning algorithms hail from all over the world. Australia, China, Crete, England,
France, Germany, Mexico, Pakistan, and Taiwan are all represented. The list of “registered
users” of the Causal Explorer Software Users includes researchers from 58 of the top research
universities in the US, including Carnegie Mellon, Cornell, Duke, Harvard, Johns Hopkins,
MIT, Northwestern, Princeton, Stanford, UC Berkeley, UCLA, the University of Pennsylvania,
and Yale.

Clearly the work is not done. What is done, however, is the creation of a serious scien-
tific community devoted to developing and applying reliable and fast computational methods

i

for finding causal, not just predictive, models of the world. The Causality Workbench Team
deserves high praise, not just for inspiring all the excellent work that follows in this book, but
for doing so much to bring together and focus so much talent, and to lay the foundation for a
bright future. The science of causal discovery is coming of age.

Richard Scheines
Professor of Philosophy, Machine Learning, and Human-Computer Interaction
Carnegie Mellon University

ii

Preface

The Causality Workbench Team was founded in January 2007 with the objective of evaluating
methods for solving causal problems. The problem of attributing causes to effects is pervasive
in science, medicine, economy and almost every aspects of our everyday life involving human
reasoning and decision making. Advancing the methodology for reliably determining causal
relationships would therefore have an immediate and important impact, both economical and
fundamental. The goal of determining causal relationships is to predict the consequences of
given actions or manipulations. For instance, the effect of taking a drug on health status, or
the effect of reducing taxes on the economy. This is fundamentally different from making
predictions from observations. Observations imply no experimentation, no interventions on the
system under study, whereas actions introduce a disruption in the natural functioning of the
system. The canonical way of determining whether events are causally related is to conduct
controlled experiments in which the system of interest is “manipulated” to verify hypothetical
causal relationships. However, experimentation is often costly, infeasible or unethical. This has
prompted a lot of recent research on learning causal relationships from available observational
data. These methods can unravel causal relationships to a certain extent, but must generally be
complemented by experimentation.

The need for assisting policy making and the availability of massive amounts of “observa-
tional” data triggered a proliferation of proposed causal discovery techniques. Each scientific
discipline has its favorite approach (e.g. Bayesian networks in biology and structural equation
modeling in social sciences, not necessarily reflecting better match of techniques to domains,
but rather historical tradition. Standard benchmarks are needed to foster scientific progress, but
the design of a good causal discovery benchmark platform, which is not biased in favor a par-
ticular model or approach, is not trivial. To stimulate research in causal discovery, the Causality
Workbench Team created a platform in the form of a web service, which will allow researchers
to share problems and test methods. See http://clopinet.com/causality. This vol-
ume gathers the material of the first causality challenge organized by the Causality Workbench
Team for the World Congress in Artificial Intelligence (WCCI), June 3, 2008 in Hong-Kong.
Most feature selection algorithms emanating from machine learning do not seek to model mech-
anisms: they do not attempt to uncover cause-effect relationships between feature and target.
This is justified because uncovering mechanisms is unnecessary for making good predictions
in a purely observational setting. Usually the samples in both the training and tests sets are
assumed to have been obtained by identically and independently sampling from the same “nat-
ural” distribution. In contrast, in this challenge, we investigate a setting in which the training
and test data are not necessarily identically distributed. For each task (e.g. REGED, SIDO,
etc.), we have a single training set, but several test sets (associated with the dataset name, e.g.
REGED0, REGED1, and REGED2). The training data come from a so-called “natural distri-
bution”, and the test data in version zero of the task (e.g. REGED0) are also drawn from the
same distribution. We call this test set “unmanipulated test set”. The test data from the two
other versions of the task (REGED1 and REGED2) are “manipulated test sets” resulting from
interventions of an external agent, which has “manipulated” some or all the variables in a cer-
tain way. The effect of such manipulations is to disconnect the manipulated variables from their
natural causes. This may affect the predictive power of a number of variables in the system, in-

iii

http://clopinet.com/causality

cluding the manipulated variables. Hence, to obtain optimum predictions of the target variable,
feature selection strategies should take into account such manipulations.

The book contains a collection of papers first published in JMLR W&CP, including a paper
summarizing the results of the challenge and contributions of the top ranking entrants. We added
in appendix fact sheets describing the methods used by participants and a technical report with
details on the datasets. The book is complemented by a web site from which the datasets can
be downloaded and post-challenge submissions can be made to benchmark new algorithms, see
http://www.causality.inf.ethz.ch/challenge.php.

November 2009

The Causality Workbench Team:

Isabelle Guyon
Clopinet, California
isabelle@clopinet.com

Constantin Aliferis
New-York University, New-York
constantin.aliferis@nyumc.org

Greg Cooper
University of Pittsburgh, Pennsylvania
gfc@pitt.edu

André Elisseeff
IBM Research, Zürich
ael@zurich.ibm.com

Jean-Philippe Pellet
IBM Research and ETH, Zürich
jep@zurich.ibm.com

Peter Spirtes
Carnegie Mellon University, Pennsylvania
ps7z@andrew.cmu.edu

Alexander Statnikov
New York University
alexander.statnikov@med.nyu.edu

iv

http://www.causality.inf.ethz.ch/challenge.php

Table of Contents

Papers published in JMLR W&CP

Design and Analysis of the Causation and Prediction Challenge 1
Isabelle Guyon, Constantin Aliferis, Greg Cooper, André Elisseeff, Jean-Philippe Pellet,
Peter Spirtes, and Alexander Statnikov; JMLR W&CP 3:1–33, 2008.

A Strategy for Making Predictions Under Manipulation 31
Laura E. Brown and Ioannis Tsamardinos; JMLR W&CP 3:35–52, 2008.

Feature Ranking Using Linear SVM 47
Yin-Wen Chang and Chih-Jen Lin; JMLR W&CP 3:53–64, 2008.

Random Sets Approach and its Applications 59
Vladimir Nikulin; JMLR W&CP 3:65–76, 2008.

Bernoulli Mixture Models for Markov Blanket Filtering and Classificiation 71
Mehreen Saeed; JMLR W&CP 3:77–91, 2008.

Partial orientation and local structural learning of causal networks for prediction 85
Jianxin Yin, You Zhou, Changzhang Wang, Ping He, Cheng Zheng and Zhi Geng; JMLR
W&CP 3:93–105, 2008.

Causal & Non-Causal Feature Selection for Ridge Regression 97
Gavin Cawley; JMLR W&CP 3:107–128, 2008.

Appendix I Causation and Prediction Challenge Fact Sheets

Feature selection, redundancy elimination, and gradient boosted trees 119
Alexander Borisov

Regularized and Averaged Selective Naïve Bayes Classifier 122
Marc Boullé

A Strategy for Making Predictions Under Manipulation 126
Laura Brown and Ioannis Tsamardinos

Causation, Prediction, Feature Selection and Regularization 130
Gavin Cawley

SVM-Based Feature Selection for Causation and Prediction Challenge 135
Yin-Wen Chang

Boosting Probabilistic Network for causality prediction 138
Louis Duclos-Gosselin

v

TABLE OF CONTENTS

Dimensionality reduction through unsupervised learning 140
Nistor Grozavu

Markov blanket of the target and Norm1 linear SVM 142
Cristian Grozea

An Energy-based Model for Feature Selection 144
H. Jair Escalante, Luis Enrique

Translate Binary Variable to Continuous Variable 149
Jinzhu Jia

Univariate feature ranking and SVM classifier 151
Jianming Jin

Collider scores 153
Ernest Mwebaze and John Quinn

Random Sets Approach and its Applications 155
Vladimir Nikulin

Optimally Compressive Regression 158
Florin Popescu

Markov blanket and kernel ridge regression 161
Marius Popescu

Markov Blanket Filtering using Mixture Models 166
Mehreen Saeed

Ensemble Machine Learning Method 169
Ching-Wei Wang

Partial Orientation and Local Structural Learning of DAGs for Prediction 172
Jianxin Yin and Prof. Zhi Geng’s Group

Causative Feature Selection by PC Algorithm and SVMs 175
Wu Zhili

Appendix II Technical Report Describing the Datasets of the Challenge

Introduction 179

Dataset A: REGED 184

Dataset B: SIDO 188

Dataset C: CINA 196

Dataset D: MARTI 205

Appendix A: Generation of random probes 210

vi

TABLE OF CONTENTS

Appendix B: Probe method for scoring causes & consequences 240

Appendix C: ChemTK QSAR descriptors used for SIDO 256

Appendix D: Chemical Computing Group (CCG) QSAR descriptors 262

Appendix E: Matlab code to filter MARTI data 262

Appendix III Causal Explorer Software Library

Causal Explorer: A Matlab Library of Algorithms for Causal Discovery and Variable
Selection for Classification 267
Alexander Statnikov, Ioannis Tsamardinos, Laura E. Brown and Constantin F. Aliferis

vii

TABLE OF CONTENTS

viii

JMLR Workshop and Conference Proceedings 3:1–33 WCCI2008 workshop on causality

Design and Analysis of the
Causation and Prediction Challenge

Isabelle Guyon ISABELLE@CLOPINET.COM
Clopinet, California

Constantin Aliferis CONSTANTIN.ALIFERIS@NYUMC.ORG
New York University, New York

Greg Cooper GFC@PITT.EDU
University of Pittsburgh, Pennsylvania

André Elisseeff AEL@ZURICH.IBM.COM
IBM Research, Zürich

Jean-Philippe Pellet JEP@ZURICH.IBM.COM
IBM Research and ETH, Zürich

Peter Spirtes PS7Z@ANDREW.CMU.EDU
Carnegie Mellon University, Pennsylvania

Alexander Statnikov ALEXANDER.STATNIKOV@MED.NYU.EDU

New York University

Editor: Neil Lawrence

Abstract
We organized for WCCI 2008 a challenge to evaluate causal modeling techniques, focusing
on predicting the effect of “interventions” performed by an external agent. Examples of that
problem are found in the medical domain to predict the effect of a drug prior to administering
it, or in econometrics to predict the effect of a new policy prior to issuing it. We concen-
trate on a given target variable to be predicted (e.g., health status of a patient) from a number
of candidate predictive variables or “features” (e.g., risk factors in the medical domain). Un-
der interventions, variable predictive power and causality are tied together. For instance, both
smoking and coughing may be predictive of lung cancer (the target) in the absence of external
intervention; however, prohibiting smoking (a possible cause) may prevent lung cancer, but
administering a cough medicine to stop coughing (a possible consequence) would not. We pro-
pose four tasks from various application domains, each dataset including a training set drawn
from a “natural” distribution in which no variable are externally manipulated and three test sets:
one from the same distribution as the training set and two corresponding to data drawn when an
external agent is manipulating certain variables. The goal is to predict a binary target variable,
whose values on test data are withheld. The participants were asked to provide predictions of
the target variable on test data and the list of variables (features) used to make predictions. The
challenge platform remains open for post-challenge submissions and the organization of other
events is under way (see http://clopinet.com/causality).

Keywords: challenge, competition, causality, causal discovery, feature selection, intervention,
manipulation.

©2008 I. Guyon and C. Aliferis and G. Cooper and A. Elisseeff and J.-P. Pellet and P. Spirtes and A. Statnikov

http://clopinet.com/causality

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

1. Introduction
The problem of attributing causes to effects is pervasive in science, medicine, economics and
almost every aspect of our everyday life involving human reasoning and decision making. One
important goal of causal modeling is to unravel enough of the data generating process to be able
to make predictions under manipulations of the system of interest by an external agent (e.g., ex-
periments). Being able to predict the results of actual or potential experiments (consequences
or effects)1 is very useful because experiments are often costly and sometimes impossible or
unethical to perform. For instance, in policy-making, one may want to predict “the effect on a
population’s health status” of “forbidding individuals to smoke in public places” before passing
a law. This example illustrates the case of an experiment which is possible, but expensive. On
the other hand, forcing people to smoke would constitute an unethical experiment.

The need for assisting policy making and the availability of massive amounts of “obser-
vational” data has prompted the proliferation of proposed causal discovery techniques. These
techniques estimate the structure of the data generating process from which the effect of inter-
vention can be estimated. Each scientific discipline has its favorite approach (e.g., Bayesian
networks in biology and structural equation modeling in the social sciences), not necessarily
reflecting a better match of techniques to domains, but rather the historical tradition. Standard
benchmarks are needed to foster scientific progress. In organizing a challenge for WCCI on the
theme of causality, our goals included:

• Stimulating the causal discovery community to make progress by exposing it to large
datasets, whose size is more typical of data mining and machine learning tasks than causal
learning.

• Drawing the attention of the computational intelligence community to the importance
of causal modeling and discovery problems and the opportunities to explore machine
learning and data mining techniques.

• Pointing out possible limitations of current methods on some particularly difficult prob-
lems.

The last item is especially relevant for feature selection algorithms emanating from machine
learning as most current machine learning methods do not attempt to uncover cause-effect rela-
tionships between features and target. This is justified for a prediction task where training and
tests sets are obtained by drawing samples identically and independently from the same “natu-
ral” distribution. We call this a purely “observational” setting. In that setting, statistical predic-
tive models do not need to model data generative mechanisms and both causal and consequential
features may be predictive of a certain target variable. For instance both smoking and coughing
are predictive of respiratory disease; one is a cause and the other a symptom (consequence). In
contrast, in this challenge, we investigated a setting in which the training and test data are not
necessarily identically distributed. Test data may be drawn from a post-manipulation distribu-
tion that is distinct from the unmanipulated “natural” distribution from which training data are
drawn. This problem is related to the more general problem of “distribution shift” or “covariate
shift”, which has recently gained the attention of the machine learning community and was the
object of a challenge (Quiñonero Candela et al., 2007). In the particular case we are interested
in, the post-manipulation distribution results from actions or interventions of an external agent
who is forcing some variables to assume particular values rather than letting the data generative
system produce values according to its own dynamics. Acting on a cause of en event can change
the event, but acting on a consequence cannot. For instance, acting on a cause of disease like
smoking can change the disease state, but acting on the symptom (coughing) cannot. Thus it

1. In this paper, we will use interchangeably “manipulation” or “intervention” and “consequence” or “effect”.

2

CAUSATION AND PREDICTION

is extremely important to distinguish between causes and effects to predict the consequences of
actions on a given target variable.

The main objective of the challenge was to predict a binary target variable (classification
problem) from a set of candidate predictive variables, which may be binary or continuous. For
each task of the challenge (e.g., REGED, SIDO, etc.), we have a single training set, but several
test sets (associated with the dataset name, e.g., REGED0, REGED1, and REGED2). The train-
ing data come from a so-called “natural distribution”, and the test data in version zero of the task
(e.g., REGED0) are also drawn from the same distribution. We call this test set a “natural” or
“unmanipulated” test set. The test data from the two other versions of the task (e.g., REGED1
and REGED2) are “manipulated” test sets resulting from interventions of an external agent,
which has “manipulated” some or all the variables in some way (excluding the “target” or “re-
sponse variable”). The effect of such manipulations is to disconnect the manipulated variables
from their natural causes. This may affect the predictive power of a number of variables in the
system, including the manipulated variables. Hence, to obtain optimum predictions of the target
variable, feature selection strategies should take into account such manipulations.

In this challenge, we are focusing on causal relationships between random variables, as
opposed to causal relationships between events or objects. We consider only stationary systems
in equilibrium, hence eliminating the need for an explicit reference to time in our samples. This
setup is typical of so-called “cross-sectional” studies in medicine (as opposed to “longitudinal”
studies). In practice, this means that the samples for each version of the test set, e.g., REGED0,
REGED1, and REGED2, are drawn independently, according to a given distribution, which
changes only between test set version. Having no explicit reference to time may be surprising
to researchers new to causal modeling, since causes must always precede their effects. Causal
models in this context enforce an order of evaluation of the variables, without reference to an
exact timing.2

The type of causal relationships under consideration have often been modeled as Bayesian
causal networks or structural equation models (SEM) (Pearl, 2000; Spirtes et al., 2000; Neapoli-
tan, 2003). In the graphical representation of such models, an arrow between two variables
A→ B indicates the direction of a causal relationship: A causes B. A node in of the graph,
labeled with a particular variable X, represents a mechanism to evaluate the value of X given
the parent node variable values. For Bayesian networks, such evaluation is carried out by a
conditional probability distribution P(X |Parents(X)) while for structural equation models it is
carried out by a function of the parent variables, plus some noise. Learning a causal graph can
be thought of as a model selection problem: Alternative graph architectures are considered and
a selection is performed, either by ranking the architectures with a global score (e.g., a marginal
likelihood, or a penalty-based cost function), or by retaining only graphs that fulfill a number
of constraints such as dependencies or independencies between subsets of variables.

Bayesian networks and SEMs provide a convenient language to talk about the type of prob-
lem we are interested in, but our setting does not preclude of any particular model. Some of the
data used in the challenge were generated by real unknown processes, which probably violate
some commonly made causal modeling assumptions, such as “causal sufficiency”3, linearity,
Gaussian noise, absence of cycles, etc. By adopting a predictive modeling perspective, we pur-
posely took some distance with the interpretation of causal models as data generative models.
The goal of the challenge was not to reverse engineer the data generative process, it is to make
accurate predictions of a target variable. To sharpen this distinction, we made available only a
limited amount of training data, such that the learner may not necessarily be able to reliably de-

2. When manipulations are performed, we must specify whether we sample from the distribution before or after the
effects of the manipulation have propagated. Here we assume that we sample after the effects have propagated.

3. “Causal sufficiency” roughly means that there are no unobserved common causes of the observed variables.

3

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

termine all conditional dependencies and independencies. Hence, modeling strategies making
radical simplifying assumptions might do better than strategies trying to be faithful to the data
generative process, because of the well-known fit vs. robustness (or bias vs. variance) tradeoff.

2. General setting
We created a web site from which data and instructions on how to participate were outlined:
http://clopinet.com/causality. This first causality challenge is part of a larger
program, which we initiated, called the “causality workbench”; the web site hosts repositories
of code, data, models, publications and other events, including challenges and teleconference
seminars. Our first challenge started on December 15, 2007 and ended on April 30, 2008. Four
datasets were proposed and progressively introduced (the last one being released 2 months prior
the end of the challenge). More details on the datasets are found in Section 3.

Our challenge is formatted in a similar way to most machine learning problems: pairs of
training examples {x,y} are provided. The goal is to predict the target variable y for new test
instances of x. The elements of vector x are interchangeably called “variables” or “features”
in this paper. Unlike most machine learning problems, the training and test sets are not always
distributed similarly. We provide large test sets to obtain statistically significant results. Both
the training and the unlabeled test sets were provided from the beginning of the competition. We
required that the participants would not use the unlabeled test data to train their models, and this
rule was enforced by verifying the code of the best ranking entrants after the end of the challenge
(see Appendix B). This rule was motivated by several considerations: (1) We are investigating
problems in which only “observational” training data are available for model building. Test
data are not supposed to be available at model building time; we use them only to test the
ability of our model to make predictions about the effect of hypothetical actions performed on
the system in the future. (2) In a challenge, we need very large test sets to obtain small error
bars on the participant performances, otherwise most differences between algorithms would not
be statistically significant. However, such large amount of “manipulated” test data would not
be available all at once in many real world situations.

Prediction results and features sets could be submitted on-line to get immediate feed-back,
as a means of stimulating participation. To limit the amount of knowledge that could be gained
from viewing test set results, the participants were only informed about the quartile of their
method’s performances. In previous challenges we organized (Guyon et al., 2006a,,), we pro-
vided feed-back on a small validation set, whose target values were released shortly before the
end of the challenge, and we used a separate larger test to perform the final evaluation. In this
challenge, we developed this new way of providing feed-back (using performance quartiles)
because information about the post-manipulation distribution (distinct from the training data
“natural” distribution) could be induced from a more detailed form of performance feed-back
on a validation set. The quartile method achieves essentially the same goal of stimulating the
participants while simplifying the challenge protocol.

Another difference compared to our previous challenges is that we did not request that the
participants return results on all tasks of the challenge. For each task, they were only required
to return predictions on all three versions of any given test set (manipulated or not). In this
way, we intended to lower the level of effort of participation because we knew many algorithms
lend themselves only to certain kinds of data. To encourage participants to submit results on
more than one task, we set up an exponential reward system: a prize of $100 was promised
for winning on any of the 4 tasks, but the progression of the rewards for winning on 2, 3, or
4 datasets was $400, $900, and $1600. This successfully encouraged entrants to submit on all
datasets. Another final difference from previous challenges is that we authorized only one final

4

http://clopinet.com/causality

CAUSATION AND PREDICTION

entry (as opposed to 5 in previous challenges) to compensate for the fact that participants had
4 chances of winning (one for each dataset). In this way, we limited the statistical risk that
the winning entry be better only “by chance”. However, we did allow submissions of multiple
prediction results for nested subsets of variables, with the purpose of obtaining performance
curves as a function of number of features. In Section 5, our initial analysis is based on the best
result in the performance curve for each participant. We complemented it by an analysis making
pairwise comparisons of entries at the same number of features, to account for a possible bias
detrimental to the participants who provided single predictions.

To introduce the participants to the problem of making predictions under interventions, we
provided a tutorial (Guyon et al., 2007), and we created a toy example, which was not part of
the challenge, but which was interfaced to the challenge platform in the same way as the other
datasets. The participants could use it for practice purposes, and we provided guidance on how
to solve the problem on the web site. We briefly describe this example, illustrated in Figure 1,
to clarify the challenge. More details are found on the website of the challenge.

LUCAS0: The toy example of Figure 1-a models the problem of predicting lung cancer as
a causal network. Each node represents a variable/feature and the arcs represent causal relation-
ships, i.e., A→ B represents that A is a cause of B. The target variable is “Lung Cancer”. Each
node in the graph is associated with a table of conditional probabilities P(X = x|Parent1(X) =
p1,Parent2(X) = p2, ...) defining the “natural” distribution. The generative model is a Markov
process (a so-called “Bayesian network”), so the state of the children is stochastically deter-
mined by the states of the parents. The values must be drawn in a certain order, so that the
children are evaluated after their parents. Both the training and test sets of LUCAS0 are drawn
according the natural distribution. In the figure, we outline in dark green the Markov blanket of
the target, which includes all targets’ parents (node immediate antecedents), children (node im-
mediate descendants), and spouses (immediate antecedents of an immediate descendant). The
Markov blanket (MB) is the set of variables such that the target is independent of all other
variables given MB.4 It is widely believed that, if the MB were perfectly known, adding more
variables to the feature set would be unnecessary to make optimal predictions of the target vari-
able. However, this statement depends on the criterion of optimality and is true only in the
sample limit and if the predictor is asymptotically unbiased (Tsamardinos and Aliferis, 2003).
For example, a linear classifier may benefit from the inclusion of non-MB features, even in the
sample limit and with perfect knowledge of the MB, if the functional relation of the target and
the MB is non-linear. In this challenge, the goal is not to discover the MB, it is to make best
predictions of the target variable on test data.

LUCAS1: In the example of Figure 1-b, the training data are the same as in LUCAS0. We
model a scenario in which an external agent manipulates some of the variables of the system,
circled in red in the figure (Yellow Fingers, Smoking, Fatigue, and Attention Disorder). The
intention of such manipulations may include disease prevention or cure. The external agent
sets the manipulated variables to desired values, hence “disconnecting” those variables from
their parents. The other variables are obtained by letting the system evolve according to its own
dynamics. As a result of manipulations, many variables may become disconnected from the
target and the Markov blanket (MB) may change. If the identity of the manipulated variables is
revealed (as in the case of REGED1 and MARTI1), one can deduce from the graph of the natural
distribution inferred from training data which variables to exclude from the set of predictive
variables. In particular, the MB of the post-manipulation distribution is a restriction of the

4. Other definitions of the Markov blanket are possible. Our definition coincides with what other authors call Markov
boundary or “minimal” Markov blanket. Although we refer to “the” Markov blanket, for some distributions it is
not unique and it does not always coincide with the sets of parents, children and spouses. But we limit ourselves
to this case in the example, for simplicity.

5

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

Yellow
Fingers

Anxiety Peer
Pressure

Born an
Even Day

Smoking Genetics

Allergy Lung
Cancer

Attention
Disorder

Coughing Fatigue

Car
Accident

(a) LUCAS0

Yellow
Fingers

Anxiety Peer
Pressure

Born an
Even Day

Smoking Genetics

Allergy Lung
Cancer

Attention
Disorder

Coughing Fatigue

Car
Accident

(b) LUCAS1

Yellow
Fingers

Anxiety Peer
Pressure

Born an
Even Day

Smoking Genetics

Allergy Lung
Cancer

Attention
Disorder

Coughing Fatigue

Car
Accident

(c) LUCAS2

Yellow
Fingers

Anxiety Peer
Pressure

Born an
Even Day

Smoking Genetics

Allergy Lung
Cancer

Attention
Disorder

Coughing Fatigue

Car
Accident

P1 P2 P3 PT

(d) LUCAP0

Yellow
Fingers

Anxiety Peer
Pressure

Born an
Even Day

Smoking Genetics

Allergy Lung
Cancer

Attention
Disorder

Coughing Fatigue

Car
Accident

P1 P2 P3 PT

(e) LUCAP1

Figure 1: Lung cancer toy example. The dark green nodes represents the minimal Markov
blanket or “Markov boundary” (MB) of the target variable “Lung Cancer”. The white
nodes are independent of the target. Given the MB, both white and light green nodes
are (conditionally) independent of the target. The manipulated nodes are emphasized
in red. As a result of being manipulated, they are disconnected from their original
causes and the MB is restricted to the remaining dark green nodes. See text.

6

CAUSATION AND PREDICTION

MB of the natural distribution resulting from the removal of manipulated children and spouses
whose children are all manipulated (unless it is also a parent of the target).

LUCAS2: In Figure 1-c we manipulated all the variables except the target. As a result, only
the direct causes of the target are predictive, and they coincide with the Markov blanket (MB)
of the post-manipulation distribution.

LUCAP0: In Figure 1-d, we are modeling the following situation: Imagine that we have
REAL data generated from some UNKNOWN process (we do not know the causal relationships
among variables). Further, for various reasons, which may include practical reasons, ethical
reasons, or cost, we are unable to carry out any kind of manipulation on the real variables, so
we must resort to performing causal discovery and evaluating the effectiveness of our causal
discovery using unmanipulated data (data drawn from the natural distribution). To that end,
we add a large number of artificial variables called “probes”, which are generated from some
functions (plus some noise) of subsets of the real variables. We shuffle the order of all the
variables and probes not to make it too easy to identify the probes. For the probes we (the
organizers) have perfect knowledge of the causal relationships. For the other variables, we only
know that some of them (light green nodes) might be predictive while not belonging to the MB,
and some of them (dark green nodes) might belong to the MB. The members of the MB include
some real variables and some probes. To assess feature selection methods, we use the probes
by computing statistics such as the fraction of non-MB probes in the feature subset selected.

LUCAP1 and LUCAP2: While we cannot manipulate the real variables in our model
setup, we can manipulate the probes. The probe method allows us to conservatively evaluate
causal feature selection algorithms, because we know that the output of an algorithm should not
include any probe for a distribution where all probes are manipulated. The test sets of LUCAP1
and LUCAP2 (Figure 1-e) are obtained by manipulating all probes (in every sample) in two
different ways. The training data are the same as in LUCAP0. Knowing that we manipulated
all probes, and that probes can only be non-causes of the target, a possible strategy is to select
only features that are causes of the target.5 If this strategy is followed, the fraction of probes
in the feature set selected allows us to compute an estimate the fraction of non-causes wrongly
selected.6

3. Description of the datasets
We use two types of data:

• Re-simulated data: We train a “causal” model (a causal Bayesian network or a structural
equation model) with real data. The model is then used to generate artificial training and
test data for the challenge. Truth values of causal relationships are known for the data
generating model and used for scoring causal discovery results. REGED is an example
of re-simulated dataset.

• Real data with probe variables: We use a dataset of real samples. Some of the variables
may be causally related to the target and some may be predictive but non-causal. The
nature of the causal relationships of the variables to the target is unknown (although
domain knowledge may allow us to validate the discoveries to some extent). We have
added to the set of real variables a number of distractor variables called “probes”, which
are generated by an artificial stochastic process, including explicit functions of some of

5. Note however that some of the real variables that are non-causes may be predictive, so eliminating all non-causes
of the target is a sure way to eliminate all probes but not necessarily an optimum strategy.

6. The validity of the estimation depends on many factors, including the number of probes and the distributional
assumptions of non-causes made in the probe data generative process.

7

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

the real variables, other artificial variables, and/or the target. All probes are non-causes
of the target, some are completely unrelated to the target. The identity of the probes in
concealed. The fact that truth values of causal relationships are known only for the probes
affects the evaluation of causal discovery, which is less reliable than for artificial data.

The training data and test sets labeled 0 are generated from a so-called “natural” pre-
manipulation distribution. The variable values are sampled from the system when it is allowed
to evolve according to its own dynamics, after it has settled in a steady state. For the probe
method, the system includes the artificial probe generating mechanism. Test sets labeled 1 and
2 are generated from a so-called post-manipulation distribution. An external agent performs
an “intervention” on the system. Depending on the problem at hand, interventions can be of
several kinds, e.g., clamping one or several variables to given values or drawing them from an
alternative distribution, then sampling the other variables according to the original conditional
probabilities. In our design, the target variable is never manipulated. For the probe method,
since we do not have the possibility of manipulating the real variables, we only manipulate the
probes. The effect of manipulations is to disconnect the variables from their natural causes.
Manipulations allow us to eventually influence the target, if we manipulate causes of the target.
Manipulating non-causes should have no effect on the target. Hence, without inferring causal
relationships, it should be more difficult to make predictions for post-manipulation distributions.

Table 1: Datasets. All target variables are binary. Each dataset has three test sets of the same
size numbered 0, 1, and 2.

Dataset Domain Type Features Feat. # Train # Test #
REGED Genomics Re-simulated Numeric 999 500 20000
SIDO Pharmacology Real + probes Binary 4932 12678 10000
CINA Econometrics Real + probes Mixed 132 16033 10000
MARTI Genomics Re-simulated Numeric 999 500 20000

We proposed four tasks (Table 1):
REGED (REsimulated Gene Expression Dataset): Find genes which could be responsible

for lung cancer. The data are “re-simulated”, i.e., generated by a model derived from real hu-
man lung-cancer microarray gene expression data. From the causal discovery point of view, it
is important to separate genes whose activity causes lung cancer from those whose activity is a
consequence of the disease. All three datasets (REGED0, REGED1, and REGED2) include 999
features (no hidden variables or missing data), the same 500 training examples, and different test
sets of 20000 examples. The target variable is binary; it separates malignant samples (adenocar-
cinoma) from control samples (squamous cells). The three test sets differ in their distribution.
REGED0: No manipulation (distribution identical to the training data). REGED1: Variables
in a given set are manipulated and their identity is disclosed. REGED2: Many variables are
manipulated, including all the consequences of the target, but the identity of the manipulated
variables was not disclosed. When variables are manipulated, the model is allowed to evolve
according to its own mechanism until the effect of the manipulations propagate.

SIDO (SImple Drug Operation mechanisms) contains descriptors of molecules which have
been tested against the AIDS HIV virus. The target values indicate the molecular activity (+1

active, −1 inactive). The causal discovery task is to uncover causes of molecular activity among
the molecule descriptors. This would help chemists in the design of new compounds, retaining
activity, but having perhaps other desirable properties (less toxic, easier to administer). The
molecular descriptors were generated programmatically from the three dimensional description
of the molecule, with several programs used by pharmaceutical companies for QSAR studies

8

CAUSATION AND PREDICTION

(Quantitative Structure-Activity Relationship). For example, a descriptor may be the number of
carbon molecules, the presence of an aliphatic cycle, the length of the longest saturated chain,
etc. The dataset includes 4932 variables (other than the target), which are either molecular
descriptors (all potential causes of the target) or “probes” (artificially generated variables that
are not causes of the target). The training set and the unmanipulated test set SIDO0 are similarly
distributed. They are constructed such that some of the “probes” are effects (consequences)
of the target and/or of other real variables, and some are unrelated to the target or other real
variables. Hence, both in the training set and the unmanipulated test set, all the probes are non-
causes of the target, yet some of them may be “observationally” predictive of the target. In the
manipulated test sets SIDO1 and SIDO2, all the “probes” are manipulated in every sample by
an external agent (i.e., set to given values, not affected by the dynamics of the system) and can
therefore not be relied upon to predict the target. The identity of the probes is concealed. They
are used to assess the effectiveness of the algorithms to dismiss non-causes of the target for
making predictions in manipulated test data. In SIDO1, the manipulation consists in a simple
randomization of the variable values, whereas in SIDO2 the values are chosen to bias prediction
results unfavorably, if the manipulated variables are chosen as predictors (adversarial design).

CINA (Census Is Not Adult) is derived from census data (the UCI machine-learning repos-
itory Adult database). The data consists of census records for a number of individuals. The
causal discovery task is to uncover the socio-economic factors affecting higher income (the
target value indicates whether the income exceeds 50K). The 14 original attributes (features)
including age, workclass, education, marital status, occupation, native country, etc. are contin-
uous, binary, or categorical. Categorical variables were converted to multiple binary variables
(as we shall see, this preprocessing, which facilitates the tasks of some classifiers, complicates
causal discovery). Distracter features or “probes” (artificially generated variables, which are not
causes of the target) were added. In training data, some of the probes are effects (consequences)
of the target and/or of other real variables. Some are unrelated to the target or other real vari-
ables. Hence, some of the probes may be correlated to the target in training data, although
they do not cause it. The unmanipulated test data in CINA0 are distributed like the training
data. Hence, both causes and consequences of the target might be predictive in the unmanip-
ulated test data. In contrast, in the manipulated test data of CINA1 and CINA2, all the probes
are manipulated by an external agent (i.e., set to given values, not affected by the dynamics of
the system) and therefore they cannot be relied upon to predict the target. In a similar way to
SIDO, the difference between versions 1 and 2 is that in version 1 the probe values are simply
randomized whereas in version 2 they are chosen in an adversarial way.

MARTI (Measurement ARTIfact) is obtained from the same data generative process as
REGED, a source of simulated genomic data. Similarly to REGED the data do not have hidden
variables or missing data, but a noise model was added to simulate the imperfections of the
measurement device. The goal is still to find genes, which could be responsible of lung cancer.
The target variable is binary; it indicates malignant samples vs. control samples. The feature
values representing measurements of gene expression levels are assumed to have been recorded
from a two-dimensional microarray 32× 32. The training set was perturbed by a zero-mean
correlated noise model. The test sets have no added noise. This situation simulates a case where
we would be using different instruments at “training time” and “test time”, e.g., we would use
DNA microarrays to collect training data and PCR for testing. We avoided adding noise to the
test set because it would be too difficult to filter it without visualizing the test data or computing
statistics on the test data, which we forbid. So the scenario is that the second instrument (used
at test time) is more accurate. In practice, the measurements would also probably be more
expensive, so part of the goals of training would be to reduce the size of the feature set (we did
not make this a focus in this first challenge).

9

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

The problems proposed are challenging in several respects:

• Several assumptions commonly made in causal discovery are violated, including “causal
sufficiency”7, “faithfulness”8, “linearity”, and “Gaussianity”.

• Relatively small training sets are provided, making it difficult to infer conditional inde-
pendencies and learning distributions.

• Large numbers of variables are provided, a particular hurdle for some causal discovery
algorithms that do not scale up.

More details on the datasets, including the origin of the raw data, their preparation, past
usage, and baseline results can be found in a Technical Report (Guyon et al., 2008).

4. Evaluation
The participants were asked to return prediction scores or discriminant values v for the target
variable on test examples, and a list of features used for computing the prediction scores,
sorted in order of decreasing predictive power, or unsorted. The classification decision is made
by setting a threshold θ on the discriminant value v: predict the positive class if v > θ and the
negative class otherwise. The participants could optionally provide results for nested subsets of
features, varying the subset size by powers of 2 (1, 2, 4, 8, etc.).

Tscore: The participants were ranked according to the area under the ROC curve (AUC)
computed for test examples (referred to as Tscore), that is the area under the curve plotting
sensitivity vs. (1− specificity) when the threshold θ is varied (or equivalently the area under the
curve plotting sensitivity vs. specificity). We call “sensitivity” the error rate of the positive class
and “specificity” the error rate of the negative class. The AUC is a standard metric in classi-
fication. If results were provided for nested subsets of features, the best Tscore was retained.
There are several ways of estimating error bars for the AUC. We use a simple heuristic, which
gives us approximate error bars, and is fast and easy to implement: we find on the AUC curve
the point corresponding to the largest balanced accuracy BAC = 0.5 (sensitivity + specificity).
We then estimate the standard deviation of the BAC as:

σ =
1

2

�
p+(1− p+)

m+
+

p−(1− p−)
m−

, (1)

where m+ is the number of examples of the positive class, m− is the number of examples of
the negative class, and p+ and p− are the probabilities of error on examples of the positive
and negative class, approximated by their empirical estimates, the sensitivity and the specificity
(Guyon et al., 2006b).

Fscore: We also computed other statistics, which were not used to rank participants, but
used in the analysis of the results. Those included the number of features used by the partici-
pants called “Fnum”, and a statistic assessing the quality of causal discovery in the feature set
selected called “Fscore”. As with the Tscore, we provided quartile feed-back on Fnum and
Fscore during the competition. For the Fscore, we used the AUC for the problem of separating
features belonging to the Markov blanket of the test set distribution vs. other features. Details
are provided on the web site of the challenge. As it turns out, for reasons explained in Section 5,
this statistic correlates poorly with the Tscore and, after experimenting with various scores, we
found better alternatives.

7. “Causal sufficiency” roughly means that there are no unobserved common causes of the observed variables.
8. “Faithfulness” roughly means that every conditional independence relation that holds in the population is entailed

to hold for all values of the free parameters.

10

CAUSATION AND PREDICTION

Table 2: Best scores of ranked entrants. The table shows the results of the best entries of
the ranked entrants and their corresponding scores: Top Tscore = area under the ROC
curve on test data for the top ranked entries; Top Fscore = a measure of “causal rele-
vance” of the features used during the challenge (see text). For comparison, we also
include the largest reachable score, which was obtained by including reference entries
made by the organizers using knowledge about the true causal relationships (Max Ts
and Max Fs).

Dataset Top Tscore Max Ts Top Fscore Max Fs
REGED0 Yin-Wen Chang 1.000±0.001 1.000 Gavin Cawley 0.941±0.036 1.000
REGED1 Marius Popescu 0.989±0.003 0.998 Yin-Wen Chang 0.857±0.062 1.000
REGED2 Yin-Wen Chang 0.839±0.005 0.953 CaMML Team 1.000±0.153 1.000
SIDO0 J. Yin & Z. Geng Gr. 0.944±0.008 0.947 H. Jair Escalante 0.844±0.007 1.000
SIDO1 Gavin Cawley 0.753±0.014 0.789 Mehreen Saeed 0.724±0.007 1.000
SIDO2 Gavin Cawley 0.668±0.013 0.767 Mehreen Saeed 0.724±0.007 1.000
CINA0 Vladimir Nikulin 0.976±0.003 0.979 H. Jair Escalante 0.955±0.032 1.000
CINA1 Gavin Cawley 0.869±0.005 0.898 Mehreen Saeed 0.786±0.039 1.000
CINA2 Yin-Wen Chang 0.816±0.005 0.891 Mehreen Saeed 0.786±0.039 1.000
MARTI0 Gavin Cawley 1.000±0.001 1.000 Gavin Cawley 0.870±0.048 1.000
MARTI1 Gavin Cawley 0.947±0.004 0.954 Gavin Cawley 0.806±0.063 1.000
MARTI2 Gavin Cawley 0.798±0.006 0.827 Gavin Cawley 0.996±0.153 1.000

5. Result Analysis
5.1 Best challenge results

We declared three winners of the challenge:

• Gavin Cawley (University of East Anglia, UK): Best prediction accuracy on SIDO and
MARTI, using Causal explorer and linear ridge regression ensembles. Prize: $400.

• Yin Wen Chang (National Taiwan University): Best prediction accuracy on REGED and
CINA, using SVM. Prize: $400.

• Jianxin Yin and Zhi Geng’s group (Peking University, Beijing, China): Best overall
contribution, using Partial Orientation and Local Structural Learning (new original causal
discovery algorithm and best on Pareto front causation/prediction, i.e., with smallest Eu-
clidian distance to the extreme point with zero error and zero features). Prize: free WCCI
2008 registration.

The top-ranking results are summarized in Table 2. These results are taken from the last
entries of the ranked entrants.9

Following the rules of the challenge, the participants were allowed to turn in multiple pre-
diction results corresponding to nested subsets of features. The best Tscore over all feature set
sizes was then retained and the performances were averaged over all three test sets for each task
REGED, SIDO, CINA, and MARTI. In this way, we encouraged the participants to rank features
rather than select a single feature subset, since feature ranking is of interest for visualization,
data understanding, monitoring the tradeoff “number of features”/“prediction performance”,
and prioritizing potential targets of action. The entries of Gavin Cawley (Cawley, 2008) and
Yin Wen Chang and Chih-Jen Lin (Chang and Lin, 2008) made use of this possibility of turning

9. This table reports the results published on the web site of the challenge, using the original definition of the Fscore,
whose effectiveness to assess causal discovery is questioned in Section 5.2.

11

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

in multiple results. They each won on two datasets and ranked second and third on the two oth-
ers. Their average Tscore over all tasks is almost identical and better than that of other entrants
(see Figure 2-b).

The participants who used nested subsets had an advantage over other participants, not
only because they could make multiple submissions and be scored on the basis of the best
results, but also because the selection of the best point was made with test data drawn from the
post-manipulation distribution, therefore implicitly giving access to information on the post-
manipulation distribution. By examining the results and the “Fact Sheets”, we noticed that
most participants having performed causal discovery opted to return a single feature subset
while those using non-causal feature selection performed feature ranking and opted to return
multiple predictions for nested subsets of features, therefore introducing a bias in the results. To
compensate for that bias, we made pairwise comparisons between classifiers, at equal number
of features (see details in Section 5.2). According to this new method of comparison, Jianxin
Yin and Zhi Geng’s group obtain the best position of the Pareto front of the Fscore vs. Tscore
graph (see Figure 2-b). Because of this achievement and the originality of the method that they
developed (Yin et al., 2008), they were awarded a prize for “best overall contribution”.10 Also
noteworthy was the performances of Vladimir Nikulin (Suncorp, Australia), who ranked second
on CINA and fourth on REGED and MARTI in average Tscore, based on predictions made with
a single feature subset obtained with the “random subset method” (Nikulin, 2008). His average
performances were as good as Jianxin Yin and Zhi Geng’s group on average in the pairwise
comparison of classifiers (Figure 2-b), even though his average Fscore is significantly lower.

Also worthy of attention are the entries of Marc Boullé and Laura E. Brown & Ioannis
Tsamardinos, who did not compete towards the prizes (and therefore were not ranked), iden-
tified as M.B. and L.E.B. & Y.T. in the figures.11 Marc Boullé reached Tscore=0.998 for
REGED1 and Laura E. Brown & Ioannis Tsamardinos reached Tscore=0.86 on REGED2. Marc
Boullé also reached Tscore=0.979 on CINA0 and Tscore=0.898 on CINA1. The entries of Marc
Boullé, using a univariate feature selection method and a naïve Bayes classifier (Boullé, 2007a,)
were best on REGED0 and REGED1 and on CINA0 and CINA1. The entry of Laura E. Brown
& Ioannis Tsamardinos on REGED2 is significantly better than anyone else’s and they are best
on average on REGED. They use a novel structure-based causal discovery method (Brown and
Tsamardinos, 2008). Finally, Mehreen Saeed ranked fourth and sixth on SIDO and CINA, us-
ing a novel fast method for computing Markov blankets (Saeed, 2008). She achieved the best
Fscores on SIDO1&2 and CINA1&2.

All the top-ranking entrants we just mentioned supplied their code to the organizers, who
could verify that they complied with all the rules of the challenge and that their results are
reproducible (see Appendix B).

5.2 Causation and Prediction

One of the goals of the challenge was to test the efficacy of using causal models to make good
predictions under manipulations. In an attempt to quantify the validity of causal models, we
defined an Fscore (see Section 2). Our first analysis of the challenge results revealed that this
score correlates poorly with the Tscore, measuring prediction accuracy. In particular, many
entrants obtained a high Fscore on REGED2 and yet a poor Tscore. In retrospect, this is easily
understood. We provide a simple explanation for the case of unsorted feature sets in which, for

10. As explained in Section 5.2, the original Fscore had some limitations. In Figure 2 we plot the new Fscore described
in that section.

11. As per his own request, the entries of Marc Boullé (M.B.) were marked as “Reference” entries like those of the
organizers and did not count towards wining the prizes; Laura E. Brown and Ioannis Tsamardinos (L.E.B. & Y.T.)
could not compete because they are close collaborators of some of the organizers.

12

CAUSATION AND PREDICTION

REGED, the Fscore is 0.5(t p/(t p+ f n)+ tn/(tn+ f p)), where t p is the number of true positive
(correctly selected features), f n false negative, tn true negative, and f p false positive. REGED2
has only 2 causally relevant feature (direct causes) in the manipulated Markov blanket; i.e., the
Markov blanket of the test set distribution, which is manipulated. Most people included these
two features in their feature set and obtained t p/(t p+ f n) = 1. Since the number of irrelevant
features is by comparison very large (of the order of 1000), even if the number of wrongly
selected features fp is of the order of 10, tn/(tn+ f p) is still of the order of 1. The resulting
Fscore is therefore close to 1. However, from the point of view of the predictive power of the
feature set, including 10 false positive rather than 2 makes a lot of difference. We clearly see
that the first Fscore we selected was a bad choice.

Definition of a new Fscore. We ended up using as the new Fscore the Fmeasure for
REGED and MARTI and the precision for SIDO and CINA, after experimenting with various
alternative measures inspired by information retrieval, see our justification below. We use the
following definitions: precision = t p/(t p+ f p), recall = t p/(t p+ f n) (also called sensitivity), and
Fmeasure = 2 precision recall / (precision + recall). Our explorations indicate that precision,
recall, and Fmeasure correlate well with Tscore for artificially generated datasets (REGED and
MARTI). The Fmeasure, which captures the tradeoff between precision and recall, is a good
measure of feature set quality for these datasets. However, recall correlates poorly with Tscore
for SIDO and CINA, which are datasets of real variables with added artificial probe variables.
This is because, in such cases, we must resort in approximating the recall by the fraction of real
variables present in the selected feature set, which can be very different from the true recall (the
fraction of truly relevant variables). Hence, if many real variables are irrelevant, a good causal
discovery algorithm that eliminates them would get a poor estimated recall. Hence, we can only
use precision as of feature set quality for those datasets. A plot of the new Fscore vs. Tscore
(Figure 2-a) reveals that a significant correlation of 0.84 is attained (pvalue 2.10

−19),12 when
the scores are averaged over all datasets and test set versions.

To factor out the variability due to the choice of the classifier, we asked several participants
to train their learning machine on all the feature sets submitted by the participants and we redrew
the same graphs. The performances improved or degraded for some participants and some
datasets, but on average, the correlation between Tscore and the new Fscore did not change
significantly.13 See the on-line results for details.

Pairwise comparisons. In an effort to remove the bias introduced by selecting the best
Tscore for participants who returned multiple prediction results for nested subsets of features,
we made pairwise comparisons of entries, using the same number of features. Specifically,
if one entry used a single feature subset of size n and the other provided results for nested
subsets, we selected for the second entry the Tscore corresponding to n by interpolating between
Tscore values for the nested subsets. If both entries used nested feature subsets, we compared

12. This is the pvalue for the hypothesis of no correlation. We use confidence bounds that are based on an asymptotic
normal distribution of 0.5 · log((1+R)/(1−R)), where R is the Pearson correlation coefficient, as provided by the
Matlab statistics toolbox.

13. Computing these scores requires defining truth values for the set of “relevant features” and “irrelevant features”. In
our original Fscore, we used the Markov blanket of the test set distribution as set of “relevant features”. For SIDO
and CINA, there is only partial knowledge of the causal graph. The set of “relevant variables” is approximated by
all true variables and the probes belonging to the Markov blanket (of the test set distribution). As an additional
refinement, we experimented with three possible definitions of “relevant features”: (1) the Markov blanket (MB),
(2) MB + all causes and effects, and (3) all variables connected to the target through any directed or undirected
path. If the test data are manipulated, those sets of variables are restricted to the variables not disconnected from
the target as a result of manipulations. We ended up computing the new Fscore for each definition of “relevant
features” and performing a weighed average with weights 3, 2, 1. We did not experiment with these weights, but
the resulting score correlates better with Tscore than when the Markov blanket of the test distribution alone is used
as reference “relevant” feature set. This is an indication that features, which are outside of the Markov blanket may
be useful to make predictions (see Section 6 for a discussion).

13

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Tscore

Ne
w

Fs
co

re

Correlation: 0.84

(a) Regular ranking

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of larger Tscore

Fr
ac

tio
n

of
 la

rg
er

 F
sc

or
e

Correlation: 0.71

(b) Pairwise comparisons

Gavin Cawley
Yin−Wen Chang
Mehreen Saeed
Alexander Borisov
E. Mwebaze & J. Quinn
H. Jair Escalante
J.G. Castellano
Chen Chu An
Louis Duclos−Gosselin
Cristian Grozea
H.A. Jen
J. Yin & Z. Geng Gr.
Jinzhu Jia
Jianming Jin
L.E.B & Y.T.
M.B.
Vladimir Nikulin
Alexey Polovinkin
Marius Popescu
Ching−Wei Wang
Wu Zhili
Florin Popescu
CaMML Team
Nistor Grozavu

Figure 2: Correlation between feature selection score and prediction. The new feature se-
lection score Fscore (see text) evaluating the accuracy of causal discovery is plot as
a function of the prediction accuracy score Tscore (the area under the ROC curve for
test examples). The relative Tscore is defined as (Tscore − 0.5)/(Max Tscore − 0.5).
Both Tscore and Fscore are averaged over all tasks and test set versions. (a) Ranking
according to the rules of the challenge, selecting the best Tscore for nested feature
subset results. (b) Ranking obtained with pairwise comparisons of classifiers, using
the same number of features in each comparison.

them at the median feature subset size used by other entrants. If both entries used a single
subset of features, we directly compared their Tscores. For each participant, we counted the
fraction of times his Tscore was larger than that of others. We proceeded similarly with the
Fscore. Figure 2-b shows the resulting plot. One notices that the performances of the winners
by Tscore, Gavin Cawley and Yin-Wen Chang, regress in the pairwise comparison and that
Jianxin Yin and Zhi Geng’s group, Vladimir Nikulin, and Marc Boullé (M.B.), appear now to
have better predictive accuracy. Jianxin Yin and Zhi Geng’s group stand out on the Pareto front
by achieving also best Fscore.

5.3 Methods employed

The methods employed by the top-ranking entrants can be categorized in three families:

• Causal: Methods employing causal discovery techniques to unravel cause-effect rela-
tionships in the neighborhood of the target.

• Markov blanket: Methods for extracting the Markov blanket, without attempting to
unravel cause-effect relationships.

• Feature selection: Methods for selecting predictive features making no explicit attempt
to uncover the Markov blanket or perform causal discovery.

In this section, we briefly describe prototypical examples of such methods taken among those
employed by top-ranking participants.

Causal discovery: The top-ranking entrants who used causal modeling proceeded in the
following way: they used a “constraint-based method” to establish a local causal graph in the
neighborhood of the target, using conditional independence tests. They then extracted a feature
subset from this neighborhood and used it to build a predictive model. The predictive models

14

CAUSATION AND PREDICTION

used belong to the family of regularized discriminant classifiers and include L1-penalized lo-
gistic regression, ridge regression, and Support Vector Machines (SVM). Descriptions of these
methods are found e.g., in (Hastie et al., 2000). The feature subsets extracted from the local
causal graph differ according to the test set distribution. For unmanipulated test sets (sets num-
bered 0), the Markov blanket of the target is chosen, including only direct causes (parents),
direct effects (children), and spouses. For test sets drawn from post-manipulation distributions
(numbered 1 and 2), two cases arise: if the identity of the manipulated features is known to
the participants, the feature subset selected is a restriction of the Markov blanket to parents (di-
rect causes), unmanipulated children (direct effects), and parents of at least one unmanipulated
child (spouses). This is the case for REGED1 and MARTI1. If the identify of the manipulated
features is unknown to the participants, the feature subset selected is limited to direct causes.
The techniques used to learn the local causal graph from training data are all derived from the
work of Aliferis and Tsamardinos and their collaborators (Aliferis et al., 2003a; Tsamardinos
and Aliferis, 2003; Aliferis et al., 2003b). Gavin Cawley (Cawley, 2008) used directly the
“Causal explorer” package provided by the authors (Aliferis et al., 2003b). Laura E. Brown
and Ioannis Tsamardinos (L.E.B. & Y.T.) (Brown and Tsamardinos, 2008) improved on their
own algorithms by adding methods for overcoming several simplifying assumptions like “faith-
fulness” and “causal sufficiency”. They proposed to address the problem of faithfulness by
using a method for efficiently selecting products of features, which may be relevant to pre-
dicting the target, using non-linear SVMs, and proposed to address the problem of violations
of causal sufficiency and hidden confounders by examining so-called “Y structures”. Jianxin
Yin and Zhi Geng’s group (Yin et al., 2008) also introduced elements of novelty by proceeding
in several steps: (1) removing features which are surely independent, (2) looking for parents,
children, and descendants of the target and identify all V-structures in the neighborhood of the
target, (3) orienting as many edges as possible, (4) selecting a suitable restriction of the Markov
blanket (depending on the test set distribution, as explained above), (5) using L1-penalized lo-
gistic regression to assess the goodness of causal discover and eventually removing remaining
redundant of useless features.

Markov blanket discovery: Discovering the Markov blanket is a by-product of causal dis-
covery algorithms and can also sometimes be thought of as a sub-task. If known exactly, the
Markov blanket is a sufficient set of features to obtain best prediction results if the test data are
not manipulated. As explained in the previous paragraph, to remain optimal, this feature set
must be restricted in the case of manipulated test data to parents (direct causes), unmanipulated
children, and parents of unmanipulated children, or to only direct causes (depending on whether
the manipulations are known or not). Hence, using the Markov blanket of the natural distribu-
tion for all test sets, including those drawn from post-manipulated distributions, is in principle
sub-optimal. However, several participants adopted this strategy. One noteworthy contribution
is that of Mehreen Saeed (Saeed, 2008), who proposed a new fast method to extract the Markov
blanket using Dirichlet mixtures.

Feature selection: There have been a wide variety of feature selection methods, which
have proved to work well in practice in past challenges (Guyon et al., 2006a). They do not have
any theoretical justification of optimality for the causal discovery problem, except that in some
cases it can be proved that they approximate the Markov blanket (Nilsson et al., 2007). Sev-
eral participants used feature selection methods, disregarding the causal discovery problem, and
obtained surprisingly good results. See our analysis in Section 6. The methods employed be-
long to the family of “filters”, “wrappers” or “embedded methods”. Vladimir Nikulin (Nikulin,
2008) used a “wrapper” approach, which can be combined with any learning machine, treated
as a “black box”. The method consists in sampling feature sets at random and evaluating them
by cross-validation according their predictive power using any given learning machine. The

15

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

0.6 0.8 1
0
10
20
30

REGED0

Tscore
0.6 0.8 1

0
10
20
30

REGED1

Tscore
0.6 0.8 1

0
10
20
30

REGED2

Tscore

0.6 0.8 1
0
10
20
30

SIDO0

Tscore
0.6 0.8 1

0
10
20
30

SIDO1

Tscore
0.6 0.8 1

0
10
20
30

SIDO2

Tscore

0.6 0.8 1
0
10
20
30

CINA0

Tscore
0.6 0.8 1

0
10
20
30

CINA1

Tscore
0.6 0.8 1

0
10
20
30

CINA2

Tscore

0.6 0.8 1
0
10
20
30

MARTI0

Tscore
0.6 0.8 1

0
10
20
30

MARTI1

Tscore
0.6 0.8 1

0
10
20
30

MARTI2

Tscore

Figure 3: Performance histograms. We show histograms of Tscore for all entries made during
the challenge. The vertical solid line indicates the best ranked entry (i.e., best among
the last complete entries of all participants). The dashed line indicates the overall
best, including Reference entries, utilizing the knowledge of causal relationships not
available to participants.

features appearing most often in the most predictive subsets are then retained. Yin-Wen Chang
and Chih-Jen Lin (Chang and Lin, 2008), Gavin Cawley (Cawley, 2008), and Jianxin Yin and
Zhi Geng’s group (Yin et al., 2008) used embedded feature selection methods relying on the
fact that, in regularized linear discriminant classifiers, the features corresponding to weights of
small magnitude can be eliminated without performance degradation. Such methods are gen-
eralizable to non-linear kernel methods via the use of scaling factors. They include RFE-SVM
(Guyon et al., 2002) and L1-penalized logistic or ridge regression (Tibshirani, 1994; Bi et al.,
2003). Marc Boullé (M.B.) used a univariate filter method making assumptions of independence
between variables.

5.4 Analysis by dataset

We show in Figure 3 histograms of the performances of the participants for all the entries made
during the challenge. We also indicate on the graphs the positions of the best entry counting
towards the final participant ranking; i.e., their last complete entry, and the very best entry
(among all entries including Reference entries made by the organizers.) As can be seen, the

16

CAUSATION AND PREDICTION

distributions are very different across tasks and test set types. In what follows, we discuss
specific results.

For the test sets numbered 0, the best entries closely match the best Reference entries made
by the organizers, who used knowledge of feature relevance not available to the competitors
(such Reference entries used the Markov blanket of the target variable in the post-manipulation
distribution as feature set and a SVM classifier). This is encouraging and shows the maturity
of feature selection techniques, whether they are based or not on the extraction of the Markov
blanket. For two datasets (REGED0 and CINA0), the univariate method of Marc Boullé (M.B.),
which is based on the naïve Bayes assumption (independence between features) was best. This
method had already shown its strength in previous challenges on the Adult database based
on census data, from which CINA is derived. Interestingly, we know by construction of the
REGED dataset that the naïve Bayes assumption does not hold, and yet good performance was
obtained. This result is a nice illustration of the bias vs. variance tradeoff, which can lead bi-
ased models to yield superior prediction accuracy when training data are scarce or noisy. In
this case, the multivariate methods of Yin-Wen Chang and Chih-Jen Lin (Chang and Lin, 2008)
for REGED0 and Vladimir Nikulin (Nikulin, 2008) for CINA0 have results which are not sig-
nificantly different from the univariate method of Marc Boullé.14 For SIDO0, the best results
achieved by Jianxin Yin and Zhi Geng’s group (Yin et al., 2008) are not significantly differ-
ent from the results of Gavin Cawley (Cawley, 2008), using no feature selection. Generally,
regularized classifiers have proved to be insensitive to the presence of irrelevant features, and
this results confirms observations made in past challenges (Guyon et al., 2006a,,). The best
result for MARTI0 is also obtained by Gavin Cawley. His good performance can probably be
partially attributed to the sophistication of his preprocessing, which allowed him to remove the
correlated noise. In a post-challenge comparison he conducted between a Markov blanket-based
feature selection and BLogReg, an embedded method of feature selection based on regulariza-
tion, both methods performed well and the results were not statistically significantly different,
and interestingly the BLogReg method yielded fewer features than the Markov blanket-based
method.

For the test sets numbered 1 and 2, the distribution of test data differed from the training
data. There is still on several datasets a large difference between the results of the best en-
trants and the best achievable result estimated by the organizers, using the knowledge of the
true causal relationships. Sets 2 were more difficult than sets 1, for various reasons, having to
do with the type of manipulations performed. Rather surprisingly, for test sets 1, non-causal
methods yielded again very good results. Marc Boullé (M.B.) obtained the best performance
on REGED1, with his univariate method making independence assumptions between features
and involving no causal discovery. His feature set of 122/999 features does not contain vari-
ables which are not predictive (i.e., not connected to the target in the causal graph of the post-
manipulation distribution), but in general there are very few such variables. The best ranked
competitor on REGED1, Marius Popescu, uses a particularly compact subset of 11 features,
obtained with a causal discovery method combining HITON-MB (Aliferis et al., 2003a), some
heuristics to orient edges, and the elimination of manipulated children and spouses whose chil-
dren are all manipulated (see the Fact Sheet for details). According to pairwise comparisons,
the next best result is obtained by the causal method of Laura E. Brown and Ioannis Tsamardi-
nos (L.E.B. & Y.T.) (Brown and Tsamardinos, 2008) with only 9 features. Their feature set
does not coincide exactly with the Markov blanket of the post-manipulation distribution (which
includes 14 features), but it contains no irrelevant feature. For SIDO1, the best performance
was obtained with all or nearly all features by Jianming Jin (Yin et al., 2008), Yin-Wen Chang

14. In the rest of this analysis, “not significantly different” means within one sigma, using our approximate error bar
of Equation 1.

17

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

(Chang and Lin, 2008), and Gavin Cawley (Cawley, 2008). Hence, even when manipulations
are performed, feature selection is so hard on this dataset that one is better off not doing any
feature selection. The best performing causal discovery method on this dataset is that of Jianxin
Yin and Zhi Geng’s group (Yin et al., 2008), but their performance is significantly lower than
that obtained with no feature selection (Tscore 0.70 instead of 0.75, with an error bar of 0.01).
For CINA1 and MARTI1, Vladimir Nikulin (Nikulin, 2008) obtains the best performances with
a feature selection method in pairwise comparisons (even though Gavin Cawley comes ahead in
Table 2). He uses 30/132 and 400/1024 features, respectively. His fraction of irrelevant features
in CINA1 is no better than the original proportion on the entire feature set. Jianxin Yin and Zhi
Geng’s group (Yin et al., 2008) are second best on those two datasets, with performances which
are not statistically significantly different. Their causal discovery method yields fewer features
(24/132 and 11/1024) and a smaller fraction of irrelevant features. The next best entries include
both causal and non-causal methods. In conclusion, neither causal discovery methods nor fea-
ture selection methods seem to come ahead on test sets 1. This result will be further discussed
in Section 6.

For test sets 2, making good predictions without causal modeling was expected to be signif-
icantly harder. Yet Jianxin Yin and Zhi Geng’s group (Yin et al., 2008) are the only ones using
causal discovery performing consistently well on sets 2. They are first or second in pairwise
comparisons for REGED2, SIDO2, and MARTI2. For REGED2, Laura E. Brown & Ioannis
Tsamardinos (L.E.B. & Y.T.) obtained the best performance with a causal discovery method.
For SIDO2, E. Mwebaze and J. Quinn perform best according to pairwise comparisons, also
using a causal discovery method. But, for MARTI2, none of the other top-ranking entries (in
pairwise comparisons) include causal discovery methods, even though there is a very significant
correlation between Fscore and Tscore (0.88). We will discuss the case of MARTI2 in more de-
tail in Section 6. On CINA2 all causal discovery methods perform poorly, except that of Florin
Popescu. However, since he submitted results only on CINA, it is difficult to say whether he was
lucky or has a causal discovery method that is competitive on this problem. The other methods,
which did well on CINA according to pairwise comparisons are those of Marc Boullé (M.B.)
(naïve Bayes) and Vladimir Nikulin (feature selection with the random subset method). When
selecting the best results in nested subsets of features, Yin-Wen Chang obtained significantly
better results than anyone else with her SVM feature ranking. Her best feature set included
only 4 features, which are all “real” variables. The case of CINA will be further discussed in
Section 6.

6. Discussion
Several algorithms have demonstrated effectiveness of discovering causal relationships, as in-
dicated by the Fscore, hence this challenge contributed to demonstrating that causal discovery
from observational data is not an impossible task, albeit a very hard one. Yet the performance
of causal models on tasks that were purposely designed to demonstrate their effectiveness is
somewhat disappointing. It can be argued that causal discovery is a relatively new domain of
research, which has not yet reached the maturity of some of the more mainstream machine
learning techniques that were applied with success to the challenge. In particular, the use of
causal discovery software made freely available may not be straightforward to use appropri-
ately for people new to the field. However, it seems plausible that other factors are at play. In
this section we analyze the results of the challenge in a critical manner and invite researchers to
further investigate the open problems.

18

CAUSATION AND PREDICTION

6.1 Correlation between causation and prediction in an interventional setting

One of our main motivations in organizing this challenge was to investigate the extent to which
causal modeling is useful for making predictions in an “interventional setting” (a setting in
which the test set is distributed differently from the training set as a result of the intervention
of an external agent). Hence, in our analysis, we tried to quantify the correlation between
“causation” (the accuracy of the causal modeling around the target variable) and “prediction”
(the accuracy of the target variable predictions on test data). The former is captured by the
Fscore and the latter by the Tscore. After modifying the Fscore, and averaging over all datasets
and test set versions, we obtain a significant correlation between Fscore and Tscore (pvalue
2.10

−19). But, for individual tasks, there is a lot of variability. In past challenges (Guyon
et al., 2006a,,), it was already observed that feature selection does not necessarily improve
prediction accuracy when training and test data are drawn from the same distribution. This
is due to the fact that state-of-the-art regularized classifiers such as SVMs, ridge regression,
Random Forests (RF) and ensembles of neural networks, effectively overcome the curse of
dimensionality without requiring a dimensionality reduction performed as preprocessing. In
fact, feature selection is sometimes more harmful than useful in this case. For example, the
best result on SIDO0 is obtained with no feature selection (in spite of the presence of irrelevant
artificial variables or “probes”). More surprisingly, for test sets 1 and 2, although there is
a significant correlation between Fscore and Tscore (on average over all tasks), we observe
that feature selection methods based on causal discovery methods rarely outperforms feature
selection methods ignoring causal relationships.

In a recent analysis paper (Tillman and Spirtes, 2008), the authors investigate the total
contribution to prediction error made when non-causal methods use incorrect predictors for
a manipulated distribution and when causal methods use incorrect or biased parametric con-
straints. They give theoretical conditions for manipulations where causal methods for predic-
tion should have no advantage over non-causal methods and for manipulations where causal
methods should produce considerably fewer errors. Briefly, the post-manipulation distribution
P(target|predictors) is identical to the natural distribution P(target|predictors) only under spe-
cial conditions, including that there is no manipulated direct effect of the target in the predictor
set. The most difficult cases for non-causal methods arise (1) when all variables are manipulated
or (2) when the non-manipulated variables (other than the target) are sampled before the effect
of the manipulations have propagated.

Following this line of reasoning, we can partially explain why non causal methods per-
formed so well by examining our challenge design. We sampled the variables after the effect of
the manipulations propagated, because of the nature of our applications. Had we sampled them
before the effect of the manipulations propagated, we would have made the task harder for non
causal methods. Far fewer variables would have been predictive of the target, and, in particular,
no consequence of the target would have been predictive. However, this limitation of our design
was partially compensated by manipulating a large number of variables, including many direct
effects of the target. Consequently, non causal methods incurred a larger false positive rate than
causal methods for test sets 1 and 2, because many features relevant in the natural distribution
were irrelevant in the post-manipulation distribution.

In the next section, we propose another explanation, which sheds light on the difficulty of
improving performance with any kind of feature selection, causal or not.

6.2 Omitting good features may be more detrimental than including bad ones

We provide a qualitative explanation of why selecting a relatively large fraction of “irrelevant”
features (including features relevant in training data and irrelevant in test data) might not penal-

19

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

ize as much predictions as omitting key “relevant” features. The idea of our argument is that, in
a predictive model, relevant variables tend to act in the same direction (to build the predictive
signal) while, in the large sample limit, irrelevant variables contribute signals which average out
to zero.

The results of our calculations provided in Appendix A are summarized in Table 3. We
see that for test sets 0 the contribution of the irrelevant features can be very small compared
to that of relevant features. To evaluate the number of irrelevant features one can “afford”
for a given number of relevant features, we use the crossing point where the contribution of
both type of features is equal. We obtain, for test sets 0, nb = m n2

g, for test sets 1, nb = n2
g,

and for test sets 2, nb = ng. Plugging in some numbers, if there are of the order of ng = 30

relevant features and m = 500 training examples, one can afford for test sets 0 of the order of
nb = m · n2

g = 500× 900 = 450,000 irrelevant features. No wonder feature selection is not all
that important in that case. For test sets 1, it is not that critical either to filter out irrelevant
features, even if they are relevant in training data and manipulated in test data. Plugging in
some numbers, if there are of the order of ng = 30 relevant features, we can afford of the order
of nb = n2

g = 900 irrelevant features. This largely explains that feature selection is more needed
on sets 1 than on sets 0, but simple feature selection does as well as causal feature selection.
Finally, only in the worst case scenario of adversarial manipulations (test sets 2), can we only
afford a number of “bad” features of the same order of magnitude of the number of “good”
features.

The properties of irrelevant variables, on the basis of which we conclude that omitting rel-
evant variable might more severely impair performance than including irrelevant variables, are
obviously distribution dependent, and a case-per-case analysis would be needed to make a more
quantitative assessment. We also need to caution against extrapolating our qualitative explana-
tions and concluding that there is no benefit to performing causal discovery because of the rel-
ative insensitivity of certain regularized classifiers to the presence of irrelevant features (those
who have parameters acting as feature scaling factors). These conclusions apply only to the
particular tasks of the challenge and modifying the tasks may yield different conclusions. For
example, the problem of finding which variables are the best targets of action to obtain a de-
sired response requires a causal model. Also, we could have made things more difficult to
non-causal models by sampling before the effect of the manipulations propagate to the non-
target variables, thus making all consequences of the target variable non-predictive. However,
this would not have affected the performances for test sets 2 in which all effect or all probes are
manipulated.

Table 3: Noise introduced by irrelevant features. We computed for a simple univariate pre-
dictive model, the influence of relevant and irrelevant features. Both features and target
are binary, and it is assumed that all relevant features correlate perfectly with the target
and all irrelevant features are randomly drawn. With 98% confidence, the magnitude
of the feature weights are lower than the value w quoted in the table and the total con-
tribution

�
i wixi is lower than the v quoted. ng is the number of “good” (relevant)

features and nb is the number of “bad” (irrelevant) features, and m is the number of
training examples.

Test set Type w relevant w irrelevant v relevant v irrelevant
Set 0 unmanipulated 1 1/

√
m ng

√
nb/m

Set 1 manipulated 1 1 ng
√nb

Set 2 manipulated 1 1 ng nb

20

CAUSATION AND PREDICTION

6.3 Insignificant dependencies and spurious dependencies

We are left with explaining why for CINA2 and MARTI2 causal discovery methods do not
perform as well as expected.

For CINA, we attribute the problem to the variable coding, which diluted information and
led to many insignificant dependencies. By examining the features selected by regular feature
selection algorithms and by causal discovery algorithms, we noticed that they were rather dif-
ferent. Feature selection algorithms select features that are individually very predictive, but not
part of the Markov blanket. This may be due to the coding of categorical variables that we
used: categorical variables taking c values were replaced by c binary variables, implementing a
complete disjunctive code 10...0, 01...0, etc. So for instance, “number of years of education”,
which may be an ancestor variable of “profession”, is individually more predictive than any of
the individual professions: “clerical”, “managerial”, etc. Verifications of this explanation are
under way by examining the causal graphs inferred by the top-ranking participants and the re-
sults will be published as part of the analysis of the second causality challenge (Guyon et al.,
2008a).

For MARTI2, the correlated noise was considerably difficult for causal discovery algo-
rithms, which did not perform well unless the noise was efficiently filtered. This is confirmed
by the fact that causal discovery methods did well on REGED, a noiseless version of MARTI.

6.4 Is the Markov blanket truly optimal?

The above consideration on the relative insensitivity of predictive modeling to the presence of
“irrelevant” variables may not alone explain the good performances of feature selection meth-
ods. It is possible that restricting the feature set to the Markov blanket of the test set distribution
hampered performances. This strategy was adopted by all the participants performing causal
discovery. If the causal paths to the target are not interrupted by the manipulations, adding some
predictive non-MB variables (like the light green nodes in Figure 1) may help improving perfor-
mances when a biased classifier is used, e.g., if the MB is non-linearly related to the target and
a linear classifier is used (Tsamardinos and Aliferis, 2003). Furthermore, the MB may include
errors when estimated from a finite training set. We noted in the above calculations that it is
far more detrimental to omit relevant features than include irrelevant features. Hence, subsets
of larger size than the estimated MB are likely to give better predictions. The strategy adopted
by the participants performing causal discovery was also sub-optimal in another respect: they
selected a subset S of features that should be predictive of the target Y in the post-manipulation
distribution, then they trained a “regular” learning machine to estimate directly P(Y |S) with
training data from the natural distribution. In some cases, this is not equivalent to estimating
P(Y |S) in the post-manipulation distribution by using a causal model. Cases of that sort arise
when one manipulates children of the target, which have unmanipulated children of the target
as descendants. For instance, in the LUCAS example of Figure 1, if we had manipulated the
variable “coughing”, but not the variable “fatigue”, both “fatigue” and “coughing” would still
be in the Markov Blanket of the post-manipulation distribution (“coughing” would now be a
“spouse” of the target), but the direct connection between the target and “coughing” would be
broken. Hence the contribution of “coughing” to P(Y |S) would be over-estimated if P(Y |S) was
estimated by a statistical learning machine trained from the natural distribution, because this
would include the direct effect of the target on “coughing”. In contrast, a causal model taking
into account the manipulations would factor out such direct effect when estimating P(Y |S).

21

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

6.5 Lessons learned for future challenges

We end this discussion with some comments on the challenge protocol. First, as noted before,
selecting the best Tscore in nested subsets of features introduced bias in the results and we do
not recommend using this paradigm in future challenges of this kind. It is necessary to ask
the participants to provide single predictions, or make pairwise comparisons of performance
at equal number of features. Second, in our setup, the target variable was never manipulated.
This makes sense for problems in which we are seeking to discover causes of a given outcome
in order to influence it. For example, in epidemiology, we want to find risk factors of lung
cancer such as smoking. But there are problems in which a target variable is manipulated
and the goal is to monitor the effects of the manipulation. For example, the disappearance
of symptoms can help monitoring the effect of a drug on a disease. Third, in our setup, we
perform manipulations and wait before we sample data, until the effects of the manipulations
have propagated through the system. In some cases, it makes more sense to sample data before
the manipulations are performed and ask the question: what if we did these manipulations to
given variables? Fourth, in our setup, we asked the participants to make predictions of a target
variable under manipulations of other variables. Emphasis was placed on prediction rather
than on variable selection. Another question would be to find those variables which should be
manipulated to produce a given desired effect, i.e., a given change in the target value. Finally,
we posed a problem in which causal models had to be inferred solely from observational data.
In many cases, it is costly but feasible to include manipulated data as part of training.

7. Conclusions
The first causality challenge we have organized allowed many researchers both from the causal
discovery community and the machine learning community to try their algorithms on sizeable
tasks of real practical interest. It achieved a number of goals that we had set: familiarizing
many new researchers and practitioners with causal discovery problems and existing tools to
address them, pointing out the limitations of current methods on some particular difficulties,
and fostering the development of new algorithms.

The setting of the challenge purposely resembled a classical machine learning competition,
with a training set and a test set, with omitted labels, to encourage the participation of data min-
ing and machine learning researchers. The goal was to make optimum predictions on test data,
as measured by a Tscore (the area under the ROC curve on test data). Each task had three test
sets, with increasing levels of difficulty. The first one was identically distributed as the training
set. The two other test sets simulated manipulations by external agents, and thus were not dis-
tributed like the training set. In this way we illustrated the relationships between causation and
prediction under manipulations and investigated whether causal models using “causally rele-
vant” features would perform better than regular statistical models on manipulated test sets. We
proposed a simple score to evaluate the causal relevance of the subset of features selected, called
Fscore. Several algorithms have demonstrated effectiveness of discovering causal relationships,
as indicated by a large Fscore. On average over all datasets and tasks, the Fscore correlates
significantly with the Tscore, confirming the link between causation and prediction. As antici-
pated, non-causal feature selection methods are doing well on the first type of datasets (training
and test data identically distributed): the bulk of them is close to optimal, so if you chose one
method at random, you would do well. However, for the other two types of datasets (test data
manipulated) the distribution of results is about uniform: if you chose one method at random,
you would probably do poorly. In addition, there is room for improvement to reach optimality.
Thus, non-causal feature selection methods are inappropriate for these tasks, despite the fact

22

CAUSATION AND PREDICTION

that some of them are top ranked and causal feature selection methods are still not mature and
robust enough to significantly outperform non-causal feature selection in the range of tasks of
the competition.

The results indicate that informative causal prediction from observational data is possible,
although it remains challenging. This points to the need for further research and benchmarks.
This challenge investigated an important problem in causal modeling, but there remain many
other causal modeling and discovery issues to be explored. Future work includes organizing
challenges on a broader range of causal questions.

Acknowledgments

The organization of this challenge was a team effort to which many contributed. We are par-
ticularly indebted to Olivier Guyon (MisterP.net) who implemented the back-end of the web
site. The front-end is derived from the design of Steve Gunn (University of Southampton), for-
merly used for the NIPS 2003 feature selection challenge. The kind support of Joachim Buh-
mann (ETH Zurich), who hosted the competition, is gratefully acknowledged. We are thankful
to Thomas Fuchs (ETH Zurich) for administering the computer resources. The beta-testers,
Gideon Dror (Academic College, Tel-Aviv-Yaffo, Israel), Amir Saffari (Graz University of
Technology, Austria) and Marc Boullé (France Telecom, Lanion, France) performed indispens-
able work to ensure the platform was working properly, give us feed-back on the protocols and
creating “Reference” entries. Alexander Borisov was first person to enter the challenge and he
provided us with invaluable feed-back, which helped building the FAQ, which was an important
contribution. We also are thankful to Gavin Cawley (University of East Anglia, UK), Joaquin
Quiñonero Candale (Microsoft Research, UK), Richard Scheines (Carnegie Mellon Univer-
sity, Pennsylvania), and Lambert Schomaker (University of Groningen, The Netherlands) for
helpful advice. We are very grateful to the institutions who originally provided the data: the
DTP AIDS Antiviral Screen program of the National Cancer Institute (NCI); the census bureau
and Ronny Kohavi and Barry Becker who extracted the data. Hans Bitter (Roche, Palo Alto,
California) and Joerg Wichard (Institute of Molecular Pharmacology, Berlin, Germany) who
provided features for SIDO are gratefully acknowledged. This project was supported by the
Pascal network of excellence funded by the European Commission and by the U.S. National
Science Foundation under Grant N0. ECCS-0725746. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. Additional support was provided by the
U.S. National Institute of Health under grant 2R56LM007948-04A1. The WCCI2008 confer-
ence, Health Discovery Corporation, Microsoft, and Unipen provided additional support for
the monetary prizes granted to the winners. The comments of Ioannis Tsamardinos were very
helpful to improve the manuscript, and we thank him for his effort.

References
C. F. Aliferis, I. Tsamardinos, and A. Statnikov. HITON, a novel Markov blanket algorithm

for optimal variable selection. In 2003 American Medical Informatics Association (AMIA)
Annual Symposium, pages 21–25, 2003a.

C. F. Aliferis, I. Tsamardinos, A. Statnikov, and L.E. Brown. Causal explorer: A probabilis-
tic network learning toolkit for biomedical discovery. In 2003 International Conference on

23

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS),
Las Vegas, Nevada, USA, June 23-26 2003b. CSREA Press.

J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song. Dimensionality reduction via
sparse support vector machines. JMLR, 3:1229–1243, 2003.

M. Boullé. Compression-based averaging of selective naive bayes classifiers. JMLR, 8:1659–
1685, July 2007a.

M. Boullé. Report on preliminary experiments with data grid models in the agnostic learning
vs. prior knowledge challenge. In IEEE/INNS conference IJCNN 2007, Orlando, Florida,
August 12-17 2007b.

L. E. Brown and I. Tsamardinos. A strategy for making predictions under manipulation. In
JMLR W&CP, volume 3, pages 35–52, WCCI2008 workshop on causality, Hong Kong, June
3-4 2008.

G. Cawley. Causal and non-causal feature selection for ridge regression. In JMLR W&CP,
volume 3, WCCI2008 workshop on causality, Hong Kong, June 3-4 2008.

Y.W. Chang and C.J. Lin. Feature ranking using linear svm. In JMLR W&CP, volume 3, pages
53–64, WCCI2008 workshop on causality, Hong Kong, June 3-4 2008.

I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov. Design
and analysis of the causality pot-luck challenge. In JMLR W&CP, volume 5: NIPS 2008
causality workshop, to appear, Whistler, Canada, December 12 2008a.

I. Guyon, C. Aliferis, and A. Elisseeff. Causal feature selection. In Huan Liu and Hi-
roshi Motoda, editors, Computational Methods of Feature Selection, pages 63–82. Chap-
man and Hall/CRC Press. Longer TR: http://clopinet.com/isabelle/Papers/
causalFS.pdf, 2007.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Editors. Feature Extraction, Foundations and
Applications. Studies in Fuzziness and Soft Computing. With data, results and sample code
for the NIPS 2003 feature selection challenge. Physica-Verlag, Springer, 2006a.

I. Guyon, A. Saffari, G. Dror, and J. Buhmann. Performance prediction challenge. In
IEEE/INNS conference IJCNN 2006, Vancouver, Canada, July 16-21 2006b.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Analysis of the IJCNN 2007 agnostic learning
vs. prior knowledge challenge. In Neural Networks, volume 21, pages 544–550, Orlando,
Florida, March 2008b.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using
support vector machines. Machine Learning, 46(1-3):389–422, 2002.

I. Guyon et al. Datasets of the causation and prediction challenge. Technical Report, 2008.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, Data Mining,
Inference and Prediction. Springer Verlag, 2000.

R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall series in Artificial Intelligence.
Prentice Hall, 2003.

24

http://clopinet.com/isabelle/Papers/causalFS.pdf
http://clopinet.com/isabelle/Papers/causalFS.pdf

CAUSATION AND PREDICTION

V. Nikulin. Random sets approach and its applications. In JMLR W&CP, volume 3, pages
65–76, WCCI2008 workshop on causality, Hong Kong, June 3-4 2008.

R. Nilsson, J. M. Peña, J. Björkegren, and J. Tegnér. Consistent feature selection for pattern
recognition in polynomial time. J. Mach. Learn. Res., 8:589–612, 2007. ISSN 1533-7928.

Judea Pearl. Causality: models, reasoning and inference. Cambridge University Press, March
2000.

J. Quiñonero Candela, A. Schwaighofer, and N. Lawrence. Learning when test and training
inputs have different distributions, http://different.kyb.tuebingen.mpg.de/
pages/home.php 2007.

M. Saeed. Bernoulli mixture models for markov blanket filtering and classification. In JMLR
W&CP, volume 3, pages 77–91, WCCI2008 workshop on causality, Hong Kong, June 3-4
2008.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT Press,
Cambridge, Massachusetts, London, England, 2000.

R. Tibshirani. Regression selection and shrinkage via the lasso. Technical report, Stanford
University, Palo Alto, CA, June 1994.

R. E. Tillman and P. Spirtes. When causality matters for prediction: Investigating the practical
tradeoffs. In JMLR W&CP, volume 5: NIPS 2008 causality workshop, to appear, Whistler,
Canada, December 12 2008.

I. Tsamardinos and C.F. Aliferis. Towards principled feature selection: Relevance, filters, and
wrappers. In Ninth International Workshop on Artificial Intelligence and Statistics, Florida,
USA, January 2003.

J. Yin, Y. Zhou, C. Wang, P. He, C. Zheng, and Z. Geng. Partial orientation and local struc-
tural learning of causal networks for prediction. In JMLR W&CP, volume 3, pages 93–104,
WCCI2008 workshop on causality, Hong Kong, June 3-4 2008.

Appendix A. Influence of irrelevant variables
We made an argument that adding irrelevant variables to the predictive feature set might not
be as detrimental as omitting good ones. We base our qualitative analysis on a simple model,
assuming that all variables including the target are binary (taking values ±1) and that we use a
linear predictive model

v =
�

i
wixi ,

in which the weights are trained with “Hebb’s rule”

wi = (1/m)

�

k
xk

i yk ,

where the index k runs over all training examples, and m is the number of training examples. We
further assume that the features are either perfectly relevant (identical to y or −y) or perfectly
irrelevant (random). We wish to compute the relative contribution of relevant and irrelevant
features to v in various cases to give insight into the number of irrelevant features, which can

25

http://different.kyb.tuebingen.mpg.de/pages/home.php
http://different.kyb.tuebingen.mpg.de/pages/home.php

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

be afforded, relatively to the number of good features selected. In all cases, the magnitude
(absolute value) of the weight of relevant features are:

wrelevant = 1.

Hence, the overall contribution of relevant features is the number of relevant or “good” features:

vrelevant = ng.

For irrelevant features, we first examine the case where training and test data are identically
distributed (case 0). If the irrelevant features are drawn randomly with equal probability p= 0.5,
then the expected value of the magnitude of the weights of irrelevant features is 0. The standard
deviation of the mean of xk

i yk is
�

p(1− p)/m = 0.5/
√

m. To simplify our calculation, we use
98% confidence intervals, which roughly correspond to 2 sigma error bars by approximating
the Binomial distribution with the Normal law. Hence, with 98% confidence, the magnitude of
the weights of irrelevant features is less than

w0

irrelevant = 1/
√

m.

We therefore verify that, for this model, the contribution of the irrelevant features vanishes to
zero in the large sample limit. Similarly, the test set values of xi are drawn randomly with equal
probability p = 0.5. Hence, the total contribution has mean 0, and standard deviation bounded
by w
�

nb p(1− p) = 0.5 w√nb, where nb is the number of irrelevant or “bad” features and w is
our bound on the weight magnitude: 1/

√
m. If we again choose a 98% confidence, we obtain a

bound on the total contribution of the irrelevant variables of

v0

irrelevant =
�

nb/m.

In contrast, for test sets 1 and 2, in the worst case scenario, a feature perfectly relevant
with respect to the training data distribution and perfectly irrelevant in the post-manipulated
distribution will receive a weight of magnitude

w1

irrelevant = w2

irrelevant = 1.

In the scenario of test sets 1, values for such manipulated features are drawn randomly with
equal probability p = 0.5. Following a calculation previously done, the standard deviation is
bounded by w

�
nb p(1− p), but this time w = 1! The resulting bound on the total contribution

of the “bad” features is
v1

irrelevant =
√

nb,

with at least 98% confidence, because we assumed a worst-case scenario. For test sets 2, adver-
sarial values may be given to the manipulated features, i.e., opposite values than those expected
from the training data distribution. So, in the worse case, the total contribution of the bad
features is

v2

irrelevant = nb.

Appendix B. Verification of Challenge Results
The rules of the challenge prohibited the use of testing data for feature selection and building
of the classifier model. However, all testing data with the exception of the response variable
was available to the challenge participants. That is why we decided to verify several submis-
sions from the challenge by studying and executing source codes of the participants on our

26

CAUSATION AND PREDICTION

computers. While doing this verification we paid close attention to ease of reproduction of the
challenge results and involved computational resources. Such information will be very useful
to practitioners who may decide to apply such algorithms to other datasets.

We have selected 6 challenge participants that provided us with software and code for veri-
fication: Gavin Cawley, Yin-Wen Chang, J. Yin & Z. Geng Gr., L.E.B & Y.T., Vladimir Nikulin,
and Mehreen Saeed. The base verification dataset was selected to be REGED due to its empiri-
cal difficulty in the challenge and requirement for causal feature selection. However, Vladimir
Nikulin provided source codes only for CINA dataset and Mehreen Saeed provided codes only
for CINA and SIDO datasets. Thus, we decided to use CINA dataset for verification of these
two participants. Out of six selected participants, three (J. Yin & Z. Geng Gr., L.E.B & Y.T.,
Vladimir Nikulin) used algorithms for selection of a single feature set and the remaining par-
ticipants (Gavin Cawley, Yin-Wen Chang, Mehreen Saeed) used techniques to selected nested
subsets of features.

The verification protocol consisted of two major steps: (i) manual reading of the source
code to ensure that it does not employ testing data during feature selection and building of the
classifier model and (ii) reproducing results of the challenge in a series of experiments. We
considered the following experiments for versions 0, 1, and 2 of the datasets:

Experiment Description
1 Exact reproduction of the challenge submission
2 Using reduced testing dataset with 500 samples (250 positives and 250 neg-

atives, selected at random)
3 Using reduced testing dataset with 200 samples (100 positives and 100 neg-

atives, selected at random)
4 Using reduced testing dataset with 500 samples, selected at random
5 Using reduced testing dataset with 200 samples, selected at random
6 Same as experiment 1 but with randomly permuted variables and samples
7 Same as experiment 2 but with randomly permuted variables and samples
8 Same as experiment 3 but with randomly permuted variables and samples
9 Same as experiment 4 but with randomly permuted variables and samples

10 Same as experiment 5 but with randomly permuted variables and samples

Experiment #1 was designed to verify that the automated code of a participant matched
the challenge entry in terms of classification AUC. Experiments #2–5 were primarily used to
confirm that the challenge participant did not use testing data to make inferences about the
distribution. Experiment #6 was intended to illustrate that the code both does not rely on hard-
coded feature indices and is not sensitive to the ordering of variables. Finally, experiments
#7–10 were seeking goals of both experiments #2–5 and #6.

First of all, our manual reading of the source codes confirmed that none of the selected chal-
lenge participants cheated by using testing data for training of the classifier or feature selection.

Figure 4 and Table 4 report classification AUC’s for the above described experiments. The
results for versions 0 of the datasets are not reported in Figure 4 because they have near-perfect
reproducibility. In summary, the results of the selected challenge participants reproduced in all
experiments.

The code submitted by the team L.E.B. & Y.T. includes the automation of a step that during
the competition was performed manually. The authors declared that the automated step is as
close as possible to the subjective method used during the competition. An implementation
of the strategy proposed by the authors is now fully automated and produces reproducible and
repeatable results.

27

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

In all experiments we used Xeon 2.8 GHz CPU’s with 4 Gb RAM. For the REGED dataset,
the slowest algorithm was the one by Gavin Cawley with ttrain =∼20–30 hours and the fastest
one was by Yin-Wen Chang with ttrain =1–2 minutes. For all other methods in the REGED
dataset, ttrain ∈ [15 minutes,2 hours]. For the CINA dataset, all methods have ttrain < 1 hour.
The testing time was negligible for all algorithms and datasets (ttest < 2 minutes). All algorithms
had relatively efficient implementations. The only exception is the code by Gavin Cawley that
required > 300 Mb for storage of the model for REGED datasets. Another inefficiency was
observed in the code of Yin-Wen Chang that required ∼ 4 Gb of RAM to apply a model to a
testing set of 20,000 instances.

28

CAUSATION AND PREDICTION

Figure 4: Testing set classification performance (measured by AUC) for 6 participants of the
challenge. Each dot corresponds to results of an experiment.

29

GUYON ALIFERIS COOPER ELISSEEFF PELLET SPIRTES STATNIKOV

Table 4: Testing set classification performance (measured by AUC) for 6 participants of the
challenge.

REGED0 CINA0
Experiment Gavin Cawley Yin-Wen Chang J. Yin & Z. Geng Gr. L.E.B & Y.T. Vladimir Nikulin Mehreen Saeed

1 0.9997 0.9998 0.9998 0.9999 0.9770 0.9750
2 1.0000 0.9999 0.9998 0.9999 0.9812 0.9865
3 1.0000 1.0000 1.0000 1.0000 0.9512 0.9727
4 1.0000 0.9997 0.9997 0.9999 0.9752 0.9754
5 0.9983 0.9981 0.9997 0.9989 0.9805 0.9744
6 0.9998 0.9998 0.9998 0.9996 0.9760 0.9749
7 0.9998 1.0000 0.9999 0.9998 0.9741 0.9820
8 0.9997 0.9999 0.9996 0.9992 0.9622 0.9712
9 1.0000 1.0000 0.9999 0.9995 0.9709 0.9759

10 1.0000 1.0000 1.0000 1.0000 0.9682 0.9797
Challenge
submission 0.9997 0.9998 0.9997 0.9998 0.9764 0.9751

REGED1 CINA1
Experiment Gavin Cawley Yin-Wen Chang J. Yin & Z. Geng Gr. L.E.B & Y.T. Vladimir Nikulin Mehreen Saeed

1 0.9787 0.9556 0.9442 0.9538 0.8549 0.8233
2 0.9789 0.9445 0.9392 0.9536 0.8532 0.8340
3 0.9825 0.9700 0.9490 0.9572 0.8742 0.8657
4 0.9907 0.9515 0.9478 0.9467 0.8366 0.8305
5 0.9905 0.9720 0.9362 0.9441 0.8206 0.8502
6 0.9469 0.9556 0.8943 0.9743 0.8542 0.8235
7 0.9463 0.9567 0.9125 0.9749 0.8552 0.8213
8 0.9506 0.9555 0.8888 0.9706 0.8746 0.8724
9 0.9378 0.9470 0.8947 0.9536 0.8497 0.8443

10 0.9653 0.9839 0.9042 0.9831 0.8769 0.8444
Challenge
submission 0.9787 0.9556 0.9517 0.9673 0.8617 0.8248

REGED2 CINA2
Experiment Gavin Cawley Yin-Wen Chang J. Yin & Z. Geng Gr. L.E.B & Y.T. Vladimir Nikulin Mehreen Saeed

1 0.8045 0.8392 0.7926 0.8481 0.7159 0.6827
2 0.7984 0.8186 0.7626 0.8328 0.7401 0.7182
3 0.7897 0.8001 0.7660 0.8476 0.7367 0.7092
4 0.8218 0.7968 0.7448 0.8088 0.7238 0.7102
5 0.9025 0.9447 0.8850 0.9268 0.7088 0.6880
6 0.8237 0.8416 0.7896 0.8557 0.7180 0.6877
7 0.8218 0.8355 0.8019 0.8482 0.7271 0.7027
8 0.8413 0.8461 0.7968 0.8566 0.7258 0.6919
9 0.8555 0.8522 0.7715 0.8986 0.7398 0.7044

10 0.9395 0.9646 0.8503 0.9083 0.7377 0.6939
Challenge
submission 0.8045 0.8392 0.7885 0.8600 0.7132 0.6867

30

JMLR Workshop and Conference Proceedings 3:35–52 WCCI2008 workshop on causality

A Strategy for Making Predictions Under Manipulation
Laura E. Brown ∗ LAURA.E.BROWN@VANDERBILT.EDU
Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37232, USA
Ioannis Tsamardinos TSAMARD@ICS.FORTH.GR

Department of Computer Science, University of Crete and
BMI, ICS, Foundation for Research and Technology Hellas, Heraklion, Crete GR 700 13, GREECE
Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37232, USA

Editor: I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov

Abstract
The first Causality Challenge competition posted several causal discovery problems that re-
quire researchers to employ the full arsenal of state-of-the-art causal discovery methods, while
prompting the development of new ones. Our approach used the formalism of Causal Bayesian
Networks to model and induce causal relations and to make predictions about the effects of the
manipulation of the variables. Using state-of-the-art, under development, or newly invented
methods specifically for the purposes of the competition, we addressed the following prob-
lems in turn in order to build and evaluate a model: (a) finding the Markov Blanket of the
target even under some non-faithfulness conditions (e.g., parity functions), (b) reducing the
problems to a size manageable by subsequent algorithms, (c) identifying and orienting the net-
work edges, (d) identifying causal edges (i.e., not confounded), and (e) selecting the causal
Markov Blanket of the target in the manipulated distribution. The results of the competition
illustrate some of the strengths and weaknesses of the state-of-the-art of causal discovery meth-
ods and point to new directions in the field. An implementation of our approach is available at
http://www.dsl-lab.org for use by other researchers.

Keywords: Causal Bayesian Networks, Causal Discovery, Manipulations

1. Introduction
In order to optimally predict the effects of manipulations on a system, one needs to induce a
subset of the causal relations among the parts of the system. Three key characteristics of the
challenge data sets led to the choice of Causal Bayesian Networks (CBN) as the formalism to
model and induce causal relations and to make predictions about the effects of the manipulation
of the variables: the data contain cross-sectional measurements, the generating causal models
contain no feedback loops, and the definition of causality is stochastic. A CBN is a Bayesian
Network where the edges have the additional semantics that they correspond to direct causal
relations. Thus, a first major assumption in our analyses is that there exists a CBN that can
represent the probability distribution of the data. This in turn implies that we assume the Causal
Markov Condition holds: every node X is probabilistically independent of its non-causal effects
conditioned on its direct causes. An example of a graph of a CBN is shown in Figure 1(a).
∗Conflict of Interest Disclosure: The authors of this paper are and have been affiliated with some of the organizers

of the challenge. Consequently, our submission was not eligible for any prizes but, was allowed to participate in the
challenge.

©2008 L. E. Brown and I. Tsamardinos

http://www.dsl-lab.org

BROWN AND TSAMARDINOS

Figure 1: Causal Bayesian Networks: The unmanipulated CBN graph, G∅, and CBN graph G{S}
where S is manipulated, are depicted in (a) and (b). In (c), a network with a hidden
variables H1 causing both B and T , H2 causing both D and Q, and dashed edges
(when the marginal over the observed variables, O, is considered) is shown.

1.1 Theory for Making Predictions Under Manipulation

We will denote the variable to predict with the letter T (target). Let us denote the set of variables
asV that is partitioned into observed variables included in the data O, and unobserved variables
H . Single variables are denoted with capital letters or with Vi where i is an index and sets
of variables with bold capital letters. Let M denote the set of manipulated variables. For the
challenge it is assumed that M ⊆O, i.e., there are no manipulated unobserved variables. We will
denote with PM(V) the joint probability distribution of variablesV when the set of manipulated
variables is M. There were three different types of tasks in the competition, each requiring a
different approach, that we now explain.

1.1.1 PREDICTIONS UNDER NO MANIPULATION

For this type of task, one could first estimate P∅(T |V \ {T }). The estimation may be difficult
and unreliable if the size of V is large. A Markov Blanket of T , MB∅(T), for distribution
P∅, is defined as a minimal set such that P∅(T |V \ {T }) = P∅(T |MB∅(T)). In other words, a
Markov Blanket contains the required information for optimal prediction of T , thus rendering
the remaining variables superfluous and is the solution to the variable selection problem under
some general conditions (Tsamardinos and Aliferis, 2003). Notice that in a CBN (by definition
a minimal I-map, Pearl, 1988), a MB∅(T) corresponds to the parents, children, and spouses of
T in the graph (Pearl, 1988, Sec. 3.3, Corollary 6). Based on the above, our approach for this
task was to identify a Markov Blanket of T , MB∅(T) then learn a predictive model using only
these variables.

1.1.2 PREDICTIONS UNDER KNOWN MANIPULATIONS

In this case, we assume that there is a known subset of variables M⊆O that are being effectively
manipulated, i.e., their values are completely determined by the external agent, that we model
with variable E. As in a typical supervised learning setting, one could attempt to learn a model
for PM(T |V \ {T }). According to Pearl (2000) and Spirtes et al. (2000), the joint distribution
can be factorized as

PM(V) =
�

Vi∈V\M
P∅(Vi |Pa(Vi)) ·

�

Vi∈M
PM(Vi |E)

where Pa(Vi) are the parents (direct causes) of Vi and PM(Vi |E) the manipulated distribution of
a variable. From PM(V) one could obtain PM(T |V \ {T }) and solve the problem. However, this
approach requires knowledge of the distributions of the manipulated variables PM(Vi |E) that is

32

A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

not provided; in addition, it requires fitting the complete joint distribution of the variables that
is computationally inefficient and prone to statistical errors.

Alternatively, we employ the concept of the Markov Blanket, to instead learn a model for
PM(T |MBM(T)). If the causal graph is known, the MBM(T) can be identified from it as follows.
Let G∅ and GM be the CBN graphs of the unmanipulated and manipulated distribution respec-
tively. From Pearl (2000) and Spirtes et al. (2000), GM results from G∅ by removing the direct
causes of every variable Vi ∈M and replacing them with an edge from an external agent per-
forming the manipulations, E. An example is shown in Figures 1(a-b) for M= {S}. Intuitively,
this is justified by the fact that the manipulated variables have no other causal dependence but
with the external agent. Thus, MBM(T) is a subset of MB∅(T) with manipulated children and
their corresponding spouses removed (if a node is a spouse via multiple children, it is removed
only if all of them are manipulated). Even if MBM(T) is known, PM(T |MBM(T)) should be in-
duced from observational data following P∅. We now present the following theorem stemming
again from the more general theory of probability invariance under manipulations by Spirtes
et al. (2000) (proof in Appendix A):

Theorem 1 Let �G∅,P∅� be a CBN and �GM,PM� be the resulting CBN under manipulations of
variables in M. Suppose that T �∈M and also that there is no manipulated child C of T in G∅
with a descendant D in G∅ that is also in MBM(T). Then,

PM(T |MBM(T)) = P∅(T |MBM(T)).

In other words, when the theorem holds, we can learn an optimal model for predicting T in the
manipulated distribution by learning P∅(T |MBM(T)) from data sampled from the unmanipulated
distribution. The latter of course requires knowledge of MBM(T) which is a subset of MB∅(T).
When the theorem does not hold, then predicting T using P∅(T |MBM(T)) is not theoretically
guaranteed to be optimal; however, the condition of the theorem is relatively strict and it is
expected that it often holds in practice (of course, this claim requires further evaluation).

Notice the condition regarding the existence of a manipulated child of T and its descendant
D ∈MBM(T) is important. Consider the network in Figure 1(a), where the condition does not
hold when S is manipulated, and the resulting network 1(b). Then, we have:

P∅(T |MBM(T)) =
P∅(T) ·P∅(S|T) ·P∅(C|S,T)
�

t P∅(t) ·P∅(S|t) ·P∅(C|S, t)

PM(T |MBM(T))=
PM(T) ·PM(do(S)) ·PM(C|S,T)
�

t PM(t)·PM(do(S))·PM(C|S, t) =
P∅(T) ·PM(do(S)) ·P∅(C|S,T)
�

t P∅(t)·PM(do(S))·P∅(C|S, t)
,

where P(do(S)) follows Pearl’s nomenclature denoting the probability of S being manipulated
to obtain a specific value and if V is not manipulated then PM(V |Pa(V)) = P∅(V |Pa(V)) (see
Pearl, 2000 for explanation and discussion). In general the top quantity takes different values
from the bottom one; when the theorem does not hold, we could still fit a model from the ob-
servational data and use it in the manipulated distribution, if information about the distribution
of the manipulations is provided.

From the above discussion, to identify MBM(T) one needs to know both MB∅(T) and the
edge orientation in that graph neighborhood. So, we first attempt to learn the causal network
from the training data and then derive MBM(T) by deleting the appropriate edges. There are
two potential problems with this approach, even if the network is induced perfectly. First,
there may be several statistically indistinguishable networks that fit the data equally well. For
example, the models T →X and T ←X are indistinguishable with the P∅ distribution. We do
not have a solution to this problem, which implies that some manipulated children of T may be

33

BROWN AND TSAMARDINOS

Figure 2: Diagram illustrating the general steps of our method including the individual algo-
rithms used.

falsely included in MBM(T). The second problem with inducing MBM(T) is the existence of
hidden variables H . The induced networks regard the marginal distribution over variables in
O. In Figure 1(c) an example is shown, where H = {H1,H2} and the dashed edges appear in
the network capturing the marginal over O. True causal parents and spouses (A and S) belong
in MBM(T) even when they are manipulated, but confounded parents and spouses (B and Q)
should be removed when manipulated. In Section 2.5 we present newly developed methods to
address this issue.

For this type of task, our general strategy was to first learn MB∅(T), then orient the edges in
that neighborhood to identify a candidate MBM(T); subsequently, evidence about possible con-
founding is obtained to further remove variables if necessary (details are described in Section
2.5). Finally, a predictive model using only the variables in the estimated MBM(T) was learned.

1.1.3 PREDICTIONS UNDER UNKNOWN MANIPULATIONS

For these tasks, the set M of manipulated variables is unknown. The only nodes that always
belong in MBM(T) for any M ⊆ O are the parents of T . Thus, the safest bet for avoiding to
include irrelevant or even misleading variables (depending on the sort of manipulations) in
predicting T is to build a model P∅(T |Pa(T)), where Pa(T) are the (non-confounded) parents
(direct causes) of T .

2. General Steps of the Strategy
In order to identify the Markov Blankets to build the predictive models, several different al-
gorithms were used in our procedure. Figure 2 summarizes the general approach followed

34

A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

while the subsequent sections (noted in the figure) describe the process in more detail. The
first step in our strategy is to identify the MB∅(T). If there are no manipulations in the test set
distribution, an SVM model is constructed using the variables in MB∅(T) (Section 1.1.1). If
there are manipulations, a set of additional steps are taken to orient the edges in MB∅(T) and
identify non-confounded edges. Combining all this information, a set of variables is selected,
either MBM(T) or the non-confounded parents of T , depending on whether the manipulations
are known or not, respectively (Section 1.1.2 and Section 1.1.3). The final set of variables is
again used to construct an SVM model for predicting the cases in the manipulated test set.

Our method is publicly available online at http://www.dsl-lab.org. In order to
fully automate the procedure, the released code has been modified from that used during the
challenge. Wherever a difference between the competition and the released code exists, we
note it in the text. The code implementing the high-level strategy is released, although some of
the employed algorithms are only available as executable Matlab p-files.

2.1 Preprocessing

The data sets used in the challenge represented real world problems that required preprocessing
which was tailored for each data set. For the REGED data set each variable was normalized
so its mean was zero and standard deviation was one. For the SIDO data set, the variables
were binary and no preprocessing was performed. For the CINA data set, variables that were
not binary were treated as continuous and normalized as above; binary variables were all set
to values of zero and one. For the MARTI data set, the calibrant variables were used as an
indication of the position-dependent noise on the chip. For each training example, we fitted a
2D cubic spline to the values of the calibrants and then used the spline to obtain the correlated
noise level at the chip location of each variable. The estimated noise was then subtracted from
the value of each variable for that training sample.

2.2 Identifying MB∅(T)

Once the initial data sets have been preprocessed, the next step of our procedure was to identify
the MB∅(T). Algorithms such as HITON (Aliferis et al., 2003a) and MMMB (Tsamardinos
et al., 2003a) rely on statistical tests of conditional independence. A basic assumption of these
and similar methods is that if a variable is a neighbor of the target, then it will have a detectable
pairwise association with the target. The general case of this assumption is that the Faithful-
ness Condition (Spirtes et al., 2000) holds in the causal network. However, there were no such
guarantees in the problems of the competition. Thus, there could exist strong multivariate asso-
ciations with the target (e.g., parity functions) whose participating variables have no detectable
pairwise association with T . To address this problem we use our newly proposed algorithm
called Feature Space Markov Blanket, FSMB (Brown and Tsamardinos, 2008).

2.2.1 FEATURE SPACE MARKOV BLANKET (FSMB)

FSMB explicitly constructs a set of features, namely all the products among the variables up
to a given degree d. For two variables and d = 2, these are V1, V2, V2

1
, V2

2
and V1V2. It then

runs HITON to find the Markov Blanket of T in this feature space. While straight-forward, this
strategy does not scale up to data sets of practical sizes. A key idea in FSMB is to first learn
an SVM model using a polynomial kernel that implicitly maps to this feature space consisting
of all possible monomials up to a given degree d. We expect that if a feature is given a small
absolute weight by the SVM, then it probably has a small association with T and there is no

35

http://www.dsl-lab.org

BROWN AND TSAMARDINOS

need to compute it and feed it to HITON. FSMB is enriched with a heuristic search to efficiently
construct only the top-weighted features of the SVM model, before passing them to HITON.

This heuristic search procedure is now presented in more detail. The following standard
SVM notation is used in this section; let vk denote the predictor vector k in the data and
tk ∈ {−1,1} denote its class. Assume the use of a trained soft-margin, 1-norm SVM with full
polynomial (heterogeneous) kernel K(vk ,v j) = Φ(vk) ·Φ(v j) = (vk · v j + 1)

d , where d is the de-
gree of the kernel and the Lagrange multiplier vector is denoted a. The SVM model is stored as
the Lagrange multipliers and support vectors, rather than explicitly constructing the feature and
weight vectors of the decision function due to the large number of possible features.

In order to identify the top weighted-features without explicitly reconstructing the entire
weight vector, bounds on the weights are found and updated through the search and feature
construction process. Let si, j be the sum of squares of the weights of all features (monomials
in polynomial-kernel feature space) that involve variable i and are exactly of degree j. Then,
similarly to the corresponding result for the Recursive Feature Elimination (Guyon et al., 2002)
we can show that:

si, j =

�
d
j

� n�

k=1,l=1

akaltktl(H(vk ,vl)−H(v\ik ,v
\i
l))

where v\ik denotes vector vk with the i component removed and H(vk ,vl) = (vk · vl)
j . Notice that

si, j is a bound on the square of the largest weight of any feature that can be constructed with
variable i having degree exactly j.

Let us call this bound bi, j and initially set it to si, j . We use this bound to heuristically select
some features Φq, for an indexing q of all features, to explicitly construct and calculate the
corresponding weight wq. We expect that the features with the largest weights probably increase
the corresponding bi, j’s to which they contribute. So, we select the degree l of monomials
exhibiting the largest bound l = argmax jbi, j and the variables Vi in that level with the largest
bounds bi,l. For example, let us assume that l = 2 and the variables V1 and V2 have the largest
bounds b1,2 and b2,2. Then, we explicitly construct the features V2

1
, V1V2 and V2

2
and calculate

their corresponding weights using the formula

wq =
n�

k=1

aktkΦq(vk).

For example, if we denote with vr,z the value of the r-th training example for variable z, then
the weight corresponding to constructed feature V1V2 equals

�n
k=1

√
2aktkvk,1vk,2. The weight

wq of each explicitly constructed feature is then subtracted from the corresponding bounds:
bi, j = bi, j −w2

q. Thus, bi, j always maintains the sum of the squared weights of the remaining
features, not yet constructed, involving variable i of degree exactly j. A stopping criterion
can determine when the bound on the remaining weights is small enough to stop the explicit
calculation of the weights. Preliminary experiments showing the time-efficiency and quality of
the algorithm are presented in Brown and Tsamardinos (2008).

2.2.2 IMPLEMENTATION OF IDENTIFYING MB∅(T)

The MMMB algorithm (using the χ2 test for conditional independence based on the G2 statistic
for discrete data and Fisher’s z-test for continuous or mixed data) was employed to obtain a first
approximation of the Markov Blanket (Tsamardinos et al., 2003a).

To estimate how good of an approximation we obtained, we employed other feature selec-
tion algorithms and constructed models using all feature sets output (see Section 2.7 for details
on our procedure of building and evaluating the models). Specifically, we build models using as

36

A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

variable sets the output of MMMB, FSMB, RFE (Guyon et al., 2002, run using the same kernel
parameters as FSMB) and all variables. If all sets exhibited similar predictive cross-validated
performance (judged manually), we accepted MMMB’s output as a good approximation of
MB∅(T). Otherwise the better performance of RFE or FSMB, indicates important variables
were missed and checked the output of FSMB for additional variables participating in strong
multivariate associations. If that was the case, the interaction terms and constructed features
were added as part of our Markov Blanket for all subsequent steps to use1.

At this point, we considered that we have obtained a MB∅(T) that could be used for opti-
mal prediction under no manipulation, and is a superset of the Causal Markov Blanket in any
manipulated distribution (plus false positives depending on the type of manipulations).

2.3 Reducing the Size of the Problem to a Region of Interest

The previous step identifies the participants in the MB∅(T). However, the methods employed do
not indicate which variables are parents and which are children, i.e., the orientation of the edges
in the G∅. This is necessary to be able to filter out the manipulated children and their parents
and obtain MBM(T). Unfortunately, many state-of-the-art methods for orientation are unable to
run on problems of the size of the tasks in the competition.

To overcome the efficiency problem, we attempted to reduce the size of the problems by
identifying the variables at most three edges away from T in G∅. Therefore, rather than learn
the entire global network, we focus on a smaller region engulfing the target variable. This type
of learning became possible with the invention of local causal structure-learning methods such
as Grow-Shrink (Margaritis and Thrun, 1999) and MMPC, where MMPC returns the parents
and children of T in a network G∅ (Tsamardinos et al., 2003a). The idea of learning regions
(subgraphs) of arbitrary size was first presented in Tsamardinos et al. (2003b). The variables
in the region are identified through recursive application of a local neighborhood identification
method (MMPC using the default parameter settings, Fisher’s z test and χ2 test on continuous
and discrete data respectively) in a breadth-first search then, the graph is oriented as described
in Section 2.4.

Restricting our attention to a region may reduce the number of edges that can be oriented.
That is, it is possible for remote parts of the network to lead to orientation of edges close
to or involving T . Preliminary experiments we have conducted however (publication under
preparation), indicate that in many typical networks this effect is not severe and the edges in
the region can be oriented as well as when using the full network. The idea of reconstructing a
region of interest of limited depth around T to help orient the Markov Blanket edges has also
appeared in Bai et al. (2008).

The choice of a region of depth three is explained thusly; implicitly (in search-and-score
methods) or explicitly (constraint-based methods) v-structures are crucial in orientation. A v-
structure occurs when the subgraph X→ T← Z exist in the true unknown graph but the edge
X−Z is not. To determine from data that X−Z is absent we need to make sure that we have
conditioned on a subset of their parents. Thus, to identify a v-structure X→ T← Z we need
the parents of X and Z that are two edges away from T . The method we present in Section 2.2
requires v-structures among the parents of T , thus forcing us to induce a region of depth three.

2.4 Identifying and Orienting Edges

In this step, we run standard Bayesian Network learning algorithms on the data projected on the
variables of the restricted region found in the previous step. For the case of binary data, MMHC

1. In the released code, FSMB’s constructed features are always included in the Markov Blanket, if they contain
variables not participating in the output of MMMB.

37

BROWN AND TSAMARDINOS

Figure 3: Four example networks to explain the Y-structure analysis.

with the default parameter settings and a χ2 test was employed to find a high scoring network;
in extensive experimentation MMHC was deemed one of the best such learning algorithms
(Tsamardinos et al., 2006). For the case of continuous or mixed data, the kernel generalized
variance scoring metric of Bach and Jordan (2002), with κ = 0.01 and σ = 1, was used with
a greedy hill-climbing search to learn the structure. In Bach and Jordan (2002), the variable
distribution is assumed Gaussian in feature space, mapped implicitly by a kernel function. This
method is able to work on combinations of discrete and continuous variables and performed well
compared to other algorithms and approaches targeting continuous or mixed data as shown in Fu
(2005). The final structures were converted to their corresponding PDAGs with the compelled
edges identified. A compelled edge X→ T provides evidence (under the Faithfulness Condition)
that either X causes T , or (inclusive) X and T are confounded by a hidden variable.

2.5 Dealing with Confounded Variables

To deal with hidden variables and identify confounded parents of T , or confounded spouses of
T we first tried the FCI algorithm (Spirtes et al., 2000). Unfortunately, FCI could not scale up
even to the reduced region found (FCI was run with version 4.3.9 of the Tetrad Project). It also
failed to run even when we input several constraints to make it more efficient and specifically,
to constrain the edges to the ones found by the previous step.

We then turned to the method of Mani et al. (2006) to identify a Y-structure involving
a quadruple of the variables; see Figure 3(a) for such a structure. If a Y-structure faithfully
captures the marginal of the four variables, then edge C→ D has to be causal, i.e., there can be
no hidden confounder of C and D, as shown in Figure 3(b). If Figure 3(b) was the case, A and
D would be dependent given C and so their marginal would not faithful to Figure 3(a). There is
no causal claim for the other two edges in the graph.

We found this idea interesting but did not apply the algorithm as given by Mani et al. (2006)
because the conditions to identify such a structure are restrictive (e.g., A and B need to be
unconditionally independent). Instead, we extended the general idea to identify causal edges in
more general settings, where the pairs A and B, or A and D may be conditionally independent
instead of unconditionally, such as in Figure 3(c) (this is mentioned as future work in Mani et al.
2006). We proved (proof omitted for scope) and implemented a test based on the following
proposition:

Proposition 2 LetV =O∪H be a set of variables, O∩H = ∅; P(V) is faithful to a CBN �G,P�
and I(X;Y |Z) denotes independence of X and Y given the conditioning set Z and ¬I(X;Y |Z)

denotes dependence. For the distinct variables A,B,C,D ∈ O when the following conditions
hold:

1. ∀S ⊆ O,¬I(A;C|S) 4. ∃Z1 ⊆ O, I(A; B|Z1)

2. ∀S ⊆ O,¬I(B;C|S) 5. ¬I(A; B|Z1∪ {C})
3. ∀S ⊆ O,¬I(D;C|S) 6. ∃Z2 ⊆ O, I(A;D|Z2) and C ∈ Z2

38

A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

then, there is a causal path C → . . .→ D in G, where the intermediate variables belong in H
(are hidden).

We call this set of conditions collectively the Y-test for the variables A, B, C, and D. In our
implementation, we apply the Y-test for every quadruple of distinct variables A,B,C,D in the
region of interest around T2. If all conditions (1) - (6) are satisfied then we considered the
edge C → D as causal and without possible confounding. We applied the Y-test only once per
quadruple of variables and reused cached results for improved efficiency as follows: If an edge
A−C (ignoring the direction) exists in the region of interest then ∀S ⊆O,¬I(A;C|S), or MMPC
would have discovered a d-separating set for A and C. Thus, condition (1) of the proposition
holds. Similarly, if the edges B−C and C −D exist in the region of interest, the quadruple
passes the first three conditions. If the edges A−B and A−D are not in the region of interest, it
implies that MMPC has discovered subsets Z1 and Z2 that d-separate the two pairs of variables
respectively: condition (4) and the first part of (6) also hold. Condition (5) is checked with an
additional test of independence, using the specific Z1 found by MMPC when removing the edge
A− B. Finally, it is checked whether C ∈ Z2, the subset found by MMPC when removing the
edge A−D.

Multiple applications of the Y-test for different quadruple of variables may provide conflict-
ing information for an edge C → D. We devised two weighting schemes to rank the strength
of evidence a single Y-test provides. First, a value was calculated as the minimum p-value re-
turned by the independence tests of conditions (4) and (6). Let this value be referred to as the
p-score of the Y-test. This value represents the closest the independence conditions (4) and (6)
were to failing to pass the threshold for accepting dependence. Second, a ratio of the BDeu
score of the Y-structure (including the nodes in the conditioning sets) to the BDeu score of an
empty DAG was assessed. In preliminary tests on known networks, the BDeu score metric was
not consistently informative; therefore, the p-score was used in further analysis.

2.6 Combining Information to Identify MBM(T)

We used the PDAG at the end of Section 2.4 to obtain the orientation of some edges and the
method of Section 2.5 to obtain both orientation and causal evidence for some edges, i.e., that
they are non-confounded. The information from these two sources may be incomplete (some
edges are not oriented or could appear due to possible confounding phenomena) and conflicting.
This information was combined manually and subjectively during the competition; however, for
testing purposes during the post-challenge analysis and to be able to release a fully automated
algorithm, we have replaced the manual step with an automated method. The latter attempts to
follow as close as possible our thought process during the challenge.

We present the method following an example using the REGED1 data set. Figure 4 illus-
trates and summarizes the different information sources. Figure 4(a) shows the Markov Blanket
variables extracted from the PDAG of Section 2.4. The shaded nodes indicate the manipulated
variables in REGED1. In addition, all possible Y-structures involving edges of the Markov
Blanket were identified and scored. Figures 4(b)-(g) show the top six Y-structures centered on
the target node ranked by the maximum p-score. Finally, the table in 4(h) lists for each variable
the number of times it is determined to be a child of T and the maximum p-score among those
instances. There were no Y-structures (A,B,X,T) that passed the Y-test with an edge X → T
where X ∈MB∅(T); therefore, the Y-tests alone did not give any strong evidence for a variable
to be a parent of the target.

2. In our actual implementation the symmetrical test for B, ∃Z3 ⊆ O, I(B;D|Z3) and C ∈ Z3 is also checked, although
theoretically not necessary.

39

BROWN AND TSAMARDINOS

Num. Max
Node Child P-score

930 3 0.148
321 4 0.185
409 3 0.185
939 7 0.185
251 8 0.185
825 7 0.591
593 11 0.598
425 6 0.656
453 12 0.656

83 13 0.671
344 11 0.764

(h)

Figure 4: Information available to determine MBM(T) for REGED: (a) the DAG involving the
MB variables determined by the search-and-score procedure (variables manipulated
in REGED1 are shaded), (b)-(g) the top valid Y-tests ranked by p-score, and (h) a
table of the variables from (a) considered to be either parents or children along with
the number of valid Y-tests where the node appears as a child of T and the top p-score
when this occurs.

We now describe how to identify the parents of T . We consider as possible parents all
variables returned by FSMB as neighbors of T . First, we identify the variables with strong
evidence of being parents of T . These are the ones that appear as parents in the PDAG of
the edge orientation phase of Section 2.4. We sort them by the number of times they appear
as non-confounded parents of T in Y-tests. In our example, these are variables with indexes
{930,321} (Figure 4(a)). Then, we filter out the variables with strong indication that they are
indeed children of T ; these are variables X for which the edge T → X gets a high p-score in
some Y-test, i.e., they have maximum p-score above a threshold (arbitrarily set to 0.5). In our
example, these are variables {825,593,425,453,83,344} (Figure 4(h)). The remaining variables
{409,939,251} are those without strong evidence that they are either parents or children. These
are sorted in decreasing order of the ratio of valid Y-tests as a parent to that as a child; ties are
broken with preference to variables appearing less often as children of T in Y-tests. The final
list to consider thus is {930,321,409,939,251}. During the competition, several subsets of this
list were tried and a final decision was made among those submissions that ranked in the top
25% of all competitors. The automated procedure simply uses a threshold on the number of
times the variables appear as children of T to remove the tail of the list.

If the complete MB(T) is sought and not just the parents of T , we also need to identify the
children and spouses of T . As children we consider the remaining non-manipulated variables
adjacent to the target; in our example, these are variables with indexes {825,425, 453,344}. The
spouses of the selected children are found from the PDAGs orientation: {454} (alternatively,
we could have used the same procedure for the identification of the parents of T as above, to
identify the parents of the children of T).

In our effort to automate the above procedure after the challenge, we noticed that the pro-
cedure was not stable. Specifically, the lists of variables output and the corresponding models
produced, varied significantly under different ordering of the variables in the data set. To alle-
viate the problem we augmented the procedure with a model-averaging-type step where we run
the orientation procedure several times with different parameters (namely, we vary the equiva-

40

A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

Table 1: Results on Challenge Data Sets: The Fnum, Fscore, Dscore, Tscore and Ranking is
given for each version of the data sets; the results in (a) represent the final challenge
submission and (b) show the results if the MB∅(T) is used for every variable list regard-
less of considering manipulations. In (a), the number of entries, the overall ranking and
average Tscore are given for each data problem. The cells are shaded in the colored
quartile information: green – best 25%, yellow – best 50%, orange – worst 50%, and
red – worst 25%.

Final Challenge Submission Unmanipulated MB used for all Data Sets
Fnum Fscore Dscore Tscore Ranking Fnum Fscore Dscore Tscore Ranking

CINA0 101 0.8496 0.9717 0.9721 9 Num. Entries/Total 7/277 101 0.8496 0.9717 0.9721 9
CINA1 5 0.4716 0.9316 0.5113 23 Average Tscore 0.6015 101 0.5795 0.9717 0.8581 4
CINA2 5 0.4716 0.9316 0.3210 25 Overall Ranking 23/25 101 0.5795 0.9717 0.6917 8
MARTI0 24 0.5869 0.9952 0.9681 8 Num. Entries/Total 2/233 24 0.5869 0.9948 0.9824 7
MARTI1 17 0.5643 0.9951 0.7837 9 Average Tscore 0.8083 24 0.5985 0.9948 0.8477 9
MARTI2 3 0.4985 0.6973 0.6730 10 Overall Ranking 9/19 24 0.7429 0.9948 0.6971 9
REGED0 15 0.8571 1.0000 0.9998 2 Num. Entries/Total 5/355 15 0.8571 1.0000 0.9998 2
REGED1 9 0.7851 1.0000 0.9673 4 Average Tscore 0.9423 15 0.7825 1.0000 0.9280 14
REGED2 3 1.0000 0.9728 0.8600 1 Overall Ranking 1/30 15 1.0000 1.0000 0.7231 9
SIDO0 13 0.5115 0.9356 0.9230 12 Num. Entries/Total 2/242 13 0.5015 0.9365 0.9237 12
SIDO1 4 0.5003 0.8587 0.6073 12 Average Tscore 0.6909 13 0.5012 0.9365 0.6626 11
SIDO2 4 0.5003 0.8587 0.5426 14 Overall Ranking 12/28 13 0.5012 0.9365 0.5713 11

(a) (b)

lent sample size in the Bayesian Score and the kernel parameters for the scoring metric of Bach
and Jordan, 2002). Only the variables that appear consistently across parameter combinations
remain in consideration. The procedure has been validated in the post-challenge tests set by the
organizers and was found stable and robust under permutations of the variables and subsampling
of the data.

2.7 Building Predictive Models

Once the variable list was determined for each data set, a final classification SVM model was
trained on only the variable list members (Boser et al., 1992). An n-fold cross-validation
design was used to select the optimal parameters: type of kernel (polynomial or Gaussian),
kernel parameters (degree of kernel ∈ {1,2,3,4} or sigma ∈ {10

−4,10
−3, . . . ,10

0}), and C value
∈ {10

−4,10
−3, . . . ,10

1}. The value of n ranged from 5 to 10 based on the sample size available
in the training sample. Once the best parameters were selected, a final SVM model was trained
and used to predict the values for the test data sets.

3. Results
The classification performance (AUC reported as Tscore in the challenge results) is ultimately
how the challenge submissions were rated. Table 1(a) presents the Fnum, Fscore, Dscore,
Tscore, and ranking of our final submission for each data set version. The number of entries
before the final submission, the average Tscore (across the versions of a data set), and the overall
ranking (generated from the average Tscore) are also shown in the table.

3.1 What Went Well

The specific implementation of our strategy performs well on the REGED data set achieving
the top overall ranking. The strategy also exhibits decent performance on the unmanipulated

41

BROWN AND TSAMARDINOS

(a) (b) (c) (d)

Figure 5: The selected features’ relationship to the target variable, where dcauses = direct
causes, deffects = direct effects, ocauses = other causes (indirect), oeffects = other
effects (indirect), spouses = parent of direct effect, orelatives = other relatives, and
unrelated = completely irrelevant.

data sets, version “0”. This indicates that our implementation is approximating MB∅(T) well.
This is corroborated by the organizers’ post-challenge analysis, shown in Figure 5. In 3 of the
4 data sets (REGED, SIDO, and CINA) the method is performing well at identifying members
of MB∅(T). In fact, in those three data sets only ∼2 false positives are added to the Markov
Blanket (the number of false negatives is undisclosed). Notice that our algorithms were able to
accurately identify CINA’s MB∅(T) numbering close to 100 variables. On MARTI it seems that
MB∅(T) was not accurately found, however we believe this is due to our inability to handle the
noise correctly. Evidence to this is provided by the following experiment: the post-challenge
analysis included other teams’ preprocessed data for MARTI; re-running our method on the
preprocessed data provided by Dr. Guyon we see a marked improvement in our performance
(in particular on the MARTI0 data, where our method has proven to do well in all other cases).
Specifically, the Tscore on MARTI0 improves from 0.9681 to a score of 0.9910 resulting in an
improved ranking on that data set from eighth to fifth and corroborating that we approximate
well the MB∅(T) (the actual false positives and false negatives have not been released for post-
challenge submissions).

3.2 What Went Wrong

While our methods performed well at identifying the unmanipulated Markov Blanket, the iden-
tification of the manipulated Markov Blanket was very poor on all but the REGED data set.
This indicates that our methods for orienting the edges of MB∅(T) performed poorly. We now
provide some possible explanations.

Unfortunately, we spent most our time on the REGED data sets and the development of
new methods, leaving little time for the rest of the data sets. Most importantly, we set out to
solve a more difficult problem than what the organizers had set, namely inducing causality in
the presence of hidden variables and violations of faithfulness. These are two important issues
in real data sets, but did not occur in the challenge: FSMB identified between 0-4 features
per data set that were added for consideration; these features were often considered spouses,
or other relatives when selecting MBM(T) and did not make much difference in performance.
Also, there were actually no hidden variables in the challenge data sets. More specifically, all
the variables participating in the models from which data were simulated, were also included in
the released data sets. Because of the way data were simulated, the problematic confounding
effect we described never occurred. We spent a significant amount of time on this problem is

42

A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

because the FAQ of the competition specifically declared that there may be missing variables (a
problem for many real-world analyses).

Also, our submissions were overly conservative in regards to including false positive vari-
ables, i.e., variables not in MBM(T). However, it turns out that for this challenge, false negatives
degrade performance significantly more than false positives (also see discussion in the organiz-
ers’ post-challenge analysis online Appendix B, Challenge Website 2008). This is exemplified
by the following post-challenge experiment: we submitted a new set of entries where the vari-
able list for each data set version was the MB∅(T), a superset of MBM(T). The results for these
submissions are shown in Table 1(b) and can be contrasted with the challenge results in 1(a).
On REGED, the performance is degraded since we were already ranking 1st on this task. On
CINA, the challenge submission choice of MBM(T) was both incorrect and very conservative,
especially in light of the large size of the Markov Blanket and number of possible parents. The
use of MB∅(T) improved the performance and these results rank as high as fourth for CINA1.
For MARTI and SIDO, the new submission returns a similar or slightly better ranking to that of
the challenge submission. This analysis, while only over the limited data sets of this challenge,
suggests that without an edge orientation procedure to supply correct information to differen-
tiate the parents and children, letting MB∅(T) be the default manipulated Markov Blanket is
a reasonable approach. In addition, we believe that a model averaging approach would also
greatly improve the robustness of identifying the MBM(T) and make it more resilient to edge-
orientation errors.

Regarding the CINA data sets, we note that they consisted of a mixture of discrete and
continuous variables. Many of the algorithms employed by our strategy heavily rely on tests
of independence. Our implementations of these tests however, have been developed targeting
only all discrete or all continuous variables and were not designed for mixed types of variables.
Regarding the SIDO data sets, we were informed after the completion of the challenge that it
contained variables created by the binarization of other variables. For example a variable V tak-
ing values v1, . . . ,vk is converted to the binary variables B1, . . . ,Bk taking values Bi = I(V = vi),
where I is the indicator function. The newly created variables Bi are all inter-dependent, since
knowing Bi = 1 implies that Bj = 0, for i �= j. Graphically, the new set of variables {Bi} would
consist of a clique in the PDAG of a network. If V is a parent of T in the original network, then
all Bi’s are connected to T and among each other. This reduces the identifiable Y-structures
by our procedure and confuses all traditional search-and-score Bayesian Network learning al-
gorithms. The problem stemming from binarization of variables points to an interesting future
research direction.

Finally, due to the time pressure, several parts of our strategy were not fully optimized. We
did not optimize the model construction procedure and just used standard SVMs with cross-
validation. Most importantly, we did not have the time to fully test and optimize the novel
algorithms and procedures for these tasks.

4. Lessons Learned and Conclusions
The most important outcome of our participation to the challenge is the experience gained and
realization of several theoretical and practical issues as well as ideas that emerged for future
directions in the field. We now distill some of these in the following.

Knowledge of the causal structure is theoretically necessary for making optimal predictions
under manipulations. This is exemplified, in our opinion, in this challenge by the difference
between the top non-causal submissions and the theoretical optimum performance; see the or-
ganizers’ post-challenge analysis online (Challenge Website, 2008, Figures 3-6). Regarding
the state-of-the-art in causal discovery, we believe there exists efficient, scalable, and publicly

43

BROWN AND TSAMARDINOS

available code to learn the Markov Blanket. In fact, several other top participants also used our
package Causal Explorer (Aliferis et al., 2003b) implementing such algorithms. These methods
perform well on a range of high-dimensional data sets involving discrete, continuous, and mixed
data. However, we also note that there is a shortage of reliable and efficient, publicly-available
code or software packages that are meant to identify hidden variables or non-confounded vari-
ables. Of those available (e.g., Tetrad’s FCI implementation), they are unable to scale to the
size of the challenge problems (even when reduced to a region of depth 3). In addition, we ob-
serve that the state-of-the-art methods employed to learn the orientation did not perform well.
Consequently, we were unable to reliably identify the manipulated Markov Blanket.

Regarding important implementation issues, we note that reducing the size of the problem to
a region of depth 3 greatly improved the efficiency of the later applied methods; this reduction
allowed the orientation procedures to complete in minutes rather than hours or days if the full
variable set was considered. Several algorithms heavily depend on statistical tests that ought
to be tailored for the problem at hand. Binarized variables pose a problem to causal-discovery
methods at the moment.

In summary, we presented a general strategy for predicting a quantity under manipulations
of a system. It relies on identifying MBM(T) and fitting a model for P∅(T |MBM(T)) from the
observational data. The steps of the strategy are shown in Figure 2. They are implemented by
existing algorithms and augmented with novel procedures for detecting certain kinds of vio-
lations of faithfulness and for detecting non-confounded causal edges. Overall, this challenge
provided us with an opportunity to develop, apply, and compare methods for causal discovery
on realistic, challenging problems and initiating new avenues of research.

References
C.F. Aliferis, I. Tsamardinos, and A. Statnikov. HITON, A Novel Markov Blanket Algorithm for Op-

timal Variable Selection. In Proceedings of the American Medical Informatics Association Confer-
ence(AMIA), pages 21–25, 2003a.

C.F. Aliferis, I. Tsamardinos, A. Statnikov, and L.E. Brown. Causal Explorer: A Causal Probabilistic
Network Learning Toolkit for Biomedical Discovery. In International Conference on Mathematics and
Engineering Techniques in Medicine and Biological Sciences (METMBS ’03), pages 371–376, 2003b.

F.R. Bach and M.I. Jordan. Learning Graphical Models with Mercer Kernels. In Proceedings of the
Conference on Neural Information Processing Systems (NIPS-02), pages 1009–1016, 2002.

X. Bai, R. Padman, J. Ramsey, and P. Spirtes. Tabu Search-Enhanced Graphical Models for Classification
in High Dimensions. INFORMS JOURNAL ON COMPUTING, 20(3):423–437, Oct. 2008.

B. Boser, I. Guyon, and V. Vapnik. An Training Algorithm for Optimal Margin Classifiers. In Fifth Annual
Workshop on Computational Learning Theory, pages 144–152. ACM, 1992.

L.E. Brown and I. Tsamardinos. Markov Blanket-Based Variable Selection in Feature Space. Technical
Report TR-08-XX, Vanderbilt Univeristy, 2008.

Challenge Website. Causation and prediction challenge.
http://clopinet.com/isabelle/Projects/WCCI2008/Analysis.html, 2008.

L.D. Fu. A Comparison of State-of-the-Art Algorithms for Learning Bayesian Network Structure from
Continuous Data. Master’s thesis, Vanderbilt University, 2005.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene Selection for Cancer Classification using Support
Vector Machines. Machine Learning, 46(1-3):389–422, 2002.

44

A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

S. Mani, P. Spirtes, and G.F. Cooper. A Theoretical Study of Y structures for Causal Discovery. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 314–323, 2006.

D. Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. In Proceedings of the
Conference on Neural Information Processing Systems (NIPS-99), 1999.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmannn Publishers, San Mateo, CA,
1988.

J. Pearl. Causality, Models, Reasoning, and Inference. Cambridge University Press, Cambridge, U.K.,
2000.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, Cambridge, MA,
2nd edition, 2000.

Tetrad Project. http://www.phil.cmu.edu/projects/tetrad/.

I. Tsamardinos and C.F. Aliferis. Towards Principled Feature Selection: Relevancy, Filters and Wrappers.
In Ninth International Workshop on Artificial Intelligence and Statistics, 2003.

I. Tsamardinos, C.F. Aliferis, and A. Statnikov. Time and Sample Efficeint Discovery of Markov Blankets
and Direct Causal Relations. In Proceedings of Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 673–678, 2003a.

I. Tsamardinos, C.F. Aliferis, A. Statnikov, and L.E. Brown. Scaling-Up Bayesian Network Learning
to Thousands of Variables Using Local Learning Techniques. Technical Report TR-03-02, Vanderbilt
University, March 2003b.

I. Tsamardinos, L.E. Brown, and C.F. Aliferis. The Max-Min Hill-Climbing Bayesian Network Structure
Learning Algorithm. Machine Learning, 65(1):31–78, 2006.

Appendix A.
Theorem 1 Let �G∅,P∅� be a CBN and �GM,PM� be the resulting CBN under manipulations of
variables in M. Suppose that T �∈M and also that there is no manipulated child C of T in G∅
with a descendant D in G∅ that is also in MBM(T). Then,

PM(T |MBM(T)) = P∅(T |MBM(T)).

Proof
We base the proof of the theorem on the more general theory of probability invariance

under manipulations found in Spirtes et al. (2000). Let G be the original graph G∅ with the
additional exogenous variable E representing the manipulating agent and edges from E to any
manipulated variable in M. All graph operations that follow in the proof are on G (in the
terminology of Spirtes et al. (2000) G is the combined graph Gcomb). Then P∅(Y|Z) = PM(Y|Z),
if Dsep(E,Y|Z), where Y, Z are two disjoint sets and Dsep(E,Y|Z) denotes the d-separation
of E from Y given Z in G. Thus, we just need to show that Dsep(T ;E|MBM(T)) under the
conditions C:

There is no pair of variables C,D such that:

1. E→C← T
2. C ❀ D
3. D ∈MBM(T)

45

http://www.phil.cmu.edu/projects/tetrad/

BROWN AND TSAMARDINOS

where C ❀ D denotes a directed path from C to D. Let us assume that the d-separation does not
hold when conditions C do, and reach a contradiction. Recall that there are no incoming edges
to E since it is an exogenous variable and no edge from E to T .

Since the d-separation does not hold, there must be an open path from E to T that is not
blocked by MBM(T). Take a path of the form E → · · ·P→ T . P ∈MBM(T) under any manip-
ulation and so we condition on it and it blocks the path. Thus, since there is an open path, it
must be of the form E→ · · ·C← T . For the path to be open, for each collider on it, we must be
conditioning on either the collider or a descendant of the collider. Let us now consider the last
collider on the path, which can be (1) C itself, or (2) some other node G.

Case (1): The open path is of the form E → · · ·C ← T and C is the last collider on it. We
also distinguish two subcases, either (1a) the path is of the form E → C ← T , or (1b) of the
form E → · · ·S → C ← T . If (1a) is true, since C is a collider on the open path of case (1)
we must be conditioning on either itself or a descendant of it D ∈ MBM(T). Since, in (1a)
C is manipulated, C �∈ MBM(T) and we cannot be conditioning on C itself. Thus, there is a
D ∈MBM(T), descendant of C and conditions C all hold reaching a contradiction.

If (1b) is true, then S cannot belong in MBM(T) or it would block the path by conditioning
on it. Thus, S �∈ MBM(T) and the only way for this to be possible is if C is manipulated and
so E → C ← T holds. Similarly to case (1a) we then conclude that conditions C should hold,
reaching a contradiction.

Case (2): The open path is of the form E→ · · ·G← · · ·← C← T and G is the last collider
on the path. If C ∈MBM(T) then we condition on it and it blocks the path. Thus, C �∈MBM(T)

which means C is manipulated and so E→C← T holds. For the path to be open, given that G is
a collider we must be conditioning on a node D ∈MBM(T) that is either G itself or a descendant
of it. In either case, D must be a descendant of C too since there is a directed path G← · · ·←C
(notice this path cannot be of the form G← Q→C or C and not G would be the last collider on
the path E→ · · ·G← · · ·←C← T). Thus, case (2) implies conditions C hold, again contrary to
what we assumed.

46

JMLR Workshop and Conference Proceedings 3:53–64 WCCI2008 workshop on causality

Feature Ranking Using Linear SVM

Yin-Wen Chang B92059@CSIE.NTU.EDU.TW

Chih-Jen Lin CJLIN@CSIE.NTU.EDU.TW

Department of Computer Science, National Taiwan University
Taipei 106, Taiwan

Editor: I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov

Abstract
Feature ranking is useful to gain knowledge of data and identify relevant features. This arti-
cle explores the performance of combining linear support vector machines with various feature
ranking methods, and reports the experiments conducted when participating the Causality Chal-
lenge. Experiments show that a feature ranking using weights from linear SVM models yields
good performances, even when the training and testing data are not identically distributed.
Checking the difference of Area Under Curve (AUC) with and without removing each feature
also gives similar rankings. Our study indicates that linear SVMs with simple feature rankings
are effective on data sets in the Causality Challenge.

Keywords: SVM, feature ranking.

1. Introduction
The Causality Challenge (Guyon et al., 2008) aims at investigating situations where the training
and testing sets might have different distributions. The goal is to make predictions on manipu-
lated testing sets, where some features are disconnected from their natural cause. Applications
of the problem include predicting the effect of a new policy or predicting the effect of a new
drug. In both examples, the experimental environment and the real environment differ.

In order to make good predictions on manipulated testing sets, we use several feature rank-
ing methods to gain knowledge of the data. Among existing approaches to evaluate the rel-
evance of each feature, some are related to certain classification methods, but some are more
general. Those independent of classification methods are often based on statistic characteristics.
For example, we experimented with Fisher-score, which is the correlation coefficient between
one of the features and the label. In this work, we select Support Vector Machines (SVMs)
(Boser et al., 1992) as the classifier, and consider one feature ranking method specific to SVM
(Guyon et al., 2002).

This article is organized as follows. In Section 2 we introduce support vector classification.
Section 3 describes several feature ranking strategies. Section 4 presents experiments conducted
during the development period of the competition, our competition results, and some post-
challenge analysis. Closing discussions are in Section 5.

©2008 Yin-Wen Chang and Chih-Jen Lin

CHANG AND LIN

2. Support Vector Classification
Support vector machines (SVMs) are useful for data classification. It finds a separating hyper-
plane with the maximal margin between two classes of data. Given a set of instance-label pairs
(xi ,yi), xi ∈ Rn,yi ∈ {1,−1}, i = 1, . . . , l, SVM solves the following unconstrained optimization
problem:

min
w,b

1

2
w

T
w+C

l�

i=1

ξ(w,b; xi ,yi), (1)

where ξ(w,b; xi ,yi) is a loss function, and C ≥ 0 is a penalty parameter on the training error.
Two common loss functions are:

max(1− yi(w
Tφ(xi)+b),0) and max(1− yi(w

Tφ(xi)+b),0)
2, (2)

where φ is a function that mapped training data into higher dimensional space. The former is
called L1-loss SVM, and the latter is L2-loss SVM. When participating in the challenge, we
choose the L2-loss function. Post-challenge experiments show that the two loss functions result
in similar performances. We give detailed results of using both loss functions in Section 4.3.

For any testing instance x, the decision function (predictor) is

f (x) = sgn
�
w

Tφ(x)+b
�
. (3)

Practically, a kernel function K(xi , x j) = φ(xi)
Tφ(x j) may be used to train the SVM. A linear

SVM has φ(x) = x so the kernel function is K(xi , x j) = x
T
i x j . Another popular kernel is the

radial basis function (RBF):

K(xi , x j) = exp(−γ�xi − x j�2), where γ > 0. (4)

We use linear SVM for both feature ranking and classification in the challenge. We also conduct
some post-challenge experiments using SVM with RBF kernel as the classifier. The results will
be discussed in Section 4.3.

We use grid search to determine the penalty parameter C for linear SVM, and both C and γ
for SVM with RBF kernel. For each value of C or (C,γ), we conduct five-fold cross validation
on the training set, and choose the parameters leading to the highest accuracy.

3. Feature Ranking Strategies
In this section, we describe several feature ranking strategies that we experiment with in the
challenge. All methods assign a weight to each feature and rank the features accordingly.

3.1 F-score for Feature Ranking

F-score (Fisher score) is a simple and effective criterion to measure the discrimination between
a feature and the label. Based on statistic characteristics, it is independent of the classifiers.
Following Chen and Lin (2006), a variant of F-score is used. Given training instances xi , i =
1, . . . , l, the F-score of the jth feature is defined as:

F(j) ≡

�
x̄

(+)

j − x̄ j
�2
+
�
x̄

(−)

j − x̄ j
�2

1

n+−1

n+�
i=1

�
x(+)

i, j − x̄
(+)

j

�2
+ 1

n−−1

n−�
i=1

�
x(−)

i, j − x̄
(−)

j

�2 , (5)

48

FEATURE RANKING USING LINEAR SVM

Algorithm 1 Feature Ranking Based on Linear SVM Weights
Input: Training sets, (xi ,yi), i = 1, . . . , l.
Output: Sorted feature ranking list.

1. Use grid search to find the best parameter C.

2. Train a L2-loss linear SVM model using the best C.

3. Sort the features according to the absolute values of weights in the model.

where n+ and n− are the number of positive and negative instances, respectively; x̄ j , x̄
(+)

j , x̄
(−)

j
are the average of the jth feature of the whole, positive-labeled, and negative-labeled data sets;
x(+)

i, j /x(−)

i, j is the jth feature of the ith positive/negative instance. The numerator denotes the inter-
class variance, while the denominator is the sum of the variance within each class. A larger
F-score indicates that the feature is more discriminative.

A known deficiency of F-score is that it considers each feature separately and therefore
cannot reveal mutual information between features. However, F-score is simple and generally
quite effective.

3.2 Linear SVM Weight for Feature Ranking

After obtaining a linear SVM model, w ∈ Rn in (1) can be used to decide the relevance of
each feature (Guyon et al., 2002). The larger |wj | is, the jth feature plays a more important
role in the decision function (3). Only w in linear SVM model has this indication, so this
approach is restricted to linear SVM. We thus rank features according to |wj |. The procedure is
in Algorithm 1.

3.3 Change of AUC with/without Removing Each Feature

We determine the importance of each feature by considering how the performance is influenced
without that feature. If removing a feature deteriorates the classification performance, the fea-
ture is considered important. We select the cross validation AUC as the performance measure.
Features are ranked according to the AUC difference.

This performance-based method has the advantage of being applicable to all classifiers. The
disadvantage is that it takes a huge amount of time to train and predict when the number of
features is large. Besides, by removing only one feature at a time, the method does not take into
account how features affect each other.

3.4 Change of Accuracy with/without Removing Each Feature

This method is the same as the one described in Section 3.3, except that the measure of perfor-
mances is the accuracy rate.

4. Experimental Results
In the Causality Challenge, there are four competition tasks (REGED, CINA, SIDO and MARTI)
and two small toy examples (LUCAS and LUCAP). All tasks have three versions of data sets,
each with the same training set, and different testing sets. Testing sets with digit zero indicates
unmanipulated testing set, while digit one and two denote manipulated testing sets. Table 1

49

CHANG AND LIN

Table 1: Challenge data sets. All of them have two classes.

Dataset Feature type # Feature # Training # Testing

REGED numerical 999 500 20,000
SIDO binary 4,932 12,678 10,000
CINA mixed 132 16,033 10,000

MARTI numerical 1,024 500 20,000
LUCAS binary 11 2,000 10,000
LUCAP binary 143 2,000 10,000

shows the data set descriptions. Details can be found at http://www.causality.inf.
ethz.ch/challenge.php.

We preprocess data via scaling, instance-wise normalization, and Gaussian filtering. We
scale each feature of REGED and CINA to [0,1], and apply the same scaling parameter to their
testing sets. In contrast, training and testing sets in MARTI are separately scaled to [−1,1] for
each feature, since this way results in a better performance. Another reason is that the training
data in MARTI are perturbed by noises, while the testing data are free of noises. After applying a
Gaussian filter on the training set to filter out the noises, there is an unknown bias value that we
would like to substrate or add. We might use information from the distribution of testing data to
gain knowledge of the unknown bias value, and then scale the training and testing data using the
same scaling parameter. Alternatively, we can ignore the bias value, and scale the training and
testing data separately. For SIDO, LUCAS, and LUCAP, the range of their features are already
in [0,1]. We normalize each instance of these three problems to have the unit length.

According to the data set description, two kinds of noise are added to MARTI. First, to
obtain 1,024 features, 999 features in REGED are complemented by 25 calibrant features, each
of which has a value zero plus a small Gaussian noise. Second, the training set is perturbed by a
zero-mean correlated noise. Since we cannot get into the first quartile of the competition results
without regarding the noise, we use a Gaussian filter to eliminate the low frequency noise in
the training set before scaling. For each instance, we rearrange the 1,024 features into a 32×32
array and apply the Gaussian filter, according to the fact that neighboring positions are similarly
affected. The low pass spatial Gaussian filter is defined as:

g(x0) =
1

G(x0)

�

x
e−

1

2
(
�x−x0�
σ)

2

f (x), where G(x0) =
�

x
e−

1

2
(
�x−x0�
σ)

2

(6)

where f (x) is the value at position x in the 32×32 array. For each position x, we take the
Gaussian weighted average of all values in the array. The resulting g(x) is the approximated
low frequency noise we derive, and f �(x) = f (x)− g(x) is the feature value that we would like
to use. The σ is set to 3.2 after experimenting with several values.

Since testing sets may not follow the same distribution as training sets, and it is intended to
hide their distributions, no validation sets are provided during the development period, which is
the time between the start and the termination of the challenge. Instead, an on-line submission
page shows which quartile that submission belongs to among all submissions. Besides, testing
AUC of toy examples are available.

The linear SVM classifier that we use is LIBLINEAR
1 (Fan et al., 2008), and we use LIBSVM

2

(Chang and Lin, 2001) for SVM with RBF kernel. While LIBSVM can handle linear kernel as

1. http://www.csie.ntu.edu.tw/~cjlin/liblinear
2. http://www.csie.ntu.edu.tw/~cjlin/libsvm

50

http://www.causality.inf.ethz.ch/challenge.php
http://www.causality.inf.ethz.ch/challenge.php
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/libsvm

FEATURE RANKING USING LINEAR SVM

Algorithm 2 Training and Prediction
Input: Training sets, testing sets.
Output: predictions on nested subsets.

1. Use a feature ranking algorithm to compute the sorted feature list f j , j = 1, . . . ,n.

2. For each feature size m ∈ {1,2,4, . . . ,2i , . . . ,n}.

(a) Generate the new training set that has only the first m features in the sorted feature
list, f j , j = 1, . . . ,m.

(b) Use grid search to find the best parameter C.

(c) Train the L2-loss linear SVM model on the new training set.

(d) Predict the testing set using the model.

well, we use LIBLINEAR due to its special design for linear SVM. Our implementation extends
from the framework by Chen and Lin (2006)3. All sources for our experiments are available at
http://www.csie.ntu.edu.tw/~cjlin/papers/causality.

We experiment with the feature ranking methods described in Section 3. We use F-score,
W, D-AUC, D-ACC to denote the methods in Sections 3.1-3.4, respectively. The linear SVM
weights are derived from LIBLINEAR model files. The procedure is described in Algorithm 2.

We summarize the methods that we experiment with:

• F-score: feature ranking using F-score described in Section 3.1.

• W: feature ranking using linear SVM weights described in Section 3.2.

• D-AUC: feature ranking by checking the change of AUC with/without removing each
feature. Details are in Section 3.3.

• D-ACC: feature ranking by checking the change of accuracy with/without removing each
feature. Details are in Section 3.4.

4.1 Development Period

During the development period, we took into account the cross validation AUC on training sets,
the testing AUC of toy examples, and the quartile information to decide the method for the final
submission.

Since we did not develop a strategy to deal with different training/testing distributions, we
use the same model to predict each task’s three testing sets. We did not use the provided in-
formation of the manipulated features in REGED and MARTI, and the 25 calibrant features in
MARTI.

With AUC being the evaluation criterion, we submitted the decision values of linear SVM
predictions. Nested subsets according to sorted feature lists are used since their performances
are better. That is, one of the predictions based on a subset outperforms the one based on the
whole feature set.

For F-score and W, it takes less than one minute to train all the models for nested-subset
submissions for REGED, CINA, and MARTI, while it takes about 13 minutes for SIDO. Exclud-
ing preprocessing, the time required to predict one testing set is around five minutes for REGED

3. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools

51

http://www.csie.ntu.edu.tw/~cjlin/papers/causality
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools

CHANG AND LIN

Table 2: Best five-fold cross validation AUC and the corresponding feature size. The best fea-
ture ranking approach is bold-faced.

Dataset REGED SIDO
4

CINA MARTI

F-score 0.9998 (16) 0.9461 (2,048) 0.9694 (132) 0.9210 (512)
W 1.0000 (32) 0.9552 (512) 0.9710 (64) 0.9632 (128)

D-AUC 1.0000 (16) – 0.9699 (128) 0.9640 (256)
D-ACC 0.9998 (64) – 0.9694 (132) 0.8993 (32)

Table 3: Comparisons of the performance on toy examples. The testing AUC is showed. Sorted
feature list and nested subsets on it are used.

Dataset LUCAS 0 LUCAS 1 LUCAS 2 LUCAP 0 LUCAP 1 LUCAP 2

F-score 0.9208 0.8989 0.7446 0.9702 0.8327 0.7453
W 0.9208 0.8989 0.7654 0.9702 0.9130 0.9159

D-AUC 0.9208 0.8989 0.7654 0.9696 0.8648 0.8655
D-ACC 0.9208 0.8989 0.7446 0.9696 0.7755 0.6011

and MARTI, 16 seconds for CINA, and three minutes for SIDO. SIDO is more computational
costly to train and predict due to a larger number of features and training instances. For D-AUC
and D-ACC, it takes a few hours to get the feature rank.

We submitted totally 60 entries before the challenge ended. Among methods we have tried,
W has testing AUC in the first quartile for all data sets. This result seems to indicate that
it is better than others. We used cross-validation with AUC in order to get more definitive
conclusions.

Table 2 shows the five-fold cross validation AUC of using the best feature size. We conduct
cross validation on all feature size ∈ {1,2,4, . . . ,2i , . . . ,n}, where n is the total number of features.
W and D-AUC seem to perform better than other methods, while D-ACC is the worst.

We find that D-ACC differs most from others, while the other three methods are more simi-
lar. Especially, the top ranked features chosen by W and D-AUC are alike. For example, W and
D-AUC have exactly the same top four features for CINA, and the same set of top eight features
with slightly different rankings for REGED.

In Table 3, we compare different feature ranking methods according to the testing AUC of
the toy examples, LUCAS and LUCAP. We can see that W still outperforms others. It is much
better than other methods especially on manipulated testing data sets (see LUCAP 1 and LUCAP

2). Similar to the cross validation results, D-ACC is the worst.

4.2 Competition Results

Table 4 shows the results of our final submission. Fnum is the best number of features to
make prediction. It is determined by the organizers according to the nested-subset submissions.
Fscore indicates how good the ranking is according to the causal relationships known only to
the organizers. Tscore is the testing AUC. Top Ts is the maximal score of the last entry made
by all participants, and Max Ts is the best score reachable, estimated using causal relationship
knowledge not available to participants.

4. D-AUC and D-ACC are infeasible for SIDO due to the large number of features of SIDO.

52

FEATURE RANKING USING LINEAR SVM

Table 4: The results of our final submission in the Causality Challenge. We obtain feature
ranking using linear SVM weights. The column “Fnum” shows the best feature size to
make prediction and the total number of features.

Dataset Fnum Fscore Tscore Top Ts Max Ts Rank

REGED 0 16/999 0.8526 0.9998 1.0000 1.0000
REGED 1 16/999 0.8566 0.9556 0.9980 0.9980
REGED 2 8/999 0.9970 0.8392 0.8600 0.9543

mean 0.9316 1

SIDO 0 1,024/4,932 0.6516 0.9432 0.9443 0.9467
SIDO 1 4,096/4,932 0.5685 0.7523 0.7532 0.7893
SIDO 2 2,048/4,932 0.5685 0.6235 0.6684 0.7674

mean 0.7730 2

CINA 0 64/132 0.6000 0.9715 0.9788 0.9788
CINA 1 64/132 0.7053 0.8446 0.8977 0.8977
CINA 2 4/132 0.7053 0.8157 0.8157 0.8910

mean 0.8773 1

MARTI 0 256/1,024 0.8073 0.9914 0.9996 0.9996
MARTI 1 256/1,024 0.7279 0.9209 0.9470 0.9542
MARTI 2 2/1,024 0.9897 0.7606 0.7975 0.8273

mean 0.8910 3

We explain that on CINA 2, our method might benefit from good feature ranking. Our result
is the best among all submissions. The four features used might be the direct cause of the label.
As mentioned earlier, W and D-AUC identify exactly the same top four features. Similarly
for MARTI 2 and REGED 2, Fnum is small and W and D-AUC select the same set of features,
although the rankings are slightly different.

We also observe that the Fnums of the final submission are similar to the best feature size
given by the cross validation results on the training data. However, we benefit from the nested-
subset submission, since we do not select the best feature size. According to the rule, the best
feature size is selected according to the testing AUC, so the testing set information is used
indirectly.

Although the challenge is designed in a way that casual discovery is required to make good
predictions, our simple feature ranking method performs rather well. It is interesting that our
simple method outperforms some more complicated casual discovery methods.

However, the good performances do not indicate that the highly ranked features are im-
portant causes. Our methods rank the features according to their relevance, not their causal
importance, and, thus, they do not enhance our knowledge of the underlying causal relation-
ships between features.

Our linear SVM classifier has excellent performances on version 0 on all tasks. Our Tscore
is close to Top Ts. However, compared with the best performance by other participants, the
performance on version 1 is slightly worse, and the performance on version 2 is still worse than
that on version 1. As the ranking for each task is determined according to the average of the
performances on the three testing sets, we might take the advantage of good performances on
version 0, where the testing and training distributions are the same.

Figure 1 shows the profile of the selected features (i.e., top Fnum features). This figure is
provided by the organizers. The noise filtering method we used might not be good enough since

53

CHANG AND LIN

Figure 1: Profile of features selected (provided by the competition organizers). dcause: direct
cause, deffect: direct effects, ocauses: other causes, oeffects: other effects, spouses:
parent of a direct effect, orelatives: other relatives, unrelated: completely irrelevant.

for MARTI 0 and MARTI 1, the ratios of “direct causes” features are low compared with other
methods. Besides, our feature ranking method ranks both direct causes and direct effects in
the front of the list. They together make up most of the features on version 0. This result is
reasonable since our methods do not consider causal relationships and therefore not necessarily
rank true causes on the top. In Table 4, we have excellent performances on version 0 of all tasks.
On manipulated testing sets, the ratio of unrelated features become higher, and our performance
of these two versions are not as good as version 0. The only exception is CINA 2, where we did
not obtain any unrelated features.

4.3 Post-Challenge Experiments

After the challenge, the testing AUC values of our past submissions are available. We are able to
compare the results of all methods, including L2-loss linear SVM with different feature ranking
methods and a direct use of SVM without feature ranking. We also conduct post-challenge
experiments to compare the feature ranking methods using L1-loss SVM. Besides, in order to
see if nonlinear SVMs help to improve the performance, we apply the feature rankings obtained
from L2-loss linear SVM to nonlinear SVM with the RBF kernel.

Table 5 shows the testing AUC revealed after the challenge ended. LINEAR stands for
a direct use of L2-loss linear SVM. It is worth noticing that similar to Tables 2 and 3, W is
generally the best. This result is interesting as for testing AUC in Table 5, training and testing
sets are from different distributions. An exception where F-score has better testing AUC than
W is REGED. D-ACC is still the worst though the difference to other methods becomes much
smaller.

In order to understand the difference between using L1-loss and L2-loss functions, we ex-
periment with L1-loss linear SVM to rank features and classify data instances. The results are
in Table 6. In general, the testing AUC values do not differ much from those of L2-loss SVM in

54

FEATURE RANKING USING LINEAR SVM

Table 5: Comparison of different feature ranking methods using L2-loss linear SVM. It shows
testing AUC and the corresponding Fnum, revealed after the challenge has ended. We
did not run D-AUC and D-ACC on SIDO, so some slots in this table are blank.

Feature ranking methods SVM
Dataset F-score W D-AUC D-ACC LINEAR

REGED 0 0.9998 (64) 0.9998 (16) 0.9997 (16) 0.9987 (128) 0.9970
REGED 1 0.9555 (32) 0.9556 (16) 0.9528 (16) 0.9438 (999) 0.9438
REGED 2 0.8510 (8) 0.8392 (8) 0.8392 (8) 0.8113 (32) 0.7442

mean 0.9354 0.9316 0.9306 0.9179 0.8950

SIDO 0 0.9430 (4096) 0.9432 (1024) 0.9426
SIDO 1 0.7515 (4932) 0.7523 (4096) 0.7515
SIDO 2 0.6184 (4096) 0.6235 (2048) 0.6143

mean 0.7710 0.7730 0.7695

CINA 0 0.9706 (132) 0.9715 (64) 0.9712 (128) 0.9706 (132) 0.9706
CINA 1 0.8355 (128) 0.8446 (64) 0.8416 (128) 0.8348 (132) 0.8348
CINA 2 0.6108 (64) 0.8157 (4) 0.8157 (4) 0.8140 (8) 0.6095

mean 0.8057 0.8773 0.8761 0.8732 0.8050

MARTI 0 0.9899 (512) 0.9914 (256) 0.9860 (1024) 0.9903 (512) 0.9860
MARTI 1 0.8960 (1024) 0.9209 (256) 0.9134 (32) 0.8960 (1024) 0.8960
MARTI 2 0.7571 (4) 0.7606 (2) 0.7606 (2) 0.7282 (1024) 0.7282

mean 0.8810 0.8910 0.8867 0.8715 0.8701

Table 5. However, here we do not have a solid conclusion that W outperforms other methods.
Instead, most methods win on some data sets.

We applied the L1-loss SVM with RBF kernel on the list of features given by L2-loss linear
SVM in order to clarify the performance in the case if feature rankings are combined with
a nonlinear kernel. The results are shown in Table 7. Approach W still outperforms other
methods when using a nonlinear SVM classifier. For these challenge data sets, W seems to be
a good method regardless of the classifier used. Note that the Fnum values are not always the
same in Tables 5 and 7, even though the same feature rankings are applied.

We also tried to incorporate Recursive Feature Elimination (RFE) (Guyon et al., 2002). For
a given set of features, we use linear SVM weights to obtain the rankings, output ranks of those
in the second half, and continue the same procedure on the first half features. To be more
precise, subsets Sj of size |Sj | ∈ {n,2�logn�, . . . ,2i , . . . ,2,1} are generated, where n is the total
number of features and j = 0, . . . , �logn�. After we train on subset Sj , we use the linear SVM
weights to rank features in Sj and let Sj+1 include the first half features. The results are not very
different from that without RFE.

5. Discussion and Conclusions
In this challenge, we have experimented with several feature ranking methods. Among them,
feature ranking based on F-score is independent from classifiers, feature ranking based on linear
SVM weights require a linear SVM classifier, and the other two performance-based methods
can use any classifier.

55

CHANG AND LIN

Table 6: Comparison of different feature ranking methods using L1-loss linear SVM. It shows
testing AUC and the corresponding Fnum. We did not run D-AUC and D-ACC on
SIDO, so some slots in this table are blank.

Feature ranking methods SVM
Dataset F-score W D-AUC D-ACC LINEAR

REGED 0 0.9996 (32) 0.9997 (16) 0.9991 (16) 0.9981 (256) 0.9964
REGED 1 0.9528 (32) 0.9558 (64) 0.9392 (256) 0.9551 (64) 0.9348
REGED 2 0.8562 (8) 0.8419 (8) 0.8504 (8) 0.8777 (16) 0.7396

mean 0.9362 0.9325 0.9296 0.9436 0.8903

SIDO 0 0.9407 (4096) 0.9419 (512) 0.9397
SIDO 1 0.7588 (4932) 0.7590 (4096) 0.7588
SIDO 2 0.6687 (4932) 0.6701 (2048) 0.6687

mean 0.7894 0.7903 0.7891

CINA 0 0.9713 (132) 0.9713 (132) 0.9716 (128) 0.9713 (132) 0.9713
CINA 1 0.8373 (128) 0.8369 (132) 0.8425 (128) 0.8369 (132) 0.8369
CINA 2 0.6377 (128) 0.6377 (128) 0.8094 (4) 0.6347 (132) 0.6347

mean 0.8154 0.8153 0.8745 0.8143 0.8143

MARTI 0 0.9872 (512) 0.9896 (256) 0.9933 (512) 0.9916 (512) 0.9858
MARTI 1 0.8950 (1024) 0.9046 (512) 0.9168 (512) 0.9078 (512) 0.8950
MARTI 2 0.7694 (8) 0.7790 (4) 0.7710 (2) 0.7369 (8) 0.7299

mean 0.8839 0.8911 0.8937 0.8787 0.8703

We focus on simple methods, so in this competition we can conduct quite complete vali-
dation procedures to select good models. However, although we have excellent performance
on predictions, our methods do not provide information on the underlying causal relationships
between features. Without causal discovery, the performance of our methods on manipulated
data sets are not as good as that on unmanipulated data sets. Our methods might be improved
by using causality, and how it can be done will need more investigations.

Acknowledgments

This work was supported in part by grants from the National Science Council of Taiwan.

References
Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal

margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, pages 144–152. ACM Press, 1992.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Yi-Wei Chen and Chih-Jen Lin. Combining SVMs with various feature selection strategies. In
Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti Zadeh, editors, Feature extraction,
foundations and applications. Springer, 2006.

56

http://www.csie.ntu.edu.tw/~cjlin/libsvm

FEATURE RANKING USING LINEAR SVM

Table 7: Comparison of different feature ranking methods using L1-loss SVM with RBF kernel
as classifier. It shows testing AUC and the corresponding Fnum. We did not run D-
AUC and D-ACC on SIDO, so some slots in this table are blank.

Feature ranking methods SVM
Dataset F-score W D-AUC D-ACC RBF

REGED 0 0.9997 (64) 0.9995 (16) 0.9997 (16) 0.9989 (64) 0.9968
REGED 1 0.9709 (32) 0.9753 (32) 0.9748 (16) 0.9531 (128) 0.9419
REGED 2 0.8881 (8) 0.8676 (8) 0.8676 (8) 0.8189 (32) 0.7459

mean 0.9529 0.9475 0.9474 0.9236 0.8949

SIDO 0 0.9339 (4096) 0.9444 (4096) 0.9259
SIDO 1 0.7339 (4096) 0.7634 (4096) 0.7124
SIDO 2 0.5862 (4096) 0.6255 (4096) 0.5686

mean 0.7513 0.7778 0.7357

CINA 0 0.9732 (64) 0.9754 (32) 0.9716 (32) 0.9718 (128) 0.9683
CINA 1 0.8387 (64) 0.8646 (32) 0.8306 (4) 0.8383 (128) 0.8249
CINA 2 0.6855 (64) 0.8358 (4) 0.8358 (4) 0.8164 (8) 0.6739

mean 0.8325 0.8919 0.8793 0.8755 0.8224

MARTI 0 0.9883 (512) 0.9916 (256) 0.9848 (1024) 0.9896 (512) 0.9848
MARTI 1 0.8877 (1024) 0.9181 (256) 0.9057 (32) 0.8877 (1024) 0.8877
MARTI 2 0.7659 (8) 0.7616 (16) 0.7609 (2) 0.7308 (1024) 0.7308

mean 0.8806 0.8904 0.8838 0.8694 0.8678

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIB-
LINEAR: A library for large linear classification. Journal of Machine Learning Research,
9:1871–1874, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/
liblinear.pdf.

Isabelle Guyon, Constantin Aliferis, Greg Cooper, André Elisseeff, Jean-Philippe Pellet, Pe-
ter Spirtes, and Alexander Statnikov. Design and analysis of the causation and prediction
challenge. JMLR: Workshop and Conference Proceedings, 2008.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning, 46:389–422, 2002.

57

http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

CHANG AND LIN

58

JMLR Workshop and Conference Proceedings 3:65–76 WCCI2008 workshop on causality

Random Sets Approach and its Applications
Vladimir Nikulin V.NIKULIN@UQ.EDU.AU

Suncorp, Actuary Department
Brisbane, QLD, Australia

Editor: I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov

Abstract
The random sets approach is heuristic in nature and has been inspired by the growing speed
of computations. For example, we can consider a large number of classifiers where any single
classifier is based on a relatively small subset of randomly selected features or random sets of
features. Using cross-validation we can rank all random sets according to the selected crite-
rion, and use this ranking for further feature selection. Another application of random sets was
motivated by the huge imbalanced data, which represent significant problem because the corre-
sponding classifier has a tendency to ignore patterns with smaller representation in the training
set. Again, we propose to consider a large number of balanced training subsets where represen-
tatives from both patterns are selected randomly. The above models demonstrated competitive
results in two data mining competitions.

Keywords: causal relations, random forest, boosting, SVM, CLOP, cross validation

1. Introduction
It is a well known fact that for various reasons it may not be possible to theoretically analyze
a particular algorithm or to compute its performance in contrast to another. The results of the
proper experimental evaluation are very important as these may provide the evidence that a
method outperforms alternative approaches.

Feature selection (FS) represents a very essential component of data mining, as it will help
to reduce overfitting and make prediction more accurate (see, for example, Nikulin (2006)).
According to (Guyon et al., 2007) causal discovery may be regarded as a next step with the
aim of uncovering causal relations between features and target variable. In many cases it is
theoretically impossible to solve full graphical structure of all relations between features and
target variable but it may be possible to uncover and approximate some essential relations. This
knowledge will help to understand data better and will give some hints which methods will be
more efficient.

A graphical model is a family of probability distributions defined in terms of a directed or
undirected graph (Jordan, 2004). The nodes in the graph are identified with random variables,
and joint probability distributions are defined by taking products over functions defined on
connected subsets of nodes. By exploiting the graph-theoretic representation, the formalism
provides general algorithms for computing conditional probabilities of interest.

In line with Bayesian Networks graphical semantics (Tsamardinos et al., 2004) every edge
from a feature x1 to a feature x2, x1 → x2, means that x1 probabilistically and directly causes

©2008 Vladimir Nikulin

NIKULIN

x2, see Figure 1. Bayesian Networks represent the joint probability distribution. For the given
target variable y, the set of parents, children and spouses (i.e. parents of common children)
is called the Markov Blanket (MB) of y. Markov Blanket as a set of features is sufficient in
relation to y. Any other features becomes superfluous. Ideally, we would be interested to find
MB and investigate its structure (see Section 2.1 for more details).

Usually, any dataset may be viewed as a matrix with two dimensions: 1) data entries and
2) features. In the Section 3.3 we consider application of the random sets (RS) approach to
data-entries.

2. Methods
Let X = (xt ,yt) , t = 1..n, be a training sample of observations where xt ∈ R� is � -dimensional
vector of features, and yt is binary label: yt ∈ {−1,1}. Boldface letters denote vector, whose
components are labeled using a normal typeface.

In practical situation the label yt may be hidden, and the task is to estimate it using vector
of features. Area under receiver operating curve (AUC) will be used as an evaluation and
optimisation criterion.

Figure 1: Illustrative Example.

According to Holland (1986) we shall assume that there are two causes of treatment, denoted
by e (the experiment) and c (the control, which may be automatic or natural).

Fundamental problem of causal inference: it is impossible to observe the values of yt(e) and
yt(c) on the same unit (that meant at the same time and for the same client) and, therefore, it is
impossible to observe the effect of e on y.

For example, price of premium in insurance industry represents one of the most impor-
tant features. Based on this price and available alternatives the customer will make a decision
whether or not to renew an insurance contract. Suppose that the customer decided to accept
renewal. In this case the Company would be interested to know decision if the price will be
slightly higher. In an alternative case, if the customer decided to decline the proposed contract,
the Company would be interested to know decision if the price will be slightly lower.

Classical randomized designs (Rubin, 1978) stand out as especially appealing assignment
mechanisms designed to make inference for causal effects.

Let us consider another example where e represents a novel year-long study of arithmetics,
c represents a standard arithmetic program, and target variable y is a score on a test at the end
of the year. Obviously, for any particular student we can observe yt(e) or yt(c) but not both.
Respectively, it appears to be natural to split randomly available field of students into several
groups where we can apply either e or c. Absolutely similarly we can formulate example with
medical applications.

60

RANDOM SETS APPROACH AND ITS APPLICATIONS

During the Causal Discovery competition participants were able to take into account some
specific information and assumptions. By the given definitions1, there are two types of data:
purely artificial and semi-artificial. In the latter case, there are two types of features: 1) real
features and 2) probes where the last ones were artificially created variables as a functions of
real features and other probes. Probes may be manipulated in order to highlight the importance
of the proper feature selection. The real features and the target variable are never manipulated.
As a result, in semi-artificial systems, only non-causes of the target may be manipulated.

Definition 1 Manipulations are actions or experiments performed by an external agent on a
system, whose effect disrupts the natural functioning of the system.

Consider the example of Figure 1 where x5 is a target variable, which graphically represents
a presumed semi-artificial system. Features x1− x4 (to the left side from x5) cannot be manipu-
lated as they cause (directly or indirectly) x5. On the other hand, all features x6− x9 (to the right
side from x5) may be manipulated because they may be viewed as consequences of the target
variable. Let us consider two particular examples. Firstly, suppose that x7 is a probe. Then,
x6, x8 and x9 must have the same status of probes. Secondly, suppose that x6 is a probe. In this
case, x7− x9 may be probes or real features.

In the example of the Figure 1 MB consists of 6 members: 1) parents (x2 and x4); 2) children
(x6 and x8); 3) spouses (x7 and x9). We know that direct causal features (parents) cannot be
manipulated. Respectively, it will be the most disappointing to loose these features as a result
of the filtering process.

The main assumption: we assume that direct causal features (parents) have stronger influ-
ence on the target variable and, therefore, are more likely to be selected by the Algorithms 1
and 2.

Algorithm 1: Basic Iterative Feature Selection (BIFS)
1: Input: training sample X including set of all features S.
2: Select loss function (or evaluation criterion) D, algorithm g for the prediction and

forward threshold parameter ∆F .
3: Set Z = ∅.
4: Select feature f ∈ S, which optimizes criterion D applied to the prediction g(f ∪Z).
5: Transfer feature f from S to Z in the case if improvement is sufficient (not smaller

than ∆F).
6: Stop the algorithm if there are no sufficient improvement, or no features left in S.

Alternatively, goto step 4.

Remark 2 Essentially, BIFS-process is not uniform: initially, overfitting is limited because size
of the set Z is small, and we can apply very simple algorithm (like linear regression). Then, the
size of Z will grow and we will be able to use more advanced technique (for example, SVM).
But, overfitting will grow at the same time and application of the cross validation (CV) may
become unavoidable.

Remark 3 Note that we can add additional step (after step 5, Algorithm 1) with trimming (see
Algorithm 3) or with test for independence within subset Z , see definition of HITON (Aliferis
et al., 2003). On the one hand, this test will require additional computational time, but, on the

1. http://www.causality.inf.ethz.ch/challenge.php

61

NIKULIN

Figure 2: Illustration for RS-Algorithm 2 in the case of MARTI-set (see for more details Sec-
tion 3). First, we evaluated 10000 random sets using AUC, (a) illustrates results sorted
in an increasing order; (b) illustrates number of the occurrences for 999 features in the
block B of 10% top performing random sets; (c) illustrates results of the secondary
CV where features were selected according to the numbers of occurrences in the block
B, stars correspond training results, circles correspond test results.

Algorithm 2: Random Sets (RS)
1: Evaluate long sequence of random subsets of features using CV.
2: Sort results in an increasing order (see Figure 2(a)).
3: Select block B of the best (or worst in the case of deductive strategy, see Remark 5)

performing sets of features.
4: Compute for any feature number of occurrences in the block B (see Figure 2(b)).
5: Select range of occurrences for detailed investigation, which may be conducted using

secondary CV (see Figure 2(c)).

other hand, it may be viewed as barrier to prevent growth of Z. As a consequence, the whole
procedure may quickly reach state of equilibrium (subject to the proper selection of forward
and backward threshold parameters). Respectively, it will be stopped.

Remark 4 Note that we can facilitate Algorithm 1 using projections method as it is described
in (Stoppiglia et al., 2003).

Remark 5 By definition, random set τ represents a relatively small subset of features. In the
case if classifier requires bigger than 50% of all features it will be better to apply deductive
strategy. That means, we will form a new subset of features γ = S \ τ, which will be used in the

62

RANDOM SETS APPROACH AND ITS APPLICATIONS

Step 1 of the algorithm 2. Accordingly, we can classify subset τ as the worst if subset γ was
classified as the best.

The functioning of the proposed Algorithm 2 is uniform, in difference to the Algorithm 1.
As a consequence, we can apply any base algorithm, which appears to be appropriate for the
given data (see for more details Figure 2 and Section 3).

Algorithm 3: Trimming
1: Input: training sample X including set of all features S.
2: Select loss function (or evaluation criterion) D, algorithm g for the prediction, block

of features Z ⊂ S and backward threshold parameter ∆B.
3: Compute α = D(g(Z)) - initial optimal value of the target function.
4: Select feature f ∈ Z, which optimises criterion D applied to the prediction g(Z \ f).
5: Compute β = D(g(Z \ f)) - new optimal value of the target function;
6: Z := Z \ f if |α−β| < ∆B, α = β, and goto Step 4 if Z �= ∅;
7: stop the algorithm if Z = ∅ or |α−β| ≥ ∆B.

Algorithm 3 may be used independently or in conjunction with Algorithms 1 or 2. The
role of threshold parameters ∆F and ∆B is important and similar to the role of regularisation.
Essentially, the online combination of the Algorithms 1 and 3 represents a modification of the
Iterative Associative Markov Blanket (IAMB) algorithm (Aliferis et al., 2002).

2.1 Bayesian framework for the Markov blanket construction

Binary data-sets represent an ideal case for the illustration of the concepts of the Bayesian ap-
proach. Suppose that events x6 = 1 and y = 1 represent coughing and lung cancer (see Figure 1).
Using available data we can calculate two empirical probabilities:

1)P(y = 1, x6 = 1|y = 1); 2)P(y = 1, x6 = 1|x6 = 1).

We can expect that the first probability will be significant in difference to the second probability.
As a next step, we can check stability of the values using standard bootstrapping technique.
Based on the results of our analysis, we can make conclusion that there is a relation between y
and x6 where y is a parent (lung cancer) and x6 is a child (coughing). However, there may be
some complications. For example, x6 may be a child of a child. The target of the Algorithm 3
is to detect and to resolve such problems. Similarly, we can investigate relations of the target
variable with all other features. As an outcome we will obtain subset of features which have
direct relations with target variable either as children or as parents where the last ones are the
most important. Finally, we can detect field of spouses considering any particular child as a
target variable.

Similarly, we can consider any discreet features. Note that consideration of continuous
(numerical) features may be much more difficult. In this case we can apply transformation with
several splitters for any particular feature. It works similarly to the method of classification
trees.

3. Experiments
The list of 6 datasets which were used during WCCI-2008 Causal Discovery competition is
given in the Table 1.

63

NIKULIN

Table 1: List of datasets including sizes and main methods plus software which were used dur-
ing the competition.

Data # Train (positive) # Test � Method Software

LUCAS 2000 (1443) 10000 11 neural+gentleboost MATLAB-CLOP
LUCAP 2000 (1443) 10000 143 neural+gentleboost MATLAB-CLOP
REGED 500 (59) 20000 999 SVM-RBF C

SIDO 12678 (452) 10000 4932 binaryRF C
CINA 16033 (3939) 10000 132 adaBoost R

MARTI 500 (59) 20000 1024 svc+standardize MATLAB-CLOP

The case of MARTI-set appears to be the most complicated because of the 25 given cali-
brants: the training set was perturbed by a zero-mean correlated noise model. As far as the test
sets have no added noise, we used linear regression model in order to filter noise from the train-
ing set. Then, we considered sequence of 10000 sets with 40 randomly selected features (with-
out repeats). Based on some preliminary experiments, we applied svc function from MATLAB-
CLOP (deductive strategy: means, we used all features without features from random set, see
Remark 5) for the evaluation. We sorted all sets in an increasing order (see Figure 2(a)) accord-
ing to the meanTestAUC (used CV with 20 folds), and computed number of occurrences for
any particular feature according to the block B of the worst 10% sets (see Figure 2(b)). Based
on the visual consideration, we conducted detailed examination of the subinterval [17..48]. In
this experiment features were selected according to the condition: nj ≥ a,a ∈ [17..48] where nj
is number of repeats in the block B for the feature j.

Table 2: Results of the final submissions in terms of AUC (first 4 lines). LUCAS and LUCAP
were used for validation and learning only.

Data Submission CASE0 CASE1 CASE2 Mean Rank

REGED vn14 0.9989 0.9522 0.7772 0.9094 4
SIDO vn14 0.9429 0.7192 0.6143 0.7588 6
CINA vn14a 0.9764 0.8617 0.7132 0.8504 2

MARTI vn14 0.9889 0.8953 0.7364 0.8736 4
LUCAS vn1 0.9209 0.9097 0.7958 0.8755 validation
LUCAP vn10b+vn1 0.9755 0.9167 0.9212 0.9378 validation
CINA vn1 0.9765 0.8564 0.7253 0.8528 all features
CINA vn11 0.9778 0.8637 0.718 0.8532 CE

Figure 2(c) illustrates the final CV experiment where blue-stars correspond to the training
and black-circle to the test results. Some marginal numerical values: 17) 994, 0.9019; 31) 410,
0.9597; 48) 8, 0.8641 where first and second numbers indicate number of the selected features
and meanTestAUC. We can see some decline after point a= 31 (as a consequence of overfitting).
Accordingly, the cases of a ∈ [30..32] may be suitable for the submission in the normal situation
when training and test samples have the same probability distribution.

It is interesting to note that in the initial submission “vn1” for CINA-set we used all 132
features. The best CINA-result was obtained using committee of experts (CE) method (“vn11”)
applied to the following 7 submissions: “vn1” and “vn10-vn10e”.

Random Forest (Breiman, 2001) model proved to be the most suitable in the case of SIDO-
set. We used RF model with 1000 trees where 70 randomly selected features were used for any

64

RANDOM SETS APPROACH AND ITS APPLICATIONS

splitter. Then, we computed number of occurrences in the RF-object for any particular feature.
These occurrences were used for further feature selection. For example, we used in the final
submission 1030 features for SIDO0, 517 features for SIDO1 and only 203 features for SIDO2.

Table 3: Some additional results.

Data Submission # features Fscore TrainAUC TestAUC
REGED1 vn14 400 0.7316 1 0.9522
REGED1 vn11d 150 0.8223 1 0.9487
REGED1 vn1 999 0.5 1 0.9445
REGED1 vn8 899 0.5145 1 0.9436
MARTI1 vn12c 500 0.5784 1 0.8977
MARTI1 vn14 400 0.5554 1 0.8953
MARTI1 vn3 999 0.5124 1 0.8872
MARTI1 vn7 899 0.4895 1 0.8722
SIDO0 vn9 203 0.5218 0.9684 0.946
SIDO0 vn9a 326 0.536 0.9727 0.9459
SIDO0 vn1 1030 0.5785 0.9811 0.943
SIDO0 vn14 527 0.5502 0.9779 0.9429

Lists of 100 manipulated features were given in the cases of REGED1 and MARTI1, but,
according to our experience, this information was not really helpful, see Table 3 where submis-
sions “vn1” (REGED) and “vn3” (MARTI) represent cases with all features. After removal of
the manipulated features, test-results were slightly worse: see submissions “vn8” (REGED) and
“vn7” (MARTI). Also, we have noticed surprising fact that value of Fscore for “vn7” is smaller
comparing with Fscore for “vn3” (MARTI). Respectively, FS was conducted in the space of
all features for the final submission “vn14”. In both cases of REGED and MARTI we used
400 features including 33 manipulated features for REGED and 42 manipulated features for
MARTI. It appears that in case of SIDO0 Fscore reflects rather relations with TrainAUC but not
with TestAUC, see submissions “vn9” and “vn1”.

Remark 6 As a feedback the participants were able to view colour of their submission. For
example, all TestAUC for SIDO0 in the Table 3 were green (means top 25% of all current
results). Generally, this feedback appears to be too rough, and, definitely, cannot be accepted
as a sufficient in the case when distributions of the training and test datasets are different.

During competition we made the following number of full submissions (given in brackets):
CINA(8), REGED(12), MARTI(32) and SIDO(6) plus some partial submissions. We did not
use an opportunity of nested submissions (that means picking up the best out of the table of
results) during the competition, and have found afterwards that this option may give significant
advantage (see Table 4). Note that the methods which we used did not orient edges and cannot
discover Market blanket as an expected outcome. Also, we did not use HITON-algorithm or
similar as a component of our methods.

Figure 3 was downloaded from the web-site of the competition. Similar histograms of
Jianxin Yin and Prof. Zhi Geng’s Group (who won best overall contribution award) demonstrate
much larger proportions of dcauses and ocauses. However, Jianxin Yin and his team did not
produce significant improvement in terms of average AUC.

We have found that our results against unmanipulated datasets are quite competitive (see
column “CASE0” in the Table 2). In particular, CINA0-result is the best.

65

NIKULIN

Figure 3: Histograms of selected features (evaluated by the competition organizers) where
dcause: direct cause, deffect: direct effects, ocauses: other causes, oeffects: other
effects, spouses: parent of a direct effect, orelatives: other relatives, unrelated: com-
pletely irrelevant.

3.1 Post-challenge submissions

Using an opportunity of post-challenge submissions we were able to improve all results against
manipulated sets significantly. It is interesting to note that very competitive results for REGED
and MARTI-sets (see Table 4) were produced using the most simplest linear regression. Regu-
larization was not necessary here because of the ultimate reduction of the number of features.
The property when TrainAUC is smaller comparing with TestAUC (MARTI-set) may be viewed
as a very interesting side effect of manipulation. Also, we were trying to use AdaBoost algo-
rithm against data with the same feature selection as in the Table 4 but results were very poor.

Based on our experience, feature selection was the most important in order to achieve all
results of the Table 4. Also, we have found that the Algorithm 1 is particularly efficient if we
have prior information that the number of required features should be very small, and, conse-
quently, classification algorithm may be very simple. It appears that design of the SIDO1 and
SIDO2-sets was essentially different. Respectively, the number of features in the best submis-
sion was a quite significant, and the numbers of previous submissions were three times greater
comparing with other sets.

66

RANDOM SETS APPROACH AND ITS APPLICATIONS

Table 4: Results of the post-challenge submissions against manipulated sets where the follow-
ing abbreviations were used: 1) NoF – number of used features; 2) NoS – number
of previous submissions; 3) LR – linear regression with squared loss function; 4)
RF – random forest; 5) Exp. – optimisation with exponential loss function (1); 6)
BestChAUC – best challenge AUC.

Data Method NoF Fscore TrainAUC TestAUC NoS BestChAUC

REGED1 LR 8 0.7133 0.9855 0.9861 9 0.9787
REGED2 LR 5 0.9985 0.9571 0.9467 8 0.8392
REGED1 Exp. 8 0.7133 0.9885 0.9867 10 0.9787
REGED2 Exp. 5 0.9985 0.9605 0.9513 9 0.8392
SIDO1 RF 128 0.5348 0.8681 0.7512 28 0.7532
SIDO2 RF 128 0.5348 0.8681 0.7359 28 0.6684
CINA1 AdaBoost 4 0.5455 0.8758 0.8694 5 0.8691
CINA2 AdaBoost 4 0.5455 0.8758 0.872 5 0.8157

MARTI1 LR 4 0.6429 0.8433 0.9407 8 0.947
MARTI2 LR 3 0.9995 0.7542 0.8049 9 0.7975
MARTI1 Exp. 4 0.6429 0.845 0.9469 9 0.947
MARTI2 Exp. 3 0.9995 0.7613 0.8296 10 0.7975

3.2 An exponential loss function

The following exponential loss function

exp {−ρ · yt ·ut}, ut =
��

j=1

wj · xt j , ρ > 0, (1)

appears to be more natural comparing with squared loss function which over-punish large val-
ues of the decision function. However, application of the loss function (1) may not be simple
because we cannot optimize step size in the case of the gradient-based optimization. Respec-
tively, we will need to maintain low level of the step size in order to ensure stability of the
algorithm. As a result, convergence of the algorithm may be very slow. In the cases of REGED
or MARTI training sets with 3-8 features (see Table 4) we don’t need to be worried about time
problem: 100000 iterations until full convergence were conducted within 3min.

3.3 UCF-2008 data-mining competition

This recent competition was organized by the department of statistics and actuarial science of
the University of Central Florida2.

The available data are strongly imbalanced: 858620 (where 9737 positive and 848883 neg-
ative) units for training (labeled) and 95960 for testing (unlabeled). Any data-entry includes
label, id and 61 features which are not necessarily numerical. Using special Perl software we
transformed data into sparse format with 530 binary features. Then, we split the labeled data
into 2 parts for training (90%) and testing (10%), and applied k = 1000 balanced training subsets
where representatives from the larger pattern were selected randomly. As an outcome, the sys-
tem produced matrix of linear regression coefficients M where rows represent random subsets
and columns represent features. Based on this matrix we made an assessment of how stable is

2. http://dms.stat.ucf.edu/competition08/home.htm

67

NIKULIN

influence of the particular features. It is proposed to keep in the model only features with stable
influence (the ratio of the mean to StDev must be bigger or equal comparing with selected value
of threshold parameter ∆ = 0.5). As a consequence, number of binary features was reduced to
320.

Our entry produced AUC = 0.6645 - third best result.

3.3.1 UNCERTAINTY ESTIMATION

Using above matrix of regression coefficients M we can estimate uncertainty associated with any
particular data entry. First, we compute k predictions where k is number of random sets. Then,
we can measure the corresponding standard deviation or empirical probabilities of deviation
from the sample mean for any given margin.

3.4 Computation Time and Used Hardware

A Dell desktop with 3GB RAM, 2.4GHZ INTEL CORE 2 DUO, was used for the most of com-
putations. For example, experiment with 10000 random sets as it is described in the Section 3
took about 17 hours according to the special program written in C. We spent about 2 hours in
order to generate random forest for SIDO-set with 1000 trees where each tree had up to 8 levels
of depth.

4. Concluding Remarks
Computational statistics is a relatively new scientific area, which may be viewed as one of the
most promising areas of contemporary science. High technologies are generating large data
sets and new problems, which must be addressed. Data mining competitions represent a rapidly
growing and very important part of computational statistics. Practically any large commercial
company in the world has data mining department, which is responsible for data analysis and
modeling. Additionally, companies are hiring consultants in order to produce an alternative
solutions and check effectiveness of their own results. These activities may be quite expensive,
but unavoidable.

Generally, practical experience is the best way to learn, and participation in data mining
competitions may be useful for wide range of researchers including academics, consultants and
students in particular.

We understand that Causal Discovery competition was motivated by some interesting the-
oretical papers. However, in practical applications we are dealing not with pure probability
distributions, but with mixtures of distributions, which reflect changing in time trends and
patterns. Accordingly, it appears to be more natural to form training set as an unlabeled
mixture of subsets derived from different (manipulated) distributions, for example, REGED1,
REGED2,. . . ,REGED9. As a distribution for the test set we can select any “pure” distribution.

Another point, “blind learning” (case when training and test data-sets have different dis-
tributions) appears to be interesting as a form of gambling. But in most practical applications
proper organized validation is the most important. Respectively, it will be good to apply tradi-
tional strategy: split randomly available test-set into 2 parts 50/50 where one part will be used
for validation, second part for the testing.

We considered in this paper several methods which may be used independently or in con-
junction. We cannot expect that any of the methods may demonstrate an absolute superiority
against the others. Therefore, performance of the particular method depends on the dataset, and
the main strength of our approach rests on flexibility.

68

RANDOM SETS APPROACH AND ITS APPLICATIONS

Acknowledgments

I would like to thank actuarial department of Suncorp for the valuable support. The paper
was improved thanks to the comments and suggestions of the reviewers and organizers of the
WCCI-2008 Causal Discovery competition.

References
C. Aliferis, I. Tsamardinos, and A. Statnikov. Large-scale feature selection using markov blanket induction

for the prediction of protein-drug binding. In Technical Report DSL 02-06, 2002.

C. Aliferis, I. Tsamardinos, and A. Statnikov. HITON: a novel Markov blanket algorithm for optimal
feature selection. pages 21–25. AMIA 2003, 2003.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

I. Guyon, C. Aliferis, and A. Elisseeff. Causal feature selection. In H. Liu and H. Motoda, editors,
Computational Methods of Feature Selection. Chapman and Hall, 2007.

P. Holland. Statistics and causal inference. Journal of the American Statistical Association, 81(396):
945–960, 1986.

M. Jordan. Graphical model. Statistical Science, 19(1):140–155, 2004.

V. Nikulin. Learning with mean-variance filtering, SVM and gradient-based optimization. In International
Joint Conference on Neural Networks, Vancouver, BC, Canada, July 16-21, pages 4195–4202. IEEE,
2006.

D. Rubin. Bayesian inference for causal effects: the role of randomisation. The Annals of Statistics, 6(1):
34–58, 1978.

H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar. Ranking a random feature for variable and feature
selection. Journal of Machine Learning Research, 3:1399–1414, 2003.

I. Tsamardinos, C. Aliferis, and A. Statnikov. Time and sample efficient discovery of Markov blankets
and direct causal relations. In Technical Report DSL 03-06, 2004.

69

NIKULIN

70

JMLR Workshop and Conference Proceedings 3:77–91 WCCI2008 workshop on causality

Bernoulli Mixture Models for Markov Blanket Filtering and
Classification

Mehreen Saeed MEHREEN.SAEED@NU.EDU.PK

Department of Computer Science
National University of Computer and Emerging Sciences
Lahore Campus, Pakistan

Editor: I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov

Abstract
This paper presents the use of Bernoulli mixture models for Markov blanket filtering and clas-
sification of binary data. Bernoulli mixture models can be seen as a tool for partitioning an
n-dimensional hypercube, identifying regions of high data density on the corners of the hy-
percube. Once Bernoulli mixture models are computed from a training dataset we use them
for determining the Markov blanket of the target variable. An algorithm for Markov blanket
filtering was proposed by Koller and Sahami (1996), which is a greedy search method for fea-
ture subset selection and it outputs an approximation to the optimal feature selection criterion.
However, they use the entire training instances for computing the conditioning sets and have to
limit the size of these sets for computational efficiency and avoiding data fragmentation. We
have adapted their algorithm to use Bernoulli mixture models instead, hence, overcoming the
short comings of their algorithm and increasing the efficiency of this algorithm considerably.
Once a feature subset is identified we perform classification using these mixture models. We
have applied this algorithm to the causality challenge datasets. Our prediction scores were
ranked fourth on SIDO and our feature scores were ranked the best for test sets 1 and 2 of the
same dataset.

Keywords: Markov blanket filtering, mixture models, feature selection

1. Introduction
The term Markov blanket was coined by Pearl (1988). The Markov blanket (MB) of a feature
variable represents the set of features/attributes required to exactly predict the behavior of that
variable. In a Bayesian network the Markov blanket consists of parents, children and spouses
of the node representing that feature variable. The work described in this paper concentrates on
identifying the MB of the target variable. Practically, it is not possible to identify the MB of
the target variable exactly because of computational issues or lack of sufficient data. Koller and
Sahami (1996) presented a feature selection algorithm called Markov Blanket filtering (MBF)
which outputs an approximation to the MB of the target variable. Their algorithm can also
output a sorted feature list according to the relevance of a feature with respect to the target
variable. To run this algorithm we have to assume K which is the size of the conditioning sets.
However, large K values are not possible due to computational issues.

©2008 Mehreen Saeed

SAEED

In order to find the Markov blanket of target variable, we adapted the algorithm of Koller
and Sahami to use Bernoulli mixtures so that large K values can be used. The use of Bernoulli
mixture models for classification is not new. The basic formula for a Bernoulli mixture model
was first proposed by Duda and Hart (1973). They have been successfully used for OCR tasks
by Juan and Vidal (2004) and Grim et al. (2000) and in supervised text classification tasks
(Juan and Vidal, 2002). Bernoulli mixtures have also been used for supervised dimensionality
reduction tasks (Sajama and Orlitsky, 2005).

Recently, we used Bernoulli mixtures for dimensionality reduction and showed how this
transformed data can be used as input to a classifier giving rise to a hybrid model of learning
(Saeed, 2008; Saeed and Babri, 2008). We used Bernoulli mixtures for mapping raw input
data onto a new probability space. Such a transformation results in an immense reduction in
the dimensionality of original data. It also achieves better classification results than individual
models. The algorithm, described in this paper, calculates the entropy values from Bernoulli
mixtures instead of calculating them from the actual training data. We employed this technique
to the causality challenge datasets (WCCI, 2008a), i.e., SIDO and CINA datasets. Our results
were amongst the top ranked entries in the competition.

The outline of this paper is as follows: In Section 2, Koller and Sahami’s MBF algorithm
is presented. In Section 3, Bernoulli mixtures are briefly introduced and the Bernoulli mixtures
based MBF algorithm is described. The simulation results on the causality challenge datasets
are presented in Section 4 and finally the conclusions are given in Section 5.

2. Markov Blanket Filtering (MBF) By Koller and Sahami (1996)
Koller and Sahami (1996) presented an algorithm for Markov blanket filtering (MBF) which is
a greedy search algorithm, for identifying the MB of the target variable, based upon an optimal
feature selection criterion. We will briefly describe their algorithm in this section. Let F =
{F1,F2, . . . ,Fn} be a set of features and f = (f1, f2, . . . , fn) be a corresponding assignment of
values. Let G be a subset of the feature set F and fG be a projection of f onto the variables in
G. The MBF algorithm minimizes the divergence between P(C|F = f) and P(C|G = fG) using
an expected conditional entropy measure given by:

δG =
�

f
P(f)DKL

�
P(C|f) � P(C|fG)

�

where C is the class label and DKL is the Kullback-Leibler (KL) divergence between the true
distribution P(C|F = f) and its estimated distribution P(C|G = fG). This divergence is given
by DKL(p � q) =

�
x∈Ω p(x) log

p(x)

q(x)
. The probability space Ω is the set of all possible target

labels. If we can find a feature set G for which δG is very small then G can be used as an
approximation to the full feature set F for predicting the target class.

Theoretically, Koller and Sahami have shown that a feature Fi can be omitted from a possi-
ble feature set G by finding the Markov Blanket, M, for Fi . If the MB for Fi can be identified
then Fi can be safely removed from G without an increase in the divergence from the true dis-
tribution. Practically, it is not possible to pinpoint exactly the MB of Fi , hence, heuristics have
to be applied. The algorithm selects a candidate set Mi for each feature Fi and estimates how
close Mi is to being the MB of Fi . The candidate set Mi is composed of those features which
have the highest correlation with Fi . The feature Fi for which Mi is closest to being the MB is
omitted. The approximation is based upon the following expected cross entropy measure:

δG(Fi |Mi) =
�

fMi , fi

P(Mi = fMi ,Fi = fi)DKL
�
P(C|M = fM,Fi = fi) � P(C|M = fM)

�

72

MARKOV BLANKET FILTERING USING BERNOULLI MIXTURES

If Mi is the MB for Fi then δG(Fi |Mi) = 0 and this value will be small for an approximate MB.
Algorithm 1 outlines the basic steps for selecting an approximate feature set for predicting the
target variable. In this algorithm K determines the size of the conditioning set. We would like
K to be as large as possible, however, practically larger values of K lead to fragmentation of the
dataset and reduce the accuracy of the probability estimates used in estimating the cross entropy
measure. Also, large values of K are not practical to implement as they require the counting of
2

(K+1) combination of values to calculate the cross entropy measure. This algorithm can also
be used to order variables, according to priority or relevance to target variable, based upon the
cross entropy measure.

1. Let G = F
2. Repeat until desired number of features in G

a. For each feature Fi ∈ G, let Mi be the set of K features Fl ∈ G − {Fi} which have the highest
correlation with Fi .

b. Compute δG(Fi |Mi) for each i.
c. Choose the i for which this term is minimal and define G =G− {Fi}

Algorithm 1: MBF Algorithm by Koller and Sahami (1996)

3. Multivariate Bernoulli Mixtures
Suppose we have a sample of training data, X = {x1,x2, . . . ,xm}, consisting of m input vec-
tors. Each input vector x ∈ Rn. If we want to estimate D mixture components from this
data, then a finite mixture model is described by a probability (density) function given by
p(x) =

�D
d=1
πd p(x|d). Here, πd is the prior of each mixture and p(x|d) is its component-

conditional probability (density) function.
A multivariate Bernoulli mixture model assumes that each component of the model is an n-

dimensional multivariate Bernoulli probability distribution, each component or mixture having
its own set of parameters. For a single binary vector xk ∈ {0,1}n, the form of this distribution, in
the dth mixture is given by (Bishop, 2006):

p(xk |d) =

n�

i=1

(pdi)
xki (1− pdi)

1−xki ∀k,1 ≤ k ≤ m,∀d,1 ≤ d ≤ D

Here pdi ∈ [0,1] is the probability of success of the ith component of vector xk for the dth

mixture, i.e., pdi = p(xki = 1|d). Also, we are assuming that the n-dimensional vector x has
n independent component attributes. The parameter θ to be determined is the probability of
success for each attribute of vector x, i.e., θ = p where p ∈ [0,1]

n.
We can use expectation maximization (EM) algorithm to find the parameters of each mixture

component as described in Appendix A. Also, Appendix B explains the use of these mixtures
for dimensionality reduction and classification. For details we refer the reader to our recent
work in this area (Saeed, 2008; Saeed and Babri, 2008).

3.1 Adaptation of MBF algorithm Using Bernoulli Mixture Models

We found that the main problem with the MBF algorithm is in computing the expected cross
entropy from training data. It is not possible to compute this measure using large values of
K because of computational issues and problems with data fragmentation. However, we can

73

SAEED

compute an approximation to this measure via the use of Bernoulli mixture models. Bernoulli
mixtures identify regions of high data density on the corners of a hypercube and we can exploit
this fact to estimate the cross entropy measure for large K values.

Let’s look at one Bernoulli mixture more closely. The parameters of the dth Bernoulli
mixture are completely specified by the probability vector pd and its prior πd . Here, the ith
component of pd , i.e., pdi represents the probability that the ith binary feature is one in the
dth Bernoulli mixture. We can threshold these probability values to see which corner of the
hypercube is represented by this mixture. A probability value greater than 0.5 can be taken as a
one and zero otherwise.

As an example lets take a 3 feature case. The mixture (0.7,0.9,0.1) with prior πd represents
the corresponding feature vector (1,1,0). It shows us that within the dataset this mixture occurs
πd fraction of times and within this mixture, feature 1 is one with probability 0.7, feature 2 is 1
with probability 0.9 and feature 3 is 0 with probability 0.9. We can also estimate the probability
of occurrence of this feature vector. If we make an optimistic estimate then we can say that
feature 1 will be 1 when features 2 and 3 are 1 and 0 respectively at the most 70% of times.
However, we can also say that feature 1 will be 1 at least 50% times when feature 2 and 3 are
1 and 0 respectively. So making an optimistic guess, we can estimate the probability of feature
vector (1,1,0) to be at the most 0.7 ∗πd . This also tells us that (1,1,1) occurs at the most 10%

times and similarly (0,1,0) occurs at the most 30% times.
We can formalize the above scheme and express the probability of feature vector, x, when

given the probability vector pd of the dth mixture, as:

p(x|d) = πd ∗min
i

pxi
di(1− pdi)

1−xi (1)

Suppose X represents the set of all binary vectors in {0,1}n, hence, |X| = 2
n. We will use the

term ‘main vector’ for the feature vector that can be derived from a mixture density and has the
highest probability of occurrence according to Eq. (1). Hence, ‘main vector’ v is defined as:

v = argmax
x∈X

p(x|d)

The main vector can also be derived by thresholding the probability values of a Bernoulli mix-
ture with probability vector p. The ith feature of the main vector is assigned binary 1 value if its
probability pi ≥ 0.5 and binary 0 value otherwise.

The algorithm for finding the MBF is the same as Algorithm 1, except that Step 2b for
calculating the cross entropy measure is replaced by Algorithm 2. Here, the cross entropy
measure for a feature Fi , 1 ≤ i ≤ n, is approximated from the Bernoulli mixtures instead of
training data. To run this algorithm, we first determine the Bernoulli mixtures, from the training
data, for each class label separately. d+k and d−k are the kth mixtures for the positive and negative
classes (C+ and C−) respectively. The total mixtures, D+ and D−, for positive and negative
classes respectively, are specified as one of the initial parameters to the EM algorithm and they
don’t have to be the same. Hence, the total mixtures generated from the entire training data is
D = D+ +D−. Effectively, this algorithm finds the probability of each main vector within all
Bernoulli mixtures of positive and negative classes. If the number of Bernoulli mixtures for
each class is small then this can be done efficiently for large values of K .

Time Complexity: Section 4.1 shows that this algorithm has particular advantage when
total training examples and features are very large in a dataset. If we don’t count the initial
step of computing correlation matrix and D Bernoulli mixtures then subsequent steps of the
algorithm have roughly a time complexity of O(rnKD2c), where r is the number of features to
eliminate, n is the total features and c is the total number of classes. In contrast, Koller and
Sahami’s algorithm for m training examples takes O(rnKm2

Kc) as the cross entropy measure

74

MARKOV BLANKET FILTERING USING BERNOULLI MIXTURES

Take all sub-vectors v j , 1≤ j ≤D, of main vectors, in the mixture models found by EM so that v j ∈ {0,1}K ,
i.e., v j is composed of all features that have the highest correlation with the target (corresponds to M of
Algorithm 1). As before, Fi is a feature and fi is a corresponding assignment of value to Fi . In our case
fi ∈ {0,1}. The cross entropy measure δ�G(Fi |Mi) for each feature Fi , 1 ≤ i ≤ n, can be computed as:

1. Find the probability of v j in the positive class as p+ =
�D+

k=1
πk p(v j |d+k)

2. Find the probability of v j in the negative class as p− =
�D−

k=1
πk p(v j |d−k)

3. Calculate P(C+|v j) =
p+

p++p− , assuming equal priors for both classes and similarly calculate P(C−|v j)
4. Repeat 1,2,3 to calculate P(C+|v j , fi = 0) and P(C+|v j , fi = 1)

5. Sum over all sub-vectors and all values of fi to calculate cross entropy measure, δ�G(Fi |Mi), approxi-
mated by:

�
l∈{0,1}

�D
j=1

DKL(P(C|v j , fi = l)||P(C|v j))

Algorithm 2: Approximating the cross entropy measure using Bernoulli mixtures

is being computed from mxK sized data and we need to look at 2
K combination of values.

However, we are computing our cross entropy measure from DxK sized data, where we are
only looking at D main vectors in each Bernoulli mixture, resulting in a dramatic reduction in
time.

4. Simulations
To get an insight of MBF using Bernoulli mixtures we applied it to the SIDO and CINA datasets
of the causality challenge. Each dataset has three types of test sets corresponding to the same
training data. Test sets with subscript 0 are un-manipulated datasets and have the same dis-
tribution as the training data. Datasets with subscripts 1 and 2 have features that have been
manipulated by some external agent and can have distracters or probes. Details can be found
on the challenge’s website (WCCI, 2008a) and are summarized in Table 1. The identity of each
feature was not revealed to the challenge participants.

SIDO dataset is a pharmacology dataset that has only binary features. The features denote
descriptor molecules which have been tested against AIDS HIV virus. The labels of each in-
stance indicate molecular activity. Some of the features are actual molecular descriptors and
some of them are artificially generated probes. The identity of each feature was not revealed
to the contestants of the challenge. CINA dataset is an econometrics dataset derived from UCI
machine learning repository ‘Adult’ dataset. In this case also, the details of each feature were
not revealed to us.

The evaluation of results was based upon the average accuracy, ‘Tscore’, of the three test
sets for each dataset (Guyon et al., 2008). The contestants had the option of submitting a
sorted nested feature subset list of r (r ≤ n) features, sorted according to the importance of each
feature in predicting the target. Hence, multiple predictions could be made using the first s
features, where s varies by powers of 2, i.e., 1,2,4,8, . . . features. An ‘Fscore’ was computed to
indicate how well the predicted set of features matched with the actual MB of the target variable
(known only to the organizers) (Guyon et al., 2008). For our submissions, we submitted a sorted
list of features ranked according to a feature’s relevance in predicting the target, and a set of
predictions corresponding to the nested feature subsets. Submitting a set of predictions gives us
an added advantage over those participants who submitted only a single set of predictions.

During the challenge we made 29 complete entries on SIDO and 16 complete entries on
CINA dataset. A complete entry consists of predictions on all three test files of a dataset (i.e.,
subscript 0, 1 and 2). Once we submitted an entry, we got immediate feedback on our perfor-

75

SAEED

mance, whether our entry was in the first, second, third or fourth quartile, as compared to the
other participants. Only our last submitted entry was considered for final ranking. We used
the quartile information and 2 fold cross validation accuracy to determine the final models for
the last entry. Our entire source code was written in C++ and Matlab in the CLOP framework
(Saffari and Guyon, 2006).

Table 1: SIDO and CINA challenge datasets

Dataset Domain Continuous Binary Positive Negative Total
Features Features Examples Examples

SIDO Pharmacology 0 4932 452 12226 12678
CINA Econometrics 24 108 3939 12094 16033

4.1 Results on SIDO, The Pharmacology Dataset

Table 2: Results on the SIDO dataset. Fnum is the number of features, Fscore is the score
on the feature set (see Section 4), Tscore is the accuracy on the test set. The entries
marked by ‘*’ were classified using the naive Bayes’ classifier. For the rest of the
entries the classifier used was a combination of Bernoulli mixtures and ensemble of
neural networks.

SIDO0 SIDO1 SIDO2
K Fnum Fscore Tscore Fnum Fscore Tscore Fnum Fscore Tscore
10 1024 0.4717 0.9332 1024 0.6895 0.7140 1024 0.6895 0.6145
15 1024 0.4857 0.9407 1024 0.6928 0.7464 128 0.6928 0.7155
20 512 0.4831 0.9457 2048 0.6635 0.6565 1024 0.6635 0.6134
25 512 0.4921 0.9381 1024 0.7335 0.7124 1024 0.7335 0.6325
30 1024 0.4592 0.9434 4096 0.7242 0.7246* 512 0.7242 0.6216
40 4096 0.4095 0.9391* 4096 0.694 0.7309* 4096 0.694 0.5788*

We generated Bernoulli mixtures on the SIDO dataset. The initial values specified to the
algorithm for number of Bernoulli mixtures was 10 for both classes, however, we ended up with
4 and 7 Bernoulli mixtures for the positive and negative class respectively. There were 16,033
training examples in this set and we were unable to run Koller and Sahami’s algorithm on this
set for K ≥ 6 due to limited computing resources available to us. However, we easily ran it
for large values of K with the Bernoulli mixture version of MBF as there are only 11 mixtures
and the combinations needed to compute cross entropy values is immensely smaller. Hence,
we compute the MB from 11×4932 sized data instead of the full 16033×4932 sized data. The
feature scores along with test scores on different values of K for the SIDO0, SIDO1 and SIDO2
datasets are given in Table 2.

For this dataset we returned our predictions on nested feature subsets, as described in Sec-
tion 4. The challenge organizers chose the feature set for which the classification accuracy was
maximum and hence, this decides the ‘fnum’ value in Table 2. Depending upon the feature
subset we used two different classifiers. Either the naive Bayes’ classifier or a combination of
Bernoulli mixtures and ensemble of neural networks was used to classify data (see Appendix
B). In an ensemble of neural networks, the overall prediction was made by combining outputs
from individual neural networks (Saffari and Guyon, 2006). We used maximum of 10 neural
network models, each trained with a different number of neurons in the hidden layer.

76

MARKOV BLANKET FILTERING USING BERNOULLI MIXTURES

Figure 1: Profile of features selected for SIDO. Legend: dcause=direct cause, def-
fect=direct effects, ocauses=other causes (indirect), oeffects=other effects (indirect),
spouses=parent of a direct effect, orelatives=other relatives, unrelated=completely ir-
relevant (see WCCI, 2008b)

Our final entry for SIDO1 and SIDO2 was made using K = 30. It has the best Fscores
amongst all ranked entries in the challenge on SIDO1 and SIDO2. Figure 1 shows the profile
of features selected with K = 30. It is interesting to note that the algorithm finds only the direct
causes of target and irrelevant features in case of SIDO1 but the accuracy of the classifier is
quite good even in the presence of the irrelevant features. However, in case of SIDO2, the
algorithm is able to find out a higher fraction of direct causes as compared to irrelevant features
and the classifier performs quite well.

The classification accuracy on SIDO0 is almost the same for all values of K . Interestingly,
the performance of a simple naive Bayes’ classifier and the hybrid model is almost identical
on SIDO0 and SIDO1. The best classification results are obtained for K = 15 for both SIDO1
and SIDO2 where the algorithm gives best results using 1024 and 128 features respectively and
classification was done using a hybrid model of Bernoulli mixtures and an ensemble of neural
networks.

4.2 Results on CINA, The Econometrics Dataset

Table 3: Results on the CINA dataset. See Table 2 for explanation of Fnum, Fscore and Tscore

CINA0 CINA1 CINA2
No. Fnum Fscore Tscore Fnum Fscore Tscore Fnum Fscore Tscore
1 32 0.5069 0.9751 16 0.7858 0.8248 16 0.7858 0.6867
2 21 0.4875 0.9727 21 0.5196 0.8188 16 0.5196 0.6627

Table 3 shows the results obtained on two of our submitted entries for CINA dataset. The
first row shows the feature scores and accuracy of the three test sets. Here, feature subset
selection algorithm was used where forward selection was done based on the accuracy achieved
by the Naive Bayes’ classifier on the training set. The second row shows the results of feature
selection when MBF using Bernoulli mixtures was used for selecting binary features and feature
subset selection was used for selecting continuous features. Here, the total features used include

77

SAEED

6 continuous features and the rest are binary. For this dataset classification was performed using
an ensemble of neural networks on the selected feature values after standardizing the data. We
can see that the two methods have almost the same percentage accuracy on the three types of
datasets, however, feature subset selection gives much better feature scores.

Figure 2 shows the profile of features selected for CINA on our last entry. It is interesting to
see that our forward selection algorithm with naive Bayes’ is able to find many direct causes of
the target variable for all three datasets. The percentage of irrelevant features identified is very
small compared to the direct causes that have been identified. For dataset 0 this algorithm is
able to identify many indirect causes of the target and also the parents of the direct causes.

4.3 Comparison and Discussion of Results

Table 4: Comparison of results. Top ranking is the Tscore of the winning participant. Max Test
score is the highest achieved using actual knowledge of causal features.

K=15 Last Submission
Dataset Features TScore Features Tscore Top Max Test

ranking Score
SIDO0 1024 0.9407 8 0.9391 0.9443 0.9467
SIDO1 1024 0.7464 4096 0.7246 0.7532 0.7893
SIDO2 128 0.7155 512 0.6216 0.6684 0.7674

K=3
CINA0 21 0.9727 32 0.9751 0.9765 0.9788
CINA1 21 0.8188 16 0.8248 0.8691 0.8977
CINA2 16 0.6627 16 0.6867 0.8157 0.891

Table 4 shows a comparison of results with the top ranking entries on both SIDO and CINA
datasets. The table shows our results with K = 15 on SIDO dataset, results with our last sub-
mitted entry and test scores of the winning participants. The column with the ‘Max Test Score’
indicates the best score reachable, as estimated by reference entries, using the knowledge of true
causal relationships, not available to participants. Our last entry counted towards the ranking
of participants and was ranked fourth. The average test score with K=15 was the best accuracy

Figure 2: Profile of features selected for CINA. For legend see Figure 1 (WCCI, 2008b)

78

MARKOV BLANKET FILTERING USING BERNOULLI MIXTURES

Figure 3: Pairwise performance of participants on test sets 0, 1 and 2. Green is SIDO and blue
is CINA (see WCCI, 2008b). Our entry is encircled and denoted by ‘∗’.

rate amongst all participants, however, it did not count towards the final ranking as it was not
our last submitted entry. The original dataset had 4932 features and we can see from the table
that we were able to make quite good predictions using a very small set of features.

In case of CINA, we attained good results by using only 21 features on CINA0 and CINA1
and 16 features for CINA2 for K = 3. Also, our last entry was made using subset feature selec-
tion, with the forward selection algorithm with Naive Bayes’ algorithm (Alpaydin, 2005). Here
the classifier used was an ensemble of neural networks. We can see that the two methods give
almost the same accuracy, even though, they use a different feature set. Our test set accuracies
are quite comparable with the top ranking participant for CINA0 and CINA1. However, our
algorithm failed to produce good results for CINA2. Our last submitted entry was ranked sixth
amongst all other entries.

Our feature scores (Fscores) were the best amongst all participants for test sets 1 and 2 of
SIDO dataset and also for test sets 1 and 2 of the CINA dataset (Guyon et al., 2008). In order to
further compare performances, the challenge organizers made pairwise comparisons between
different challenge participants and counted the fraction of times our Tscore was better than
other participants for a fixed number of features (Guyon et al., 2008). They did the same for
Fscores also. Figure 3 shows the pairwise comparison. We have encircled our entries in black.
Our feature scores are not very good for the test set 0, i.e., the data with no manipulations, but
SIDO has a high Tscore as compared to the rest of the entries. Our feature scores for test sets 1

79

SAEED

Figure 4: TScores Vs. new FScore for all participants for CINA (left) SIDO (right) datasets
(see WCCI, 2008b). Our entry is encircled and denoted by ‘∗’.

and 2 are significantly better than the rest of the participants on both SIDO and CINA datasets.
Also, our Tscore is higher than the rest of the participants more than 70% of the times for test
sets 1.

To further evaluate the results of the challenge, the organizers defined a new Fscore. The
new Fscore was defined using the 3 versions of precision and recall, using as a set of features,
the MB in set 1, MB and causes and effects in set 2 and all variables connected to the target in
set 3 (Guyon et al., 2008). Figure 4 shows the plot of Tscore vs. the new Fscore of different
participants for SIDO and CINA datasets. Again our entries are encircled in black. It can be
seen that we do quite well on CINA dataset as compared to the rest of the participants and our
results are considerably better than other participants for the SIDO datasets.

5. Conclusions
In this paper we discussed the use of Bernoulli mixture models for Markov Blanket filtering
by adapting the original algorithm proposed by Koller and Sahami in 1996. Instead of using
the training data for estimating entropy values we have used Bernoulli mixtures to approximate
these values. Hence, in this way we can reduce the computations required for approximating
the cross entropy values and use larger conditioning sets. We tried our method on the SIDO
and CINA datasets of the causality workbench challenge. Our method was ranked fourth on
SIDO and sixth on CINA. Our feature scores were ranked best on the test sets 1 and 2 of both
SIDO and CINA. Also, one of our entries, submitted during the challenge, had the best results
on SIDO, out of all challenge entries, but did not count towards the final ranking as it was not
our last submitted entry.

As part of future work we would like to extend our algorithm to do causal feature selection.
Right now we determine only the MB of the target variable but do not pin point the causes or
effects of the target variable. Also, we are working on developing methods that determine a
suitable value of K for a particular dataset so that model selection techniques can be applied to
datasets that have probes or noise added to them.

80

MARKOV BLANKET FILTERING USING BERNOULLI MIXTURES

Acknowledgments

Many thanks to Prof. Haroon Babri and Mr. Kashif Javed for their valuable comments and
discussion during the challenge. The author would also like to thank Isabelle Guyon for her
help and support during the causality challenge.

Appendix A. The EM Algorithm for Learning Bernoulli Mixtures
A finite mixture model is described by a probability function given by p(x) =

�D
d=1
πd p(x|d).

Learning the parameters of a finite mixture model is a statistical parameter estimation problem
and we can use expectation maximization (EM) algorithm to estimate these parameters from a
sample of training data X = {xk}mk=1

,x ∈ Rn. The EM algorithm maximizes the log likelihood
function of data given by:

L(Θ|X) =

m�

k=1

log
� D�

d=1

πd p(xk |d)

�
(2)

Here Θ denotes the unknown variables to be estimated and consists of the priors, πd , of each
mixture and the parameters, θd , of each mixture distribution, i.e., Θ = {πd ,θd}Dd=1

.
A Bernoulli mixture model assumes that each component of the model is an n-dimensional

multivariate Bernoulli probability distribution, each component or mixture having its own set
of parameters. The form of this distribution for a single vector xk ∈ {0,1}n in the dth distribution
is given by (Bishop, 2006):

p(xk |d) =

n�

i=1

(pdi)
xki (1− pdi)

1−xki (∀k,1 ≤ k ≤ m,∀d,1 ≤ d ≤ D)

Here pdi ∈ [0,1] is the probability of success of the ith component of vector xk for the dth

mixture. Here the parameter θ to be determined is the probability of success of each attribute of
vector x, i.e., θ = p where p ∈ [0,1]

n.
The EM algorithm assumes that the observed data is incomplete and associates a vector of

latent variables zk = {zk1,zk2, . . . ,zkD} with each data point. The latent variables are indicator
variables, with zkd = 1 indicating that the dth mixture component generated the kth data point.
The EM optimization takes place iteratively in two steps. In step 1, also called the expectation
step (E-Step), we estimate the expected values of the hidden variables assuming that the model
parameters θd are known. In step 2, also called the maximization step (M-Step), we estimate
the parameter values θd to maximize the likelihood of data, given by Eq. (2), on the basis of the
latent variables calculated in the E-step. This is done iteratively until the parameters converge
to stable values. To start the EM algorithm we initialize the probabilities with random values.

The form of E-step is the same for more or less all distributions and it is given by:

zkd =
πd p(xk |d)

�D
j=1
π j p(xk | j)

(∀d,1 ≤ d ≤ D,∀k,1 ≤ k ≤ m) (3)

The M-step determines the maximum likelihood estimate of the priors, of each distribution,
as given below:

πd =
1

m

m�

k=1

zkd (∀d,1 ≤ d ≤ D)

Also, in this step the parameters of the particular probability distribution are estimated. These
parameters depend on the probability function being used. For a Bernoulli mixture model,

81

SAEED

the M-step finds the maximum likelihood estimate of the probability of success of each vector
component as given below:

pd =

�m
k=1

zkdxk�m
k=1

zkd
(∀d,1 ≤ d ≤ D)

The simulations, described in this paper, use the regularized version of EM algorithm described
by Li et al. (2005). Also, Laplacian prior can be used to smooth the probability estimates,
hence, the probability values are estimated as below (γ is the regularization constant):

pd =
1+
�m

k=1
zkd(1+γ lnzkd)xk

2+
�m

k=1
zkd(1+γ lnzkd)

The parameter D, i.e., the total mixtures to be determined is input to the algorithm by the
user. We determine this number through cross-validation. Normally, we end up with fewer
mixtures than originally specified, as the priors for many mixtures converge to zero and we can
ignore those mixtures. This is especially true for sparse binary data with a high dimensional
feature space. In such a case, no matter what the original value of D, specified to the regularized
EM algorithm, we always end up with more or less the same number of mixtures with non-zero
priors. Hence, the regularized version of EM algorithm is able to find an optimal number of
clusters within data.

Appendix B. Classification Using Bernoulli Mixtures
In this section we give a brief overview of how we use Bernoulli mixtures for feature trans-
formation and classification of instances. For details, we refer the reader to our previous work
(Saeed, 2008; Saeed and Babri, 2008). We extend our terminology to include the class labels
assigned to each example point. Suppose we have a set of c labeled classes Q = {q1,q2, . . . ,qc}.
We generate a total of Di mixtures for class qi . Let sid represent the dth mixture/cluster in the ith
class with prior for that mixture being given by πid and

�Di
d=1
πid = 1. Then the class conditional

probability function, for the ith class having Di mixture components (given by {sid}Di
d=1

), is given
by:

p(x|qi) =

Di�

d=1

πid p(x|sid)

Given the original dataset X, we perform a transformation on X given by: T : X → Φ,X ∈
Rn,Φ ∈ RN . The lth component of the new feature vector φk is given by:

φkl =
p(xk |sid)πid

�c
i=1

�Di
j=1
πi j p(xk |si j)

(∀k,1 ≤ k ≤ m)

The index l has a value corresponding to every mixture of every class. For a sub-cluster sid ,
the subscript l is given by l =

�i−1

j=1
Dj + d . Here φk ∈ RN , where N =

�c
i=1

Di . We can see
that the numerator in the above expression is the same as that of Eq. (3) which represents the
expectation of the latent variable in a mixture. The term in the denominator is used to normalize
the entire feature vector over all the classes. If N < n then our new feature set will lie in a lower
dimensional space as compared to the original feature space and hence, this method can be used
for dimensionality reduction.

We use the expectation of the latent variables as the transformed set of features for input
to a classification algorithm. The feature vector is normalized so that the sum of components

82

MARKOV BLANKET FILTERING USING BERNOULLI MIXTURES

is unity. We have shown in our previous work (Saeed, 2008; Saeed and Babri, 2008) that
these set of transformed features lead to an immense reduction in the dimensionality of data,
especially when the data is sparse. We can apply any classification algorithm to classify the
data, e.g., SVM, neural networks, boosting models, etc. The work described in this paper uses
an ensemble of neural networks.

References
Ehem Alpaydin. Introduction to Machine Learning. Prentice-Hall of India Private Limited,

2005.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

Jiri Grim, Pavel Pudil, and Petr Somol. Multivariate structural Bernoulli mixtures for recogni-
tion of handwritten numerals. In Proceedings of International Conference on Pattern Recog-
nition (ICPR’00), 2000.

Isabelle Guyon, Constantin Aliferis, Greg Cooper, Andre Elissee, Jean-Philippe Pellet, Peter
Spirtes, and Alexander Statnikov. Design and analysis of the causation and prediction chal-
lenge. In Proceedings of Journal of Machine Learning Research, 2008. to appear.

Alfons Juan and Enrique Vidal. On the use of Bernoulli mixture models for text classification.
Pattern Recognition, 35(12):2705–2710, December 2002.

Alfons Juan and Enrique Vidal. Bernoulli mixture models for binary images. In Proceedings of
17th International Conference on Pattern Recognition (ICPR’04), 2004.

Koller and Sahami. Toward optimal feature selection. In Machine Learning: Proceedings of
the 13

th international conference. Morgan Kaufman, 1996.

Haifeng Li, Keshu Zhang, and Tao Jiang. The regularized EM algorithm. In Proceedings of the
20th National Conference on Artificial Intelligence, pages 807–812, 2005.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

Mehreen Saeed. Hands-on pattern recognition challenges in data representation, model se-
lection, and performance prediction, chapter Hybrid learning using mixture models and
artificial neural networks. 2008. To appear, see http://www.clopinet.com/
ChallengeBook.html.

Mehreen Saeed and Haroon Babri. Classifiers based on Bernoulli mixture models for text
mining and handwriting recognition. In Proceedings of International Joint Conference on
Neural Networks, IEEE WCCI, 2008.

Amir Saffari and Isabelle Guyon. Quick start guide for CLOP, May 2006. Available at http:
//ymer.org/research/files/clop/QuickStartV1.0.pdf.

Sajama and Alon Orlitsky. Supervised dimensionality reduction using mixture models. In Pro-
ceedings of the 22nd international conference on machine learning, pages 768–775, Bonn,
Germany, 2005.

83

http://www.clopinet.com/ChallengeBook.html
http://www.clopinet.com/ChallengeBook.html
http://ymer.org/research/files/clop/QuickStartV1.0.pdf
http://ymer.org/research/files/clop/QuickStartV1.0.pdf

SAEED

IEEE WCCI. Causality challenge #1: Causation and prediction, 2008a. See http://www.
causality.inf.ethz.ch/challenge.php.

IEEE WCCI. Causation and prediction: Challenge analysis, 2008b. See http://
clopinet.com/isabelle/Projects/WCCI2008/Analysis.html.

84

http://www.causality.inf.ethz.ch/challenge.php
http://www.causality.inf.ethz.ch/challenge.php
http://clopinet.com/isabelle/Projects/WCCI2008/Analysis.html
http://clopinet.com/isabelle/Projects/WCCI2008/Analysis.html

JMLR Workshop and Conference Proceedings 3:93–105 WCCI2008 workshop on causality

Partial orientation and local structural learning of causal
networks for prediction

Jianxin Yin JIANXINYIN@MATH.PKU.EDU.CN

You Zhou ZHOUYOU@PKU.EDU.CN

Changzhang Wang CHANGZHANG@PKU.EDU.CN

Ping He SUNHP@PKU.EDU.CN

Cheng Zheng ZZHENGCCHENG@PKU.EDU.CN

Zhi Geng ZGENG@MATH.PKU.EDU.CN

School of Mathematical Sciences
Peking University
Beijing 100871, China

Editor: I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov

Abstract
For a prediction problem of a given target feature in a large causal network under external
interventions, we propose in this paper two partial orientation and local structural learning
(POLSL) approaches, Local-Graph and PCD-by-PCD (where PCD denotes Parents, Children
and some Descendants). The POLSL approaches are used to discover the local structure of the
target and to orient edges connected to the target without discovering a global causal network.
Thus they can greatly reduce computational complexity of structural learning and improve
power of statistical tests. This approach is stimulated by the challenge problems proposed
in IEEE World Congress on Computational Intelligence (WCCI2008) competition workshop.
For the cases with and without external interventions, we select different feature sets to build
prediction models. We apply the L1 penalized logistic regression model to the prediction. For
the case with noise and calibrant features in microarray data, we propose a two-stage filter to
correct global and local patterns of noise.

Keywords: Causal network, Local structural learning, Partial orientation.

1. Introduction
Correlations between variables are useful for prediction in the case that individuals to be pre-
dicted come from the same population as the training data. If we want to predict them after the
system is manipulated by external interventions, prediction models based only on correlations
may lead to awful results. For example, there is a strong correlation between a rooster’s crying
and sun rising. But killing the rooster cannot stop sun rising. No matter how advanced tech-
niques and models are used based only on correlations, there may always exist some cases of
external interventions which make the prediction inaccurate without causal discovery. Causal
discovery is one of most important goals in various sciences, such as natural and social sci-
ences (Pearl, 2000; Spirtes et al., 2000). In causal discovery, a key issue is to discover causes

©2008 Yin et al

YIN ET AL.

of a target feature of interest, whose main causes are generally not too many. Generally, it is
difficult to discover causes and effects only from observational data, and even harder to distin-
guish causes from effects. Discovering causal structures and further distinguishing causes from
effects of a target are useful not only for prediction in the cases with external interventions,
but also valuable for studying causal mechanisms, making decision and evaluating treatment
effects.

Most of the traditional prediction approaches are based on correlations without causal dis-
covery. For example, it is well known that for a Bayesian network a Markov blanket (MB) of a
target variable is often used for prediction of the target because the target is independent of other
variables conditionally on the Markov blanket. A Bayesian network is called a causal network
if directed edges have causal interpretation. The causation challenge organized by Guyon et al.
(Guyon et al., 2008) for IEEE WCCI2008 is to predict the effect of external interventions. When
the neighbor nodes of the target in the causal network are manipulated by external interventions,
we have to distinguish parent nodes (cause features) from children nodes (effect features), and
then we use parent nodes (and unmanipulated children nodes if we know) to predict the target.
Although there are many structural learning approaches for discovering a global network, it is
well known that learning a global network is an NP-Hard problem. If we are only interested in
a prediction of a target, it is inefficient and unnecessary to learn a global network.

For a prediction problem with external interventions, we propose in this paper two partial
orientation and local structural learning (POLSL) approaches, Local-Graph and PCD-by-PCD
(PCD means Parents, Children and some Descendants). In the POLSL approaches, we discover
locally the edges connected to the target and only try to orient these edges so that we can
distinguish the parents from the children of the target. We can theoretically show that the
approaches can correctly obtain the edges connected to the target and their orientations. The
POLSL approaches can greatly reduce computational complexity of structural learning, and
their statistical test is more powerful than a global learning approach. After we select a subset
of all variables according to the local structure, we use the L1 penalized logistic regression
model to fit the prediction model and use the estimated conditional probability of the target
variable for each individual in the test set for its classification. The L1 penalized approach is a
shrinkage method which can reduce mean squared error (MSE) of prediction.

In Section 2, we describe the preprocessing and we propose a two-stage filter. In Section 3,
we propose two POLSL algorithms and theoretically show their correctness. In Section 4, we
use the L1 penalized logistic regression model to fit the prediction model. In Section 5, we show
results of simulation and the causal challenge. Advantages of our approaches are discussed in
Section 6. Details of the preprocessing are described in Appendix A, and the proofs of theorems
are presented in Appendix B.

2. Preprocessing
In this section, we propose a two-stage process for filtering noise in microarray data, and we
use a feature screen method to remove unnecessary features for the prediction.

2.1 A two-stage filter

For the case of observed data with noise and calibrant features (e.g., MARTI), we first centralize
observations and then filter noise using a two-stage process. At the first stage, we correct the
global noise pattern. Then we treat every micro-array data separately to get a smoother output
in the second stage. More details on this two-stage filter can be found in Appendix A.

86

LOCAL LEARNING FOR PREDICTION

After we build the model for prediction with the corrected training data, given a new micro-
array with noise for predicting its target feature, we first correct it with the global regression
models obtained at the first stage, then filter the noise of every feature with the local models
obtained at the second stage, and finally predict its target based on the corrected features {r̂(i)

0
, i =

1, . . . ,999} and a prediction model discussed in Section 4.

2.2 Feature screen and discretization

For a data set with very high dimensional space (e.g., 4932 features for SIDO), we first screen
features using a sure independence screening (SIS) procedure (Fan and Lv, 2008) to reduce the
dimensionality to a tractable size (e.g., 1000 features for SIDO). The SIS method is a screening
method based on correlation learning which has the property that all the important variables
survive after variable screening with probability tending to one.

This screen step is not necessary for other data sets, and even for a higher dimensional data
set if CPU time for the following computations is not a problem.

For continuous variables, we suppose that they have a normal distribution, or we first dis-
cretize them using the supervised discretization process in the causal explorer (Aliferis et al.,
2003), and suppose that the discretized variables have a multinomial distribution.

3. Partial orientation and local structural learning
After finding a Markov blanket of a target, we can obtain edges connected to a target of interest,
but it is not sufficient to orient the edges connected to the target using only the variables in the
Markov blanket. In this section we propose two approaches for local structural learning and
partial orientation of the edges connected to the target. Let PC(X) denote a set which contains
all parents and children of node X, and let PCD(X) denote a set which contains PC(X) and
may contain some descendants of X. There are a lot of algorithms which can be used to find
PCD(X), such as Min Max Parents and Children (MMPC) algorithm (Tsamardinos et al., 2006).

3.1 Two Algorithms: Local-Graph and PCD-by-PCD

The first approach called Local-Graph tries to find a variable set such that all v-structures con-
nected to a target T of interest can be discovered correctly. It first finds PCD(T) and then finds
PCD(X) for all X ∈ PCD(T). Let V = {T }∪PCD(T)∪ [∪X∈PCD(T)PCD(X)]. Finally it learns a
directed acyclic graph (DAG) over the node set V calling an algorithm. The recursive algorithm
(Xie and Geng, 2008) was used in our algorithm Local-Graph, which recursively decomposes
structural learning of a large network into local learning of several small networks.

Algorithm: Local-Graph (Data D; Target T)
(a) V = {T }∪PCD(T)∪ [∪X∈PCD(T)PCD(X)].
(b) Construct a DAG over V with the recursive algorithm.
(c) Return the partially oriented local structure around T.

We can show below that algorithm Local-Graph can discover all v-structures connected to
the target T even if the local graph returned from Local-Graph may not be a correct subgraph
of the underlying DAG.

87

YIN ET AL.

Theorem 1 Suppose that a causal network is faithful to a probability distribution and that
independence test is correctly performed by using data. Algorithm Local-Graph can correctly
discover all edges and v-structures connected to a target T of interest.

In the second approach called PCD-by-PCD, we extend Algorithm Local-Graph and find
PCDs sequentially. In the algorithm PCD-by-PCD, we first find PCD(T) of the target T and
PCD(X) for feature X ∈ PCD(T), and then we sequentially find PCD(X) for a feature X which
is contained in the previous PCD’s. During the sequential process, we find local v-structures
and try to orient the edges connected to the target T as much as possible. When all of the
edges connected to the target T are oriented, we stop the process and obtain all direct causes
and effects of the target T . There may be some undirected edges which cannot be oriented even
after we have found the PCD for every feature in the full set U of all features.

These undirected edges may have different directions in DAGs of the Markov equivalent
class. Theoretically we can show that the PCD-by-PCD algorithm is correct, that is, it can
correctly find, at each step, edges and local v-structures of the global DAG. Let A�B denote an
operation adding the list B to the tail of the list A. For example, [1,3,5]�[2,4] = [1,3,5,2,4]

which is an ordinal sequence.

Algorithm: PCD-by-PCD (Data D; Target T)
1. Initialization:
Set canV = PCD(T). (canV is an ordinal waiting list whose PCD will be found)
Set V = {T }. (V is a set of variables whose PCD has been obtained)
2. Repeat
(a) Take X from the head of the list canV .
(b) Get PCDX = PCD(X).
(c) V = V ∪ {X}.
(d) For each Z ∈ (V ∩PCDX), create an undirected edge (X,Z) if Z ∈ PCDX
and X ∈ PCDZ .
(e) Within V , discover possible v-structures only for the triple of X and other
two variables in V if an intermediate node is not in the separator set of two
nonadjacent nodes.
(f) If we find new v-structures, orient other edges between nodes in V if each opposite
of them creates either a directed cycle or a new v-structure (Meek, 1995).
(g) canV = canV�(PCDX \V). (Add new variables to the tail of the waiting list)
Until (1) all edges connecting T are oriented, or (2) canV = ∅, or (3) V = U.
3. Return The partially oriented local structure around T.

Theorem 2 Suppose that a causal network is faithful to a probability distribution and that
independence test is correctly performed by using data. Then algorithm PCD-by-PCD correctly
obtains edges connected to the target T , and further it returns the same orientations of these
edges as a partially directed graph for the Markov equivalence class of the underlying global
causal network.

Algorithm PCD-by-PCD sequentially finds PCD(X) of node X that is nearest to the target
T among all nodes whose PCDs have not been found at the present step, and it finds PCD(X)

at most once for each node X. Thus its computational complexity depends on the algorithm for
finding PCD(X). If the number of nodes in the full set U is too large to find all PCDs, then
we can stop the algorithm by limiting the maximum size of the set V . The likelihood ratio test
statistic G2 is used in our algorithms for testing conditional independencies.

88

LOCAL LEARNING FOR PREDICTION

3.2 Comparison between algorithms

There are several other approaches which can be used for local structural learning. One is
the MB-based approach in which we first find the MB of the target and then learn the local
structure over the MB and the target. Another is the Markov Blanket Fan Search (MBFS)
algorithm proposed by Ramsey (2006). Below we use examples to make comparisons of the
Local-Graph, PCD-by-PCD, MB-based and MBFS algorithms.

Example 1. We use the underlying causal network in Figure 1 (a) to compare the MB-based
and Local-Graph algorithms. The local structures obtained from the MB-based and Local-
Graph algorithms are shown in Figure 1 (b) and (c) respectively. The dashed line between
nodes 1 and 7 in Figure 1 (b) denotes the edge which may be false. It can be seen that the
MB-based algorithm cannot orient the v-structure 7→ T ← 1.

(a) (b) (c)

Figure 1: Comparison between the MB-based and Local-Graph algorithms.

Example 2. The underlying causal network in Figure 2 (a) is used to compare the Local-
Graph and MBFS algorithms. The local structures in Figure 2 (b) and (c) are obtained from the
Local-Graph and MBFS algorithms respectively. The dashed lines in Figure 2 (b) and (c) denote
the edges which may be false. For example, the dashed lines (2,4) and (3,4) in Figure 2 (b) are
determined a true edge and a false edge at the later step respectively, see Figure 2 (c). Although
the v-structure 7→ T ← 1 is obtained from the Local-Graph algorithm, it cannot orient the
undirected edge T −2. The MBFS algorithm can correctly orient the edge as T ← 2.

(a) (b) (c)

Figure 2: Comparison between the Local-Graph and MBFS algorithms.

Example 3. For the underlying causal network in Figure 3 (a), the MBFS and PCD-by-PCD
algorithms output the local structures in Figure 3 (b) and (c) respectively. The MBFS algorithm
cannot orient the undirected edge T −2, while the PCD-by-PCD algorithm can do that correctly.
The dashed lines in Figure 3 have a similar meaning to those in Example 2.

(a) (b) (c)

Figure 3: Comparison between the MBFS and PCD-by-PCD algorithms.

89

YIN ET AL.

From the above examples, we can see that these algorithms discover local structures over
different neighbor areas. The MB-based algorithm tries the smallest neighbor area, the Local-
graph one the second smallest, the MBFS one the third, and the PCD-by-PCD one extends the
neighbor area continuously until all edges connected to the target are oriented or the neighbor
area has been extended to all variables. Thus the MB-based, Local-Graph, MBFS and PCD-by-
PCD algorithms become in turn to be more complete in terms of orientations.

3.3 Computational complexity of the algorithms

From the previous subsection, it can be seen that all these algorithms need to find PCDs. Thus
the number #PCD of times of finding PCDs can be used as the computational complexity of an
algorithm. Let K denote the maximum size of PCDs for all nodes. For the MB-based algorithm,
we need to find #PCD = O(K) PCDs to obtain the MB of the target and then we find a local
structure over the MB. For the Local-Graph algorithm, we also need to find #PCD = O(K)

PCDs to obtain the set V and then we find a local structure over V . For the MBFS algorithm,
we find #PCD = O(K2

) PCDs. For the PCD-by-PCD algorithm, the number #PCD depends
on the underly network, which may be smaller than that of the MB-based algorithm, such as
the underlying network in Figure 1 (a), or which may larger than that of the MBFS algorithm,
such as the network in Figure 3 (a). When there is an undirected path connected to the target T
with a length L in the process, the number #PCD is O(KL

). To stop the PCD-by-PCD algorithm
early for the presence of a long undirected path, we can add a stop condition (4): the size of V
is larger than a given constant C. Notice that the MB-based and Local-Graph algorithms need
additional computation for finding a local structure over the MB and the set V . Computational
complexity of structural learning is exponential with respect to the size of a node set, although
the sizes of the MB and V are generally small.

4. Prediction
We first select features based on the causal discovery results discussed in the previous section
and return a single set of selected features without rank. For the cases with and without external
interventions, we select different feature sets to build prediction models. For the data set without
manipulation (numbered 0), all the features in the Markov blanket (MB) of a target T are used to
predict the target. For the data set with a known manipulated feature set (numbered 1), we drop
the manipulated variables in the children set and drop the spouses of T whose children common
with T have been all dropped, and we use all parent variables and unmanipulated children
and the parents of unmanipulated children in the MB of T . For the data set with an unknown
manipulated variable set (numbered 2), only the parent features of the target are used. When the
feature sets that are used for prediction are sensitive to significance levels and other parameters,
we may use a union of these sets and then predict the target with a shrinkage method to remove
the redundant features. This approach of feature selection is defensibly heuristic since it may
drop useful variables in some cases.

Next we apply the L1 penalized logistic regression model with the single set of selected
features to the target prediction. We use the estimated probability of the target feature for each
individual in the test set for its classification. Let X denote a feature vector, and let Y denote
a binary target feature of interest with mean µ = E(Y). Consider a generalized linear model
(GLM) with the logit link function

log
µ

1−µ = β
�x.

90

LOCAL LEARNING FOR PREDICTION

The objective function is defined as − log (likelihood function) with a penalization on the L1-
norm of coefficients, �β�1,

f (β,λ) = −l(β)+λ�β�1, (1)

where λ is a constant. Then a L1-regularization path algorithm (Park and Hastie, 2007) is used
to minimize the objective function f (·) with respect to β and to find the full solution path for
(1). On the solution path we select a λ value with 5-fold cross validation (CV) in the training
data set which minimizes the prediction error.

5. Numerical Studies
In this section, we first evaluate POLSL algorithms via simulations and then we interpret our
results of the causal challenge.

5.1 Evaluation via Simulation

We consider the toy-example: LUCAS (LUng CAncer Simple set) network as shown in Fig-
ure 1 (a) in Guyon et al. (2008). We repeatedly do 100 simulations and give average val-
ues for each case of different sample size n and significance level α. For each simulation,
we draw a training data from the distribution with parameters given on the website: http:
//www.causality.inf.ethz.ch/data/LUCAS.html. The manipulated features for
LUCAS1 and LUCAS2 are shown respectively in Figure 1 (b) and (c) in Guyon et al. (2008),
and the manipulated features for test data are drawn randomly which are independent of their
parents.

In Table 1, we show the simulation results of discovering the parent set (PA), the MB set
and the children (CH) set of the target ‘Lung Cancer’ with Min Max Hill Climbing (MMHC),
MB-based, Local-Graph and PCD-by-PCD algorithms. Feature scores (Fscores) increase with
sample size n increasing and are not significantly different. The MMHC algorithm takes CPU
time the most, the MB-based algorithm the second, Local-Graph the third and PCD-by-PCD
algorithm the least.

In Table 2, we show test scores (Tscores) for different logistic regressions. The middle
columns are for linear models, the last two columns are for logistic models with the second
order interaction terms. Tscores increase with sample size n increasing and are not significantly
different for test data sets labeled 0 and 1. But for test data labeled 2, Tscores based on causal
knowledge (here we use the true causal structure) are higher than those without causal knowl-
edge. The methods without/with shrinkage are not significantly different for linear models, but
Tscores are quite different for models with interactions. It may because a linear model has a
few of parameters, but a model with interactions has a larger number of parameters.

5.2 Results of Causal Challenge

The problems and results of feature selection and prediction for four data sets in the causal
challenge are introduced by Guyon et al. (2008). We apply both of our two algorithms Local
Graph and PCD-by-PCD on each of the four task data sets. The parameters used are the default
value of the MMPC algorithm in Causal Explorer toolkit (Aliferis et al., 2003). Our results
are shown in Figure 4. We just select a single unsorted feature subset (ulist) without ranking
features (slist), and we submitted a single set of predictions based on the ulist for each test data
set. We focused on causal discovery and we tried to minimize the number of features (ulist)
selected for prediction. Using the POLSL approaches, we discover a small number of important
features which can dominate main causal relationships with a target of interest. As shown in

91

http://www.causality.inf.ethz.ch/data/LUCAS.html
http://www.causality.inf.ethz.ch/data/LUCAS.html

YIN ET AL.

Table 1: Feature selection comparison with Fscore (Mean ± std); the unit of CPU time is sec-
ond. This is a simulation study on the LUCAS data set.

n α Set / Time MMHC MB-based Local-Graph PCD-by-PCD
PA .657± .169 .723± .145 .728± .137 .702± .160

.05 MB .764± .103 .764± .077 .781± .087 .742± .089

CH .688± .125 .681± .092 .688± .121 .671± .114

CPU time 67.4 41.4 27.0 7.54

100 PA .668± .162 .712± .153 .729± .140 .740± .167

.10 MB .774± .099 .781± .077 .775± .094 .773± .088

CH .686± .120 .675± .107 .662± .134 .676± .124

CPU time 71.5 51.6 35.0 8.10

PA .823± .105 .847± .098 .825± .095 .854± .122

.05 MB .870± .074 .872± .062 .873± .082 .827± .064

CH .621± .094 .605± .066 .657± .122 .637± .070

CPU time 75.2 59.5 38.6 8.52

200 PA .831± .099 .844± .095 .806± .093 .871± .111

.10 MB .876± .071 .873± .064 .869± .091 .821± .066

CH .626± .101 .606± .075 .678± .133 .657± .095

CPU time 79.1 66.5 47.7 8.39

PA .863± .033 .870± .029 .832± .047 .921± .032

.05 MB .927± .063 .930± .050 .939± .070 .841± .058

CH .676± .124 .665± .118 .743± .111 .707± .117

CPU time 84.2 74.2 49.6 7.50

500 PA .862± .031 .867± .030 .808± .072 .917± .031

.10 MB .932± .065 .935± .053 .914± .093 .839± .063

CH .685± .127 .677± .122 .738± .105 .727± .125

CPU time 88.7 79.4 61.7 8.13

Table 2: Prediction comparison with Tscore (Mean ± std). NC: no causal knowledge ; Cause:
using causal knowledge ; Full: a full logistic regression model; Shrink: Using shrink-
age; Interaction: model with interactions. This is a simulation study on the LUCAS
data set.

Tscore without / with causal knowledge Regression with interactions
n Dataset NC-Full NC-Shrink Cause-Full Cause-Shrink NC-Full Cause-Shrink

0 .873± .028 .876± .035 .895± .025 .886± .031 .799± .039 .861± .036

100 1 .856± .044 .868± .045 .903± .023 .896± .028 .765± .054 .829± .064

2 .747± .072 .725± .078 .857± .012 .838± .075 .659± .057 .695± .076

0 .893± .032 .894± .033 .895± .025 .887± .030 .794± .041 .874± .051

200 1 .888± .034 .893± .033 .903± .023 .892± .029 .763± .061 .853± .065

2 .774± .064 .760± .072 .857± .012 .840± .063 .656± .058 .741± .063

0 .911± .013 .912± .013 .895± .025 .884± .035 .863± .019 .889± .032

500 1 .910± .012 .912± .013 .903± .023 .894± .026 .820± .046 .874± .055

2 .795± .032 .788± .044 .857± .012 .843± .059 .703± .060 .753± .066

92

LOCAL LEARNING FOR PREDICTION

Figure 4, we selected 15 features from 999 features for REGED, 11 from 999 for MARTI, 16
from 4932 for SIDO and 24 from 132 for CINA. There are only two direct causes of the target
in the underlying causal graphs of REGED and MARTI, and both of them are contained in our
feature sets, see the histograms of REGED and MARTI in Figure 4. Also for CINA and SIDO,
a large proportion of our features are direct causes; especially for SIDO, 13 direct causes are
contained in our set of 15 features. The Tscore and the rank (rk) of our results in Figure 4
may be improved by chance by using a slist of ranked features because the best Tscore over all
feature set sizes is retained under the rules of the challenge. This can be seen in Figure 2 (a) in
Guyon et al. (2008) that relative Tscore of our results are not the best comparing with the Tscore
which is the best over nested feature subsets. However, under the rule of pairwise comparison
using the same number of features, our Fscore and Tscore are at the Pareto front, as shown in
Figure 2 (b) in Guyon et al. (2008). All of our computations are performed on a computer with
CPU 3.0GHz and 2.49 GB RAM. The CPU times for the four data sets are shown in Table 3.
Note that the preprocess time for REGED and CINA is long enough, which is mainly due to the
discretization method (Aliferis et al., 2003). And the additional requirement of preprocessing
time for MARTI is due to the two-stage filter. SIDO needs a relatively shorter preprocess time
because the SIS process is simply a correlation computing process.

Figure 4: Profile of features selected. Legend: dcause=direct cause, deffect=direct effects,
ocauses=other causes (indirect), oeffects=other effects (indirect), spouses=parent of a
direct effect, orelatives=other relatives, unrelated=completely irrelevant.

6. Discussion
For discovering causal and effect features of a target, the POLSL approaches proposed in this
paper only try to find the local structure near a target but not to find the whole network, thus they
can greatly reduce computational complexity of structural learning. The POLSL approaches are
efficient for large causal networks if we are interested only in prediction of a target. We can
theoretically show that the approaches can correctly obtain the edges connected to the target and

93

YIN ET AL.

Table 3: CPU times for our results.

Data set Preprocessing Structure Learning Prediction
REGED 12 hours 15 minutes 5 minutes
SIDO 2 minutes 3 hours 10 minutes
CINA 14 hours 16 hours 10 minutes
MARTI 24 hours 15 minutes 5 minutes

their orientations. Although the Markov blanket of a target is useful for predicting the target
without manipulation, it cannot be used for prediction with manipulation, and the MB-based
algorithm is incomplete in terms of orientations of the edges connected to the target.

Acknowledgments

We would like to thank the five reviewers for their valuable comments and suggestions. We
would appreciate I. Guyon and the competition committee for their encouragement and support
to our work. We also thank Xianchao Xie for providing us with his software of structural learn-
ing. This research was supported by NSFC 10771007, NBRP 2003CB715900, 863 Project of
China (2007AA01Z437), MSRA and MOE-Microsoft Key Laboratory of Statistics and Infor-
mation Technology of Peking University.

Appendix A.
In this appendix we describe the filtering process in details.
First stage of the filtering process
We use a regression model for each of gene expression features, in which calibrant features

are treated as explanatory variables and a gene expression as a response variable. For the jth
observation (microarray), let x(i)

j denote a centralized observed value of the ith feature, s(i)
j the

latent true value of the ith feature and � (i)j the noise. Suppose

x(i)
j = s(i)

j + �
(i)
j , (2)

for i = 1, . . . ,F (F = 999 for MARTI) and j = 1, . . . ,n (n = 500 for MARTI), where s(i)
j is inde-

pendent of � (i)j . To remove noise, some calibrant features spread regularly across the microarray
and they have mean zero. Let yk j denote the kth calibrate feature of the jth observation for
k = 1, . . . ,c (c = 25 for MARTI) and Y j = (y1 j , . . . ,yc j). We assume that the noise at spot i has
the following model related to noise at c calibrant spots

� (i)j = f (i)
(β(i),Y j)+ e(i)

j , (3)

where f (i)
(·) is a known function (we used a linear one), β(i) is an unknown parameter vector

and e(i)
j is a residue with mean zero which is independent of Y j . From (2) and (3) we have

x(i)
j = f (i)

(β(i),Y j)+ (e(i)
j + s(i)

j).

We treat e(i)
j + s(i)

j as an error with mean 0 which is independent of Y . Using the least squares

method, we can get estimates β̂(i), �̂ (i)j = f (i)
(β̂(i),Y j), and ŝ(i)

j = x(i)
j − �̂

(i)
j .

94

LOCAL LEARNING FOR PREDICTION

Second stage of the filtering process
We treat each microarray separately and thus we omit subscript j. We locally filter the residual
noise of each corrected feature ŝ(i) using features near the spot i. Suppose that the model for the
ith corrected feature is

ŝ(i) = r(i)+η(i), (4)

where r(i) and η(i) denote the true latent value and the residual noise respectively, and r(i) is
independent of η(i). Let Z (j) = (z(j)

1
,z(j)

2
) denote the geometric coordinate of spot j relative to

the origin spot i, which is a pair of integers. Define the neighbor area of spot i as Ω
(i) = { j :

j �= i, |Z (j) −Z (i)| ≤ L} where | · | denotes a distance and L is the upper bound (a user chosen
constant) of the distance between spot i and any spot j in the neighbor area. Assume that η(j)

has a polynomial surface in the neighbor area

η(j) = g(i)
(α(i),Z (j)

)+ ξ(j) (5)

for j ∈ Ω
(i) ∪ {i}, where g(i) is a known function (we used a quadratic one), α(i) is an unknown

parameter vector, and ξ(j) is an error term with mean zero. From (4) and (5) we have

ŝ(j) = g(i)
(α(i),Z (j)

)+ (r(j)+ ξ(j)
)

for j ∈ Ω
(i). Treating (r(j) + ξ(j)

) as an error term with mean zero, we first find the model and
remove ‘outliers’ to keep informative signals of features. Then using estimates α̂(i), we obtain
η̂(i) by (4), and finally we get r̂(i) by (3), which is the estimate of the ith feature to be used for
prediction modeling.

Appendix B.
In this appendix we prove theorems presented in Section 3.
Proof of Theorem 1. Define W = {T }∪PCD(T). In algorithm Local-Graph, PCD(X) is ob-
tained for each X ∈W , and V contains all of them. For two nodes u and v, either u is not a
descendant of v or v is not a descendant of u. A node is d-separated from its non-descendant by
its parent set. Then two nodes u and v in W are not adjacent if and only if they are d-separated
by a subset Suv of V . Thus algorithm Local-Graph can correctly find all edges between nodes
in W . If there is a pattern u−T − v and T is not contained in the separator Suv, then we can
discover a v-stricture u→ T ← v. Thus we have proven Theorem 1.
Proof of Theorem 2. In the PCD-by-PCD algorithm, we find PCD(T) and set canV = PCD(T)

where canV denotes a list of nodes whose PCDs will be found at the latter steps.
At step 2 we repeatedly find PCD(X) for X in canV at step 2 (b). Let V denote the set

of variables whose PCD has been found. Suppose that the algorithm for finding PCD(X) is
correct, such as the algorithm MMPC (Tsamardinos et al., 2006).

At step 2 (d), we can correctly obtain an undirected edge X −Z if we have that both Z ∈
PCD(X) and X ∈ PCD(Z). For both Z and X in V , we have obtained PCD(Z) and PCD(X). At
step 2 (d), we only need to treat Z ∈ (V ∩PCDX) since Z �∈ PCD(X) implies no edge X −Z , and
every other pair of Z and Z � contained in V has been treated at the previous step 2 (d) when Z �
or Z entered in V .

At step 2 (e), we try to discover v-structures which contain X as a node since all the undi-
rected edges obtained newly at step 2 (d) contain X and other v-structures without X have been
discovered at the previous step 2 (e).

At step 2 (f), we try to orient undirected edges via v-structures obtained newly at step 2 (e).
At step 2 (g), we add nodes of PCD(X) to the end of canV .

95

YIN ET AL.

Finally, we discuss the stop rule. The condition (1) means that all edges connecting T
have been oriented and thus the algorithm can stop. The condition (2) means that there is no
more node whose PCD needs to be found, which implies other nodes disconnecting T . The
condition (3) means that we have found PCDs for all nodes and thus we cannot orient some
edges connecting T . If the algorithm stops by the condition (3), we have found the global
skeleton graph of the underlying causal network and all v-structures, and thus we obtained the
Markov equivalence class. If the algorithm stops by the condition (2), then the underlying
causal network is not connected, and we have found the skeleton graph and all v-structures in
the connected component.

References
C. Aliferis, I. Tsamardinos and A. Statnikov. ‘Causal Explorer: A Probabilistic Network Learn-

ing Toolkit for Biomedical Discovery.’ The 2003 International Conference on Mathematics
and Engineering Techniques in Medicine and Biological Sciences METMBS’03, June 23-
26, 2003.

J. Fan and J. Lv. Sure independence screening for ultra-high dimensional feature space. To
appear in J. R. Statist. Soc. B 70, 849-911, 2008.

I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J. Pellet, P. Spirtes and A. Statnikov. Design
and analysis of the causation and prediction challenge, in: JMLR: Workshop and conference
Proceedings 1-16, 2008.

S. Lauritzen. Graphical Models. Clarendon Press, London, 1996.

C. Meek. Causal inference and causal explanation with background knowledge, in: Proceedings
of the 11th Conference on Uncertainty in Artificial Intelligence, 403-410, Morgan Kaufmann,
San Francisco, 1995.

M. Y. Park and T. Hastie. L1-regularization path algorithm for generalized linear models. J. R.
Statist. Soc. B 69, 659-677, 2007.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.

J. Ramsey. A PC-style Markov blanket search for high dimensional datasets. Technical Report
No. CMU-PHIL-177, 2006.

P. Spirtes, C. Glymour and R. Scheines. Causation, Prediction, and Search. MIT Press, Cam-
bridge, the second edition, 2000.

I. Tsamardinos, L. Brown and C. Aliferis. The max-min hill-climbing Bayesian network struc-
ture learning algorithm. Machine Learning, 65, 31-78, 2006.

X. Xie and Z. Geng. A recursive method for structural learning of directed acyclic graphs. J
Machine Learning Research, 9, 459-483, 2008.

96

JMLR Workshop and Conference Proceedings 3:107–128 WCCI2008 workshop on causality

Causal & Non-Causal Feature Selection for Ridge Regression

Gavin C. Cawley GCC@CMP.UEA.AC.UK

School of Computing Sciences
University of East Anglia
Norwich, Norfolk, NR4 7TJ, United Kingdom

Editor: I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov

Abstract
In this paper we investigate the use of causal and non-causal feature selection methods for
linear classifiers in situations where the causal relationships between the input and response
variables may differ between the training and operational data. The causal feature selection
methods investigated include inference of the Markov Blanket and inference of direct causes
and of direct effects. The non-causal feature selection method is based on logistic regression
with Bayesian regularisation using a Laplace prior. A simple ridge regression model is used
as the base classifier, where the ridge parameter is efficiently tuned so as to minimise the
leave-one-out error, via eigen-decomposition of the data covariance matrix. For tasks with
more features than patterns, linear kernel ridge regression is used for computational efficiency.
Results are presented for all of the WCCI-2008 Causation and Prediction Challenge datasets,
demonstrating that, somewhat surprisingly, causal feature selection procedures do not provide
significant benefits in terms of predictive accuracy over non-causal feature selection and/or
classification using the entire feature set.

Keywords: regularisation, feature selection, causal inference

1. Introduction
A common assumption underpinning the majority of classical statistical pattern recognition
techniques holds that the training data represent an independent and identically distributed
(i.i.d.) sample drawn from the same underlying distribution as the operational or test data. Un-
fortunately, in many practical applications this assumption may not be valid. For example one
might train a classifier to diagnose lung cancer using historical data from a particular hospi-
tal. However, through changes in referral procedures, diet and lifestyle (for example through
government initiatives to restrict smoking in enclosed public places), the distribution of symp-
toms presented by patients may become progressively more and more different from that of the
training sample; a phenomenon known as covariate shift (Quiñonero Candela et al., 2009). Nev-
ertheless, the classifier may still be of diagnostic value, especially if designed from the outset to
be robust to covariate shift, for instance through careful feature selection. It seems a reasonable
assumption that features in a close causal relationship with the target are likely to remain more
reliable under covariate shift than those with a more tenuous link. A model that is robust in this
sense would also be valuable in predicting the effects of interventions, for instance in planning

©2008 G. C. Cawley

CAWLEY

more effective referral procedures. Therefore there are practical reasons for attempting to infer
the causal relationships between the explanatory and target variables in order to improve pre-
dictive performance rather than uncovering the structure of the data. In this paper we evaluate
the effectiveness of several causal and non-causal feature selection procedures in such situa-
tions, using ridge regression as the base classifier, using all of the datasets comprising in the
WCCI-2008 Causation and Prediction Challenge.

2. Method
Ridge regression ensembles are used as the base classifier for the empirical study. Let D =
{(xi ,yi)}�i=1

represent the training sample, where xi ∈X ⊂ Rd is a vector of explanatory features
for the ith sample, and yi ∈ {+1, − 1} is the corresponding response indicating whether the
sample belongs to the positive or negative class respectively. Ridge regression provides a simple
and effective classifier that is equivalent to a form of regularised linear discriminant analysis.
The output of the ridge regression classifier, ŷi , and vector of model parameters, β ∈ Rd , are
given by

ŷi = xi ·β and

�
X

T
X +λI

�
β = X

T
y, (1)

where X = [xi]
�
i=1

is the data matrix, y= (yi)
�
i=1

is the response vector and the ridge parameter, λ,
controls the bias-variance trade-off (Geman et al., 1992). Note that classifiers used throughout
this study included an unregularised bias parameter, which has been neglected here for nota-
tional convenience. Careful tuning of the ridge parameter allows the ridge regression classifier
to be used even in situations with many more features than training patterns (i.e. d��) without
significant over-fitting (e.g. Cawley, 2006). Fortunately the ridge parameter can be optimised
efficiently by minimising a closed-form leave-one-out cross-validation estimate of the sum of
squared errors, i.e. Allen’s PRESS statistic (Allen, 1974),

P(λ) =
1

�

��

i=1

�
ŷ(−i)

i − yi
�2

where ŷ(−i)
i − yi =

ŷi − yi
1−hii

, (2)

ŷ(−i)
i represents the output of the classifier for the ith training pattern in the ith fold of the

leave-one-out procedure and hii is an element of the principal diagonal of the hat matrix H =

X

�
X

T
X +λI

�−1

X
T . The ridge parameter can be optimised more efficiently in canonical form

(Weisberg, 1985) via eigen-decomposition of the data covariance matrix X
T

X = V
T ΛV, where

Λ is a diagonal matrix containing the eigenvalues. The normal equations and hat matrix can
then be written as

[Λ+λI]α = V
T

X
T

y where α = V
Tβ and H = V [Λ+λI]

−1
V

T (3)

As only a diagonal rather than a full matrix need now be inverted following a change in λ, the
computational expense of optimising the ridge parameter is greatly reduced. For problems with
more features than training patterns, d >� , the kernel ridge regression classifier (Saunders et al.,
1998) with a linear kernel is more efficient and exactly equivalent. The ridge parameter for KRR
can also be optimised efficiently via an eigen-decomposition of the kernel matrix (Saadi et al.,
2007).

2.1 Non-Causal Feature Selection

The feature selection methods most frequently used in practical applications aim to determine
a small subset of features that are predictive of the target variable, without any consideration

98

CAUSAL & NON-CAUSAL FEATURE SELECTION FOR RIDGE REGRESSION

of causal relationships. For a survey of conventional feature selection methods, see Guyon
and Eliseeff (2003). In this study, we adopt an embedded feature selection method, known as
BLogReg (Cawley and Talbot, 2006), based on logistic regression with Bayesian regularisation
using a Laplace prior. As the usual regularisation parameter is integrated out analytically in
this approach using an uninformative hyper-prior, the number of features is determined auto-
matically, without the need for additional cross-validation. Rather than make predictions with
BLogReg directly, it is used to select features for a ridge regression model so that the compari-
son of feature selection techniques is not obscured by the differences due to the classifier.

2.2 Finding the Markov Blanket

The most basic form of causal feature selection aims to determine the Markov blanket, MB(T),
the set of features such that the target, T , is conditionally independent of all other features, con-
ditioned on the features comprising MB(T). Under the faithfulness assumption (Pearl, 1988),
the Markov blanket consists of the set of features representing the direct causes (parents) and
direct consequences (children) of the target, and also any other causes directly affecting the
consequences of the target (spouses). In this study, we use the HITON algorithm (Aliferis et al.,
2003) to infer the Markov blanket of the unmanipulated distribution throughout. If information
is available regarding which features have been manipulated, it is in principle possible to infer
the Markov blanket of the manipulated distribution, however this was not investigated (due to
the ignorance of the investigator at the time!). Once the Markov blanket of the unmanipulated
distribution has been determined, the manipulated children of the target can be deleted (pro-
vided they are not also a spouse via an unmanipulated child) as the direct causal link has been
broken and similarly spouses related only via manipulated children can also be deleted, forming
the Markov blanket of the manipulated distribution.

2.3 Discerning Causes and Effects

More advanced causal inference methods attempt to construct a directed graph representing the
causal relationships between variables. This can be used to identify direct causes and direct
effects of the target variable, forming alternative feature sets for ridge regression classifiers. In
this study, the PC and MMHC algorithms of the Causal Explorer package (for further details, see
Aliferis et al., 2003) were used throughout. As these algorithms are computationally expensive,
they are applied to the subset of features already identified as belonging to the Markov blanket.
As the PC algorithm can accommodate problems with continuous attributes, no discretisation
of continuous features was necessary.

2.4 Use of Ensembles

As feature selection algorithms are unstable, i.e. a perturbation of the data is likely to result in
a different subset of features being selected, an ensemble of 100 ridge regression classifiers is
used in all experiments to minimise the distracting effects of this source of variability. For each
component classifier, a different random partition of the available data is used to form training
and test sets (in proportions of 9:1) and feature selection performed separately for each parti-
tion. The prediction is then made using the arithmetic mean of the 100 component classifiers.
As the regularisation parameter is also tuned separately for each of the component classifiers,
this approach also addresses over-fitting the model selection criterion so some degree (Cawley
and Talbot, 2007; Hall and Robinson, 2009). It should be noted that as feature selection is per-
formed separately for each component classifier, the number of features used by the ensemble
is generally much larger than the number used by any individual member of the ensemble.

99

CAWLEY

3. Results
In this section, we compare the performance of different causal and non-causal feature selection
procedures for ridge regression classifiers on two illustrative benchmarks and each of the four
challenge datasets, before discussing the absolute performance of the base ridge regression clas-
sifier. The results are given for a number of different models, in most cases labelled according
to the feature selection process used:

• True MB: Ensembles trained using the true Markov blanket of the target variable for
each variant of the benchmark. For REGED and MARTI, manipulated features are only
retained if they are parents or spouses of the target. For CINA and SIDO, where the
feature set is comprised of real variables and probes, the true Markov blanket is unknown,
and hence the union of the set of all real variables and probes belonging to the true Markov
blanket is used instead, for further details, see Guyon et al. (2008).

• Inferred MB: Features identified by HITON_MB as forming the Markov blanket of the
unmanipulated distribution are retained.

• None: No feature selection is performed, relying purely on regularisation to prevent over-
fitting the training data.

• Non-causal: Feature selection performed using the BLogReg algorithm (Cawley and
Talbot, 2006), providing an example of the performance of traditional embedded feature
selection methods.

• Causes & effects: Members of the Markov Blanket of the unmanipulated distribution,
identified by HITON_MB, that are determined using the MMHC or PC algorithms to be
direct causes and effects of the target variable. It should be noted that the pre-filtering
to remove features not belonging to the Markov blanket of target for the unmanipulated
distribution probably made it very difficult for the causal discovery algorithm to correctly
orient the edges of the causal graph, and this perhaps explains the poor performance
observed.

• Causes only: Members of the Markov Blanket of the unmanipulated distribution, identi-
fied by HITON_MB, that are determined using the MMHC or PC algorithms to be direct
causes of the target variable.

• Winner: This is the scores achieved by the winning entries for each benchmark in the
WCCI-2008 Causation and Prediction Challenge. For REGED and CINA, these are de-
scribed in Chang and Lin (2008); for SIDO and MARTI, these are described here and in
the supplementary material1. Note that the entries for REGED and CINA are not based
on ridge regression ensembles and so are not directly comparable to the other methods.

• Best TSCORE: Results for models achieving the best TSCORE, whether or not they
were the winning entries, for each variant of each benchmark during the WCCI-2008
Causation and Prediction Challenge.

• Yin et al.: Feature selection based on the method by Yin et al. (2008), which was identi-
fied as the most successful algorithm for local structure determination.

1. http://theoval.cmp.uea.ac.uk/~gcc/projects/causal

100

http://theoval.cmp.uea.ac.uk/~gcc/projects/causal

CAUSAL & NON-CAUSAL FEATURE SELECTION FOR RIDGE REGRESSION

3.1 LUCAS — LUng CAncer Simple Dataset

The LUCAS dataset represents a synthetic medical diagnosis problem, where the task is to iden-
tify patients with lung cancer from a set of explanatory variables of putative causal relevance.
As the data are generated artificially using a set of simple Bayesian network models (see Guyon
et al., 2008, Figure 1 a-c), the true nature of the underlying causal relationships is known, and
so this benchmark is useful in illustrating the value of different approaches in ideal conditions.
The results obtained2 on this benchmark are shown in Table 1.

Table 1: Results obtained for the LUCAS benchmark: FNUM – number of features used, FS-
CORE – area under the receiver operating characteristic (AUROC) statistic for the de-
tection of causally related features, DSCORE – AUROC on the training set, TSCORE
– AUROC on the test set, AUC – AUROC using 100-fold repeated hold-out validation.

Dataset Selection FNUM FSCORE DSCORE TSCORE AUC
LUCAS0 None 11 1.0000 0.9139 0.9170 0.9079

Inferred MB 6 1.0000 0.9102 0.9168 0.9082
True MB 5 1.0000 0.9103 0.9167 0.9082
Non-causal 11 0.8070 1.0000 0.9139 0.9079
Causes & effects 4 0.9000 0.8911 0.8992 0.8910
Causes only 2 0.7000 0.7782 0.7968 0.7832

LUCAS1 True MB 4 1.0000 0.9026 0.9041 —
Inferred MB 6 1.0000 0.9102 0.9012 —
None 11 1.0000 0.9139 0.9005 —
Non-causal 11 1.0000 0.9139 0.9005 —
Causes & effects 4 0.8571 0.8911 0.8808 —
Causes only 2 0.7500 0.7782 0.7910 —

LUCAS2 True MB 2 1.0000 0.7782 0.7913 —
Causes only 2 1.0000 0.7782 0.7913 —
Causes & effects 4 0.9444 0.8911 0.7579 —
Inferred MB 6 0.9444 0.9102 0.7410 —
None 11 0.8333 0.9139 0.7348 —
Non-causal 11 0.9444 0.9139 0.7342 —

Regularisation proves satisfactory in suppressing the influence of uninformative features in
the absence of external manipulation (LUCAS0), and so feature selection does not improve pre-
dictive performance (although selection of the Markov blanket is only marginally inferior). In
the presence of mild manipulation (LUCAS1), the benefit of selecting only the variables com-
prising the Markov blanket of the target becomes more apparent, achieving the best TSCORE
as the manipulation of causally irrelevant variables is ignored. It is interesting to note, however,
that the result obtained is only marginally better than that for a ridge regression model without
any form of feature selection, showing that regularisation is effective in suppressing the influ-
ence of irrelevant variables. However other explanations are plausible. For instance, it could
be that including redundant variables is better than deleting important variables (Guyon et al.,
2008, §6.2); alternatively it may be the case in many applications that the most relevant features
are simply those best correlated with the target. For LUCAS2, only the direct causes are rel-

2. Non-causal feature selection performed using BLogReg (tolerance = 1×10
−9), identification of the Markov blanket

using HITON_MB (“g2” statistic, threshold = 0.05, maximum size of conditioning set = 4), identification of direct
causes and effects using MMHC (with default parameter settings).

101

CAWLEY

evant, and for this simple dataset the causal discovery algorithms (HITON_MB and MMHC)
are effective in identifying them so the causes only model performs significantly better than the
others.

3.2 LUCAP — LUng CAncer with Probes Dataset

The LUCAP benchmark extends the medical diagnosis problem introduced in LUCAS to in-
clude probes, artificial variables that are noisy functions of the existing variables (see Guyon
et al., 2008, Figure 1 d-e). The results obtained3 on this benchmark are shown in Table 2. The
probes appear to obfuscate the task of discovering the true causal structure of the data, and the
models with non-causal feature selection fare conspicuously better than those with causal fea-
ture selection on the manipulated datasets. The organizers suggest that selecting features that
are direct causes of the target may be an attractive approach; however the causal discovery algo-
rithm (MMHC) found 26 features that may be direct causes, over the 100 random partitions of
the data, when in fact there are only two genuine direct causes. The causes only approach there-
fore performed very poorly. It is a rather discouraging result that the causal feature selection
procedures perform so poorly, albeit perhaps in the hands of an inexpert user.

Table 2: Results obtained for the LUCAP benchmark, see caption of Table 1 for details.

Dataset Selection FNUM FSCORE DSCORE TSCORE AUC
LUCAP0 Non-causal 42 0.5930 0.9749 0.9711 0.9681

True MB 105 1.0000 0.9757 0.9692 0.9698
None 143 0.7381 0.9768 0.9686 0.9695
Inferred MB 77 0.8466 0.9726 0.9684 0.9674
Causes & effects 45 0.7143 0.9703 0.9675 0.9664
Causes only 26 0.6238 0.9486 0.9382 0.8089

LUCAP1 True MB 11 1.0000 0.9139 0.9126 —
Non-causal 42 0.6832 0.9749 0.8564 —
Causes & effects 45 0.5561 0.9703 0.8317 —
Inferred MB 77 0.5344 0.9726 0.8121 —
None 143 0.6109 0.9768 0.7744 —
Causes only 26 0.5090 0.9486 0.6504 —

LUCAP2 True MB 11 1.0000 0.9139 0.9165 —
Non-causal 42 0.6832 0.9749 0.6578 —
Inferred MB 77 0.5344 0.9726 0.5634 —
Causes & effects 45 0.5561 0.9703 0.5575 —
None 143 0.6109 0.9768 0.5100 —
Causes only 26 0.5090 0.9468 0.4344 —

3.3 REGED — REsimulated Gene Expression Dataset

The REGED dataset represents a re-simulated gene expression microarray classification prob-
lem, where the task is to diagnose lung cancer on the basis of gene expression profiles, clas-

3. BLogReg: tolerance = 1×10
−9, HITON_MB: “g2” statistic, threshold = 0.05, maximum size of conditioning set

= 4, MMHC: default parameter settings.

102

CAUSAL & NON-CAUSAL FEATURE SELECTION FOR RIDGE REGRESSION

sifying samples as malignant (adenocarcinoma) or benign (squamous). The results obtained4

on this benchmark are shown in Table 3 and statistical significance diagrams (adapted from the
critical difference diagrams introduced by Demšar (2006)), are shown in Figure 1:

• For all three datasets, True MB achieves a TSCORE that is statistically indistinguishable
from the best obtained during the challenge (Best TSCORE), demonstrating that the linear
ridge regression ensemble is a competitive base classifier for this benchmark.

• For all three datasets, the TSCORE performance obtained using the non-causal feature se-
lection procedure (BLogReg) was statistically indistinguishable from that obtained using
the best overall causal feature selection procedure (Yin et al.). This is perhaps because
the BLogReg algorithm was originally developed with this particular application (Caw-
ley, 2006) in mind, although the approach is generally applicable and without specific
adaption to microarray classification.

• The total number of features used by the inferred Markov Blanket ensemble for REGED0
(78) is much larger than the average number of features used by the individual component
classifiers (24.85), providing an indication of the instability of the causal feature selection
methods. Note that the average size of the inferred Markov blanket for each component is
however close to the true value (21). The average number of features used by individual
component classifiers are shown in Table 8, demonstrating that a degree of instability is
to be expected when using both causal and non-causal feature selection methods.

• None of the causal feature selection algorithms, with the exception of reference en-
tries, proved statistically superior to non-causal selection procedures for any of the three
REGED datasets, a rather disappointing and challenging result.

No use was made of the information regarding the manipulated variables for the methods intro-
duced in this study; it is possible that better results might be obtained by taking advantage of
this information, especially for causal feature selection approaches.

3.4 SIDO — SImple Drug Operation

The SIDO benchmark represents a problem in pharmacology, where the task is to identify small
molecules that are active against the AIDS HIV virus on the basis of a large number of binary
molecular descriptors. The results obtained5 on this benchmark are shown in Table 4 and the
statistical significance diagram in Figure 2:

• Again, for all three datasets, True MB achieves a TSCORE that is statistically indistin-
guishable from the best obtained during the challenge (Best TSCORE), demonstrating
that the linear ridge regression ensemble is a competitive base classifier for this bench-
mark.

• For both manipulated datasets, the TSCORE achieved using no feature selection at all is
statistically superior to the best overall causal feature selection method (Yin et al.). For
the unmanipulated dataset, the differences in performance were statistically insignificant.
This demonstrates that regularisation alone can be highly effective in suppressing the
deleterious influence of uninformative features.

4. BLogReg: tolerance = 1× 10
−6, HITON_MB: “z” statistic, threshold = 0.05, maximum size of conditioning set

= 2, PC: ’z’ statistic, threshold = 0.05, k = 16.
5. BLogReg: tolerance = 1×10

−6, HITON_MB: “g2” statistic, threshold = 0.05, maximum size of conditioning set
= 3, PC: “g2” statistic, threshold = 0.05, k = 8.

103

CAWLEY

0

0

0

1

1

1

1.000

0.9999

0.9998

0.9997

0.9997

Best TSCORE

True MB

Winner

Yin et al

Non Causal

Best TSCORE

True MB

Winner

Yin et al

Non Causal

0.9955Causes only

None

Causes & Effects

Inferred MB

Causes only

None

Causes & Effects

Inferred MB

0.9983

0.9996

0.9997

0.8919

0.9321

0.9329

0.9346

0.9980

0.9957

0.9556

0.9548

0.9508

0.7184

0.7644

0.7653

0.7989

None

Inferred MB

Causes only

Causes & Effects

0.9534

0.9464

0.8392

0.8019

0.7992

Best TSCORE

True MB

Winner

Yin et al

Non Causal

(a)

(b)

(c)

Figure 1: Statistical significance diagrams for (a) REGED0, (b) REGED1 and (c) REGED2.
The axis represents the TSCORE statistic, and the heavy bars denote groups of clas-
sifiers with statistically indistinguishable performance. The statistical significance of
differences in TSCORE are determined using the two sample z-test at the 95% level
of significance (a critical value of z = 1.64).

104

CAUSAL & NON-CAUSAL FEATURE SELECTION FOR RIDGE REGRESSION

• The differences in TSCORE between the best causal feature selection procedure (Yin et
al.) and non-causal feature selection using BLogReg were statistically insignificant for
all three datasets.

• None of the causal feature selection algorithms investigated, with the exception of refer-
ence entries, proved statistically superior to an ensemble trained using all of the available
features for any of the three SIDO datasets, again a rather disappointing result.

3.5 CINA — Census Is Not Adult

The CINA benchmark describes an econometrics problem, where the task is to discover the
socio-economic factors affecting income (the positive class representing individuals with annual

Table 3: Results obtained for the REGED benchmark, see caption of Table 1 for details.

Dataset Selection FNUM FSCORE DSCORE TSCORE AUC
REGED0 Best TSCORE∗ 122 0.8352 1.0000 1.0000±0.0002 —

True MB 21 1.0000 0.9999 0.9999±0.0008 0.9997
Winner‡ 16 0.8526 1.0000 0.9998±0.0009 —
Yin et al. 15 0.8571 1.0000 0.9997±0.0010 0.9998
Non-causal 26 0.8070 1.0000 0.9997±0.0009 0.9997
Inferred MB 78 0.8988 0.9999 0.9997±0.0012 0.9995
Causes & effects 13 0.8095 0.9999 0.9996±0.0011 0.9996
None 999 0.9204 1.0000 0.9983±0.0017 0.9962
Causes only 9 0.7143 0.9984 0.9955±0.0018 0.8961

REGED1 Best TSCORE∗ 122 0.7946 1.0000 0.9980±0.0015 —
True MB 14 1.0000 0.9926 0.9957±0.0020 —
Winner‡ 16 0.8566 1.0000 0.9556±0.0040 —
Yin et al. 14 0.8185 0.9999 0.9548±0.0036 —
Non-causal 26 0.7798 1.0000 0.9508±0.0036 —
Inferred MB 78 0.8438 0.9999 0.9346±0.0044 —
Causes & effects 13 0.7822 0.9999 0.9329±0.0037 —
None 999 0.9078 1.0000 0.9321±0.0036 —
Causes only 9 0.7124 0.9984 0.8919±0.0042 —

REGED2 Best TSCORE† 2 1.0000 0.9611 0.9534±0.0042 —
True MB 2 1.0000 0.9557 0.9464±0.0041 —
Winner‡ 8 0.9970 0.9995 0.8392±0.0052 —
Yin et al. 11 0.9975 0.9997 0.8019±0.0054 —
Non-causal 26 0.9980 1.0000 0.7992±0.0056 —
Causes & effects 13 0.9970 0.9999 0.7989±0.0057 —
Causes only 9 0.9970 0.9984 0.7653±0.0054 —
Inferred MB 78 0.9975 0.9999 0.7644±0.0057 —
None 999 0.9950 1.0000 0.7184±0.0059 —

∗Reference “SNB(CMA), IID assumption”, †Reference “True model with parents”, ‡Yin-Wen Chang
“final submission”.

105

CAWLEY

0 1

0.9294

0.9317

0.9328

0.9410

Non Causal

Causes Only

Causes & Effects

Yin et al

Causes & Effect

Causes Only

Yin et al

Inferred MB

Causes & Effect

Causes Only

Non Causal

Yin et al

0.9467

0.9436

0.9427

0.9427

0.9419

Best TSCORE

True MB

Winner

Inferred MB

None

True MB

Best TSCORE

Winner

None

Non Causal

True MB

Best TSCORE

Winner

None

Inferred MB

0 1

0.6600

0.6613

0.6834

0.6940

0.8061

0.7893

0.7532

0.7532

0.6971

(a)

(b)

(c)

0 1

0.5983

0.600

0.6298

0.6322

0.7780

0.7674

0.6684

0.6684

0.6341

Figure 2: Statistical significance diagrams for (a) SIDO0, (b) SIDO1 and (c) SIDO2. The axis
represents the TSCORE statistic, and the heavy bars denote groups of classifiers with
statistically indistinguishable performance.

106

CAUSAL & NON-CAUSAL FEATURE SELECTION FOR RIDGE REGRESSION

Table 4: Results obtained for the SIDO benchmark, see caption of Table 1 for details.

Dataset Selection FNUM FSCORE DSCORE TSCORE AUC
SIDO0 Best TSCORE† 181 0.4940 0.9584 0.9467±0.0073 —

True MB 4301 0.9995∗ 0.9830 0.9436±0.0072 0.9471
Winner§ 4928 0.5890 0.9840 0.9427±0.0070 —
None 4928 0.5890 0.9840 0.9427±0.0070 0.9472
Inferred MB 837 0.5834 0.9563 0.9419±0.0075 0.9356
Yin et al. 16 0.5019 0.9475 0.9410±0.0074 0.9442
Causes & effects 58 0.5067 0.9459 0.9328±0.0085 0.8798
Causes only 58 0.5067 0.9454 0.9317±0.0089 0.8733
Non-causal 138 0.5160 0.9482 0.9294±0.0080 0.9226

SIDO1 True MB 1643 0.9997∗ 0.9098 0.8061±0.0132 —
Best TSCORE‡ 1024 0.8114 0.9021 0.7893±0.0135 —
Winner§ 4928 0.5314 0.9840 0.7532±0.0137 —
None 4928 0.5314 0.9840 0.7532±0.0137 —
Non-causal 138 0.4909 0.9482 0.6971±0.0138 —
Inferred MB 873 0.5351 0.9563 0.6940±0.0138 —
Yin et al. 16 0.5035 0.9475 0.6834±0.0133 —
Causes only 58 0.4989 0.9454 0.6613±0.0138 —
Causes & effects 58 0.4989 0.9459 0.6600±0.0137 —

SIDO2 True MB 1643 0.9997∗ 0.9089 0.7780±0.0130 —
Best TSCORE‡ 512 0.8114 0.8693 0.7674±0.0129 —
Winner§ 4928 0.5314 0.9840 0.6684±0.0130 —
None 4928 0.5314 0.9840 0.6684±0.0130 —
Inferred MB 873 0.5351 0.9563 0.6341±0.0124 —
Yin et al. 16 0.5035 0.9475 0.6322±0.0131 —
Non-causal 138 0.4909 0.9482 0.6298±0.0039 —
Causes only 58 0.4989 0.9545 0.6000±0.0129 —
Causes & effects 58 0.4989 0.9459 0.5983±0.0129 —

∗Some features beneath the Markov blanket assigned a weight of zero and was not included. †Gavin
Cawley “Final #009”, ‡Reference “MB_LR_S”, §Gavin Cawley “final models”.

income in excess of $50K). The results obtained6 on this benchmark are shown in Table 5 and
the statistical significance of differences in TSCORE are depicted in Figure 3:

• True MB achieves a TSCORE that is statistically indistinguishable from the best obtained
during the challenge (Best TSCORE), on both manipulated datasets, but not in CINA0.
This suggests that linear ridge regression ensembles may not provide a genuinely com-
petitive base classifier for this benchmark, especially as the difference is quite large for
CINA0. Note that BLogReg was used as the base classifier for the final challenge sub-
mission as the mean AUC scores for the individual component classifiers was lower than
that for linear ridge regression.

• For both manipulated datasets, the TSCORE achieved using no feature selection at all is
statistically superior to the best overall causal feature selection method (Yin et al.). For

6. BLogReg: tolerance = 1× 10
−6, HITON_MB: “z” statistic, threshold = 0.05, maximum size of conditioning set

= 5, PC: “z” statistic, threshold = 0.05, k = 4.

107

CAWLEY

the unmanipulated dataset, the difference in performance is statistically insignificant. In
this case, it seems that, while regularisation is not that effective in suppressing the influ-
ence of uninformative features, the instability of feature selection procedure means that
better performance is only available given prior knowledge of the causal relationships.

• The differences in TSCORE between the best causal feature selection procedure (Yin et
al.) and non-causal feature selection using BLogReg were statistically insignificant for
all three datasets.

• None of the causal feature selection algorithms investigated, with the exception of refer-
ence entries, proved statistically superior to an ensemble trained using all of the available
features for any of the three CINA datasets, again a rather disappointing result.

Table 5: Results obtained for the CINA benchmark, see caption of Table 1 for details.

Dataset Selection FNUM FSCORE DSCORE TSCORE AUC
CINA0 Best TSCORE∗ 90 0.8913 0.9794 0.9788±0.0029 —

Winner‡ 64 0.6000 0.9721 0.9715±0.0032 —
Non-causal 67 0.5708 0.9682 0.9679±0.0035 0.9660
None 132 0.7908 0.9677 0.9674±0.0035 0.9664
True MB 115 1.0000 0.9674 0.9673±0.0035 0.9663
Inferred MB 70 0.7708 0.9669 0.9669±0.0035 0.9660
Yin et al. 22 0.5957 0.9657 0.9665±0.0034 0.9657
Causes & effects 42 0.6826 0.9654 0.9661±0.0035 0.9653
Causes only 4 0.5174 0.7923 0.7911±0.0046 0.5351

CINA1 Best TSCORE∗ 90 0.4542 0.9794 0.8977±0.0043 —
True MB 44 1.0000 0.8915 0.8910±0.0040 —
Winner‡ 64 0.7053 0.9721 0.8446±0.0047 —
Inferred MB 70 0.5261 0.9669 0.7979±0.0052 —
None 132 0.5865 0.9677 0.7953±0.0050 —
Causes & effects 42 0.5477 0.9654 0.7749±0.0050 —
Yin et al. 24 0.5823 0.9652 0.7710±0.0048 —
Non-causal 67 0.6436 0.9682 0.7609±0.0053 —
Causes only 4 0.5114 0.7923 0.5402±0.0056 —

CINA2 True MB 44 1.0000 0.8915 0.8920±0.0043 —
Best TSCORE† 32 1.0000 0.8909 0.8910±0.0042 —
Winner‡ 4 0.7053 0.8137 0.8157±0.0052 —
None 132 0.5865 0.9677 0.5502±0.0043 —
Inferred MB 70 0.5261 0.9669 0.5469±0.0041 —
Non-causal 67 0.6436 0.9682 0.5464±0.0039 —
Causes & effects 42 0.5477 0.9654 0.5394±0.0038 —
Yin et al. 18 0.5794 0.9636 0.5373±0.0041 —
Causes only 4 0.5114 0.7923 0.4825±0.0035 —

∗Reference “SNB(CMA), IID assumption”. †Reference “CINA Test”, ‡ Yin-Wen Chang “final
submission”.

108

CAUSAL & NON-CAUSAL FEATURE SELECTION FOR RIDGE REGRESSION

0 1

0.794

0.9661

0.9665

0.9669

Causes

Causes & Effects

Yin et al

Inferred MB

Causes Only

Non Causal

Yin et al

Causes & Effects

Causes Only

Yin et al

Causes & Effects

Non Causal

0.9788

0.9715

0.9679

0.9674

0.9673

Best TSCORE

Winner

Non Causal

None

True MB

Best TSCORE

True MB

Winner

Inferred MB

None

True MB

Best TSCORE

Winner

None

Inferred MB

0 1

0.5402

0.7609

0.7710

0.7749

0.8977

0.8910

0.8446

0.7979

0.7953

(a)

(b)

(c)

0 1

0.4825

0.5373

0.5394

0.5464

0.8920

0.8910

0.8137

0.5502

0.5469

Figure 3: Statistical significance diagrams for (a) CINA0, (b) CINA1 and (c) CINA2. The axis
represents the TSCORE statistic, and the heavy bars denote groups of classifiers with
statistically indistinguishable performance.

109

CAWLEY

3.6 MARTI — Measurement ARTIfact

Like REGED, the MARTI benchmark represents a re-simulated microarray classification task,
the aim of which is to identify genes that may be responsible for lung cancer. However, in this
case additive zero-mean correlated noise has been added to the data to simulate measurement
artifacts introduced by an instrument used to collect the training data that is substantially inferior
to a more accurate instrument used to gather the test data. Figure 4 shows an example of the
correlated noise corrupting a training sample from the MARTI benchmark. The correlated
noise is likely to confuse both causal and non-causal feature selection algorithms, and therefore
MARTI differs from the other challenge datasets in that non-trivial pre-processing is required.
We adopt a kernel ridge regression approach to try to estimate the noise for each training pattern
as a function of the x- and y-co-ordinates of the spot on the microarray image. Let X represent
the d×2 matrix, where each row, xi , gives the x- and y-co-ordinates of a spot on the microarray
image, and Y represents the d×� matrix containing the expression levels for every gene, where
each row, yi , represents a spot and each column represents a sample. We assume that the noise
contaminating the expression levels can be approximated by a linear model in a feature space
induced by a radial basis function kernel, with the expression levels themselves modelled by a
Gaussian noise process,

yi = φ(xi) ·W +εi, where � i ∼ N

�
0,σ2

i I

�
, (4)

where φ(x) represents the image of the data in the kernel induced feature space. Note that a
heteroscedastic noise model is used (e.g. Cawley et al., 2004) as considerable variation is evi-
dent in the range of expression of different genes. The model (4) is equivalent to a multi-output
weighted kernel ridge regression model (Saunders et al., 1998), with the weights given by the
inverse noise variance for each spot, σ−1 =

�
σ−2

1
,σ−2

2
, . . . ,σ−2

d

�
. The iterative training algorithm

alternates updates of the model parameters with re-estimation of the noise variance terms using
the model residuals. The usual regularisation and kernel parameters were tuned via numerical
minimisation of the cross-validation error. Estimates of the true expression profiles can then
be obtained by simply subtracting from Y the estimate of the correlated noise given by the fit-
ted model. The results obtained7 on this benchmark are shown in Table 6, the corresponding
statistical significance diagram is shown in Figure 5:

• The pre-processing steps described above proved quite satisfactory, as demonstrated by
the similarity of results obtained on the REGED and MARTI benchmarks, shown in Ta-

7. BLogReg: tolerance = 1× 10
−6, HITON_MB: “z” statistic, threshold = 0.05, maximum size of conditioning set

= 5, PC: “z” statistic, threshold = 0.05, k = 16.

(a) (b) (c)

Figure 4: Example pattern from the training set of the MARTI benchmark (a) raw microarray
image (b) estimate of correlated noise and (c) filtered expression levels.

110

CAUSAL & NON-CAUSAL FEATURE SELECTION FOR RIDGE REGRESSION

bles 3 and 6 respectively, however no use was made of the calibrant features or knowledge
of manipulated features so the results are likely to be somewhat sub-optimal.

• The TSCORE for a linear ridge regression ensemble using knowledge of the true Markov
blanket exceeds that of the best TSCORE achieved by any challenges submission, by a
statistically significant margin on the manipulated datasets. This suggest that linear ridge
regression ensembles are competitive as a base classifier for this application.

• For both manipulated datasets, the TSCORE achieved using no feature selection at all is
statistically superior to the best overall causal feature selection method (Yin et al.). For
the unmanipulated dataset, the difference in performance is statistically insignificant. In
this case, it seems that while regularisation is not that effective in suppressing the influ-
ence of uninformative features, the instability of feature selection procedure means that
better performance is only available given prior knowledge of the causal relationships.

• The TSCORE achieved using non-causal feature selection was statistically indistinguish-
able from that achieved by the best all-round causal feature selection procedure (Yin et
al.) on the unmanipulated data (MARTI0), was statistically superior on one manipulated
dataset (MARTI1) and statistically inferior on the other (MARTI2), suggesting that causal
feature selection does not improve overall on non-causal feature selection.

3.7 Final Challenge Submission

Table 7 shows the results for the final challenge submission. BLogReg was used as the base
classifier for the CINA benchmark, as this gave slightly better performance under the 100-fold
repeated hold-out procedure used for validation during the development phase of the challenge.
The full set of models for the SIDO datasets was incomplete by the challenge deadline; the best
models proved to be simple ridge regression models with no feature selection (note that there
were four features in the training set with zero variance, hence only 4928 features were actually
used by the classifier). The rankings indicate that the base classifiers were good choices for the
benchmarks considered, and so the comparison of feature selection methods provides a good
indication of their relative merits. Further details of the final challenge submission are available
in the supplementary material.

4. Recommendations
The results of the investigation presented in the previous section suggest that further research
is required in order for causal feature selection methods to approach more closely the superior
performance that experimental “ground truth” evidence and qualitative arguments suggest are
available. We are however in a position to make some recommendations for use in practical
applications:

• Use regularisation: Regularisation is known to be a viable alternative to feature selection
in applications with unmanipulated data, where predictive performance is the primary
objective rather than discovering a compact set of informative features (Miller, 2002). It
has also been argued that when faced with covariate shift it may be better to include bad
features rather than delete good features (Guyon et al., 2008, §6.2), in which case using a
larger feature set with regularisation to avoid over-fitting seems a sensible strategy.

• Use Bagging: A comparison of the size of the true Markov blanket of the unmanipulated
distribution with the number of determined to belong to the Markov blanket of individ-

111

CAWLEY

0 1

0.9775

0.9970

0.9983

0.9986

0.6370

0.8929

0.8988

0.9085

0.6607

0.7193

0.7416

0.7740

Causes Only

None

Yin et al

Causes & Effects

Causes Only

Causes & Effects

Yin et al

None

Causes Only

None

Causes & Effects

Inferred MB

0.9998

0.9996

0.9996

0.9995

0.9993

0.9922

0.9542

0.9470

0.9310

0.9234

0.9266

0.8273

0.8130

0.7975

0.7975

True MB

Best TSCORE

Winner

Inferred MB

Non Causal

True MB

Best TSCORE

Winner

Non Causal

Inferred MB

True MB

Best TSCORE

Yin et al

Winner

Non Causal

(a)

(b)

(c)

0 1

0 1

Figure 5: Statistical significance diagrams for (a) MARTI0, (b) MARTI1 and (c) MARTI2. The
axis represents the TSCORE statistic, and the heavy bars denote groups of classifiers
with statistically indistinguishable performance.

112

CAUSAL & NON-CAUSAL FEATURE SELECTION FOR RIDGE REGRESSION

ual component classifiers and the number of features used by the ensemble as a whole,
suggests that identification of the Markov blanket using HITON_MB is unstable (i.e. the
composition of the Markov blanket depends substantially on the sample of data from
which it was inferred). Model selection, including the tuning of the regularisation param-
eter is also subject to over-fitting the selection criterion (Cawley and Talbot, 2007), and
bagging will help to alleviate this also (Hall and Robinson, 2009).

• Investigate alternative base classifiers: In this study, we investigated only two base clas-
sifiers, linear ridge regression and BLogReg (for CINA). It may be that the benefits of
causal feature selection may be obscured by the use of a base classifier that is unable to
take advantage of non-linear relationships between features.

• In orienting the edges in the causal graph, it would be better to pre-filter the features to
include not only the Markov blanket of the target, but also the parents and children of all
features within the Markov blanket (c.f. Yin et al., 2008).

Table 6: Results obtained for the MARTI benchmark, see caption of Table 1 for details.

Dataset Selection FNUM FSCORE DSCORE TSCORE AUC
MARTI0 True MB 21 1.0000 0.9997 0.9998±0.0010 0.9991

Best TSCORE∗ 148 0.9078 1.0000 0.9996±0.0010 —
Winner§ 128 0.8697 1.0000 0.9996±0.0012 —
Inferred MB 131 0.8862 1.0000 0.9995±0.0011 0.9994
Non-causal 44 0.8029 0.9998 0.9993±0.0014 0.9986
Causes & effects 15 0.7849 0.9987 0.9986±0.0016 0.9978
Yin et al. 11 0.6896 0.9982 0.9983±0.0018 0.9973
None 1024 0.7980 1.0000 0.9970±0.0019 0.9950
Causes only 3 0.5714 0.9821 0.9775±0.0031 0.9346

MARTI1 True MB 14 1.0000 0.9889 0.9922±0.0024 —
Best TSCORE† 8 1.0000 0.8992 0.9542±0.0041 —
Winner§ 32 0.8064 1.0000 0.9470±0.0039 —
Non-causal 44 0.7752 0.9998 0.9310±0.0039 —
Inferred MB 131 0.8265 1.0000 0.9234±0.0045 —
None 1024 0.7923 1.0000 0.9085±0.0047 —
Yin et al. 11 0.6399 0.9982 0.8988±0.0046 —
Causes & effects 15 0.7820 0.9987 0.8929±0.0049 —
Causes only 3 0.5347 0.9821 0.6370±0.0059 —

MARTI2 True MB 2 1.0000 0.9277 0.9266±0.0049 —
Best TSCORE‡ 2 1.0000 0.8099 0.8273±0.0060 —
Yin et al. 11 0.9980 0.9982 0.8130±0.0053 —
Winner§ 64 0.9956 0.9998 0.7975±0.0059 —
Non-causal 44 0.9976 0.9998 0.7975±0.0059 —
Inferred MB 131 0.9966 1.0000 0.7740±0.0060 —
Causes & effects 15 0.9956 0.9987 0.7416±0.0063 —
None 1024 0.9951 1.0000 0.7193±0.0062 —
Causes only 3 0.7485 0.9821 0.6607±0.0062 —

∗Gavin Cawley “marti001 part006”, †Reference “MB_NB_F_S”, ‡Reference “FMBLR”, §Gavin Cawley
“final models”.

113

CAWLEY

Table 7: Summary of results for the final challenge submission. Top Ts gives the best Tscore
amongst all valid final submissions, Max Ts gives the optimal Tscore, given knowledge
of the true causal relationships, estimated using reference submissions, see caption of
Table 1 for further details.

Dataset Causal Discovery Target Prediction Rank
Fnum Fscore Dscore Tscore Top Ts Max Ts

CINA0 128 0.5166 0.9737 0.9743 0.9765 0.9788
3CINA1 128 0.5860 0.9737 0.8691 0.8691 0.8977

CINA2 64 0.5860 0.9734 0.7031 0.8157 0.8910

MARTI0 128 0.8697 1.0000 0.9996 0.9996 0.9996
1MARTI1 32 0.8064 1.0000 0.9470 0.9470 0.9542

MARTI2 64 0.9956 0.9998 0.7975 0.7975 0.8273

REGED0 128 0.9410 0.9999 0.9997 0.9998 1.0000
2REGED1 32 0.8393 0.9970 0.9787 0.9888 0.9980

REGED2 8 0.9985 0.9996 0.8045 0.8600 0.9534

SIDO0 4928 0.5890 0.9840 0.9427 0.9443 0.9467
1SIDO1 4928 0.5314 0.9840 0.7532 0.7532 0.7893

SIDO2 4928 0.5314 0.9840 0.6684 0.6684 0.7674

• Like conventional feature selection procedures, causal feature discovery methods appear
to exhibit significant instability. An empirical characterisation of this instability would be
an interesting area for further research.

5. Summary
In this paper, we have evaluated causal and non-causal feature selection procedures for ridge
regression under covariate-shift. The reference submissions generated with knowledge of the
true causal relationships clearly demonstrate that causal feature selection is very effective in
mitigating against covariate-shift. However the models with causal feature selection procedures
investigated here generally failed to out-perform models with non-causal feature selection (or
indeed without a feature selection step), except on the most basic toy benchmark (LUCAS). This
is a surprising and disappointing result for datasets designed for causal inference. It should be
noted that the causal feature selection procedures are also computationally expensive, for in-
stance identification of the Markov blanket for the SIDO dataset using HITON_MB took on
average 76 hours, 57 minutes 8 seconds, and orientation of causal links using the PC algorithm
took on average 50 hours, 21 minutes and 26 seconds. This means that the SIDO experiments
consumed approximately 18 processor-months, without providing any improvement in predic-
tive accuracy! These results demonstrate that causal inference is a challenging task, where
further theoretical and algorithmic advances are likely to bring substantial practical benefits and
where a more detailed empirical study is clearly warranted.

Acknowledgments

I would like to thank the co-organizers for their efforts in staging a very interesting and, for
myself at least, educational challenge. I would also like to thank Gareth Janacek, the editors

114

CAUSAL & NON-CAUSAL FEATURE SELECTION FOR RIDGE REGRESSION

and the anonymous reviewers for their helpful and constructive comments, and Nicola Talbot
for her help in preparing the manuscript.

References
C. F. Aliferis, I. Tsamardinos, and A. Statnikov. HITON: A novel Markov blanket algorithm

for optimal variable selection. In Proc. AMIA Annual Symposium, pages 21–25, 2003.

D. M. Allen. The relationship between variable selection and prediction. Technometrics, 16:
125–127, 1974.

G. C. Cawley. Leave-one-out cross-validation based model selection criteria for weighted LS-
SVMs. In Proc. IJCNN-06, pages 1661–1668, July 16–21 2006.

G. C. Cawley and N. L. C. Talbot. Gene selection in cancer classification using sparse logistic
regression with Bayesian regularization. Bioinformatics, 22(19):2348–2355, October 1 2006.

G. C. Cawley and N. L. C. Talbot. Preventing over-fitting during model selection via Bayesian
regularisation of the hyper-parameters. Journal of Machine Learning Research, 8:841–861,
April 2007.

G. C. Cawley, N. L. C. Talbot, R. J. Foxall, S. R. Dorling, and D. P. Mandic. Heteroscedastic
kernel ridge regression. Neurocomputing, 57:105–124, March 2004.

Y.-W. Chang and C.-J. Lin. Feature ranking using linear SVM. JMLR: Workshop and Confer-
ence Proceedings, 3, WCCI-2008 Workshop on Causality:53–54, 2008.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.
Neural Computation, 4(1):1–58, January 1992.

I. Guyon and A. Eliseeff. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3:1157–1182, March 2003.

I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov. Design
and analysis of the causation and prediction challenge. JMLR: Workshop and Conference
Proceedings, 3, WCCI-2008 Workshop on Causality:1–33, 2008.

P. Hall and A. P. Robinson. Reducing the variability of crossvalidation for smoothing parameter
choice. Biometrika, 96(1):175–186, March 2009.

A. Miller. Subset selection in regression, volume 95 of Monographs on Statistics and Applied
Probability. Chapman & Hall/CRC, second edition, 2002.

J. Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan
Kaufmann, 1988.

J. Quiñonero Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, editors. Dataset
shift in machine learning. Neural Information Processing Series. MIT Press, 2009.

K. Saadi, G. C. Cawley, and N. L. C. Talbot. Optimally regularised kernel Fisher discriminant
classification. Neural Networks, 20(7):832–841, September 2007.

115

CAWLEY

C. Saunders, A. Gammermann, and V. Vovk. Ridge regression in dual variables. In J. Shavlik,
editor, Proc. ICML-98. Morgan Kaufmann, 1998.

S. Weisberg. Applied linear regression. John Wiley and Sons, New York, 2
nd edition, 1985.

J. Yin, Y. Zhou, C. Wang, P. He, Zhengm C., and Z. Geng. Partial orientation and local structure
learning of causal networks for prediction. JMLR: Workshop and Conference Proceedings,
3, WCCI-2008 Workshop on Causality:93–105, 2008.

Table 8: Mean number of features used, and hold-out set AUROC score, over the 100 models
comprising each of the ensembles used to make predictions.

Benchmark Selection Features AUROC
None 11.00 0.9079
Non-causal 10.99 0.9079

LUCAS Markov blanket 5.01 0.9082
Causes & effects 4.00 0.8910
Causes only 2.00 0.7832

None 143 0.9695
Non-causal 6.03 0.9426

LUCAP Markov blanket 47.83 0.9674
Causes & effects 39.91 0.9664
Causes only 2.06 0.8089

None 132.00 0.9664
Non-causal 29.44 0.9660

CINA Markov blanket 55.30 0.9660
Causes & effects 21.21 0.9653
Causes only 1.02 0.5351

None 999.00 0.9962
Non-causal 14.69 0.9997

REGED Markov blanket 24.85 0.9995
Causes & effects 11.11 0.9996
Causes only 2.39 0.8961

None 4932.00 0.9472
Non-causal 28.96 0.9226

SIDO Markov blanket 136.27 0.9348
Causes & effects 10.07 0.8798
Causes only 9.95 0.8733

None 1024.00 0.9950
Non-causal 15.19 0.9986

MARTI Markov blanket 26.86 0.9994
Causes & effects 8.60 0.9978
Causes only 1.56 0.9346

116

Appendix I

Causation and Prediction
Challenge Fact Sheets

Causation and Prediction Challenge Fact Sheet 1

Title: Feature selection, redundancy elimination, and gradient boosted trees

Author: Alexander Borisov

Address: INTEL Corporation, Advanced Analytics team

Email: alexander.borisov@intel.com

Acronym of your best entry: ACE+GBT

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Alexander_Borisov.html

References
[1] Borisov, A., Torkkola, K., Tuv E. (2006) “Best Subset Feature Selection for Massive

Mixed – Type Problems”. 7th International Conference on Intelligent Data Engineering
and Automated Learning, IDEAL-2006, Lecture Notes in Computer Science Series, Vol.
4224, 1048-1056, Springer 2006.

[2] Tuv E., Borisov A., Runger G., Torkkola K. “Best Subset Feature Selection with En-
sembles, Artificial Variables, and Redundancy Elimination”. Submitted to Journal of
Machine learning Research, 2008.

Method
No preprocessing was done.

Feature selection method contains 2 steps. For unbalanced datasets, all classifiers (RF, GBT)
use stratified sampling to compensate, i.e. for each tree in ensemble 60% samples of rare class
and same quantity of frequent class are selected as input.

1. Feature selection using ensemble classifiers (ACE FS). Contrast variables that are per-
mutation of original features are added. Importance of each variable in RF ensemble
is compared versus importance of probes using t-test over several ensembles. Variables
that are more important in statistical sense then most of probes are selected as important.
Variables are ordered according to sum of Gini index reduction in tree splits.

2. Variable masking is estimated on important variables with GBT ensemble using surro-
gate splits (if more important variable has surrogate on less important one, the second
variable is masked by the first). Again, statistically significant masking pairs are selected,
then subset of mutually non-masked variables with high importance is selected.

3. Effect of found variables is removed using RF ensemble.

Steps 1–3 are repeated until no more important variables remain.
Variables are sorted by cumulative variable importance (computed as usual for ensemble of

trees, i.e. importance of feature is sum of split weights on this feature) in ensembles constructed
on step 3. Then top 1, 2, 4,. . . and so on variables are used to build GBT model. For more than

119

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Alexander_Borisov.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Alexander_Borisov.html

FEATURE SELECTION, REDUNDANCY ELIMINATION, AND GRADIENT BOOSTED TREES

100 features we used embedded feature selection in GBT that reduces the running time. The
idea is that with redundant feature elimination probes will be recognized as redundant, and will
have zero or very small importance.

The following parameters of GBT were selected empirically for all datasets:
800 iterations, tree depth = 8, shrinkage = 0.01
For FS, #of trees in series = 50, #series = 20, importance and masking quantile = 0.75, tree

depth = 6.

Results

Table I.1: Results table. The two stars next to the feature number indicate that the submission
included a sorted list of features and multiple results for nested subsets of features.
Top Ts refers to the best score among all valid last entries made by participants.
Max Ts refers to the best score reachable, as estimated by reference entries using the
knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 171 ACE+GBT 512/999** 0.6969 0.9996±0.0009 0.9998 1
REGED1 171 ACE+GBT 512/999** 0.6838 0.9095±0.0038 0.9888 0.998 0.8331 8
REGED2 171 ACE+GBT 8/999** 0.9107 0.5902±0.0059 0.86 0.9534
SIDO0 171 ACE+GBT 256/4932** 0.4653 0.9337±0.0076 0.9443 0.9467
SIDO1 171 ACE+GBT 2048/4932** 0.468 0.6908±0.0136 0.7532 0.7893 0.7333 8
SIDO2 171 ACE+GBT 4932/4932** 0.468 0.5756±0.0130 0.6684 0.7674
CINA0 171 ACE+GBT 64/132** 0.6312 0.9755±0.0029 0.9765 0.9788
CINA1 171 ACE+GBT 64/132** 0.6085 0.8236±0.0048 0.8691 0.8977 0.8328 5
CINA2 171 ACE+GBT 64/132** 0.6085 0.6993±0.0043 0.8157 0.891
MARTI0 171 ACE+GBT 512/1024** 0.4841 0.8872±0.0050 0.9996 0.9996
MARTI1 171 ACE+GBT 32/1024** 0.5188 0.7005±0.0061 0.947 0.9542 0.7638 7
MARTI2 171 ACE+GBT 128/1024** 0.5998 0.7036±0.0063 0.7975 0.8273

Quantitative advantages

Method is fast (∼a minute for one FS iteration on largest dataset)
Time complexity is proportional to (Fsel + Fimpvar) ∗ N ∗ logN ∗Ntrees ∗Nensembles ∗

Niter+Niter ∗Fimpvar
2,

Niter – #of iteration of ACE FS algorithm always < 10, usually 3–4

Nensembles = 20 (number of ensembles for t-test)

Ntrees = 50 (number of trees in RF or ensemble)

N – number of samples,

Fsel = number of selected important variables per tree split (sqrt(total number features)
or less)

Fimvar -– total number of selected important variable.

Works with any variable types, mixed values, requires no preprocessing.

120

ALEXANDER BORISOV

Qualitative advantages

Requires no investigation of causal structure.
It is not a push-button application. ACE is a part of internally developed at Intel machine

learning toolset called IDEAL not available for external usage.

Keywords:
• Preprocessing or feature construction: no.

• Causal discovery: indirect trough redundant feature elimination strategy in ACE method.
Probes should be more likely to be redundant and go at the end of the feature sorted list.

• Feature selection: embedded feature selection using tree ensembles.

• Classifier: RF, GBT (tree ensembles).

• Hyper-parameter selection: used defaults that work well on most data sets.

• Other: ensemble method.

121

Causation and Prediction Challenge Fact Sheet 2

Title: Regularized and Averaged Selective Naïve Bayes Classifier

Author: Marc Boullé

Address: France Telecom R&D, 2, avenue Pierre Marzin, 22307 Lannion cedex – France

Email: marc.boulle@francetelecom.com

Acronym of your best entry: SNB(CMA), IID assumption

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/MB.html

References
[1] M. Boullé. Compression-Based Averaging of Selective Naïve Bayes Classifiers. Journal

of Machine Learning Research, 8:1659–1685, 2007.

[2] M. Boullé. MODL: a Bayes optimal discretization method for continuous attributes.
Machine Learning, 65(1):131–165, 2006.

Method
IID assumption

The method is based on the IID assumption and ignores causal discovery. Although its re-
sults make sense only on the initial datasets, it was also applied on the manipulated datasets to
challenge the causal methods.

Noise filtering for MARTI

The data samples of MARTI were preprocessed to remove the correlated noise as follows:

• The 2-dimensional nature of the patterns was reconstructed using the variable indices

• The low frequency noise was removed by convolving the image thus obtained with a 2-d
Gaussian filter to obtain the “background”, then subtracting this background from the im-
age. Specifically, we used the kernel ker=[1 4 6 4 1]’*[1 4 6 4 1]; ker=ker./sum(sum(ker));
without tuning its width. Better results might be obtained with other kernels or bay ad-
justing the width.

• To alleviate border effects, the image was first extrapolated by tiling the borders with
average values of near border variables.

• To alleviate the problem of high intensity outliers, we detected points whose value was
more that one standard deviation away from the mean of their neighbors and replaced
them by that mean before computing the background.

• Finally, a bias value was added to the resulting filtered image such that the average of the
calibrants is the same as that is test data (namely 1).

122

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/MB.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/MB.html

MARC BOULLÉ

Compression-based averaging of selective naïve Bayes classifiers

Our method is based on the naïve Bayes assumption, and incorporates optimal preprocessing,
feature selection and model averaging as follows:

• All the input features are preprocessed using the Bayes optimal MODL discretization
method, which results in a reliable and accurate estimation of the univariate class condi-
tional probabilities.

• Feature selection is performed using a Bayesian approach to find a trade-off between the
number of selected features and the performance of the selective naïve Bayes classifier:
this provides a regularized feature selection criterion. The feature selection search is
performed using alternate forward selection and backward elimination searches on ran-
domly ordered feature sets: this provides a fast search heuristic, with super-linear time
complexity with respect to the number of instances and features.

• The method exploits a variant of feature selection: feature “soft” selection. Whereas
feature “hard” selection gives a “Boolean” weight to the features according to whether
they selected or not, the method gives a continuous weight between 0 and 1 to each
feature. This weighing schema of the features comes from a new classifier averaging
method, derived from Bayesian Model Averaging, with a logarithmic smoothing of the
posterior distribution of the models.

Advantages

• Bayesian regularization technique (for preprocessing and feature selection): all the avail-
able data is used for training, with no need for validation or cross-validation

• fully automatic

• highly scalable (train and deploy)

• accurate and reliable

• easy interpretation

• compute the posterior probabilities

Limitations

• the naïve Bayes assumption might be harmful is no subset of variables in the initial rep-
resentation is compliant with the conditional independence assumption: this can be lever-
aged by feature construction to extend the representation space

• no causal discovery

Results
For each of the four datasets, one single model was trained and applied on the initial test set (0)
and the two manipulated test sets (1 and 2).

The results are very good on the initial test sets, which conform to the IID assumption: our
method gets the best Tscore on REGED0 and CINA0, and is within 1% of the best performance
for the two other datasets.

123

REGULARIZED AND AVERAGED SELECTIVE NAÏVE BAYES CLASSIFIER

Surprisingly, the results are good on some tests sets 1, with the best Tscore on REGED1 and
CINA1.

This might be explained by two features of our method:

• the optimal preprocessing is highly reliable: any input noise variable is almost surely
detected as irrelevant and discarded

• the model averaging accounts for the uncertainty on model selection: whereas one single
maximum a posteriori (MAP) model might select a wrong subset of variables with respect
to causation, averaging a large number of models leverages the effect of irrelevant features

Not surprisingly, the results are very poor on the test sets 2, which are heavily manipulated.
Our method based on the IID assumption is clearly outperformed by the causal methods.

Table I.2: Results table. The star following the feature number indicates that the feature set
was sorted. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore>
REGED0 321 SNB(CMA), IID

assumption
122/999* 0.8352 1.0000±0.0002 1 1

REGED1 321 SNB(CMA), IID
assumption

122/999* 0.7946 0.9980±0.0015 0.998 0.998 0.8462

REGED2 321 SNB(CMA), IID
assumption

122/999* 0.991 0.5407±0.0061 0.86 0.9534

SIDO0 321 SNB(CMA), IID
assumption

1592/4932* 0.6831 0.9297±0.00700 0.9443 0.9467

SIDO1 321 SNB(CMA), IID
assumption

1592/4932* 0.3922 0.6337±0.0132 0.7532 0.7893 0.7104

SIDO2 321 SNB(CMA), IID
assumption

1592/4932* 0.3922 0.5678±0.0129 0.6684 0.7674

CINA0 321 SNB(CMA), IID
assumption

90/132* 0.8913 0.9788±0.0029 0.9788 0.9788

CINA1 321 SNB(CMA), IID
assumption

90/132* 0.4542 0.8977±0.0043 0.8977 0.8977 0.8694

CINA2 321 SNB(CMA), IID
assumption

90/132* 0.4542 0.7318±0.0043 0.8157 0.891

MARTI0 386 SNB(CMA), IID
assumption (F)

22/1024* 0.7097 0.9848±0.0031 0.9996 0.9996

MARTI1 386 SNB(CMA), IID
assumption (F)

22/1024* 0.6716 0.8891±0.0043 0.947 0.9542 0.8869

MARTI2 386 SNB(CMA), IID
assumption (F)

22/1024* 0.9936 0.7868±0.0058 0.7975 0.8273

Code
Our implementation was done in C++.

The software is available as a shareware on http://perso.rd.francetelecom.
fr/boulle/.

124

http://perso.rd.francetelecom.fr/boulle/
http://perso.rd.francetelecom.fr/boulle/

MARC BOULLÉ

Keywords:
• Preprocessing or feature construction: Bayes optimal discretization

• Causal discovery: none

• Feature selection: Bayesian regularization, fast forward backward feature selection

• Classifier: naïve Bayes, compression-based model averaging

• Hyper-parameter selection: none, automatic

125

Causation and Prediction Challenge Fact Sheet 3

Title: A Strategy for Making Predictions Under Manipulation

Author: Laura Brown and Ioannis Tsamardinos

Contact:
Laura Brown,
Eskind Biomedical Library 4th floor, 2209 Garland Ave. Nashville, TN 37232 USA.
laura.e.brown@vanderbilt.edu
Ioannis Tsamardinos,
FORTH-ICS, N. Plastira 100, Vassilika Vouton GR-700 13 Heraklion Crete, GREECE.
tsamard@ics.forth.gr

Acronym of your best entry: final test

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/LEBYT.html

Complete paper:
A Strategy for Making Predictions Under Manipulation. Laura E. Brown and Ioannis Tsamardi-
nos; JMLR W&CP 3:35–52, 2008.

References
Bach’s -– Bach, F.R. and Jordan, M.I. NIPS, 2002

FCI — Spirtes, P. et al. 1993

HITON -– Aliferis, C.F. et al. AMIA, 2003

MMHC — Tsamardinos, I. et al. Machine Learning, 2006

MMPC, MMMB -– Tsamardinos, I. et al. SIGKDD, 2003

RFE — Guyon et al. Machine Learning, 2002

Regions of Interest -– Tsamardinos et al., Tech Report DSL-03-02, DBMI, Vanderbilt
University

Method
Preprocessing

The preprocessing was tailored to each data set. For the REGED data set each variable was
normalized so its mean was zero and standard deviation was one. For the SIDO data set, the
variables were binary and no preprocessing was performed. For the CINA data set, variables
that were not binary were treated as continuous and normalized; binary variables were all set to
values of zero and one. For the MARTI data set, the calibrant variables were used to fit a spline
across the training array estimating the correlated noise model. The estimated noise was then
subtracted from the training samples.

126

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/LEBYT.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/LEBYT.html

LAURA BROWN AND IOANNIS TSAMARDINOS

Causal discovery

We addressed the following problems in turn (a) finding the Markov Blanket of the target even
under some non-faithfulness conditions (e.g., parity functions) (b) reducing the problems to a
size manageable by subsequent algorithms (c) identifying and orienting the network edges (d)
identifying causal edges (i.e. not confounded) and (e) selecting the causal Markov Blanket of
the target in the manipulated distribution.

Once the initial data sets have been pre-processed, the next step of our procedure was to
identify the Markov Blanket (MB) from the non-manipulated data sets, i.e., the parents, chil-
dren, and spouses of the target. Several variable selection techniques, mostly causally-based,
were applied to this problem in order to both identify the MB and also attempt to gain insight
into the predictive variables in each domain. The published methods used included MMPC
(for identifying the parents and children of a target variable, PC(T)), MMMB (for identifying
the Markov Blanket of a target variable), HITON-MB (for identifying the Markov Blanket of
a target variable), and RFE (variable selection method to identify predictive variables). All
of the above causally-based methods assume that if a variable belongs in the neighbor’s set
of the target, it will have a detectable pairwise association with the target. RFE is able to
additionally identify variables that participate in strong multivariate associations, even if they
have no detectable pairwise association (e.g., parity functions). A new technique under de-
velopment (recently submitted for publication), called Feature Space Markov Blanket (FSMB)
combines kernel-based methods with causally-based methods to identify the neighbor’s set in
feature space, where multivariate associations may become pairwise associations. Any addi-
tional multivariate associations identified by FSMB were added to the Markov Blanket and par-
ticipated in subsequent analysis. At this point, we know that our Markov Blanket set contains
all variables need for calculation of the Causal Markov Blanket in any manipulated distribution
(plus false positives depending on the type of manipulations).

In the second step, starting from the above Markov Blanket we identified the skeleton struc-
ture of the Bayesian Network around the target variable recursively using the MMPC algorithm,
up to three edges away from the target. This region of interest makes it practical to apply causal
algorithms that cannot scale up to the sizes of all the networks in the challenge. There are the-
oretical reasons why a network region of depth 3 allows most inferences about the orientation
of the edges to be made. The idea of region learning was first described in Tsamardinos et al.
2003 (DSL-03-02). Further theoretical and experimental results are about to be submitted.

In the third step of our analysis we tried to orient the edges and discover whether an edge
appears in the network due to a hidden confounder. The orientations of the edges and the
confounded edges are necessary to identify the Causal Markov Blanket of the target, i.e., the
Markov Blanket in the manipulated distribution. For the case of continuous or mixed data, an
adaptation of Bach’s algorithm was used. For the case of binary data, MMHC was used to find
the top scoring network. The final network was converted into a PDAG to find the orientation
of the compelled edges. To obtain suspected hidden confounders we used the FCI algorithm
and developed our own extension of the Y-structures’ identification algorithm (see Mani, et al.
UAI 2006) for the purposes of the challenge. Our extension is based on tests of independence
rather than scoring and is able to handle confounders of the top variables in the Y-structure. We
suspect this way we can identify Y-structures in more general conditions that those described in
Mani.

For the non-manipulated data set, the Markov Blanket was selected as the variables to in-
clude in the variable list. The members were sorted first by parents, children, and spouses. For
the manipulated data set where manipulations were known, the variable list consisted of the
Causal Markov Blanket. This we defined to be the effective parents, the non-manipulated chil-
dren, and the effective spouses of the target. The effective parents are the parent variables of the

127

A STRATEGY FOR MAKING PREDICTIONS UNDER MANIPULATION

target that are still predictive of the target in the manipulated distribution. They are the direct
causes of the target (i.e., parents found not to be confounded) plus the parents of the target that
are not manipulated. The effective spouses are the effective parents of the non-manipulated
children. For the manipulated data set where the manipulations were unknown, the variable list
consisted of the causes of the target node, i.e., parents found not to be confounded. Weighting
the evidence of the orientation of an edge and whether it is due to a hidden confounder or not by
the above methods was done based on methods under development and submission for publica-
tion. For some edges the above methods failed to provide evidence whether they are causal or
not (i.e., confounded) or about their direction. Thus, some guesswork was necessary that gave
rise to different variable subsets that we have tried.

Classification and Model Selection

Once the variable list was determined for each problem and data set, a final classification model
was trained using only the variables of the feature list. The models trained for this task were
SVMs. An n-fold cross validation design was used to select the optimal parameters (type of
kernel, kernel parameters, and C value). The value of n ranged from 5 to 10 based on the
sample size available in the training sample. Once the best parameters were selected, a final
SVM model was trained and used to predict the values for the test data sets.

Results

Table I.3: Results table. The star following the feature number indicates that the feature set
was sorted. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.
This entry obtained best average score for REGED among all valid last entries.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore>
REGED0 1491 final test 15/999* 0.8571 0.9998±0.0010 0.9998 1
REGED1 1491 final test 9/999* 0.7851 0.9673±0.0036 0.9888 0.998 0.9423
REGED2 1491 final test 3/999* 1 0.8600±0.0053 0.86 0.9534
SIDO0 1491 final test 13/4932* 0.5015 0.9230±0.0069 0.9443 0.9467
SIDO1 1491 final test 4/4932* 0.5003 0.6073±0.0027 0.7532 0.7893 0.6909
SIDO2 1491 final test 4/4932* 0.5003 0.5426±0.0027 0.6684 0.7674
CINA0 1491 final test 101/132* 0.8496 0.9721±0.0031 0.9765 0.9788
CINA1 1491 final test 5/132* 0.4716 0.5113±0.0053 0.8691 0.8977 0.6015
CINA2 1491 final test 5/132* 0.4716 0.3210±0.0025 0.8157 0.891
MARTI0 1491 final test 24/1024* 0.5869 0.9681±0.0037 0.9996 0.9996
MARTI1 1491 final test 17/1024* 0.5643 0.7837±0.0056 0.947 0.9542 0.8083
MARTI2 1491 final test 3/1024* 0.4985 0.6730±0.0060 0.7975 0.8273

The methods described above generally resulted in a compact variable list representing ei-
ther the Markov Blanket or Causal Markov Blanket. The results on CINA were very low and
are indicative to the inappropriateness of the statistical tests used in MMPC and MMMB when
mixed data was used. The MMPC and MMMB algorithms have statistical tests provided for

128

LAURA BROWN AND IOANNIS TSAMARDINOS

when the data is entirely binary or continuous (with a binary target); the mixed data set did not
therefore match well to these methods.

The methods described above were implemented in Matlab. The MMPC, MMMB, and
MMHC methods are available from the Causal Explorer library, www.dsl-lab.org (please
note, we were in part the developers of these methods and may have slightly extended or mod-
ified the code from the precise implementation available in Causal Explorer). The SVMs
were created using the LibSVM software (http://www.csie.ntu.edu.tw/~cjlin/
libsvm/). Our method combined many different approaches and is not currently available as
a push-button application although we are working on automating this process.

Code

Keywords:
• Preprocessing or feature construction: normalization

• Causal discovery: Bayesian Network

• Feature selection: filter

• Classifier: SVM

• Hyper-parameter selection: K-fold cross-validation

129

www.dsl-lab.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Causation and Prediction Challenge Fact Sheet 4

Title: Causation, Prediction, Feature Selection and Regularization

Author: Gavin Cawley

Address: School of Computing Sciences, UEA, Norwich, U.K.

Email: gcc@cmp.uea.ac.uk

Acronym of your best entry: final models

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Gavin_Cawley.html

Method
Preprocessing

All continuous features are standardized to have zero mean and unit variance. For MARTI,
the correlated noise was reduced by fitting a multi-output kernel ridge regression model, with
a Gaussian RBF kernel, to the training that predicts the data as a function of the x and y co-
ordinates. No special use was made of the calibration points, so the method was probably
sub-optimal.

Causal discovery

The CausalExplorer package was used to detect feature sets representing the Markov blanket,
direct causes + effects and direct causes only. This made use of the HITON_MB, PC and
MMHC algorithms.

Feature selection

Sparse logistic regression with Bayesian regularization using a Laplace prior (BLogReg) was
used for non-causal feature selection for comparison purposes. Models using the full feature
set were also used to determine if regularization alone were sufficient. Also for the final sub-
mission using the multi-column format, some predictions are made by models using the feature
weightings from other ridge regression models, so there is also a crude form of RFE used in
some cases.

Classification

Ridge regression was used for MARTI, REGED and SIDO, in cases where there were more
features than patterns, kernel ridge regression with a linear kernel was used for computational
efficiency. For CINA, the BLogReg algorithm was used as this seemed to produce better results
under cross-validation.

130

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Gavin_Cawley.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Gavin_Cawley.html

GAVIN CAWLEY

Model selection/hyper-parameter tuning

Virtual leave-one-out cross-validation using Allen’s PRESS statistic was used for hyper-
parameter selection throughout.

Performance evaluation

The model skill for the un-manipulated datasets was performed via 100-fold repeated hold out
experiments. The predictions submitted for the challenge represent the mean of the resulting
ensemble of 100 models. The number of features used by individual models is generally much
smaller than that reported on the challenge website as not all features are used by all 100 models.

Fuller description of the methods used in “finalsubmission”

CINA

Sparse logistic regression with Bayesian regularisation using a Laplace prior was used as the
base classifier for all CINA datasets. An ensemble of models from 100-fold repeated hold-out
was used to make predictions. All features were standardised to have zero mean and unit vari-
ance. HITON_MB (k = 2, ‘z’ statistic, threshold=0.05) was used to pre-select the Markov blan-
ket independently in each trial of the hold-out procedure for CINA0 and CINA1. HITON_MB
(k = 5, ‘z’ statistic, threshold=0.05) was used for CINA2. Not all of the features are used by all
of the members of the ensemble, so the feature set contains some features that are barely used
(if at all).

SIDO

An optimally regularised ridge regression model with no feature selection was used for all
datasets. An ensemble of models from 100-fold repeated hold-out was used to make predictions.

REGED

Optimally regularised kernel ridge regression used as the base classifier for all datasets, all
features standardised, again an ensemble of 100 models is used to make predictions.

REGED0 HITON_MB (k = 2, ‘z’ statistic, threshold=0.05) used to identify the Markov blan-
ket in each fold.

REGED1 Features known to be manipulated are discarded, HITON_MB (k = 4, ‘z’ statistic,
threshold=0.05) used to identify the Markov blanket in each fold. The PC algorithm in Causal-
Explorer (k = 16, ‘z’ statistic, threshold=0.05) was then used to find the direct causes and direct
effects from the features comprising the Markov blanket.

REGED2 This is a hybrid model created to interpolate between more formal models:

PART #022 All features used by all 100 models for REGED0 were identified. The
PC (k = 16, ‘z’ statistic, threshold=0.05) algorithm was then used to
identify the direct causes using the entire training set. This identified
two features (the reason for training additional models without ensem-
bling was to populate the first few columns of the multi-column predic-
tion matrix).

PART #021 All features used by all 100 models for REGED0 were identified. The
PC (k = 16, ‘z’ statistic, threshold=0.05) algorithm was then used to

131

CAUSATION, PREDICTION, FEATURE SELECTION AND REGULARIZATION

identify the direct causes and direct effects using the entire training set
rather than using an ensemble approach. This identified twelve features.

The features found by PART #022 were sorted in decreasing order of the magnitude of the
weights of the model found in PART #022. Then the additional features found in PART #021
were added, sorted in order of the magnitude of the weights of the PART #021 model. The first
eight features on this list were used to train a single model using the full training set. Roughly,
this model contains the direct causes and a selection of the better correlated direct causes.

MARTI

The pre-processing step described in the paper (based on iteratively re-weighted kernel ridge
regression) was used to remove the noise. All features were then standardised. Optimally regu-
larised kernel ridge regression used as the base classifier. Again, some models were constructed
to interpolate between more formal feature selection methods. A feature list was constructed as
before from the following parts:

• PART #009 HITON_MB (k = 2,‘z’ statistic, threshold=2) used to find the Markov blan-
ket, PC (k = 16, ‘z’ statistic, threshold=0.05) used to determine the direct causes (3 fea-
tures)

• PART #009 HITON_MB (k = 2,‘z’ statistic, threshold=2) used to find the Markov blan-
ket, PC (k = 16, ‘z’ statistic, threshold=0.05) used to determine the direct causes and
effects (15 features).

• PART #011 BlogReg for non-causal feature selection (44 features).

• PART #007 HITON_MB (k = 5,‘z’ statistic, threshold=2) used to find the Markov blanket
(131 features).

• PART #003 Full model trained on all features.

The features were ranked by PART and then by the magnitude of the corresponding weight of
the model in the PART where first encountered. All of these PARTS used an ensemble of 100
models, and so the feature sets are relatively large.

MARTI0 Model trained on the first 128 elements of the feature list. This is likely to
contain all direct causes and effects, some highly correlated features and
most (if not all) of the true Markov blanket.

MARTI1 Model trained on the first 32 elements of the feature list. This will be all
direct causes and all direct effects, plus some highly correlated features.

MARTI2 The BLogReg algorithm was used for non-causal feature selection. An
ensemble of 100 models was used for predictions.

All submissions use a single classifier with nested subsets, but not all subsets correspond to
simple atomic feature selection policies. I added the interpolating models to fill in the gaps
as this could not decrease my chances of winning, even if they didn’t help. However, I also
performed more formal experiments so that some more solid conclusions could be drawn about
the value of causal and non-causal feature selection methods. (I am convinced I should learn
more about them!)

132

GAVIN CAWLEY

Table I.4: Results table. The two stars next to the feature number indicate that the submission
included a sorted list of features and multiple results for nested subsets of features.
Top Ts refers to the best score among all valid last entries made by participants.
Max Ts refers to the best score reachable, as estimated by reference entries using the
knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1373 final models 128/999** 0.941 0.9997±0.0012 0.9998 1
REGED1 1373 final models 32/999** 0.8393 0.9787±0.0036 0.9888 0.998 0.9276 2
REGED2 1373 final models 8/999** 0.9985 0.8045±0.0056 0.86 0.9534
SIDO0 1373 final models 4928/4932** 0.589 0.9427±0.0070 0.9443 0.9467
SIDO1 1373 final models 4928/4932** 0.5314 0.7532±0.0137 0.7532 0.7893 0.7881 1
SIDO2 1373 final models 4928/4932** 0.5314 0.6684±0.0130 0.6684 0.7674
CINA0 1373 final models 128/132** 0.5166 0.9743±0.0031 0.9765 0.9788
CINA1 1373 final models 128/132** 0.586 0.8691±0.0046 0.8691 0.8977 0.8488 3
CINA2 1373 final models 64/132** 0.586 0.7031±0.0047 0.8157 0.891
MARTI0 1373 final models 128/1024** 0.8697 0.9996±0.0012 0.9996 0.9996
MARTI1 1373 final models 32/1024** 0.8064 0.9470±0.0039 0.947 0.9542 0.9147 1
MARTI2 1373 final models 64/1024** 0.9956 0.7975±0.0059 0.7975 0.8273

Results
Much of the MATLAB code used is available from my website, BLogReg is available from
http://theoval.cmp.uea.ac.uk/cbl/blogreg/ and the KRR model is implement-
ed in the GKM toolbox, http://theoval.cmp.uea.ac.uk/~gcc/projects/gkm/.
Scripts were written to perform the repeated hold-out validation etc and to distribute the work
across the parallel HPC facility.

Keywords:
• Preprocessing or feature construction: standardization, regression.

• Causal discovery: Bayesian Network, Information Theoretic Method.

• Feature selection: Embedded feature selection, feature ranking, RFE.

• Classifier: kernel-method, least-square, ridge regression, L1 norm regularization, L2
norm regularization, logistic regression, ensemble method.

• Hyper-parameter selection: cross-validation.

• Other: ensemble method.

Answers to questions asked by the reviewers
How was the information about manipulations used in REGED1?

The final submission for REGED1 discarded all features known to be manipulated.

133

http://theoval.cmp.uea.ac.uk/cbl/blogreg/
http://theoval.cmp.uea.ac.uk/~gcc/projects/gkm/

CAUSATION, PREDICTION, FEATURE SELECTION AND REGULARIZATION

Some algorithms, e.g. MMHC, require discrete data. How was the discretization
performed?

I didn’t do any discretization of continuous variables, but used the PC algorithm instead for
problems with continuous features.

Algorithms like PC do not typically scale to datasets with more than 100 variables.

Yes, the simulations using the PC algorithm did take quite a long time! However, I used HI-
TON_MB to find an estimate of the Markov blanket and then used the PC algorithm to direct
the edges.

Similarly, it may be extremely computationally expensive to apply MMHC to some
datasets with >1000–5000 variables. Did the author perform any pre-filtering to apply
these algorithms?

My plan for SIDO was to find the Markov Blanket first (using HITON_MB) and then use
MMHC to direct the edges in the Markov blanket, but I didn’t finish the experiments in time for
the close of the challenge. I hope to have completed them for Table 2 of the compete paper to
give a more complete comparison of feature selection methods.

134

Causation and Prediction Challenge Fact Sheet 5

Title: SVM-Based Feature Selection for Causation and Prediction Challenge

Author: Yin-Wen Chang

Address: Department of Computer Science, No. 1, Sec. 4, Roosevelt Road, Taipei, 106,
Taiwan

Email: b92059@csie.ntu.edu.tw

Acronym of your best entry: final submission

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Yin-Wen_Chang.html

Complete paper
Feature Ranking Using Linear SVM. Yin-Wen Chang and Chih-Jen Lin; JMLR W&CP 3:53-64,
2008.

Method
Preprocessing

We scale the numerical data sets and conduct instance-wise normalization on the binary data
sets as preprocessing. Gaussian filter is used to eliminate the low frequency noise in the MARTI
data sets.

Feature selection

• We experiment with various SVM-based feature selection methods and have several in-
teresting findings. Feature ranking via linear SVM models seems to be useful for these
data sets. Checking AUC with/without removing each feature gives similar rankings.

• During the development period, we experiment with various methods including feature
ranking based on F-score, linear SVM weights, AUC/ACC change of removing a feature.
After comparing the cross-validation AUC on training sets and the performance on toy
examples, we use the feature ranking based on linear SVM weight in our final submission.
We rank features according to the absolute value of weight corresponding to each feature.

• The models for all versions of each task are the same since we tried to obtain a general
and simple model for the problem.

• In addition to cross-validation on training sets and the performance of toy examples, the
quartile information is used since only one method is in the first quartile for all datasets.

• Discovering that nested subsets would results in better performance when the selected
features are the same, we used nested subsets of features from the slist we submitted. The
reason might be that the feature rank we give in slist is good enough.

135

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Yin-Wen_Chang.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Yin-Wen_Chang.html

SVM-BASED FEATURE SELECTION FOR CAUSATION AND PREDICTION CHALLENGE

• We did not use any knowledge derived from the test set to make the submissions.

Classification

We use L2-loss linear SVM to train the classifier.

Model selection/hyper-parameter tuning

Grid search is used to select the parameter of the SVM classifier.

Results

Table I.5: Results table. The two stars next to the feature number indicate that the submission
included a sorted list of features and multiple results for nested subsets of features.
Top Ts refers to the best score among all valid last entries made by participants.
Max Ts refers to the best score reachable, as estimated by reference entries using the
knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1452 final submission 16/999** 0.8526 0.9998±0.0009 0.9998 1
REGED1 1452 final submission 16/999** 0.8566 0.9556±0.0040 0.9888 0.998 0.9316 1
REGED2 1452 final submission 8/999** 0.997 0.8392±0.0052 0.86 0.9534
SIDO0 1452 final submission 1024/4932** 0.6516 0.9432±0.0074 0.9443 0.9467
SIDO1 1452 final submission 4096/4932** 0.5685 0.7523±0.0137 0.7532 0.7893 0.773 2
SIDO2 1452 final submission 2048/4932** 0.5685 0.6235±0.0129 0.6684 0.7674
CINA0 1452 final submission 64/132** 0.6 0.9715±0.0032 0.9765 0.9788
CINA1 1452 final submission 64/132** 0.7053 0.8446±0.0047 0.8691 0.8977 0.8773 1
CINA2 1452 final submission 4/132** 0.7053 0.8157±0.0052 0.8157 0.891
MARTI0 1452 final submission 256/1024** 0.8073 0.9914±0.0025 0.9996 0.9996
MARTI1 1452 final submission 256/1024** 0.7279 0.9209±0.0045 0.947 0.9542 0.891 3
MARTI2 1452 final submission 2/1024** 0.9897 0.7606±0.0062 0.7975 0.8273

• quantitative advantages: simplicity

• qualitative advantages: SVM feature selection method comparison.

Our implementation consists of python and matlab codes, and the LIBLINEAR software is
used to train and predict.

Keywords:
• Preprocessing or feature construction: scaling.

• Feature selection: filter, feature ranking.

• Classifier: SVM.

• Hyper-parameter selection: grid-search.

136

YIN-WEN CHANG

Answers to the organizer’s questions
What else did you try besides the method you submitted last? What do you think was a
critical element of success compared to other things you tried?

We have tried several approaches. We used a kernel function to measure association between
variables, but it takes too long time for a large data set. We also used several methods for
predictions, such as Naïve Bayes, Boosting, SVM, Lasso et al. But they may be good for some
of data sets but bad for others. Finally we select the L1 penalized logistic regression approach
which performed averagely well for all of these data sets. We focused on causal discovery and
prediction models, especially we tried to minimize the number of features (ulist) selected for
prediction. We should take advantage of a slist of features to improve TScore by chance.

In what do the models for the versions 0, 1, and 2 of the various tasks differ?

The structure learning is all the same to version 0, 1 and 2. But the selection of variables from
the learned graph is different in the cases 0, 1 and 2 since they were differently manipulated.
Nothing more is different among these three tasks.

Did you rely on the quartile information available on the web site for model selection or
did you use another scheme?

The quartile is useful auxiliary information for us to consider whether it is necessary to improve
our prediction. But they are not determinate. We check whether our model behaves better or
worse by observing the main output indicators. We didn’t use any other scheme.

In the result table you submitted, did you use nested subsets of features from the slist you
submitted?

We did not use any nested subsets of features from slist, and we used the ulist only.

Did you use any knowledge derived from the test set to make your submissions, including
simple statistics and visual examination of the data?

We did not use any knowledge from the test data.

137

Causation and Prediction Challenge Fact Sheet 6

Title: Boosting Probabilistic Network for causality prediction

Author: Louis Duclos-Gosselin

Address: 205 Gosselin street, St-Agapit, Québec, g0s 1z0, Canada

Email: louis.gosselin@hotmail.com

Acronym of your best entry: Bayes Method

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Louis_Duclos-Gosselin.html

Reference
These recent years Bayesian Analysis became a subject of great interest for many practitioners
and researchers. The 2008 causality challenge permits me to test one of my best Bayes meth-
ods. In fact, I use a special case of boosting probabilistic networks (Bayes Network) controlled
with genetic algorithm and simulated annealing. More precisely, the construction of the net-
work works this way. First, I use conventional probabilistic network architecture in conjunction
with genetic algorithm and simulated annealing for controlling those elements: learning algo-
rithms (M.A.P. and L.M.), number of neurons, number of links in the network, number of layer,
type of kernel, transfer and activation function and the predictors to be in the models. Sec-
ond, I use the idea of boosting (weighted re sampling) to construct an ensemble of probabilistic
network. Third, during the process, Bayes Analysis (prior) helped to produce posterior prob-
ability. Finally, the joint distribution between the predictors and the joint distribution between
the predictors and the target variable was used.

Method
• Preprocessing: Informational theory, entropy.

• Causal discovery: Probabilistic networks.

• Feature selection: Genetic algorithm and simulated annealing.

• Classification: Boosting Probabilistic networks (learned with M.A.P. and L.M.)

• Model selection/hyper-parameter tuning: Genetic algorithm, simulated annealing,
bayes analysis.

Results
The strength of this method is the use of boosting probabilistic networks controlled with sim-
ulated annealing and genetic algorithm. In addition, the uses of bayes analysis add something
interesting.

138

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Louis_Duclos-Gosselin.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Louis_Duclos-Gosselin.html

LOUIS DUCLOS-GOSSELIN

Table I.6: Results table. The star following the feature number indicates that the feature set
was sorted. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 361 Bayes Method 66/999* 0.6973 0.9311±0.0040 1 1
REGED1 361 Bayes Method 10/999* 0.6761 0.8406±0.0054 0.998 0.998 0.7582 14
REGED2 361 Bayes Method 66/999* 0.7317 0.5030±0.0016 0.86 0.9534
SIDO0 361 Bayes Method 6/4932* 0.5007 0.8956±0.0082 0.9443 0.9467
SIDO1 361 Bayes Method 25/4932* 0.4994 0.5244±0.0081 0.7532 0.7893 0.6254 10
SIDO2 361 Bayes Method 6/4932* 0.5005 0.4562±0.0059 0.6684 0.7674
CINA0 361 Bayes Method 106/132* 0.644 0.9337±0.0030 0.9788 0.9788
CINA1 361 Bayes Method 109/132* 0.6689 0.7419±0.0052 0.8977 0.8977 0.7453 11
CINA2 361 Bayes Method 109/132* 0.6689 0.5602±0.0052 0.8157 0.891
MARTI0 361 Bayes Method 10/1024* 0.495 0.9196±0.0041 0.9996 0.9996
MARTI1 361 Bayes Method 2/1024* 0.499 0.6658±0.0060 0.947 0.9542 0.7539 9
MARTI2 361 Bayes Method 2/1024* 0.499 0.6764±0.0062 0.7975 0.8273

Quantitative advantages

This method is really long to compute, but it has the advantage to explore all the possibility and
it uses the full power of bayes analysis.

Qualitative advantages

This method provide a lot of new elements. In fact, the idea of using boosting with probabilistic
network is pretty new. In addition, the use of bayes analysis, simulated annealing and genetic
algorithm to control all the processes is really special. All this make that method really unique.
In brief, this method should be explore by researcher.

This method can be easily implanted in many system with a SAS code, C code or C++ code.

Keywords:
Bayesian Analysis, Bayes Network, Boosting, Causality Prediction, Genetic Programming,
Probabilistic Network, Simulated Annealing

• Preprocessing or feature construction: Entropy, information theory.

• Causal discovery: Bayesian Network, Probabilistic network, boosting.

• Feature selection: Genetic algorithm, simulated annealing.

• Classifier: boosting probabilistic network.

• Hyper-parameter selection: Genetic algorithm, simulated annealing, bayes analysis.

• Other: ensemble method.

139

Causation and Prediction Challenge Fact Sheet 7

Title: Dimensionality reduction through unsupervised learning

Author: Nistor Grozavu (Nist in challenge)

Address: LIPN, Institut Galilée, 99 Av. J.B. Clément, F-93430 Villetaneuse

Email: nistor_grozavu@yahoo.com

Acronym of your best entry: Som (by Nist)

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Nistor_Grozavu.html

Method
Profile of my methods:

• Preprocessing: Data normalization;

• Causal discovery: Self Organizing Maps (SOM – Kohonen Map) adapted for supervised
learning; Statistical Test (Cattell Scree Test) using acceleration stop criteria.

• Feature selection: Statistical Test (Cattell Scree Test) using acceleration stop criteria for
each cluster.

• Classification: SOM + CAH (or K-means)

Results

Table I.7: Results table. The two stars next to the feature number indicate that the submission
included a sorted list of features and multiple results for nested subsets of features.
Top Ts refers to the best score among all valid last entries made by participants.
Max Ts refers to the best score reachable, as estimated by reference entries using the
knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1447 Som 4/999 0.498 0.5000±0.0000 1 1
REGED1 1447 Som 4/999 0.498 0.5000±0.0000 0.998 0.998 0.5 15
REGED2 1447 Som 4/999 0.498 0.5000±0.0000 0.86 0.9534
SIDO0 137 fd 16/4932** 0.5068 0.505±0.0056 0.9443 0.9467
SIDO1 137 fd 128/4932** 0.493 0.5161±0.0068 0.7532 0.7893 0.5098 16
SIDO2 137 fd 4/4932** 0.499 0.5076±0.0057 0.6684 0.7674
MARTI0 1447 Som 71/1024 0.4889 0.5000±0.0000 0.9996 0.9996
MARTI1 1447 Som 71/1024 0.5011 0.5000±0.0000 0.947 0.9542 0.5 12
MARTI2 1447 Som 71/1024 0.7158 0.5000±0.0000 0.7975 0.8273

140

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Nistor_Grozavu.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Nistor_Grozavu.html

NISTOR GROZAVU

Quantitative advantages

Compact feature subset (71 for MARTI), rapid in cost time.

Qualitative advantages

Elements of novelty: SOM provide a nice visualization; Using Cattell Statistical Test for each
cluster we can give a good cluster characterization.

Implementation
I implemented the model in Matlab and I used Statistical Toolbox and SOM Toolbox to facilitate
the implementation.

Keywords:
• Preprocessing or feature construction: normalization.

• Causal discovery: Supervised SOM, Scoring.

• Feature selection: statistical test, weighting.

• Classifier: neural networks, CAH.

141

Causation and Prediction Challenge Fact Sheet 8

Title: Markov blanket of the target and Norm1 linear SVM

Author: Cristian Grozea

Address: Fraunhofer Institute FIRST, Kekulestrasse 7, 12489 Berlin, Germany.

Email: cristian.grozea@first.fraunhofer.de

Acronym of your best entry: darum

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Cristian_Grozea.html

Method
• Cina and the toy problems: norm1 linear svm

• Other pbs: norm1 linear svm on the features in the Markov blanket of the target

The features have been ranked by the strength of the corresponding weight in the final clas-
sifier. The same model has been applied to all three subproblems. On the problems where the
Markov blanket has been used as a feature selection method, the results without these selection
were initially bad on the colored quartiles. Hold-out test set has also been used to measure the
performance of the training. Nested subsets of features have not been used.

For MARTI (where I have also used at training spatial filters) I have looked at the first few
entries in the test set in order to understand the phrases:
The test sets have no added noise. This situation simulates a case where we would be using
different instruments at “training time” and “test time”, e.g. we would use DNA microarrays to
collect training data and PCR for testing.

Erratum

The graphs from http://clopinet.com/isabelle/Projects/WCCI2008/
Reports/Cristian_Grozea.html confirm what I suspected, that is that I sent the wrong
features indexes for Marti. What I did was keeping only the estimated Markov blanket features,
then running my existing code that reported the index of the features ordered by their absolute
weight in the final classifier, but not taking into account the original index of the features. I
have to admit that I didn’t pay much attention to this as it was seemingly not important for the
ranking. For the next problems I preferred to “kill” the unwanted features by zeroing them, such
that I wouldn’t have to change the code and still get the right indexes. The reason for writing
this is to avoid the impression that you could do well with the wrong features.

Implementation
Matlab, CVX and Causal explorer have been used.

142

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Cristian_Grozea.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Cristian_Grozea.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Cristian_Grozea.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Cristian_Grozea.html

CRISTIAN GROZEA

Keywords:
• Preprocessing or feature construction: causal.

• Causal discovery: Markov blanket.

• Classifier: SVM, L1 norm regularization.

• Hyper-parameter selection: sweep, hold-out test.

143

Causation and Prediction Challenge Fact Sheet 9

Title: An Energy-based Model for Feature Selection

Author: H. Jair Escalante, Luis Enrique

Address: Erro #1, Tonantzintla, Puebla, 72840, México

Email: hugo.jair@gmail.com, hugojair@ccc.inaoep.mx

Acronym of your best entry: DRF-LM-PSMS Final Run 2

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/H_Jair_Escalante.html

Method
We propose an energy-based (random-field like) model for the selection of predictive features.
The user specifies k, the size of the subset of features they want to obtain. Then a random-field
with k nodes is defined; each node representing a feature. Each of the k features depends on
the other k − 1 features and on the target variable Y. In Figure I.1 the graphical model of the
proposed approach is shown for a value of k = 6.

Figure I.1: Graphical model of the proposed EBM for a value of k = 6

An energy value is assigned to each combination of k-features, according an energy func-
tion. This function assigns low values to good configurations of features taking into account the
following information:

1. The rank position of each individual feature though the ranking lists returned by eight
ranking-based feature selection methods (those in the CLOP package [2]). Different rank-
ing lists are merged considering the position of features along the lists.

2. The predictive power of each individual feature, measured by the CV-balanced error rate
obtained by an arbitrary classifier using a single feature for predicting Y .

3. The combined predictive power of the k-features, measured as above using the k-features
for predicting Y .

144

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/H_Jair_Escalante.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/H_Jair_Escalante.html
http://clopinet/com/CLOP/

H. JAIR ESCALANTE, LUIS ENRIQUE

4. Global Markov blanket (MB) information: those features appearing in the MB are
weighted higher. The global MB is calculated using all the features in the training data
with the Causal Explorer [1].

5. Local MB information: those features appearing in the local MB receive an extra weight.
The local MB is calculated using only the k-features in the training data with the Causal
Explorer [1].

The feature selection problem reduces to find the configuration of k-features that minimizes
the energy function. This configuration will be that offering the best tradeoff among the consid-
ered information (1–5) . A simple iterative procedure called iterative conditioned modes (ICM)
is used for minimization of the energy function. For those entries containing PSMS in their
name we applied particle swarm model selection at the end of the feature selection process.
This method is used for searching for the best classifier and hyperparameters for each subset of
features k. Therefore, different classifiers were considered for different subset sizes.

I tried several combinations of the sources of information we considered (1–5). The key
elements of the proposed approach were the rank of individual features according several fea-
ture selection methods (1) and the predictive power of individual features (2). There is not
a significant difference (neither positive nor negative) of using only (1–2) or including causal
information (1–5). This result is interesting because by simply combining the ranked lists of
features from different methods and taking into account the individual predictive power of fea-
tures we can obtain competitive results. For SIDO the PC_HITON algorithm could not be
applied because it was running too slow. For CINA this algorithm was not able to infer the MB.

Preprocessing

No preprocessing was applied to data.

Causal discovery

For some experiments I used the PC_HITON implementation ([1]) from the Causal Explorer
for obtaining the Markov Blanket of the target variable.

Feature selection

I used the following feature selection methods from the Challenge Learning Object Package
(CLOP) (See [2] for a description of these methods):

s2n,gs,relief, svcrfe, aucfs, f-test, t-test, Pearson

Classification

Kernel ridge regression and Naïve Bayes (CLOP implementations) were considered for clas-
sification. The latter method was used (extensively) during the optimization process and the
former for computing initial and final predictions.

Model selection/hyper-parameter tuning

• For most of the entries, default parameters were considered for the methods above de-
scribed.

• For a few runs it was used PSMS (a population-based search strategy for model selection)
for the selection of a classifier at the end of the feature selection process.

145

http://discover1.mc.vanderbilt.edu/discover/public/causal_explorer/
http://discover1.mc.vanderbilt.edu/discover/public/causal_explorer/
http://discover1.mc.vanderbilt.edu/discover/public/causal_explorer/
http://discover1.mc.vanderbilt.edu/discover/public/causal_explorer/
http://clopinet.com/CLOP/
http://clopinet.com/CLOP/

AN ENERGY-BASED MODEL FOR FEATURE SELECTION

Results

Table I.8: Results table. The two stars next to the feature number indicate that the submission
included a sorted list of features and multiple results for nested subsets of features.
Top Ts refers to the best score among all valid last entries made by participants.
Max Ts refers to the best score reachable, as estimated by reference entries using the
knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1485 DRF-LM-PSMS

Final Run 2
32/999** 0.8778 0.9996±0.0010 0.9998 1

REGED1 1485 DRF-LM-PSMS
Final Run 2

128/999** 0.7996 0.9448±0.0039 0.9888 0.998 0.8985 5

REGED2 1485 DRF-LM-PSMS
Final Run 2

64/999** 0.7638 0.7512±0.0060 0.86 0.9534

SIDO0 1485 DRF-LM-PSMS
Final Run 2

1024/4932** 0.8442 0.9352±0.0075 0.9443 0.9467

SIDO1 1485 DRF-LM-PSMS
Final Run 2

4932/4932** 0.4675 0.6913±0.0134 0.7532 0.7893 0.7474 7

SIDO2 1485 DRF-LM-PSMS
Final Run 2

4932/4932** 0.4675 0.6157±0.0128 0.6684 0.7674

CINA0 1485 DRF-LM-PSMS
Final Run 2

132/132** 0.955 0.9670±0.0035 0.9765 0.9788

CINA1 1485 DRF-LM-PSMS
Final Run 2

132/132** 0.4982 0.7873±0.0049 0.8691 0.8977 0.7675 9

CINA2 1485 DRF-LM-PSMS
Final Run 2

128/132** 0.4982 0.5481±0.0044 0.8157 0.891

MARTI0 1485 DRF-LM-PSMS
Final Run 2

1024/1024** 0.5446 0.9673±0.0036 0.9996 0.9996

MARTI1 1485 DRF-LM-PSMS
Final Run 2

512/1024** 0.4711 0.8636±0.0054 0.947 0.9542 0.8691 5

MARTI2 1485 DRF-LM-PSMS
Final Run 2

8/1024** 0.7055 0.7764±0.0061 0.7975 0.8273

Quantitative advantages

• It is computationally efficient: by considering the two sources of information that worked
well we will obtain competitive results very fast and in a simpler way, that does not
requires specialized knowledge.

• The method can be applied to any data set without an ad hoc modification; particularly,
the things that worked well (1–2) can be used directly in any binary classification data
set.

• The method is easy to implement: even when taking into account all of the sources of in-
formation it is not complicated to implement it. Furthermore, the energy-based modeling

146

H. JAIR ESCALANTE, LUIS ENRIQUE

framework allows us introducing other sources of information, not considered here, with
little effort.

• The method may (or may not) take into account causal information into the feature selec-
tion process. Causal information could be very useful for improving the feature selection
process.

• It can return subsets of features of size k; the user is able to set this parameter (k). Fur-
thermore, we can return a ranked list of features according their importance.

Qualitative advantages

• The energy-based model we propose is a new way to approach the feature selection prob-
lem. Since it is based on the energy-minimization framework it is a very general approach
that can be easily modified. The proposed model can, even, be considered a template un-
der which several sources of information and different form of potentials can be tested.
This will motivate further research in several directions, particularly on the appropriate
ad-hoc definition of potentials and on learning the energy function from data.

• The fusion of the ranking lists of diverse feature selection methods proved to be very
useful for feature selection. Information fusion has been proved to be very effective in a
number of fields, most notably in machine learning (boosting, bagging) and information
retrieval (multi-modal retrieval of video and images). The results obtained by merging
different lists give evidence that the fusion of the outputs of diverse feature selection
methods has practical advantages that motivate further research.

• Domain knowledge and further information (both causal and non-causal) can be easily
introduced into our model, this is also related to the generality of energy-based modeling.

• For this implementation we have used the simpler potentials one can use for this problem
and the simplest algorithm for energy minimization (Iterated Conditioned Modes, ICM).
Therefore, better results are expected by defining more elaborate potentials and by using
faster and better convergence optimization algorithms (e.g. the graph cuts algorithm).
Furthermore, fixed classifiers and default hyperparameters have been used in most of the
experiments.

Implementation
The method has been implemented in Matlab, it requires the CLOP toolbox and the causal
explorer (if causal information is considered). The implementation is very simple and it can be
considered a push-button application that can be applied to any domain without a significant
modification.

Keywords:
• Causal discovery: Markov blanket information, HITON algorithm.

• Feature selection: Feature ranking, combination of feature selection methods, s2n, gs,
relief, svcrfe, aucfs, f-test, t-test, Pearson.

• Classifier: Ridge regression, Naïve Bayes classifier.

147

http://clopinet/com/CLOP/
http://discover1.mc.vanderbilt.edu/discover/public/causal_explorer/
http://discover1.mc.vanderbilt.edu/discover/public/causal_explorer/

AN ENERGY-BASED MODEL FOR FEATURE SELECTION

• Hyper-parameter selection: PSMS.

• Other: Energy-based models, random field modeling, ICM.

References
[1] C.F. Aliferis, I. Tsamardinos, A. Statnikov, HITON: A Novel Markov Blanket Algorithm

for Optimal Variable Selection, In FLAIRS 2003.

[2] A. Safari and I. Guyon, Quickstart guide for CLOP. Technical report, Graz Univer-
sity of Technology and Clopinet, May 2006. http://www.ymer.org/research/
files/clop/QuickStartV1.0.pdf.

148

http://www.ymer.org/research/files/clop/QuickStartV1.0.pdf
http://www.ymer.org/research/files/clop/QuickStartV1.0.pdf

Causation and Prediction Challenge Fact Sheet 10

Title: Translate Binary Variable to Continuous Variable

Author: Jinzhu Jia

Address: School of Mathematical Sciences, Peking University, Beijing, P.R.China, 100871

Email: jinjinjia@gmail.com

Acronym of your best entry: Final

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Jinzhu_Jia.html

Method
• EM Algorithm

• Causal discovery

• Elastic net

• SVM

Quantitative advantages

Simple and fast. After translating the binary variable to continuous variable, we can use modern
model selection methods to deal with this problem, such as Lasso, Elastic, etc. All of these
method are computationally fast.

Qualitative advantages

Very novel method. I construct the correlation between a binary variable and a continuous
variable and then I transform a binary variable into a continuous variable without lose the infor-
mation between the two variables.

Implementation
For the “Reged” data set, we think that the target variable Y comes from a hidden variable H
with a normal distribution and “Y = 1” corresponds to “H > a” for some fixed real number a.
Based on this assumption, we can use EM algorithm to construct the correlation between Y and
each of the predictors.

After obtaining the correlation matrix, we run a ridge regression and get the regression
coefficients of Y on X, then we construct Y . But the solution of ridge regression is not sparse,
then we run elastic net to get a sparse coefficient. Those predictors with non-zero coefficients
are our approximated Blank variables and we use these variables to do predictions.

We use the approximated “blanket” variable selected from elastic net and Y to construct a
causal network, by the software of TETRAD and then get the parents and children variables
of Y .

149

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Jinzhu_Jia.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Jinzhu_Jia.html

TRANSLATE BINARY VARIABLE TO CONTINUOUS VARIABLE

For data set Reged0, since it is not manipulated, we use all the parents and children variables
to do predictions.

For data set Reged1, we use all the parents and those children variables which are not
manipulated to do predictions.

For the data set Reged 2, we just use the parents nodes to do predictions, for the son nodes
have been changed a lot and thus there is little information to do predictions.

When do predictions, we use three methods: 1.linear regression, 2. SVM 3. SVM regres-
sion, and then the three results are used to give a final result. If more than two of the methods
give Y = 1, then Y = 1, or else, Y = −1.

This is not a push-button application. Since we have to use the software TETRAD to decide
which variables are parents.

Results

Table I.9: Results table. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1487 Final 14/999 0.7847 0.9954±0.0010 1 1
REGED1 1487 Final 11/999 0.748 0.8158±0.0056 0.998 0.998 0.8118 12
REGED2 1487 Final 10/999 0.996 0.6242±0.0053 0.86 0.9534
SIDO0 311 test 60/4932 0.507 0.8968±0.0082 0.9443 0.9467
SIDO1 311 test 4932/4932 0 0.5000±0.0028 0.7532 0.7893 0.6123 11
SIDO2 311 test 4932/4932 0 0.4401±0.0027 0.6684 0.7674

Keywords:
• Preprocessing or feature construction: centering, standardization.

• Causal discovery: Bayesian Network, Probabilistic Graphical Models.

• Feature selection: Penalized regression, Lasso, Elastic net.

• Classifier: SVM, least-square, ridge regression, L1 norm regularization, L2 norm regu-
larization, ensemble method.

• Hyper-parameter selection: cross-validation, K-fold.

150

Causation and Prediction Challenge Fact Sheet 11

Title: Univariate feature ranking and SVM classifier

Author: Jianming Jin

Address: HP Labs, China, 112 JianGuo Road, ChaoYang District, HP Building, Beijing,
China, 100022

Email: jian-ming.jin@hp.com

Acronym of your best entry: HPLC

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Jianming_Jin.html

Method
Preprocessing

We map the causation and prediction challenge to a document classification task. Here, a dataset
is a group of documents, the feature dimension is the size of lexicon, each feature is corre-
sponding to a word in the lexicon, and the value of a feature is the word appearance number in
a document (TF).

Feature selection

Weighted feature vector is calculated by multiply the original feature vector with a weighting
vector. The weighting value of each dimension is mainly determined by the TF distribution
variance in positive training data and negative training data.

Classification

SVMLight is used for training and classification on the weighted feature vectors.

Model selection/hyper-parameter tuning

The model is trained on the provided training set, the training parameters are optimized accord-
ing to the classification result on the provided testing set. The model with the best F1 value on
the provided testing set is chosen as the final model.

There is no special optimization for a peculiar dataset, and there is no need for human
participation during the whole process.

151

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Jianming_Jin.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Jianming_Jin.html

UNIVARIATE FEATURE RANKING AND SVM CLASSIFIER

Results

Table I.10: Results table. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1088 exp 1 999/999 0.5 0.9932±0.0022 1 1
REGED1 1088 exp 1 999/999 0.5 0.9340±0.0042 0.998 0.998 0.8868 8
REGED2 1088 exp 1 999/999 0.5 0.7331±0.0059 0.86 0.9534
SIDO0 1089 exp 1 4932/4932 0.5 0.9320±0.0096 0.9443 0.9467
SIDO1 1089 exp 1 4932/4932 0.5 0.7307±0.0136 0.7532 0.7893 0.7662 3
SIDO2 1089 exp 1 4932/4932 0.5 0.6359±0.0133 0.6684 0.7674
CINA0 1088 exp 1 132/132 0.5 0.9566±0.0034 0.9788 0.9788
CINA1 1088 exp 1 132/132 0.5 0.6528±0.0056 0.8977 0.8977 0.6883 13
CINA2 1088 exp 1 132/132 0.5 0.4556±0.0035 0.8157 0.891
MARTI0 1088 exp 1 1024/1024 0.5 0.8967±0.0047 0.9996 0.9996
MARTI1 1088 exp 1 1024/1024 0.5 0.7597±0.0060 0.947 0.9542 0.7848 7
MARTI2 1088 exp 1 1024/1024 0.5 0.6979±0.0063 0.7975 0.8273

Implementation
The implementation is a Java package, which using SVMLight for training and classification.
It’s a function module without user interface.

Keywords:
• Preprocessing or feature construction: none.

• Causal discovery: none.

• Feature selection: filter, weighting.

• Classifier: SVM.

• Hyper-parameter selection: grid-search.

152

Causation and Prediction Challenge Fact Sheet 12

Title: Collider scores

Author: Ernest Mwebaze and John Quinn

Address: Faculty of Computing & Information Technology, Makerere University, Kampala,
Uganda.

Email: emwebaze@cit.mak.ac.ug, jquinn@cit.mak.ac.ug

Acronym of your best entry: submission

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/E_MwebazeJ_Quinn.html

Method
Preprocessing

None, raw data used directly.

Causal discovery

HITON_PC used to estimate neighbouring variables. For manipulated datasets we further nar-
row down the feature set by computing two scores to select strong causes:

1. To score a variable A as a cause of target variable T using supporting variable Bi , use
ratio of partial correlation of (A,Bi |T) and correlation of (A,Bi).

2. For the second score, calculate the difference of:

(a) evidence that target T is a collider for causes A and Bi , looking for high correlation
between (A, target) and (Bi , target) and low correlation between (A,Bi)

(b) evidence that variable A is a collider for causes T and Bi , using the equivalent pattern
of correlation.

Both scores are aggregated over the Bi’s.

Feature selection

For unmanipulated datasets, use the features estimated to be neighbouring the targets. For
manipulated datasets, choose the subset of features with highest mean scores above.

Classification

For REGED, k-nn classification. For SIDO and CINA, shallow decision trees with naive Bayes
classifiers in the leaves (single trees only — no ensemble methods).

153

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/E_MwebazeJ_Quinn.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/E_MwebazeJ_Quinn.html

COLLIDER SCORES

Results
Estimation of neighbouring variables uses the HITON_PC implementation in the Matlab
“Causal Explorer” library. All other code (for calculating scores, learning and classification
etc) written in Python using the Numpy libraries.

The scores are simple to implement and quick to calculate (on the order of seconds for all
datasets).

The utility of the scores is dependent on the success of estimating variables which are neigh-
bours to the target. The inclusion of other variables, particularly outside the Markov blanket,
can confound the result.

Table I.11: Results table. The two stars next to the feature number indicate that the submission
included a sorted list of features and multiple results for nested subsets of features.
Top Ts refers to the best score among all valid last entries made by participants.
Max Ts refers to the best score reachable, as estimated by reference entries using
the knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1444 submission 14/999** 0.8088 0.9933±0.0014 0.9998 1
REGED1 1444 submission 1/999** 0.7122 0.9528±0.0028 0.9888 0.998 0.8559 7
REGED2 1444 submission 14/999** 0.9935 0.6216±0.0019 0.86 0.9534
SIDO0 1444 submission 10/4932** 0.5003 0.9325±0.0074 0.9443 0.9467
SIDO1 1444 submission 6/4932** 0.5009 0.6660±0.0133 0.7532 0.7893 0.7509 6
SIDO2 1444 submission 6/4932** 0.5009 0.6541±0.0131 0.6684 0.7674
CINA0 1444 submission 8/132** 0.7575 0.9430±0.0033 0.9765 0.9788
CINA1 1444 submission 46/132** 0.5885 0.7381±0.0047 0.8691 0.8977 0.7832 8
CINA2 1444 submission 8/132** 0.5235 0.6685±0.0042 0.8157 0.891

Keywords:
• Preprocessing or feature construction: none.

• Causal discovery: Structural Equation Models, heuristic.

• Feature selection: feature ranking.

• Classifier: nearest neighbors, tree classifier, naive Bayes.

• Hyper-parameter selection: cross-validation.

154

Causation and Prediction Challenge Fact Sheet 13

Title: Random Sets Approach and its Applications

Author: Vladimir Nikulin

Address: Suncorp, Brisbane, Australia

Email: v.nikulin@uq.edu.au

Acronym of your best entry: “vn14” and “vn14a” (for SIDO)

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Vladimir_Nikulin.html

Complete paper
Random Sets Approach and its Applications. Vladimir Nikulin; JMLR W&CP 3:65-76, 2008.

Introduction
It is a well known fact that for various reasons it may not be possible to theoretically analyze
a particular algorithm or to compute its performance in contrast to another. The results of the
proper experimental evaluation are very important as these may provide the evidence that a
method outperforms alternative approaches.

Feature selection represents a very essential component of data mining, as it will help reduce
overfitting and make prediction more accurate. Causal discovery may be regarded as a next step
with aim to uncover causal relations between features and target variable. In many cases it is
theoretically impossible to solve full graphical structure of all relations between features and
target variable but it may be possible to uncover and approximate some essential relations. This
knowledge will help to understand data better and will give some hints which methods will be
more efficient.

Method
Random sets approach has heuristic nature and has been inspired by the growing speed of com-
putations. For example, we can consider large number of classifiers where any single classifier
(base classifier or model) is based on the subset of relatively small number of randomly se-
lected features or random sets of features. Using cross-validation we can rank all random sets
according to the selected criterion, and use this ranking for further feature selection.

In the case of SIDO-set, Random Forest model proved to be the most suitable. Note that
RF model appears to be very relevant to the subject of this paper. However, approach of RF
is far from the same comparing with RS approach. We used RF model with 1000 trees where
70 randomly selected features were used for any splitter. The splitting process was stopped
if size of the current node was smaller than 10 (anyway, no more than 8 splitting levels were
used). The SIDO-set is binary, and this property simplified implementation of the RF-algorithm
essentially. Next, we computed for any particular feature number of repeats in the above RF-

155

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Vladimir_Nikulin.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Vladimir_Nikulin.html

RANDOM SETS APPROACH AND ITS APPLICATIONS

Table I.12: Results table. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.
These entries used unsorted lists of features.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1340 vn14 400/999 0.7576 0.9989±0.0016 0.9998 1
REGED1 1340 vn14 400/999 0.7316 0.9522±0.0038 0.9888 0.998 0.9094 4
REGED2 1340 vn14 400/999 0.8004 0.7772±0.0059 0.86 0.9534
SIDO0 1479 vn14a 527/4932 0.5502 0.9429±0.0075 0.9443 0.9467
SIDO1 1479 vn14a 527/4932 0.5339 0.7192±0.0138 0.7532 0.7893 0.7588 5
SIDO2 1479 vn14a 203/4932 0.5225 0.6143±0.0132 0.6684 0.7674
CINA0 1340 vn14 50/132 0.7174 0.9764±0.0031 0.9765 0.9788
CINA1 1340 vn14 30/132 0.5 0.8617±0.0047 0.8691 0.8977 0.8504 2
CINA2 1340 vn14 30/132 0.5 0.7132±0.0043 0.8157 0.891
MARTI0 1340 vn14 217/1024 0.5863 0.9889±0.0025 0.9996 0.9996
MARTI1 1340 vn14 400/1024 0.5554 0.8953±0.0048 0.947 0.9542 0.8736 4
MARTI2 1340 vn14 611/1024 0.7021 0.7364±0.0062 0.7975 0.8273

Table I.13: List of the base models, which were used during WCCI-2008 data-mining competi-
tion.

Data Model Software
LUCAS neural+doubleboost MATLAB-CLOP
LUCAP neural+doubleboost MATLAB-CLOP
REGED SVM-RBF (special software) C

SIDO binaryRF (special software) C
CINA adaBoost R

MARTI svc+standardize MATLAB-CLOP

156

VLADIMIR NIKULIN

object. These repeats were used for further feature selection. For example, we used in the final
submission 1030 features for SIDO0, 517 features for SIDO1 and only 203 features for SIDO2.

Preprocessing

The case of MARTI-set appears to be the most complicated because of the 25 given calibrants:
the training set was perturbed by a zero-mean correlated noise model. The test sets have no
added noise. We used linear regression model in order to filter noise from the training set. As a
target variables we used remaining 999 features.

Another application of random sets was motivated by the huge imbalanced data, which rep-
resent significant problem because the corresponding classifier has tendency to ignore patterns
with smaller representation in the training set. We propose to consider large number of balanced
training subsets where representatives from both patterns are selected randomly.

Keywords:
Causal relations, graphical models, random forest, boosting, svm, CLOP, cross validation.

157

Causation and Prediction Challenge Fact Sheet 14

Title: Optimally Compressive Regression

Author: Florin Popescu

Address: Fraunhofer-Institut FIRST, Kekulestrasse 7, 12489 Berlin Germany

Email: florin.popescu@first.fraunhofer.de

Acronym of your best entry: optimally_compressive_regression

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Florin_Popescu.html

Reference
Florin Popescu. Identification of Sparse Multivariate Autoregressive Models. EUSIPCO 2008
(in press).

Method
Models (Gaussian probability distributions) are derived each class using auto-regression and
minimum description length (MDL) regularization, where details of MDL have been derived
by the author to allow mixtures of binary and non-binary valued data. Initially the method
was meant for classification of time series data, but is applicable also to stationary data sets
by essentially building large, sparse covariance matrices. MDL sparsifies automatically and in
itself is a conduit for causality inference: the best explanation (e.g. causal chain) is the one that
compresses the data the most.

Preprocessing

The features were scaled such that their quantization level is 1.

Causal discovery

Linear regressions were done to make a list of predictability of each feature (how compressible
it is given knowledge of all other features: a full regression). MDL gives sparse results so each
feature thereby has a set of predictor features.

Feature selection

The union of the best X% predicted variables and all necessary predictors ordered by pre-
dictability.

Model selection/hyper-parameter tuning

The model (for each class) was a strictly upper triangular auto-regression (AR) matrix between
selected features (with bias and scaling). This is called causal regression because it enforces a

158

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Florin_Popescu.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Florin_Popescu.html

FLORIN POPESCU

causal chain. The feature set was sorted by the resulting predictability and the causal regression
re-computed until the predictability is strictly increasing. The MDL regression sparsifies the
AR matrix and therefore may further reduce the feature set – it also produces a directed acyclic
graph of causal factors (the causal chain). The method “works” with the parameter X set to
0 (naïve method: meaning only predictors are used) but it was set at a higher level. By the
MDL principle it is the final MDL score that counts: hyperparameters such as X only serve to
make the necessary (non-convex) MDL optimization faster or more likely to reach the global
minimum, they do not embody a statistical principle per se. There is no cross-validation.

Classification

Once the class models are obtained, the classification is trivial: each new example corresponds
to a likelihood (or probability) determined by the model, and the label is the class of the highest
likelihood model.

Results

Table I.14: Results table. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.
These entries used unsorted lists of features.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
CINA0 1495 optimally

compressive
regression

25/132* 0.6087 0.7769±0.0051 0.9788 0.9788

CINA1 1495 optimally
compressive
regression

25/132* 0.7639 0.7322±0.0052 0.8977 0.8977 0.7488 10

CINA2 1495 optimally
compressive
regression

25/132* 0.7639 0.7372±0.0052 0.8157 0.891

• quantitative advantages: The feature set is automatically generated and for the naïve
method was very compact (11 features selected for CINA0)

• qualitative advantages: The method, as explained, computes posterior probabilities as
well as a directed causal chain, is theoretically motivated, can be fully automatic and is
(to the author’s knowledge) fully novel.

The method was implemented in Matlab and C. The linear regressions were performed using
standard methods (albeit organized such that large regressions can be done within memory lim-
itations). The MDL optimization is computationally expensive but is not an exhaustive feature
subset modeling technique, rather it is programmed using iterative heuristics for sparsification
of features and structural models.

159

OPTIMALLY COMPRESSIVE REGRESSION

Keywords:
• Preprocessing or feature construction: scaling.

• Causal discovery: Structural Equation Models, Probabilistic Graphical Models, Infor-
mation Theoretic Method.

• Feature selection: filter, feature ranking.

• Classifier: likelihood-based.

• Hyper-parameter selection: none.

• Other: minimum description length.

160

Causation and Prediction Challenge Fact Sheet 15

Title: Markov blanket and kernel ridge regression

Author: Marius Popescu

Address: University of Bucharest Department of Computer Science Academiei 14, 70109
Bucharest, Romania

Email: popescunmarius@gmail.com

Acronym of your best entry: MB_Kcomb1

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Marius_Popescu.html

Method
I approached the challenge from the position of someone with experience in machine learning,
but a completely newcomer in causality. As learning method I used Kernel Ridge Regression.
For prediction (and training) I used only features from the Markov Blanket (MB) of the target
variable, but I also tried to exploit the structure of the MB. The structure of MB was exploited
by defining two separate kernels: one over the parents (direct causes) and another one over
the children (direct effects) and spouses. The kernel used in Ridge regression was a linear
combination of these two kernels.

Obtaining MB and its structure

To obtain the Markov blanket and its structure I relied on “Causal Explorer”. To obtain the
variables of the MB I used HITON_MB method. To obtain the structure I used TPDA method
over the variables in the MB and target variable. Because TPDA can leave some edges undi-
rected and because MB is not a general Bayesian network (it has a special structure around the
target node) I used the following heuristic to direct all the edges: all nodes for which TPDA
find a directed link from target node to it (1 in the adjacency matrix) are considered children,
all others nodes for which TPDA find connection (1 or 2 in the adjacency matrix) to target node
are considered parents node, remaining nodes are considered spouses. This heuristics prefers
to introduce false parents than to miss some parents (we consider direct causes very important).
The details can be seen in the following MATLAB script (p is the index of parents, c the index
of children and s the index of spouses):

load reged0_train
Y = load(’reged0_train.targets’);
Y = 0.5*(Y+1);
XY= [X,Y];
mb=Causal_Explorer(’HITON_MB’, XY, 1000, [], ’z’, 0.05, 3)
XY2 = XY(:, [mb,1000]);
A=Causal_Explorer(’TPDA’, XY2, [], ’z’, 0.05, 1, 1)

ic = find(A(end, 1:end-1) == 1);

161

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Marius_Popescu.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Marius_Popescu.html

MARKOV BLANKET AND KERNEL RIDGE REGRESSION

ip = find(A(1:end-1, end) ~= 0);
is = setdiff(1:length(mb), union(ip,ic));
p = mb(ip);
c = mb(ic);
s = mb(is);

save mb mb A ic ip is p c s;

Training and Prediction

The kernel used in the Kernel Ridge Regression was a linear combination of two quadratic
(normalized) kernels:

K = (eta * K1) + ((1 - eta) * K2)

K1 being a quadratic normalized kernel over the set of parents:

K1 = (X(:, p) * X(:, p)’ + 0.5) .^ 2;
XN1 = sqrt(diag(K1));
K1 = K1 ./ (XN1 * XN1’);

And K2 a quadratic normalized kernel over the set of children and spouses:

K2 = (X(:, [c,s]) * X(:, [c,s])’ + 0.5) .^ 2;
XN2 = sqrt(diag(K2));
K2 = K2 ./ (XN2 * XN2’);

The parameter eta of the linear combination is chosen taking into account how “good”
is each kernel of the combination. The “goodness” is measured by “kernel alignment”, more
precisely the alignment of the kernel with the ideal kernel YY’. Again the details (including the
setting of parameters) can be seen in training MATLAB script:

lambda = 10 ^ (-6);

load lim;
load reged0_train
X = scale(X, ll, ul);
Y = load(’reged0_train.targets’);

load mb;

n = size(X, 1);

K1 = (X(:, p) * X(:, p)’ + 0.5) .^ 2;
XN1 = sqrt(diag(K1));
K1 = K1 ./ (XN1 * XN1’);

K2 = (X(:, [c,s]) * X(:, [c,s])’ + 0.5) .^ 2;
XN2 = sqrt(diag(K2));
K2 = K2 ./ (XN2 * XN2’);

align1 = (Y’ * K1 * Y) / (n * norm(K1, ’fro’))

162

MARIUS POPESCU

align2 = (Y’ * K2 * Y) / (n * norm(K2, ’fro’))
eta = align1 / (align1 + align2);

K = (eta * K1) + ((1 - eta) * K2);

w = inv(K+(n*lambda)*eye(n)) * Y;

Yh = K * w;
%Yh = sign(Yh);
%Yh(find(Yh == 0)) = 1;

%err = length(find(Yh ~= Y)) / n

fid = fopen(’reged0_feat.ulist’,’w’);
fprintf(fid,’%g ’,[p,c,s]);
fprintf(fid,’\n’);
fclose(fid);

fid = fopen(’reged0_train.predict’,’w’);
fprintf(fid,’%g\n’,Yh);
fclose(fid);

save model w eta XN1 XN2;

Treating manipulation

When the list of manipulated variables is available (REGED1) from the MB are removed the
children of the target that are manipulated. Also are removed all the spouses that remain without
children. The script is:

load mb;

tbelm = [20, 27, 36, 70, 82, 83, 85, 91, 118, 125, 139, 143,
160, 169, 176, 185, 191, 204, 219, 224, 229, 239, 243, 251,
252, 269, 281, 282, 295, 297, 301, 319, 320, 321, 342, 350,
357, 359, 361, 378, 387, 407, 409, 412, 429, 430, 469, 472,
499, 501, 507, 512, 540, 545, 552, 561, 566, 572, 580, 586,
593, 618, 622, 637, 651, 663, 674, 681, 683, 686, 690, 702,
727, 754, 762, 764, 773, 786, 805, 815, 835, 861, 872, 873,
877, 880, 889, 904, 935, 936, 939, 942, 949, 962, 977, 985,
989, 991, 992, 994];

se = intersect(tbelm,s);
ce = intersect(tbelm,c);

[tmp, ise] = ismember(se, mb);
[tmp, ice] = ismember(ce, mb);

ice2 = [];

163

MARKOV BLANKET AND KERNEL RIDGE REGRESSION

for x = ise
ice2 = union(ice2, find(A(ic,x) ~= 0)’);

end

ice2 = ic(ice2);
ice = union(ice, ice2);

ictmp = setdiff(ic, ice);

ise2 = [];

for x = is
if isempty(find(A(ictmp,x) ~= 0))

ise2 = [ise2, x];
end

end

ise = union(ise, ise2);

icn = setdiff(ic, ice);
isn = setdiff(is, ise);

cn = mb(icn);
sn = mb(isn);

save newmb p cn sn;

In the case of REGED2 (when all variable excepting parents are manipulated) that mean that
will remain only one kernel (instead of a combination of two kernels), the quadratic kernel over
the set of parents.

Results

Table I.15: Results table. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 77 MB_Kcomb1 24/999 0.9012 0.9931±0.0017 1 1
REGED1 77 MB_Kcomb1 11/999 0.7842 0.9888±0.0026 0.998 0.998 0.9032 5
REGED2 77 MB_Kcomb1 6/999 0.7475 0.7278±0.0060 0.86 0.9534

Keywords:
• Preprocessing or feature construction: centering, scaling, standardization, PCA.

164

MARIUS POPESCU

• Causal discovery: Bayesian Network, Structural Equation Models, Probabilistic Graphi-
cal Models, Markov Decision Processes, Propensity Scoring, Information Theoretic
Method.

• Feature selection: filter, wrapper, embedded feature selection, feature ranking, etc.

• Classifier: neural networks, nearest neighbors, tree classifier, RF, SVM, kernel-method,
least-square, ridge regression, L1 norm regularization, L2 norm regularization, logistic
regression, ensemble method, bagging, boosting, Bayesian, transduction.

• Hyper-parameter selection: grid-search, pattern search, evidence, bound optimization,
cross-validation, K-fold.

• Other: ensemble method, transduction.

165

Causation and Prediction Challenge Fact Sheet 16

Title: Markov Blanket Filtering using Mixture Models

Author: Mehreen Saeed

Address: FAST National University of Computer & Emerging Sciences, Lahore Campus,
Pakistan.

Email: mehreen.saeed@nu.edu.pk

Acronym of your best entry: Final Entry 2

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Mehreen_Saeed.html

Complete paper
Bernoulli Mixture Models for Markov Blanket Filtering and Classification. Mehreen Saeed;
JMLR W&CP 3:77–91, 2008.

Method
Preprocessing

Normalize and Standardize

Causal discovery

Markov blanket filtering with Bernoulli mixtures in case of SIDO. In case of CINA this method
was only applied to binary features but this was not our last submitted entry.

Feature selection

Subset feature selection using forward selection algorithm. The heuristic used to guide the
search was the accuracy obtained from the Naïve Bayes’ classifier.

Classification

Naïve Bayes’ classifier, Bernoulli mixtures + ensemble of neural nets in case of SIDO and
ensemble of neural nets in case of CINA,

Model selection/hyper-parameter tuning

Cross validation.

166

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Mehreen_Saeed.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Mehreen_Saeed.html

MEHREEN SAEED

Results

Table I.16: Results table. The two stars next to the feature number indicate that the submission
included a sorted list of features and multiple results for nested subsets of features.
Top Ts refers to the best score among all valid last entries made by participants.
Max Ts refers to the best score reachable, as estimated by reference entries using
the knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
SIDO0 1413 final entry 2 8/4932** 0.4971 0.9391±0.0079 0.9443 0.9467
SIDO1 1413 final entry 2 4096/4932** 0.7242 0.7246±0.0137 0.7532 0.7893 0.7618 3
SIDO2 1413 final entry 2 512/4932** 0.7242 0.6216±0.0132 0.6684 0.7674
CINA0 1413 final entry 2 32/132** 0.5069 0.9751±0.0031 0.9765 0.9788
CINA1 1413 final entry 2 16/132** 0.7858 0.8248±0.0045 0.8691 0.8977 0.8289 6
CINA2 1413 final entry 2 16/132** 0.7858 0.6867±0.0041 0.8157 0.891

Quantitative advantages

• FOR SIDO: Feature transformation to new probability space significantly reduces the
dimensionality of data, use of Bernoulli mixtures for Markov blanket filtering drastically
reduces the computational cost.

• FOR CINA: Subset feature selection using forward selection algorithm in CINA is ex-
tremely simple and intuitive.

Qualitative advantages

Methods based upon mixture densities which model the data very effectively.

Implementation
Code was implemented by adding modules to CLOP’s library. C++ code was written for mixture
models with an interface to Matlab.

Keywords:
• Preprocessing or feature construction: probability space provided by mixture models,

normalization, standardization

• Causal discovery: Markov blanket filtering using Bernoulli mixtures

• Feature selection: hill climbing search.

• Classifier: neural networks, ensemble method, Naïve bayes’, mixture models.

• Hyper-parameter selection: 2-fold cross validation.

• Other: None.

167

MARKOV BLANKET FILTERING USING MIXTURE MODELS

Other methods Tried
SVM, Bernoulli mixtures combined with SVM and simple neural networks.

What do you think was a critical element of success compared to other things you tried?

Quartile information gave a big clue as to which method was performing better. For some
methods CV accuracy was a little misleading on versions 1 and 2 of datasets as it doesn’t tell us
much about a dataset where the features have been manipulated by external sources.

In what do the models for the versions 0, 1, and 2 of the various tasks differ?

SIDO: Models 1 and 2 were created with the same method and models, i.e., Markov
blanket filtering using Bernoulli mixtures was used to find a feature list.
Model 0 was created with subset feature selection using forward algorithm.
Classification was done using Naïve Bayes’.

CINA: In case of CINA all versions were created with the same model.

Did you rely on the quartile information available on the web site for model selection or
did you use another scheme?

Yes, we did use quartile information for model selection. Within a quartile we used 2 fold cross
validation accuracy.

In the result table you submitted, did you use nested subsets of features from the slist you
submitted?

Yes.

Did you use any knowledge derived from the test set to make your submissions, including
simple statistics and visual examination of the data?

No.

168

Causation and Prediction Challenge Fact Sheet 17

Title: Ensemble Machine Learning Method

Author: Ching-Wei Wang

Address: Department of Computing and Informatics University of Lincoln Brayford Pool
Lincoln LN6 7TS United Kingdom

Email: cweiwang@lincoln.ac.uk

Acronym of your best entry: c, 10, 15

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Ching-Wei_Wang.html

References
1. Wang, C.-W. (2006) New Ensemble Machine Learning Method for Classification and Pre-

diction on Gene Expression Data, Proceedings of the 28th international conference of the
IEEE Engineering in Medicine and Biology Society. pp. 3478–3481. ISBN 1424400333.

2. Fayyad, U. M. & Irani, K. B. (1993). Multi-interval discretization of continuous-valued
attributes for classification learning, 13th International Joint Conference of Artificial In-
telligence, 1022–7.

3. Weka, http://www.cs.waikato.ac.nz/ml/weka/

Implementation
The learning algorithm is previously implemented in Java and can be referred to [1]. The
feature selection algorithms can be found in the weka machine learning package. Portion of
binary discretization for testing data is implemented in c#.

169

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Ching-Wei_Wang.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Ching-Wei_Wang.html
http://www.cs.waikato.ac.nz/ml/weka/

ENSEMBLE MACHINE LEARNING METHOD

Results

Table I.17: Results table. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1240 c 999/999 0 0.9938±0.0013 1 1
REGED1 1240 c 999/999 0 0.9022±0.0044 0.998 0.998 0.8512 10
REGED2 1240 c 999/999 0 0.6577±0.0057 0.86 0.9534
SIDO0 455 10 4932/4932 0 0.6259±0.0117 0.9443 0.9467
SIDO1 455 10 4932/4932 0 0.5023±0.0021 0.7532 0.7893 0.5402 14
SIDO2 455 10 4932/4932 0 0.4925±0.0006 0.6684 0.7674
CINA0 599 15 132/132 0 0.9246±0.0034 0.9788 0.9788
CINA1 599 15 132/132 0 0.6778±0.0052 0.8977 0.8977 0.7249 12
CINA2 599 15 132/132 0 0.5722±0.0050 0.8157 0.891
MARTI0 599 15 1024/1024 0 0.6828±0.0056 0.9996 0.9996
MARTI1 599 15 1024/1024 0 0.6294±0.0058 0.947 0.9542 0.6527 10
MARTI2 599 15 1024/1024 0 0.6459±0.0060 0.7975 0.8273

Keywords:
• Preprocessing or feature construction: binary discretization.

• Causal discovery: Information Gain, Decision Tree.

• Feature selection: filter.

• Classifier: ensemble method, boosting, cw-boost.

• Hyper-parameter selection: 10-fold cross-validation.

• Other: ensemble method.

170

CHING-WEI WANG

Method
Model selection/hyperparameter selection

10-fold cross validation.

Preprocessing Feature select Classification
Reged0,
1, 2

Binary discretization[2] to change feature values and
filter out the features, which can not be discretized.
Produce 10 features to train. Features* include {82,
250, 320, 408, 452, 592, 738, 824, 929, 938}. The
features are selected using reged0_train.data.

cw-Boost[1],
containing one
hundred C4.5
decision trees

Cina0 none Use raw data

cw-Boost[1],
containing seventy
C4.5 decision
trees

(100 iterations
may perform
better)

Cina1,
2

Feature selection [3]: -E
weka.attributeSelection.
CfsSubsetEva –S
weka.attributeSelection.
BestFirst –D 1 –N 5

Marti0 Apply Feature selection 1
times, producing 295
features to train.

[3]: -E
weka.attributeSelection.
CfsSubsetEva –S
weka.attributeSelection.
GeneticSearch –Z 20 –G 20

Marti1,
2

Apply Feature selection 3
times, producing 14
features to train.

Sido0,
1, 2

The data is too big for the
equipment (CPU 2.4GHz
and 1G RAM only).
Systematically divide the
data to 10 sub-files, and
apply feature selection to
the first two files. Train the
two files and combine the
prediction results. The
performance is poor since
the data preprocessing is
poor here due to limitation
of PC memory.

AttributeSelection [3]: -E
weka.attributeSelection.
CfsSubsetEva –S
weka.attributeSelection.
BestFirst –D 1 –N 5

*feature index: start from 0

171

Causation and Prediction Challenge Fact Sheet 18

Title: Partial Orientation and Local Structural Learning of DAGs for Prediction

Author:
Jianxin Yin jianxinyin@gmail.com
Zhi Geng zgeng@math.pku.edu.cn
You Zhou zhouyou@pku.edu.cn
Changzhang Wang changzhang@pku.edu.cn
Ping He sunhp@pku.edu.cn
Cheng Zheng zzhengccheng@pku.edu.cn
Zheyu Wang wangzy853@sohu.com
Simeng Han hansimeng@pku.edu.cn
Lingzhou Xue michaelxlz@gmail.com
Shaopeng Wang wangshop@gmail.com
Zhenguo Wu wuzhenguo@gmail.com
Wei Yan yanwei1982@pku.edu.cn
Manabu Kuroki mkuroki@sigmath.es.osaka-u.ac.jp
Zhihong Cai cai@pbh.med.kyoto-u.ac.jp

Address: School of Mathematical Sciences, Peking University, Beijing 100871, China

Acronym of your best entry: final submission

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/J_YinZ_Geng_Gr.html

Complete paper:
Partial orientation and local structural learning of causal networks for prediction. Jianxin Yin,
You Zhou, Changzhang Wang, Ping He, Cheng Zheng, and Zhi Geng; JMLR W&CP 3:93–105,
2008.

Method
Preprocessing

For the case with noise (e.g., MARTI), we filter the noise using a two steps process. At the
first step, we correct the global noise pattern. We find a regression model for each of 999 gene
expression features, in which 25 calibrate features, are treated as explanatory variables and the
gene expression as the response variable. At the second step, we locally filter the noise of each
gene expression feature with neighbor features. Given a new micro-array, we first correct it with
the global regression models, and then filter its noises with local models.

For a data set with very high dimensional space (e.g., SIDO), we first screen features us-
ing sure independence screening method to reduce the dimensionality to a tractable size (e.g.,
1000 features for SIDO). This screen step is not necessary for other data sets and even for a
higher dimensional data set if the CPU time or memory for the following computations is not a
problem.

172

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/J_YinZ_Geng_Gr.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/J_YinZ_Geng_Gr.html

JIANXIN YIN AND PROF. ZHI GENG’S GROUP

Causal discovery

We propose an approach for local structural learning and partial orientation of the edges con-
nected to the target. In the approach, we first find the parent-children set PC(T) of the target
T , and then we find the PC(X) for each feature X ∈ PC(T). We find local v-structures and try
to orient the edges connected to the target T as much as possible. If all of the edges connected
to the target T are oriented, we obtain all causal relationships to the target T that are necessary
for prediction. If some edges have not oriented yet, we can repeat the process to find PC(X) for
other features X ∈ PC(PC(T)) until all edges connected to T are oriented or we have checked
all features or we have tried the maximum number of steps that we set for a very large graph.
Theoretically we can show that the proposed approach is correct, that is, it can correctly find at
each step local v-structures of the global DAG.

Feature selection

For the data set without manipulation (numbered 0), all the variables in the Markov blanket
(MB) are used to predict the target T . For the data set with a known manipulated variable set
(numbered 1), we drop the manipulated variables in the set of children and drop the spouses of
T whose children common with T have been all dropped, and we use all parent variables and
unmanipulated children and the parents of unmanipulated children in the MB of T . For the data
set with an unknown manipulated variable set (numbered 2), only the parent variables of the
target are used. When the variable sets that are used for prediction are sensitive to significance
levels and other parameters, we may use a union of these sets and then predict the target with a
shrinkage method to remove the redundant variables.

Classification

We use the L1 penalized logistic regression model to fit the prediction model. We use the
estimated conditional probability of the target variable for each individual in the test set for its
classification.

Model selection/hyper-parameter tuning

Given the variable set obtained at the causal discovery, we use a penalized approach which
implements both estimation and selection. In the penalized approach, we use a 5-fold of cross
validation (CV) method only with the training data set to select the hyper-parameter λ in the
solution path. We use the CV curve to diagnose the stableness of the selected model. Three
main values that are recorded every time for comparison are the minimal value of CV error, the
corresponding norm fraction and the ratio of the selected variable set to the candidate variable
set.

Results
Quantitative Advantages

For causal discovery, the approach of partial orientation and local structural learning can greatly
reduce computational complexity of structural learning. On the other hand, statistical test is
more powerful for the local structural learning approach than the global learning. For the pre-
diction, we use the L1 penalized generalized logistic model to shrink the parameters at the
training stage, which can reduce mean squared error (MSE) of prediction.

173

PARTIAL ORIENTATION AND LOCAL STRUCTURAL LEARNING OF DAGS FOR PREDICTION

Table I.18: Results table. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1475 final submission 15/999 0.8571 0.9997±0.0010 0.9998 1
REGED1 1475 final submission 14/999 0.8189 0.9517±0.0033 0.9888 0.998 0.9133 3
REGED2 1475 final submission 11/999 0.9955 0.7885±0.0056 0.86 0.9534
SIDO0 1475 final submission 16/4932 0.5019 0.9443±0.0075 0.9443 0.9467
SIDO1 1475 final submission 16/4932 0.5035 0.6976±0.0137 0.7532 0.7893 0.7609 4
SIDO2 1475 final submission 16/4932 0.5035 0.6408±0.0132 0.6684 0.7674
CINA0 1475 final submission 22/132 0.5957 0.9736±0.0032 0.9765 0.9788
CINA1 1475 final submission 24/132 0.5852 0.8577±0.0047 0.8691 0.8977 0.833 4
CINA2 1475 final submission 18/132 0.5852 0.6676±0.0044 0.8157 0.891
MARTI0 1475 final submission 11/1024 0.689 0.9985±0.0016 0.9996 0.9996
MARTI1 1475 final submission 11/1024 0.6394 0.8911±0.0050 0.947 0.9542 0.8955 2
MARTI2 1475 final submission 11/1024 0.9956 0.7969±0.0060 0.7975 0.8273

Qualitative Advantages

The approach of partial orientation and local structural learning is efficient for large causal
networks if we are interested only in the prediction of the target. We can theoretically show
that the approach can correctly obtain the edges connected to the target and their orientations.
Although the Markov blanket is useful for prediction without manipulation, it cannot be used
for prediction with manipulation, and more importantly it is not sufficient to orient the edges
connected to the target. The two stage filtering is efficient for the case with noise and calibrates
features. The sure independence screening is a useful preprocess for ultra-high dimensional
feature space.

Keywords:
• Preprocessing or feature construction: Regression model, Global and local filtering.

• Causal discovery: Causal networks, Directed acyclic graphs, Local structural learning,
Partial orientation.

• Feature selection: Parents and children, Feature ranking, Markov blanket.

• Classifier: L1 penalization, Logistic regression, Solution path.

• Hyper-parameter selection: Cross validation, K-fold.

174

Causation and Prediction Challenge Fact Sheet 19

Title: Causative Feature Selection by PC Algorithm and SVMs

Author: Wu Zhili

Address: OEW801, Department of Computer Science, HKBU, HK

Email: vincent@comp.hkbu.edu.hk

Acronym of your best entry: temp 7

Performance graphs generated by the organizers: http://clopinet.com/
isabelle/Projects/WCCI2008/Reports/Wu_Zhili.html

Method
Preprocessing

We divide each column of feature by the maximum value.

Feature selection

We test the pcalg package in R, which as an implementation to PC algorithm can provide us a
MB set. We also try the HITON_MB and HITON_PC in CausalityExplorer package. They can
produce a similar causative feature set. For REGED data, the MB set we obtained leads to an
improved Fscore. But for MARTI, the MB set returned doesn’t help much. In early submission,
feature selection based on weights calculated from linear SVMs is conducted preliminarily, like
the submission for SIDO. We did not use any knowledge derived from the test set to make the
submissions.

Classification

We use standard SVM to train the final classifier. RBF and high-degree polynomial kernels are
used.

Model selection/hyper-parameter tuning

Cross validation with the criteria of balanced error rate is used, but not intensively conducted.
Though we use separate weights for the unbalanced positive and negative classes, we haven’t
gain much performance improvement for these by model selection.

Results
• Quantitative advantages: easy to try based on existing packages.

• Qualitative advantages: explore the combination of MB selection with SVM.

Our implementation consists of Matlab, R, and also utilizes the LibSVM package.

175

http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Wu_Zhili.html
http://clopinet.com/isabelle/Projects/WCCI2008/Reports/Wu_Zhili.html

CAUSATIVE FEATURE SELECTION BY PC ALGORITHM AND SVMS

Table I.19: Results table. The star following the feature number indicates that the feature set
was sorted. Top Ts refers to the best score among all valid last entries made by
participants. Max Ts refers to the best score reachable, as estimated by reference
entries using the knowledge of true causal relationships not available to participants.

Dataset Entry Method Fnum Fscore Tscore (Ts) Top Ts Max Ts <Tscore> Rank
REGED0 1051 temp 7 73/999* 0.8758 0.9820±0.0012 1 1
REGED1 1051 temp 7 73/999* 0.8213 0.8454±0.0051 0.998 0.998 0.8117 13
REGED2 1051 temp 7 73/999* 0.9564 0.6077±0.0056 0.86 0.9534
SIDO0 529 wzl-03-27-v3 128/4932* 0.5021 0.6446±0.0122 0.9443 0.9467
SIDO1 529 wzl-03-27-v3 4932/4932* 0.5088 0.4994±0.0002 0.7532 0.7893 0.5475 13
SIDO2 529 wzl-03-27-v3 4932/4932* 0.5088 0.4985±0.0003 0.6684 0.7674
CINA0 979 temp 2 66/132* 0.7504 0.9210±0.0033 0.9788 0.9788
CINA1 979 temp 2 66/132* 0.492 0.6233±0.0048 0.8977 0.8977 0.6668 14
CINA2 979 temp 2 66/132* 0.492 0.4562±0.0042 0.8157 0.891
MARTI0 988 temp 3 19/1024* 0.4905 0.6541±0.0058 0.9996 0.9996
MARTI1 988 temp 3 19/1024* 0.4906 0.6411±0.0060 0.947 0.9542 0.6488 11
MARTI2 988 temp 3 19/1024* 0.4907 0.6513±0.0062 0.7975 0.8273

Keywords:
• Preprocessing or feature construction: scaling.

• Feature selection: MB and PC algorithm, feature ranking.

• Classifier: SVM.

• Hyper-parameter selection: cross validation.

176

Appendix II

Technical Report Describing the
Datasets of the Challenge

Datasets of the Causation and Prediction Challenge
The Causality Workbench Team

Isabelle Guyon ISABELLE@CLOPINET.COM
Clopinet, California

Constantin Aliferis CONSTANTIN.ALIFERIS@NYUMC.ORG
New York University, New York

Greg Cooper GFC@PITT.EDU
University of Pittsburgh, Pennsylvania

André Elisseeff AEL@ZURICH.IBM.COM
IBM Research, Zürich

Jean-Philippe Pellet JEP@ZURICH.IBM.COM
IBM Research and ETH, Zürich

Peter Spirtes PS7Z@ANDREW.CMU.EDU
Carnegie Mellon University, Pennsylvania

Alexander Statnikov ALEXANDER.STATNIKOV@MED.NYU.EDU

New York University

Introduction
We prepared four datasets for the first challenge on causality we organized for the World
Congress on Computational Intelligence, WCCI 2008. The focus of this challenge, entitled
“Causation and Prediction”, was on the evaluation of causal modeling techniques, aiming
at predicting the effect of “interventions” performed by an external agent. Examples of that
problem are found in the medical domain to predict the effect of a drug prior to administering
it, or in econometrics to predict the effect of a new policy prior to issuing it. We concentrated
on a given target variable to be predicted (e.g., health status of a patient) from a number of can-
didate predictive variables or “features” (e.g., risk factors in the medical domain). We limited
ourselves to binary target variables (two-class classification problems), but the input vari-
ables are either binary or continuous. For each task, a training set drawn from a “natural”
distribution is given and three test sets: one test set from the same distribution as the train-
ing set and two test sets obtained after an external agent manipulated certain variables
(i.e., set them to arbitrary values, not drawn from the natural distribution). The target variable
itself is never manipulated and it is assumed that the external agent interventions do not alter
the mechanisms by which one variable is determined by the value of others. The participants
were asked to provide predictions of the target variable on test data and the list of variables
(features) used to make predictions. The challenge platform remains open for post-challenge
submissions (see http://clopinet.com/causality). The datasets were also used for
the task LOCANET, which was part of the second causality challenge we organized for the
Neural Information Processing Systems conference (NIPS 2008). The goal of LOCANET was
to uncover the LOcal CAusal NETwork around the target. This report was not available to
the participants of the challenges.

179

http://clopinet.com/causality

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Table 1: Datasets of the causation and prediction challenge. The datasets of the challenge
are indicated in boldface. Two other toy datasets (LUCAS and LUCAP) were used for
illustration purpose.

Dataset Description Var. type Var. # Train Test
LUCAS Toy example (Bayes net) binary 11 10000 20000
LUCAP Toy example (Bayes net + probes) binary 143 10000 20000
REGED Genomics re-simulated numeric 999 500 20000
SIDO Pharmacology (real data + probes) binary 4932 12678 10000
CINA Marketing (real data + probes) mixed 132 16033 10000
MARTI Same as REGED + correlated noise numeric 1024 500 20000

Brief description of the data

• REGED is a dataset generated by a simulator of gene expression data, which was trained
on real DNA microarray data. The target variable is lung cancer subtype. Hence, the
task is to discover genes, which trigger disease or are a consequence of disease. The
manipulations simulate the effect of agents such as drugs and/or RNA silencing. For
REGED1, the list of manipulated variable is provided, but not for REGED2. REGED
has 999 features, of which the Markov blanket contains 2 direct causes, 13 direct effects
and 6 spouses in REGED0, but only 2 direct causes, 6 direct effects and 4 spouses in
REGED1, and 2 direct causes in REGED2.

• SIDO consists of real data, from a drug discovery problem. The variables represent
molecular descriptors of pharmaceutical compounds, whose activity on the HIV virus
must be determined (the target variable). Knowing which molecule feature is a cause of
activity would be of great help to chemical engineers to design new compounds. To
test the efficacy of causal discovery algorithm, artificial “distractor” variables (called
“probes”) were added, which are “non-causes” of the target. All the probes are ma-
nipulated in the test sets SIDO1 and SIDO2. The probes must be filtered out to get a
good causal discovery score and good prediction performance on test data. SIDO has
4932 features, of which 1644 real features and 3288 probes.

• CINA is also a real dataset. The problem is to predict the revenue level of people from
census data (marital status, years of study, gender, etc.). As a causal discovery problem,
the task is to find causes, which might influence revenue. Similarly as for SIDO, artificial
variables (probes) were added. CINA has 132 features, of which 44 real features and 88
probes; all probes are manipulated in CINA1 and 2.

• MARTI is a noisy version of REGED. Correlated noise was added to simulate measure-
ment artifacts and introduce spurious relationships between variables. This dataset illus-
trates that without proper calibration/normalization of data, causal discovery algorithms
may yield wrong causal structures. MARTI has 1024 features and the same causal graph
as REGED. However, 25 calibrant variables were added to help taking out the noise.

Overall method

Preparing the data included the following steps:

180

http://www.causality.inf.ethz.ch/data/REGED.html
http://www.causality.inf.ethz.ch/data/SIDO.html
http://www.causality.inf.ethz.ch/data/CINA.html
http://www.causality.inf.ethz.ch/data/CINA.html
http://www.causality.inf.ethz.ch/data/MARTI.html
http://www.causality.inf.ethz.ch/data/MARTI.html

INTRODUCTION

• Adding artificial variables (probes) in real datasets.

• Preprocessing data to obtain features in the same numerical range (0 to 999 for continuous
data and 0/1 for binary data).

• Randomizing the order of the patterns and the features to homogenize the data.

• Splitting the data into training and test set.

The classification results were evaluated with the Area under the ROC Curve (AUC) on test
data. The target values on test examples were never revealed. The web site remains available to
assess performances of new algorithms. No validation set was used to provide on-line feed-back
to the participants during the challenge. Rather, the participants submitted results on test data
and, during the development period, obtained a coarse information on the web site about their
ranking (in which quartile their submission ranked).

Although the participants were strictly evaluated on prediction performance of the tar-
get variable, other metrics were computed to assess the correlation between correct causal
structure discovery and correct target value predictions. To assess causal structure discov-
ery, an index measuring the similarity of the feature set to the Markov boundary of the post-
manipulation distribution was calculated (see the website of the challenge for details). In
a follow up challenge (NIPS 2008), we asked the participants to return the depth 3 local
structure, and we assessed its correctness with an edit distance to the true graph (see http:
//www.causality.inf.ethz.ch/data/LOCANET.html).

Real and artificial data

We use two types of data:

• Re-simulated data: We train a causal model with real data. The model is then used to
generate artificial training and test data for the challenge. Truth values of causal rela-
tionships are known for the data generating model and used for scoring causal discovery
results. REGED is an example of re-simulated dataset.

• Real data with probe variables: We use a dataset of real samples. Some of the variables
may be causally related to the target and some may be predictive but non-causal. The
nature of the causal relationships of the variables to the target is unknown (although
domain knowledge may allow us to validate the discoveries to some extent). We have
added to the set of real variables a number of distractor variables called “probes”, which
are generated by an artificial stochastic process, including explicit functions of some of
the real variables, other artificial variables, and/or the target. All probes are non-causes
of the target, some are completely unrelated to the target. The identity of the probes in
concealed. The fact that truth values of causal relationships are known only for the probes
affects the evaluation of causal discovery, which is less reliable than for artificial data.

We give in appendix details about the method we used to generate random probes.

Evaluation

For the first causality challenge “Causation and Prediction” organized for WCCI 2008, the par-
ticipants were asked to return prediction scores or discriminant values v for the target variable
on test examples, and a list of features used for computing the prediction scores, sorted in or-
der of decreasing predictive power, or unsorted. The classification decision is made by setting

181

http://www.causality.inf.ethz.ch/data/LOCANET.html
http://www.causality.inf.ethz.ch/data/LOCANET.html

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

a threshold µ on the discriminant value v: predict the positive class if v > µ and the negative
class otherwise. The participants could optionally provide results for nested subsets of features,
varying the subset size by powers of 2 (1, 2, 4, 8, etc.). Two scores were used:

• Tscore: The participants were ranked according to the area under the ROC curve (AUC)
computed for test examples (referred to as Tscore), which is the area under the curve
plotting sensitivity vs. (1¡ specificity) when the threshold µ is varied (or equivalently the
area under the curve sensitivity vs. specificity). We call “sensitivity” the error rate of the
positive class and “specificity” the error rate of the negative class. The AUC is a standard
metric in classification. If results were provided for nested subsets of features, the best
Tscore was retained. There are several ways of estimating error bars for the AUC. We
use a simple heuristic, which gives us approximate error bars, and is fast and easy to
implement: we find on the AUC curve the point corresponding to the largest balanced
accuracy BAC = 0.5 (sensitivity + specificity). We then estimate the standard deviation
of the BAC as: σ = (1/2) sqrt(p+(1− p+)/m+ + p−(1− p−)/m−), where m+ is the number
of examples of the positive class, m− is the number of examples of the negative class, and
p+ and p− are the probabilities of error on examples of the positive and negative class,
approximated by their empirical estimates, the sensitivity and the specificity.

• Fscore: We also computed other statistics, which were not used to rank participants, but
used in the analysis of the results. Those included the number of features used by the
participants called “Fnum”, and a statistic assessing the quality of causal discovery in the
feature set selected called “Fscore”. As with the Tscore, we provided quartile feed-back
on Fnum and Fscore during the competition. For the Fscore, we used the AUC for the
problem of separating features belonging to the Markov blanket of the test set distribution
vs. other features. Details are provided on the web site of the challenge. As it turns out,
this statistic correlates poorly with the Tscore. After experimenting with various scores,
we found better alternatives.

• New Fscore. We ended up using as the new Fscore the Fmeasure for REGED and
MARTI and the precision for SIDO and CINA, after experimenting with various al-
ternative measures inspired by information retrieval. We use the following definitions:
precision = tp = (tp+ fp), recall = tp = (tp+ fn) (also called sensitivity), and Fmeasure =
2 precision recall / (precision + recall). Our explorations indicate that precision, recall,
and Fmeasure correlate well with Tscore for artificially generated datasets (REGED and
MARTI). The Fmeasure, which captures the tradeoff between precision and recall, is a
good measure of feature set quality for these datasets. However, recall correlates poorly
with Tscore for SIDO and CINA, which are datasets of real variables with added artificial
“probes”. In these cases, we approximate the recall by the fraction of real variables re-
called (present in the selected feature set), which can be very different from the true recall
that is the fraction of relevant variables. For instance, if many real variables are irrelevant,
a good causal discovery algorithm might eliminate them, thus obtaining a poor estimated
recall. Hence, we can only use precision as of feature set quality for those datasets.

For the LOCANET task of the second causality challenge (NIPS 2008 Pot-luck Challenge),
we assessed performance by comparing the local causal network (of depth 3) to the actual local
causal network, using an edit distance. A confusion matrix Ci j was computed, recording the
number of relatives confused for another type of relative, among the 14 types of relatives in
depth 3 networks. A cost matrix Ai j , was then applied to account for the distance between
relatives (computed with an edit distance as the number of substitutions, insertion, or deletion

182

INTRODUCTION

to go from one string to the other, using the string description described above). The score of
the solution was computed as:

S =
�

i j
Ai jCi j

Cost matrix (Ai j)

Depth Desired 1 1 2 2 2 2 3 3 3 3 3 3 3 3 X
Obtained Relationship P C Sp GC Si GP GGP uud N PS SC IL CP GGC Other

u d du dd ud uu uuu uud udd udu ddu duu dud ddd
1 Parents u 0 1 1 2 1 1 2 2 2 2 2 2 2 3 4
1 Children d 1 0 1 1 1 2 3 2 2 2 2 2 2 2 4
2 Spouses du 1 1 0 1 2 1 2 2 2 1 1 1 1 2 4
2 Gchildren dd 2 1 1 0 1 2 3 2 1 2 1 2 1 1 4
2 Siblings ud 1 1 2 1 0 1 2 1 1 1 2 2 1 2 4
2 Gparents uu 1 2 1 2 1 0 1 1 2 1 2 1 2 3 4
3 Ggparents uuu 2 3 2 3 2 1 0 1 2 1 2 1 2 3 4
3 Uncles/Aunts uud 2 2 2 2 1 1 1 0 1 2 3 2 1 2 4
3 Nieces/Nephews udd 2 2 2 1 1 2 2 1 0 1 2 3 2 1 4
3 Parents of siblings udu 2 2 1 2 1 1 1 2 1 0 1 2 2 2 4
3 Spouses of children ddu 2 2 1 1 2 2 2 3 2 1 0 1 2 1 4
3 Parents in law duu 2 2 1 2 2 1 1 2 3 2 1 0 1 2 4
3 Children of spouses dud 2 2 1 1 1 2 2 1 2 2 2 1 0 1 4
3 Ggchildren ddd 3 2 2 1 2 3 3 2 1 2 1 2 1 0 4
X Other 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

For artificially generated data (REGED and MARTI), the ground truth for the target local
neighborhood was determined by the generative model. For real data with artificial “probe”
variables (SIDO and CINA), we do not have ground truth for the relationships of the real vari-
ables to the target. The score was computed on the basis of the artificial variables only.

Data formats

All the data sets are in the same format and include 4 files in text format:
dataname.param: Parameters and statistics about the data
dataname_train.data: Training set (a sparse or a regular matrix, patterns in lines, features in
columns).
dataname_test.data: Test set.
dataname_train.targets: Labels (truth values of the classes) for training examples.

The matrix data formats used are a space delimited file with a new-line character at the end
of each line.

The results on each dataset should be formatted in 3 ASCII files:
dataname_train.predict: a discriminant value for training set output (a discriminant value is a
score, which is large for examples of the positive class and small for examples of the negative
class).
dataname_test.predict: a discriminant value for test set output.
dataname_feat.slist: a sorted list of features used.

183

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

or
dataname_feat.ulist: an unsorted list of features used.

Single predictions for each training or test examples could be provided, or multiple predic-
tions corresponding to nested tested subsets of features could be given in the form of a data
table (see the website of the challenge for details).

Dataset A: REGED
1) Topic

REGED stands for REsimulated Gene Expression Dataset. The goal of REGED is to find
genes, which could be responsible of lung cancer subtype. The data are “re-simulated”, i.e., gen-
erated by a model derived from real human lung-cancer microarray gene expression data. From
the causal discovery point of view, it is important to separate genes whose activity cause lung
cancer from those whose activity is a consequence of the disease.

We propose three tasks, REGED0, REGED1, and REGED2. All three datasets includes 999
features, the same 500 training examples, and different test sets of 20000 examples. The target
variable is binary; it separates adenocarcinoma samples from squamous samples. The three
tasks differ in the test data distribution, which results from various types of manipulations:

REGED0: No manipulation (distribution identical to the training data).

REGED1: The following variables are manipulated:

20, 27, 36, 70, 82, 83, 85, 91, 118, 125, 139, 143, 160, 169, 176, 185, 191,
204, 219, 224, 229, 239, 243, 251, 252, 269, 281, 282, 295, 297, 301, 319,
320, 321, 342, 350, 357, 359, 361, 378, 387, 407, 409, 412, 429, 430, 469,
472, 499, 501, 507, 512, 540, 545, 552, 561, 566, 572, 580, 586, 593, 618,
622, 637, 651, 663, 674, 681, 683, 686, 690, 702, 727, 754, 762, 764, 773,
786, 805, 815, 835, 861, 872, 873, 877, 880, 889, 904, 935, 936, 939, 942,
949, 962, 977, 985, 989, 991, 992, 994.

REGED2: Many variables are manipulated, including all the consequences of the
target. When a manipulation is performed, the values of the manipulated
variables are clamped to given values by an “external agent”. All other
variable values are obtained after the system stabilizes when it is let to
evolve according to its own dynamics.

2) Sources

a. Original owners

Alexander Statnikov and Constantin F. Aliferis

References:

Aliferis, C.F. and Statnikov, A. (2007) High-Fidelity Resimulations from High-
Throughput Data. Technical Report DSL 07–03, Discovery Systems Laboratory, Van-
derbilt University.

b. Donor of database

This version of the database was prepared for the WCCI2008 by the Causality Workbench
team.

184

DATASET A: REGED

c. Date prepared: Summer 2007.

d. Date released for the challenge: December 2007.

3) Past usage

Used for the two first challenges organized by the Causality Workbench Team: (1) the Causation
and Prediction Challenge (WCCI 2008), (2) the NIPS 2008 Pot-Luck challenge, as part of the
LOCANET task (see http://clopinet.com/causality).

4) Experimental design

1. Creation of a resimulated gene expression dataset that is modeled
closely after the real microarray gene expression data

The ability to produce realistic simulated data is a critical component of evaluating discovery
algorithms in a systematic manner. In machine learning, a standard practice is to use expert-
derived networks (a prototypical example being the ALARM network [1]). Such networks do
not correspond to biological systems, they are too small, and the distributions are highly dis-
crete. In bioinformatics, researchers have simulated data from ad-hoc unvalidated generating
models, or from validated but very small models (e.g., http://bioinformatics.upmc.
edu/GE2/, http://www.phil.cmu.edu/projects/tetrad/, [2]). In order to ob-
tain large, realistic networks and data capturing the characteristics of human gene expression
data, we applied a High-Fidelity Data Resimulation technique [3] that generates synthetic data
from a causal process that is induced from the real data and guarantees that the synthetic data is
non-distinguishable from the real data.

The High-Fidelity Data Resimulation method was applied to 1,000 randomly selected vari-
ables (999 oligonucleotide probes and one phenotype variable) from the 12,600 probes in the
Affymetrix U95A array lung cancer gene expression data of [4]. Once a network (REGED0)
was obtained by HITON-Bach algorithm, a set of 30,000 samples was generated from this net-
work. The area under the ROC curve (AUC) for discriminating the real from the synthetic data
(i.e., joint real and synthetic distributions of the 1,000 variables) indicated minor discrepancies
between the two distributions.

2. Creation of additional re-simulated gene expression datasets with
manipulations

The datasets with manipulations are generated from the original network (REGED0) by dis-
connecting some variables from their direct causes (see Figure 1). After the manipulations
were performed in the network graph, the network was re-parameterized accordingly and data
(30,000 samples) was generated from it as described in the previous section. We produced two
datasets with manipulations:

• REGED1: We manipulated 1 direct cause of the target, 5 its mostly predictive direct ef-
fects, and 94 randomly selected variables that are scattered throughout the network but do
not belong to the local neighborhood of target. In total, 100 variables were manipulated.

• REGED2: We manipulated 1 direct cause of the target, all (13) its direct effects, and 86
randomly selected variables that are scattered throughout the network but do not belong
to the local neighborhood of target. In total, 100 variables were manipulated.

185

http://clopinet.com/causality
http://bioinformatics.upmc.edu/GE2/
http://bioinformatics.upmc.edu/GE2/
http://www.phil.cmu.edu/projects/tetrad/

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Figure 1: Example of manipulations. T is a target (response) variable. In the original network,
both A (direct cause of T) and C (direct effect of T) are predictive of T . However,
once C and A are manipulated, only A remains predictive of T in the manipulated
network.

For REGED1, the Challenge provides a list of variables that were manipulated but does not
disclose what these variables are (e.g., direct causes, direct consequences, or neither). Since
participants have access only to unmanipulated training data (e.g., REGED0), the optimal pre-
diction for the target in REGED1 can be achieved by using a Markov blanket of the target
inferred in REGED0 and excluding all manipulated direct effects and their direct causes.

For REGED2, the Challenge mentions that many variables including all direct effects of the
target were manipulated but does not provide indices of these variables in the dataset (unlike
REGED1). Since participants have access only to unmanipulated training data, the optimal
solution for REGED2 is to use only direct causes of the target variable.

3. Structure details:
• Local neighborhood of T contains 2 direct causes and 13 direct effects; there are also 6

spouses of T .

• Out of 999 non-target variables in the network, 789 are connected to T by an undirected
path and 210 are not.

• Local structure in the natural distribution (all numbers below refer to column indices in
the 2D-array data.)

– Direct causes: {322, 931}

– Direct effects: {84, 252, 345, 410, 426, 454, 572, 594, 595, 740, 818, 826, 940}

– Local neighborhood: {84, 252, 322, 345, 410, 426, 454, 572, 594, 595, 740, 818,
826, 931, 940}

186

DATASET A: REGED

Note: the variable numbers are offset by 1 compared to the column number c in the data
tables. The target is numbered 1. All other variables are numbered c+1.

Figure 2: Local neighborhood of T in REGED network.

Reference List

1. Beinlich I, Suermondt HJ, Chavez R, Cooper G: The ALARM monitoring system: A
case study with two probabilistic inference techniques for belief networks. Proceed-
ings of the Second European Conference on Artificial Intelligence in Medicine 1989.

2. Basso K, Margolin AA, Stolovitzky G, Klein U, la-Favera R, Califano A: Reverse engi-
neering of regulatory networks in human B cells. Nat Genet 2005, 37:382–390.

3. Aliferis CF, Statnikov A: High-Fidelity Resimulation from High-Throughput Data.
Technical Report DSL 07–03 2007.

4. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J,
Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE,
Golub TR, Sugarbaker DJ, Meyerson M: Classification of human lung carcinomas by
mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl
Acad Sci U S A 2001, 98:13790–13795.

5) Number of examples and class distribution

REGED0 Positive ex. Negative ex. Total Check sum
Training set 59 441 500 167114863.00
Test set 1853 18147 20000 6678340769.00
All 1912 18588 20500 6845455632.00

REGED1 Positive ex. Negative ex. Total Check sum
Training set 59 441 500 167114863.00
Test set 1833 18167 20000 6657027579.00
All 1892 18608 20500 6824142442.00

187

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

REGED2 Positive ex. Negative ex. Total Check sum
Training set 59 441 500 167114863.00
Test set 1781 18219 20000 6658529997.00
All 1840 18660 20500 6825644860.00
Note: the training set is the same for all three datasets.

6) Type of input variables and variable statistics

Artificial variables Random probes Total
999 0 999

All variables are integer quantized on 1000 levels. There are no missing values.

7) Results of baseline methods

Several quality assurance tests were performed with datasets in the Challenge. The following
two goals were pursued in these tests:

1. Ensure sufficient strength of predictive signal.

2. Assess effectiveness and impact of manipulations on predictivity of the target in manipu-
lated datasets.

We analyzed classification performance of different feature subsets. Namely, we analyzed dif-
ference in predictivity in manipulated data when using Markov blanket from manipulated net-
work and Markov blanket from unmanipulated network. Also, we compared to using no vari-
able selection combined with a powerful regularized classifier (e.g., SVMs). In addition, we
executed several state-of-the-art causal discovery algorithms to obtain baseline results for the
Challenge datasets:

a. HITON-PC (semi-interleaved, without symmetry correction)

b. HITON-PC (semi-interleaved, without symmetry correction) with FDR prefiltering of
variables

The reference submission uploaded to the website of the challenge. (reference_hpc) is for
HITON-PC (max−k=3, alpha=0.05) & Linear SVMs (C=0.001) using original data for both
algorithms. The test AUCs are:
REGED0 0.9998
REGED1 0.9800
REGED2 0.8447
The best AUC predictions of challenge participants are:
REGED0 1.000
REGED1 0.989
REGED2 0.839
The best score of participants on the LOCANET task is: 0.22. For reference, we also trained a
linear SVM classifier using various feature subsets derived from the truth values of the causal
relationships (Table A.1)

188

DATASET A: REGED

Table A.1: Results obtained with subsets of features derived from the true causal relationships.
(a) Subsets chosen. (b) AUC obtained with a linear SVM.

Feature subsets
1 2 3 4 5

REGED
0

1 Parents (N=2) Children (N=13)
Parents + Children

(N=15)
Markov Blanket

(N=21)
All (N=999)

REGED
1

2 Parents (N=2) Children (N=13)
Parents + Children

(N=15)
Markov Blanket

(N=21)
All (N=999)

REGED
2

3 Parents (N=2) Children (N=13)
Parents + Children

(N=15)
Markov Blanket

(N=21)
All (N=999)

REGED
1

4 Parents (N=2)
unmanipulated
Children (N=8)

Parents + unmanipulated
Children (N=10)

Markov Blanket −
manipulated

Children and their
Parents (N=14)

All (N=999)

REGED
2

5 Parents (N=2)
unmanipulated
Children (N=0)

Parents + unmanipulated
Children (N=2)

Markov Blanket −
manipulated
Children and

their Parents (N=2)

All (N=999)

(a)
AUC results (subsets of features of the previous table)

1 2 3 4 5

REGED
0

1 0.9411 0.9994 0.9998 0.9998 0.9946

REGED
1

2 0.9265 0.9154 0.9817 0.9841 0.9344

REGED
2

3 0.9343 0.4952 0.8426 0.8177 0.7254

REGED
1

4 0.9265 0.9788 0.9941 0.9956 0.9344

REGED
2

5 0.9343 0.5 0.9343 0.9343 0.7254

(b)

189

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Dataset B: SIDO
1) Topic

SIDO stands for SImple Drug Operation mechanisms. The SIDO dataset contains descriptors
of molecules, which have been tested against the AIDS HIV virus. The target values indicate
the molecular activity (+1 active, −1 inactive). The causal discovery task is to uncover causes
of molecular activity among the molecule descriptors. This would help chemists in the design
of new compounds, retaining activity, but having perhaps other desirable properties (less toxic,
easier to administer). The molecular descriptors were generated programmatically from the
three dimensional description of the molecule, with several programs used by pharmaceutical
companies for QSAR studies (Quantitative Structure-Activity Relationship). For example, a
descriptor may be the number of carbon molecules, the presence of an aliphatic cycle, the length
of the longest saturated chain, etc. The dataset includes 4932 variables (other than the target),
which are either molecule descriptors (all potential causes of the target) or “probes” (artificially
generated variables, which are not causes of the target). The training set and the unmanipulated
test set are similarly distributed. They are constructed such that some of the “probes” are effects
(consequences) of the target and/or of other real variables, and some are unrelated to the target
or other real variables. Hence, both in the training set and the unmanipulated test set, all the
probes are non-causes of the target, yet some of them may be predictive of the target. In the
manipulated test set, all the “probes” are “manipulated” in every sample by an “external agent”
(i.e., set to given values, not affected by the dynamics of the system) and can therefore not be
relied upon to predict the target. The identity of the probes was concealed during the challenge.
The probes were used to assess the effectiveness of the algorithms to dismiss non-causes of the
target for making predictions in manipulated test data.

2) Sources

a. Original owners
The data was made available by the National Cancer Institute (NCI), via the DTP AIDS
Antiviral Screen program at: http://dtp.nci.nih.gov/docs/aids/aids_
data.html. The DTP AIDS Antiviral Screen has checked tens of thousands of com-
pounds for evidence of anti-HIV activity. Available are screening results and chemical
structural data on compounds that are not covered by a confidentiality agreement.

b. Donor of database
This version of the database was prepared for the WCCI2008 by the Causality Workbench
team.

c. Date prepared: Fall 2007.

d. Date released for the challenge: December 2007.

3) Past usage

Another version of this dataset was used under the name HIVA for past challenges (the WCCI06
challenge on performance predictions, the NIPS08 model selection game and the IJCNN 07 “ag-
nostic learning vs. prior knowledge” challenge. See http://clopinet.com/
challenges/ for details). SIDO uses the same original data, but differently formatted and
split. SIDO was used for the two first challenges organized by the Causality Workbench Team:
(1) the Causation and Prediction Challenge (WCCI 2008), (2) the NIPS 2008 Pot-Luck chal-
lenge, as part of the LOCANET task (see http://clopinet.com/causality).

190

http://dtp.nci.nih.gov/docs/aids/aids_data.html
http://dtp.nci.nih.gov/docs/aids/aids_data.html
http://clopinet.com/challenges/
http://clopinet.com/challenges/
http://clopinet.com/causality

DATASET B: SIDO

4) Experimental design

We describe first the raw data and the preprocessing we made (similar for HIVA and SIDO).
We then describe the process used to add artificial variables (probes).

1. Preprocessing
The screening results of the May 2004 release containing the screening results for 43,850 com-
pounds were used. The results of the screening tests are evaluated and placed in one of three
categories:

• CA – Confirmed active

• CM – Confirmed moderately active

• CI – Confirmed inactive

We converted this into a two-class classification problem: Inactive (CI) vs. Active (CA or
CM.)

Chemical structural data for 42,390 compounds was obtained from the web page. It was
converted to structural features by three different methods, yielding three feature sets that were
concatenated. We matched the compounds in the structural description files and those in the
compound activity file, using the NSC id number. We ended up with 42678 examples.

First feature set (the same as the one used for HIVA):

The program ChemTK version 4.1.1, Sage Informatics LLC was used to generate features.
(Appendix C).
Reference:
Miller, D.W. A Chemical Class-Based Approach to Predictive Model Generation. J. Chem. Inf.
Comput. Sci. 2003, 43, 568–578
http://www.ncbi.nlm.nih.gov/pubmed/12653523

The 1617 features of the original HIVA dataset were included in SIDO; they are all binary:

• unbranched_fragments: 750 features

• pharmacophores: 495 features

• branched_fragments: 219 features

• internal_fingerprints: 132 features

• ring_systems: 21 features

Only binary features having a total number of ones larger than 100 (> 400 for unbranched
fragments) and at least 2% of ones in the positive class were retained. In all cases, the default
program settings were used to generate keys (except for the pharmacophores for which “max
number of pharmacophore points” was set to 4 instead of 3; the pharmacophore keys for Hacc,
Hdon, ExtRing, ExtArom, ExtAliph were generated, as well as those for Hacc, Hdon, Neg,
Pos.) The keys were then converted to attributes.

We briefly describe the attributes/features:

Branched fragments: each fragment is constructed through an “assembly” of shortest-
path unbranched fragments, where each of the latter is required to be bounded by two
atoms belonging to one or more pre-defined “terminal-atom”.

191

http://www.ncbi.nlm.nih.gov/pubmed/12653523

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Unbranched fragments: unique non-branching fragments contained in the set of input
molecules.

Ring systems: A ring system is defined as any number of single or fused rings connected
by an unbroken chain of atoms. The simplest example would be either a single ring
(e.g., benzene) or a single fused system (e.g., naphthalene).

Pharmacophores: ChemTK uses a type of pharmacophore that measures distance via bond
connectivity rather than a typical three-dimensional distance. For instance, to describe a
hydrogen-bond acceptor and hydrogen-bond donor separated by five connecting bonds,
the corresponding key string would be “HAcc.HDon.5”. The pharmacophores were gen-
erated from the following features:

Neg. Explicit negative charge.

Pos. Explicit positive charge.

HAcc. Hydrogen-bond acceptor.

HDon. Hydrogen-bond donor.

ExtRing. Ring atom having a neighbor atom external to the ring.

ExtArom. Aromatic ring atom having a neighbor atom external to the ring.

ExtAliph. Aliphatic ring atom having a neighbor atom external to the ring.

Internal fingerprints: small, fixed catalog of pre-defined queries roughly similar to the
MACCS key set developed by MDL.

Second feature set (new in SIDO)

Hans Bitter (Roche Palo Alto) kindly provided us with features computed with the Chemical
Computing Group software (Appendix D). We retained 13 binary features:

FFType_ang opr_leadlike
Q_VSA_FPOS FFType_oop
lip_druglike FFType_bond
FFType_atom C2
reactive C1
FFType_all Q_VSA_FHYD
FFType_tor

He also provided us with features computed with the program ISIS We retained 11 binary ISIS
features:

MACCS(145) MACCS(--6)
MACCS(125) MACCS(120)
MACCS(--5) MACCS(--4)
MACCS(162) MACCS(-49)
MACCS(-10) MACCS(136)
MACCS(166)

MACCS stands for Molecuar ACCess System. The MACCS keys are a set of questions about a
chemical structure. Here are some of the questions:

• Are there fewer than 3 oxygens?

192

DATASET B: SIDO

• Is there a S-S bond?

• Is there a ring of size 4?

• Is at least one F, Cl, Br, or I present?

Third feature set (new in SIDO)

Georg Wichard (Institute of Molecular Pharmacology, Germany) kindly provided us with
several feature sets. Those include:

• “Ghose-Crippen” Descriptors [Prediction of Hydrophobic (Lipophilic) Properties of
Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and
CLOGP Methods Arup K. Ghose,* Vellarkad N. Viswanadhan, and John J. Wen-
doloski, J. Phys. Chem. A 1998, 102, 3762–3772]. We retained only one binary feature
ALogP_Count[98] (I attached to C

3

sp3
).

• FMP features (we retained 2 binary features: ES_Count_ssNH2 and ES_Count_ssPH)

2. Adding artificial variables (probes)
The motivation for adding artificial variables is that the truth values of the causal relationships
between the real variables are not known. Compared to purely artificially generated data, using
real variables allows us to work on realistic data distributions. The added artificial variables
allow us to assess the performances of causal discovery algorithms.

The target variable is a real variable. Consequently, no artificial variable may be a cause of
the target (direct or indirect). The artificial variables are constructed as functions (plus noise)
of subsets of real variables (which may include the target) and other artificial variables. Some
artificial variables are generated randomly (hence have no dependency with the real variables).

The method used for generating random probes is described in Appendix A. The specific
parameters used for SIDO are found below:

n=size(X,2); % Number of true variables
nc=round(n/2); % Number of confounder probes
ne=round(n); % Number of effect probes
np=nc; % Number of truly random probes
tpnc = 3; % Number of parent true variables for confounders
ppnc = 2; % Number of parent, which are noise, for confounders
tpne = 2; % Number of parent confounder variables for effects
ppne = 2; % Number of parent, which are noise, for effects
nlval=2; % non-linearity level 2
noise=0.05; % random noise level (fraction of output range)
top_num=50; % number of top ranking causes kept
noise_Y=0.1;
num_manip=0;
[X, parents]=add_probes(X, Y, np, nc, ne, tpnc, ppnc, tpne, ppne,

nlval, noise, num_manip, top_num, noise_Y);

Note: the probes are first created unmanipulated for SIDO0 and then manipulated according to
the methods described in Appendix A.

We summarize the statistics of the probes added:

== Total number of variables: 4932 ==
Real variables (1644):

193

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Probes:
== Random (822):

205 spouses of true var:
205 spouses of target:
412 independent of target: Warning, some probes assigned to be

spouses are unused
== Confounders (822): Warning, wierd set

3.49+- 0.98 true variable parents, 2.50+- 0.50 parents unrelated to
target
== Effects (1644): Warning, wierd set

2.51+- 0.50 confounder parents, 2.50+ 0.50 parents unrelated to
target

5) Number of examples and class distribution

SIDO0 Positive ex. Negative ex. Total Check sum
Training set 452 12226 12678 6155080
Test set 351 9649 10000 4863127
All 803 21875 22678 11018207

SIDO1 Positive ex. Negative ex. Total Check sum
Training set 452 12226 12678 6155080
Test set 335 9665 10000 4879177
All 787 21891 22678 11034257

SIDO2 Positive ex. Negative ex. Total Check sum
Training set 452 12226 12678 6155080
Test set 365 9635 10000 4865938
All 817 21861 22678 11021018

Note: the training set is the same for all three datasets.

6) Type of input variables and variable statistics

Real variables Random probes Total
1644 3288 4932

All variables are binary. There are no missing values.

7) Results of baseline methods

Prior to releasing the data, we performed experiments with various causal discovery algorithms
to assess the dataset and adjust the probe generation to a proper level of difficulty. We show
below the experiments with the last version of the probe generation algorithm, which we ended
up using. The final dataset that was released contains fewer variables because we removed at the
last minute a few non-binary variables, which were accidentally left out and slightly reduced
the number of probe. The systematic test were not re-run. However, several baseline results
were uploaded to the web site of the challenge.

194

DATASET B: SIDO

Select features from natural distribution with probes
Estimate classification performance in manipulated distribution with probes

Variable subset
Classification

AUC

of
selected
variables

of
selected

real
features

of
selected
probes

of selected probes
that are children of

the target

PC1 0.5771 259 75 184 119
PC1, real features only 0.6994 75 75 0 0
PC1, probes only 0.4553 184 0 184 119
PC2 0.6144 367 116 251 157
PC2, real features only 0.6296 116 116 0 0
PC2, probes only 0.4458 251 0 251 157
PC3 0.5989 25 12 13 8
PC3, real features only 0.4264 12 12 0 0
PC3, probes only 0.4166 13 0 13 8
PC4 0.5998 41 16 25 19
PC4, real features only 0.4621 16 16 0 0
PC4, probes only 0.4208 25 0 25 19
PC5 0.5421 10 4 6 3
PC5, real features only 0.5000 4 4 0 0
PC5, probes only 0.4135 6 0 6 3
PC6 0.6068 25 10 15 15
PC6, real features only 0.4074 10 10 0 0
PC6, probes only 0.4453 15 0 15 15
PC-FDR1 0.5867 230 69 161 96
PC-FDR1, real features only 0.6709 69 69 0 0
PC-FDR1, probes only 0.4480 161 0 161 96
PC-FDR2 0.5995 338 108 230 141
PC-FDR2, real features only 0.6107 108 108 0 0
PC-FDR2, probes only 0.4552 230 0 230 141
PC-FDR3 0.6038 28 12 16 11
PC-FDR3, real features only 0.5570 12 12 0 0
PC-FDR3, probes only 0.4238 16 0 16 11
PC-FDR4 0.6027 47 19 28 22
PC-FDR4, real features only 0.6448 19 19 0 0
PC-FDR4, probes only 0.4258 28 0 28 22
PC-FDR5 0.6240 12 9 3 2
PC-FDR5, real features only 0.5742 9 9 0 0
PC-FDR5, probes only 0.5000 3 0 3 2
PC-FDR6 0.6079 20 12 8 6
PC-FDR6, real features only 0.5407 12 12 0 0
PC-FDR6, probes only 0.4284 8 0 8 6

195

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

PC1: HITON-PC with alpha = 0.01, max−k =1
PC2: HITON-PC with alpha = 0.05, max−k =1
PC3: HITON-PC with alpha = 0.01, max−k =2
PC4: HITON-PC with alpha = 0.05, max−k =2
PC5: HITON-PC with alpha = 0.01, max−k =3
PC6: HITON-PC with alpha = 0.05, max−k =3
Same numbering scheme applies to PC-FDR methods. Benjamnin FDR prefiltering was applied
prior to running HITON-PC. We used G2 test for all versions of HITON-PC.

The reference submission uploaded to the website of the challenge. (reference_hpc) is for
HITON-PC (max−k=1, alpha=0.01) & Linear SVM (C=1), using original (binary) data for both
algorithms. HITON-PC uses first 5000 samples in the training data:
SIDO0 0.9377
SIDO1 0.6825
SIDO2 0.6174

The best AUC results of the challenge participants are:
SIDO0 0.944
SIDO1 0.753
SIDO2 0.668

The best score on the LOCANET task is: 3.31

Dataset C: CINA
1) Topic

CINA (Census Is Not Adult) is derived from census data (the UCI machine-learning reposi-
tory Adult database). The data consists of census records for a number of individuals. The
causal discovery task is to uncover the socio-economic factors affecting high income (the target
value indicates whether the income exceeds 50K). The 14 original attributes (features) includ-
ing age, workclass, education, education, marital status, occupation, native country, etc. have
been coded to eliminate categorical variables. Distractor features (artificially generated vari-
ables, which are not causes of the target) were added. In training data, some of these distractors
are effects (consequences) of the target and/or of other real variables. Some are unrelated to
the target or other real variables. Hence, some of the distractors may be correlated to the target
in training data, although they do not cause it. The unmanipulated test data are distributed like
the training data. Hence both causes and consequences of the target my be predictive in the
unmanipulated test data. In contrast, in the manipulated test data, all the distractors are “ma-
nipulated” by an “external agent” (i.e., set to given value, not affected by the dynamics of the
system) and are therefore they cannot be relied upon to predict the target.

2) Sources

a. Original owners

This data was extracted from the census bureau database found at
http://www.census.gov/ftp/pub/DES/www/welcome.html.

Donor: Ronny Kohavi and Barry Becker,
Data Mining and Visualization
Silicon Graphics.
e-mail: ronnyk@sgi.com for questions.

196

http://www.census.gov/ftp/pub/DES/www/welcome.html

DATASET C: CINA

The information below is excerpted from the UCI machine learning repository:

Extraction was done by Barry Becker from the 1994 Census database. The
prediction task is to determine whether a person makes over 50K a year.
The attributes are:
age: continuous.
workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov,
Local-gov, State-gov, Without-pay, Never-worked.
fnlwgt: continuous.
education: Bachelors, Some-college, 11th, HS-grad, Prof-school,
Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th,
Doctorate, 5th-6th, Preschool.
education-num: continuous.
marital-status: Married-civ-spouse, Divorced, Never-married, Separated,
Widowed, Married-spouse-absent, Married-AF-spouse.
occupation: Tech-support, Craft-repair, Other-service, Sales,
Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct,
Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv,
Protective-serv, Armed-Forces.
relationship: Wife, Own-child, Husband, Not-in-family, Other-relative,
Unmarried.
race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
sex: Female, Male.
capital-gain: continuous.
capital-loss: continuous.
hours-per-week: continuous.
native-country: United-States, Cambodia, England, Puerto-Rico, Canada,
Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China,
Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam,
Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador,
Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland,
Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong,
Holand-Netherlands.
income: >50K, <=50K.

Split into train-test using MLC++ GenCVFiles (2/3, 1/3 random).
48842 instances, mix of continuous and discrete (train=32561,
test=16281)
45222 if instances with unknown values are removed (train=30162,
test=15060)
Duplicate or conflicting instances : 6
Class probabilities for adult.all file
Probability for the label ’>50K’ : 23.93% / 24.78% (without unknowns)
Probability for the label ’<=50K’ : 76.07% / 75.22% (without unknowns)

Description of fnlwgt (final weight)
The weights on the CPS files are controlled to independent estimates of
the civilian noninstitutional population of the US. These are prepared
monthly for us by Population Division here at the Census Bureau. We use
3 sets of controls. People with similar demographic characteristics
should have similar weights.

b. Donor of database
A first version of the database was prepared for the WCCI 2006 performance prediction
challenge by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA
(isabelle@clopinet.com) under the name ADA. CINA resembles ADA, except
that only binary variables were retained and the data were reshuffled.
The present version of CINA was prepared for the causation and prediction challenge by
the Causality Workbench Team.

197

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

c. Date released for the challenge: January 2008.

3) Past usage
First cited in:
@inproceedings{kohavi-nbtree,

author={Ron Kohavi},
title={Scaling Up the Accuracy of Naive-Bayes Classifiers: a

Decision-Tree Hybrid},
booktitle={Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining},
year = 1996}

Error Accuracy reported as follows, after removal of unknowns from
train/test sets):
C4.5 : 84.46+-0.30
Naive-Bayes: 83.88+-0.30
NBTree : 85.90+-0.28

The following algorithms were later run with the following error rates,
all after removal of unknowns and using the original train/test split.
All these numbers are straight runs using MLC++ with default values.

Algorithm Error
-- ---------------- -----
1 C4.5 15.54
2 C4.5-auto 14.46
3 C4.5 rules 14.94
4 Voted ID3 (0.6) 15.64
5 Voted ID3 (0.8) 16.47
6 T2 16.84
7 1R 19.54
8 NBTree 14.10
9 CN2 16.00
10 HOODG 14.82
11 FSS Naive Bayes 14.05
12 IDTM (Decision table) 14.46
13 Naive-Bayes 16.12
14 Nearest-neighbor (1) 21.42
15 Nearest-neighbor (3) 20.35
16 OC1 15.04
17 Pebls Crashed. Unknown why (bounds WERE increased)

Note: The performances reported are error rates, not BER. We tried to reproduce these per-
formances and obtained 15.62% error with a linear ridge regression classifier. The performances
slightly degraded when we tried to group features (15.67% when we replace the country code
by a binary US/nonUS value and 16.40% with further reduction to 33 features.)

Used under the name ADA for the WCCI 2006 Performance Prediction Challenge, the NIPS
2006 Model Selection game and the IJCNN 2007 Agnostic Learning vs. Prior Knowledge chal-
lenge. See http://clopinet.com/challenges.

Used for the two first challenges organized by the Causality Workbench Team: (1) the
Causation and Prediction Challenge (WCCI 2008), (2) the NIPS 2008 Pot-Luck challenge, as
part of the LOCANET task (see http://clopinet.com/causality).

4) Experimental design

The following steps were performed to create the original ADA dataset:

• Convert the features to 14 numeric values a ∈ 1 . . .n.

198

http://clopinet.com/challenges
http://clopinet.com/causality

DATASET C: CINA

• Convert the numeric values to binary codes (a vector of n zeros with value one at the ath

position. This results in 88 features. The missing values get an all zero vector.

• Downsize the number of features to 48 by replacing the country code by a binary
US/nonUS feature.

• Randomize the feature and pattern order.

• Remove the entries with missing values for workclass.

Table C.1: Features of the ADA datasets.

Feature name min max numval comments
Age 0.19 1 continuous No missing value.
workclass_Private 0 1 2
workclass_Self_emp_not_inc 0 1 2
workclass_Self_emp_inc 0 1 2

2799 missing values
(corresponding entries
removed.)

workclass_Federal_gov 0 1 2
workclass_Local_gov 0 1 2
workclass_State_gov 0 1 2
workclass_Without_pay 0 1 2
workclass_Never_worked 0 1 2
Fnlwgt 0.008 1 continuous No missing value.

EducationNum 0.06 1 16
Number corresponding
to 16 discrete levels of
education

maritalStatus_Married_civ_spouse 0 1 2 No missing value.
maritalStatus_Divorced 0 1 2
maritalStatus_Never_married 0 1 2
maritalStatus_Separated 0 1 2
maritalStatus_Widowed 0 1 2
maritalStatus_Married_spouse_absent 0 1 2
maritalStatus_Married_AF_spouse 0 1 2
occupation_Tech_support 0 1 2
occupation_Craft_repair 0 1 2
occupation_Other_service 0 1 2

2809 missing values
(corresponding entries
removed.)

occupation_Sales 0 1 2
occupation_Exec_managerial 0 1 2
occupation_Prof_specialty 0 1 2
occupation_Handlers_cleaners 0 1 2
occupation_Machine_op_inspct 0 1 2
occupation_Adm_clerical 0 1 2
occupation_Farming_fishing 0 1 2
occupation_Transport_moving 0 1 2
occupation_Priv_house_serv 0 1 2
occupation_Protective_serv 0 1 2
occupation_Armed_Forces 0 1 2

199

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Table C.1: Features of the ADA datasets (cont).

Feature name min max numval comments
relationship_Wife 0 1 2 No missing value.
relationship_Own_child 0 1 2
relationship_Husband 0 1 2
relationship_Not_in_family 0 1 2
relationship_Other_relative 0 1 2
relationship_Unmarried 0 1 2
race_White 0 1 2 No missing value.
race_Asian_Pac_Islander 0 1 2
race_Amer_Indian_Eskimo 0 1 2
race_Other 0 1 2
race_Black 0 1 2

Sex 0 1 2 0=female, 1=male. No
missing value.

CapitalGain 0 1 continuous No missing value.
CapitalLoss 0 1 continuous No missing value.
HoursPerWeek 0.01 1 continuous No missing value.

NativeCountry 0 1 2
0=US, 1=non-US. 857
missing values
replaced by 1.

Four features were removed because they were found constant in training data. We gen-
erated the probes according to the method described in Appendix A. Specifically, we used for
CINA the following parameters:

n=size(X,2); % Number of true variables
nc=round(n/2); % Number of confounder probes
ne=round(n); % Number of effect probes
np=nc; % Number of truly random probes
tpnc = 3; % Number of parent true variables for confounders
ppnc = 2; % Number of parent, which are noise, for confounders
tpne = 2; % Number of parent confounder variables for effects
ppne = 2; % Number of parent, which are noise, for effects
nlval=2; % non-linearity level 2
noise=0.05; % random noise level (fraction of output range)
top_num=round(n/2); % number of top ranking causes kept
noise_Y=0.1;
X=full(X);
num_manip=0;
[X, parents]=add_probes(X, Y, np, nc, ne, tpnc, ppnc, tpne, ppne,

nlval, noise, num_manip, top_num, noise_Y);

Note: the probes are first created unmanipulated for CINA0 and then manipulated according to
the methods described in Appendix A.

The statistics on the generated probes are found below:

== Total number of variables: 132 ==
Real variables (44): 1 ... 44

200

DATASET C: CINA

Probes:
== Random (22):

5 spouses of true var:
5 spouses of target:
12 independent of target: 121 ... 132

== Confounders (22): 50 ... 71
3.14+- 0.83 true variable parents, 2.32+- 0.48 parents unrelated to

target
== Effects (44): 77 ... 120

2.48+- 0.51 confounder parents, 2.55+ 0.50 parents unrelated to
target

5) Number of examples and class distribution

CINA0 Positive ex. Negative ex. Total Check sum
Training set 3939 12094 16033 142172387.00
Test set 2425 7575 10000 88827113.00
All 6364 19669 26033 230999500.00

CINA1 Positive ex. Negative ex. Total Check sum
Training set 3939 12094 16033 142172387.00
Test set 2540 7460 10000 88535493.00
All 6479 19554 26033 230707880.00

CINA2 Positive ex. Negative ex. Total Check sum
Training set 3939 12094 16033 142172387.00
Test set 2518 7482 10000 88617057.00
All 6457 19576 26033 230789444.00

Note: the training set is the same for all three datasets.

6) Type of input variables and variable statistics

Real variables Random probes Total
44 88 132

The variables are mixed (continuous and binary). There are no missing values.

7) Results of baseline methods on CINA

1. Cheating ranking of features
First, we created a ranking of features, using the knowledge of the causal relationships. All real
variables are tentatively assumed to be parents of the target. The features belonging belonging to
the MB of the post-manipulation distribution are ranked first (then sorted by Pearson correlation
coefficient), all other features are ranked last (also sorted by Pearson correlation coefficient). We
trained classifiers on increasing numbers of features using this ranking. The classifier used is a
linear ridge regression classifier. DAUC and DBER are AUC and BER (balanced error rate)
on training date. TAUC and TBER are performance on test data.

201

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

CINA0
Num. Var. DAUC DERR TAUC TERR

1 0.8891 0.0023 0.8889 0.0029
2 0.9045 0.0028 0.9054 0.0035
4 0.9260 0.0027 0.9260 0.0034
8 0.9300 0.0027 0.9314 0.0034

16 0.9478 0.0027 0.9497 0.0034
32 0.9623 0.0028 0.9632 0.0036
64 0.9661 0.0027 0.9663 0.0034

128 0.9674 0.0027 0.9670 0.0035
132 0.9674 0.0027 0.9670 0.0035

CINA1
Num. Var. DAUC DERR TAUC TERR

1 0.7556 0.0030 0.7600 0.0037
2 0.7574 0.0030 0.7603 0.0037
4 0.7730 0.0033 0.7726 0.0041
8 0.8691 0.0035 0.8684 0.0044

16 0.8845 0.0034 0.8838 0.0043
32 0.8907 0.0034 0.8900 0.004
64 0.9675 0.0027 0.7937 0.0052

128 0.9674 0.0027 0.7883 0.005
132 0.9674 0.0027 0.7873 0.0049

CINA2
Num. Var. DAUC DERR TAUC TERR

1 0.7556 0.0030 0.7605 0.0038
2 0.7574 0.0030 0.7605 0.0038
4 0.8558 0.0039 0.8573 0.0049
8 0.8691 0.0035 0.8723 0.0045

16 0.8834 0.0033 0.8848 0.0043
32 0.8909 0.0033 0.8910 0.0042
64 0.9675 0.0027 0.5492 0.0041

128 0.9674 0.0027 0.5483 0.0044
132 0.9674 0.0027 0.5481 0.0043

We then performed experiments with various causal discovery algorithms to select features. A
linear SVM with C = 1 is used in these experiments.

202

DATASET C: CINA

Select features from natural distribution w/o probes

Estimate classification performance in natural distribution w/o probes (CINA0)

Experiment
id

Variable subset
Classification

AUC

of
selected
variables

of
selected

real
features

of
selected
probes

of selected probes
that are children of

the target

1 PC (HITON-PC) 0.8982 23 23 0 0
2 PC (HITON-PC-FDR) 0.8982 23 23 0 0
3 Parents (MMHC) 0.8502 6 6 0 0
4 Children (MMHC) 0.7514 8 8 0 0
5 All 0.8999 44 44 0 0

Select features from natural distribution with probes

Estimate classification performance in natural distribution with probes (CINA0)

Experiment
id

Variable subset
Classification

AUC

of
selected
variables

of
selected

real
features

of
selected
probes

of selected probes
that are children of

the target

6 PC (HITON-PC) 0.9721 37 20 17 16
7 PC (HITON-PC), real features only 0.8967 20 20 0 0
8 PC (HITON-PC), probes only 0.9201 17 0 17 16
9 PC (HITON-PC-FDR) 0.9721 37 20 17 16

10 PC (HITON-PC-FDR), real features only 0.8967 20 20 0 0
11 PC (HITON-PC-FDR), probes only 0.9201 17 0 17 16
12 Parents (MMHC) 0.8479 4 4 0 0
13 Parents (MMHC), real features only 0.8479 4 4 0 0
14 Parents (MMHC), probes only 0.5000 0 0 0 0
15 Children (MMHC) 0.9480 15 9 6 5
16 Children (MMHC), real features only 0.7743 9 9 0 0
17 Children (MMHC), probes only 0.8967 6 0 6 5
18 All 0.9728 132 44 88 44
19 All, real features only 0.8988 44 44 0 0
20 All, probes only 0.9447 88 0 88 44

203

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Select features from natural distribution with probes

Estimate classification performance in manipulated distribution with probes (CINA1)

Experiment
id

Variable subset
Classification

AUC

of
selected
variables

of
selected

real
features

of
selected
probes

of selected probes
that are children of

the target

21 PC (HITON-PC) 0.8496 37 20 17 16
22 PC (HITON-PC), real features only 0.8982 20 20 0 0
23 PC (HITON-PC), probes only 0.5114 17 0 17 16
24 PC (HITON-PC-FDR) 0.8496 37 20 17 16
25 PC (HITON-PC-FDR), real features only 0.8982 20 20 0 0
26 PC (HITON-PC-FDR), probes only 0.5114 17 0 17 16
27 Parents (MMHC) 0.8508 4 4 0 0
28 Parents (MMHC), real features only 0.8508 4 4 0 0
29 Parents (MMHC), probes only 0.5000 0 0 0 0
30 Children (MMHC) 0.6558 15 9 6 5
31 Children (MMHC), real features only 0.7693 9 9 0 0
32 Children (MMHC), probes only 0.5114 6 0 6 5
33 All 0.8482 132 44 88 44
34 All, real features only 0.8999 44 44 0 0
35 All, probes only 0.4987 88 0 88 44

Select features from natural distribution with probes

Estimate classification performance in manipulated distribution with probes (CINA2)

Experiment
id

Variable subset
Classification

AUC

of
selected
variables

of
selected

real
features

of
selected
probes

of selected probes
that are children of

the target

21 PC (HITON-PC) 0.6643 37 20 17 16
22 PC (HITON-PC), real features only 0.8985 20 20 0 0
23 PC (HITON-PC), probes only 0.3445 17 0 17 16
24 PC (HITON-PC-FDR) 0.6643 37 20 17 16
25 PC (HITON-PC-FDR), real features only 0.8985 20 20 0 0
26 PC (HITON-PC-FDR), probes only 0.3445 17 0 17 16
27 Parents (MMHC) 0.8559 4 4 0 0
28 Parents (MMHC), real features only 0.8559 4 4 0 0
29 Parents (MMHC), probes only 0.5000 0 0 0 0
30 Children (MMHC) 0.4603 15 9 6 5
31 Children (MMHC), real features only 0.7631 9 9 0 0
32 Children (MMHC), probes only 0.3146 6 0 6 5
33 All 0.6584 132 44 88 44
34 All, real features only 0.9005 44 44 0 0
35 All, probes only 0.3257 88 0 88 44

The reference submission uploaded to the website of the challenge. (reference_hpc) is for
HITON-PC (max−k=2, alpha=0.01) & Linear SVM (C=1) using original data for SVM and

204

DATASET D: MARTI

discrete data for HITON-PC. The test AUC results are:

CINA0 0.9721
CINA1 0.8496
CINA2 0.6643

The AUC best results of the challenge participants on CINA are:

CINA0 0.976
CINA1 0.869
CINA2 0.816

The best score of the LOCANET task is 1.70.

Dataset D: MARTI
1) Topic

MARTI stands for Measurement ARTIfact. MARTI was obtained from the same data genera-
tive process as REGED, a source of simulated genomic data, but a noise model was added to
simulate the imperfections of the measurement device.

2) Sources

a. Original owners
This is a modified version of REGED (Alexander Statnikov and Constantin F. Aliferis,
2007) created by Isabelle Guyon.

b. Donor of database
This version of the database was prepared for the WCCI2008 by the Causality Workbench
team.

c. Date prepared: Fall 2007.

d. Date released for the challenge: January 2008.

3) Past usage

Used for the two first challenges organized by the Causality Workbench Team: (1) the Causation
and Prediction Challenge (WCCI 2008), (2) the NIPS 2008 Pot-Luck challenge, as part of the
LOCANET task (see http://clopinet.com/causality).

4) Experimental design

The goal of MARTI, like REGED, is to find genes, which could be responsible of lung cancer.
The target variable is binary; it separates malignant samples (adenocarcinoma) from control
samples (squamous). The feature values representing measurements of gene expression levels
are assumed to have been recorded from a two-dimensional microarray 32× 32. The training
set was perturbed by a zero-mean correlated noise model (neighboring values in one array are
generally similarly affected, but the noise pattern is different in every training example).

The test sets have no added noise. This situation simulates a case where we would be using
different instruments at “training time” and “test time”, e.g., we would use DNA microarrays

205

http://www.causality.inf.ethz.ch/data/REGED.html
http://clopinet.com/causality

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

to collect training data and PCR for testing. We avoided adding noise to the test set because it
would be too difficult to filter it without visualizing the test data or computing statistics on the
test data, which we forbid. So the scenario is that the second instrument (used at test time) is
more accurate. In practice, the measurements would also probably be more expensive, so part
of the goals of training would be to reduce the size of the feature set (we are not making this a
requirement in this first challenge).

Figure 3: Example of MARTI simulated micro-array

Technical details:
• The features/variables are randomly arranged in a 2d array 32×32. Variables 1:32 form

the first column, 33:64 the second, etc.

• To obtain 1024 features, the 999 features of REGED are complemented by 25 “calibrant
features”, which have value zero plus a small amount of Gaussian noise. The calibrants
are spread regularly across the array and have variable indices 34 44 54 64 199 209 219
354 364 374 384 519 529 539 674 684 694 704 839 849 859 994 1004 1014 1024.

• Like for REGED, we proposed 3 tasks MARTI0, MARTI1, and MARTI2, all having the
same training set of 500 examples (from the “unmanipulated distribution”), and different
test sets of 20000 examples.

• Like for REGED, the three tasks differ in the test data distribution, which results from
various types of manipulations:

MARTI0: No manipulation (distribution identical to the training data).
MARTI1: The following variables are manipulated:

5, 19, 27, 35, 37, 42, 49, 67, 70, 71, 102, 137, 144, 145, 153, 158,
185, 188, 194, 221, 225, 229, 232, 235, 244, 268, 273, 284, 294,
295, 305, 310, 331, 356, 368, 379, 385, 396, 398, 404, 411, 412,
413, 417, 425, 430, 455, 479, 481, 482, 491, 492, 509, 510, 550,
553, 555, 603, 609, 627, 642, 646, 654, 679, 682, 706, 736, 744,
755, 761, 763, 771, 807, 809, 812, 821, 853, 869, 870, 872, 888,

206

DATASET D: MARTI

894, 895, 906, 914, 918, 926, 931, 932, 941, 963, 973, 978, 979,
986, 988, 990, 1001, 1010, 1017.

MARTI2: Many variables are manipulated, including all the consequences of
the target.

Filtering the noise and/or taking into account the geometry of the array should be necessary
to obtain good results.

In MARTI, what does it mean that “the noise pattern is different in every training exam-
ple”?

Using our noise model, we drew a noise pattern for every example and added it to that exam-
ple. When the features are arranged in a 2d 32×32 array (as explained in the documentation),
the noise pattern has a smooth structure (neighboring coefficients have similar values). This is
kind of background with low frequency. A different noise template is added to each example,
but all noise templates are all drawn from the same noise model. If you visualize the training ex-
amples after rearranging them as a 32×32 array, you will see this right away. For each feature,
the expected value of the noise is zero. But the noise of two neighboring features is correlated.
We show in Figure 4 examples of noise patterns (positive values in red and negative values in
green).

Figure 4: Examples of noise patterns

In MARTI, what does it mean that 25 “calibrant features” have value zero plus a small
amount of Gaussian noise? The averages for every calibrant feature is far from zero.

We have 2 kinds of noise. The calibrants are 0±[small Gaussian noise]. Then, on top of
that, in training data only, we add the correlated noise model. After we add the correlated noise,
because of the small sample size and the large variance, the calibrant values are no longer close
to zero (even on average) in training data. However, the median is close zero on average for
almost all calibrants, relatively to the signal amplitude:

abs(mean(median(X(:,calib))/ std(abs(X(:))))) ∼ e−005.

In training data, we get: mean(abs(mean(X))) ∼ e+ 004 but and mean((mean(X(:,calib)))) ∼
5e+ 003. In test data, because we did not add noise, the calibrant values are close to zero,

207

http://www.causality.inf.ethz.ch/data/MARTI.html

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

relatively speaking: mean(abs(mean(X))) ∼ 5e+003 but mean(abs(mean(X(:,calib)))) ∼ 1. The
calibrants can be used to preprocess the training data by subtracting a bias value after the low
frequency noise is removed, so that the calibrant values are zero after preprocessing the training
data.

REGED and MARTI do not look like regular microarray data. What kind of normaliza-
tion did you do?

REGED was obtained by fitting a model to real microrray data. REGED features were
shifted and rescaled individually then rounded to integer spanning the range 0:999. MARTI
was obtained from data generated by the same model as REGED without rescaling features
individually. For MARTI, a particular type of correlated noise was added. The data were then
scaled and quantized globally so the features span −999999 : 999999.

We chose to make the noise model simple but of high amplitude to make it easy to filter
out the noise but hard to ignore it. If you think of the spots on a microarray as an image
(MARTI patterns are 32× 32 “images”), the noise in MARTI corresponds to patches of more
or less intense values, added on top of the original image, representing some kind of slowly
varying background. Nowadays, microarray technology has progressed to a point that such
heavy backgrounds are not common and occasional contaminated arrays would not pass quality
control; furthermore microarray reading software calibrate and normalize data so you would
not see data that “bad”. But for new instruments under development, such levels of noise are
not uncommon.

MARTI illustrates the fact that if you do not take out correlated noise, the result of causal
discovery may be severely impaired. Even though the amplitude of the noise is large, the noise
is easy to filter out, using the fact that neighboring spots are affected similarly, and using the
spots having constant values before noise is added (calibrants). After noise filtering, the residual
noise may still impair causal discovery, so it its your challenge to see what can be done to avoid
drawing wrong conclusions in the presence of correlated noise.

5) Number of examples and class distribution

MARTI0 Positive ex. Negative ex. Total Check sum
Training set 59 441 500 4824538021.00
Test set 1852 18148 20000 72836533619.00
All 1911 18589 20500 77661071640.00

MARTI1 Positive ex. Negative ex. Total Check sum
Training set 59 441 500 4824538021.00
Test set 1765 18235 20000 72845954638.00
All 1824 18676 20500 77670492659.00

MARTI2 Positive ex. Negative ex. Total Check sum
Training set 59 441 500 4824538021.00
Test set 1662 18338 20000 72914605414.00
All 1721 18779 20500 77739143435.00

Note: the training set is the same for all three datasets.

208

DATASET D: MARTI

6) Type of input variables and variable statistics

Artificial variables Random probes Total
1024 0 1024

All variables are integer quantized on 1000 levels. There are no missing values.

7) Results of baseline methods

Below are results for MARTI datasets. All feature sets mentioned in the table below are the
true ones (i.e., obtained from the data generating network). The first and three last columns
are obtained by training on the raw training set as provided. We also include for comparison
the results on REGED and tests of the unmanipulated data (version 0) when training with other
versions of the training data:

• MARTI00: training data without noise added (should give results similar to REGED).

• MARTI01: like the MARTI0 training set, but after a crude filtering was performed.

Linear SVM with C = 0.001
REGED0 MARTI00 MARTI01 MARTI0 MARTI1 MARTI2

Parents 0.941 0.936 0.842 0.883 0.854 0.853
Children 0.999 0.999 0.990 0.481 0.436 0.500
PC 1.000 1.000 0.994 0.749 0.872 0.853
MB 1.000 1.000 0.994 0.894 0.460 0.853
All 0.995 0.995 0.982 0.886 0.779 0.731
All \MB 0.882 0.875 0.799 0.766 0.727 0.707
Calibrators N/A 0.496 0.499 0.512 0.505 0.512
All \ Calibrators N/A 0.99 5 0.982 0.887 0.773 0.724
MB in natural distr. See results for MB above 0.793 0.746

Linear SVM with C = 1
REGED0 MARTI00 MARTI01 MARTI0 MARTI1 MARTI2

Parents 0.952 0.947 0.861 0.883 0.855 0.853
Children 0.999 0.999 0.994 0.943 0.702 0.500
PC 1.000 1.000 0.995 0.941 0.866 0.853
MB 1.000 1.000 0.996 0.951 0.756 0.853
All 0.996 0.997 0.985 0.948 0.808 0.730
All \MB 0.864 0.846 0.782 0.767 0.727 0.692
Calibrators N/A 0.489 0.499 0.505 0.485 0.497
All \ Calibrators N/A 0.997 0.985 0.948 0.808 0.730
MB in natural distr. See results for MB above 0.865 0.614

209

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Polynomial SVM optimized by cross-validation
REGED0 MARTI00 MARTI01 MARTI0 MARTI1 MARTI2

Parents 0.948 0.943 0.867 0.883 0.617 0.853
Children 0.999 0.999 0.990 0.842 0.712 0.500
PC 1.000 1.000 0.997 0.981 0.845 0.853
MB 1.000 1.000 0.995 0.975 0.744 0.853
All 0.995 0.997 0.983 0.974 0.843 0.727
All \MB 0.882 0.875 0.782 0.762 0.728 0.677
Calibrators N/A 0.493 0.492 0.517 0.505 0.496
All \ Calibrators N/A 0.997 0.985 0.974 0.843 0.728
MB in natural distr. See results for MB above 0.865 0.614

We give in Appendix E the Matlab code to obtain MARTI01 from MARTI0 training data.
Other preprocessing have been provided by the participants: http://clopinet.com/
isabelle/Projects/WCCI2008/Analysis.html#MARTIprepro

The reference submission uploaded to the website of the challenge. (reference_hpc) is for
HITON-PC (max−k=1, alpha=0.01) & Linear SVM (C = 0.001), using original for both algo-
rithms. The test AUC results are:
MARTI0 0.9830
MARTI1 0.8595
MARTI2 0.7652

The best AUC performance of challenge participants are:
MARTI0 1.000
MARTI1 0.947
MARTI2 0.798

The best score on the LOCANET task obtained by participants is: 0.21

Appendix A: Generation of random probes
We describe a method aimed as assessing the fraction of non-causes in a subset of causes of
a target variable selected by a causal discovery algorithm. The method consists in generating
variables whose distribution resembles the real variables, but are either unrelated to the target,
or related to it in a non causal way (consequences or confounders). Those variables, called
“probes” by analogy to the probe method in feature selection, are intermixed with the real
variables and a causal discovery algorithm is run. The fraction of probes in the variables selected
as causes of the target may be used to determine the false positive rate and false discovery rate.

Notations

We call X the data matrix with p lines (patterns) and n columns (features/variables). We call R
the matrix of random probes of dimension (p, r), which are unrelated to the target. We call C
the matrix of confounders and consequences of dimension (p, c).

Generating variables unrelated to the target (R matrix)

Variables unrelated to the target are generated by taking blocks of variables in the original data
matrix and permuting the order of the rows randomly. The resulting variables should be uncor-
related to the target, except for coincidental correlations due to the small number of samples. If

210

http://clopinet.com/isabelle/Projects/WCCI2008/Analysis.html#MARTIprepro
http://clopinet.com/isabelle/Projects/WCCI2008/Analysis.html#MARTIprepro

APPENDIX A: GENERATION OF RANDOM PROBES

the blocks are of size one, the variables generated are uncorrelated with one another. Otherwise,
there are block correlations between them. We show the Matlab code in Appendix A1.

Generating consequences and confounders (C and E matrices)

To generate confounders, subsets of real variables (X matrix) and of the probes unrelated to the
target (R matrix) are used as an input to a non-linear function. The same method is applied to
generate consequences of the target by adding the target in the set of inputs. The code generating
such probes in shown in Appendix A3.

As a non-linear function, we use a 2 layer neural network. The inputs are expected to
lie approximately between −1 and 1 (or between 0 and 1). For all neurons, we use weights
drawn randomly from N(0,1)/fanin. The hidden units use the tanh(ax) as squashing function.
The slope a determines the amount of non-linearity added by the hidden layer because the
second layer is connected both to the hidden units and directly to the inputs. Random noise
drawn from N(0,ε) is added to the output (ε is proportional to the output range). Finally,
the distribution of the output values is mapped to the distribution of one of the real variables
(this adds additional non-linearity). We show the Matlab code of the non-linear function in
Appendix A2. In Figure A1, we show an example of function obtained for a univariate input
between 0 and 1.

Figure A1: Example of artificial non-linear function. The example was obtained using the
code of Appendix A2, with x=[0:.01:1]; y=rand_func(x’, sin(x’),
0.05, 1, 2, 1);

Manipulations

Only probes are manipulated in test data in such a way that they become all independent of the
target. This is achieved by permuting the values of each probe in test data.

Example architecture

In Figure A2, we show the architecture of the fake variable (probe) network. In Appendix A4,
we reproduce the code of this probe network architecture:

211

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

• We do not know the causal relationships of the true variables to the target.

• We first draw probe_num random probes independent from the target (R).

• We reserve 1⁄2 of R, which we do not use as input to the probe network and thus remain
fully independent of the target.

• We use 1⁄4 of R as spouses of causes of the target to create confounder_num con-
founders (C).

• We use 1⁄4 of R as spouses of the target to create consequence_num consequences (E).

• Random subsets of the confounders are also used to influence the consequences.

• The average fanin (number of variables influencing a probe) is monitored by the param-
eter “sparsity”, which we chose to be 0.01 time the number of real variables. We use a
parameter slope_squash=2 to monitor the amount of non-linearity.

True variables (T)

Noise

Noise

Fake variables:
confounders (C)

Fake variables effects of
the target (E)

Fake variables
independent of target
(R)

Target
(Y)

Figure A2: Architecture of the probe network. In yellow we indicate the dependencies of
the real variables (some of which may be causes or consequences of the target).
In green, we indicate the random probes drawn first, which are independent of the
target. In orange, we indicate how the confounders are generated having as patents
subsets of the green and yellow variables. In cyan, we indicate consequences are
created using as parent the target and subsets of green and orange variables. This
architecture exhibits the following conditional independencies: T ⊥ R, Y ⊥ R, Y ⊥
C|T , E ⊥ T |(Y,C).

Testing

To test our simulator, we compute several correlation coefficients R for subsets of variables in
unmanipulated and manipulated data. We call Ti , Ri , Ci , and Ei a column of the T , R, C, and

212

APPENDIX A: GENERATION OF RANDOM PROBES

E matrices, respectively, and Y the target vector. We compute statistics for the absolute value,
including:

• R(Ti ,Rj) – expected to be close to 0

• R(Ti ,Rj |C(Ti ,Rj)), C(Ti ,Rj) effect of Ti and Rj – expected to be non-zero

• R(Y,Rj) – expected to be close to 0

• R(Y,Rj |E(Y,Rj)), E(Y,Rj) effect of Y and Rj – expected to be non-zero

• R(Y,C j) – expected to be non-zero

• R(Y,C j |T) – expected to be close to 0, except in manipulated data

• R(Ti ,C j) – expected to be non-zero for some pairs, except in manipulated data

• R(Y,E j) – expected to be non-zero, except in manipulated data

• R(Ti ,E j |Y,C) – expected to be close to 0

To compute the conditional correlation coefficient of Ai and Bj given C, where C is a matrix
of column vectors, we proceed as follows:

• standardize Ai , Bj and the columns of C

• project Ai , and Bj on the null space of C

• compute the correlation of the projections

It can be shown that if C is a single column then

R(Ai ,Bj |C) = [R(Ai ,Bj)−R(Ai ,C)R(Bj ,C)]/
√

[(1−R(Ai ,C))
2
(1−R(Bj ,C))

2
]

The verification code is reported in Appendix A5.
Here is a simple Matlab example that runs the code:

p=1000; % Number of samples
x=randn(1000,1);
y=sign(x);
x=x(:,ones(10,1))+randn(1000,10)/5; % replicate the same variable
and add noise
fnum=size(x, 2);
fprintf(’Created dataset with %d features, with average correl to
target=%5.4f+-%5.4f\n’, fnum, mean(condcor(x,y)), std(condcor(x,y)));
rp=20; % Completely random, not related to target
ca=10; % Confounders
ef=10; % Effects of target
nl=2; % Level of non-linearity
mn=p/2; % Number of manipulated variables
% Add probes to the data matrix
[xx, parents]=add_probes(x, y, rp,ca,ef,[],[],[],[],nl,[],mn);

fprintf(’\nAdded %d random probes:\n’, (rp+ca+ef));
fprintf(’%d not related to the target,\n’, rp);
fprintf(’%d confounders\n’, ca);
fprintf(’%d effects\n’, ef);

213

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

fprintf(’\n++++++++++++++++++++++++++++++++++\n’);
fprintf(’+++ Testing unmanipulated data +++\n’);
fprintf(’++++++++++++++++++++++++++++++++++\n\n’);
test_net(xx(1:500,:), y(1:500), parents, fnum);
fprintf(’\n++++++++++++++++++++++++++++++++\n’);
fprintf(’+++ Testing manipulated data +++\n’);
fprintf(’++++++++++++++++++++++++++++++++\n’);
show_net_again=0;
test_net(xx(501:1000,:), y(501:1000), parents, fnum, show_net_again);

Created dataset with 10 features, with average correl to
target=0.7829+-0.0037

*** Creating 20 random probes by blocks of 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

*** Creating 10 confounders,
with on average 1 parents drawn randomly from the 10 true variables
and 1 random probe parents from a pool of 5 probes

Distillating
Keeping only 10/10 true variables most correlated to Y
Normalizing
Adding variables,

average number of true parents=1
average number of probe parents=1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

*** Creating 10 effects of the target,
with on average 1 parents drawn randomly from the 10 confounders
and 1 random probe parents from a pool of 5 probes

Normalizing
Adding variables,

average number of true parents=1
average number of probe parents=1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Added 40 random probes:
20 not related to the target,
10 confounders
10 effects
++++++++++++++++++++++++++++++++++
+++ Testing unmanipulated data +++
++++++++++++++++++++++++++++++++++

== Total number of variables: 50 ==
== Real variables (10): 1 ... 10
== Probes (20):

4 spouses of true var:
(11 -> 16 18 20)
(13 -> 17 19 22 23 24)
(14 -> 16 21 24 25)
(15 -> 17 19 22)

5 spouses of target:
(26 -> 35 38 40)
(27 -> 34 37)
(28 -> 31 33 39)
(29 -> 36)

214

APPENDIX A: GENERATION OF RANDOM PROBES

(30 -> 31 32 36 37 38 39)
11 independent of target: Warning, some probes assigned to be

spouses are unused
== Confounders (10): 16 ... 25
(16 <- 10 6 14 11)
(17 <- 4 13 15)
(18 <- 10 4 11)
(19 <- 10 13 15)
(20 <- 10 11)
(21 <- 5 4 14)
(22 <- 1 15 13)
(23 <- 2 13)
(24 <- 8 13 14)
(25 <- 7 2 14)
== Effects (10): 31 ... 40
(31 <- 0 18 21 28 30)
(32 <- 0 21 30)
(33 <- 0 20 19 28)
(34 <- 0 25 27)
(35 <- 0 18 26)
(36 <- 0 22 21 29 30)
(37 <- 0 20 27 30)
(38 <- 0 25 30 26)
(39 <- 0 21 24 30 28)
(40 <- 0 20 22 26)

** Those should NOT be close to zero (ever) **
**> R (Y, Tj) -- Target dependent on true variables

-- Top 1%: <abs(R)>=0.7966+-0.0000
-- Top 10%: <abs(R)>=0.7966+-0.0000
-- All: <abs(R)>=0.7857+-0.0069

** Those should be close to zero **
==> R (Ti, Rj) -- Probes independent of the true variables

-- Top 1%: <abs(R)>=0.1129+-0.0003
-- Top 10%: <abs(R)>=0.0851+-0.0190
-- All: <abs(R)>=0.0310+-0.0242

==> R (Y, Rj) -- Probes independent of the target
-- Top 1%: <abs(R)>=0.1028+-0.0000
-- Top 10%: <abs(R)>=0.1006+-0.0030
-- All: <abs(R)>=0.0311+-0.0267

==> R (Y, Cj | T) -- Confounders independent of target given the true
variables (max of 50 confounders sampled)

-- Top 1%: <abs(R)>=0.0932+-0.0000
-- Top 10%: <abs(R)>=0.0932+-0.0000
-- All: <abs(R)>=0.0370+-0.0301

==> R (Ti, Ej | Y, C) -- True variables (top most corr w. Y)
independent of effects given the parents of the effects (max of 50
effects sampled)

-- Top 1%: <abs(R)>=0.1185+-0.0000
-- Top 10%: <abs(R)>=0.0862+-0.0143
-- All: <abs(R)>=0.0325+-0.0269
-- For comparison, unconditioned dependency of same true var (top

215

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

most corr w. Y) and effects (same effects sampled)
-- Top 1%: <abs(R)>=0.7752+-0.0000
-- Top 10%: <abs(R)>=0.7461+-0.0118
-- All: <abs(R)>=0.5212+-0.2056
-- For comparison, unconditioned dependency of same true var (top

most corr w. Y) and effects (all effects)
-- Top 1%: <abs(R)>=0.7752+-0.0000
-- Top 10%: <abs(R)>=0.7461+-0.0118
-- All: <abs(R)>=0.5212+-0.2056
-- For comparison, unconditioned dependency of same true var (top

most corr w. Y) and the target (all effects)
-- Top 1%: <abs(R)>=0.7966+-0.0000
-- Top 10%: <abs(R)>=0.7966+-0.0000
-- All: <abs(R)>=0.7857+-0.0069

** Those should be close to zero ONLY in manipulated test data **
==> R (Ti, Cj) -- Confounders dependent on their parents (true
variables)

-- Parents, which are true variables
-- Top 1%: <abs(R)>=0.8926+-0.0000
-- Top 10%: <abs(R)>=0.8926+-0.0000
-- All: <abs(R)>=0.4737+-0.3109
-- Parents, which are probes
-- Top 1%: <abs(R)>=0.9526+-0.0000
-- Top 10%: <abs(R)>=0.9436+-0.0128
-- All: <abs(R)>=0.5310+-0.3201

==> R (Ti, Rj | C(Ti, Rj)), C(Ti, Rj) effect of Ti and Rj
-- Dependency of true var and probes induced by confounders (max

of 50 confounders sampled)
-- Top 1%: <abs(R)>=0.7284+-0.0000
-- Top 10%: <abs(R)>=0.7275+-0.0013
-- All: <abs(R)>=0.3552+-0.2284
-- For comparison, unconditioned dependency of same true var and

probes (same confounders sampled)
-- Top 1%: <abs(R)>=0.0518+-0.0000
-- Top 10%: <abs(R)>=0.0515+-0.0004
-- All: <abs(R)>=0.0339+-0.0102
-- For comparison, unconditioned dependency of same true var and

probes (all samples)
-- Top 1%: <abs(R)>=0.0518+-0.0000
-- Top 10%: <abs(R)>=0.0515+-0.0004
-- All: <abs(R)>=0.0339+-0.0102

**> R (Y, Cj) -- Target dependent on counfounders
-- Top 1%: <abs(R)>=0.7135+-0.0000
-- Top 10%: <abs(R)>=0.7135+-0.0000
-- All: <abs(R)>=0.3563+-0.2551

==> R (Ci, Rj | E), E are effects of the target, Ci, and Rj are
parents of these effects

-- Target spouses become dependent given their children (max of 50
effects sampled)

-- Top 1%: <abs(R)>=0.7728+-0.0000
-- Top 10%: <abs(R)>=0.6309+-0.2006
-- All: <abs(R)>=0.1670+-0.2078

216

APPENDIX A: GENERATION OF RANDOM PROBES

-- For comparison, the same without conditioning on the
effects(same effects)

-- Top 1%: <abs(R)>=0.0878+-0.0000
-- Top 10%: <abs(R)>=0.0819+-0.0083
-- All: <abs(R)>=0.0313+-0.0284
-- For comparison, the same without conditioning on the effects

(all effects)
-- Top 1%: <abs(R)>=0.0878+-0.0000
-- Top 10%: <abs(R)>=0.0819+-0.0083
-- All: <abs(R)>=0.0313+-0.0284
-- For comparison, effects and their probe parents (same effects)
-- Top 1%: <abs(R)>=0.8433+-0.0000
-- Top 10%: <abs(R)>=0.7681+-0.1063
-- All: <abs(R)>=0.3204+-0.2218
-- For comparison, effects and their confounder parents (same

effects)
-- Top 1%: <abs(R)>=0.8768+-0.0000
-- Top 10%: <abs(R)>=0.8255+-0.0725
-- All: <abs(R)>=0.3394+-0.2670

==> R (Y, Rj | E(Y, Rj)), E(Y, Rj) effect of Y and Rj
-- Target spouses and target become dependent given their children

(max of 50 souses sampled)
-- Top 1%: <abs(R)>=0.4694+-0.0000
-- Top 10%: <abs(R)>=0.4694+-0.0000
-- All: <abs(R)>=0.2432+-0.1422
-- For comparison, correlation target spouses and target, without

conditioning (same spouses)
-- Top 1%: <abs(R)>=0.0985+-0.0000
-- Top 10%: <abs(R)>=0.0985+-0.0000
-- All: <abs(R)>=0.0420+-0.0342
-- For comparison, correlation target spouses and target, without

conditioning (all spouses)
-- Top 1%: <abs(R)>=0.0985+-0.0000
-- Top 10%: <abs(R)>=0.0985+-0.0000
-- All: <abs(R)>=0.0420+-0.0342

**> R (Y, Ej) -- Effects of the target correlated to the target
-- Top 1%: <abs(R)>=0.8092+-0.0000
-- Top 10%: <abs(R)>=0.8092+-0.0000
-- All: <abs(R)>=0.6203+-0.2725

==> R (Ei, Cj) and R (Ei, Rj) -- Effects of the target correlated to
their other parents

-- Parents, which are confounders
-- Top 1%: <abs(R)>=0.8768+-0.0000
-- Top 10%: <abs(R)>=0.8255+-0.0725
-- All: <abs(R)>=0.3394+-0.2670
-- Parents, which are probes
-- Top 1%: <abs(R)>=0.8433+-0.0000
-- Top 10%: <abs(R)>=0.7681+-0.1063
-- All: <abs(R)>=0.3204+-0.2218

++++++++++++++++++++++++++++++++
+++ Testing manipulated data +++
++++++++++++++++++++++++++++++++

217

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

== Total number of variables: 50 ==
== Real variables (10): 1 ... 10
== Probes (20):

4 spouses of true var:
5 spouses of target:
11 independent of target: Warning, some probes assigned to be spouses

are unused
== Confounders (10): 16 ... 25

1.40+- 0.52 true variable parents, 1.50+- 0.53 parents unrelated to
target
== Effects (10): 31 ... 40

1.50+- 0.53 confounder parents, 1.50+ 0.53 parents unrelated to
target

** Those should NOT be close to zero (ever) **
**> R (Y, Tj) -- Target dependent on true variables

-- Top 1%: <abs(R)>=0.7924+-0.0000
-- Top 10%: <abs(R)>=0.7924+-0.0000
-- All: <abs(R)>=0.7865+-0.0050

** Those should be close to zero **
==> R (Ti, Rj) -- Probes independent of the true variables

-- Top 1%: <abs(R)>=0.1304+-0.0015
-- Top 10%: <abs(R)>=0.0895+-0.0323
-- All: <abs(R)>=0.0274+-0.0265

==> R (Y, Rj) -- Probes independent of the target
-- Top 1%: <abs(R)>=0.0727+-0.0000
-- Top 10%: <abs(R)>=0.0715+-0.0018
-- All: <abs(R)>=0.0353+-0.0230

==> R (Y, Cj | T) -- Confounders independent of target given the true
variables (max of 50 confounders sampled)

-- Top 1%: <abs(R)>=0.0899+-0.0000
-- Top 10%: <abs(R)>=0.0899+-0.0000
-- All: <abs(R)>=0.0330+-0.0306

==> R (Ti, Ej | Y, C) -- True variables (top most corr w. Y)
independent of effects given the parents of the effects (max of 50
effects sampled)

-- Top 1%: <abs(R)>=0.1231+-0.0000
-- Top 10%: <abs(R)>=0.0990+-0.0103
-- All: <abs(R)>=0.0520+-0.0269
-- For comparison, unconditioned dependency of same true var (top

most corr w. Y) and effects (same effects sampled)
-- Top 1%: <abs(R)>=0.1098+-0.0000
-- Top 10%: <abs(R)>=0.0971+-0.0053
-- All: <abs(R)>=0.0405+-0.0306
-- For comparison, unconditioned dependency of same true var (top

most corr w. Y) and effects (all effects)
-- Top 1%: <abs(R)>=0.1098+-0.0000
-- Top 10%: <abs(R)>=0.0971+-0.0053
-- All: <abs(R)>=0.0405+-0.0306
-- For comparison, unconditioned dependency of same true var (top

most corr w. Y) and the target (all effects)
-- Top 1%: <abs(R)>=0.7924+-0.0000

218

APPENDIX A: GENERATION OF RANDOM PROBES

-- Top 10%: <abs(R)>=0.7924+-0.0000
-- All: <abs(R)>=0.7865+-0.0050

** Those should be close to zero ONLY in manipulated test data **
==> R (Ti, Cj) -- Confounders dependent on their parents (true
variables)

-- Parents, which are true variables
-- Top 1%: <abs(R)>=0.0864+-0.0000
-- Top 10%: <abs(R)>=0.0864+-0.0000
-- All: <abs(R)>=0.0311+-0.0202
-- Parents, which are probes
-- Top 1%: <abs(R)>=0.1102+-0.0000
-- Top 10%: <abs(R)>=0.0796+-0.0433
-- All: <abs(R)>=0.0347+-0.0252

==> R (Ti, Rj | C(Ti, Rj)), C(Ti, Rj) effect of Ti and Rj
-- Dependency of true var and probes induced by confounders (max

of 50 confounders sampled)
-- Top 1%: <abs(R)>=0.0425+-0.0000
-- Top 10%: <abs(R)>=0.0425+-0.0001
-- All: <abs(R)>=0.0264+-0.0128
-- For comparison, unconditioned dependency of same true var and

probes (same confounders sampled)
-- Top 1%: <abs(R)>=0.0437+-0.0000
-- Top 10%: <abs(R)>=0.0424+-0.0019
-- All: <abs(R)>=0.0270+-0.0125
-- For comparison, unconditioned dependency of same true var and

probes (all samples)
-- Top 1%: <abs(R)>=0.0437+-0.0000
-- Top 10%: <abs(R)>=0.0424+-0.0019
-- All: <abs(R)>=0.0270+-0.0125

**> R (Y, Cj) -- Target dependent on counfounders
-- Top 1%: <abs(R)>=0.0803+-0.0000
-- Top 10%: <abs(R)>=0.0803+-0.0000
-- All: <abs(R)>=0.0368+-0.0188

==> R (Ci, Rj | E), E are effects of the target, Ci, and Rj are
parents of these effects

-- Target spouses become dependent given their children (max of 50
effects sampled)

-- Top 1%: <abs(R)>=0.0934+-0.0000
-- Top 10%: <abs(R)>=0.0871+-0.0090
-- All: <abs(R)>=0.0328+-0.0279
-- For comparison, the same without conditioning on the

effects(same effects)
-- Top 1%: <abs(R)>=0.0929+-0.0000
-- Top 10%: <abs(R)>=0.0870+-0.0083
-- All: <abs(R)>=0.0327+-0.0282
-- For comparison, the same without conditioning on the effects

(all effects)
-- Top 1%: <abs(R)>=0.0929+-0.0000
-- Top 10%: <abs(R)>=0.0870+-0.0083
-- All: <abs(R)>=0.0327+-0.0282
-- For comparison, effects and their probe parents (same effects)
-- Top 1%: <abs(R)>=0.0674+-0.0000

219

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

-- Top 10%: <abs(R)>=0.0647+-0.0038
-- All: <abs(R)>=0.0355+-0.0240
-- For comparison, effects and their confounder parents (same

effects)
-- Top 1%: <abs(R)>=0.0720+-0.0000
-- Top 10%: <abs(R)>=0.0699+-0.0029
-- All: <abs(R)>=0.0331+-0.0248

==> R (Y, Rj | E(Y, Rj)), E(Y, Rj) effect of Y and Rj
-- Target spouses and target become dependent given their children

(max of 50 souses sampled)
-- Top 1%: <abs(R)>=0.0727+-0.0000
-- Top 10%: <abs(R)>=0.0727+-0.0000
-- All: <abs(R)>=0.0332+-0.0279
-- For comparison, correlation target spouses and target, without

conditioning (same spouses)
-- Top 1%: <abs(R)>=0.0727+-0.0000
-- Top 10%: <abs(R)>=0.0727+-0.0000
-- All: <abs(R)>=0.0348+-0.0291
-- For comparison, correlation target spouses and target, without

conditioning (all spouses)
-- Top 1%: <abs(R)>=0.0727+-0.0000
-- Top 10%: <abs(R)>=0.0727+-0.0000
-- All: <abs(R)>=0.0348+-0.0291

**> R (Y, Ej) -- Effects of the target correlated to the target
-- Top 1%: <abs(R)>=0.0886+-0.0000
-- Top 10%: <abs(R)>=0.0886+-0.0000
-- All: <abs(R)>=0.0364+-0.0272

==> R (Ei, Cj) and R (Ei, Rj) -- Effects of the target correlated to
their other parents

-- Parents, which are confounders
-- Top 1%: <abs(R)>=0.0720+-0.0000
-- Top 10%: <abs(R)>=0.0699+-0.0029
-- All: <abs(R)>=0.0331+-0.0248
-- Parents, which are probes
-- Top 1%: <abs(R)>=0.0674+-0.0000
-- Top 10%: <abs(R)>=0.0647+-0.0038
-- All: <abs(R)>=0.0355+-0.0240

Appendix A1: Generation of variables unrelated to the target
function Xp=create_random_probes(X, probe_num, block_size)
%Xp=create_random_probes(X, probe_num, block_size)
% Create a matrix Xp containing probes.
% This is done by permuting blocks of the original matrix.
% X -- Data matrix p x n
% probe_num -- dim(Xp, 2)=N
% block_size -- number of features permuted in block. If
block_size=1,
% the all probes correspond to variables individually
permuted.
% Returns:
% Xp -- matrix of probes of dim p x N

220

APPENDIX A: GENERATION OF RANDOM PROBES

% Isabelle Guyon -- isabelle@clopinet.com -- October 2007

[p, n]=size(X);
N=probe_num;
if issparse(X)

Xp=sparse(p, N);
else

Xp=zeros(p, N);
end

beg0=1;
fin0=min(block_size, n);
beg1=beg0;
fin1=fin0;
while 1

fprintf(’%d ’, fin1);
% define a new block of data from X
rng0=beg0:fin0;
% define where to put it in Xp
rng1=beg1:fin1;
% Create a random permutation
ip=randperm(p);
% Assign values
Xp(:,rng1)=X(ip,rng0);
% next bounds in X
beg0=fin0+1;
if beg0>n, % restart at the beginning

beg0=1;
fin0=min(block_size, n);

else
fin0=min(fin0+block_size, n);

end
% next bounds in Xp
beg1=fin1+1;
if beg1>N, break; end
fin1_new=fin1+length(beg0:fin0);
if fin1_new>N

fin0=fin0-(fin1_new-N);
fin1=N;

else
fin1=fin1_new;

end
end
fprintf(’\n’);

Appendix A2: Non-linear function used to generate confounders and consequences
function y=rand_func(x, r, noise, h, slope_squash, debug)
%y=rand_func(x, r, noise, h, slope_squash, debug)
% Take an x vector as an input and generates a random function from it
% We use a neural network of 2 layers with as many hidden units as
inputs
% and a direct connection from input to output.
% x: input vector (also works for data matrices, patterns in lines)

221

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

% Expects inputs roughly between 0 and 1 or between -1 and 1.
% r: variable of which we want to mimic the distribution
% noise: noise level of output_range*N(0, noise) added
% slope_squash: slope at origin of the squashing function (tanh)
% h: number of hidden units
% debug: debug flag

% Isabelle Guyon -- isabelle@clopinet.com -- October 2007

if nargin<2, r=[]; end
if nargin<3, noise=0.05; end
if nargin<4, h=[]; end
if nargin<5, slope_squash=1; end
if nargin<6, debug=0; end

[p, n]=size(x);
[pr, nr]=size(r);

% number of hidden units
if isempty(h), h=n; end
if debug, h=10; end

% First layer parameters
w1=randn(h,n)./n;
b1=randn(h,1)./n;
b1=b1(:,ones(1,p));
% Second layer parameters
w2=randn(1,n+h)./(n+h);
b2=randn./(n+h);

% Network computations
v=x*w1’+b1’;
y1=tanh(slope_squash*v);
y1=[y1, x];
v=y1*w2’+b2’;
if debug

y=tanh(slope_squash*v); % Try also squashing
[sv, vi]=sort(v);
h1=figure; subplot(3,1,1); plot(sv, ’.’); title(’Blue: Raw v’);
[sy, si]=sort(y);
h2=figure; subplot(3,1,1); plot(sy, ’.’); title(’Blue: Raw y’);
yorig=y;
vorig=v;

end

% Add random noise
d=max(v)-min(v);
v=v+noise*d*randn(size(v));
if debug

y=y+noise*randn(size(y));
% Note: the effect of squashing and adding noise to y
% at this level makes the noise not hoeoscedastic
figure(h1); hold on; subplot(3,1,1); plot(v(si), ’r.’);

222

APPENDIX A: GENERATION OF RANDOM PROBES

title(’Blue: Raw v distribution; Red: plus noise’);
figure(h2); hold on; subplot(3,1,1); plot(y(si), ’r.’);

title(’Blue: Raw y distribution; Red: plus noise’);
if ~isempty(r)

% Mimic the distribution of r for y
[ys, is]=sort(y);
rs=sort(r);
y(is)=rs;

end
end

if ~isempty(r)
% Mimic the distribution of r directly for v
[vs, is]=sort(v);
rs=sort(r);
v(is)=rs;

end

if debug
figure(h1); hold on; subplot(3,1,2); plot(v(vi), ’g.’);

title(’Green=NL mapping’);
figure(h2); hold on; subplot(3,1,2); plot(y(si), ’g.’);

title(’Green=NL mapping’);
figure(h1); hold on; subplot(3,1,3); plot(vorig, v, ’r.’);

xlabel(’v before’); ylabel(’v after’);
figure(h2); hold on; subplot(3,1,3); plot(yorig, y, ’r.’);

xlabel(’y before’); ylabel(’y after’);
end

% In the end we find better to use the direct non-linear mapping of v
to r
y=v;

if debug
figure; plot(vorig, y, ’r.’); xlabel(’Net output’); ylabel(’Output

mapped to matched desired distribution’);
if size(x, 2)==1

figure; plot(x, y, ’r.’); xlabel(’Input’); ylabel(’Output’);
end

end

Appendix A3: Generation of variables related to others (may include the target)
function [Xc, parents]=create_confounders(X, Xp, Y, confounder_num,
true_parent_num, probe_parent_num, non_linearity_level, noise, top_num)
%[Xc, parents]=create_confounders(X, Xp, Y, confounder_num,
true_parent_num, probe_parent_num, non_linearity_level, noise, top_num)
% Create a matrix Xc containing confounders that are consequences of
real variables and probes.
% This is done by defining a sparse architecture and then applying
functions to the inputs to generate new inputs.
% The output is then made to resemble the distribution of a real
variable.
% X -- Data matrix p x n containing real variables

223

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

% Xp -- Data matrix p x m containing probes
% Y -- Target values (p) (not provided if we want to
exclude
% the target)
% confounder_num -- dim(Xc, 2)= N
% the all probes correspond to variables individually
permuted.
% true_parent_num, probe_parent_num -- number of parents of the created
variables
% non_linearity_level -- Slope of the tanh in the hidden layer (the
larger
% the more non-linear. Use 1 for almost linear.
% noise -- Random noise level (as a fraction of the variable output
range).
% top_num -- number of examples most correlated to Y used in X as
% input to confounders. Y is then not used as input.
% Returns:
% Xc -- Matrix of probes of dim p x N
% parents -- A cell array with lists of parents among input
variables
% The variables are numbers 1..n in X and n+1...n+m in
Xp
% If the target is given, we add it to all input variable sets (this
% creates consequences).

% Isabelle Guyon -- isabelle@clopinet.com -- October 2007

if nargin<8, noise=0.05; end
do_not_add_Y=0;
if nargin>=9,

do_not_add_Y=1;
else

top_num=size(X,2);
end

[p, n]=size(X);
[p, m]=size(Xp);
N=confounder_num;

if ~isempty(Y) & do_not_add_Y
% Distillate the data
fprintf(’Distillating\n’);
idx_feat=balcor_select(X, Y);
idx_good=idx_feat(1:top_num);
Y=[];
fprintf(’Keeping only %d/%d true variables most correlated to Y\n’,

length(idx_good), n);
else

idx_good=[1:n]’;
end
ng=length(idx_good);

if issparse(X)

224

APPENDIX A: GENERATION OF RANDOM PROBES

Xc=sparse(p, N);
else

Xc=zeros(p, N);
end

% Divide variables by their maximum, to bring them between 0 and 1
Xs=[X Xp];
xmax=max(Xs);
fprintf(’Normalizing\n’);
for k=1:size(Xs,2)

if xmax(k)~=0
Xs(:,k)=Xs(:,k)./xmax(k);

end
end

% Average number of variables to be selected
parents=\\;
fprintf(’Adding variables,\n\taverage number of true parents=%d’,
true_parent_num);
fprintf(’\n\taverage number of probe parents=%d\n’, probe_parent_num);
percent_done=0;
old_percent_done=0;
for k=1:N

percent_done=floor(k/N*100);
if ~mod(percent_done,10) & percent_done~=old_percent_done,

fprintf(’%d%% ’, percent_done);
end
old_percent_done=percent_done;
% Select a random subset of real variables and of probes
fanin_real=max(1, min(ceil(true_parent_num*(1+(rand-0.5))), ng));
rp_real=idx_good(randperm(ng)); % We prefer the variables

correlated to the target
fanin_probe=max(1, min(ceil(probe_parent_num*(1+(rand-0.5))), m));
rp_probe=randperm(m)’;
parents\k\=[rp_real(1:fanin_real); n+rp_probe(1:fanin_probe)];
% Select a real variable at random
rp=randperm(n);
r=X(:,rp(1)); % This one should not be standardized
% Input the variables to the non-linear function
h=fanin_real+fanin_probe; % number of hidden units
Xc(:,k)=rand_func([Xs(:,parents\k\), Y] , r, noise, h,

non_linearity_level);
% Add Y as parent
if ~isempty(Y)

parents\k\=[0; parents\k\];
end

end
function [idx_feat, cor_val]=balcor_select(X, Y, feat_num)
%[idx_feat, cor_val]=balcor_select(X, Y, feat_num)
% feature selection with correlation coefficient
% which balances the 2 classes by subsampling the second one.

% Isabelle Guyon -- isabelle@clopinet.com -- October 2007

225

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

pidx=find(Y==1);
nidx=find(Y==-1);
% take a random subset of negative class elements of the same size as
% the number of positive
rp=randperm(length(nidx));
nidx=nidx(rp(1:min(length(pidx), length(nidx))));
RR=condcor(X([pidx; nidx],:), Y([pidx; nidx]));
[cor_val, idx_feat]=sort(-abs(RR));

if nargin>2
idx_feat=idx_feat(1:feat_num);
cor_val=-cor_val(1:feat_num);

else
cor_val=-cor_val;

end

Appendix A4: Generation of all probes
function [X, parents]=add_probes(X, Y, probe_num, confounder_num,
consequence_num, conf_true_parent_num, conf_probe_parent_num,
cons_true_parent_num, cons_probe_parent_num, non_linearity_level,
noise, num_manipulated, top_num, noise_Y)
%[X, parents]=add_probes(X, Y, probe_num, confounder_num,
consequence_num, conf_true_parent_num, conf_probe_parent_num,
cons_true_parent_num, cons_probe_parent_num, non_linearity_level,
noise, num_manipulated, top_num, noise_Y)
% Create a matrix X containing probes, urelated to the target or
% confounders and consequeces. The architecture is built in.
% X -- Data matrix p x n
% Y -- Target values (p) (not provided if we want to
exclude
% the target)
% probe_num -- Number of probes not consequences of real
variables or
% the target
% confounder_num -- Number of confounders
% consequence_num -- Number of consequences
% conf_true_parent_num, conf_probe_parent_num -- number of parents of
% confounders
% cons_true_parent_num, cons_probe_parent_num -- number of parents of
% consequences
% non_linearity_level -- Slope of the tanh in the hidden layer (the
larger
% the more non-linear. Use 1 for almost linear.
% noise -- Random noise level (as a fraction of the
variable output range).
% num_manipulated -- for the num_manipulated last entries the probes
values
% are randomized, making all probes independent of
the
% target.
% top_num -- number of examples most correlated to Y used in
X as

226

APPENDIX A: GENERATION OF RANDOM PROBES

% input to confounders
% tone_Y_down -- Multipicative factor to tone Y down as a cause
of its
% effects
%
% Returns:
% Xnew -- Matrix of probes of dim p x N
% parents -- A cell array with lists of parents of all the
variables
% Variables are numbered 1 to n. The target is 0.

% Isabelle Guyon -- isabelle@clopinet.com -- October 2007

[p, n]=size(X);

if nargin<6 | isempty(conf_true_parent_num), conf_true_parent_num=1;
end
if nargin<7 | isempty(conf_probe_parent_num), conf_probe_parent_num=1;
end
if nargin<8 | isempty(cons_true_parent_num), cons_true_parent_num=1;
end
if nargin<9 | isempty(cons_probe_parent_num), cons_probe_parent_num=1;
end
if nargin<10 | isempty(non_linearity_level), non_linearity_level=1; end
if nargin<11 | isempty(noise), noise=0.05; end
if nargin<12 | isempty(num_manipulated), num_manipulated=0; end
if nargin<13 | isempty(top_num), top_num=size(X,2); end
if nargin<14 | isempty(noise_Y), noise_Y=0; end

% Repartition of the probes marginally independent of the target
spouse_cause=floor(probe_num/4);
spouse_target=floor(probe_num/4);
true_random=probe_num-spouse_cause-spouse_target;

% Creation of probes marginally independent of the target
block_size=max(1,round(n/10));
fprintf(’*** Creating %d random probes by blocks of %d\n’, probe_num,
block_size);
Xp=create_random_probes(X, probe_num, block_size);

% Split probes into spouses and purely random
% First shuffle them
rp=randperm(size(Xp, 2));
Xp=Xp(:, rp);
% Then split into 3 parts
Xp1=Xp(:,1:spouse_cause);
Xp2=Xp(:,spouse_cause+1:spouse_cause+spouse_target);
Xp3=Xp(:,spouse_cause+spouse_target+1:probe_num);
clear Xp;

% Create confounders, not consequences of the target, using true
variables
% and a subset of the previously drawn probes

227

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

fprintf(’*** Creating %d confounders, \n with on average %d parents
drawn randomly from the %d true variables \n and %d random probe
parents from a pool of %d probes\n’, ...

confounder_num, conf_true_parent_num, size(X,2),
conf_probe_parent_num, size(Xp1, 2));
[Xc, p1_parents]=create_confounders(X, Xp1, Y, confounder_num,
conf_true_parent_num, conf_probe_parent_num, non_linearity_level,
noise, top_num);

% Create effects of the target and a subset of the previously drawn probes
fprintf(’\n*** Creating %d effects of the target, \n with on average
%d parents drawn randomly from the %d confounders \n and %d random
probe parents from a pool of %d probes\n’, ...

consequence_num, cons_true_parent_num, size(Xc,2),
cons_probe_parent_num, size(Xp2, 2));
if noise_Y>0,

% flip noise_Y*p examples
rp=randperm(p);
rp=rp(1:round(noise_Y*p));
Y(rp)=-Y(rp);

end
[Xe, p2_parents]=create_confounders(Xc, Xp2, Y, consequence_num,
cons_true_parent_num, cons_probe_parent_num, non_linearity_level,
noise);

% Add everything together
X=[X, Xp1, Xc, Xp2, Xe, Xp3];
total_var=n+probe_num+confounder_num+consequence_num;
parents=cell(total_var,1);
% Confounder parents: X (n variables) and Xp1 (spouse_cause variables)
% have no parents: start at n+spouse_cause+1
parents(n+spouse_cause+1:n+spouse_cause+confounder_num)=p1_parents;
% Effect parents: Xp2 have no parents, start at
% n+spouse_cause+confounder_num+spouse_target.
% Offset the indices of p2_parents by n+spouse_cause
for k=1: length(p2_parents)

p2_parents\k\=p2_parents\k\+n+spouse_cause;
p2_parents\k\(1)=0; % The target value is not offset

end
parents(n+spouse_cause+confounder_num+spouse_target+1:total_var-
true_random)=p2_parents;

if num_manipulated>0
probe_idx=(n+1):size(X,2);
manip_idx=(p-num_manipulated+1):p;
for k=1:length(probe_idx)

rp=randperm(num_manipulated);
X(manip_idx,probe_idx(k))=X(manip_idx(rp),probe_idx(k));

end
end

Appendix A5: Verification code
function test_net(X, Y, parents, true_num, debug, lean)

228

APPENDIX A: GENERATION OF RANDOM PROBES

%test_net(X, Y, parents, true_num, , lean)
% Test the independencies in the net
% X -- data matrix (p samples x n variables)
% Y -- target vector (dim p)
% parents -- cell aray of lists of parents of the variables
% true_num -- number of true variables (first in the X matrix)
% debug -- flag to show or not the network
% lean -- flag to remove the calculation of the pvalues

[p, n]=size(X);
if nargin<4, true_num=[]; end
if nargin<5, debug=0; end % display net
if nargin<6, lean=1; end

% Maximum number of conditional correlation coeff computed (for
% computational reasons)
maxval=50;

[parents, children, no_parent_idx, effect_idx, confounder_idx,
true_var_idx, rp_idx, spouse_target_idx, spouse_true_idx,
other_rp_idx]= ...

draw_net(parents, true_num, debug);

% Reduce the test matrix by selecting a balanced number of examples
pidx=find(Y==1);
nidx=find(Y==-1);
rp=randperm(length(nidx));
nidx=nidx(rp(1:min(length(pidx), length(nidx)))); % The positive class
is usually more depleted
X=X([pidx;nidx],:);
Y=Y([pidx;nidx]);

% Find the true variables
T=X(:,true_var_idx);
% Find the random probes indep Y
R=X(:,rp_idx);
% Find the consequences of the target
E=X(:,effect_idx);
% The rest are the counfounders
C=X(:,confounder_idx);

% Find candidate causes (top maxval variables most correlated to the
target)
fprintf(’\n** Those should NOT be close to zero (ever) **\n’);
[RR, PP]=condcor(Y, T, [], lean);
fprintf(’**> R (Y, Tj) -- Target dependent on true variables\n’);
show_R(RR,PP);
[SR, IR]=sort(-abs(RR));
top_cause_idx=IR(1:min(maxval, length(IR)));

% Compute the other dependencies
warning off
% Independence of random probes with other variable

229

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

fprintf(’\n** Those should be close to zero **\n’);
[RR, PP]=condcor(T, R, [], lean);
fprintf(’==> R (Ti, Rj) -- Probes independent of the true
variables\n’);
show_R(RR,PP);

[RR, PP]=condcor(Y, R, [], lean);
fprintf(’==> R (Y, Rj) -- Probes independent of the target\n’);
show_R(RR,PP);

if ~isempty(C)
% Confounders and target shielded by true variables
fprintf(’==> R (Y, Cj | T) -- Confounders independent of target

given the true variables (max of %d confounders sampled)\n’, maxval);
RR=[]; PP=[];
for k=1:min(maxval, length(confounder_idx)) % Too long if we

calculate for all
p_idx=parents\confounder_idx(k)\;
p_idx=intersect(p_idx, true_var_idx);
[rr,pp]=condcor(Y, C(:,k), X(:,p_idx), lean);
RR=[RR rr];
PP=[PP pp];

end
show_R(RR,PP);

% Effects and true variables shielded by parents
fprintf(’==> R (Ti, Ej | Y, C) -- True variables (top most corr w.

Y) independent of effects given the parents of the effects (max of %d
effects sampled)\n’, maxval);

RR=[]; PP=[];
ms=min(length(effect_idx), maxval);
for k=1:ms

p_idx=parents\effect_idx(k)\;
p_idx=intersect(p_idx, confounder_idx);
[rr,pp]=condcor(T(:, top_cause_idx), E(:,k), [Y X(:,p_idx)],

lean);
RR=[RR rr];
PP=[PP pp];

end
show_R(RR,PP);
fprintf(’ -- For comparison, unconditioned dependency of same

true var (top most corr w. Y) and effects (same effects sampled)\n’);
[RR,PP]=condcor(T(:, top_cause_idx), E(:, 1:ms), [], lean);
show_R(RR,PP);
fprintf(’ -- For comparison, unconditioned dependency of same

true var (top most corr w. Y) and effects (all effects)\n’);
[RR, PP]=condcor(T(:, top_cause_idx), E, [], lean);
show_R(RR,PP);
fprintf(’ -- For comparison, unconditioned dependency of same

true var (top most corr w. Y) and the target (all effects)\n’);
[RR, PP]=condcor(T(:, top_cause_idx), Y, [], lean);
show_R(RR,PP);

end

230

APPENDIX A: GENERATION OF RANDOM PROBES

if ~isempty(C)
fprintf(’\n** Those should be close to zero ONLY in manipulated

test data **\n’);
% Confounders
% C and parents
fprintf(’==> R (Ti, Cj) -- Confounders dependent on their parents

(true variables)\n’);
fprintf(’ -- Parents, which are true variables\n’);
RR=[]; PP=[];
for k=1:length(confounder_idx)

p_idx=parents\confounder_idx(k)\;
p_idx=intersect(p_idx, true_var_idx);
[rr,pp]=condcor(X(:,p_idx), C(:,k), [], lean);
RR=[RR; rr];
PP=[PP; pp];

end
show_R(RR,PP);
fprintf(’ -- Parents, which are probes\n’);
RR=[]; PP=[];
for k=1:length(confounder_idx)

p_idx=parents\confounder_idx(k)\;
p_idx=intersect(p_idx, rp_idx);
[rr,pp]=condcor(X(:,p_idx), C(:,k), [], lean);
RR=[RR; rr];
PP=[PP; pp];

end
show_R(RR,PP);

% Induced by C
fprintf(’==> R (Ti, Rj | C(Ti, Rj)), C(Ti, Rj) effect of Ti and

Rj\n -- Dependency of true var and probes induced by confounders
(max of %d confounders sampled)\n’, maxval);

RR=[]; PP=[];
for k=1:min(length(confounder_idx), maxval)

p_idx=parents\confounder_idx(k)\;
tpar_idx=intersect(p_idx, true_var_idx);
rpar_idx=intersect(p_idx, rp_idx);
[rr, pp]=condcor(X(:,tpar_idx), X(:,rpar_idx), C(:,k), lean);
RR=[RR; rr(:)];
PP=[PP; pp(:)];

end
show_R(RR,PP);

fprintf(’ -- For comparison, unconditioned dependency of same
true var and probes (same confounders sampled)\n’);

RR=[]; PP=[];
for k=1:min(length(confounder_idx), maxval)

p_idx=parents\confounder_idx(k)\;
tpar_idx=intersect(p_idx, true_var_idx);
rpar_idx=intersect(p_idx, rp_idx);
[rr, pp]=condcor(X(:,tpar_idx), X(:,rpar_idx), [], lean);
RR=[RR; rr(:)];

231

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

PP=[PP; pp(:)];
end
show_R(RR,PP);

fprintf(’ -- For comparison, unconditioned dependency of same
true var and probes (all samples)\n’);

RR=[]; PP=[];
for k=1:length(confounder_idx)

p_idx=parents\confounder_idx(k)\;
tpar_idx=intersect(p_idx, true_var_idx);
rpar_idx=intersect(p_idx, rp_idx);
[rr, pp]=condcor(X(:,tpar_idx), X(:,rpar_idx), [], lean);
RR=[RR; rr(:)];
PP=[PP; pp(:)];

end
show_R(RR,PP);

% Y and C
fprintf(’**> R (Y, Cj) -- Target dependent on counfounders\n’);
[RR, PP]=condcor(Y, C, [], lean);
show_R(RR,PP);

end

if ~isempty(E)
% Parents of the effects
fprintf(’==> R (Ci, Rj | E), E are effects of the target, Ci, and

Rj are parents of these effects\n -- Target spouses become
dependent given their children (max of %d effects sampled)\n’, maxval);

RR=[]; PP=[];
for k=1:min(length(effect_idx), maxval)

p_idx=parents\effect_idx(k)\;
rpar_idx=intersect(p_idx, spouse_target_idx);
tpar_idx=intersect(p_idx, confounder_idx);
[rr, pp]=condcor(X(:,tpar_idx) , X(:,rpar_idx), E(:,k), lean);
RR=[RR; rr(:)];
PP=[PP; pp(:)];

end
show_R(RR,PP);
fprintf(’ -- For comparison, the same without conditioning on

the effects(same effects)\n’);
RR=[]; PP=[];
for k=1:min(length(effect_idx), maxval)

p_idx=parents\effect_idx(k)\;
rpar_idx=intersect(p_idx, spouse_target_idx);
tpar_idx=intersect(p_idx, confounder_idx);
[rr, pp]=condcor(X(:,tpar_idx), X(:,rpar_idx), [], lean);
RR=[RR; rr(:)];
PP=[PP; pp(:)];

end
show_R(RR,PP);
fprintf(’ -- For comparison, the same without conditioning on

the effects(all effects)\n’);
RR=[]; PP=[];

232

APPENDIX A: GENERATION OF RANDOM PROBES

for k=1:length(effect_idx)
p_idx=parents\effect_idx(k)\;
rpar_idx=intersect(p_idx, spouse_target_idx);
tpar_idx=setdiff(setdiff(p_idx, rpar_idx), [0]);
[rr, pp]=condcor(X(:,tpar_idx), X(:,rpar_idx), [], lean);
RR=[RR; rr(:)];
PP=[PP; pp(:)];

end
show_R(RR,PP);
fprintf(’ -- For comparison, effects and their probe parents

(same effects)\n’);
RR=[]; PP=[];
for k=1:min(length(effect_idx), maxval)

p_idx=parents\effect_idx(k)\;
rpar_idx=intersect(p_idx, spouse_target_idx);
tpar_idx=intersect(p_idx, confounder_idx);
[rr, pp]=condcor(E(:,k), X(:,rpar_idx), [], lean);
RR=[RR; rr(:)];

PP=[PP; pp(:)];
end
show_R(RR,PP);
fprintf(’ -- For comparison, effects and their confounder

parents (same effects)\n’);
RR=[]; PP=[];
for k=1:min(length(effect_idx), maxval)

p_idx=parents\effect_idx(k)\;
rpar_idx=intersect(p_idx, spouse_target_idx);
tpar_idx=intersect(p_idx, confounder_idx);
[rr, pp]=condcor(E(:,k), X(:,tpar_idx), [], lean);
RR=[RR; rr(:)];
PP=[PP; pp(:)];

end
show_R(RR,PP);

% Target spouses
fprintf(’==> R (Y, Rj | E(Y, Rj)), E(Y, Rj) effect of Y and Rj\n

-- Target spouses and target become dependent given their children
(max of %d souses sampled)\n’, maxval);

RR=[]; PP=[];
ms=min(length(spouse_target_idx), maxval);
for k=1:ms

c_idx=childrenspouse_target_idx(k);
[rr, pp]=condcor(Y, X(:,spouse_target_idx(k)), X(:,c_idx),

lean);
RR=[RR rr];
PP=[PP pp];

end
show_R(RR,PP);
fprintf(’ -- For comparison, correlation target spouses and

target, without conditioning (same spouses)\n’);
[RR, PP]=condcor(Y, X(:,spouse_target_idx(1:ms)), [], lean);
show_R(RR,PP);

233

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

fprintf(’ -- For comparison, correlation target spouses and
target, without conditioning (all spouses)\n’);

[RR, PP]=condcor(Y, X(:,spouse_target_idx), [], lean);
show_R(RR,PP);

% Effects and Y
fprintf(’**> R (Y, Ej) -- Effects of the target correlated to the

target\n’);
[RR, PP]=condcor(Y, E, [], lean);
show_R(RR,PP);
% Effects and the other parents
fprintf(’==> R (Ei, Cj) and R (Ei, Rj) -- Effects of the target

correlated to their other parents\n’);
fprintf(’ -- Parents, which are confounders\n’);
RR=[]; PP=[];
for k=1:length(effect_idx)

p_idx=parents\effect_idx(k)\;
p_idx=intersect(p_idx, confounder_idx);
[rr,pp]=condcor(E(:,k), X(:,p_idx), [], lean);
RR=[RR rr];
PP=[PP pp];

end
show_R(RR,PP);
fprintf(’ -- Parents, which are probes\n’);
RR=[]; PP=[];
for k=1:length(effect_idx)

p_idx=parents\effect_idx(k)\;
p_idx=intersect(p_idx, spouse_target_idx);
[rr,pp]=condcor(E(:,k), X(:,p_idx), [], lean);
RR=[RR rr];
PP=[PP pp];

end
show_R(RR,PP);

end

function [parents, children, no_parent_idx, effect_idx, confounder_idx,
true_var_idx, rp_idx, spouse_target_idx, spouse_true_idx,
other_rp_idx]=draw_net(parents, true_num, debug)
%[parents, children, no_parent_idx, effect_idx, confounder_idx,
%true_var_idx, rp_idx, spouse_target_idx, spouse_true_idx,
other_rp_idx]=draw_net(parents, true_num, debug)
% Show the network.
% Inputs:
% parents -- A cell array containing lists of variable parents
% if true_num is given, it is assumed that the first few
variables are true variables
% the variables are numbered 1, ..., i, ...n and
parents\i\ is the list of parents
% of variable i.
% if true_num=[], parents\1\ is the list of true

234

APPENDIX A: GENERATION OF RANDOM PROBES

variables
% and parent\i+1\ are the parents of i.
% true_num -- Number of true variables.
% debug -- debug blag: if 1, show the whole structure.
% Returns:
% parents -- parents of the variables numbered 1, ..., i, ...n:
parents\i\
% is the list of parents of variable i.
% children -- children\i\ is the list of children of variable i.
% no_parent_idx -- indices of variables having no parents (includes
true
% and random probes independent of the target.
% effect_idx -- indices of probes which are effects of the target.
% confounder_idx -- indices of probes which are consequences of true
variables
% true_var_idx -- indices of true variables
% rp_idx -- indices of random probes independent of the target
% spouse_target_idx -- indices of spouses of the target (probes)
% spouse_true_idx -- indices of spouses of true variables (probes)
% other_rp_idx -- indices of other random probes, indept of target
% length(other_rp_idx)+length(spouse_target_idx)+length(spouse_true_idx)
% ==length(rp_idx)

% Isabelle Guyon -- isabelle@clopine.,com -- October 2007

if nargin<2 | isempty(true_num),
true_var_idx=parents\1\;
parents=parents(2:length(parents));

else
% Find the true variables
true_var_idx=1:true_num;

end
if nargin<3, debug=1; end

% Invert the index
children=cell(size(parents));
no_parent_idx=[];
effect_idx=[];
confounder_idx=[];
for k=1:length(parents)

par=parents\k\;
if isempty(par)

no_parent_idx=[no_parent_idx k];
else

if par(1)==0
effect_idx=[effect_idx k];
par=par(2:length(par));

else
confounder_idx=[confounder_idx k];

end
for j=1:length(par)

children\par(j)\=[children\par(j)\ k];
end

235

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

end
end

% Find the random probes indep Y
rp_idx=setdiff(no_parent_idx, true_var_idx);

% Spouses:
spouse_true_idx=[];
spouse_target_idx=[];
for k=1:length(rp_idx)

c_idx=childrenrp_idx(k);
if ~isempty(c_idx)

if ~isempty(intersect(c_idx, effect_idx))
spouse_target_idx=[spouse_target_idx, rp_idx(k)];

else
spouse_true_idx=[spouse_true_idx, rp_idx(k)];

end
end

end
other_rp_idx=setdiff(setdiff(rp_idx, spouse_target_idx),
spouse_true_idx);

if true_num+length(rp_idx)+length(confounder_idx)+length(effect_idx)
~=length(parents)

error(’Number of variables do no add up’);
end
if length(other_rp_idx)+length(spouse_target_idx)+length(spouse_true_idx)
~=length(rp_idx)

error(’Number of probes do no add up’);
end

fprintf(’== Total number of variables: %d ==\n’, length(parents));
if ~isempty(true_num)

fprintf(’== Real variables (%d): 1 ... %d\n’, true_num, true_num);
else

fprintf(’== Real variables (%d):\n’, length(true_var_idx));
end
fprintf(’== Probes (%d): \n’, length(rp_idx));
fprintf(’ %d spouses of true var: \n’, length(spouse_true_idx));
if debug

for k=1:length(spouse_true_idx)
c_idx=childrenspouse_true_idx(k);
fprintf(’(%d ->’, spouse_true_idx(k));
for j=1:length(c_idx)

fprintf(’ %d ’, c_idx(j));
end
fprintf(’)\n’);

end
end
fprintf(’ %d spouses of target: \n’, length(spouse_target_idx));
if debug

for k=1:length(spouse_target_idx)
c_idx=childrenspouse_target_idx(k);

236

APPENDIX A: GENERATION OF RANDOM PROBES

fprintf(’(%d ->’, spouse_target_idx(k));
for j=1:length(c_idx)

fprintf(’ %d ’, c_idx(j));
end
fprintf(’)\n’);

end
end
fprintf(’ %d independent of target: ’, length(other_rp_idx));
MM=max(other_rp_idx);
mm=min(other_rp_idx);
if(MM-mm+1== length(other_rp_idx))

fprintf(’%d ... %d\n’, mm, MM);
else

fprintf(’Warning, some probes assigned to be spouses are
unused\n’);
end
fprintf(’== Confounders (%d): ’, length(confounder_idx));
MM=max(confounder_idx);
mm=min(confounder_idx);
if(MM-mm+1== length(confounder_idx))

fprintf(’%d ... %d\n’, mm, MM);
else

if ~isempty(confounder_idx),
fprintf(’Warning, wierd set\n’);

end
end
if debug

for k=1:length(confounder_idx)
p_idx=parentsconfounder_idx(k);
fprintf(’(%d <-”, confounder_idx(k));
for j=1:length(p_idx)

fprintf(’ %d ’, p_idx(j));
end
fprintf()\n);

end
else

nt=[];
np=[];
for k=1:length(confounder_idx)

p_idx=parentsconfounder_idx(k);
pt_idx=intersect(p_idx, true_var_idx);
pr_idx=intersect(p_idx, rp_idx);
nt=[nt length(pt_idx)];
np=[np length(pr_idx)];

end
fprintf(’ %5.2f+-%5.2f true variable parents, %5.2f+-%5.2f parents

unrelated to target\n’, mean(nt), std(nt), mean(np), std(np));
end

fprintf(’== Effects (%d): ’, length(effect_idx));
MM=max(effect_idx);
mm=min(effect_idx);
if(MM-mm+1== length(effect_idx))

237

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

fprintf(’%d ... %d\n’, mm, MM);
else

if ~isempty(effect_idx), fprintf(’Warning, wierd set\n’); end
end
if debug

for k=1:length(effect_idx)
p_idx=parentseffect_idx(k);
fprintf(’(%d <-’, effect_idx(k));
for j=1:length(p_idx)

fprintf(’ %d ’, p_idx(j));
end
fprintf(’)\n’);

end
else

nc=[];
np=[];
for k=1:length(effect_idx)

p_idx=parentseffect_idx(k);
pc_idx=intersect(p_idx, confounder_idx);
pr_idx=intersect(p_idx, rp_idx);
nc=[nc length(pc_idx)];
np=[np length(pr_idx)];

end
fprintf(’ %5.2f+-%5.2f confounder parents, %5.2f+%5.2f parents

unrelated to target\n’, mean(nc), std(nc), mean(np), std(np));

end

function [r, pval]=condcor(x, y, C, lean)
%[r, pval]=condcor(x, y, C, lean)
% Computes the correlation between the column vectors x and y
% given the column vectors of matrix C.
% lean -- flag, if 1, do not compute pvalue

if nargin<3, C=[]; end
if nargout>1

if lean
pval_compute=0;

else
pval_compute=1;

end
else

pval_compute=0;
end
pval=[];

debug=0;

[p, n]=size(x);
[pp, m]=size(y);

238

APPENDIX A: GENERATION OF RANDOM PROBES

if p~=pp, error(’wrong dimensions’); end

v=1/sqrt(p);

% Center and normalize
x=v*standard(x);
y=v*standard(y);
if ~isempty(C)

C=v*standard(C);
end

if debug & length(C)==length(x)
r_verif= (x’*y - (x’*C) * (y’*C))/sqrt((1-(x’*C)^2) * (1-(y’*C)^2))

end

% Project on null space
if ~isempty(C)

proj=C*pinv(C);
x=x-proj*x;
y=y-proj*y;
% Center and normalize again
x=v*standard(x);
y=v*standard(y);

end

% Compute dot product
if pval_compute

[R, P]=corrcoef([x, y]);
r=R(1:n,n+1:n+m);
pval=P(1:n,n+1:n+m);

else
r=x’*y;

end

return

% verification:
% condcor(a, b, c) = (condcor(a, b)-condcor(a, c)*condcor(b,
c))/sqrt((1-condcor(a, c)^2)*(1-condcor(b, c)^2))

function X=standard(X)
%X=standard(X)
% Standardize matrix of column vectors

[p, n]=size(X);
M=mean(X);
S=std(X,1);
X=(X-M(ones(p,1),:));
S(find(S==0))=1;
X=X./S(ones(p,1),:);
X=X./S(ones(p,1),:);

239

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

function show_R(RR, PP)
%show_R(RR, PP)
% Show statistics about vectors of correlation coefficients RR and their
% pvalues PP.

% Isabelle Guyon -- isabelle@clopinet.com -- October 2007

RR=full(abs(RR(:)));
PP=full(PP(:));
[SR0, IR]=sort(-RR);

fprintf(’ -- Top 1%%:\t’);
mval=max(1, round(length(SR0)/100));
SR=-SR0(1:mval);
fprintf(’ <abs(R)>=%5.4f+-%5.4f’, mean(SR), std(SR));
if ~isempty(PP),

SP=PP(IR(1:mval));
fprintf(’, <pval>=%5.4f+-%5.4f\n’, mean(SP), std(SP));

else fprintf(’\n’);
end

fprintf(’ -- Top 10%%:\t’);
mval=max(1, round(length(SR0)/10));
SR=-SR0(1:mval);
fprintf(’ <abs(R)>=%5.4f+-%5.4f’, mean(SR), std(SR));
if ~isempty(PP),

SP=PP(IR(1:mval));
fprintf(’, <pval>=%5.4f+-%5.4f\n’, mean(SP), std(SP));

else fprintf(’\n’);
end

fprintf(’ -- All:\t’);
fprintf(’\t <abs(R)>=%5.4f+-%5.4f’, mean(RR), std(RR));
if ~isempty(PP), fprintf(’, <pval>=%5.4f+-%5.4f\n’, mean(PP), std(PP));
else fprintf(’\n’); end

Appendix B: Probe method for scoring causes & consequences
This appendix provides an algorithm to compute the AUC for ROC curves plotting hit rate
vs. false alarm rate in the classification of “relevant” vs. “irrelevant” variables. “Relevancy”
can take one of several meanings, including dependency to the target, causal relationships to
the target, etc. The method is therefore applicable to variable selection, where relevant vari-
ables are those, which are predictive of a given outcome (e.g. a target variable), and irrelevant
variables are not. It is also applicable to causal discovery, where a score can indicate causal
proximity to the target, with the goal of separating e.g., causes from non-causes or direct causes
from other variables.

The assumption we make is that we do not know the truth values of the variable clas-
sification (relevant vs. irrelevant) but we know the “null distribution” of irrelevant variables
and we can draw as many artificial examples of such irrelevant variables as we want (we call
them “probes”). It is assumed that an empirical variable ranking (from most relevant to least

240

APPENDIX B: PROBE METHOD FOR SCORING CAUSES & CONSEQUENCES

relevant) can be established using training data (samples of variable values) and an algorithm of
our choice. For instance, such ranking may be established using a variable score, where a low
score indicates that the variable is more likely to belong to one of the classes (e.g., the “relevant
variables”) and a high score that it belongs to the other (e.g., the “irrelevant ones”). Using the
ranking method, we compute the AUC for sets of variables intermixed with “random probes”,
as an estimate of the AUC for the classification “relevant” vs. “irrelevant” variables.

The algorithm (Matlab implementation in Appendix B5)
The original data consists of a matrix of m lines (samples) and nr columns (real variables).
The nr real variables include a n+ positive examples (“relevant” variables) and a n− negative
(nr = n++n−). It is not known which variables are relevant (truth values) nor how many of them
are relevant, thus n+ and n− are not known.

1) A number np of artificial random variables called “probes” are drawn from an assumed
“null distribution”. In turn m samples are drawn from these probes and the resulting
(m×np) values are added to the original matrix to form an (m× (nr +np)) matrix.

2) All real variables and probes are ranked with a given algorithm, in decreasing order of
relevance (most relevant variables come first).

3) The sum of the ranks of the probes SPR is formed.

4) The area under the ROC curve for the data including probes is estimated as

PAUC = [SPR−np · (np+1)/2]/(np ·nr)

In the asymptotic case of infinite number of real variables and probes, PAUC is linearly related
to the AUC for the classification “relevant” vs. “irrelevant” variables:

PAUC = (n+/nr)AUC+0.5(n− /nr).

This monotonic dependency allows us to use PAUC as a surrogate for the real AUC for algo-
rithm comparison and model selection. In the finite sample case, we will use the following
estimator of the PAUC standard deviation:

σ = 0.5sqrt[sen(1− sen)/nr + spe(1− spe)/np]

where spe = 1− k/neg, sen = (rk − k)/pos, rk is the rank of the kth probe and k maximizes the
average of sen and spe. The algorithm is justified in what follows.

Calculation of the AUC and the Gini index
Assume we are given a ranked list of objects belonging to one of 2 classes, a positive and a
negative class (for instance, causes and non-causes). We have “pos” examples of the positive
class and “neg” examples of the negative class, and neg+ pos = m = tot (the total number of
examples).

We can compute, for each value of the rank:
fp: the number of false positive
tp: the number of true positive
fn: the number of false negative

241

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

tn: the number of true negative.
We have tp+fn=pos and tn+fp=neg

We define:
fpr (false positive rate or false alarm rate)=fp/neg
fnr (false negative rate)=fn/pos
Hit rate=sensitivity=tp/pos=1−fnr
Specificity=tn/neg=1−fpr
sel (the fraction of selected up to the rank)=fp+tp

Figure B1 shows how these statistics relate to one another.

Cost matrix
Predictions: F(x)

Class −1 Class +1 Total Class +1 Total

Truth:
y

Class −1 tn fp neg=tn+fp False alarm = fp/neg
Class +1 fn tp pos=fn+tp Hit rate= tp/pos

Total rej=tn+fn sel=fp+tp m=tn+fp
+fn+tp Frac. selected = sel/m

Class+1
/Total

Precision
=tp/sel

False alarm rate = type I errate = 1−specificity
Hit rate = 1−type II errate = sensitivity =

recall = test power

Compare F(x) = sign(f (x)) to the target y, and report:

• Error rate = (fn+ fp)/m

• {Hit rate, False alarm rate} or {Hit rate, Precision} or {Hit rate, Frac.selected}

• Balanced error rate (BER) = (fn/pos+ fp/neg)/2 = 1− (sensitivity+ specificity)/2

• F measure = 2 precision.recall/(precision+recall)

Vary the decision threshold F(x) = sign(f (x)+ θ) and plot:

• ROC curve: Hit rate vs. False alarm rate

• Lift curve: Hit rate vs. Fraction selected

• Precision/recall curve: Hit rate vs. Precision

Figure B1: Performance Assessment

To avoid notation confusions, in what follows, if we are considering the real variables only,
we use:

tot = nr = number of real variables
pos = n+ = number of examples of the positive class
neg = n− = number of the negative class

If we are adding probe variables, we use:
tot = nr + np = number of variables including real and probes
pos = nr = number of real variables
neg = np = number of probes

242

APPENDIX B: PROBE METHOD FOR SCORING CAUSES & CONSEQUENCES

The ROC curve (Figure B2) plots the “hit rate” vs. the “false alarm rate” i.e. (1− fnr) vs. fpr.
The AUC is the area under the ROC curve. Note that it is identical to the area under the curve
plotting sensitivity (aka “hit rate”) vs. specificity (1− fpr).

False alarm rate = 1 − Specificity

H
it

ra
te

=
Se

ns
iti

vi
ty

Ideal ROC curve (AUC=1)
For a given
threshold on f (x)

you get a point on
the ROC curve.

100%

0 100%

Positive class
success rate

1 − negative class
success rate

Actu
al ROC

Random ROC (AUC=0.5)

0 ≤ AUC ≤ 1

Figure B2: ROC Curve

The lift curve (often used in marketing) plots “hit rate” vs. the fraction of selected “sel”
(Figure B3). The Gini index is defined as the ratio M/O and it can be shown (Appendix B1)
that Gini = 2 AUC− 1.

Customers
ranked
according
to f (x);
selection
of the top
ranking
customers.

Gini =
M
O

Gini = 2AUC− 1

0 ≤ Gini ≤ 1

Figure B3: Lift Curve

243

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Figure B4: The yellow area represents the area above the lift curve. It is estimated by the
trapeze method as [sum(rank_of_pos)−pos/2] /(pos*tot). The red shaded area is the
area above the ideal lift, which is equal to 0.5 pos/tot.

This provides a means of computing efficiently the AUC using the area under the lift curve,
because it is easy to compute the area under the lift curve. The area above the lift curve (AALC)
can be upper and lower bounded by Lebesgue integrals using the sum of the ranks of the objects
of the positive class (when those are sorted with the most relevant coming first) normalized by
pos*tot (Figure B4):

[sum(ranks_of_pos)−pos]/(pos∗ tot) < AALC < sum(ranks_of_pos)/(pos∗ tot)

Hence the estimation of the AALC by the trapeze method:

AALC ∼ [sum(ranks_of_pos)−pos/2]/(pos∗ tot)

Thus the area M is:

M = 0.5− [sum(ranks_of_pos)−pos/2]/(pos∗ tot)

The area O is given by:
O = 0.5−0.5∗pos/tot

Thus

Gini = M/O = {0.5− [sum(ranks_of_pos)−pos/2]/(pos∗ tot)}/(0.5−0.5∗pos/tot)

Gini = [pos ∗ (tot+ 1)− 2 sum(ranks_of_pos)]/[pos ∗ (tot−pos)]
Note that by symmetry with the negative class, we also have:

Gini = [neg ∗ (tot+ 1)− 2 sum(ranks_of_neg)]/[neg ∗ (tot−neg)]

where sum(ranks_of_neg) is the sum of the ranks of the negative class when the ranking is such
that the most likely to be negative come first, i.e. the ranking is done in order of increasing
probability of being « relevant ».

244

APPENDIX B: PROBE METHOD FOR SCORING CAUSES & CONSEQUENCES

Note that we can sort one way or the other. For instance, if we sort in order of increas-
ing probability of being « relevant »(object believe to be from the negative class come first)
and compute the sum of the ranks of the positive class and call it Sp we can relate it to
sum(ranks_of_pos), the quantity defined above when sorting in the other direction:

sum(ranks_of_pos) = sumpos(tot− j +1) = pos∗ tot−Sp+pos

thus

Gini = [pos∗ tot−2(pos∗ tot−Sp+pos)+pos]/[pos∗ (tot−pos)]

= [2Sp−pos∗ (tot+1)]/(pos∗neg)

and
AUC = (Gini+1)/2 = 0.5[2Sp−pos∗ tot−pos+pos∗ tot−pos

2
]/(pos∗neg)

AUC = [Sp−pos ∗ (pos+ 1)/2]/(pos ∗neg)
This last formula is the basis for the algorithm shown in Appendix B2.
We can also sort in decreasing order of relevance (most relevant objects believed to be from

the positive class come first) and compute the sum of the ranks of the positive class and call it
Sn. Similarly as before, we have:

Gini = [2Sn−neg ∗ (tot+ 1)]/[neg ∗ (tot−neg)] (1)

Thus the alternative formula for the AUC:

AUC = [Sn−neg ∗ (neg+ 1)/2]/(pos ∗neg) (2)

FDR = nfp/nsc

fp = false positive=features falsely found relevant
sc = selected candidate features
nfp is unknown, but FPR can be calculated from pval or
using the probe method.
Bound the FDR:

FPR = nfp/nirr ≥ nfp/n (irr=irrelevant feat.)
FDR = (nfp/n)(n/nsc) ≤ FPRn/nsc

FDR ≤ FPRn/nsc ≤ α
We obtain FPR ≤ αnsc/n, intermediate between FPR ≤ α
and FPR ≤ α/n.

nfp

ntp

ntn

nfn

nsp

selected
features

rejected
features

nsc

nirr

np

n

FPR = nfp/nirr
∼= nsp/np

Figure B5: False Discovery Rate

Relationship between ROC curve and negative lift curve

While in marketing the lift curve is the most useful way of visualizing the data, for our purpose,
we rather focus on the negative class for the purpose of using the “probe” method. In Figure B6,

245

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

we represent the non-normalized “negative lift curve”, that is the number of false positive as
a function of the total number of examples selected. The negative lift curve is obtained by
normalizing the x axis by “tot” and the y axis by “neg”.

If we change coordinates to the green axes, we obtain the non-normalized ROC curve. The
ROC curve is obtained by normalizing the number of true positive by “pos” to get the sensitivity
and the number of true negative by “neg” to get the specificity (Here we adopt as the definition
of the ROC curve the plot sensitivity vs. specificity, which has same AUC as hit rate vs. false
alarm rate and is obtained by reversing the x axis of the ROC curve).

From this diagram, we easily see how the AUC relates to the area under the false positive
rate A (negative lift) and the ideal negative lift A∗. The AUC is the green shaded area, after
normalizing by pos neg. hence:

AUC = (1− A− A∗)(tot/pos).

Figure B6: Relationship between ROC curve and lift curve

From Figure B6, we also see that for a given point on the ROC curve, the sensitivity is given
by:

specificity = 1− k/neg (3)
sensitivity = (rk − k)/pos (4)

where rk is the rank of the kth negative example in the example ordering, where most relevant
come first.

We easily confirm Equation (2) with

AUC = (1/neg)

�

k=1:neg

sensitivity (5)

246

APPENDIX B: PROBE METHOD FOR SCORING CAUSES & CONSEQUENCES

AUC error bar

Many estimators of the AUC error bars have been proposed. Some are easy to compute but
provide loose bounds, others are more accurate but very computationally expensive. For the
purpose of the challenge, we propose to compromise and use an empirical formula easy to
justify and which gives satisfactory results in numerical experiments.

We define the balanced accuracy (BAC) as:

BAC = 0.5(sensitivity+ specificity)

where, if we call tp the number of true positive and tn the number of true negative, we define
sensitivity=tp/pos (accuracy of classification for positive examples) and specificity=tn/neg (ac-
curacy of classification for negative examples). In the case where the score upon which the
ranking is based is binary (e.g. hard classification decisions are used rather than a discriminant
value), we have exactly AUC = BAC = 1−BER, where BER is the balanced error rate defined
as 1−BAC (see Appendix B3 for a proof).

The idea is to approximate the AUC with the maximum BAC on the ROC curve (Fig-
ure B7). Subsequently, we will use the BAC error bar to estimate the AUC error bar. From Equa-
tions (3) and (4) giving the sensitivity and specificity, we see that our approximation amounts
to computing:

AUC ∼=maxBAC =max
k

0.5[(rk − k)/pos+1− k/neg]

In what follows, we call k∗ the value of k maximizing BAC and sen and spe the corresponding
values of the sensitivity and specificity.

Figure B7: Approximation of the ROC curve. We replace the AUC by the largest BAC.

A BAC or a BER error bar estimator is obtained as follows. As is known, for i.i.d. errors
corresponding to Bernoulli trials with a probability of error p, the standard deviation of the

247

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

error rate E computed on a data set of size n is sqrt(p(1− p)/n). This result can be adapted to
the balanced error rate. Let us call pos the number of examples of the positive class, neg the
number of examples of the negative class, p+ the probability of error on examples of the positive
class (one minus the expected value of the sensitivity), p− the probability of error on examples
of the negative class (one minus the expected value of the specificity), and E+ and E− their
corresponding empirical estimates. Both processes generating errors on the positive or negative
class are Bernoulli processes. By definition, the balanced error rate is BER = (1/2)(E+ +E−),
and its variance is var(BER) = (1/4)(var(E+)+ var(E−)). Therefore, the standard deviation of
the BER (and that of the BAC) using n+ and n− examples is:

σ = 0.5
�

(p+(1− p+)/pos+ p−(1− p−)/neg)

For sufficiently large data sets, we may substitute p+ by E+ and p− by E− to compute σ. Equiv-
alently, since sensitivity = 1−E+ and specificity = 1−E+ we obtain the following estimator of
the BAC standard deviation:

σ = 0.5
�

(sen(1− sen)/pos+ spe(1− spe)/neg) (6)

where we abbreviate sensitivity by sen and specificity by spe.

Application to the probe method
Assume that we are using the “probe” method and inject artificial probes, which are examples
of the negative class for which we know the truth value (negative). The “real variables” may be
either from the positive class or the negative class. Let us call:
nr: the total number of real variables
np: the total number of probes
nsp: the number of selected probes
It is common to plot the fraction of probes selected nsp/np as a function of the number of
variables selected (Figure B8).

Fr
ac

tio
n

of
pr

ob
es

se
le

ct
ed

n s
p/

n p
as

an
es

tim
at

e
of

th
e

fa
ls

e
po

si
tiv

e
ra

te
fp

/n
eg

Fraction of variables selected among all np+nr variables
(most relevant selected first)

Figure B8: Area under the fraction of probe selected.

248

APPENDIX B: PROBE METHOD FOR SCORING CAUSES & CONSEQUENCES

Doing that, we assume that we rank the variables in decreasing order of relevance (best
first). We can define the sum of the rank of the probes SPR for that order. The area A is given
by

A = 1− (SPR−np/2)/(np(np+nr)).

The area A∗ corresponding to the best achievable A (where all the probes show up last in the
ranking) is given by

A∗ = 0.5np/(np+nr) = 0.5(1−nr /(np+nr)).

Using Equation (1), we get for the probes

PGini = [2SPR− np · (np+ nr + 1)]/(np · nr),

therefore

PGini = (1−2A)(np+nr)/nr

PGini = (1−2A)/(1−2A∗)
PGini = (0.5− A)/(0.5− A

∗)

This last formula is equivalent to that of Figure B4.
Simply, the AUC for the probe method, which we call PAUC is obtained by computing the

regular AUC for truth values +1 for all real variables and −1 for all probes (instead of +1 for the
positive class variables and −1 for the negative class variables, in the absence of probes). Thus,
the real variables become the positive class and the probes the negative class. For Equation (2),
we get:

PAUC = [SPR− np · (np+ 1)/2]/(np · nr)
We show in Appendix B4 that asymptotically (for an infinite number of examples and probes):

PAUC = (n+/nr)AUC+ 0.5n−/nr

where AUC is the true AUC, which cannot be computed and n+ and n− are the unknown number
for positive and negative examples for the real variables.

An error bar on PAUC is obtained in the finite sample case from Equation (6):

σ = 0.5
�

(sen(1− sen)/pos+ spe(1− spe)/neg)

with (from Equations (3) and (4))

spe = 1− k/neg
sen = (rk − k)/pos

for the value of k, which maximizes: BAC = 0.5(sen+ spe).
The error BAR on PAUC may be use to determine the significance of the difference between

two ranking methods yielding values of PAUC P1 and P2 and corresponding standard deviations
σ1 and σ2. The difference will be called significant e.g. if abs(P1−P2) > 2

√
(σ2

1
+σ2

2
).

249

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Numerical simulations:

We illustrate the result PAUC = (n+/nr)AUC+ 0.5(n−/nr) with some simple numerical simula-
tion. The code is reported in Appendix B6. In this example, we have 2000 “real variables” and
2000 “probes”. We vary the fraction of positive examples (n+/nr) and compute a noisy score
for variables as

D=Y+0.5*randn(size(Y))+k*noise*randn(size(Y));

From D we compute the “real” AUC and PAUC. We plot PAUC as a function of AUC (Fig-
ure B9).

Figure B9: Relationship between the real AUC and that estimated by the probe method. The
dots represent samples of the pairs {“real”AUC, PAUC} for various fractions of
positive examples, when 2000 real variables and 2000 probes are used. The boxes
show the 1 sigma error bars for AUC and PAUC. The thick lines are plots of y =
(n+/nr)AUC+0.5(n−/nr). The thin lines indicate the estimated error tube.

We verified that for all fractions of positive examples considered the regression coefficients
match closely the theoretical values obtained in the final sample size limit:

1) frac_pos=0.15, frac_neg=0.85, w=0.148399, 2*b=0.851758
2) frac_pos=0.3, frac_neg=0.7, w=0.297821, 2*b=0.702991
3) frac_pos=0.45, frac_neg=0.55, w=0.445261, 2*b=0.556114
4) frac_pos=0.6, frac_neg=0.4, w=0.601203, 2*b=0.398861
5) frac_pos=0.75, frac_neg=0.25, w=0.737146, 2*b=0.271517
6) frac_pos=0.9, frac_neg=0.1, w=0.8821, 2*b=0.124806

250

APPENDIX B: PROBE METHOD FOR SCORING CAUSES & CONSEQUENCES

In the finite sample case, we have errors both on the estimates of both AUC and PAUC. Note
that in practice we would not be able to compute the “real” AUC. Still, to verify the validity of
our error bar estimates, we can use it here. We compute:

• The average empirical sigma as the average distance of the points to the line
y = (n+/nr)AUC+0.5(n−/nr).

• The average theoretical sigma as the σth =mean

��
σ2

AUC
+σ2

PAUC

�
, computing σAUC and

σPAUC with formula (6).

1) Average empirical sigma=0.0089, Average theoretical sigma=0.0149

2) Average empirical sigma=0.0091, Average theoretical sigma=0.0127

3) Average empirical sigma=0.0085, Average theoretical sigma=0.0121

4) Average empirical sigma=0.0092, Average theoretical sigma=0.0122

5) Average empirical sigma=0.0095, Average theoretical sigma=0.0132

6) Average empirical sigma=0.0126, Average theoretical sigma=0.0171

We see that our estimate is slightly pessimistic, but gives the right order of magnitude. To
visualize our error bar estimates, we drew boxes of sides 2σAUC×2σPAUC around a few points.
The box usually overlaps with the thick line. We also drew thin lines at σth/cos(α), where α is
the slope of the line. This allows us to draw an error bar taking into account both the error for
estimating AUC and that for estimating PAUC.

Appendix B1: Proof of Gini = 2AUC− 1

L = lift

Hitrate = tp/pos

Farate = fp/neg

Selected = sel/tot = (tp+ fp)/tot = pos/tot · tp/pos+neg/tot · fp/neg

=
pos

tot
Hitrate+

neg

tot
Farate

AUC = sumHitrate d(Farate)

L = sumHitrate d(Selected)

= sumHitrate d
�
pos

tot
Hitrate+

neg

tot
Farate

�

=
pos

tot
sumHitrate d Hitrate+

neg

tot
sumHitrate d Farate

=
1

2

pos

tot
+

neg

tot
AUC

2L−1 = −(1−pos/tot)+2(1−pos/tot)AUC = (1−pos/tot)(2AUC−1)

Gini = (L−1/2)/(1−pos/tot)/2

= (2L−1)/(1−pos/tot) = 2AUC−1

Appendix B2:
function area = auc(Output, Target)

251

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

%area = auc(Output, Target)
% This computation gives the same results as the AUC when there are no
% ties.
% Inputs:
% Output -- Matrix of classifier discriminant values of dim (num
pattern, num tries)
% Target -- Vector of corresponding +-1 target values.
% Returns:
% area -- Area under the ROC curve.
% We still need to work out the case of ties.
% From Hollander and Wolfe pp 107 & 117.

% Isabelle Guyon -- isabelle@clopinet.com -- June 2005

% Compute the Wilcoxon statistic
midx=find(Target<0);
nidx=find(Target>0);
m=length(midx);
n=length(nidx);
[u,i]=sort(Output);
S(i)=1:n+m;
W=sum(S(nidx));

% Compute the Mann-Withney statistic
U=W-n*(n+1)/2;

% Compute the AUC
area=U/(m*n);

Appendix B3: Demonstration that AUC = 1−BER in the case of binary outputs.

Assume that the outputs are binary ±1 instead of being discriminant values. Then we have the
following situation for the histogram of output values:

Figure B10: Histogram of output values

With at mid point the sensitivity and specificity given by Sen0 = tp/(tp+ fn) and the speci-
ficity given by Spe

0
= tn/(tn+ fp). We have the ROC curve shown in Figure B11.

Therefore,

1−AUC = Spe
0
(1−Sen0)/2+Sen0(1−Spe

0
)/2+ (1−Sen0)(1−Spe

0
)

= (1/2)(Spe
0
−Spe

0
Sen0 +Sen0 −Spe

0
Sen0 +2−2Spe

0
−2Sen0 +2Spe

0
Sen0)

= 1− (Spe
0
+Sen0)/2

= BER

Since we have BER = 1−BAC, we deduce that BAC = AUC.

252

APPENDIX B: PROBE METHOD FOR SCORING CAUSES & CONSEQUENCES

Figure B11: ROC curve

Appendix B4: Proof of PAUC = (n+/nr)AUC+ 0.5n−/nr

From Equations (4) and (5), we have:

AUC = (1/neg)

�

k=1:neg

(rk − k)/pos

which for the real variables gives:

n+AUC = (1/n−)
�

k=1:n−

(rk − k)

and for the combination of real variables and probes gives:

nrPAUC = (1/np)

�

k=1:np

(r(probe)

k − k)

We assume that the negative examples and the probes are drawn from the same distribution.
Consider the case where real variables and probes are intermixed. On average, half of the
negative example fall before the mean value of the rank of the probe and half after. Hence, if
we call rk the rank of a probe if there were no negative examples (hence only positive examples
and probes), we have on average over all possible drawings of negative examples and probes:

(1/np)

�

k=1:np

(r(probe)

k) = (1/np)

�

k=1:np

(rk) = (1/np)+neg/2.

In the limit of infinite number of probes and negative examples we define the 2 following quan-
tities:

Ar = lim
n−→∞

(1/n−)
�

k=1:n−

(rk − k)

Ap = lim
np→∞

(1/np)

�

k=1:np

(r(probe)

k − k) = lim
np→∞

(1/np)

�

k=1:np

(rk − k)+neg/2

Thus Ap = Ar +neg/2

In the limit of infinite number of probes and negative examples

n+AUC = Ar and nrPAUC = Ap

253

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

therefore
nrPAUC = Ap = Ar +neg/2 = n+AUC+neg/2

and
PAUC = (n+/nr)AUC+0.5n−/nr C

We get a similar result with the BAC:

BAC = 0.5(tp/n+ + tn/n−) = 0.5(sen+ spe)

PBAC = 0.5((tp+ fp)/nr + (np−nsp)/np)

Let us call SEN and SPE the expected value of the sensitivity and specificity. We have:

SPE = lim
n−→∞

tn/n− = lim
np→∞

(np−nsp)/np

SEN = lim
n+→∞

tp/n+

lim
np→∞

PBAC = 0.5((tp+ fp)/nr +SPE

lim
np→∞

lim
n−→∞

PBAC = 0.5((SENn+ + (n− − tn))/nr +SPE

lim
np

lim
n−→∞

lim
n+→∞

PBAC = 0.5((SENn+ + (1−SPE)n−)/nr +SPE

= 0.5(n+/nr)(SEN+SPE)+0.5n−/nr

= (n+/nr) lim
n−→∞

lim
n+→∞

BAC+0.5n−/nr

Appendix B5: The final algorithm
function [area, sigma] = auc2(Output, Target, pos_small)
%[area, sigma] = auc2(Output, Target, pos_small)
% This is the algorithm proposed for
% computing the AUC and the error bar.
% It is assumed that the outputs provide a score
% with the negative examples having the lowest score
% unless the flag pos_small = 1.

% Isabelle Guyon -- isabelle@clopinet.com -- November 2007

if nargin<3, pos_small=0; end
if ~pos_small, Output=-Output; end

negidx=find(Target<0);
posidx=find(Target>0);
neg=length(negidx);
pos=length(posidx);
[u,i]=sort(Output); % best come first
S(i)=1:(neg+pos);
SEN=(sort(S(negidx))-[1:neg])/pos;
SPE=1-(1:neg)/neg;
area=sum(SEN)/neg;

two_BAC=SEN+SPE;
[u,k]=max(two_BAC);
sen=SEN(k);

254

APPENDIX B: PROBE METHOD FOR SCORING CAUSES & CONSEQUENCES

spe=SPE(k);
sigma= 0.5 * sqrt(sen*(1-sen)/ pos + spe*(1-spe)/ neg);

Appendix B6: Numerical simulations
% We verify the formula AUC = frac_pos PAUC + 0.5 frac_neg
% in the large sample size limit.

col=’rgbkmc’;
noise=0.01;
probe_num=2000;
real_num=2000;
N=probe_num+probe_num;
fp=\\;
repeat_num=500;
AReal=zeros(repeat_num, length(col));
AProbe=zeros(repeat_num, length(col));
EReal=zeros(repeat_num, length(col));
EProbe=zeros(repeat_num, length(col));
frac_pos=zeros(length(col),1);
frac_neg=zeros(length(col),1);
for j=1:length(col)

frac_pos(j)=0.15*j;
fp\j\=[’FracPos=’ num2str(frac_pos(j))];
frac_neg(j)=1-frac_pos(j);
pos_num=real_num*frac_pos(j);
neg_num=real_num*frac_neg(j);

Y=ones(N,1);
probe_idx=1:probe_num;
neg_idx=probe_num+1:probe_num+neg_num;
pos_idx=probe_num+neg_num+1:N;
real_idx=[neg_idx, pos_idx];
Y(probe_idx)=-1;
Y(neg_idx)=-1;

Yprobe=ones(N,1);
Yprobe(probe_idx)=-1;
for k=1:repeat_num

% Compute a fake discriminant value correlated with Y
D=Y+0.5*randn(size(Y))+k*noise*randn(size(Y));
Dreal=D(real_idx);
Yreal=Y(real_idx);

[Aprobe, Eprobe]=auc2(D, Yprobe);
[Areal, Ereal]=auc2(Dreal, Yreal);
AReal(k,j)=Areal;
AProbe(k,j)=Aprobe;
EReal(k,j)=Ereal;
EProbe(k,j)=Eprobe;

end
% Linear fit
w=[AReal(:,j), ones(size(AReal(:,j)))]\AProbe(:,j);
Probe_hat=[AReal(:,j), ones(size(AReal(:,j)))]*w;

255

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

fprintf(’frac_pos=%g, frac_neg=%g, w=%g, 2*b=%g\n’, frac_pos(j),
frac_neg(j), w(1), 2*w(2));
end

figure; hold on
for j=1:length(col)

plot(AReal(:,j), frac_pos(j) * AReal(:,j) + 0.5 *
frac_neg(j),[col(j) ’-’]);
end
legend(fp, ’Location’, ’NorthWest’);
for j=1:length(col)

plot(AReal(:,j), AProbe(:,j), [col(j) ’.’]); xlabel(’Real AUC’);
ylabel(’Probe AUC’);
end
% Take at random a few points and draw the error box
Mini=min(min(AReal));
Maxi=1;
div=10;
vals=[Mini:(Maxi-Mini)/div:Maxi];
for j=1:length(col)

for k=1:div+1
[m,i]=min(abs(AReal(:,j)-vals(k)));
xm=AReal(i,j)-EReal(i,j);
xM=AReal(i,j)+EReal(i,j);
ym=AProbe(i,j)-EProbe(i,j);
yM=AProbe(i,j)+EProbe(i,j);
plot([xm, xM, xM, xm, xm], [yM, yM, ym, ym, yM], [col(j) ’-’]);

end
end

% Note: it is normal that empirical is larger then theoretical because
of
% the uncertainty on AReal
% Other method
Ediag=zeros(size(EProbe));
for j=1:length(col)

% Compute the average distance to the line
W1=frac_pos(j);
W2=-1;
N=sqrt(W1.^2+W2.^2);
W1=W1./N;
W2=W2./N;
W0=0.5 * frac_neg(j)./N;
sigma_emp=sqrt(mean((W1 * AReal(:,j) + W2 * AProbe(:,j) + W0).^2));
sigma_th=mean(sqrt(EReal(:,j).^2+EProbe(:,j).^2));
fprintf(’Average empirical sigma=%5.4f, Average theoretical

sigma=%5.4f\n’, sigma_emp, sigma_th);
alpha=asin(frac_pos(j));
Eboth(:,j)= sigma_th/cos(alpha); % Correct for the uncertainty of

real AUC
end

256

APPENDIX C: CHEMTK QSAR DESCRIPTORS USED FOR SIDO

Appendix C: ChemTK QSAR descriptors used for SIDO
ChemTK generates a variety of descriptors or keys, which are used as features in the SIDO
dataset. These include properties such as molecular weight, hydrogen-bond donor and acceptor
counts, and rotatable bond counts, for a particular data set. Other keys include 2- and 3-point
pharmacophore descriptors. We provide below excerpts of the ChemTK manual to help decod-
ing the key symbols.

Smarts keys

ChemTK supports the Smarts query language developed by Daylight CIS, Inc. That company’s
website (www.daylight.com) provides an excellent tutorial for the Smarts language, so
details of the syntax will not be provided here. Note that Boolean queries (e.g., “[c,n;!D3]”)
and recursive queries (e.g., “[$(C=O)]”) are both supported.

In addition, users may specify named-property queries (see below) within a Smarts pattern
using the angled bracket syntax (<>). For instance, the query “<HAcc>~C~<HAcc>” can be
used to search for two hydrogen-bond acceptors connected via a single Carbon atom. The
query names can correspond either to ChemTK defaults, or to user-defined queries as described
below. Note that any named-property queries are assumed to describe single atoms; if multi-
atom queries are used, only the information pertaining to the first atom will be retained.

Pharmacophore keys

ChemTK uses a type of pharmacophore that measures distance via bond connectivity rather than
a typical three-dimensional distance. For instance, to describe a hydrogen-bond acceptor and
hydrogen-bond donor separated by five connecting bonds, the corresponding key string would
be “HAcc.HDon.5”. More generally, a ChemTK pharmacophore contains two components: a
list of features (hydrogen-bond acceptor, donor, etc.) and a list of pairwise distances measured
in bond counts. Thus a 3-point pharmacophore has three features and three distances, while a
4-point pharmacophore has four features and six distances. In a key string used to represent a
pharmacophore, all elements of the pharmacophore are separated by “.”. Thus the following are
examples of valid pharmacophore strings:
HAcc.HAcc.1
HDon.HDon.ExtArom.2.2.2
HAcc.HDon.Pos.ExtRing.2.5.2.3.1.2
The order in which the bond-based distances are listed in the above examples must correspond
exactly to the order of the listed features, and should reflect the order of pairwise iteration.
Hence in the third example, the six consecutive distances correspond to the following feature
pairs: HAcc-HDon, HAcc-Pos, HAcc-ExtRing, HDon-Pos, HDon-ExtRing, Pos-ExtRing.

The following are included in the default feature list:

HAcc. Hydrogen-bond acceptor.

HDon. Hydrogen-bond donor.

Neg. Explicit negative charge.

Pos. Explicit positive charge.

ExtRing. Ring atom having a neighbor atom external to the ring.

ExtArom. Aromatic ring atom having a neighbor atom external to the ring.

ExtAliph. Aliphatic ring atom having a neighbor atom external to the ring.

257

www.daylight.com

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

Ring System keys

This option yields a key set comprised of all unique ring systems contained in the set of input
molecules. A ring system is defined as any number of single or fused rings connected by an
unbroken chain of atoms. The simplest example would be either a single ring (e.g., benzene)
or a single fused system (e.g., naphthalene). A more complex case would be these same two
example systems (benzene and naphthalene) connected together by a chain of carbon atoms.
Any connecting chains must be devoid of any terminating branches (such as a carbonyl group),
such that all atoms in the final ring-system structure will always be connected to at least two
other atoms. The user can place lower and upper bounds on the number of individual rings
allowed in a ring system.

Keys are distinguished using atom type and aromaticity only, and are represented using
a notation similar to Daylight Smarts. Thus a benzene ring would be represented using the
notation “c1ccccc1”. Counts of rings in a system are based on the typical SSSR definition,
whereby, for example, benzene has one ring, naphthalene two, and a basic steroid scaffold four.

Unbranched Fragment keys

This option yields a key set comprised of all unique non-branching fragments contained in the
set of input molecules. The user must specify a maximum and minimum size (in atoms) for all
fragments. Keys are distinguished using atom type and aromaticity only, and are represented
using a notation similar to Daylight Smarts. Thus, using the aniline molecule as an example,
the two-atom keys are “cc” and “cN”; the three-atom keys are “ccc” and “ccN”; and so forth.

ChemTK may generate a special type of unbranched fragments called isotopic fragments.
Keys of this type are annotated with special symbols that describe the precise ring topology of
the fragment. For example a simple non-annotated key such as “cc” describes two aromatic car-
bon atoms connected by a single or aromatic bond. In contrast, the annotated key “[c;i1][c;i2]”
describes a similar fragment, but also specifies a requirement that the first atom belong to a sin-
gle ring (arbitrarily labeled 1) and that the second atom belong to a single ring different from
the first. While the first key could equally match a single benzene ring, the juncture atoms of a
naphthalene system, or the bridge atoms in a bi-phenyl structure, the latter key can match only
the third example, since only in that case do the two atoms belong to single and distinct rings.
Note that given a particular set of bounds on fragment size, the number of isotopic fragments is
ordinarily far greater than the number of standard unbranched fragments, and the time required
for key generation is correspondingly greater as well.

Branched Fragment keys

This option yields a key set comprised of all unique branched fragments contained in the set of
input molecules. This method is intended to provide keys having a richer, more complex de-
scription than those available through the Ring System and Unbranched Fragment approaches.
A detailed definition of branched fragment will not be provided in this Reference Guide. Briefly,
each fragment is constructed through an “assembly” of shortest-path unbranched fragments,
where each of the latter is required to be bounded by two atoms belonging to one or more
pre-defined “terminal-atom” types selected by the user. The following options are available as
terminal-atom types:

C. Non-aromatic Carbon atom.

c. Aromatic Carbon atom.

N. Non-aromatic Nitrogen atom.

258

APPENDIX C: CHEMTK QSAR DESCRIPTORS USED FOR SIDO

n. Aromatic Nitrogen atom.

O. Non-aromatic Oxygen atom.

o. Aromatic Oxygen atom.

S. Non-aromatic Sulfur atom.

s. Aromatic Sulfur atom.

P. Non-aromatic Phosphorus atom.

HAcc. Hydrogen-bond acceptor.

HDon. Hydrogen-bond donor.

ExtRing. Ring atom having a neighbor atom external to the ring.

ExtArom. Aromatic ring atom having a neighbor atom external to the ring.

ExtAliph. Aliphatic ring atom having a neighbor atom external to the ring.

Some of these feature types are discussed in the section on Pharmacophore keys, as well
as in the Query Formats section of this Reference Guide. In particular, see the discussion
in the former section regarding group features, of which ExtRing, ExtArom, and ExtAliph
are examples. The treatment of group features in the branched-fragment method is somewhat
different from their treatment in the pharmacophore approach. Here, the requirement is that any
branched fragment containing a group feature must contain no other feature that intersects the
atoms described by the group feature. Thus, a branched-fragment key containing the ExtArom
feature might validly describe a pyridine-containing molecule, but it is invalid for the features
ExtArom and n (aromatic Nitrogen) to simultaneously describe the same pyridine ring: the
ExtArom group feature excludes all other features from hitting the ring.

Branched-fragment keys are distinguished using atom type and aromaticity only, and are
represented using a notation similar to Daylight Smarts. All feature atoms are designated using
the angled brackets (“<>”) notation. Thus a key using the features O, N and ExtArom might
have a representation similar to the following: “[<O>]CC[<N>]CC[<ExtArom>]1ccccc1”.

Named-property keys

Act. Molecule activity. Note that if a user does not specify an activity field
when an SD file is first opened, a value of zero is stored.

ArRing. Aromatic ring atom. [Group feature].

ExtRing. Ring atom having a neighbor atom external to the ring. [Group feature].

ExtArom. Aromatic ring atom having a neighbor atom external to the ring. [Group
feature].

ExtAliph. Aliphatic ring atom having a neighbor atom external to the ring. [Group
feature].

HAcc. Hydrogen-bond acceptor atom.

HDon. Hydrogen-bond donor atom.

MolWeight. Molecular weight.

Neg. Explicit negative charge.

Pos. Explicit positive charge.

Ring. Ring atom. [Group feature].

259

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

RotBond. Rotatable bond.

Generally, these names are used in conjunction with the “NPQ” tag to form an encoded query
(discussed in a following section). For instance, the query “NPQ MolWeight < 500” can be
used to search a document for all molecules having a molecular weight less than 500. Named-
property queries can also be used within pharmacophore, branched-fragment, and Smarts
queries, as described in those sections.

The named-property queries labeled as group features in the above list all describe more
than a single atom. Such queries have special significance when used in the definitions of
pharmacophore and branched-fragment keys. See those topics in the Generating Keys section
for a description of how group features are handled in each case. Note that by using recursive
Smarts syntax, a user can create a query that includes more than one atom in the definition but
is not a group feature. For instance, the query “[$(c1ccccc1)]” cannot define a group feature
since it is actually a single-atom query. In contrast, the similar query “c1ccccc1” is a six-atom
query and therefore can define a group feature.

Users also have the option of defining new named-property queries, using the Define Named
Queries option on the Search menu. When a new query is defined, the query name is stored
internally along with the default names, and can be used in an identical fashion. ChemTK re-
members the name until the application is closed, after which time the query must be re-loaded
by the user. To define a new query, it is first necessary to create a special type of query file
containing the query name and its definition. The Create Query File option on the Search
menu contains an option to save a query file having the appropriate syntax. The following is an
example of such a query file (containing two queries):

NAMEQUERY ZincBinder
SLQ ONC=O
$$$$
NAMEQUERY KeyScaffold
SLQ n1ccccc1
$$$$

In the first line of each query entry, the NAMEQUERY tag indicates that a new named-property
query is being defined. The subsequent name (e.g., “ZincBinder”) is the name by which the
new query will be referenced, just as “MolWeight” is used to reference the molecular-weight
query. The second line defines the query itself, and like all query-file records is in the form of
an encoded query. Thus “SLQ” indicates a Smarts pattern, and (for example) “ONC=O” is the
pattern for a hydroxamic acid group. See the subsequent discussion of encoded queries, and the
section on File Formats, for additional information on these topics.

Once an appropriate query file has been generated, it is loaded using the Load button on the
Define named queries dialog. At this point the new queries should appear in the window along
with the defaults. Note that a user may elect to override these default named-property queries.
For example, the name “HAcc” could be used in the above NAMEQUERY entry, in which case
the new definition would take precedence over the ChemTK default.

Encoded queries

One of the principal query formats supported by ChemTK is the encoded query. This internal
format provides users considerable flexibility in creating queries based on substructure, phar-
macophore signature, and molecular property, with the additional option for Boolean logic and
range specification (e.g., a molecular weight range). ChemTK supports the use of encoded
queries in document searches and in key generation, and these queries serve as the format for

260

APPENDIX C: CHEMTK QSAR DESCRIPTORS USED FOR SIDO

individual records within query files. Each of these topics is covered in a relevant section of this
Reference Guide.

A single encoded query is constructed by writing one or more encoded-query primitives,
separated by logical operators. The format for an encoded-query primitive is:

QUERY_CODE QUERY_STRING SEARCH_CODE RANGE

The individual elements, which may be separated by any type of whitespace (excluding new-
line), are discussed below.

QUERY_CODE. This is a three-letter code that specifies the particular type of query that
is being requested (e.g., a Smarts query). The following list provides the most important
of the supported codes. A few additional codes, including RSQ, SGQ and NULL, are
used internally and are not described.

NPQ. Specifies a named-property query. This code indicates that the subse-
quent query string will be a special name recognized by ChemTK as
a synonym for a molecular property. Recognized names include Mol-
Weight (molecular weight), Act (activity), HAcc (hydrogen-bond ac-
ceptor), as well as any names defined by the user. See the earlier discus-
sion of named-property queries in this section of the Reference Guide
for the complete list of supported query names and for instructions on
defining customized named-property queries.

SLQ. Specifies a query based on the Smarts syntax defined by Daylight CIS,
Inc. See www.daylight.com for a detailed tutorial on the Smarts
language. Note that the SLQ code also permits specification of named-
property queries, using the angled bracket syntax (<>). For instance,
the string “<HAcc>~C~<HDon>” specifies a hydrogen-bond donor and
acceptor group, separated by a single Carbon atom. See the discussion
of Smarts queries in the Query Formats section for more detail.

PHQ. Specifies a pharmacophore query. An example query is “HAcc.HDon.2”,
which specifies a hydrogen-bond donor and acceptor, separated by two
bonds. See the earlier sections (e.g., Generating Keys) for a discussion
of the required syntax.

NAQ. Specifies a numeric-attribute query. This code indicates that the sub-
sequent query string will be the name of a numeric molecule attribute
previously loaded by the user. For instance, if a user has loaded a nu-
meric attribute named “cLogP,” he can search against this property us-
ing a syntax such as “NAQ cLogP > 0.5 < 3.5”. Note that molecules not
having the requested attribute (e.g., missing values) are treated as hav-
ing a value of 0.0 when query results are derived. For more information
regarding molecule attributes, see the section of this Reference Guide
entitled Loading Molecule Activities/Attributes.

QUERY_STRING. This is the actual query, written in a format appropriate for the pre-
ceding query code. Hence “MolWeight” would be an appropriate query string for the
“NPQ” code, while “c1ccccc1” (benzene) would be an appropriate query string for the
“SLQ” code.

SEARCH_CODE. (Optional). One of three single-letter codes to indicate whether to
perform a full match (“F”), single match (“S”), or unique match (“U”). For instance, if a

261

www.daylight.com

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

benzene query is used to search a naphthalene molecule, a full match will return 24 hits,
a unique match two hits, and a single match one hit. Note that if no code is provided, the
default is to perform a full match.

RANGE. (Optional). A range specification applied to the match result. This range must
take the form of either one or two symbol/value pairs, where the symbol is either “>”,
“<”, or “=”. For example, “= 3” indicates a result equal to 3, and “> 1 < 4” indicates a
result that is greater than 1 and less than 4. The match-result value depends on the type of
match requested. For example, “NPQ MolWeight” returns an actual weight value, while
“SLQ c1ccccc1” returns the number of benzene matches. This convention is identical to
that of key-value calculations; see the relevant discussion in the Generating Keys section
for more detail.

The following are examples of valid encoded-query primitives:

NPQ MolWeight < 500
NPQ HAcc > 2 < 11
SLQ c1ccccc1 U = 2
SLQ <HDon>~<HAcc> S
PHQ HAcc.HAcc.HAcc.2.2.2
50

The first query specifies molecules having a molecular weight less than 500. The second query
specifies molecules having between 3 and 10 hydrogen-bond acceptor groups. The third query
specifies molecules having two distinct benzene rings. Note that here the “U” specifies a unique
match, without which a large number of redundant matches would be returned. The fourth query
specifies all molecules containing at least one example of a hydrogen-bond acceptor connected
to a hydrogen-bond donor. The “S” ensures that at most a single match will be identified in each
molecule. The fifth query specifies all molecules containing the particular pharmacophore.

Appendix D: Chemical Computing Group (CCG) QSAR descriptors
The CGC QSAR descriptors are partitioned into classes:

• 2D. 2D descriptors only use the atoms and connection information of the molecule for
the calculation. 3D coordinates and individual conformations are not considered.

• i3D. Internal 3D descriptors use 3D coordinate information about each molecule; how-
ever, they are invariant to rotations and translations of the conformation.

• x3D. External 3D descriptors also use 3D coordinate information but also require an
absolute frame of reference (e.g., molecules docked into the same receptor).

Details on the CGC features are found at: http://www.chemcomp.com/.

Appendix E: Matlab code to filter MARTI data
function X=nreged_recover(Xold, data_dir, data_name)

cidx=load([data_dir ’/’ upper(data_name) ’/’ data_name ’_feat.calib’
]);
cal0=load([data_dir ’/’ upper(data_name) ’/’ data_name ’_feat.calval’

262

http://www.chemcomp.com/

APPENDIX E: MATLAB CODE TO FILTER MARTI DATA

]);

view=0;
[p, n]=size(Xold);
X=zeros(p,n);
for k=1:p

X(k,:)=nreged_filter(Xold(k,:), view, cidx, cal0);
end

function XF=nreged_filter(X, view, cidx, cal0)
% XF=nreged_filter(X)
% Filters a 2d pattern

if nargin<2, view=0; end
if nargin<3, cidx=[]; cal0=1; end

n=length(X);
t=sqrt(n);
val=sort(X);
% Compute background
background=median(val(1:50));
% Reshape as square
XP=reshape(X, t, t);
if view, cmat_display(XP); end

% add border
XB=zeros(size(XP)+6);
XB([1:t]+3, [1:t]+3)=XP;
XB([t-2:t]+6,[1:3])=(XP(t-1,1)+XP(t-2,2))/2 *ones(3);
XB([1:3],[1:3])=(XP(1,1)+XP(2,2))/2 *ones(3);
XB([1:3], [t-2:t]+6)=(XP(1, t-1)+XP(2, t-2))/2 *ones(3);
XB([t-2:t]+6,[t-2:t]+6)=(XP(t-1,t-1)+XP(t-2,t-2))/2 *ones(3);

XB([1:t]+3, 1:3)=(XP(:,[1 1 1])+XP(:,[2 2 2]))/2;
XB([1:t]+3, [t-2:t]+6)=(XP(:,[t-1, t-1, t-1])+XP(:,[t t t]))/2;
XB(1:3, [1:t]+3)=(XP([1 1 1],:)+XP([2 2 2],:))/2;
XB([t-2:t]+6, [1:t]+3)=(XP([t-1, t-1, t-1],:)+XP([t t t],:))/2;
if view, cmat_display(XB); end

% Remove the outliers
XBN=XB;
st=std(X);
tt=size(XB,1);
for i=1:tt

for j=1:tt
I=[i-1 i i+1];
gidx=find(I>0 & I<tt);
I=I(gidx);
J=[j-1 j j+1];
gidx=find(J>0 & J<tt);
J=J(gidx);
m=-XB(i,j);
for ii=I

263

DATASETS OF THE CAUSATION AND PREDICTION CHALLENGE

for jj=J
m=m+XB(ii,jj);

end
end
m=m/9;
if XB(i,j)>m+st | XB(i,j)<m-st

XBN(i,j)=m;
end

end
end
if view, cmat_display(XBN); end

XB=XBN;

ker=[1 4 6 4 1]’*[1 4 6 4 1];
ker=ker./sum(sum(ker));
XBS=conv2(XB, ker, ’same’);
XPS=XBS(4:t+3,4:t+3);
if view, cmat_display(XPS); end
if isempty(cidx)

XC=XP-XPS+background;
else

XC=XP-XPS;
end
if view, cmat_display(XC); end

XF=XC(:)’;
if ~isempty(cidx)

cal=mean(XF(cidx));
XF=XF-cal+cal0;

end

264

Appendix III

Causal Explorer Software Library

Causal Explorer: A Matlab Library of Algorithms for Causal
Discovery and Variable Selection for Classification

Alexander Statnikov4, Ioannis Tsamardinos1,2, Laura E. Brown1, Constantin F. Aliferis1,3,4

1 Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
2 Department of Computer Science, University of Crete, Iraklio, Greece
3 Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
4 Center of Health Informatics and Bioinformatics, New York University, New York, NY, USA

Abstract
Causal Explorer is a Matlab library of computational causal discovery and variable selection
algorithms. Causal Explorer offers a wide variety of major prototypical and state-of-the-art
algorithms in the field and a unified and easy-to-learn programming interface. Causal Explorer
is designed for all researchers performing data analysis with the desire to gain an understand-
ing in the underlying causal mechanisms that generated their data. In addition to the causal
discovery methods, Causal Explorer contains related variable selection techniques. The vari-
able selection algorithms in Causal Explorer are based on theories of causal discovery and the
selected variables have specific causal interpretation. The Causal Explorer code emphasizes
efficiency, scalability, and quality of discovery. The implementations of previously published
algorithms included in Causal Explorer are more efficient than their original implementations.
A unique advantage of Causal Explorer is the inclusion of very large scale and high quality
algorithms developed by the authors of this chapter. The first version of Causal Explorer was
introduced several years ago to the biomedical community. The purposes of this chapter are
to re-introduce the library to a broader audience, to describe new functionality of the library,
and to provide information on the use of Causal Explorer in community as a whole and in the
Causation and Prediction Challenge.

1. Introduction
Discovery of causal knowledge is crucial for advancing research, developing new technology,
and making sound policy, financial, and marketing decisions. Biologists need to know the
factors that cause a disease to devise new therapeutic procedures. Public health policy makers
need to know the factors that cause an increase in the number of medical errors in order to reduce
them. Epidemiologists seek the factors causing disease in order to prevent it. Launching a new
advertisement campaign requires knowing the factors that affect consumer behavior regarding
the product. Increasing the number of visitors to a web site requires knowledge of what attracts
them to the site.

Classically-trained statisticians often quote the maxim “association is not causation” to in-
dicate that causal discovery is impossible without experiments. For example, simply observing
a high occurrence of yellow stains on the fingers in patients with lung cancer relative to normal
subjects does not imply a causal relation between cancer and staining (in reality heavy smoking
is causing both to co-occur often). Similarly, observing that two items tend to be purchased
together in high frequency does not necessarily imply that increasing the sales of the first item
will be followed by an increase of the sales of the second item.

Unfortunately, discovering causal relations strictly by randomized experimentation is ineffi-
cient and often impractical, unethical, or simply impossible. Recent advances in computational
causal discovery theory and algorithm research and development mathematically prove and
experimentally show respectively the feasibility of causal discovery from observational data

267

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

alone under broad conditions. The acceptance and application of causal discovery methods are
steadily gaining ground. The following are just a few of important references in this emerging
and exciting branch of science and technology: (Neapolitan, 2004; Spirtes et al., 2000; Pearl,
2000; Glymour and Cooper, 1999; Neapolitan, 1990; Pearl, 1988).

A large body of causal discovery algorithm research and development relies on the for-
malisms of graphical models such as Bayesian Networks (BNs) and Causal Probabilistic Net-
works (CPNs). BNs are computational and mathematical objects that represent compactly joint
probability distributions by means of a directed acyclic graph denoting dependencies and in-
dependencies among variables and conditional probability distributions of each variable given
its parents in the graph (Neapolitan, 1990). The fundamental axiom of BNs is the Markov
Condition that allows for a concise factorization of the joint distribution and captures the main
characteristic of causation in macroscopic systems, namely that causation is local (Glymour
and Cooper, 1999). This leads naturally to Causal Probabilistic Networks (CPNs), i.e., a spe-
cial class of Bayesian Networks (BNs) in which edges between any two variables in the graph
denote direct causal relationships between the two variables (Spirtes et al., 2000). A review of
applications of CPNs and BNs is outside the scope of this chapter; however we do note that
CPNs and BNs although introduced a mere 20 years ago have already led to a long series of
pioneering applications in various scientific disciplines (Neapolitan, 2009; Taroni, 2006; Popp
and Yen, 2006; Gámez et al., 2004; Friedman et al., 2000; Heckerman et al., 1992; Heckerman
and Nathwani, 1992).

Causal graphical models such as CPNs are also recognized in bioinformatics and computa-
tional biology, as important representations for modeling causal relationships at a finer granular-
ity than standard clustering or regression methods, and as having sound statistical foundations
for handling noise, missing data and doing inference (Neapolitan, 2009; Baldi and Hatfield,
2002). The appeal of CPNs is that, contrary to the heuristic approaches for generation of causal
hypotheses in bioinformatics and medical research, (e.g., methods that were based on cluster-
ing, regression, and variable selection as in (Li et al., 2001; Eisen et al., 1998; Spellman et al.,
1998)) the recently-developed theory of causal induction using graphical models and related
distributions, provides guarantees for highly sensitive and specific discovery of causal relation-
ships (Spirtes et al., 2000). For example, it has been theoretically proven that such methods
can be used to reliably infer causal relationships among variables in: distributions captured by
acyclic graphs (Spirtes et al., 2000); continuous linear Gaussian systems with feedback loops
in equilibria (Spirtes et al., 2000); dynamic systems outside equilibrium sampled at discrete
time points (Friedman et al., 1998); and linear or non-linear systems of discrete variables in
equilibria (Pearl and Dechter, 1996).

It has also been shown that under certain broad conditions, a Markov blanket which is the
minimal set of predictors needed for the classification of a response variable of interest is the
set of direct causes, direct effects, and direct causes of the direct effects of the response variable
in a CPN (Tsamardinos and Aliferis, 2003). Thus, causal discovery algorithms that find the
Markov blanket by necessity solve the variable selection problem.

We have recently introduced to the biomedical audience the powerful technology of causal
discovery and variable selection encapsulated in the Causal Explorer library (Aliferis et al.,
2003b). Over the years, we have added more algorithms and new functionality to the library.
The purposes of this chapter are to re-introduce Causal Explorer to a broader audience, to de-
scribe new functionality of the library, and to provide information on the use of Causal Explorer
in community as a whole and in the Causation and Prediction Challenge. In addition, we wish
to stimulate research with the set of causal discovery and variable selection algorithms that
we have developed for datasets with very large numbers of variables (Aliferis et al., 2009a,;

268

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

Tsamardinos et al., 2006a; Brown et al., 2005,; Tsamardinos and Aliferis, 2003; Aliferis et al.,
2003a; Tsamardinos et al., 2003,; Aliferis et al., 2002).

2. The Causal Explorer Library
Currently a rich variety of software is available for modeling and inference with BNs but only
a limited amount of commercial and public domain software for learning causal graph models
from data is available to researchers (for a comprehensive collection of software tools see:
http://www.ai.mit.edu/~murphyk/Software/bnsoft.html).

Causal graph induction algorithms come in three flavors: Bayesian (or search-and-score) ap-
proaches, constraint-based conditional independence approaches, and hybrid approaches. When
a researcher is interested in a specific region of the causal graph (e.g., to find causes and effects
of the response variable or to find a pathway), there is no need to induce the entire causal graph
(i.e., perform “global causal discovery”), instead one can induce that specific region of interest
(i.e., perform “local causal discovery”) which is typically much more computationally effi-
cient (Aliferis et al., 2009a,; Chickering et al., 1994). In our experience, local causal discovery
methods can be applied to datasets with hundreds of thousands variables where global causal
discovery methods may not be practical. Also, the so-called Markov blanket induction meth-
ods (which is a sub-family of local causal discovery techniques) provably solve the variable
selection problem under the assumptions about the learner and loss function (Tsamardinos and
Aliferis, 2003).

We describe here a software library (which we call Causal Explorer) that provides re-
searchers with code that can be used for causal discovery (global and local) and variable se-
lection. Causal Explorer can be used primarily to:

1. Discover the direct causal or probabilistic relations around a response variable of interest
(e.g., disease is directly caused by and directly causes a set of variables/observed quanti-
ties).

2. Discover the set of all direct causal or probabilistic relations among the variables.

3. Discover the Markov blanket of a response variable of interest, i.e., the minimal sub-
set of variables that contains all necessary information to optimally predict the response
variable.

The selection of algorithms in Causal Explorer (see next section) emphasizes highly-scalable
causal discovery, reliable and fast implementations and convenient integration to custom code.
Such algorithms have been frequently employed in analysis of data in psychology, medicine,
biology, weather forecasting, animal breeding, agriculture, financial modeling, information re-
trieval, natural language processing, and other fields. They can be used to automatically con-
struct decision support systems from data (e.g., for medical diagnosis), or to generate plausible
causal hypotheses (e.g., which gene regulates which).

The Causal Explorer library is provided as a collection of Matlab functions. The reasons for
this choice are fourfold: (a) Matlab is a versatile and wide-spread environment for experimen-
tation with data mining and modeling tasks; (b) Matlab codes can be interfaced with practically
any standard language such as C++, Java, etc. (c) As newer versions of the contained algo-
rithms are being developed, transfer to the library can be made very quickly (e.g., compared to
the much slower process of re-writing the new algorithms in C/C++); (d) Matlab code if written
correctly (i.e., in “vectorized” form) is very efficient and in our experiments it often outperforms
native implementations of the algorithms written in C/C++ and other languages.

269

http://www.ai.mit.edu/~murphyk/Software/bnsoft.html

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

The Causal Explorer library is provided free of charge for non-commercial research. Code,
example data, and documentation are available online at: http://www.dsl-lab.org/
causal_explorer.

3. Causal Discovery and Variable Selection Algorithms
In this section, we describe the algorithms implemented in Causal Explorer. Most constraint-
based algorithms currently support three statistical tests of independence (or measures of as-
sociation depending on context): G2 and thresholded mutual information for multinomial dis-
tributions and Fisher’s Z-test for multivariate Gaussian distributions (Anderson, 2003; Cover
et al., 1991). In most cases this extends the functionality of the algorithms from their original
published form. We also note that the algorithms HITON-PC, HITON-MB, MMHC, MMPC,
and MMMB were not included in the first version of Causal Explorer (Aliferis et al., 2003b).
The detailed information on running algorithms, their inputs, and outputs can be found in the
user’s manual that is included in the installation package of Causal Explorer.

3.1 PC

PC is a prototypical global causal discovery constraint-based algorithm with well-developed
theory and many applications (Spirtes et al., 2000). The Causal Explorer implementation of
PC does not impose limits on the number of variables or cases in the input, and is conveniently
callable from other code via the provided API.

3.2 TPDA (Three Phase Dependency Analysis)

TPDA is also a global causal discovery algorithm that achieves polynomial-time execution if a
constraint on the distribution of variables is enforced (Cheng et al., 2002). The Causal Explorer
implementation of TPDA employs a very fast implementation of mutual information and does
not restrict the number of input variables or cases unlike the version distributed by the TPDA in-
ventors in BN PowerConstructor software (http://www.cs.ualberta.ca/~jcheng/
bnpc.htm). It is also easily callable from other code.

3.3 SCA (Sparse Candidate Algorithm)

This is a fast search-and-score global causal discovery algorithm designed for sparsely con-
nected domains, e.g., gene networks (Friedman et al., 1999).

3.4 MMHC (Max-Min Hill Climbing)

MMHC is a highly scalable hybrid global causal discovery algorithm that has been shown to
outperform in speed and quality several state-of-the-art algorithms including techniques men-
tioned above (Tsamardinos et al., 2006a). MMHC first uses a local discovery algorithm MMPC
to learn a skeleton of the network and then it uses search-and-score method for its orientation.

3.5 KS (Koller-Sahami)

The Koller-Sahami algorithm returns a heuristic approximation to the Markov blanket of the
response variable (Koller and Sahami, 1996). A very fast implementation of expected cross
entropy is used in the algorithm implementation.

270

http://www.dsl-lab.org/causal_explorer
http://www.dsl-lab.org/causal_explorer
http://www.cs.ualberta.ca/~jcheng/bnpc.htm
http://www.cs.ualberta.ca/~jcheng/bnpc.htm

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

3.6 LCD2

The LCD2 algorithm is a local causal discovery algorithm that requires knowledge of one or
more instrumental variables (i.e., variables that have no parents within the studied set of vari-
ables) (Cooper, 1997).

3.7 GS (Grow-Shrink)

The Grow-Shrink algorithm returns the Markov blanket of a variable (Margaritis and Thrun,
1999). In multinomial distributions, this algorithm requires sample size exponential to the num-
ber of variables in the Markov blanket.

3.8–3.11 IAMB (Incremental Association Markov Blanket), IAMBnPC, InterIAMB,
interIAMBnPC

These are algorithms that return the Markov blanket of a variable (Tsamardinos and Aliferis,
2003; Tsamardinos et al., 2003). IAMBnPC, InterIAMB, interIAMBnPC either use the PC algo-
rithm (Spirtes et al., 2000) or interleaved pruning to reduce the number of returned false posi-
tives relative to IAMB (trading off sample for speed) (Tsamardinos et al., 2003). In multinomial
distributions, all these algorithms require sample size exponential to the number of variables in
the Markov blanket.

3.12–3.13 HITON-PC (HITON Parents and Children) and MMPC (Max-Min Parents
and Children)

HITON-PC and MMPC are local causal discovery algorithms that return the set of direct causes
and effects of the response variable (Aliferis et al., 2009a,; Tsamardinos et al., 2006a; Aliferis
et al., 2003a; Tsamardinos et al., 2003b). HITON-PC uses univariate heuristic for prioritiza-
tion of variables, while MMPC uses max-min association heuristic. These are highly sample
efficient discovery techniques.

3.14–3.15 HITON-MB (HITON Markov Blanket) and MMPC (Max-Min Markov
Blanket)

These are Markov blanket induction algorithms that require much less sample compared to
GS and IAMB family of Markov blanket inducers (Aliferis et al., 2009a,; Tsamardinos et al.,
2006a; Aliferis et al., 2003a; Tsamardinos et al., 2003b). HITON-MB uses univariate heuristic
for prioritization of variables, while MMMB uses max-min association heuristic.

4. Other Tools
In addition to the causal discovery algorithms mentioned in section 3, Causal Explorer also
includes several tools that facilitate causal discovery experiments and development of new al-
gorithms. These tools are outlined below. None of these tools were provided in the first version
of Causal Explorer (Aliferis et al., 2003b). The detailed information on running these tools can
be found in the user’s manual that is included in the installation package of Causal Explorer.

4.1 Bayesian network tiling tool

It is well recognized in the field that the major technique for evaluating and comparing causal
discovery algorithms is by simulation of data from a network of known structure. Then, it

271

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

is easy to compare the reconstructed network as learnt by an algorithm with the true data-
generating network to assess the quality of learning. For the results of the evaluations to carry
to real-world data distributions the networks used for data simulations have to be representa-
tive of the real-world examples. Typically, the networks employed for the data simulation are
extracted from real-world BN-based decision support systems. Unfortunately, the size of the
existing known BNs is relatively small in the order of at most a few hundred variables. Thus,
typically causal discovery algorithms were so far validated on relatively small networks (e.g.,
with less than 100 variables), such as the classical ALARM network (Beinlich et al., 1989)
or other “toy-networks”. Algorithms have also been developed to generate large random BNs.
The BNGenerator system is one example for generating large random BNs from a uniform
distribution (Ide and Cozman, 2002). However, the BNGenerator system and other algorithms
of this type do not provide any guarantees that these networks resemble the networks of the
distributions likely to be encountered in practice (Aliferis and Cooper, 1994). The emergence
of datasets of very high-dimensionality poses significant challenges to the development of new
causal discovery algorithms.

To address this problem, Causal Explorer implements an algorithm for generating arbitrarily
large discrete Bayesian networks by tiling smaller real-world known networks. The algorithm
preserves the structural and probabilistic properties of the tiles so that the distribution of the
resulting tiled network resembles the real-world distribution of the original tiles (Tsamardinos
et al., 2006b).

4.2 Bayesian network data simulator

Causal Explorer implements a procedure to simulate data from Bayesian networks using the
Gibbs sampling algorithm (Russell and Norvig, 2003). Such data can be used for evaluation of
existing causal discovery algorithms and development of new methods.

4.3 Utility for supervised discretization of continuous data

In order to discretize continuous data, Causal Explorer implements a supervised discretization
method that works as follows:

1. Data is normalized so that each variable has mean 0 and standard deviation 1.

2. After normalization, association of each variable with the response variable is computed
using either Wilcoxon rank sum test (for binary response variable) or Kruskal-Wallis non-
parametric ANOVA (for multicategory response variable) at 0.05 alpha level (Hollander
and Wolfe, 1999).

3. If a variable is not significantly associated with the response variable, it is discretized a
follows:

• 0 for values less than −1 standard deviation
• 1 for values between −1 and 1 standard deviation
• 2 for values greater than 1 standard deviation

4. If a variable is significantly associated with the response variable, it is discretized using
sliding threshold (into binary) or using sliding window (into ternary). The discretiza-
tion threshold(s) is determined by the Chi-squared test to maximize association with the
response variable (Agresti, 2002).

The discretization procedure can be instructed to compute necessary statistics only using train-
ing samples of the data to ensure unbiased estimation of error metrics on the testing data.

272

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

5. General Guidelines and Context of Use
The algorithms in Causal Explorer can be used in several different experimental tasks and
contexts: (a) to gain insight in the causal structure of the studied domain; (b) to locate promising
variables for subsequent experimentation or detailed modeling; and (c) to derive a provably
optimal minimal set of predictors for classification purposes.

In general, global causal discovery algorithms PC, TPDA, and SCA can be practically run
when the number of variables is up to a few hundred and the connectivity (i.e., number of direct
causes/effects around variables) of the data-generating process is uniformly small. When the
number of variables is of the order of thousands, MMHC algorithm will be most helpful as it is
the most scalable method.

Local causal discovery algorithms will be most helpful when the number of variables is
very large, or when the connectivity around the response variable is small (relative to available
sample) while around other variables it may be large.

In particular, when the sample is large relative to the size of the Markov blanket of the
response variable (as a rule of thumb when several hundred samples are available for a Markov
blanket with ∼ 5 variables), GS and the IAMB variants will return excellent results. When
the sample is smaller, HITON-MB and MMMB should be applied instead. Also, in many
cases algorithms HITON-PC and MMHC that return the set of direct causes and effects of the
response variable can be used for approximation of the Markov blanket.

6. Statistics of Registered Users
At the time of writing this chapter, Causal Explorer has 739 registered users in more than 50
countries all over the world. Based on provided information in the user registration form, 402
(54%) users are affiliated with educational, governmental, and non-profit organizations and 337
(46%) users are either from private or commercial sectors. Major commercial organizations
that have registered users of Causal Explorer include IBM, Intel, SAS Institute, Texas Instru-
ments, Siemens, GlaxoSmithKline, Merck, and Microsoft. Table 1 provides a list of major U.S.
institutions that have registered users of Causal Explorer.

7. Use of Causal Explorer in the Causation and Prediction Challenge
Causal Explorer library was used both by participants and organizers of the Causation and
Prediction Challenge.

7.1 Use of Causal Explorer by the Challenge participants

Here are major achievements enabled by the Causal Explorer library in the Causation and Pre-
diction Challenge:

1. Gavin Cawley used Causal Explorer to become one of the Challenge winners. The soft-
ware library allowed him to achieve the best prediction accuracy on SIDO and MARTI
datasets (p11).

2. Jianxin Yin et al. used Causal Explorer to become the Challenge winners in the “best
overall contribution” category. Specifically, they obtained the best position of the Pareto
front of the Fscore vs. Tscore graph over all datasets (pp11–12).

3. Laura Brown and Ioannis Tsamardinos used Causal Explorer to achieve the top overall
ranking on REGED dataset (p31).

273

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

Table 1: A list of major U.S. institutions that have registered users of Causal Explorer.

1. Boston University 30. University of California Berkley
2. Brandies University 31. University of California Los Angeles
3. Carnegie Mellon University 32. University of California San Diego
4. Case Western Reserve University 33. University of California Santa Cruz
5. Central Washington University 34. University of Cincinnati
6. College of William and Mary 35. University of Colorado Denver
7. Cornell University 36. University of Delaware
8. Duke University 37. University of Houston-Clear Lake
9. Harvard University 38. University of Idaho
10. Illinois Institute of Technology 39. University of Illinois at Chicago
11. Indiana University-Purdue University 40. University of Illinois at Urbana-

Indianapolis Champaign
12. Johns Hopkins University 41. University of Kansas
13. Louisiana State University 42. University of Maryland Baltimore
14. M. D. Anderson Cancer Center County
15. Massachusetts Institute of Technology 43. University of Massachusetts Amherst
16. Medical College of Wisconsin 44. University of Michigan
17. Michigan State University 45. University of New Mexico
18. Naval Postgraduate School 46. University of Pennsylvania
19. New York University 47. University of Pittsburgh
20. Northeastern University 48. University of Rochester
21. Northwestern University 49. University of Tennessee Chattanooga
22. Oregon State University 50. University of Texas at Austin
23. Pennsylvania State University 51. University of Utah
24. Princeton University 52. University of Virginia
25. Rutgers University 53. University of Washington
26. Stanford University 54. University of Wisconsin-Madison
27. State University of New York 55. University of Wisconsin-Milwaukee
28. Tufts University 56. Vanderbilt University
29. University of Arkansas 57. Virginia Tech

58. Yale University

274

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

Summary of the use of Causal Explorer by the Challenge participants is provided in Table 2.

Table 2: Summary of the use of Causal Explorer by the Challenge participants.

Participant Algorithms used in Challenge ranking on Tscore Reference
team Causal Explorer REGED SIDO CINA MARTI

Gavin Cawley • HITON-MB,
• HITON-PC, 2 1 3 1 p97
• MMHC

Jianxin Yin et al. • MMPC,
• Supervised 3 5 4 2 p85, p172

discretization
Cristian Grozea • Markov blanket

algorithm (details 7 12 7 6 p142
are not provided)

H. Jair Escalante
and Luis Enrique

• HITON-PC 6 8 9 5 p144

Ernest Mwebaze
and John Quinn

• HITON-PC 9 7 8 — p153

Marius Popescu • HITON-MB,
• TPDA

5 — — — p161

Wu Zhili • HITON-MB,
• HITON-PC

13 13 14 11 p175

Laura Brown • MMPC,

p31,p126and Ioannis • MMMB Excluded from the Challenge
Tsamardinos • MMHC, ranking due to conflict of interest

• HITON-MB

7.2 Use of Causal Explorer by the Challenge organizers

The Causal Explorer library was also used by the Challenge organizers. First, resimulation of
REGED dataset (p179) employed HITON-PC algorithm (as a part of HITON-Bach method)
that was implemented in Causal Explorer. In addition, HITON-PC and MMHC algorithm
implementations from Causal Explorer were used as the baseline methods to gain insight into
the problem difficulty (p179). At the time of Challenge the use baselines was not disclosed to
the participants.

8. Discussion
CPNs and other causal graphical models are powerful mathematical formalisms that are useful
for variable selection, dimensionality reduction, causal hypothesis generation, and automatic
creation of predictive/classification tools and decision support systems. Unfortunately the com-
plexity of most related algorithms prevents many researchers from employing them in exper-
iments since proper implementation often requires extensive familiarity with the theory and
a substantial investment of resources for proper coding and testing. In addition, the existing
code in the public domain typically comes in stand-alone executable form and may contain
hard-coded limitations on input data size.

275

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

The first contribution of the present chapter is that it re-introduces the Causal Explorer li-
brary to a broader audience and describes new functionality compared to the previous version
of the library (Aliferis et al., 2003b). The second contribution is that the library makes available
to the research community a suite of algorithms designed by authors of this chapter for cop-
ing efficiently and reliably with thousands of variables. These algorithms have been recently
tested with a variety of datasets with excellent results (Aliferis et al., 2009a,), however at this
stage the potential of these methods is practically untapped. Finally, we also describe the use
of Causal Explorer in community at a whole and in the context of Causation and Prediction
Challenge. It is our hope that the Causal Explorer library will stimulate interest in, and exper-
imentation with this important class of mathematical and computational tools by the broader
research community.

9. Acknowledgements
This work supported by NIH grants R56 LM007948-04A1, R01 LM007948-01, P20 LM007613-
01, and Vanderbilt AVCF for the Discovery Systems Laboratory.

References
Agresti, A. (2002) Categorical data analysis. Wiley-Interscience, New York, NY, USA.

Aliferis, C.F. and Cooper, G.F. (1994) An evaluation of an algorithm for inductive learning of
Bayesian belief networks using simulated data sets. Proceedings of the Tenth Conference on
Uncertainty in Artificial Intelligence (UAI).

Aliferis, C.F. et al. (2009a) Local Causal and Markov Blanket Induction for Causal Discovery
and Feature Selection for Classification. Part I: Algorithms and Empirical Evaluation. (In
press) Journal of Machine Learning Research.

Aliferis,C.F. et al. (2009b) Local Causal and Markov Blanket Induction for Causal Discovery
and Feature Selection for Classification. Part II: Analysis and Extensions. (In press) Journal
of Machine Learning Research.

Aliferis, C.F., Tsamardinos, I. and Statnikov, A. (2002) Large-scale feature selection using
Markov blanket induction for the prediction of protein-drug binding. Technical Report DSL
02–06.

Aliferis, C.F., Tsamardinos, I. and Statnikov, A. (2003a) HITON: a novel Markov blanket algo-
rithm for optimal variable selection. AMIA 2003 Annual Symposium Proceedings, 21–25.

Aliferis, C.F. et al. (2003b) Causal Explorer: a causal probabilistic network learning toolkit
for biomedical discovery. Proceedings of the 2003 International Conference on Mathematics
and Engineering Techniques in Medicine and Biological Sciences (METMBS).

Anderson, T.W. (2003) An introduction to multivariate statistical analysis. Wiley-Interscience,
Hoboken, N.J.

Baldi, P. and Hatfield, G.W. (2002) DNA microarrays and gene expression. Cambridge Univer-
sity Press, Cambridge, UK.

Beinlich, I. et al. (1989) The ALARM monitoring system: A case study with two probabilistic
inference techniques for belief networks. Proceedings of the Second European Conference
on Artificial Intelligence in Medicine.

276

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

Brown, L.E., Tsamardinos, I. and Aliferis, C.F. (2004) A novel algorithm for scalable and
accurate Bayesian network learning. Medinfo 2004, 11, 711–715.

Brown, L.E., Tsamardinos, I. and Aliferis, C.F. (2005) A comparison of novel and state-of-the-
art polynomial Bayesian network learning algorithms. Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI).

Cheng, J. et al. (2002) Learning Bayesian networks from data: an information-theory based
approach. Artificial Intelligence, 137, 43–90.

Chickering, D.M., Geiger, D. and Heckerman, D. (1994) Learning Bayesian networks is NP-
hard. Technical Report MSR-TR-94-17.

Cooper, G.F. (1997) A Simple Constraint-Based Algorithm for Efficiently Mining Observa-
tional Databases for Causal Relationships. Data Mining and Knowledge Discovery, 1, 203–
224.

Cover, T.M. et al. (1991) Elements of information theory. Wiley New York.

Eisen, M.B. et al. (1998) Cluster analysis and display of genome-wide expression patterns.
Proc. Natl. Acad. Sci. U. S. A, 95, 14863–14868.

Friedman, N. et al. (2000) Using Bayesian networks to analyze expression data. J Comput.
Biol., 7, 601–620.

Friedman, N., Murphy, K. and Russell, S. (1998) Learning the structure of dynamic probabilistic
networks. pp. 139–147.

Friedman, N., Nachman, I. and Pe’er, D. (1999) Learning Bayesian network structure from
massive datasets: the “Sparse Candidate” algorithm. Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence (UAI).

Gámez, J., Moral, S. and Salmerón, A. (2004) Advances in Bayesian networks. Springer, Berlin.

Glymour, C.N. and Cooper, G.F. (1999) Computation, causation, and discovery. AAAI Press,
Menlo Park, Calif.

Heckerman, D.E., Horvitz, E.J. and Nathwani, B.N. (1992) Toward normative expert systems:
Part I. The Pathfinder project. Methods Inf. Med, 31, 90–105.

Heckerman, D.E. and Nathwani, B.N. (1992) Toward normative expert systems: Part II.
Probability-based representations for efficient knowledge acquisition and inference. Meth-
ods Inf. Med, 31, 106–116.

Hollander, M. and Wolfe, D. (1999) Nonparametric statistical methods. Wiley, New York, NY,
USA.

Ide, J.S. and Cozman, F.G. (2002) Random generation of Bayesian networks. Lecture Notes in
Computer Science, 366–375.

Koller, D. and Sahami, M. (1996) Toward optimal feature selection. Proceedings of the Inter-
national Conference on Machine Learning, 1996.

Li, L. et al. (2001) Gene selection for sample classification based on gene expression data:
study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics, 17,
1131–1142.

277

APPENDIX III. CAUSAL EXPLORER SOFTWARE LIBRARY

Margaritis, D. and Thrun, S. (1999) Bayesian network induction via local neighborhoods. Ad-
vances in Neural Information Processing Systems, 12, 505–511.

Neapolitan, R.E. (1990) Probabilistic reasoning in expert systems: theory and algorithms. Wi-
ley, New York.

Neapolitan, R.E. (2004) Learning Bayesian networks. Pearson Prentice Hall, Upper Saddle
River, NJ.

Neapolitan, R.E. (2009) Probabilistic methods for bionformatics (with an introduction to
Bayesian networks). Morgan Kaufmann Publishers, Burlington, MA.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann Publishers, San Mateo, California.

Pearl, J. (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cam-
bridge, U.K.

Pearl, J. and Dechter, R. (1996) Identifying independencies in causal graphs with feedback.
Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI), 420–
426.

Popp, R.L. and Yen, J. (2006) Emergent information technologies and enabling policies for
counter-terrorism. Wiley-Interscience, Hoboken, N.J.

Russell, S.J. and Norvig, P. (2003) Artificial intelligence: a modern approach. Prentice
Hall/Pearson Education, Upper Saddle River, N.J.

Spellman, P.T. et al. (1998) Comprehensive identification of cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol Cell, 9, 3273–3297.

Spirtes, P., Glymour, C.N. and Scheines, R. (2000) Causation, prediction, and search. MIT
Press, Cambridge, Mass.

Taroni, F. (2006) Bayesian networks and probabilistic inference in forensic science. Wiley,
Chichester, England.

Tsamardinos, I. and Aliferis, C.F. (2003) Towards principled feature selection: relevancy, filters
and wrappers. Proceedings of the Ninth International Workshop on Artificial Intelligence and
Statistics (AI & Stats).

Tsamardinos, I., Aliferis, C.F. and Statnikov, A. (2003a) Algorithms for large scale Markov
blanket discovery. Proceedings of the Sixteenth International Florida Artificial Intelligence
Research Society Conference (FLAIRS), 376–381.

Tsamardinos, I., Aliferis, C.F. and Statnikov, A. (2003b) Time and sample efficient discovery
of Markov blankets and direct causal relations. Proceedings of the Ninth International Con-
ference on Knowledge Discovery and Data Mining (KDD), 673–678.

Tsamardinos, I., Brown, L.E. and Aliferis, C.F. (2006a) The Max-Min Hill-Climbing Bayesian
Network Structure Learning Algorithm. Machine Learning, 65, 31–78.

Tsamardinos, I. et al. (2006b) Generating Realistic Large Bayesian Networks by Tiling. Pro-
ceedings of the 19th International Florida Artificial Intelligence Research Society (FLAIRS)
Conference.

278

	Table of Contents
	Papers published in JMLR W&CP
	Design and Analysis of the Causation and Prediction Challenge

	A Strategy for Making Predictions Under Manipulation
	Feature Ranking Using Linear SVM
	Random Sets Approach and its Applications
	Bernoulli Mixture Models for Markov Blanket Filtering and Classificiation
	Partial orientation and local structural learning of causal networks for prediction
	Causal & Non-Causal Feature Selection for Ridge Regression
	I Causation and Prediction Challenge Fact Sheets
	Feature selection, redundancy elimination, and gradient boosted trees
	Regularized and Averaged Selective Naïve Bayes Classifier
	A Strategy for Making Predictions Under Manipulation
	Causation, Prediction, Feature Selection and Regularization
	SVM-Based Feature Selection for Causation and Prediction Challenge
	Boosting Probabilistic Network for causality prediction
	Dimensionality reduction through unsupervised learning
	Markov blanket of the target and Norm1 linear SVM
	An Energy-based Model for Feature Selection
	Translate Binary Variable to Continuous Variable
	Univariate feature ranking and SVM classifier
	Collider scores
	Random Sets Approach and its Applications
	Optimally Compressive Regression
	Markov blanket and kernel ridge regression
	Markov Blanket Filtering using Mixture Models
	Ensemble Machine Learning Method
	Partial Orientation and Local Structural Learning of DAGs for Prediction
	Causative Feature Selection by PC Algorithm and SVMs

	II Technical Report Describing the Datasets of the Challenge
	Introduction
	Dataset A: REGED
	Dataset B: SIDO
	Dataset C: CINA
	Dataset D: MARTI
	Appendix A: Generation of random probes
	Appendix B: Probe method for scoring causes & consequences
	Appendix C: ChemTK QSAR descriptors used for SIDO
	Appendix D: Chemical Computing Group (CCG) QSAR descriptors
	Appendix E: Matlab code to filter MARTI data

	III Causal Explorer Software Library

