Design of the 2015 ChalLearn AutoML Challenge

Isabelle Guyon Kristin Bennett

ChalLearn, USA RPI, USA UEA, UK

Nuria Macia
Andorra

Bisakha Ray
NYU, USA

Gavin Cawley  Hugo Jair Escalante
INAOE, Mexico
guyon@chalearn.org bennek@rpi.edu G.Cawley@uea.ac.uk hugo.jair@gmail.com

Mehreen Saeed
FAST, Pakistan

Tin Kam Ho
IBM, USA
tho@us.ibm.com

Sergio Escalera
CVC, UAB & UB, Spain
sergio@maia.ub.es

Alexander Statnikov
NYU, USA

Evelyne Viegas
Microsoft, USA

macia.nuria@gmail.com bisakha.ray @nyumec.org mehreen.mehreen @ gmail.com statnikov@gmail.com evelynev@microsoft.com

Abstract—ChaLearn is organizing for IJJCNN 2015 an Auto-
matic Machine Learning challenge (AutoML) to solve classifica-
tion and regression problems from given feature representations,
without any human intervention. This is a challenge with code
submission: the code submitted can be executed automatically
on the challenge servers to train and test learning machines on
new datasets. However, there is no obligation to submit code. Half
of the prizes can be won by just submitting prediction results.
There are six rounds (Prep, Novice, Intermediate, Advanced,
Expert, and Master) in which datasets of progressive difficulty are
introduced (5 per round). There is no requirement to participate
in previous rounds to enter a new round. The rounds alternate
AutoML phases in which submitted code is “blind tested” on
datasets the participants have never seen before, and Tweakathon
phases giving time (~ 1 month) to the participants to improve
their methods by tweaking their code on those datasets. This
challenge will push the state-of-the-art in fully automatic machine
learning on a wide range of problems taken from real world
applications. The platform will remain available beyond the
termination of the challenge: http://codalab.org/AutoML.

I. INTRODUCTION

Machine learning has achieved considerable success and an
ever growing number of disciplines rely on it. However, these
successes crucially rely on human machine learning experts,
who select appropriate features, workflows, machine learning
paradigms, algorithms, and hyper-parameters. To accelerate the
applicability of machine learning in an ever growing number
of domains, there is an increasing demand for off-the-shelf
methods that can be used easily in the field, without expert
machine learning knowledge. We call the resulting research
area that targets progressive automation of machine learning:
AutoML.

AutoML refers to all aspects of automating the machine
learning process, beyond model selection, hyper-parameter
optimization, and model search, including:

- Robot autonomous learning.

- Representation learning and automatic feature extrac-
tion/construction.

- Automatic generation and reuse of workflows.

- Meta learning and transfer learning.

- Automatic problem “ingestion” (from raw data and mis-
cellaneous formats).

- Automatically detecting and handling skewed data, miss-
ing values, leakage detection and prevention.

- Matching problems to methods/algorithms.

- Automatic acquisition of new data (active learning, ex-
perimental design).

- Automatic report writing.

- User interfaces for AutoML.

- Automatic creation of appropriately sized and stratified
train, validation, and test sets.

- Automatic selection of algorithms to satisfy time / space
/ power constraints at traintime or at runtime.

- Life long autonomous machine learning.

This year, we are organizing an AutoML competition',
which covers specific aspects of the problem. The results of
the AutoML competition, which is part of the official IJCNN
2015 competition program, will be discussed in an IJCNN
2015 workshop. The scope of the workshop is broader than
that of the challenge; we welcome contributions on all aspects
of the problem to stimulate creativity and prepare for new
editions of AutoML competitions.

One novel design element compared to previous compe-
titions we organized for IJCNN is “code submission”. Code
submitted by the participants is executed automatically on
Codalab, an open-source platform hosting the competition?.
This allows us to train and test learning machines with datasets
unknown to the participants in identical conditions for all
submissions, and to ensure that there is strictly no human
intervention. However, there is no obligation to submit code.
Half of the prizes can be won by just submitting prediction
results. There are six rounds (Prep, Novice, Intermediate, Ad-
vanced, Expert, and Master) in which datasets of progressive
difficulty are introduced, five per round (Figure 1). There
is no prerequisite to participate in previous rounds to
enter a new round. The rounds alternate AutoML phases in
which submitted code is “blind tested” in limited time on the
Codalab platform with new datasets, and Tweakathon phases
giving time to the participants to improve your methods by
tweaking them on those same datasets. During Tweakathon, the
participants are free to use their own computational resources.

This challenge will accomplish multiple goals: (1) Ad-
vancing the theoretical underpinnings of model selection by
treating it as a joint problem of optimization and statistics. (2)
Designing and implementing a novel software framework for
numerical experiment planning, eliminating user interventions.
(3) Evaluating the approaches on a wide variety of problems

Thttp://codalab.org/AutoML
2¢odalab.org



and comparing performance with “human” model selection
(Tweakathon phases). (4) Disseminating results by making the
code of the top ranking participants open source, publishing
papers, organizing a workshop and editing proceedings. This
paper summarizes the protocol of the 2015 AutoML challenge
and presents preliminary results, which will be updated at
revision time (if the paper is accepted).

II. MOTIVATION AND SCOPE
A. Motivations

The “big data” era is full of promises and frustrations. A
few industries have already harvested some of the big data
potential seemingly with ease. Recently, Google’s Research
Director Peter Norvig claimed, “We don’t have better algo-
rithms. We just have more data.” to explain the success of
several Google services relying on machine learning. In appar-
ent contradiction with this perceived simplicity of the problem,
we read in the press that there is presently a shortage of data
scientists to analyze big data [1]. Clearly, there is a critical
unmet need for data scientists who have the ability to transform
raw data into useful information. The data modeling chain
involves (1) formalizing a question into a modeling approach,
(2) selecting appropriate data, (3) designing a model, (4) fitting
the model to data (training), (5) making predictions on new
data (testing), and (5) interpreting the results. Admittedly,
completely automating the task of data scientists and replacing
them by machines is a distant goal. One can envision that
ultimately the data modeling chain will be largely automated
and simplified to a point that desktop data transformation tools
will become as pervasive as text processing and spreadsheets;
Like driving a car, the user will focus on the route to the
destination without worrying about how the engine works. On
the way to this grand goal, much can be done to accelerate the
knowledge discovery process while improving its reliability.

Available today to data scientists are many machine learn-
ing or data mining packages providing highly optimized imple-
mentations of leading algorithms for fixed hyper-parameters,
including commercial platforms like SAS [2], SPSS [3],
AzureML, and the Google prediction API, and freeware pack-
ages like Weka [4], R [5], Lush [6] and several Matlab libraries
like the Spider [7] and CLOP [8]. The newcomer Scikit-
learn [9] implemeted in Python has gained rapid popularity
and it is the basis of our competition starting kit. The MLOSS
open source repository [10] indexes such valuable resources. In
this context, the task of practitioners has shifted from that of
identifying and implementing algorithms to that of learning
how to use such packages, creating elaborate models from
components, and selecting the best hyper-parameters for every
component. For example, to create a regression model one
may choose among various preprocessing methods including
variable scaling, apply one or the other feature selection filter
involving the choice of a threshold, and then train a kernel
support vector regression model with a choice of kernel, loss,
and regularization hyper-parameters.

The angle we take is that, of all the steps in the data
modeling chain, model fitting can and should be completely
automated. As it stands, this is not the case because model
selection is the practical stumbling block in the model creation
process that remains largely the user’s responsibility. Savvy

5: Master

4: Expert

< 2. Intermediate 3Advare
0. Prep

Twe: akaxh’ %z)
?

Fig. 1: AutoML challenge organization. The challenge include
6 rounds numbered O to 6. Except for rounds O (preparation) and 5
(termination), all rounds alternate AutoML and Tweakathon phases.

users waste time re-implementing model selection techniques
and non-savvy users make a variety of common mistakes re-
sulting in sub-optimal model choices. From our point of view,
model selection is part of model fitting and should be treated
with rigor as an optimization and statistics problem, not by
applying haphazard heuristics. The charter of this competition
is to design an automatic system to conduct rational selection
of an optimal model or ensemble of models through a search
of associated hyper-parameters and the assessment of their
performance on future data, by making the best possible use
of data, time, and computer resources available. Recent efforts
building on top of old concepts [11]-[17] showcase what is
possible to create software that can be used out-of-the-box
by ML novices [18]-[20]. Commercial enterprise platforms
(such as SAP, Skytree, and RapidMiner) and everal open-
source efforts (such as H20 and E-Lico) are also progressing
is the direction of accelerating model production by reducing
human intervention.

B. Scope

This is a “supervised learning” challenge in machine learn-
ing. We are releasing 30 datasets®, pre-formatted in given
feature representations (this means that each example consists
of a fixed number of numerical coefficients). The challenge
is to solve classification and regression problems, without any
further human intervention, within the constraint of a certain
time budget.

The division between input and output variable is not
made in all machine learning applications. For example, in
recommender systems, the problem is often stated as making
predictions of missing values for every variable rather than
predicting the values of a particular variable [21]. Another
objective of modeling may be to explain data in a simple and
compact way, eventually introducing new “latent” variables
(for example, the class membership produced by a clustering
algorithm). A wide range of ‘“unsupervised learning” algo-
rithms fall into that category [22]. However, in this challenge
we do not consider such cases and strictly limit ourselves to the
supervised learning setting in which data present themselves
as input-output pairs {x,y}. Furthermore, the data pairs are
indentically and independently distributed (i.i.d.). In addition,

3For obvious reasons, the identity and nature of the data will remain
confidential until the challenge is over



Hyperparameters

Input
Ym

Parameters

Output

(a) A learning machine

Hyperparameters (0)
]

argmin, I, [f(.; o, 6)] ﬁargminﬂ J .5 a,0)]

Parameters (o)

(b) Bi-level optimization

Fig. 2: Bi-level optimization. (a) A pictorial representation of a
learning machines with parameters and hyper-parameters to be ad-
justed. (b) De-coupling of parameter and hyper-parameter adjustment
in two levels. The upper level objective Jo optimizes the hyper-
parameters 6; the lower objective J; optimizes the parameters cx.

the models we consider in this challenge are limited to fixed-
length vectorial representations. Hence, we do not consider
problems of time series prediction. Text processing, speech
processing, and video processing tasks included in the chal-
lenge are not presented in their native data representations: the
data have been preprocesssed in suitable fixed-length vectorial
representations by the organizers.

The difficulty of the challenge lies in the diversity of
data types and distributions (including balanced or unbalanced
classes, sparse or dense feature representations, with or without
missing values or categorical variables, various metrics of
evaluation, various proportions of number of features and
number of examples). The problems are drawn from a wide
variety of domains, which include medical diagnosis from lab-
oratory analyses, speech recognition, credit rating, prediction
or drug toxicity or efficacy, classification of text, prediction
of customer satisfaction, object recognition, protein structure
prediction, action recognition in video data, etc. While there
exist machine learning toolkits including methods that can
solve all these problems, it is still considerable human effort
to find, for a given combination of dataset, task, metric of
evaluation, and available computational time, the combination
of methods and hyper-parameter setting that is best suited.
The participant’s challenge is to create the “perfect black box”
eliminating the human in the loop.

III. BRIEF OVERVIEW OF EXISTING APPROACHES
A. What is AutoML?

For a given class of model, best practices for model selec-
tion have emerged over the years, grounded in a wide variety
of theories (regularization, Bayesian priors, Minimum De-
scription Length (MDL), Structural Risk Minimization (SRM),
bias/variance tradeoff, etc. [23]-[27]. Interestingly, all those
theories converge towards the same principle stated already

in the 14*" century by William of Ockham: “Pluralitas non
est ponenda sine neccesitate”, which prescribes limiting model
complexity to the minimum necessary to explain the data,
or shave off unnecessary parameters (Ockham’s razor). This
principle has been widely applied to parameter learning within
a particular class of functions. However, the optimization of
“hyper-parameters” with respect to model architecture, choices
of preprocessing, feature selection, or choice of learning
algorithms, is largely performed ignoring such theories and
principles, and relying on optimizing simply an empirical
statistic such as the cross-validation (CV) error using simple al-
gorithms like grid search that are not practical for many hyper-
parameters. An effective model selection strategy involves an
effective plan to estimate generalization error by data sampling,
to search or optimize the hyper-parameter space within the
constraint of a certain time budget. Poor planning lacking
consideration for overfitting, multiple-testing, data sampling
and hyper-parameter optimization methods can lead to models
with poor generalization.

In what follows, we refer to the solutions of challenge
participants as “hyper-models” to indicate that they are elabo-
rated from simpler components, which may include “models”
already available in machine learning tookits. For example, for
classification problems, the participants might want to consider
a hyper-model made of alternative classification techniques
such as nearest neighbors, linear models, kernel methods, neu-
ral networks, and random forests. More complex hyper-models
may also include chains of alternative preprocessing, feature
construction, feature selection, and classification modules.

Generally, a predictive model of the form y = f(x; ) has:

e aset of parameters & = [, A1, g, ..., Oy 5

e  a learning algorithm, which we refer to as a “trainer”,
which serves to optimize the parameters using some
training data (input-output pairs);

e a trained model called “predictor” of the form y =
f(x), produced by the trainer;

e a clear objective function, J(f), which we can use to
assess the model performance on new data not used
for training (test data).

Consider now model hypothesis space parameterized by
a vector 6 = [01,6,,...,60,] of hyper-parameters. The hyper-
parameter vector may include not only indicator variables
corresponding to switching between alternative modules, but
also modeling choices such as preprocessing parameters, type
of kernel in a kernel method, the number of units and layers in
a neural network, or training algorithm regularization param-
eters [28]. Some authors refer to this problem as “full model
selection” [29], [30]. We will denote hyper-models as:

y=f(x;0) = f(x;x(0),0)

where the model parameter vector v is an implicit function
of the hyper-parameter vector 6 obtained by using a “trainer”
for a fixed value of 6, and some training data D,, including
ny,. examples of input/output pairs {xy,yx}. The challenge
participants will need to devise algorithms capable of training
the hyper-parameters 6. This may require intelligently sam-
pling hyper-parameter space and splitting available training
data into subsets to train and to evaluate the predictive power
of candidate solutions, one or multiple times (cross-validation).



As an optimization problem, model selection is a “bi-level
optimization program” [31]-[36]: there is a lower objective
Ji to train the parameters o of the model, and an upper
objective .J5 to train the hyper-parameters 6, both optimized
simultaneously (Figure 2). As a statistics problem, model
selection is a problem of “multiple testing” in which error
bars on performance prediction € degrade with the number of
models/hyper-parameters tried or, more generally, the capacity
or complexity of the hyper-model C5(0). Statistical learning
theory has taught us how to avoid overfitting with methods
such as Structural Risk Minimization (SRM) [27]. One central
question of this challenge will be to devise means to avoid
over-fitting the upper-level objective J» by regularizing it much
in the same way as lower level objectives .J; are regularized.

The challenge also lends itself to using ensemble methods,
which let several “simple models” vote to make the final
decision [14], [37], [38]. In this case, the parameters 6 may
be interpreted as voting weights. Although, for simplicity, we
lump all parameters in a single vector, several authors have
proposed more elaborate structures of hyper-parameter space
involving trees or graphs [20].

B. Why is AutoML so hard?

If the model selection and hyper-parameter tuning problems
have been around and understood for so long, why are they not
solved already? Everyone who has modeled data has had to
face some modeling choices: scaling, normalization, missing
value imputation, variable coding (for categorical variables),
variable discretization, degree of nonlinearity, model architec-
ture, etc. Machine learning has considerably progressed in the
direction of eliminating as many hyper-parameters as possible
and producing the “perfect black-box” to perform tasks such
as classification and regression [26], [39]. Still, any real world
problem requires at least preparing data before it can be fitted
into an “automatic” method, hence requiring some modeling
choices. There surely has been much progress also made into
the direction of having end-to-end automatic machine learning
of more complex tasks such as text, image, video, and speech
processing with deep-learning methods [40]. However, even
these methods have still many modeling choices and hyper-
parameters.

Although all formatted in a similar way (in fixed length
feature representations), the datasets of the challenge present
a range of difficulties:

e Different data distributions:  the
sic/geometrical complexity of the dataset.

e Different tasks: regression, binary classification,
multi-class classification, multi-label classification.

o Different scoring metrics: AUC, BAC, MSE, F1, etc
(see Section IV-C).

e  (Class balance: Balanced or unbalanced class propor-
tions.

e  Sparsity: Full matrices or sparse matrices.

e  Missing values: Presence or absence of missing val-
ues.

e  Categorical variables: Presence or absence of cate-
gorical variables.

e Irrelevant variables: Presence or absence of addi-
tional irrelevant variables (distractors).

intrin-

e Number P;,. of training examples: Small or large
number of training examples.

e Number N of variables/features: Small or large
number of variables.

e  Aspect ratio P;./N of the training data matrix:
Ptr >>N7Pt7" :NOI'Ptr<<N.

Hence this will necessarily require many modeling/hyper-
parameter choices.

While producing models for a very rich and diverse range
of applications has been a focus of data science research,
relatively very little effort has been devoted to the optimization
of hyper-parameters. Common practices including “trial and
error” and “grid search” may lead to overfitting data for small
datasets or underfitting data for large datasets, if conducted
without care. By “overfitting” we mean producing models
that perform very well on data used for training but perform
poorly on new data (test data), i.e., a model that does not
“generalize”. By “underfitting” we mean selecting too simple
a model, which does not capture the complexity of the data,
hence perform poorly both on training and test data. While
there exist off-the-shelf well-optimized learning algorithms
for optimizing parameters, end-users are still responsible for
organising their numerical experiments to identify the best of
a number of models under consideration and, due to lack of
time and resources, they often perform model/hyper-parameter
selection with ad hoc techniques. Many published papers
include fundamental mistakes, which may invalidate an entire
study [41], [42], including poor construction of training/testing
splits, inappropriate model complexity, cheating by hyper-
parameter selection using the test set, poor use of computa-
tional resources, and inappropriate test metrics. The challenge
participants must avoid these flaws and devise systems, which
can be blind tested on new data.

An additional twist of the challenge is that, in AutoML
phases in which code is blind tested on the platform on new
data, the computational resources are limited. For each task
and arbitrary limit on execution time is fixed. This places
on the participant the constraint to produce a solution in a
given limited time, hence to optimize the model search from a
computational point of view. In summary, the participants will
have to address jointly the problem of overfitting/under-fitting,
a statistics problem and the problem of efficient search for
an optimal solution, a computational problem, as recently
stated [43].

C. Strategies of model search

Most practitioners use simple heuristics such as grid
search to sample 6 space and use K-fold cross-validation as
the upper-level objective .Jo. In this framework, optimization
of 6 is not performed iteratively. In grid search, all the
parameters are sampled at regular intervals (usually using a
linear or a log scale), leading to a combinatorial number of
possibilities increasing exponentially with the dimension of
0. K-fold cross-validation consists in splitting the training
data in K parts, training on (K — 1) parts and testing
on the remaining part. An average is taken over all the
choices of the left out part. There is a lack of principled
guidelines to determine the number of grid points and value
of K and no “prescription” for regularizing Jo. Still, this



865

(b) Wrapper

(a) Filter (c¢) Embedded

Fig. 3: Principal approaches to two-level inference. (a) Filter methods
select the hyper-parameters (with or without using training data), without first
adjusting the learning machine parameters (the absence of an arrow means no
training of the parameters). (b) Wrapper methods select the hyper-parameters
using trained learning machines, treating them as black-boxes. (¢) Embedded
methods proceed like wrappers, but use knowledge of the learning machine
structure, parameters and/or learning algorithm to guide the hyper-parameter
search.

simple method is a good baseline approach, which is hard
to beat [44]. Some toolkits provide already programmed
cross-validation modules (see for instance the well docu-
mented Scikit-learn Python library for cross-validation http:
//scikit-learn.org/stable/modules/cross_validation.html).

Several authors have proposed optimizing continuous
hyper-parameters with recent bilevel optimization methods,
using as the upper-level objective .J, either the K-fold cross-
validation estimator [34]-[36], [45] or the leave-one-out esti-
mator. For instance, in [46] the authors used the Nelder-Mead
simplex. The leave-one-out estimator computed efficiently in a
closed form as a by-product of training only one predictor on
all the training examples (virtual-leave-one-out, see e.g., [47]).
The authors perfected this method by adding a regularization
of J, in their subsequent work [48]. To accelerate search
compared to the simplex method, some authors have been
using gradient descent, making a local quadratic approximation
of J [49]. Other authors have devised methods to produce all
values of J(80) given only a few key samples [50], [51]. All
these methods are of great practical importance, but they are
limited to specific models and continuous hyper-parameters;
they do not address the problem of full model selection.

The problem of full model selection recently started at-
tracting the attention of the research community. One early
proposed algorithm is an optimization method called “pattern
search” using K-fold cross-validation for Js. It explores hyper-
parameter space by steps of the same magnitude, and when no
change in any one parameter further decreases .J», the step
size is halved and the process repeated until the steps are
deemed sufficiently small [52]. In [29], the authors improve
on pattern search using Particle Swarm Optimization (PSO),
which optimizes a problem by having a population of candidate
solutions, here dubbed particles, and moving these particles
around in hyper-parameter space using the particle’s position
and velocity. K-fold cross-validation is also used for Js. Using
challenges and known benchmarks they apply their method
to search for the winning model in a space of hyper-models
containing it. They succeed in getting good performance
on every task, but retrieve the winning model (or a model

performing similarly) in only about 50% of the cases. Over-
fitting is controlled heuristically with early stopping and the
proportion of training and validation data is not optimized.
Although several authors have increased awareness of good
practice of numerical experimental design to reduce the risk
of overfitting [41], [42], in particular by splitting data in a
principled way [53], to our knowledge, no one has addressed
the problem of optimally splitting data.

While regularizing the second level of inference is a
relatively recent addition in the frequentist machine learn-
ing community, it has always been a natural and intrinsic
part of Bayesian modeling via the notion of hyper-prior.
Recent efficient methods of multi-level Bayesian optimization
combining importance sampling and Monte-Carlo Markov
Chains (MCMC) have been proposed [12]. The field of
Bayesian hyper-parameter optimization has rapidly developed
and yielded very promising results, particular by making use of
Gaussian processes to model generalization performance [18],
[19], [54]-[57]. The central idea is to fit J2(@) to a smooth
function in an attempt to reduce variance and to estimate the
variance in regions of hyper-parameter space that are under-
sampled to guide the search towards regions of high variance.
These methods are inspirational and some of the ideas could
maybe be translated to the frequentist setting.

Although splitting the problem of parameter fitting in
two levels is common practice, the idea can be extended to
splitting the problem in multiple levels, at the expense of extra
complexity. This may require creating a hierarchy of data splits
to perform multiple or nested cross-validations [58]. This may
yield to insufficient data to train or validate at the various
levels. Additionally, this increases to computational load.

We can put a unified framework around the various ap-
proaches. Borrowing from the conventional classification of
feature selection methods [59]-[61], model search strategies
can be categorized into filters, wrappers, and embedded meth-
ods (Figure 3). Filters are methods for narrowing down the
model space, without training the learning machine. Such
methods include preprocessing, feature construction, kernel
design, architecture design, choice of prior or regularizers,
choice of a noise model, and filter methods for feature selec-
tion. Although some filters use training data, many incorporate
human prior knowledge of the task or knowledge compiled
from previous tasks (a form of meta learning or transfer
learning). Recently, it has been proposed to apply collaborative
filtering methods to model search [62]. Wrapper methods
consider the learning machine as a black-box capable of
learning from examples and making predictions once trained.
They operate with a search algorithm in hyper-parameter space
(for example grid search or stochastic search) and an evaluation
function assessing the trained learning machine performances
(for example the cross-validation error or the Bayesian evi-
dence). Embedded methods are similar to wrappers, but they
exploit the knowledge of the learning machine algorithm to
make the search more efficient. For instance, some embedded
methods compute the leave-one-out solution in a closed form,
without leaving anything out, i.e., by performing a single
model training on all the training data (e.g., [47]). Other
embedded methods jointly optimize parameters and hyper-
parameters [34]-[36], [45], [49].

In summary, many authors focus only on the efficiency



of search, ignoring the problem of overfitting the second
level objective J5, which is often chosen to be K-fold cross-
validation, with an arbitrary value for K. Bayesian methods
introduce techniques of over-fitting avoidance via the notion
of hyper-priors, but at the expense of making assumptions
on how the data were generated (which underly all Bayesian
approaches) and without providing guarantees of performance.
In all the prior approaches to full model selection we know of,
there is no attempt to treat the problem as the optimization of
a regularized functional Jo with respect both to (1) modeling
choices and (2) data split. Much remains to be done to address
joinly statistical and computational issues. We hope that this
challenge will offer an unbiased platform to compare and
contrast methods addressing these problems.

IV. CHALLENGE DESIGN
A. Tasks

This challenge is concerned with regression and classifica-
tion problems (binary, multi-class, or multi-label) from data
already formatted in fixed-length feature-vector representa-
tions. Each task is associated with a dataset coming from a
real application. The domains of application are very diverse
and are drawn from: biology and medicine, ecology, energy
and sustainability management, image, text, audio, speech,
video and other sensor data processing, internet social media
management and advertising, market analysis and financial
prediction. All datasets present themselves in the form of data
matrices with samples in rows and features (or variables) in
columns. For instance, in a medical application, the samples
may represent patient records and the features may represent
results of laboratory analyses. The goal is to predict a target
value, for instance the diagnosis “diseased” or “healthy” in
the case of a medical diagnosis problem. The identity of the
datasets and the features is concealed (except in round 0) to
avoid the use of domain knowledge and push the participants to
design fully automated machine learning solutions. In addition,
the tasks are constrained by a “Time Budget” and a “Scoring
Metric” Task, scoring metric and time budget are provided
with the data, in a special “info” file.

B. Time Budget

The Codalab platform provides computational resources
shared by all participants. To ensure the fairness of the evalu-
ation, when a code submission is evaluated, its execution time
is limited to a given time budget, which varies from dataset
to dataset. The time budget is provided with each dataset in
its “info” file. The organizers reserve the right to adjust the
time budget by supplying the participants with new “info”
files. The participants who submit results (instead of code)
are NOT constrained by the time budget, since they can run
their code on their own platform. This may be advantageous
for entries counting towards the Final phases (immediately
following a Tweakathon). The participants wishing to also
enter the AutoML phases, which require submitting code, can
submit BOTH results and code (simultaneously). There is no
disadvantage in submitting both results and code. The results
do not need to have been produced by the code submitted. For
instance, if a participant does not want to submit personal code,
he may submit the sample code provided by the organizers
together with his submitted results.

C. Scoring Metrics

The scoring program computes a score by comparing
submitted predictions with reference “target values”. For each
sample i, i=1:P (P being the size of the vaildation set or of the
test set), the target value is a continuous numeric coefficient y;,
for regression problem or a vector of binary indicators [y;;] in
{0,1}, for multi-class or multi-label classification problems
(one per class k). The participants must turn in prediction
values matching as closely as possible the target value, in
the form of a continuous numeric coefficient g; for regression
problem or a vector of numeric coefficients [¢;x] in the range
[0, 1] for multi-class or multi-label classification problems (one
per class k).

The Starting Kit contains the Python implementation of all
scoring metrics used to evaluate the entries. Each dataset has
its own metric (scoring criterion), specified in its “info” file.
All scores are re-normalized such that the expected value of the
score for a “trivial guess” based on class prior probabilities is
0 and the optimal score is 1. Multi-label problems are treated
as multiple binary classification problems and are evaluated
by the average of the scores of each binary classification sub-
problem. The scores are taken from the following list:

e R2: R-square or “coefficient of determination” used
for regression problems: R2 = 1-MSE/VAR, where
MSE=< (y; — ¢;)*> > is the mean-square-error and
VAR= < (y;—m)? > is the variance, with m=< y; >.

e ABS: A coefficient similar to the R2 but based on
mean absolute error (MAE) and mean absolute devi-
ation (MAD): ABS = 1-MAE/MAD, with MAE=<
abs(y; — ¢;) > and MAD=< abs(y; —m) > .

e BAC: Balanced accuracy, which is the average of
class-wise accuracy for classification problems (or the
average of sensitivity (true positive rate) and speci-
ficity (true negative rate) for the special case of binary
classification). For binary classification problems, the
class-wise accuracy is the fraction of correct class pre-
dictions when ¢; is thresholded at 0.5, for each class.
The class-wise accuracy is averaged over all classes
for multi-label problems. For multi-class classification
problems, the predictions are binarized by selecting
the class with maximum prediction value argmazyq;x
before computing the class-wise accuracy. We normal-
ize the BAC with the formula BAC := (BAC-R)/(1-R),
where R is the expected value of BAC for random
predictions (i.e. R=0.5 for binary classification and
R=(1/C) for C-class classification problems).

e AUC: Area under the ROC curve, used for ranking
and for binary classification problems. The ROC curve
is the curve of sensitivity vs. l-specificity, when a
threshold is varied on the predictions. The AUC is
identical to the BAC for binary predictions. The AUC
is calculated for each class separately before averaging
over all classes. We normalize it with the formula:
AUC := 2AUC-1, making it de-facto identical to the
so-called Gini index.

e F1 score: The harmonic mean of precision and
recall. Precision=positive predictive value=true posi-
tive/all called positive. Recall=sensitivity=true positive



rate=true positive/all real positive. Prediction thresh-
olding and class averaging is handled similarly as in
the case of the BAC. We also normalize F1 with F1 :=
(F1-R)/(1-R), where R is the expected value of F1 for
random predictions (i.e. R=0.5 for binary classification
and R=(1/C) for C-class classification problems).

e  PAC: Probabilistic accuracy PAC = exp(- CE) based
on the cross-entropy or log loss, CE = - <
> log(gix,) > for multi-class classification and CE =
- < y;log(g:i)+ (1—y;) log(1—gq;) > for binary classi-
fication and multi-label problems. Class averaging is
performed after taking the exponential in the multi-
label case. We normalize with PAC := (PAC-R)/(1-R),
where R is the score obtained using ¢; =< y; > or
Qi =< Y;x > (i.e., using as predictions the fraction
of positive class examples, as an estimate of the prior
probability). We note that for R2, ABS, and PAC the
normalization uses a “trivial guess” corresponding to
the average target value q; =< y; > or q;r =< Y >.
In contrast, for BAC, AUC, and F1 the “trivial guess”
is a random prediction of one of the classes with
uniform probability.

In all formulas the brackets < . > designates the average
over all P samples indexed by i: < y; >= (1/P)> . (v).
Only R2 and ABS make sense for regression; we compute the
other scores for completeness by replacing the target values
by binary values after thresholding them in the mid-range.

D. Leaderboard score calculation

Each round includes five datasets from different application
domains, spanning various levels of difficulty. The participants
(or their submitted programs) provide prediction results for the
withheld target values (called “solution”), for all 5 datasets. In-
dependently of any intervention of the participants, the original
version of the scoring program supplied by the organizers is
run on the server to compute the scores. For each dataset, the
participants are ranked in decreasing order of performance for
the prescribed scoring metric associated with the given task.
The overall score is computed by averaging the ranks over
all 5 datasets and shown in the column < rank > on the
leaderboard.

The results of the LAST submission made are used to
compute the leaderboard results (so you must re-submit an
older entry that you prefer if you want it to count as your
final entry). This is what is meant by Leaderboard modifying
disallowed. In phases marked with a [+], the participants with
the three smallest < rank > are eligible for prizes, if they
meet the Terms and Conditions.

E. Learning curves

We ask the participants to test their systems regularly while
training to produce intermediate prediction results, which will
allow us to make learning curves (performance as a function
of traintime). Using such learning curves, we will adjust the
“time budget” in subsequent rounds (eventually giving more
computational time to the participants). But only the last point
(corresponding to the file with the largest order number) is
used for leaderboard calculations.

FE. Estimation of performance on future data

In a challenge we organized in 2006 (The Performance
Prediction Challenge) [63], we asked the participants not only
to design good models that generalize well on future data, but
to predict their preformance. We believe this is an essential part
of the AutoML problem. However, in this challenge, to limit
the complexity of design and evaluation, we did not introduce
this additonal task.

Besides the learning curves as a function of time spend
searching for the best “hyper-model”, we could draw learning
curves as a function of the number of training examples. Such
curves are useful to evaluate whether having more training
examples would significantly improve performance. Evaluating
such learning curves on the basis of training data only and
providing extrapolations are also important AutoML tasks,
which are not part of this challenge, but could be added to
future evaluations.

G. Phases and rounds

The challenge is run in multiple phases grouped in rounds,
alternating AutoML contests and Tweakathons. There are 6 six
rounds: Round O (Preparation round), followed by 5 rounds
of progressive difficulty (Novice, Intermediate, Advanced,
Expert, and Master). Except for round O (preparation) and
round 5 (termination), all rounds include 3 phases, alternating
Tweakathons and AutoML contests:

The results of the last submission made are shown on the
leaderboard. Submissions are made in Tweakathon phases only.
The last submission of one phase migrates automatically to the
next one. If code is submitted, this makes it possible to partic-
ipate to subsequent phases without making new submissions.
Prizes are attributed for phases marked with a [+] during which
there is NO submission. The total prize pool is $30,000 (see
Rewards and Terms and Conditions for details).

H. Code vs. result submission

To participate in the AutoML[n] phase, code must be sub-
mitted in Tweakathon[n-1]. To participate in the Final[n], code
or results must be submitted in Tweakathon[n]. If both code
and (well-formatted) results are submitted, in Tweakathon[n]
the results are used for scoring rather than re-running the code
in Tweakathon[n] and Final[n]. The code is executed when
results are unavailable or not well formatted. Hence there is
no disadvantage to submitting both results and code. There
is no obligation to submit the code, which has produced the
results provided. Using mixed submissions of results and code,
different methods can be used to enter the Tweakathon/Final
phases and to enter the AutoML phases. Submissions are made
only during Tweakathon, with a maximum of 5 submissions
per day. Immediate feed-back is provided on the leaderboard
on validation data. The participants are ranked on the basis of
test data performance during the Final and AutoML phases.

V. DATA

In every round, there are 5 datasets in each round spanning
a range of difficulties. We will progressively introduce diffi-
culties from round to round (each round cumulating all the
difficulties of the previous ones plus new ones): Some datasets



Phase in round [n] Goal Duration Submissi Data Leaderboard scores Prizes
[+] AutoML[n] Blind test of code Short NONE (code migrated) New datasets, not downloadable Test set results Yes
Tweakathon[n] Manual tweaking 1 month Code and/or results Datasets downloadable Validation set results No

[+] Final[n] Results of Tweakathon revealed Short NONE (results migrated) NA Test set results Yes

TABLE I: Phases of round n. For each dataset, a labeled training set is provided for training and two unlabeled sets (validation

set and test set) are provided for testing.

may be recycled from previous challenges, but reformatted
into new representations, except for the final MASTER round,
which includes only completely new data. The 5 rounds
following the preparation round (round 0) are:

1)  NOVICE: Binary classification problems only; no
missing data; no categorical variables; moderate num-
ber of features (< 2000); balanced classes; BUT
sparse and full matrices; presence of irrelevant vari-
ables; various Ptr/N.

2) INTERMEDIATE: Multi-class and binary classifi-
cation problems + additional difficulties including:
unbalanced classes; small and large number of classes
(several hundred); some missing values; some cate-
gorical variables; up to 5000 features.

3) ADVANCED: All types of classification problems,
including multi-label + additional difficulties includ-
ing: up to 300,000 features.

4)  EXPERT: Classification and regression problems,
covering the entire range of data complexity.

5) MASTER: Classification and regression problems, all
difficulties, completely new datasets.

The datasets cover a wide range of application areas: phar-
macology, medicine, marketing, ecology, text, image, video
and speech processing. The number of variables and samples
vary between thousands and millions. The datasets span a
range difficulties (sparsity, missing data, noise, categorical
variables, etc.). All datasets will be pre-formatted in a fixed-
length feature-based representation.

In round 0, we used data from previous challenges to carve
out tasks illustrating various difficulties you might encounter
in this new challenge:

1) adult = Dense data; categorical variables; multilabel
classification: A rehash of the Adult 1994 census
dataset (from UCI repository), donated by Ronny
Kohavi and Barry Becker.

2) cadata = Regression data: LibSVM dataset originally
from Statlib house prices, Pace and Barry (1997).

3) digits = Semi-dense data; multiclass classification: A
dataset carved out of the MNIST dataset from LeCun,
Cortes, and Burges (1998) of handwritten digits,
extracted from a larger benchmark collected by the
US National Institute of Standards and Technologies
(NIST).

4)  dorothea = Sparse binary data; binary classification:
Dataset prepared for the NIPS 2003 feature selec-
tion challenge from one of the KDD (Knowledge
Discovery in Data Mining) Cup 2001 tasks. DuPont
Pharmaceuticals graciously provided this data set for
the KDD Cup 2001 competition.

5) newsgroups = Sparse data; multiclass classification:
The 20 NewsGroups data set (Ken Lang and Tom

TABLE II: Preparation phase (phase 0) results on validation
data. We show the rank in parentheses for each dataset. The
winner will be determined by average rank.

User Rank Set 1 Set 2 Set 3 Set 4 Set 5
ideal.intel 1.2 0.82(2) | 0.81 (1) | 096 (1) | 0.90 (1) | 0.60 (1)
abhishek 32 0.82(4) | 0.79(4) | 094 (3) | 0.85(3) | 0452

aad.freiburg 34 0.82(3) | 0.80(2) | 094 (4) | 0.80(5) | 0.42(3)
reference 7.0 0.81 (8) | 0.78(5) | 0.81 (8 | 0.70 (8) | 0.35(6)

Mitchell (1997)). One of the most used data sets for
text categorization available in the UCI repository.

The statistics of the data are summarized in table 4.

From round 1, we will no longer disclose the identity of
the datasets nor the meaning of the features.

VI. BASELINE SOFTWARE AND PRELIMINARY RESULTS

We provided baseline software written in Python, using
the machine learning library Scikit-learn [9]. The software
uses ensemble methods, which improve over time by adding
more base learners. Other than the number of base learners,
the default, hyper-parameter settings are used.

As of February 1, over 180 people registered and down-
loaded data, 20 teams are actively participating, and the top
ranking participants in round O already outperform signifi-
cantly the baseline method (reference) on several datasets, see
Table II.

VII. DISCUSSION

Several participants asked us “what would you do”? Draw-
ing on results of past challenges, the following strategy seems
reasonable: (1) reduce the search space with “filter” methods;
(2) reduce the number of hyper-parameters using versions of
the algorithms that optimize them with “embedded methods”;
(3) use an ensemble method to grow an ever improving
ensemble until the time is out, using e.g., the method proposed
in [14].

Some participants asked for increasing the computer resources.
In phase 0 we provided 1 hour of computing on an 8-core
machine per submission. We will progressively ramp up the
computer time up to 10 hours per submission throughout
the challenge. Future editions of the challenge might run
on Hadoop to allow the participants to process much larger
datasets and enter the big data era.

We made an effort to provide a wide variety of datasets
covering many application domains and illustrating different
types of tasks, metrics of success, and difficulties. In post-
challenge analyses, we plan to complement this effort by
systematically testing of the winning entries on variants of
the datasets semi-synthetically generated to cover a range of
problem complexity (e.g., varying the proportion of training



|Num||Name ||Task ||Metric ||Time||Cnum||CbaI||Sparse||Missing||Catvar||Irrvar||Pte ||Pva ||Ptr ||N ||Ptr/N |
1 [adult |multilabel |f1_metric [300 3 |1 [o0.16 [oo11 |1 Jo5 [9768 |l4884 [34190|24  |[1424.58|
2 |lcadata ||regression|r2_metric [200 [0  |[NaN|jo o lo o5 |l10640[5000 [[5000 [[16  [[312.5 |
3 ||digits |multiclass |bac_metric[300 [10 |1 [lo42 o o Jlos |[35000(20000]15000(1568 [[9.57 |
|4 ||dorothea |[binary [auc_metric[100 [2  [l0.46[0.99 [0 o Jos [soo 350 [800o [100000[0.01 |
5 ||newsgroups |multiclass [pac_metric[300 [20 |1 [t o lo o |j3755 1877 [13142]61188 [[0.21 |

Fig. 4: Data for phase 0. Legend: Name = dataset name; Task = corresponding task; Metric = scoring function; Cnum = number
of classes; Cbal = entropy of class distribution; Sparse = sparsity (large means more zeros); Missing = fraction of missing values;
Catvar = one if has categorical variables; Irrvar = fraction of irrelevant variables; Pte = number of test patterns; Pva = number
of validation patterns; Ptr = number of training patterns; N = number of features; Ptr/N = aspect ratio of the data.

examples, missing data, distractor variables, the metrics of
success, and the traintime). We intend to relate the results with
some metrics of data complexity recently proposed [64], [65].

ACKNOWLEDGMENTS

Microsoft supported the organization of this challenge and donated
the prizes. This project received additional support from the Laboratoire
d’Informatique Fondamentale (LIF, UMR CNRS 7279) of the University
of Aix Marseille, France, via the LabeX Archimede program. Computing
resources were provided generously by Joachim Buhmann, ETH Ziirich.
We selected the 30 datasets used in the challenge among 72 datasets
that were donated or formatted using data publicly available by: Yindalon
Aphinyanaphongs, Olivier Chapelle, Hugo Jair Escalante, Sergio Escalera,
Isabelle Guyon, Zainab Iftikhar Malhi, Vincent Lemaire, Chih Jen Lin,
Meysam Madani, Bisakha Ray, Mehreen Saeed, Alexander Statnikov, Gustavo
Stolovitzky, Hans-Jiirgen Thiesen, and Ioannis Tsamardinos. Many people
provided feed-back to early designs of the protocol and/or tested the challenge
platform, including: Kristin Bennett, Marc Boullé, Cécile Capponi, Richard
Caruana, Gavin Cawley, Gideon Dror, Hugo Jair Escalante, Sergio Escalera,
Tin Kam Ho, Hugo Larochelle, Vincent Lemaire, Chih Jen Lin, Victor
Ponce Lopez, Nuria Macia, Simon Mercer, Florin Popescu, Mehreen Saeed,
Danny Silver, Alexander Statnikov, and Ioannis Tsamardinos. The software
developers who contributed to the implementation of the Codalab platform
and the sample code include: Eric Camichael, Isabelle Guyon, Ivan Judson,
Christophe Poulain, Percy Liang, Arthur Pesah, Xavier Baro Solé, Erick
Watson, Michael Zyskowski.

REFERENCES

[1] T. H. Davenport and D. Patil, “Data scientist: The sexiest job of the
21st century,” Harvard Business Review, October 2012.

[2] S. Slaughter and L. Delwiche, The Little SAS Book for Enterprise
Guide 4.2. Sas Inst, 2010. [Online]. Available: http://books.google.
com/books?id=mdtHcilcfHIC

[3] A. Field, Discovering Statistics Using SPSS, ser. Introducing Statistical
Methods Series. SAGE Publications, 2009. [Online]. Available:
http://books.google.com/books?id=5253SAL5nDgC

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10-18, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1656274.1656278

[5] M. J. Crawley, Statistics: An Introduction using R. Wiley, 2005, iSBN
0-470-02297-3. [Online]. Available: http://www.bio.ic.ac.uk/research/
crawley/statistics/

[6] Y. LeCun and L. Bottou, “Lush reference manual,” NYU, Tech. Rep.,
2002, code available at http://lush.sourceforge.net. [Online]. Available:
http://lush.sourceforge.net

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

J. Weston, A. Elisseeff, G. Baklr, and F. Sinz, “Spider,” 2007, http:
//mloss.org/software/view/29/.

A. Saffari and I. Guyon, “Quick start guide for CLOP,” Graz
University of Technology and Clopinet, Tech. Rep., May 2006.
[Online]. Available: http://clopinet.com/CLOP/

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

S. Sonnenburg, M. Braun, and C. S. Ong, 2007-2012. [Online].
Available: http://mloss.org

R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in IJCAI, 1995, pp. 1137-1145.

C. Andrieu, N. De Freitas, and A. Doucet, “Sequential MCMC for
bayesian model selection,” in Higher-Order Statistics, 1999. Proceed-
ings of the IEEE Signal Processing Workshop on. IEEE, 1999, pp.
130-134.

I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” JMLR, vol. 3, pp. 1157-1182, March 2003.
[Online]. Available: http://jmlr.csail.mit.edu/papers/volume3/guyon03a/
guyonO3a.pdf

R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes, “Ensemble
selection from libraries of models,” in Proceedings of the Twenty-first
International Conference on Machine Learning, ser. ICML ’04.
New York, NY, USA: ACM, 2004, pp. 18-. [Online]. Available:
http://doi.acm.org/10.1145/1015330.1015432

H. J. Escalante, M. M. y G6mez, and L. E. Sucar, “Particle swarm
model selection,” Journal of Machine Learning Research, vol. 10, pp.
405-440, 2009.

1. Guyon, A. Saffari, G. Dror, and G. Cawley, “Model selection: Beyond
the bayesian/frequentist divide,” The Journal of Machine Learning
Research, vol. 11, pp. 61-87, 2010.

T. Schaul, S. Zhang, and Y. LeCun, “No more pesky learning
rates,” CoRR, vol. abs/1206.1106, 2012. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/corr/corr1206.html#abs-1206-1106

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in Neural Information
Processing Systems 25, 12/2012 2012.

J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search,” CoRR, vol. abs/1209.5111, 2012.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Combined selection and hyperparameter optimization of classification
algorithms,” in Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD *13.
New York, NY, USA: ACM, 2013, pp. 847-855. [Online]. Available:
http://doi.acm.org/10.1145/2487575.2487629

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds., Recommender
Systems Handbook. Springer, 2011.

Z. Ghahramani, “Unsupervised learning,” in Advanced Lectures on
Machine Learning. Springer-Verlag, 2004, pp. 72-112.



[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, pp. 465471, 1978.

S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Comput., vol. 4, no. 1, pp. 1-58, 1992.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer series in statistics. New York: Springer, 2001.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York: Wiley, 2001.

V. Vapnik, Statistical learning theory. Wiley, 1998.

B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

H. J. Escalante, M. Montes, and L. E. Sucar, ‘“Particle swarm model
selection,” J. Mach. Learn. Res., vol. 10, pp. 405-440, 2009.

Q. Sun, B. Pfahringer, and M. Mayo, “Full model selection in the space
of data mining operators,” in GECCO (Companion), 2012, pp. 1503—
1504.

B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel
programming,” Annals of Operations Research, vol. 153, pp. 235-256,
2007.

S. Dempe, Foundations of Bilevel Programming.
Netherlands: Kluwer Academic Publishers, 2002.

G. Kunapuli, K. P. Bennett, and J.-S. Pang, “Bilevel model selection
for support vector machines,” in Data Mining and Mathematical Pro-
gramming, P. Pardalos and P. Hansen, Eds. AMS, 2008, vol. 45, pp.
129-158.

K. P. Bennett, G. Kunapuli, J. Hu, and J.-S. Pang, “Bilevel optimiza-
tion and machine learning,” in Computational Intelligence: Research
Frontiers: IEEE WCCI 2008, Hong Kong, China, June 1-6, 2008
: Plenary/invited Lectures, ser. Lecture Notes in Computer Science,
J. Zurada and et al, Eds. Springer, 2008, vol. 5050, pp. 25-47.

K. P. Bennett, J. Hu, X. Ji, G. Kunapuli, and J.-S. Pang, “Model
selection via bilevel optimization,” International Joint Conference on
Neural Networks, pp. 1922—-1929, 2006.

G. Moore, C. Bergeron, and K. P. Bennett, “Nonconvex bilevel pro-
gramming for hyperparameter selection,” in Proceedings of the 2009
IEEE International Conference on Data Mining Workshops, 2009, pp.
374-381.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, pp. 1189-1232, 2000.

T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical
learning: data mining, inference, and prediction. New York: Springer-
Verlag, 2001.

Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature
learning and deep learning: A review and new perspectives,” CoRR,
vol. abs/1206.5538, 2012.

J. P. A. Toannidis, “Why most published research findings are false,”
PLoS Med, vol. 2, no. 8, p. el24, 08 2005.

J. Langford, “Clever methods of overfitting,” Tech. Rep., blog post at
http://hunch.net/?p=22.

M. 1. Jordan, “On statistics, computation and scalability,” Bernoulli,
vol. 19, no. 4, pp. 1378-1390, Sep. 2013. [Online]. Available:
http://dx.doi.org/10.3150/12-BEJSP17

G. Cawley, “Grid search based model selection,” Tech. Rep., preprint.

Dordrecht, The

G. Moore, C. Bergeron, and K. P. Bennett, “Model selection for primal
SVM,” in Machine Learning, To appear.

G. Cawley, “Leave-one-out cross-validation based model selection cri-
teria for weighted lIs-svms,” in IJCNN, 2006, pp. 1661-1668.

I. Guyon and G. Dreyfus, Feature Extraction, Foundations and Appli-
cations, ser. Series Studies in Fuzziness and Soft Computing. Physica-
Verlag, Springer, 2006, ch. 2: Assessment methods.

G. Cawley and N. Talbot, “Preventing over-fitting during model selec-
tion via bayesian regularisation of the hyper-parameters,” The Journal
of Machine Learning Research, vol. 8, pp. 841-861, 2007.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

S. Keerthi, V. Sindhwani, and O. Chapelle, “An efficient method for
gradient-based adaptation of hyperparameters in svm models,” NIPS,
2006.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regularization
path for the support vector machine,” Journal of Machine Learning
Research, vol. 5, no. 2, p. 1391, 2005.

M. Park and T. Hastie, “L1-regularization path algorithm for generalized
linear models,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 69, no. 4, pp. 659-677, 2007.

M. Momma and K. P. Bennett, “A pattern search method for model
selection of support vector regression,” in SDM, 2002.

A. Statnikov, L. Wang, and C. Aliferis, “A comprehensive comparison
of random forests and support vector machines for microarray-based
cancer classification,” BMC bioinformatics, vol. 9, no. 1, p. 319, 2008.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems, 2011, pp. 2546-2554.

J. Snoek, H. Larochelle, and R. Adams, “Practical bayesian optimization
of machine learning algorithms,” NIPS, 2012.

J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of
model search: Hyperparameter optimization in hundreds of dimensions
for vision architectures.” in ICML (1), ser. JMLR Proceedings,
vol. 28. JMLR.org, 2013, pp. 115-123. [Online]. Available:
http://dblp.uni-trier.de/db/conf/icml/icml2013.html#BergstraYC13

K. Swersky, J. Snoek, and R. P. Adams, “Multi-task bayesian opti-
mization,” in Advances in Neural Information Processing Systems 26,
12/2013 2013.

B. Efron, “Estimating the error rate of a prediction rule: Improvement
on Cross-Validation,” Journal of the American Statistical Association,
vol. 78, no. 382, pp. 316-331, 1983. [Online]. Available: http:
//dx.doi.org/10.2307/2288636

R. Kohavi and G. John, “Wrappers for feature selection,” Artificial
Intelligence, vol. 97, no. 1-2, pp. 273-324, December 1997.

A. Blum and P. Langley, “Selection of relevant features and examples in
machine learning,” Artificial Intelligence, vol. 97, no. 1-2, pp. 245-271,
December 1997.

I. Guyon, S. Gunn, M. Nikravesh, and L. Z. Editors, Feature
Extraction, Foundations and Applications, ser. Studies in Fuzziness
and Soft Computing. With data, results and sample code for the NIPS
2003 feature selection challenge. Physica-Verlag, Springer, 2006.
[Online]. Available: http://clopinet.com/fextract-book/

R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, “Collaborative
hyperparameter tuning,” in 30th International Conference on Machine
Learning (ICML 2013), S. Dasgupta and D. McAllester, Eds., vol. 28.
Atlanta, United States: Acm Press, Jun. 2013, pp. 199-207. [Online].
Available: http://hal.in2p3.fr/in2p3-00907381

Performance Prediction Challenge, 2006. [Online]. Available: http:
/lieeexplore.ieee.org/xpls/abs\ _all.jsp?arnumber=1716305

T. K. Ho, M. Basu, and S. Member, “Complexity measures of super-
vised classification problems,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, pp. 289-300, 2002.

N. Maci, T. K. Ho, A. Orriols-Puig, and E. Bernad-Mansilla, “The
landscape contest at icpr 2010.” in ICPR Contests, ser. Lecture
Notes in Computer Science, D. nay, Z. ataltepe, and S. Aksoy,
Eds., vol. 6388. Springer, 2010, pp. 29-45. [Online]. Available:
http://dblp.uni-trier.de/db/conf/icpr/contests2010.html#MaciaHOB 10



